

 [image: Ajax Hacks]

 Ajax Hacks

Bruce W. Perry

Editor
Brett McLaughlin

Editor
Simon St. Laurent

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596101695/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Foreword

The truth is, I’ve never built an Ajax application.
Sure, I’ve worked on Ajax projects. But when it comes to
 programming, my experience is pretty limited. I’ve done some JavaScripting
 here and there. I know a little Perl, but hardly enough to build a web
 application. As a programmer, I’m more of an occasional weekend hobbyist
 than anything else.
You can imagine how frustrating it is for people to learn this fact
 when they send me emails asking for help with their JavaScript. But you
 can hardly fault them for expecting me to be a technologist. After all, I
 wrote an article coining the term “Ajax,” and Ajax is all about
 technology, right?
The funny thing is that I didn’t see it that way when I was writing
 the essay. I didn’t think I was writing for technologists at all. I’m a
 designer, and I thought I was writing for a design audience. If you look
 at some of the other things we’ve published on adaptivepath.com, you can
 see that we’re much more likely to be talking about ways to analyze user
 behavior or make an experience connect with people than about the latest
 code libraries or data schemas.
That’s one reason some people thought it was a little strange for me
 to be writing about Ajax at all. Designers, one way of thinking goes,
 should leave writing about technology to technologists.
But seeing Ajax as a purely technological phenomenon misses the
 point. If anything, Ajax is even more of a sea change for designers than
 it is for developers. Sure, there are a lot of ways in which developers
 need to change their thinking as they make the transition from building
 traditional web applications to building Ajax applications. But for those
 of us who design user experiences, the change brought about by Ajax is
 even more profound.
We’ve gotten pretty good at our jobs in the last 10 years or so.
 We’ve started to get a handle on what the Web does well and what the Web
 does poorly. And we’ve developed an arsenal of conventions to rely on when
 we design applications: where the logo goes, how a link behaves when it is
 clicked, how to communicate that something even can
 be clicked...
All of that knowledge—well, most of it, anyway—goes out the window
 with Ajax. We have a wider palette to work with, but that also means we
 have more opportunities to make mistakes. And believe me, we’ll make a lot
 of them. It takes time to get smart, and just as it took us a while to get
 a handle on the old static Web, it’ll take us some time to get good at
 creating Ajax experiences as well.
And that’s where you—and this book—come in.
One of the most inspiring things about the Web is that anyone can
 contribute to its development. Standards bodies and platform vendors are
 important, of course, but there is no master plan for the evolution of the
 Web. The Web goes where its users want it to go—but only when they’re
 ready. Sometimes that means a great idea doesn’t take hold right away, and
 sometimes that means it only takes one voice to bring that idea to an
 audience ready to hear it.
All of us, designers and developers together, are the architects of
 the Web. Through tools like this book, we can learn from each other, and
 we can use our creativity to spur on further innovation. The choices we
 make now lay the groundwork for what is to come. At this moment, Ajax is
 our manifest destiny, the obvious next chapter in the story of the Web.
 When this chapter is over, I’ll be excited to see what the next one
 brings. But for now, let’s see what we can do with what we’ve got.
Now get out there, and get hacking!
Jesse James GarrettSan Francisco, CADecember
 2005

Credits

About the Author

Bruce Perry is an independent software developer and writer, and
 the author of O’Reilly’s Java Servlet & JSP
 Cookbook. Since 1996, he has developed web applications and
 databases for various nonprofits, design and marketing firms, as well as
 publishers. In his spare time, Perry is an active age-group triathlete
 and has cycled extensively in the Swiss Alps. He lives in the
 Newburyport, Massachusetts area with his wife Stacy LeBaron, daughter
 Rachel, and son Scott.

Contributors

	Micah Dubinko served as an editor and author of the XForms 1.0
 W3C specification, and he began participating in the XForms effort
 in September 1999, nine months before the official Working Group was
 chartered. Micah received an InfoWorld Innovator award in 2004. He
 is the author of O’Reilly’s XForms Essentials,
 available online at http://www.xformsinstitute.com. Currently,
 Micah works for Yahoo! in California as a senior research
 developer.

	Curt Hibbs is a senior software developer in St. Louis with
 more than 30 years’ experience in platforms, languages, and
 technologies too numerous to list. With a keen (and always
 searching) eye for new methods and technologies to make his work
 easier and more productive, he has become very active in the Ruby
 development community.

	Brad Neuberg has done extensive work in the open source
 community, contributing code to Mozilla, JXTA, the Jakarta Feed
 Parser, and more. His experience includes developing on Wall Street
 with distributed systems, n-tier design, and J2EE. As senior
 software engineer at Rojo Networks, Brad focused on next-generation
 aggregators, the blogosphere, MySQL, Ajax, and Lucene. Recent work
 includes consulting for the Internet Archive to create an Ajax book
 reader; focusing on Ajax/DHTML open source frameworks, including the
 Really Simple History library recently adopted by Google; and
 working with the Ajax Massive Storage System (AMASS) and
 dojo.storage, which allow web applications to
 permanently and securely store megabytes of data.

	Premshree Pillai is a Technical Yahoo!. He hacks (maintains
 the Ruby APIs for Yahoo! Web Services, Flickr, Technorati, etc.),
 writes (“Ruby Corner,” a column for Linux For
 You), and talks (at various conferences) about Ruby in
 his free time. He has previously contributed to O’Reilly’s
 Python Cookbook and Yahoo!
 Hacks, and to the ACM’s
 Crossroads.

	Mark Pruett is a programmer and writer living in Virginia,
 where he works for a Fortune 500 energy company. He’s the author of
 two books and numerous articles on programming and technology. Mark
 received his master of science degree in computer science from
 Virginia Commonwealth University.

	Sean Snider is a senior web software engineer for Yahoo! and
 the Web User Interface Team manager for Yahoo! Music Unlimited. Sean
 has been building Ajax applications and rich web sites for over
 eight years within the music, video game, and e-commerce industries,
 for companies such as Electronic Arts (EA Sports, http://www.easports.com),
 Musicmatch (Musicmatch Jukebox, http://www.musicmatch.com), and
 iVillage.com.

Acknowledgments

My family members play the most important role in giving life to a
 book idea, nurturing its writing, and making its final publication
 possible. First, I thank my parents Anne and Robert Perry, who had the
 wisdom to settle in Concord, Massachusetts, where books are valued
 perhaps more than in any other town in the United States. They promoted
 reading during my childhood as an activity above most all others,
 perhaps second only to getting outside and appreciating the environment
 and Mother Nature.
Second, I would like to thank my wife Stacy and children Rachel
 and Scott, who exhibited great patience while dealing with the modest
 crises of publication deadlines, such as the temporary loss of their
 husband and father to the inner sanctorum of a home office, or the
 occasional over-cooking of the peas as I raced back to my lap top to
 complete some unfinished paragraph.
I’d like to thank my O’Reilly editor Simon St.Laurent, who
 tirelessly steered this book to publication from beginning to end, and
 offered cogent advice during the entire duration of writing, despite the
 challenging time line. This book greatly benefited from the technical
 reviews initiated by Micah Dubinko, Shelley Powers, Thinakorn Tabtieng,
 and Michael Buffington. They demonstrated impressive versatility in
 taking both a long view of the book’s topic, as well as focusing on
 numerous fine-grained details that required corrections or greater
 exposition.

Preface

 Ajax, a term coined in 2005 to describe the
 combination of a group of popular web technologies, has been an instant
 hit in the software world. Instant success can raise many doubts, but it
 would be a mistake to view this software model as simply the latest “next
 big thing” to make a big splash and then vanish into the ether of the
 Web.
Why? First of all, Ajax’s interweaved technologies, including
 JavaScript, the Document Object Model (DOM), and Cascading Style Sheets
 (CSS), live in the world of the Web, where new information and
 technologies hit millions of people in milliseconds. If the technique
 represents an interesting idea with practical merit, a good probability
 exists that developers will at least dip their toes into the technology’s
 waters, if not immediately add the new tool to their code arsenals.
 Second, the Ajax family of techniques are already well known and open
 source, or free of charge; therefore, few barriers exist to trying them
 out for at least a prototype version of new software. Third, a number of
 useful, well-known applications are based on Ajax, such as Flickr and
 Gmail. Fourth, web users are already accustomed to an Ajax application’s
 desktop-like experience, where the application can make client/server
 connections without completely changing the browser page.
There are numerous other reasons why Ajax is here to stay, such as
 the excellent support for JavaScript, CSS, and DOM provided by modern
 browsers such as Firefox, as well as the pros and cons of using Macromedia
 Flash for Rich Internet Applications instead.
Building Single-Page Applications

The “single-page application” represented by Ajax, with client/server connections that do not interrupt
 the user’s experience and dynamically change elements in different web
 page regions, is appropriate for numerous uses, such as blogs, learning
 tools, online newsletters, and small web portals or communities. Many of
 these types of sites are already built using Ajax techniques. Ajax can
 also improve the user experience in large web-based client/server
 applications that extend beyond the single-page model.
The time between the conception of this book and the writing of
 this preface has seen Ajax morph into a software platform that dominates
 headlines on the Web, not to mention the birth of new acronyms such as
 Ajaj (Asynchronous JavaScript and JSON) and lingo such as
 “Ajaxy” (as in an Ajaxy server connection). Software
 innovations and human language seem to share the same organic
 dynamic.

Explaining Ajax

Ajax Hacks was written by yours truly and
 seven different contributors, many of whom are among the innovators,
 bloggers, and early adopters who helped give Ajax and its open source
 tools the boost it enjoys today. They are senior web engineers and
 developers whose homes stretch from Bangalore to San Francisco, a scope
 reflecting the diverse and serendipitous nature by which the writers
 found this book and the book discovered its writers. (See the Credits
 for more details on these writers.)
Ajax Hacks collects not only dozens of
 easy-to-grasp, cutting-edge explorations of Ajax technology, such as
 Google/Yahoo! mapping mash-ups, drag-and-drop bookstores, and
 single-page web services apps, but a large number of hacks that
 represent practical advice for Ajax developers. Ajax
 Hacks also introduces JavaScript newbies and aficionados
 alike to useful code libraries, including Prototype, Rico, and script.aculo.us. Chapter 7 focuses on a
 practical and new web application framework with excellent Ajax tools
 including Ruby on Rails.
A number of the contributions are hacks in the original, clever
 sense of the term, exploring topics such as using algorithms and Flash
 objects to simulate a browser history list and store Ajax-related data
 offline, configuring Apache to fix the XMLHttpRequest cross-domain restrictions,
 running a search engine inside your browser, and mashing up Yahoo! Maps
 with a location-to-URL service called GeoURL.
Some of the contributed hacks illustrate cool web controls and
 embedded scripts, such as a hack that scripts an auto-complete field
 from scratch, a hack that creates JavaScript bookmarklets that do not
 have size limitations, and another that creates an RSS feed reader for
 an Ajax application. These are hacks that push the envelope, just as we
 approach the cusp of this web model’s formulation. At the same time, web
 developers can adapt a number of this book’s hacks, some of which are
 distributed as open source libraries, for their own applications.

How to Use This Book

You can read this book from cover to cover if you like, but for
 the most part, each hack stands on its own, so feel free to browse and
 jump to the different sections that interest you most. If there’s a
 prerequisite you need to know about, a cross reference will guide you to
 the right hack. So, feel free to browse, flipping around to whatever
 sections interest you most.

How This Book Is Organized

The book is divided into several chapters, organized by
 subject:
	Chapter 1,
 Ajax Basics
	What is Ajax? This chapter begins with a synopsis of the
 group of well-known technologies that make up Ajax. The chapter’s
 hacks introduce the XMLHttpRequest JavaScript object and its
 properties and methods, then delve into the meat of the matter,
 such as sending GET and POST requests, as well as receiving data
 in plain text, XML, and JSON format. This chapter also illustrates
 the dynamic scripting of CSS styles in Ajax applications. Let the
 users change the colors and fonts inside the browser page!

	Chapter 2, Web
 Forms
	Web forms have certainly changed in the Ajax world. As
 revealed in this chapter’s hacks, it is typical now to submit form
 data and to build form widgets such as select lists and checkbox groups using
 server data fetched in the background with XMLHttpRequest. Because the page doesn’t
 have to be completely rebuilt from a server response, the user
 experiences few application delays. These hacks show how to submit
 text from form fields and textareas and display server values in
 those fields, without making the user click a submit button. The
 hacks also generate various elements, such as select lists and unordered lists, using
 XMLHttpRequest and data that is
 dynamically accessed from a server.

	Chapter 3,
 Validation
	Ajax applications can cut down on server hits by validating
 the format of email addresses, credit card numbers, zip codes, and
 other types of data that users enter into web forms before sending
 the data. A server component is obviously necessary for final
 credit card validation in a real-world application; however, the
 application may implement a “first layer of defense,” as in these
 hacks, by validating the formats of text-field values with
 JavaScript regular expressions.

	Chapter 4,
 Power Hacks for Web Developers
	Web developers have never had cooler, easier-to-work-with
 tools than the Yahoo! and Google web APIs. This chapter includes a
 mash-up of Google Maps, Yahoo! Maps, and Yahoo! driving
 directions, as well as a software interaction involving Yahoo!
 Maps and a location-to-URL service called GeoURL. It also features
 more prosaic, pragmatic web hacks, such as sending an email with
 XMLHttpRequest; viewing,
 creating, and sending HTTP cookies with client-side script;
 fetching a postal code dynamically without altering the web page;
 as well as discovering and displaying the browser’s locale
 information.

	Chapter 5,
 Direct Web Remoting (DWR) for Java Jocks
	DWR is a nifty toolkit that allows developers to make remote
 calls to Java server objects from JavaScript,
 without any Java applets or plug-ins. DWR uses Ajax requests
 behind the scenes; the toolkit’s users, however, do not have to
 deal with XMLHttpRequest
 programming. These hacks populate select lists from Java arrays and Maps; call custom Java objects from
 their JavaScript proxies or counterparts; and use JavaScript
 objects to call built-in Java objects. This chapter is a treat for
 developers who are immersed in both Java and JavaScript.

	Chapter 6,
 Hack Ajax with the Prototype and Rico Libraries
	The hacks in this chapter use Prototype, a cool open source
 JavaScript library that includes its own Ajax tools. You’ll see
 how to update DOM elements in a web page with server data using
 Prototype’s Ajax.Updater
 object, and how to use the PeriodicalExecuter object to execute
 Ajax requests at timed intervals while another “observer” object
 monitors a text field for changes (imagine: a user enters data
 into text fields, and a JavaScript object automatically sends the
 data off to persistent server storage whenever the field value
 changes). Another hack in this chapter uses the open source
 library Rico in a Weather.com web services application. Finally,
 the chapter’s last hack sets up a drag-and-drop bookstore, also
 using Rico.

	Chapter 7,
 Work with Ajax and Ruby on Rails
	Learn Ruby on Rails! Ruby on Rails (RoR) is an efficient and
 well-designed web application framework, based on the
 Model-View-Controller design pattern, that made its debut in 2005.
 This chapter begins with a simple hack that helps you get up and
 running with RoR, then moves on to several hacks that illustrate
 RoR’s Ajax tools. Each hack is a web application task written in
 Ruby; for example, one of the hacks monitors a server connection
 and displays the status in the client. RoR bundles Prototype with
 the framework, then wraps the setup of the Ajax objects into its
 own easy-to-learn, embedded script language. Get ready to read a
 lot of Ruby code, a treat for those who may be new to this elegant
 and powerful tool!

	Chapter 8,
 Savor the script.aculo.us JavaScript Library
	script.aculo.us is
 another open source JavaScript library built on Prototype. It
 offers a broad menu of useful effects and controls for developers.
 These hacks create a Mac OS X–style login box that “shakes” in
 response to invalid logins; an auto-complete field based on a
 script.aculo.us object; a
 control that allows the user to edit textual content in the
 browser and then save the changes on a server, without a web page
 round trip; and, just for fun, a web form that disappears in a
 puff of smoke when it’s submitted.

	Chapter 9,
 Options and Efficiencies
	These hacks provide several tips for real-world Ajax
 developers. Ironically, several hacks illustrate how to
 avoid using XMLHttpRequest to hit the server: you’ll
 see how to run a search engine inside the browser, cache data with
 JavaScript, and “fix” the browser back button in an Ajax
 application by internally storing and accessing state. These hacks
 also recommend ways to combine code libraries to increase download
 speed, obfuscate or partially obscure JavaScript code to protect
 proprietary scripting, set a timer for aborting an Ajax request,
 as well as dynamically request data in JavaScript Object Notation
 (JSON) format using the HTML script tag.

Conventions Used in This Book

The following is a list of the typographical conventions used in
 this book:
	Italics
	Used to indicate URLs, filenames, filename extensions, and
 directory/folder names, e.g., a path in the filesystem appears as
 /Developer/Applications

	Constant width
	Used to show code examples, the contents of files, console
 output, as well as the names of variables, commands, and other
 code excerpts

	Constant width
 bold
	Used to highlight portions of code

	Gray type
	Used to indicate a cross reference within the text

You should pay special attention to notes set apart from the text
 with the following icons:
Tip
This is a tip, suggestion, or general note. It contains useful
 supplementary information about the topic at hand.

Warning
This is a warning or note of caution, often indicating that
 something might break if you’re not careful, possibly quite
 badly.

The thermometer icons, found next to each hack, indicate the
 relative complexity of the hack:
Whenever possible, the hacks in this book are not
 platform-specific, which means you can use them on
 Linux, Macintosh, and Windows machines. However, some things are
 possible only on a particular platform.

Using Code Examples

This book is here to help you get your job done. In
 general, you may use the code in this book in your programs and
 documentation. You do not need to contact us for permission unless
 you’re reproducing a significant portion of the code. For example,
 writing a program that uses several chunks of code from this book does
 not require permission. Selling or distributing a CD-ROM of examples
 from O’Reilly books does require permission.
 Answering a question by citing this book and quoting example code does
 not require permission. Incorporating a significant amount of example
 code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Ajax Hacks by Bruce Perry.
 Copyright 2006 O’Reilly Media, Inc., 0-596-10169-4.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite
 technology book, it means the book is available online through the
 O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top technology
 books, cut and paste code samples, download chapters, and find quick
 answers when you need the most accurate, current information. Try it for
 free at http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the
 best of our ability, but you may find that features have changed (or
 even that we have made mistakes!). As a reader of this book, you can
 help us to improve future editions by sending us your feedback. Please
 let us know about any errors, inaccuracies, bugs, misleading or
 confusing statements, and typos that you find anywhere in this
 book.
Please also let us know what we can do to make this book more
 useful to you. We take your comments seriously and will try to
 incorporate reasonable suggestions into future editions. You can write
 to us at:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the Unitd States or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send email
 to:
	bookquestions@oreilly.com

The web site for Ajax Hacks lists examples,
 errata, and plans for future editions. You can find this page at:
	http://www.oreilly.com/catalog/ajaxhks/

For more information about this book and others, see the O’Reilly
 web site:
	http://www.oreilly.com

Got a Hack?

To explore Hacks books online or to contribute a hack for future
 titles, visit:
	http://hacks.oreilly.com

Chapter 1. Ajax Basics

Remember when users called the Internet the “world wide wait?” Way
 back in the Neolithic era of the Web? With some applications, that aspect
 of the Web hasn’t really changed that much: fill out form, click button,
 web page goes away, wait, page refreshes, correct mistake, click, wait,
 wait... You’ve been stuck in this limbo before.
A number of recent web sites, however, such as many of the cool
 mapping applications that have evolved of late, require much greater
 responsiveness in the way they interact with users. The old, conventional
 way of handling user interaction is to have the entire page “go away” with
 every click, with the new page reappearing in the browser view only when
 the server’s response is finally complete. However, some new applications
 require small pieces of the web page to change instantaneously, without
 the entire page reloading.
For example, if you have ever used Google Maps, the way you can drag outlying regions into your
 view conveys the impression that you have all of the maps stored locally
 on your computer, for your effortless manipulation. Imagine how unpopular
 this application would be if every time you tried to “drag” the map the
 page disappeared for a few (long) moments while the browser waited for
 another server response. The application would be so sluggish that no one
 would use it. So what’s the magic that makes this work?
It’s Not a Floor Wax

A blend of well-known technologies and a nifty JavaScript tool
 form the basis of a snappier and more powerful application model for the
 Web. If you’re afraid of acronym overload, don’t worry—this one’s easy.
 It’s called Ajax, which stands for Asynchronous JavaScript
 and XML.
Ajax is neither a floor wax nor a desert topping (nor, indeed, a
 lemon-scented cleaning product!). It’s a blend of a number of standard technologies already
 familiar to developers and designers:
	JavaScript, a programming language that adds dynamic
 scripting to web pages. JavaScript code can be embedded in a web
 page to allow the page to implement cool new behaviors with a
 technique called client-side scripting. This
 technique is almost as old as the Web itself.

	 XMLHttpRequest, a JavaScript object with an
 application programming interface (API) that can connect with a
 server using the HyperText Transfer Protocol (HTTP). A lot of the
 Ajax magic is propelled by this piece of code, which all the major
 browsers (such as Mozilla Firefox, Internet Explorer 6, Safari 1.3
 and 2.0, and Opera 7.6) support. The asynchronous part of Ajax
 derives from this object’s characteristics.[1]

	 Extensible Markup Language (XML), a language designed
 to define other languages. The XMLHttpRequest object can handle the
 server response in standard XML format as well as plain text.

	HTML and Cascading Style Sheets (CSS), which control what the
 user sees on a web page. Web developers can use JavaScript to make
 dynamic changes to the visual interface by programming HTML elements
 and CSS styles.

	The Document Object Model (DOM), a model that represents
 an XML file or web page as a set of related objects that can be
 dynamically manipulated, even after the user has downloaded the
 page. The web page view is structured as a tree
 hierarchy made up of a root node, the parent, and its various
 branches, or children. Each HTML element is
 represented by a node or branch, which is accessible via JavaScript.
 We show a lot (a lot!) of DOM programming in
 these hacks.

	 Extensible Stylesheet Language and Transformation
 (XSLT), a templating technology for transforming the display of XML
 information for a receiving client.

Ajax is far from new, as these are relatively old technologies.
 Microsoft issued the first implementation of a JavaScript object that
 makes HTTP requests, often referred to as the XMLHTTP object, with Version 5.0 of the
 Internet Explorer browser (as of this writing, IE is on Version 6, with
 v7 in a beta release).
The plethora of new web applications that use Ajax, however,
 suggests that this group of technologies has morphed into a new web
 model. “Web 2.0” is next-generation-speak encompassing Ajax, a form of
 Rich Internet Application (so called
 because much of the application’s functionality can reside in the client
 browser). Examples of these applications are Google Maps, Gmail, a
 collaboration suite called Zimbra, an interesting personal search-engine
 tool called Rollyo (http://www.rollyo.com), and one of the first
 interactive web maps, this one of Switzerland (see http://map.search.ch/index.en.html). The number
 of Ajax applications is growing very rapidly. You can find a short list
 on Wikipedia, at http://en.wikipedia.org/wiki/List_of_websites_using_Ajax.

[1] The XMLHttpRequest object can make an
 asynchronous request to a server, meaning that once the request
 has been initiated, the rest of the JavaScript code does not
 have to wait for a response to execute. XMLHttpRequest can also make
 synchronous requests.

Handle with Care

Of course, Ajax is not for everyone (particularly those dessert
 topping fans!). Because Ajax technology can dynamically alter a web page
 that has already been downloaded, it may interfere with certain
 functions near and dear to many users, such as creating bookmarks for
 browser views. For example, in the absence of fancy scripting solutions,
 the dynamic changes you make with DOM in an existing web page cannot be
 linked to with a URL that you can send to your friends or save for
 later. (Both “Fix the Browser
 Back Button in Ajax Applications” [Hack #68] and “Handle Bookmarks and Back Buttons with
 RSH” [Hack #69] should help shed light on these issues and
 provide some hackable solutions.)
A number of the cool Ajax tips described in this book alter the
 behavior of many familiar web widgets, such as select lists, textareas, text fields, and radio buttons that
 submit their own data and talk to servers behind the scenes. However,
 bear in mind that Ajax-powered widgets should be first and foremost
 usable, and always avoid confusing and irritating
 web users.

XMLHttpRequest

At the center of many of the hacks in this book is the XMLHttpRequest object, which allows JavaScript
 to fetch bits of server data while the user is happily playing with the
 rest of your application. This object has its own API, which we will
 summarize in this introduction.
“Detect Browser
 Compatibility with the Request Object” [Hack #1] covers setting
 up the request object in JavaScript. Once the object is initialized, it
 has several methods and properties that you can use in your own
 hacks.
Tip
A common practice among programming types is to call the
 functions that are associated with particular JavaScript
 objects “methods.” The XMLHttpRequest object’s methods include
 open(), send(), and abort().

The following list shows the properties supported by the
 request objects defined by most of the major browsers, such as Internet
 Explorer 5.0 and later, Safari 1.3 and 2.0, Netscape 7, and Opera’s
 latest releases (such as Opera 8.5). Mozilla Firefox’s request object
 has additional properties and methods not shared by the request objects
 of other major browsers,[2] but it also supports all of the following:
	 onreadystatechange
	Callback function; the function assigned to this property is
 called whenever readyState
 changes.

	 readyState
	Number; 0 means
 uninitialized, open() has not yet been called;
 1 means
 loading, send() has not been called; 2 means loaded,
 send() has been called, and
 headers/status are available; 3
 means interactive, responseText holds partial data;
 4 means
 completed.

	 responseText
	string; the plain text of
 the response.

	 responseXML
	DOM Document object; an
 XML return value.

	 status
	Response status code, such as 200 (Okay) or 404 (Not Found).

	 statusText
	string; the text
 associated with the HTTP response status.

The methods supported include:
	 abort()
	void; cancels the HTTP
 request.

	 getAllResponseHeaders()
	string; returns all of
 the response headers in a preformatted string (see “Dig into the HTTP Response” [Hack
 #9]).

	 getResponseHeader(string header)
	string; returns the value
 of the specified header.

	 open(string url,string asynch)
	void; prepares the HTTP
 request and specifies whether it is asynchronous or not.

	 send(string)
	void; sends the HTTP
 request.

	 setHeader(string header,string value)
	void; sets a request
 header, but you must call open() first!

[2] The Mozilla Firefox XMLHttpRequest object has onload, onprogress, and onerror properties that are event listener
 types. Firefox has also defined addEventListener(), dispatchEvent(), overrideMimeType(), and removeEventListener() methods. See
 http://www.xulplanet.com/references/objref/XMLHttpRequest.html
 for more details on these Firefox request object members.

Hack #1. Detect Browser Compatibility with the Request Object

Use JavaScript to set up Microsoft’s and the
 Mozilla-based browsers’ different request objects.
Browser compatibility is an important consideration. You
 have to make sure the “engine” behind Ajax’s server handshake is
 properly constructed, but you can never predict which browsers your
 users will favor.
The programming tool that allows Ajax applications to make HTTP
 requests to a server is an object that you can use from within
 JavaScript code. In the world of Firefox and Netscape (as well as Safari
 and Opera), this object is named XMLHttpRequest. However, continuing with the
 tradition established by IE 5.0, recent vintages of Internet Explorer
 implement the software as an ActiveX
 object named Microsoft.XMLHTTP or
 Msxml2.XMLHTTP.
Tip
Microsoft.XMLHTTP and
 Msxml2.XMLHTTP refer to different
 versions of software components that are a part of Microsoft XML Core
 Services (MSXML). Here’s what our contributing IE expert says on this
 matter:
“If you use Microsoft.XMLHTTP, the ActiveXObject wrapper will try to initialize
 the last known good version of the object that has this program (or
 “prog”) ID. This object, in theory, could be MSXML 1.0, but almost no
 one these days has that version because it has been updated via
 Windows Update, IE 6, or another means. MSXML 1.0 was very
 short-lived. If you use MSXML2.XMLHTTP, that signifies to the
 wrapper to use at least MSXML 2.0 libraries. Most developers do not
 need to use a specific version of MSXML, such as MSXML2.XMLHTTP.4.0 or MSXML2.XMLHTTP.5.0.”

Although Microsoft and the engineers on the Mozilla project have
 chosen to implement this object differently, we will refer to the
 ActiveX and XMLHttpRequest objects simply as “request objects” throughout this book, because they have
 very similar functionality.
As a first step in using Ajax, you must check if the user’s
 browser supports either one of the Mozilla-based or ActiveX-related request objects, and then
 properly initialize the object.
Using a Function for Checking Compatibility

Wrap the compatibility check inside a JavaScript
 function, then call this function before you make any HTTP requests
 using the object. For example, in Mozilla-based browsers such as
 Netscape 7.1 and Firefox 1.5 (as well as in Safari 2.0 and Opera 8.5),
 the request object is available as a property of the top-level
 window object. The reference to
 this object in JavaScript code is window.XMLHttpRequest. The compatibility check
 for these browser types looks like this:
if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 request.onreadystatechange=handleResponse;
 request.open("GET",theURL,true);
 request.send(null);
}
The JavaScript variable request is to a top-level variable that will
 refer to the request object.
Tip
As an alternative model, the open-source library
 Prototype uses object-oriented JavaScript
 to wrap the request object into its own object, as in the object
 Ajax.Request (see Chapter 6).

If the browser supports XMLHttpRequest, then:
	if(window.XMLHttpRequest)
 returns true because the
 XMLHttpRequest is not null or undefined.

	The object will be instantiated with the new keyword.

	Its onreadystatechange
 event listener (see the section “XMLHttpRequest”
 earlier in this chapter) will be defined as a function named
 handleResponse().

	The code calls the request object’s open() and send() methods.

What about Internet Explorer users?
Tip
Microsoft Internet Explorer–related blogs mentioned, at the
 time this book went to publication, that IE 7 would support a native
 XMLHttpRequest object.

In this case, the window.XMLHttpRequest object will not exist
 in the browser object model. Therefore, another branch of the if test is necessary in your code:
else if (window.ActiveXObject){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 }
 if(request){
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,true);
 request.send(null);
 }
}
 This code fragment tests for the existence of the
 top-level window object ActiveXObject, thus signaling the use of
 Internet Explorer. The code then initializes the request using two of
 a number of possible ActiveX program IDs (here, Microsoft.XMLHTTP and Msxml2.XMLHTTP).
You can get even more fine-grained when testing for different
 versions of the IE request object, such as Msxml2.XMLHTTP.4.0. In the vast majority of
 cases, however, you will not be designing your application based on
 various versions of the MSXML libraries, so the prior code will
 suffice.
The code then makes one final check for whether the request
 object has been properly constructed (if(request){...}).
Given three chances, if the request variable is still null or undefined, your browser is really out of
 luck when it comes to using the request object for Ajax!
Here’s an example of an entire compatibility check:
/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //the request could still be null if neither ActiveXObject
 //initialization succeeded
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}
/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
}
“Use the Request Object to
 POST Data to the Server” [Hack #2] shows how to implement a
 POST request with XMLHttpRequest.

Hack #2. Use the Request Object to POST Data to the Server

Step beyond the traditional mechanism of
 posting your user’s form values.
This hack uses the POST HTTP request method to send data, communicating with
 the server without disrupting the user’s interaction with the
 application. It then displays the server’s response to the user. The
 difference between this hack’s approach to posting data and the typical
 form-submission method is that with Ajax, the page is not altered or
 refreshed when the application connects with the server to POST it the
 data. Thus, the user can continue to interact with the application
 without waiting for the interface to be rebuilt in the browser.
Imagine that you have a web portal in which several regions of the
 page or view provide the user with a variety of services. If one of
 these regions involves posting data, the entire application might have a
 more responsive feel if the POST request happens in the background. This
 way, the entire page (or segments of it) does not have to be refreshed
 in the browser.
The example web page used in this hack is a simple one. It
 requests users to enter their first and last names, gender, and country
 of origin, and then click a button to POST the data. Figure 1-1 shows what
 the web page looks like in a browser window.
[image: Please Mister POST man]

Figure 1-1. Please Mister POST man

Here’s the code for the HTML page:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="/parkerriver/js/hack2.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Send a data tidbit</title>
</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit="sendData();return false">
 <p>First name: <input type="text" name="firstname" size="20"> </p>
 <p>Last name: <input type="text" name="lastname" size="20"> </p>
 <p>Gender: <input type="text" name="gender" size="2"> </p>
 <p>Country of origin: <input type="text" name="country" size="20"> </p>
 <p><button type="submit">Send Data</button></p>
</form>
</body>
</html>
Tip
You may be wondering about the weird-looking form action="javascript:void%200" part. Because
 we are calling JavaScript functions when the form is submitted, we do
 not want to give the action
 attribute anything but a JavaScript URL that has no return value, such
 as "javascript:void 0". We have to
 encode the space between void and
 0, which is where the %20 comes in. If JavaScript is disabled in
 the user’s browser, clicking the submit button on the form has no
 effect because the action attribute
 does not point to a valid URL. In addition, certain HTML validators
 will display warnings if you use action="". Another way of writing this code
 is to include the function calls as part of the window.onload event handler in the
 JavaScript .js file, which is the
 approach used by most hacks in this book.

The first code element of interest is the script tag, which imports the JavaScript code
 (in a file named hack2.js). The
 form tag’s onsubmit attribute specifies a function called
 sendData(), which in turn formats
 the data for a POST request (by calling another function, setQueryString()) and sends the data to the
 server. For brevity’s sake, we’ve saved the description of checking for
 blank fields for a later hack (“Validate a Text Field or textarea for
 Blank Fields” [Hack #22]), but web applications should take this
 step before they hit the server.
The hack2.js file defines the necessary JavaScript.
 Here is the setQueryString() function:
function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++) {
 if(i < numberElements-1) {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value)+"&";
 } else {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value);
 }

 }
}
This function formats a POST-style string out of all the form’s input elements. All the name/value pairs are
 separated by an & character,
 except for the pair representing the last input element in the form. The entire string
 might look like:
firstname=Bruce&lastname=Perry&gender=M&country=USA
Now you have a string you can
 use in a POST HTTP request. Let’s look at the JavaScript code that sends
 the request. Everything starts with the
 sendData() function. The code calls this
 function in the HTML form tag’s
 onsubmit attribute:
var request;
var queryString; //will hold the POSTed data
function sendData(){
 setQueryString();
 var url="http://www.parkerriver.com/s/sender";
 httpRequest("POST",url,true);
}

/* Initialize a request object that is already constructed.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 isAsynch: Whether to send the request asynchronously or not. */
function initReq(reqType,url,isAsynch){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,isAsynch);
 /* Set the Content-Type header for a POST request */
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(queryString);
}

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //the request could still be null if neither ActiveXObject
 //initialization succeeded
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}
The purpose of the httpRequest() function is to check which
 request object the user’s browser is associated with (see “Detect Browser Compatibility with the
 Request Object” [Hack #1]). Next, the code calls initReq(), whose parameters are described in
 the comment just above the function definition.
The code request.onreadystatechange=handleResponse;
 specifies the event-handler function that deals with the response. We’ll
 look at this function a little later. The code then calls the request
 object’s open() method, which
 prepares the object to send the request.
Setting Headers

The code can set any request headers after calling
 open(). In our case, we have to
 create a Content-Type header for a
 POST request.
Tip
Firefox required the additional Content-Type header; Safari 1.3 did not.
 (We were using Firefox 1.02 at the time of writing this hack.) It is
 a good idea to add the proper header because in most cases the
 server is expecting it from a POST request.

Here’s the code for adding the header and sending the POST
 request:
request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
request.send(queryString);
If you enter the raw queryString value as a parameter, the method
 call looks like this:
send("firstname=Bruce&lastname=Perry&gender=M&country=USA");

Ogling the Result

Once your application POSTs data, you want to display
 the result to your users. This is the responsibility of the handleResponse() function. Remember the code
 in the initReq() function:
 request.onreadystatechange=handleResponse;
When the request object’s readyState property has a value of 4, signifying that the object’s operations
 are complete, the code checks the HTTP response status for the value
 200. This value indicates that the
 HTTP request has succeeded. The responseText is then displayed in an
 alert window. This is somewhat
 anticlimactic, but I thought I’d keep this hack’s response handling
 simple, because so many other hacks do something more complex with
 it!
Here is the relevant code:
//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 alert(request.responseText);
 } else {
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}
Figure
 1-2 shows what the alert
 window looks like after the response is received.
[image: Alert! Server calling...]

Figure 1-2. Alert! Server calling...

The server component returns an XML version of the POSTed data.
 Each parameter name becomes an element name, with the parameter value
 as the element content. This POSTed data is nested within params tags. The component is a Java
 servlet. The servlet is not the main focus of this hack, but here’s
 some code anyway, for the benefit of readers who are curious about
 what is happening on the server end:
protected void doPost(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 Map reqMap = httpServletRequest.getParameterMap();
 String val=null;
 String tag = null;
 StringBuffer body = new StringBuffer("<params>\\n");
 boolean wellFormed = true;
 Map.Entry me = null;
 for(Iterator iter= reqMap.entrySet().iterator();iter.hasNext();) {
 me=(Map.Entry) iter.next();
 val= ((String[])me.getValue())[0];
 tag = (String) me.getKey();
 if (! XMLUtils.isWellFormedXMLName(tag)){
 wellFormed=false; break;
 }
 body.append("<").append(tag).append(">").
 append(XMLUtils.escapeBodyValue(val)). append("</").append(tag).append(">\\n");
 }
 if(wellFormed) {
 body.append("</params>");
 sendXML(httpServletResponse,body.toString());
 } else {
 sendXML(httpServletResponse,"<notWellFormedParams />");
 }
}
The code uses XMLUtils, a Java class from the Jakarta
 Commons Betwixt open source package, to check whether the parameter
 names are well formed, as well as whether the parameter values contain
 invalid XML content and thus have to be escaped. If for some reason
 the component is POSTed data that contains nonwell-formed parameter
 names (such as na< >me instead of name), the servlet returns an empty XML
 element reporting this condition.

Hack #3. Use Your Own Library for XMLHttpRequest

Break out the code that initializes the
 request object and sends requests to its own JavaScript
 file.
To cleanly separate the concerns of big Ajax applications, create
 a separate file that manages the XMLHttpRequest object, then import that file
 into every web page that needs it. At the very least, this ensures that
 any necessary changes regarding how the code sets up the request object
 have to be made only in this file, as opposed to every JavaScript file
 that uses Ajax-style requests.
This hack stores all the request object–related code in a file
 called http_request.js. Any web page that uses
 XMLHttpRequest can then import this
 file in the following way:
<script type="text/javascript" src="js/http_request.js"></script>
Here’s the code for the file, including all the comments:
var request = null;
/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not.
 respHandle: The name of the function that will handle the response.
 Any fifth parameters, represented as arguments[4], are the data a
 POST request is designed to send. */
function httpRequest(reqType,url,asynch,respHandle){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //very unlikely, but we test for a null request
 //if neither ActiveXObject was initialized
 if(request) {
 //if the reqType parameter is POST, then the
 //5th argument to the function is the POSTed data
 if(reqType.toLowerCase() != "post") {
 initReq(reqType,url,asynch,respHandle);
 } else {
 //the POSTed data
 var args = arguments[4];
 if(args != null && args.length > 0){
 initReq(reqType,url,asynch,respHandle,args);
 }
 }
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}
/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool,respHandle){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=respHandle;
 request.open(reqType,url,bool);
 //if the reqType parameter is POST, then the
 //5th argument to the function is the POSTed data
 if(reqType.toLowerCase() == "post") {
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(arguments[4]);
 } else {
 request.send(null);
 }

 } catch (errv) {
 alert(
 "The application cannot contact "+
 "the server at the moment. "+
 "Please try again in a few seconds.\\n"+
 "Error detail: "+errv.message);
 }
}
The applications that use this code call the httpRequest() function with four or five (with
 POST requests) parameters. You see lots of examples of calling this
 function in the other hacks. Here’s another:
var _url = "http://www.parkerriver.com/s/sender";
var _data="first=Bruce&last=Perry&middle=W";
httpRequest("POST",_url,true,handleResponse,_data);
The code comments describe the meaning of each of these
 parameters. The last parameter represents the data that accompanies a
 POST request.
Tip
A POST HTTP request includes the POSTed data beneath the
 request-header information. A GET request, on the other hand, appends
 parameter names/values onto the URL.

If the code is not using POST, the client code uses only the first
 four parameters. The fourth parameter can be either the name of a
 function that is declared in the client code (i.e., a response-handling
 function that appears outside of the http_request.js file) or a function literal.
 The latter option involves defining a function inside a function call,
 which is often awkward and difficult to read. However, it is sensible in
 situations in which the HTTP response handling is short and simple, as
 in:
var _url = "http://www.parkerriver.com/s/sender";
//a debugging setup
httpRequest("POST",_url,true,function(){alert(request.responseText);});
httpRequest() initiates the
 same browser detection and setup of XMLHttpRequest for Internet Explorer and
 non-Microsoft browsers as described in “Detect Browser Compatibility with the
 Request Object” [Hack #1]. initReq() handles the second step of setting
 up the request object: specifying the onreadystatechange event handler and calling
 the open() and send() methods to make an HTTP request. The
 code traps any errors or exceptions thrown by these request method calls
 using a try/catch statement. For
 example, if the code calls open()
 with a URL specifying a different host than that used to download the
 enclosing web page, the try/catch
 statement catches the error and pops up an alert window.
Finally, as long as the web page imports http_request.js, the request variable is available to code external
 to the imported file; request is, in
 effect, a global variable.
Warning
request is thus reserved as a
 variable name because local variables that use the var keyword will supercede (with
 unintentional consequences) the globally used request, as in the following example:
function handleResponse(){ //supercedes the imported request variable var request = null; try{ if(request.readyState == 4){ if(request.status == 200){...

Hack #4. Receive Data as XML

Ajax and server programs provide a DOM
 Document object that’s ready to go.
 Many technologies currently exchange data in Extensible
 Markup Language format, mostly because XML is a standardized and extensible format widely
 supported by the software world. Thus, different parties can use
 existing, well-known technologies to generate, send, and receive XML,
 without having to adapt to the software tools used by the parties with
 whom they are exchanging the XML data.
An example is a Global Positioning System (GPS) device that can share the
 data it has recorded about, say, a hike or a bike ride with a
 location-aware web application. You just stick the USB cable attached to
 the GPS device into a USB computer port, launch software that sends the
 device data to the Web, and that’s it. The data format is usually an XML
 language that has been defined already for GPS software. The web
 application and the GPS device “speak the same language.”
Although this book is not the place for an extensive introduction
 to XML, you have probably seen these text files in one form or another.
 XML is used as a “meta” language that describes and categorizes specific
 types of information. XML data starts with an optional XML declaration
 (e.g., <?xml version="1.0" encoding="UTF-8"?>), followed
 by a root element and zero or more child elements. An example is:
<?xml version="1.0" encoding="UTF-8"?>
<gps>
<gpsMaker>Garmin</gpsMaker>
<gpsDevice>
Forerunner 301
</gpsDevice>
</gps>
Here, gps is the root element,
 and gpsMaker and gpsDevice are child elements.
Ajax and the request object can receive data as XML, which is very
 useful for handling web-services responses that use XML. Once the HTTP
 request is complete, the request object has a property named responseXML. This object is a DOM Document object
 that your Ajax application can use. Here’s an example:
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 var doc = request.responseXML;
...
}
In the previous code sample, the doc variable is a DOM Document object, offering a similar API to a
 browser’s display page. This hack receives XML from a server, then
 initiates a little DOM programming with the Document object to pull some information out
 of the XML.
Tip
If you just want to see the raw XML text, use the request.responseText property instead.

The HTML file for this hack is basically the same as the one used
 in “Use the Request Object to POST
 Data to the Server” [Hack #2], but a
 div element is added at the end, where the code
 displays information about the returned XML. Here’s the code for the
 HTML page:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack3.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Receive XML response</title>
</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit="sendData();return false">
 <p>First name: <input type="text" name="firstname" size="20"> </p>
 <p>Last name: <input type="text" name="lastname" size="20"> </p>
 <p>Gender: <input type="text" name="gender" size="2"> </p>
 <p>Country of origin: <input type="text" name="country" size="20"> </p>
 <p><button type="submit">Send Data</button></p>
 <div id="docDisplay"></div>
</form>
</body>
</html>
Figure 1-3
 shows what the page looks like before the user enters any
 information.
[image: All set up to receive XML]

Figure 1-3. All set up to receive XML

The JavaScript code in the hack3.js file POSTs its data to a server
 application, which sends back a response in XML format. The field
 validation step [Hack #22]
 has been skipped for the sake of brevity, but web applications using
 forms should always implement this task.
Like other examples in this chapter, the server program echoes the
 parameter names and values back to the client, as in <params><firstname>Bruce</firstname></params>.
 “Use the Request Object to POST
 Data to the Server” [Hack #2] shows some of the code for the
 server component that puts together the return value. This technique
 suits our purpose for showing a simple example of programming XML in an
 Ajax application:
var request;
var queryString; //will hold the POSTed data

function sendData(){
 setQueryString();
 var url="http://www.parkerriver.com/s/sender";
 httpRequest("POST",url,true);
}
//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 var doc = request.responseXML;
 var info = getDocInfo(doc);
 stylizeDiv(info,document.getElementById(""docDisplay""));
 } else {
 alert(""A problem occurred with communicating between ""+
 ""the XMLHttpRequest object and the server program."");
 }
 }//end outer if
}

/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.setRequestHeader(""Content-Type"",
 ""application/x-www-form-urlencoded; charset=UTF-8"");
 /* Only works in Mozilla-based browsers */
 //request.overrideMimeType(""text/xml"");
 request.send(queryString);
}

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Snipped...See Hack #1
}
function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++) {
 if(i < numberElements-1) {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value)+"&";
 } else {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value);
 }
 }
}
/* Provide the div element's content dynamically. We can add
style information to this function if we want to jazz up the div */
function stylizeDiv(bdyTxt,div){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.innerHTML=bdyTxt;
}

/* Get information about an XML document via a DOM Document object */
function getDocInfo(doc){
 var root = doc.documentElement;
 var info = "<h3>Document root element name: <h3 />"+ root.nodeName;
 var nds;
 if(root.hasChildNodes()) {
 nds=root.childNodes;
 info+= "<h4>Root node's child node names/values:<h4/>";
 for (var i = 0; i < nds.length; i++){
 info+= nds[i].nodeName;
 if(nds[i].hasChildNodes()){
 info+= " : \\"+nds[i].firstChild.nodeValue+"\\"
";
 } else {
 info+= " : Empty
";
 }
 }
 }
 return info;
}
Tip
Mozilla Firefox can use the request.overrideMimeType() function to force
 the interpretation of the response stream as a certain mime type, as
 in request.overrideMimeType("text/xml").
 Internet Explorer’s request object does not have this function. This
 function call does not work with Safari 1.3, either.

After the code POSTs its data and receives a response, it calls a
 method named getDocInfo(), which builds a string that displays some information about
 the XML document and its child or subelements:
var doc = request.responseXML;
var info = getDocInfo(doc);
The getDocInfo() function
 gets a reference to the root XML element (var root =
 doc.documentElement;); it then builds a string specifying the name of the root element
 and information about any of its child nodes or elements, such as the
 child node name and value. The code then feeds this information to the
 stylizeDiv() method. The stylizeDiv() method uses the div element at the end of the HTML page to
 dynamically display the gathered information:
function stylizeDiv(bdyTxt,div){
 //reset div content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.innerHTML=bdyTxt;
}
Figure 1-4
 shows what the web page looks like after the application receives the
 XML response.
[image: Delving into XML return values]

Figure 1-4. Delving into XML return values

Tip
The text nodes that the application shows are newline characters
 in the returned XML.

The core DOM API offered by the browser’s JavaScript
 implementation provides developers with a powerful tool for programming
 complex XML return values.

Hack #5. Get Plain Old Strings

Manage weather readings, stock quotes, web
 page scrapings, or similar non-XML data as plain old
 strings.
 The request object has the perfect property for web
 applications that do not have to handle server return values as XML:
 request.responseText. This hack asks
 the user to choose a stock symbol, and the server returns the stock
 price for display. The code handles the return value as a string.
Tip
A variation to this program in the next hack requires the stock
 prices to be handled as numbers. These are old prices that a server
 component stores for certain stock symbols, not
 live quotes that you would obtain from a
 commercial web service or by HTML scraping. For an example of that
 mechanism, see “Use
 XMLHttpRequest to Scrape a Energy Price from a Web Page” [Hack
 #39].

First, here is the HTML for the web page. It imports JavaScript
 code from a file named hack9.js:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack9.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Choose a stock</title>
</head>
<body>
<h3>Stock prices</h3>
<form action="javascript:void%200" onsubmit=
 "getStockPrice(this.stSymbol.value);return false">
 <p>Enter stock symbol: <input type="text" name=
 "stSymbol" size="4"></p>
 <p><button type="submit">Get Stock Price</button></p>
</form>
</body>
</html>
Figure 1-5
 shows the web page as displayed in Firefox. The user enters a symbol
 such as “GRMN” (case insensitive) and clicks the Get Stock Price button;
 the JavaScript then fetches the associated stock price and displays it
 within a span element to the right of
 the text field.
[image: Instantaneously displaying a stock price]

Figure 1-5. Instantaneously displaying a stock price

The function that sets the request process in motion is getStockPrice(). This function takes the value
 of the text field named stSymbol and
 returns the associated stock price (it uses the request object to talk
 to a server component, which fetches the actual stock price). Here is
 the JavaScript code:
var request;
var symbol; //will hold the stock symbol

function getStockPrice(sym){
 symbol=sym;
 if(sym){
 var url="http://localhost:8080/parkerriver/s/stocks?symbol="+sym;
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 /* Grab the result as a string */
 var stockPrice = request.responseText;
 var info = "«The price is: $"+stockPrice+"»";
 document.getElementById("stPrice").style.fontSize="0.9em";
 document.getElementById("stPrice").style.
 backgroundColor="yellow";
 document.getElementById("stPrice").innerHTML=info;

 } else {
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

/* See Hack #1 for the httpRequest() code;
it is snipped here for the sake of brevity. */
The function getStockPrice()
 wraps a call to the function httpRequest(), which is responsible for
 setting up the request object. If you have already read through some of
 this chapter’s other hacks, you will recognize the handleResponse() function as enclosing much
 of the interesting action.
Tip
“Detect Browser
 Compatibility with the Request Object” [Hack #1] and “Use Your Own Library for
 XMLHttpRequest” [Hack #3] explain the httpRequest() function in more
 detail.

If the request is complete (i.e., if request.readyState has a value of 4) and the HTTP response status is 200 (meaning that the request has succeeded),
 the code grabs the server response as the request.responseText property value. The code
 then uses DOM scripting to display the stock price with some CSS
 style-related attributes:
document.getElementById("stPrice").style.fontSize="0.9em";
document.getElementById("stPrice").style.backgroundColor="yellow";
document.getElementById("stPrice").innerHTML =info;
The style attributes make the
 font size a little bit smaller than the user’s preferred browser font
 size and specify yellow as the background color of the text display. The
 innerHtml property of the span element is set to the stock price within
 double angle brackets.

Hack #6. Receive Data as a Number

Do numerical calculations that depend on the
 request object’s return value as a number.
This hack receives a stock quote as a number, then dynamically
 displays the total value of a stock holding based on the number of
 shares a user enters. If the server does not send a valid number, the
 application displays an error message to the user.
The great advantage of Ajax technology is in receiving discrete
 values rather than entire web pages from a server. Sometimes, that
 discrete information has to be used as a number, rather than as a
 string (as discussed in the last
 hack) or some other object. JavaScript is usually pretty smart about
 converting values to number types without your intervention, but still,
 you don’t want your application to multiply an innocent investor’s share
 quantity by undefined or some other
 weird data the server returns!
This hack checks that the user has entered a proper number for a
 “number of shares” value. The code also checks the server return value
 to make sure it is numerically valid. It then dynamically displays the
 stock price and total value of the shares in the user’s browser.
Figure 1-6
 shows what the browser form looks like.
[image: Discover a total share value]

Figure 1-6. Discover a total share value

The following code shows the HTML for the web page:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="/parkerriver/js/hack4.js">
 </script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Tally your stocks</title>
</head>
<body>
<h3>Your total Stock Holdings</h3>
<form action="javascript:void%200" onsubmit=
 "getStockPrice(this.stSymbol.value,this.numShares.value);return false">
<p>Enter stock symbol: <input type="text" name="stSymbol" size="4">
 </p>
<p>Enter share amount: <input type="text" name="numShares" size="10"></p>
<p><button type="submit">Get Total Value</button></p>
<div id="msgDisplay"></div>
</form>
</body>
</html>
When the user clicks the Get Total Value button, this action
 triggers the form element’s onsubmit event. The event handler for this
 event is the getStockPrice() function. This function takes
 the stock symbol and the number of shares as its two parameters. The
 return false part of the event-handling code
 cancels the browser’s typical submission of the
 form values to the URL specified by the form tag’s action attribute.
Number Crunching

Now let’s look at the JavaScript code, which the HTML
 file imports as part of the hack4.js file:
var request;
var symbol; //will hold the stock symbol
var numberOfShares;

function getStockPrice(sym,shs){
 if(sym && shs){
 symbol=sym;
 numberOfShares=shs;
 var url="http://localhost:8080/parkerriver/s/stocks?symbol="+sym;
 httpRequest("GET",url,true);
 }
}
//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 alert(request.status);
 if(request.status == 200){
 /* Check if the return value is actually a number.
 If so, multiple by the number of shares and display the result */
 var stockPrice = request.responseText;
 try{
 if(isNaN(stockPrice)) { throw new Error(
 "The returned price is an invalid number.");}
 if(isNaN(numberOfShares)) { throw new Error(
 "The share amount is an invalid number.");}
 var info = "Total stock value: "+ calcTotal(stockPrice);
 displayMsg(document.
 getElementById("msgDisplay"),info,"black");
 document.getElementById("stPrice").style.fontSize="0.9em";
 document.getElementById("stPrice").innerHTML ="price:
 "+stockPrice;
 } catch (err) {
 displayMsg(document.getElementById("msgDisplay"),
 "An error occurred: "+
 err.message,"red");
 }
 } else {
 alert(
 "A problem occurred with communicating between the "+
 "XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

/* See Hack #1 or #2 for the httpRequest() code sample and the associated function
initReq(). They are snipped here for the sake of brevity. */

function calcTotal(price){
 return stripExtraNumbers(numberOfShares * price);
}
/* Strip any characters beyond a scale of four characters
past the decimal point, as in 12.3454678 */
function stripExtraNumbers(num){
 //check if the number's already okay
 //assume a whole number is valid
 var n2 = num.toString();
 if(n2.indexOf(".") == -1) { return num; }
 //if it has numbers after the decimal point,
 //limit the number of digits after the decimal point to 4
 //we use parseFloat if strings are passed into the method
 if(typeof num == "string"){
 num = parseFloat(num).toFixed(4);
 } else {
 num = num.toFixed(4);
 }
 //strip any extra zeros
 return parseFloat(num.toString().replace(/0*$/,""));
}

function displayMsg(div,bdyText,txtColor){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.style.color=txtColor;
 div.innerHTML=bdyText;
}
All the number crunching starts in the call to handleResponse(). First, the code receives
 the response as a string, in
 var stockPrice =
 request.responseText. The code then tests the validity of
 the stockPrice variable using a
 method that is part of JavaScript’s core API: isNaN(). This is the best way to test
 whether a string value in
 JavaScript can represent a valid number. For example, isNaN("goodbye") returns true because “goodbye” cannot be converted
 to a number. The code also tests the number of shares value with this
 function.
If either method returns true, indicating an invalid number value,
 the code throws an exception. This is another way of declaring, “We
 can’t use these values; get them out of here!” The web page then
 displays an error message to the user.
Tip
Exception handling with Ajax is covered in “Handle Request Object Errors” [Hack
 #8].

However, we’re not yet finished with our number crunching. The
 calcTotal() function then multiplies the
 share total by the stock price in order to display the total value to
 the user.
To make sure that the numerical display of the value is friendly
 enough to the eye (in terms of the U.S. stock exchange), the stripExtraNumbers() function keeps no more
 than four characters to the right of the decimal point.
Tip
Even though $10.9876 may look a little weird (stock prices are
 sometimes displayed with four or more characters to the right of the
 decimal point), I decided to allow this display for the total share
 value.

DOM-inating

 The code uses Document Object Model programming to
 dynamically display new text and values on the page, all without
 having to make new server calls and refresh the entire page. The
 following bit of code, within the handleResponse() function, calls the
 displayMsg() function to show the user the
 total share value. The code also dynamically embeds the stock price
 just to the right of the text field where the user entered the stock
 symbol. All the code does here is get a reference to the div element with id
 stPrice, make its font-size style property a little smaller
 than the web user’s font setting, and then set the div’s innerHTML property:
displayMsg(document.getElementById("msgDisplay"),info,"black");
document.getElementById("stPrice").style.fontSize="0.9em";
document.getElementById("stPrice").innerHTML ="price: "+stockPrice;
The displayMsg() function
 is also simple. It has a parameter that represents the font color,
 which allows the code to set the font color “red” for error
 messages:
function displayMsg(div,bdyText,txtColor){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.style.color=txtColor;
 div.innerHTML=bdyText;
}
Figure
 1-7 shows what the page looks like when the user requests a
 stock value.
[image: Tallying your investment]

Figure 1-7. Tallying your investment

Figure
 1-8 shows an example error message, in case the user enters
 values that cannot be used as numbers or the server returns invalid
 values.
[image: Having a bad number day]

Figure 1-8. Having a bad number day

Hack #7. Receive Data in JSON Format

Ajax can receive data in efficient and
 powerful JavaScript Object Notation.
 How would you like to use Ajax and receive data from the
 server as plain old JavaScript objects? Well, you can, using a format
 called JavaScript Object Notation (JSON). This hack takes information
 entered by a web user and initiates a server round trip, which returns
 the data in JSON syntax for the web page’s use.
JSON is simple and straightforward, which is probably why a lot of
 developers like it. JSON-formatted data is appropriate for simple
 objects that are bundles of properties and values. An example is a
 server program that pulls product information from a database or cache
 and returns it to a retail web page in JSON format. Data in JSON format
 is represented by:
	An opening curly brace ({)

	One or more property names, separated from their values by
 colons, with property/value pairs separated by commas

	A closing curly brace (})

The values of each property in the object can be:
	Simple strings, such as "hello"

	Arrays, such as [1,2,3,4]

	Numbers

	The values true, false, or null

	Other objects, as in a composition, or an object containing
 one or more objects

Tip
See http://www.json.org for further details.

This is exactly the format of an Object literal in JavaScript. As an example,
 here is what the information requested of the user in “Use the Request Object to POST Data to
 the Server” [Hack #2] looks like in JSON format:
{
firstname:"Bruce",
lastname:"Perry",
gender:"M",
country:"USA"
}
Magic JSON

In this section, we’ll use a similar HTML page to the one used
 in “Use the Request Object to
 POST Data to the Server” [Hack #2], and we’ll ask the user for
 the same information; however, this hack uses JavaScript code and Ajax
 to handle a JSON return value from the server. Two div elements at the bottom of the HTML page
 show the JSON return value from the server and then display the
 object’s properties and values in a more friendly fashion.
Here’s the code for the HTML page:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack5.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Receive JSON response</title>
</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit="sendData();return false">
 <p>First name: <input type="text" name="firstname" size="20"> </p>
 <p>Last name: <input type="text" name="lastname" size="20"> </p>
 <p>Gender: <input type="text" name="gender" size="2"> </p>
 <p>Country of origin: <input type="text" name="country" size="20"> </p>
 <p><button type="submit">Send Data</button></p>
 <div id="json"></div>
 <div id="props"></div>
</form>
</body>
</html>
Figure 1-9
 shows what the web page looks like.
[image: JSON is calling]

Figure 1-9. JSON is calling

The JavaScript code is imported by the script tag and specified by the file
 hack5.js. The JavaScript sends the user’s
 entered values to the server; because this was discussed in “Use the Request Object to POST Data
 to the Server” [Hack #2] and other hacks, the code is
 reproduced here but doesn’t go into great detail.
Warning
Beware of cross-site scripting (XSS) attacks when evaluating any
 return values as JavaScript code in this manner. This is a potential
 threat for any use of eval() or
 the Function-related code
 discussed in this hack.
As a countermeasure, the client-side JavaScript can filter and
 inspect the return value (e.g., by looking at the XMLHttpRequest responseText property) for the presence of
 the expected object property names before the code uses responseText in the eval() function (see http://www.perl.com/pub/a/2002/02/20/css.html).

Here’s the code for this hack. Below, we’ll go over the key
 parts that handle the return value as a JavaScript object.
var request;
var queryString; //will hold the POSTed data

function sendData(){
 setQueryString();
 url="http://localhost:8080/parkerriver/s/json";
 httpRequest("POST",url,true);
}

//event handler for XMLHttpRequest
function handleJson(){
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 var func = new Function("return "+resp);
 var objt = func();
 var div = document.getElementById("json");
 stylizeDiv(resp,div);
 div = document.getElementById("props");
 div.innerHTML="<h4>In object form...</h4>"+
 "<h5>Properties</h5>firstname= "+
 objt.firstname +"
lastname="+
 objt.lastname+ "
gender="+
 objt.gender+ "
country="+
 objt.country;
 } else {
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleJson;
 request.open(reqType,url,bool);
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(queryString);
}

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
 //Snipped... See Hack #1 or #2
}

function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++){
 if(i < numberElements-1){
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value)+"&";
 } else {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value);
 }
 }
}

function stylizeDiv(bdyTxt,div){
 //reset DIV content
 div.innerHTML=" ";
 div.style.fontSize="1.2em";
 div.style.backgroundColor="yellow";
 div.appendChild(document.createTextNode(bdyTxt));
}
As in this chapter’s previous hacks, the initReq() function initializes the request
 object and sends an HTTP request to the server.
The event-handling function for when the response is ready is
 called handleJson(). The response is a
 JSON-formatted text string, as opposed to XML or some other text type.
 As is, JavaScript interprets this returned text as a string object. Therefore, the code initiates
 an opening step before the server’s return value is interpreted as a
 JavaScript object literal. (By the
 way, in this hack, the server takes the request parameters and
 reformats the parameter names and property values into JSON syntax,
 prior to sending the reformatted data as its response.)
Tip
Special error-handling code is not included here, because
 these elements require further explanation and are covered by “Handle Request Object Errors” [Hack
 #8].

Within the handleJson()
 code (highlighted in the previous code sample), the variable resp refers to the HTTP response text, which
 JavaScript interprets as a string.
 The interesting stuff occurs in the
 Function constructor:
var func = new Function("return "+resp);
This code creates a new Function object on the fly and stores the
 Function in a variable named
 func. JavaScript coders might note
 that most functions are predefined and declared in code, or created as
 function literals. However, in this case we need to define a function
 body dynamically using a string,
 and the Function constructor
 provides the perfect tool.
Tip
Thanks to this site for guidance on this code usage:
 http://www.jibbering.com/2002/4/httprequest.html.
Another method for converting JSON strings that’s making its
 way around the Web goes like this:
var resp = request.responseText;var obj = eval("(" + resp + ")");
You do not have to use the parentheses characters when using
 eval() and an array, as in:
var resp = request.responseText;//resp contains something like "[1,2,3,4]"var arrObject = eval(resp);

The next line creates a function that returns an object literal, representing the server return
 value. You then call the function and use the returned object to dynamically display server values
 on the web page with DOM programming (all without complex object serialization or a page
 refresh!):
var objt = func();
var div = document.getElementById("json");
stylizeDiv(resp,div);
div = document.getElementById("props");
div.innerHTML="<h4>In object form...</h4><h5>Properties</h5>firstname= "+
 objt.firstname +"
lastname="+
 objt.lastname+ "
gender="+
 objt.gender+ "
country="+
 objt.country;
A variable named objt stores the object literal. The values are pulled from
 the object with syntax such as
 objt.firstname. Figure 1-10 shows
 what the web page looks like after it has received a response.
[image: Visualizing JavaScript properties is sweet!]

Figure 1-10. Visualizing JavaScript properties is sweet!

On the Server Side

 A Java servlet handles requests for this hack. For those
 interested in the server activity, here is the doPost() method for this code:
protected void doPost(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 Map valMap = httpServletRequest.getParameterMap();
 StringBuffer body = new StringBuffer("{\\n");

 if(valMap != null) {
 String val=null;
 String key = null;
 Map.Entry me = null;
 Set entries = valMap.entrySet();

 int size = entries.size();
 int counter=0;
 for(Iterator iter= entries.iterator();iter.hasNext();) {
 counter++;
 me=(Map.Entry) iter.next();
 val= ((String[])me.getValue())[0];
 key = (String) me.getKey();
 if(counter < size) {
 body.append(key).append(":\\"").append(val).append("\\",\\n");
 } else {
 //remove comma for last entry
 body.append(key).append(":\\"").append(val).append("\\"\\n");
 }
 }

 }
 body.append("}");
 AjaxUtil.sendText(httpServletResponse,body.toString());
}
The AjaxUtil class sends the
 HTTP response with a Content-Type
 of text/plain; charset=UTF-8. Some
 web sites have discussed using a Content-Type of application/x-json for JSON, but as of this
 writing, developers and standards bodies have not yet settled on a
 standard relating to this matter.
The AjaxUtil class also sets
 the HTTP response header Cache-Control to no-cache, which tells the browser or user
 agent not to cache the responses:
response.setHeader("Cache-Control", "no-cache");

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages173775.jpg
) O'Reilly RSS Reader - Mozlla Firefox
e it Yew Go foomals Toos teb

G- DGO D E [0t oinnn ¥ 0 [C
O'Reilly RSS Reader

OReilly New Tites | [show details

The DAM Book: Digital Asset Management for Photographers
Greasemonkey s
Mac 0S X Tiger in a Nutshell
Windows XP for rs: The Missing Manu:
Photoshop Filter Effects Encydopedia
Photoshop Blending Modes Cookbook for Digital Photographers
Ci++ Cookbook
Photoshop Photo Effects Cookbook
Cult of iPod
Integrating Excel and Access
cel for ers: The Missing Manual
Photoshop Elements 4: The Missing Manual
Orade PL/SOL for DBAs
Access 2003 for Starters: The Missing Manual
Unix in a Nutshell

Done

OEBPS/httpatomoreillycomsourceoreillyimages173659.jpg
It does not appear that the server is available
for this application. Please try again very soon.

Error: Component returned failure code:
0x80040111 (NS_ERROR_NOT_AVAILABLE)

[nsIXMLHttpRequest status]

OEBPS/httpatomoreillycomsourceoreillyimages173801.jpg
0060 Add books to the Basket (=]

& =l £33 @ o rocabost sos0parkerer ajnacks/arag v © (G

Geting St _otest Hedines _tetdocs

[0 iboommin | °

Apache Tomeat5.0.18 received the book: Google Maps Hacks for checkout

OEBPS/httpatomoreillycomsourceoreillyimages173749.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173839.jpg
O O 6 R G

Editable Quote

“These are the times tat ry s
souls. Th summer soldicr

and he sunshine patiot may.

n s crss, shenk fom he service of iscouny:
bt he that s t o ceserves

the love and hanks of man and wornan ™

~Thomas Paine

OEBPS/httpatomoreillycomsourceoreillyimages173661.jpg
mau

Find ot the HTTP esponse headers when you "GET" a Web pae

OEBPS/httpatomoreillycomsourceoreillyimages173835.jpg
N T a—
S et

[i iy |6y O

OEBPS/httpatomoreillycomsourceoreillyimages173731.jpg
i)

i

sy

OEBPS/httpatomoreillycomsourceoreillyimages173645.jpg
806 Tally your stocks (=)

&> g0 Mme-o
Getting Started _ Latest Headlines _j2eeddocs.
(@ Tally your stocks 18 Receive XML response [

Stock Prices
Enter stock symbol: fintc «The price is: $24.66»

Gt Stock Price

e

OEBPS/httpatomoreillycomsourceoreillyimages173845.jpg
) Ajax Back Button Hack - Mozilla Firefox

@ D 00 @ B &0 mimmvomwmel 0w [C

Ajax Back Button Hack
1218500.95
Gat

Added 1 to cache
Added 2 to cache
Added 3 to cache
Added 4 to cache

Done

OEBPS/httpatomoreillycomsourceoreillyimages173713.jpg
(< ») ¢ [+)@ /wnwparkerver.comsajashacks ajax.nac(@- Coogle }

‘Your new user name has been saved.
Enter email: [brucewp@here.com

OEBPS/httpatomoreillycomsourceoreillyimages173857.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173877.jpg
3 Hiding Information - Mozilla Firefox
He Ed Vew Go fodkmaris ook teb

G- D & 0D E (0w O oo [GL

OEBPS/httpatomoreillycomsourceoreillyimages173779.jpg
@ hp:locahost 8080/ parkervrajaxhacksaax.hacy

Our list of Bike Designers
Bikes: (Speaes 75)

Your local date: Nov 14, 2005 3:16:05 PM.
Greenwich Mean Time date: 14 Nov 2005 20:16:05 GMT
‘The difference between your time and GMT (in minutes): 300

OEBPS/httpatomoreillycomsourceoreillyimages173677.jpg
(<] @ e /v parkerrivercomyajaxhacks fajax.hacA(@e Coogle)

Get stats from textareas and textfields using Ajax

Enter a few words for submitting to our server:
[y, afewwords toourfans. |
Enter a phrase for submitting to our server:

OEBPS/httpatomoreillycomsourceoreillyimages173777.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173817.jpg
s00.
B aspacnco
dispach fegi

#) application.js
) comroisjs
B arageropss
efectsss

B protowype.s

OEBPS/httpatomoreillycomsourceoreillyimages173653.jpg
0006 Receive JSON response (=}

o @0 MewroT ¢
Getting Started Latest Headlines s j2eeddocs
[@ RecewessONresponse | @ Recelve XMLresponse)
A Few Facts About Yourself...

First name:

Last name:

Gender:[
Country of origin:
Send Data

Done

OEBPS/httpatomoreillycomsourceoreillyimages173847.jpg
) Ajax Back Button Hack - Mozilla Firefox

e
Y - e [
Ajax Back Button Hack

1218499.17
Gat

Added 1 to cache
Added 2 to cache

Added 3 to cache

Added 4 to cache

IFRAME changed. Was 4, now 3 [pulled 3 from cache]

Done

OEBPS/httpatomoreillycomsourceoreillyimages243955.jpg
AJAX
HACKS

Tips & Tools for Creating Responsive Web Sites

O’REILLY® Bruce W. Perry

OEBPS/httpatomoreillycomsourceoreillyimages173673.jpg
Find out the HTTP response headers when you "GET" a Web page
Choose the style for your message

Enter a URLS [fip //ocahest 8080/ | «press tab or click outide the fild when fnished editing>

OEBPS/httpatomoreillycomsourceoreillyimages173697.jpg
Do mic checkboxi
(< »)&] [+] @ huup:/ /s parkerriver.com/ajaxhacks/aj ~(Q- Goosle)

Voting on Favorite Sports
Pick a sports category

Team Sports: O
Individual Sports: O

OEBPS/httpatomoreillycomsourceoreillyimages173799.jpg
@ > @ O B O imarr——— 10 G

Geting St st Wedines _tdocs

) GY Mash-up. @ Add books 10 he Basket o

OEBPS/httpatomoreillycomsourceoreillyimages173671.jpg
s ders
(<> (¢][+ /@ o locanosts080/parkeriverfaxvacs aja ack 0l (@ ason Lei Yoo)

Find out the HTTP response headers when you "GET" a Web page
Choose the style for your message

(=]

Entera URL: (g /iocaose080/ | «press tab orclck outside the field when finished ediings

OEBPS/httpatomoreillycomsourceoreillyimages173823.jpg
‘Choose a year for energy usage totals:

OEBPS/httpatomoreillycomsourceoreillyimages173785.jpg
o

{

Javaseript

“Giant": 0004",
“Cannondale’: 0007",
“Gury'™ “0003",
“Orbea’: '0002°,
“Look': *0005",
“Trek’: 0001

OEBPS/httpatomoreillycomsourceoreillyimages173675.jpg
(<« »][c] @ hup: /www.parkerriver.com/ ajaxhacks/ajax._hac.
e = = 9+ o

Get stats from textareas and textfields using Ajax

Enter a few words for submitting to our server:

Enter a phrase for submitting to our server:

OEBPS/httpatomoreillycomsourceoreillyimages173789.jpg
(< »][] @ hpriocatmosta00/hacks/pac_sjx FQ cooge

Please enter your name

Your first & last name:
Age group:

OEBPS/httpatomoreillycomsourceoreillyimages173795.jpg
6606 Observe a text field (=]

€ 3 @ ‘\:,‘ Q '@ hup:/flocatho: v | © (G v

Getting Started _Latest Headlines _j2eeddocs
@ submit your information I Observe a text field h o

Trackable and observable data

Gt Wed Deq]
2 GHT-0500

hange detect:
5 2005 13:55
l(esT)

hange detected on: Wed Dec|
8 2005 13:56:07 GMP-0500
(2s1)

hange detected on: Wed Dec|
5 2005 13:56:22 GMT-0500
(2s7)

Done

OEBPS/httpatomoreillycomsourceoreillyimages173737.jpg
[« »|[&][+] B/ spremshree.org/geourimap hum Ba- cooge)

GeoURL Yahoo! Mapping

Premshree Pllai. Powered by GeoURL and Yahoo! Maps.

OEBPS/httpatomoreillycomsourceoreillyimages173859.jpg
) Client:side Cache Test - Mozilla Firefox
a< Gt ven Go foomads s ted

-6 O @ 8 [[0 imein i ¥

Chantide Content Cachiog

1

OEBPS/httpatomoreillycomsourceoreillyimages173705.jpg
mea - CT—

Expand Your Sports Categories
Expand Sport Choices.
Expand the choices for:

Restore Original Sport Choices

Restore the choices for:
‘Team sport

o Baseball
« Soccer
« Football
« Basketball
o Lacrosse
o Hockey
o Tennis

Individual sport
o Cycling

« Running
« Swimming

o Nordic Skiing
Inline Skating
o Triathlon

o Track

OEBPS/httpatomoreillycomsourceoreillyimages173637.jpg
T

A Few Facts About Yourself...
First name:
Last name:

OEBPS/httpatomoreillycomsourceoreillyimages173725.jpg
(<« »][c] @ htp:/www.parkerriver.com/ajaxhacks/a) &

Your Google Map

Latitude: [42.057450220245

Longitude: [7164184570312
Zoom level: [10]

OEBPS/httpatomoreillycomsourceoreillyimages173813.jpg
Monitor Your Ajax Calls with Rails

Loading...

Loaded; request status=200
Interactive; request status=200
Success; request status=200
Ajax return value...

OEBPS/httpatomoreillycomsourceoreillyimages173837.jpg
Enter Your Email Contact Name

OEBPS/httpatomoreillycomsourceoreillyimages173865.jpg
) Clent-side Cache Test- Mozill Firefox
Be it vo @ o Dok b
G- O DG B0 nwseverore rosiote e 9] O o [CL

Sunc s e (S5m0 e Cones st

OEBPS/httpatomoreillycomsourceoreillyimages173663.jpg
RO lew response headers
[« » [][+] @hup//locathost8080 parkerriver/ajaxhacks/ajasa Q- Google |

Find out the HTTP response headers when you "GET" a Web page

Enter a URL: [hitp://localhost:8080/ | «press tab when finished ediing the field»

Server: Apache-Coyote/1.1
Date: Tue, 22 Nov 2005 20:59:26 GUT
Transter-Encoding: Identity
Content-Type: text/html

OEBPS/httpatomoreillycomsourceoreillyimages173709.jpg
Ca > 1[0 [] o wmwpasermercon/apeacesamc vacks 2t (@ sar e varoo O

OEBPS/httpatomoreillycomsourceoreillyimages173739.jpg
Owrrersen® O sossfuss O @rasaaion

OEBPS/httpatomoreillycomsourceoreillyimages173655.jpg
0606 Receive JSON response (=]

@ o & O B @mikan v]© @ —

Geting Started _Latest Headlines s _j2esddocs
(@ Receive JSON response e Receive XML response.]

A Few Facts About Yourself...

First name;

Last name: [perry

Gender:M
Country of origin: [United States
\Send Data]

{ lastname:"Perry", gender:"M", country:"United States”,
firstname:"Bruce" };

In object form...
Properties

firstname= Bruce
lastname=Perry
gender=M
country=United States

Done

OEBPS/httpatomoreillycomsourceoreillyimages173771.jpg
) O'Reilly RSS Reader - Mozilla Firefox

Cﬂ L> 50 @ @\Umw//mzhnm“nm Y0

O'Reilly RSS Reader

SELECT AFEED

Railly News and Artcles
ORelly New Tiles

ORelly Network Aricles and Weblogs

show details

Done

OEBPS/httpatomoreillycomsourceoreillyimages173699.jpg
dynamic checkbo

Voting on Favorite Sports

Pick a sports category

Team Sports: @
Individual Sports: O

Olacrosse
Oihockey
OIsoccer
Oitennis
C)baseball
Difootball
(O)basketball

OEBPS/httpatomoreillycomsourceoreillyimages173831.jpg
O T e O

Examine Instant Messages

OEBPS/httpatomoreillycomsourceoreillyimages173717.jpg
(< > I][+] @ tiep: /1w parkermvercomrajashacs/ccara.mo(@- Coogle }

Please enter your payment information
Please enter a valid value for the credit card.
[Name and billing address appear here]
Credit card type:

asiercard T
Credit card number (#### #### #it## ##1# or no spaces): [11111112222223557
Expiration date: (arch %)

Card Security code: [312 |

OEBPS/httpatomoreillycomsourceoreillyimages173685.jpg
Create or Alter a Select List

Aiabama
Alaska
(Arizona
(Arkansas

Choose one or more states:

The server reports that you have
chosen the following abbreviated
states:

European countries: O
Choose your list content: South American countries:

o

OEBPS/httpatomoreillycomsourceoreillyimages173701.jpg
(<~ 1[c)] @nip /v parkertver comiaoracksrao. ackz_smt <@ cooge

Expand Sport Choices

Expand the choices for:
Restore Original Sport Choices

Restore the choices for:

Team sport

o Baseball
O Soccer

O Football
O Basketball
Olacrosse
2 Hockey
O Tennis

Individual sport

O Cycling

C Running

2 Swimming
CNordic Skiing
Cinline Skating
OTriathion
OTrack

OEBPS/httpatomoreillycomsourceoreillyimages173781.jpg
@ http: //localhost:8080/parkerriver/ajax A

Bike Maker List

. Specialized

. Cannondale

. Giant

. Guru

. Orbea

. Look)1
. Trek ,

NouswN -

OEBPS/httpatomoreillycomsourceoreillyimages173769.jpg
@ hp: ww parkernve.comajaxhack S

Welcome

Your language preferences have been identified as: en

Define preference|
English

OEBPS/httpatomoreillycomsourceoreillyimages173833.jpg
¢ 0w [—

e G it | & et

OEBPS/httpatomoreillycomsourceoreillyimages173841.jpg
5 O 6 R G

“The summer soldier
and e sunshine patio may.

i crss, shenk from e service of iscouay:

but e that sinds it now deserves

he love and thanks of man and worman ™ L

OEBPS/httpatomoreillycomsourceoreillyimages173693.jpg
[« 1)+ s mmervercompacs e ukz_s im0 cooo:
- ahoo! News (1150)

Choose your favorite sports

‘Team sport

© Baseball
O Soccer

O Football
O Basketball
Olacrosse
O Hockey
O Tennis

Individual sport

© Cycling
© Running

O Swimming
CNordic Skiing
Cinline Skating
OTriathion
OTrack

T

OEBPS/httpatomoreillycomsourceoreillyimages173761.jpg
€ O 0 OO G
s

Choose a Fue Type, Get an Instantancous Price
Fctnpe: s g o %)
The ruesedprc i 2357

OEBPS/httpatomoreillycomsourceoreillyimages173649.jpg
6606 Tally your stocks (=

E B O A i v ©

Getting Started_Latest Headlines _j2eeddocs

Your total Stock Holdings

Enter stock symbol: [sunw_ price:

Enter share amount: [500

[Get Total Vaiue|

Total stock value: $2000

s

OEBPS/httpatomoreillycomsourceoreillyimages173871.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173683.jpg
Create or Alter a Select List

Choose one or more states:

The server Apache Tomeat/5.0.19
reports that you have chosen
the following abbreviated states: az

Choose your list content:

Loutsiana
Maine
Maryland
Massachusetts.

European countries: O South
American countries: O

OEBPS/httpatomoreillycomsourceoreillyimages173783.jpg
(<« » (e[+] @hup://iocainost:8080/parkerriver/a A Q- Google §

Bike Maker List

Specialized
Cannondale
Giant

Guru

Orbea
Look

Trek

‘The time now

Greenwich Mean Time date: 20 Nov 2005 16:59:18 GMT
Your local date: Nov 20,2005 11:59:18 AM
‘The difference between your time and GMT (in minutes): 300

OEBPS/httpatomoreillycomsourceoreillyimages173809.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173643.jpg
6606 Recelve YO response (=]
G O R Orwipaerverconis v] © (GF *
Getin Sared_ots Hedines _2estioes

) Receive XML response | O hp://www.park...sendermatM=hi o

A Few Facts About Yourself...

Fistname:frace

Lastmame: ey

Gender: i~

Country of origin: [United States
Send Data

Document root element name:

Root node's child node names/values:

#text : Empty
country : "United States"
text :

firsiname - “Bruce”
#text : Empty

R

OEBPS/httpatomoreillycomsourceoreillyimages173875.jpg
) Hiding Information - Mozilla Firefox
He Edt Vew Go fookmais ook Heb

[hto:/ferver2iantid ¥ © o

Wind: N at0 mph
Humidiy 75%

OEBPS/httpatomoreillycomsourceoreillyimages173711.jpg
666 email
(< » (] [+ @ jwwmparkermvercomajaxhacks ajax.hach Q- Google)
P —————

Make sure the user name is more than two characters, does not begin or end with a period (), or is
not otherwise invalid!

Enter email: [brucesap@here com

OEBPS/httpatomoreillycomsourceoreillyimages173733.jpg
Y

0 0 6 O

Use Google Maps and Yahoo! Maps
a e e
agn
5
8

e e

TR NORTH v LERANONITR RIVER 1CT
1 T e QUECHEE NAINSTIUSA) s 40

OEBPS/httpatomoreillycomsourceoreillyimages173745.jpg
(> 1(e)@ 1 suers comsc o s vim 6 Ceooe___C)

Please enter the city and state
e — N —]
Zip code: [oa165]

OEBPS/httpatomoreillycomsourceoreillyimages173747.jpg
P e Howld
e et 1t et ot Gl)t i
N T T e [T o T [T =W =i |

Permanent Storage Test

Instructions

F RS R P —
e e ko s e o s e

P,

OEBPS/httpatomoreillycomsourceoreillyimages173723.jpg
[« J[c][+] @ huwiocanosts0soparkerver/ajaxhacks afox_hack3. 6 2 Q- coose G

Please enter the city and state
L — N r—
Zip code: [5757 |

Please enter a valid zip code.

OEBPS/httpatomoreillycomsourceoreillyimages173763.jpg
Do nd an Email
[« »J[c] @ hutp: /www.parkerriver.com ajaxhacks ajax_hackd_12 html A Q- Coogle J

Enter Email Information
Senderaddress: []
Receiveraddress: |

‘Email subject:

OEBPS/httpatomoreillycomsourceoreillyimages173657.jpg
0606 Tally your stocks

N L Nl —

Getting Started _Latest Headlines s j2eeddocs.

(@ Tally your stocks e

Recelve XML response

(]

Your total Stock Holdings

Enter stock symbol:

Enter share amount:

Get Total Value

Dons

OEBPS/httpatomoreillycomsourceoreillyimages173667.jpg
= view response headers
(< > ©][+] @hupocaoscsosoparkerrveraashacs s back

Find out the HTTP response headers when you "GET" a Web page

Choose the style for your message

Cosmepoiian 1)

Enter a URL: [/ocahast 8080/ | «presstsh orclick outside the ickd when fnished editings.

OEBPS/httpatomoreillycomsourceoreillyimages173729.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173755.jpg
cconisos

(< e J(+][@ b rmmmarerveccomsiieater __ OP(@: ceose)

The name and value of each found cookie

Name of cookie #1: mycookie
Value of cookie £1: 1135715309320

Name of cookie #2: mycookieCool
Value of cookie #2: asaaaaa-72722727.

OEBPS/httpatomoreillycomsourceoreillyimages173665.jpg
4 ns
(<> [c][+][moitocamostaososparkermverajashacks ajax hackamm =@ Googie

Find out the HTTP response headers when you "GET" a Web page

Choose the style for your message

P TocaasE8080] | «presssb orclick outside the icld when fnished editing-.

OEBPS/httpatomoreillycomsourceoreillyimages173689.jpg
Add Entries to a Select List
'Add your continent:

Choose one or more states:

(< + | @ hup: s parkernvr.comajaxt

|© ater:

Alabama
Alaska
(Arizona.
[Arkansas

OEBPS/httpatomoreillycomsourceoreillyimages173849.jpg
Em Javescaipt Chaos Englows .Sy

4

ntropy

Source

(@ vrsir) (O 0] (@) (D) (@ 00er) (D)

OEBPS/httpatomoreillycomsourceoreillyimages173691.jpg
‘Add Entries to a Select List
Add your continent:

Choose one or more states:

(< »] @ hup: . parkerrver.comajaxh

Ecuador
Venezuela
Bolivia

(Columbia

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages173647.jpg
06066

Tally your stocks

> @

) £} @rwiriain v ©

Getting Started _Latest Headlines, _j2eeddocs

(@ Tally your stocks e Receive XML response

Your total Stock Holdings

Enter stock symbol:

Enter share amount:

Get Total Value

Done

OEBPS/httpatomoreillycomsourceoreillyimages173787.jpg
o @ hup: localhost 8080/ parkerrver/ajaxhacks ajax_hacks_S htm ~(Q- Google &
shoor + oldbooks v

Our list of Bike Designers
‘Property names and product codes:
‘Specialized : 0006

Giant : 0004

Cannondale : 0007

Guru:0003

Orbea: 0002

Look : 0005

Trek :0001

OEBPS/httpatomoreillycomsourceoreillyimages173765.jpg
m [+]I0hu. umm.m,mmmmmsmmm 12.html

Enter Email Information

‘The domain portion of the email had less than 3 chars or was otherwise invalid!
Sender address: [rucewperyasmarcom

Receiver address: [brucemperyGamate |

Email subject

il

 Send Email| o

OEBPS/httpatomoreillycomsourceoreillyimages173805.jpg
o \railzscd cookhook

- \railercookbookdruby soript/server
Bails applicat fon started on hetp

200501052

(70107 3

1 INFO xuhy 1
(20050107 2

1 INFO UEBric

61" NFO” UEBrici 13,1

//127.0.0.1:3000

3 (3004-12-25) (1386-nsuind2]
HTTPScroeristart : pid-4528 port-3008

OEBPS/httpatomoreillycomsourceoreillyimages173641.jpg
00600 Receive XML response o

&> @0 @m0
Getting Started _Latest Headlines _j2eeddocs.
(@ Receive XML response | @ hup://www.park...senderznaEM=hi | ©

) %

A Few Facts About Yourself...
First name:

Last name:

Gender:[
Country of origin:
Send Data

Done

OEBPS/httpatomoreillycomsourceoreillyimages173679.jpg
m (c] . @ hetp: fwww.parkerriver. comlaidiacks/afs hacA(Q- Google

Get stats from textareas and textfields using Ajax

Enter a few words for submitting to our server:

input text # characters: 30 Word cou
Enter a phrase for submitting to our server:

Textarea character count: 78
Word count: 15

Server info: Apache Tomeat/
5019

OEBPS/httpatomoreillycomsourceoreillyimages173639.jpg
http:/ [www.parkerriver.com

<7xml version="L0" encoding="UTF~87> <params>
<lastname>perry< lastname>
<gender>M</gender>

<country>United States </country>
<firstname>Bruce<frstname>

</params>

OEBPS/httpatomoreillycomsourceoreillyimages173855.jpg
6006 Edit Tunes RSS (=]

@ o g0 6 B G O] O (W 3
Overall Info

e oo sum

[edting Reaity [pescription re Show Subtii here

o Conon cotet

[Micah Dubinko [Copyright notice here [contact nfa here

Submit

Shows

Add Show | _Remove Highlighted Show

b5 Dt o

pisode 1 [OK. e ick tis hing of [sun, Jan 2006 10:00:00F
e Lo Dunten
reofedtngresitycom 5280006 [z

e oo o

[episode0 me intaductory st [sun, 1an 3006 10:00.00F
ey Lo Ounten

o edtmgreaity com 5400900 s

OEBPS/httpatomoreillycomsourceoreillyimages173827.jpg
(<>][] [+] @ ocaiost 3000 macks e A cooge)

Periodically calling Ajax

Loading...

Loaded: request status=200
Interactive; request status=200
Success; request status=200

Thu Dec 08 11:48:42 EST 2005

OEBPS/httpatomoreillycomsourceoreillyimages173843.jpg
5 06 R G

Editable Quote

“These are the times it by s
i, The summer sodier

and he sunshine patriot may.

s crss, shenk fom he service of iscouny:
bt he that s t o ceserves

he love and hanks of man and wornan ™

~Thomas Paine

OEBPS/httpatomoreillycomsourceoreillyimages173741.jpg
006

OEBPS/httpatomoreillycomsourceoreillyimages173751.jpg
(<> J{ ¢) +] @ o /v parkermver comiajaxhacks/aix hacks 10(Q- Coogle)

Bake Your Own Cookie
Cookie Name: |
Cookie Value: |
oot cooie|

Vi cookies|

Send cookes|

OEBPS/httpatomoreillycomsourceoreillyimages173715.jpg
[« »](c] @ http: www.parkerriver.com /ajaxhacks/ ccard.htn A Q- Coogle

Please enter your payment information

[Name and billing address appear here]

Credit card type:

(Credit card number (#### #### #4## ##4F orno spacesy: |
Expiration date:

Card Security code: [|

OEBPS/httpatomoreillycomsourceoreillyimages173727.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173811.jpg
D00 r Aj
[< »][&] @ http/localhost:3000/hacks/moni Q- Google

Monitor Your Ajax Calls with Rails

OEBPS/httpatomoreillycomsourceoreillyimages173721.jpg
Bioo u
(<« »J[c] @ http://www.parkerriver.com/ajaxhacks /ccard. ht

Please enter your payment information

Please enter a valid value for the security code.

[Name and billing address appear here]

Credit card type:
Wastercard 1%

Credit card number (#### #### #### #### or no spaces): [1111111122222222]

Expiration date:

Card Security code: [21 |

OEBPS/httpatomoreillycomsourceoreillyimages173791.jpg
@ hup://localhost 8080/ hacks/pack_aja® 1~

Please enter your name

Your first & last name: [Bruce Perry
Age group:
HTTP response and server information; response status=200

Server: WEBrick/13.1 Ruby/
1.8.2/2004-12-25)

Query string:

Raw post data: name_info=Bruce%
20Perryadisplay_area=8ag=40-498_=
Prototype version: 1.4.0_rc2
X_REQUESTED_WITH header:
XMLHttpRequest

OEBPS/httpatomoreillycomsourceoreillyimages173669.jpg
Ca (e)+)@ o rocavostsosoiprerveriaasracs aan bacammt_F@ Goope)

Find out the HTTP response headers when you "GET" a Web page
Choose thestyle for your message

Entera URL: [t/ /ocahost 50807 | «press o orclick ouside the Feld when nished ediings

Servar: apache-coyote/1.1
Date: Tue, 22 tov 2005 21:254
ranstar-Encoding: Tgentity
content-ype: text/heal

OEBPS/httpatomoreillycomsourceoreillyimages173767.jpg
[< > [J[+]@ o/ v parkerriver.comjajaxhacks/ajax_hacks_12.htmi ~(Qc Coogle

‘Enter Email Information
T —

Receiver address: [brucewperrygomaicom

Sender address:

‘Email subject: 7

el Tgatyour message. 56
Stop bombarding me win
i Jos iading, fm
Sctally sending (s
mestage to mysal

Your email s on its way!

OEBPS/httpatomoreillycomsourceoreillyimages173793.jpg
[« »{c] @ http: /localhost:8080/ hacks/pack_aja®) A Q- Google |

Please enter your name

Your first & last name: [Bruce Perry
Age group:
Server information fetched with Ajax.Updater: status=200

Server: WeBrick/13.1 (Ruby/
1.8.2/2004-12-25)

Query string:

Raw post data: name_info=Bruce%
20Perryadisplay_area=8ag=40-498 =
Prototype version: 1.4.0_rc2
X_REQUESTED_WITH header:
XMLHttpRequest

\ T

OEBPS/httpatomoreillycomsourceoreillyimages173861.jpg
fentside Cache Test - Mozilla Firefox
Be Gt yew Go foomws Took thb

@D 5O D G B0 rwireverose mamrs

Sueces e s e Contres st .

Romvar gt oy 553 hows Tcobcache/ants.carp-pats VALLE: ' doy 1533 b
e Pt oy fT b

OEBPS/httpatomoreillycomsourceoreillyimages173695.jpg
[« 1(c)+ s rmmacrvercompacs s ukz_s i@ cooo:

Choose your favorite sports

‘Team sport

 Baseball
 Soccer
 Football
O Basketball
OlLacrosse
o Hockey
 Tennis

Here are the latest poll results for
team sports

lacrosse : 1

hockey : 1

soccer 1

tennis : 1

baseball : 2

football : 1

basketball : 0

Individual sport

N o

O Cycling

OEBPS/httpatomoreillycomsourceoreillyimages173851.jpg
——
Javascrip Cheos Englwa \Syntropy
= T
S
e R—
R
7t
R ot
ST
e parkarrver comav_sports TaportTypes~+
e TS
e i W
rotum nlss; porcType.
n >
) k - B
B 1
[S— o B

R — o

reavestsns

@ ke

 Remove Comments
H 2 Remove Linefeeds
2 Use Shor ident..

@) @) @) D] Q) Q)

OEBPS/httpatomoreillycomsourceoreillyimages173707.jpg
(< > [€][+ @ hup:/ /s parkerrver com/ajashacks/ajax_hack2_9.FA(Q- Coogle)

Expand Your Sports Categories
Expand Sport Choices

Expand the choices for:
Restore Original Sport Choices
Restore the choices for:
‘Team sport

Baseball
Soccer
Fooball
Basketball
Lacrosse
Hockey
“Tennis
Field Hockey
Wrestling
Rugby
‘Water Polo

Individual sport

Cycling
Running
Swimming
Nordic Skiing
Inline Skatine

e T

OEBPS/httpatomoreillycomsourceoreillyimages173773.jpg
@ P-G 0D E B0 wismersoarsn ¥ 0o [G

O'Reilly RSS Reader
[GReil e Ties

TIhe DAM Book: Digital Asset Management for Photographers

n the world of digital photography, Digital Asset Management (DAM) refers to every part of
the process that follows the taking of the picture, through final output and permanent
Storage. Anyone who shoots, scans or stores digital photographs is practicing some form of
DAM, but most of us are not doing so systematically or efficiently. In The DAM Book: Digital
Asset Management for Photographers, photographer Peter Krogh presents a soid plan and
practical advice on how to file, find, protect and re-use photographs, focusing on best
practices for digital photographers Using Adabe Photoshop CS2.

Greasemonkey Hacks

Graasemonkey--the new Firefox extension that allows you to write scripts that aiter the web
Pages you visit--allows you to alter site appearance, fix bugs, or even combine data from
different web sites to meet your own needs. Some people are content to receive information
from websites passively; some people want to control it. For those who prefer to customize
and control their content, Greasemonkey Hacks provides the expertise you need to take
‘command of any web page you view.

Mac OS X Tiger in a Nutshell
The most popular and most complate desktop reference book on Mac OS X now covers Tiger!

Done =

OEBPS/httpatomoreillycomsourceoreillyimages173853.jpg
Latitude = 37.7668 Longitude = -122.3959

OEBPS/httpatomoreillycomsourceoreillyimages173743.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173753.jpg
(< + (€ [+ @ o/ wompakermver.comajaxhacks/aax.hacké_10A(Q- Coogle

Bake Your Own Cookie
Cookie Name: [mycookiecosl |
Cookie Value: s zzzzzzzr |

Cookie cretion was successfl.

OEBPS/httpatomoreillycomsourceoreillyimages173815.jpg
(<> [][+]/ @ hepiocainost:3000/hacks monitor Mo coose)

Monitor Your Ajax Calls with Rails

Loading
Loaded; request status=500
Interactive; request status=500
Failure; request status=500

Template is missing

Missing template seript./config!. /app/views/hacks/zero_update.shtml

OEBPS/httpatomoreillycomsourceoreillyimages173829.jpg
@ hutp:/ /localhost:3000/hacks /rheaders & 1~

[« »]lc][+]

[Lots of cool UI stuff in the body of the application...]
Request Environment Information

REQUEST_URI== . ocahen 3000 hacks]
RAW_POST_DATA==env:
SERVER_PORT==3000
GATEWAY_INTERFACE==CGI/L.1
QUERY_STRING==

REMOTE_UsER==

HTTP_ACCEPT=="/*

REQUEST_METHOD = =POST

HTTP_CONNECTION==keep-alive

OEBPS/httpatomoreillycomsourceoreillyimages173825.jpg
‘Choose a year for energy usage totals:

Kilowats for

1475

Show Months.

OEBPS/httpatomoreillycomsourceoreillyimages173797.jpg
60606 Update multiple fields hack (=]

& > B O) Orvimarosmee] © (T :
Geting Stated st Hesdines s _j2seddocs
O Monitor Alaxcalls | @ hup:flocalhos. rriver/s/wdisp | @ _ Update mulipl fields hack |©
‘The weather in selected cities
Update Weather
Boston, MA
% Boulder, CO
high :: 35; low :: 31
g Y %mgh 1 48; low 28
Portland, OR
P Seattle, WA

high 547 ow : 42
" P high - 48;low = 44

weathar.com Weather data provided by weather com®

“Done ”

OEBPS/httpatomoreillycomsourceoreillyimages173863.jpg
9 Clientside Cache Test - Mozilla Firefox
Fe Gt yew Go foomws Toos tb

E-D -G DD E B [0 woiseverion rassade torm

¥ 0« G

e s st .
Rosrar Wars dy 347 e

N e s ALUE: warts o 07 o
Last s rcioed s

OEBPS/httpatomoreillycomsourceoreillyimages173873.jpg
3 Hiding Information - Mozilla Firefox
He Edt Vew Go fookmais oo Heb

@D -8 0 RDE [0 ez 06

“Outside ofa dog, a book s man's
best riend. Inside ofa dog s too
ark to read. " Groucho Man:

fher Forecast

Temperature: 25 F
Clear

Wind: N at0 mph
Humidiy 75%

OEBPS/httpatomoreillycomsourceoreillyimages173687.jpg
Create or Alter a Select List

Aiabama

Choose one or more states: [Alka

[Arkansas

The server reports that you have chosen
the following abbreviated states:

European countries: O
Choose your list content: South American countries:

®

OEBPS/httpatomoreillycomsourceoreillyimages173867.jpg
Goo

Suggest

Web Images Groups News

DE%

Froogle

le

BETA

Local*" more »

favasETE

[javascript tutorial
[javascript reference
javascripts

javascript amay
[javascript alert
javascript window.open
[javascript redirect
[javascript substring
|iavascript tutorials

Go

100,000 resuls
7,880,000 resuls|
1,520,000 resuls
1,500,000 resuts|
220,000 resuls|
526,000 rsuis|
557,000 rsuls|
245,000 resuls|
4,660,000 resuls|

OEBPS/httpatomoreillycomsourceoreillyimages173757.jpg
Javaseript

mycookie_new=zzzzzzz22722222; expires.
Dec 2005 20:35:16 GMT; pa

‘domain=www.parkerriver.com

hu, 01

OEBPS/httpatomoreillycomsourceoreillyimages173803.jpg
WINDOWS\system32\cmd.exe.

[C:5gen install rails —remote

C:\>"c \ruby\bin\ruby . exe" ruby\bin\gen" install rails
Attenpting renote installation of ’rails’

Updating Gem source index for: http://gems.rubyforge.org
Install required dependency rake? [¥n1 y

Install required dependency activerecord? [¥nl y

Install required dependency actionpack? [¥nl y

[nstall required dependency actionmailer? [¥nl y
Successfully installed rails, yersion 8.9.2

Tnstalling RDoc docunentation for rails-8l9.2...

UARNING: Generating RDoc on -gem that may not have RDoc.

1ib/binding_of caller.rb:4:25: Couldn’t £ind Continuation.

1ib/hinding_of caller.rh:36:21: Couldn’t find Binding. Assul

1ih/rails_generator.rb:34:46: Skipping require of dynamic sl
e>_generator.rh"

[nstalling RDoc docunentation for rake—8.4.14...
installing RDoc docunentation For activerecordi.3.o...

1ib/active_record/support binding_of caller.rh:4:25: Couldn)
Assuning it’s a module

1ib/active_record/support/binding_of_caller.rb:36:21: Could]
uning it’s a module
Tnstalling RDoc documentation for actionpack—1.1.0

1ib/action_controller/scaffolding.rb:87:37: Skipping requir]
“ii<node1_1d. idZname>
Installing RDoc docunentation for actionmailer-8.5.9.

c:n>

OEBPS/httpatomoreillycomsourceoreillyimages173807.jpg
666 Rails: Welcome on board =
N o .
S

@ Rails: Welcome on board. @ MacZealots > Tutorials > Installin... o

Congratulations, you've put Ruby on Rails!
Betore you move on verty tat the oowing condtions have been e
1. The logand publc drctories must be wrtable o the web server (chsod -k 775 1ogand cnmod -1 775 public),
2. The sheang e n th pubicspatch fes must refeence your Ry Instalatn.
Y0u MGAE nesd 0 change K 1 1 /uae/in/an uby or polt recy o the ealabin.

3. Ralls on Apache needs o have thecgl handier and mod_ewrte enabie.
Somewhere i your Ntpd conf, you shold have:
Adananater cgiscript -cai
Loadiaduta xevrite_uodule 1ibexsc/hitpd/mod_reveite.so

Take thefolowing steps to get started:

1. Create empy development and test databasesfo your aplcation.

2. € coni/database.ymi with your database settings.

Create contrllers and models using th generator i scripe/generate

e all the tests run by running
Develp your Ralsappcation!
Setup Apache with EASICGI (3nd Bub biaings), f you need btter performance

Remove the dipatches you dontuse (so fyou'e on FasCGI, delte/move dispatch. 1, dspatch.cg and
Gatenay.co)

OEBPS/httpatomoreillycomsourceoreillyimages173735.jpg
6606 Get Your Local Weather

& 5> g 12} [@npi/wwpark v © (G

J,k

Getting Started _Latest Headlines 5, _j2eeddocs

(@ Get Your Local Weather | @ hup://www.park...yfieldast

Location: Newburyport, MA
Time: 224 P\

L4281

Long: 7039

Sunrise: :14 AM.

Sunset: 16 PM

Your weather today: 12/27/05 1:01 PM EST

" Partly Cloudy

high temp: 37

Tow temp: 23

precipitation (% chance): 0
humidity (%): 62

wind speed: 4

wind direction: SW

New Location

City/Town:
State: [Alabama E

. 14 » PEEEEEEEEEEEEE IS EEEEEESEET) | O

OEBPS/httpatomoreillycomsourceoreillyimages173703.jpg
(< > 1)+] @/ momaterer comamiucs o s come)

Expand Sport Choices

Expand the choices for:
Restore Original Sport Choices

Restore the choices for:

Team sport

0 Baseball
O Soccer

O Football

O Basketoall
OLacrosse

2 Hockey.

O Tennis
Field Hockey
CWresting
CRugby
CWater Polo

Individual sport

© Cycling

3 Running

© Swimming
CNordic Sking
Cinline Skating
ATriathlon

OEBPS/httpatomoreillycomsourceoreillyimages173869.jpg

OEBPS/httpatomoreillycomsourceoreillyimages173719.jpg
(< >)¢} [+ @ hup://www.parkerriver.com/ajaxhacks/ccard.nt A Q- Google

Please enter your payment information
[Name and billing address appear here]
Credit card type:

=

Credit card number (#### #### #### #### or no spaces):
Expiraiondate:
Card Security code:

OEBPS/httpatomoreillycomsourceoreillyimages173651.jpg
06606 Tally your stocks

G & O B Crwimwpaenve v] O (GF

Getting Started_Latet Headlines _j2eeddocs

Your total Stock Holdings

Enter stock symbol: sunw _price: 4

Enter share amount: olog
[Get Total Va

An error occurred: The share amount s an invalid number.

T

OEBPS/httpatomoreillycomsourceoreillyimages173819.jpg
o coooe

Please select a spors category:

Team 1%

OEBPS/httpatomoreillycomsourceoreillyimages173821.jpg
@ hutp /localnost:3000 acks/ -

Please select a sports category:

OEBPS/httpatomoreillycomsourceoreillyimages173759.jpg
£ 0 O e,

——

Choose a Fue Type, Get an Instantancous Price
e —)

OEBPS/httpatomoreillycomsourceoreillyimages173681.jpg
(< »)@ hupi v parkermve.comajax

Create or Alter a Select List
Aiabama

Choose one or more states: Pl
vkanses

The server reports that you have
chosen the following abbreviated
states:

European countries: O
Choose your list content: South American countries:

o

