

 [image: Producing Open Source Software]

 Producing Open Source Software

Karl Fogel

Editor
Andy Oram

Copyright © 2009 Karl Fogel

[image:]

O'Reilly Media

Dedication

This book is dedicated to two dear friends without whom it would not
 have been possible: Karen Underhill and Jim Blandy

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

Foreword

The most well-known organizational models of getting things
 done—whether it's building a house, producing a motion picture, or writing
 software—tend to concern the prediction of and commitment to specific
 outcomes, mitigating risk to the plan, and correcting surprises along the
 way. In such models, innovation is seen to happen at the moment of
 inspiration of the idea—and the remaining 99% of the effort is
 perspiration, to paraphrase Edison. Say it along with me: "Yeah, right."
 This view looks at innovation as a very solitary sport; we want to talk
 about Steve Jobs as the guy behind the iPod, rather than the mix of good
 engineers and product marketing types who collaborated with Steve to find
 the right sweet-spot combination of features and fashion.
We also want to talk about Linus Torvalds as the guy responsible for
 Linux, but that's even less close to the truth than the Jobs/iPod example.
 Linus' brilliance is not in creating an unprecedented technology
 innovation, nor in plotting the perfect road map for the Linux kernel, nor
 in having a full-time staff of his own to assign work to. The brilliance
 inside Linus is his ability to orchestrate the aggregated interests of
 thousands of other developers, all individually scratching their own itch
 (or that of their employer), and thereby making a product renowned for
 reliability, performance, and the features people need. Linus' role is
 like that of an air traffic controller—watching the skies fill with ideas,
 prototypes based on those ideas, and serious production-quality code
 implementing the best of those ideas—then deciding when that work is
 mature enough to land at the airport known as Linus' official kernel
 source code repository.
It's been said that humility is the most underrated force in the
 world today. Successful open source leaders demonstrate this over and over
 by driving for consensus on major ideas, making it clear their own ideas
 are open to challenge, and being as transparent as possible. Building a
 sense of empowerment amongst the developers is more important than meeting
 ship dates with specific features, and more important than creating
 zero-defect software. The Apache Software Foundation, for example,
 believes that its first order of business is creating healthy software
 developer communities focused on solving common problems; good software is
 a simply an emergent result.
In fact it couldn't happen any other way, and here's why. The Open
 Source Definition is a list of terms that are requirements of any license
 claiming to be an open source license, and any project claiming to be an
 open source project must have such a license. One of the key themes of the
 OSD is "the right to fork": the right to create a derivative work and
 redistribute it to other people under the terms of the same license,
 without the approval of the original developers. This
 doesn't happen often; most of the time, when someone fixes a bug or adds a
 minor feature, they usually offer it back to the original developers, and
 if the project is well run, that ends up in a subsequent release. But when
 it needs to happen—when the original developers have moved on to other
 things, or worse, become difficult to work with—the right to fork acts as
 an essential device to carry a project forward.
Among many other benefits, this rule means that leadership in an
 open source community comes not from leverage or control, but from finding
 common interests and expertly managing what is volunteered. Open source
 projects don't compete for "market share"—for dollars from the user
 base—because there aren't any. Instead, they compete for developer mind
 share and heart share, and that's not going to flow to a leader who's
 obstinate, unresponsive to the user community, or technically
 unsophisticated.
Those who see open source as a bunch of zero-price software created
 by impossibly altruistic amateurs don't get this at all. The rest of the
 world, though, is starting to clue in to the idea that the software
 industry doesn't have to be a zero-sum game, and that letting go of a
 little control and ownership might actually result in something grander in
 return. This notion is larger than just software. Professor Eric von
 Hippel at MIT has charted a history of interesting experiments and
 patterns in the domain of "user-led innovation"—companies who have
 experimented with involving their customers in the design of follow-up
 products; or delivering toolkits rather than finished works, allowing
 customers to create new uses or solve more complicated problems. The
 Wikipedia is a huge example of participatory creation that sounds like it
 should be an unmanageable chaos, but instead has developed a reputation
 for being more complete, up-to-date, and balanced than any series you
 could buy and put on your bookshelf.
These successes don't just happen by magically pressing the "Be More
 Open" button on the keyboard. There is a universe of best practice and
 lore that before now has been largely an oral tradition, picked up by
 sitting on a good project mailing list for years and learning the patterns
 of communication and process.
Karl has done the software development world a tremendous favor by
 finally capturing much of that in this book. While the software
 engineering world is much more comfortable with the concepts of open
 source, software developer communities, and unpredictable outcomes than
 they were before, there are still not enough leaders with Karl's grasp of
 the nuances that make all the difference. With this book, that can
 change.
Brian BehlendorfApache Software Foundation and CollabNet

Preface

Why Write This Book?

At parties, people no longer give me a blank stare when I tell
 them I write free software. "Oh, yes, open source—like Linux?" they say.
 I nod eagerly in agreement. "Yes, exactly! That's what I do." It's nice
 not to be completely on the fringe anymore. In the past, the next
 question was usually fairly predictable: "How do you make money doing
 that?" To answer, I'd summarize the economics of open source: that there
 are organizations in whose interest it is to have certain software
 exist, but that they don't need to sell copies, they just want to make
 sure the software is available and maintained, as a tool instead of a
 commodity.
Lately, however, the next question has not always been about
 money. The business case for open source software[1] is no longer so mysterious, and many non-programmers
 already understand—or at least are not surprised—that there are people
 employed at it full time. Instead, the question I have been hearing more
 and more often is "Oh, how does that work?"
I didn't have a satisfactory answer ready, and the harder I tried
 to come up with one, the more I realized how complex a topic it really
 is. Running a free software project is not exactly like running a
 business (imagine having to constantly negotiate the nature of your
 product with a group of volunteers, most of whom you've never met!).
 Nor, for various reasons, is it exactly like running a traditional
 non-profit organization, nor a government. It has similarities to all
 these things, but I have slowly come to the conclusion that free
 software is sui generis. There are many things with
 which it can be usefully compared, but none with which it can be
 equated. Indeed, even the assumption that free software projects can be
 "run" is a stretch. A free software project can be
 started, and it can be influenced by interested
 parties, often quite strongly. But its assets cannot be made the
 property of any single owner, and as long as there are people
 somewhere—anywhere—interested in continuing it, it cannot be
 unilaterally shut down. Everyone has infinite power; everyone has no
 power. It makes for an interesting dynamic.
That is why I wanted to write this book. Free software projects have evolved a distinct culture, an
 ethos in which the liberty to make the software do anything one wants is
 a central tenet, and yet the result of this liberty is not a scattering
 of individuals each going their own separate way with the code, but
 enthusiastic collaboration. Indeed, competence at cooperation itself is
 one of the most highly valued skills in free software. To manage these
 projects is to engage in a kind of hypertrophied cooperation, where
 one's ability not only to work with others but to come up with new ways
 of working together can result in tangible benefits to the software.
 This book attempts to describe the techniques by which this may be done.
 It is by no means complete, but it is at least a beginning.
Good free software is a worthy goal in itself, and I hope that
 readers who come looking for ways to achieve it will be satisfied with
 what they find here. But beyond that I also hope to convey something of
 the sheer pleasure to be had from working with a motivated team of open
 source developers, and from interacting with users in the wonderfully
 direct way that open source encourages. Participating in a successful
 free software project is fun, and ultimately that's
 what keeps the whole system going.

[1] The terms "open source" and "free" are essentially synonymous in this context; they
 are discussed more in the section Section 1.1.2 in Chapter 1.

Who Should Read This Book?

This book is meant for software developers and managers who are
 considering starting an open source project, or who have started one and
 are wondering what to do now. It should also be helpful for people who
 just want to participate in an open source project but have never done
 so before.
The reader need not be a programmer, but should know basic
 software engineering concepts such as source code, compilers, and
 patches.
Prior experience with open source software, as either a user or a
 developer, is not necessary. Those who have worked in free software
 projects before will probably find at least some parts of the book a bit
 obvious, and may want to skip those sections. Because there's such a
 potentially wide range of audience experience, I've made an effort to
 label sections clearly, and to say when something can be skipped by
 those already familiar with the material.

How to Use This Book

This book consists of nine chapters and four appendixes:
	Chapter 1
	A brief history of free software, and an overview of the
 open source world today.

	Chapter 2
	How to get an open source project off on the right foot,
 including gathering developers, choosing a license, and announcing
 the project.

	Chapter 3
	An in-depth look at the tools a project needs to function
 smoothly, including communications, version control, and bug
 tracking software.

	Chapter 4
	How to set up formal and informal political structures to
 enable project members to work together and achieve consensus on
 important issues.

	Chapter 5
	Why and how to have a commercial relationship with an open
 source project.

	Chapter 6
	A guide to productive conduct in project forums, covering
 both the social and technical aspects of communications.

	Chapter 7
	How to manage regular releases of open source software,
 without disrupting the development cycles of the volunteer
 participants.

	Chapter 8
	Understanding why volunteer developers do what they do, and
 treating them in such a way that they keep doing it.

	Chapter 9
	How to evaluate and choose free software licenses, including
 an in-depth examination of license compatibility issues.

	Appendix A
	A list of open source version control systems, for projects
 just starting out.

	Appendix B
	Likewise, a list of open source bug trackers.

	Appendix C
	An oft-cited screed by Poul-Henning Kamp about the dangers
 of group decision-making and open source discussion lists.

	Appendix D
	An example that shows how an open source project can use bug
 reporting instructions to gradually teach certain users about the
 development procedures the project follows.

Sources

Much of the raw material for this book came from five years of
 working with the Subversion project (http://subversion.tigris.org/). Subversion is an open
 source version control system, written from scratch, and intended to
 replace CVS as the de facto version control system of choice in the open
 source community. The project was started by my employer, CollabNet
 (http://www.collab.net/), in early 2000, and thank
 goodness CollabNet understood right from the start how to run it as a
 truly collaborative, distributed effort. We got a lot of volunteer
 developer buy-in early on; today there are 50-some developers on the
 project, of whom only a few are CollabNet employees.
Subversion is in many ways a classic example of an open source
 project, and I ended up drawing on it more heavily than I originally
 expected. This was partly a matter of convenience: whenever I needed an
 example of a particular phenomenon, I could usually call one up from
 Subversion right off the top of my head. But it was also a matter of
 verification. Although I am involved in other free software projects to
 varying degrees, and talk to friends and acquaintances involved in many
 more, one quickly realizes when writing for print that all assertions
 need to be fact-checked. I didn't want to make statements about events
 in other projects based only on what I could read in their public
 mailing list archives. If someone were to try that with Subversion, I
 knew, she'd be right about half the time and wrong the other half. So
 when drawing inspiration or examples from a project with which I didn't
 have direct experience, I tried to first talk to an informant there,
 someone I could trust to explain what was really going on.
Subversion has been my job for the last 5 years, but I've been
 involved in free software for 12. Other projects that influenced this
 book include:
	The GNU Emacs text editor project at the Free Software
 Foundation, in which I maintain a few small packages.

	Concurrent Versions System (CVS), which I worked on intensely
 in 1994-1995 with Jim Blandy, but have been involved with only
 intermittently since.

	The collection of open source projects known as the Apache
 Software Foundation, especially the Apache Portable Runtime (APR)
 and Apache HTTP Server.

	OpenOffice.org, the Berkeley Database from Sleepycat, and
 MySQL Database; I have not been involved with these projects
 personally, but have observed them and, in some cases, talked to
 people there.

	GDB, the GNU Debugger (likewise).

	The Debian Project (likewise).

This is not a complete list, of course. Like most open source
 programmers, I keep loose tabs on many different projects, just to have
 a sense of the general state of things. I won't name all of them here,
 but they are mentioned in the text where appropriate.

Conventions

The following conventions are used in this book:
	Italic
	Used for file and directory names, for URLs, and for
 emphasis when introducing a new term.

	Constant width
	Used for code examples.

	Constant width italic
	In some code examples, indicates an element (e.g., a
 filename) that you supply.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/producingoss

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O'Reilly Network, see our web site at:
	http://www.oreilly.com

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite
 technology book, it means the book is available online through the
 O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a
 virtual library that lets you easily search thousands of top technology
 books, cut and paste code samples, download chapters, and find quick
 answers when you need the most accurate, current information. Try it for
 free at http://safari.oreilly.com.

Acknowledgments

This book took four times longer to write than I thought it would,
 and for much of that time felt rather like i had a grand piano suspended
 above my head wherever I went. Without help from many people, I would
 not have been able to complete it while staying sane.
Andy Oram, my editor at O'Reilly, was a writer's dream. Aside from
 knowing the field intimately (he suggested many of the topics), he has
 the rare gift of knowing what one meant to say and helping one find the
 right way to say it. It has been an honor to work with him. Thanks also
 to Chuck Toporek for steering this proposal to Andy right away.
Brian Fitzpatrick reviewed almost all of the material as I wrote
 it, which not only made the book better, but kept me writing when I
 wanted to be anywhere in the world but in front of the computer. Ben
 Collins-Sussman and Mike Pilato also checked up on progress, and were
 always happy to discuss—sometimes at length—whatever topic I was trying
 to cover that week. They also noticed when I slowed down, and gently
 nagged when necessary. Thanks, guys.
Biella Coleman was writing her dissertation at the same time as I
 was writing this book. She knows what it means to sit down and write
 every day, and provided an inspiring example as well as a sympathetic
 ear. She also has a fascinating anthropologist's-eye view of the free
 software movement, giving both ideas and references that I was able use
 in the book. Alex Golub—another anthropologist with one foot in the free
 software world, and also finishing his dissertation at the same time—was
 exceptionally supportive early on, which helped a great deal.
Micah Anderson somehow never seemed too oppressed by his own
 writing gig, which was inspiring in a sick, envy-generating sort of way,
 but he was ever ready with friendship, conversation, and (on at least
 one occasion) technical support. Thanks, Micah!
Jon Trowbridge and Sander Striker gave both encouragement and
 concrete help—their broad experience in free software provided material
 I couldn't have gotten any other way.
Thanks to Greg Stein not only for friendship and well-timed
 encouragement, but for showing the Subversion project how important
 regular code review is in building a programming community. Thanks also
 to Brian Behlendorf, who tactfully drummed into our heads the importance
 of having discussions publicly; I hope that principle is reflected
 throughout this book.
Thanks to Benjamin "Mako" Hill and Seth Schoen, for various
 conversations about free software and its politics; to Zack Urlocker and
 Louis Suarez-Potts for taking time out of their busy schedules to be
 interviewed; to Shane on the Slashcode list for allowing his post to be
 quoted; and to Haggen So for his enormously helpful comparison of canned
 hosting sites.
Thanks to Alla Dekhtyar, Polina, and Sonya for their unflagging
 and patient encouragement. I'm very glad that I will no longer have to
 end (or rather, try unsuccessfully to end) our evenings early to go home
 and work on "The Book."
Thanks to Jack Repenning for friendship, conversation, and a
 stubborn refusal to ever accept an easy wrong analysis when a harder
 right one is available. I hope that some of his long experience with
 both software development and the software industry rubbed off on this
 book.
CollabNet was exceptionally generous in allowing me a flexible
 schedule to write, and didn't complain when it went on far longer than
 originally planned. I don't know all the intricacies of how management
 arrives at such decisions, but I suspect Sandhya Klute, and later Mahesh
 Murthy, had something to do with it—my thanks to them both.
The entire Subversion development team has been an inspiration for
 the past five years, and much of what is in this book I learned from
 working with them. I won't thank them all by name here, because there
 are too many, but I implore any reader who runs into a Subversion
 committer to immediately buy that committer the drink of his choice—I
 certainly plan to.
Many times I ranted to Rachel Scollon about the state of the book;
 she was always willing to listen, and somehow managed to make the
 problems seem smaller than before we talked. That helped a
 lot—thanks.
Thanks (again) to Noel Taylor, who must surely have wondered why I
 wanted to write another book given how much I complained the last time,
 but whose friendship and leadership of Golosá helped keep music and good
 fellowship in my life even in the busiest times. Thanks also to Matthew
 Dean and Dorothea Samtleben, friends and long-suffering musical
 partners, who were very understanding as my excuses for not practicing
 piled up. Megan Jennings was constantly supportive, and genuinely
 interested in the topic even though it was unfamiliar to her—a great
 tonic for an insecure writer. Thanks, pal!
I had four knowledgeable and diligent reviewers for this book:
 Yoav Shapira, Andrew Stellman, Davanum Srinivas, and Ben Hyde. If I had
 been able to incorporate all of their excellent suggestions, this would
 be a better book. As it was, time constraints forced me to pick and
 choose, but the improvements were still significant. Any errors that
 remain are entirely my own.
My parents, Frances and Henry, were wonderfully supportive as
 always, and as this book is less technical than the previous one, I hope
 they'll find it somewhat more readable.
Finally, I would like to thank the dedicatees, Karen Underhill and
 Jim Blandy. Karen's friendship and understanding have meant everything
 to me, not only during the writing of this book but for the last seven
 years. I simply would not have finished without her help. Likewise for
 Jim, a true friend and a hacker's hacker, who first taught me about free
 software, much as a bird might teach an airplane about flying.

Disclaimer

The thoughts and opinions expressed in this book are my own. They
 do not necessarily represent the views of CollabNet or of the Subversion
 project.

Chapter 1. Introduction

Most free software projects fail.
We tend not to hear very much about the failures. Only
 successful projects attract attention, and there are so many free software
 projects in total[1] that even though only a small percentage succeed, the result
 is still a lot of visible projects. We also don't hear about the failures
 because failure is not an event. There is no single moment when a project
 ceases to be viable; people just sort of drift away and stop working on
 it. There may be a moment when a final change is made to the project, but
 those who made it usually didn't know at the time that it was the last
 one. There is not even a clear definition of when a project is expired. Is
 it when it hasn't been actively worked on for six months? When its user
 base stops growing, without having exceeded the developer base? What if
 the developers of one project abandon it because they realized they were
 duplicating the work of another—and what if they join that other project,
 then expand it to include much of their earlier effort? Did the first
 project end, or just change homes?
Because of such complexities, it's impossible to put a precise
 number on the failure rate. But anecdotal evidence from over a decade in
 open source, some casting around on SourceForge.net, and a little Googling
 all point to the same conclusion: the rate is extremely high, probably on
 the order of 90-95%. The number climbs higher if you include surviving but
 dysfunctional projects: those which are producing
 running code, but which are not pleasant places to be, or are not making
 progress as quickly or as dependably as they could.
This book is about avoiding failure. It examines not only how to do
 things right, but how to do them wrong, so you can recognize and correct
 problems early. My hope is that after reading it, you will have a
 repertory of techniques not just for avoiding common pitfalls of open
 source development, but also for dealing with the growth and maintenance
 of a successful project. Success is not a zero-sum game, and this book is
 not about winning or getting ahead of the competition. Indeed, an
 important part of running an open source project is working smoothly with
 other, related projects. In the long run, every successful project
 contributes to the well-being of the overall, worldwide body of free
 software.
It would be tempting to say that free software projects fail
 for the same sorts of reasons proprietary software projects do. Certainly,
 free software has no monopoly on unrealistic requirements, vague
 specifications, poor resource management, insufficient design phases, or
 any of the other hobgoblins already well known to the software industry.
 There is a huge body of writing on these topics, and I will try not to
 duplicate it in this book. Instead, I will attempt to describe the
 problems peculiar to free software. When a free software project runs
 aground, it is often because the developers (or the managers) did not
 appreciate the unique problems of open source software development, even
 though they might have been quite prepared for the better-known
 difficulties of closed-source development.
One of the most common mistakes is unrealistic expectations about
 the benefits of open source itself. An open license does not guarantee
 that hordes of active developers will suddenly volunteer their time to
 your project, nor does open-sourcing a troubled project automatically cure
 its ills. In fact, quite the opposite: opening up a project can add whole
 new sets of complexities, and cost more in the short
 term than simply keeping it in-house. Opening up means arranging the code
 to be comprehensible to complete strangers, setting up a development web
 site and email lists, and often writing documentation for the first time.
 All this is a lot of work. And of course, if any interested developers
 do show up, there is the added burden of answering
 their questions for a while before seeing any benefit from their presence.
 As developer Jamie Zawinski said about the troubled early days of the
 Mozilla project:
Open source does work, but it is most definitely not a panacea. If
 there's a cautionary tale here, it is that you can't take a dying
 project, sprinkle it with the magic pixie dust of "open source," and
 have everything magically work out. Software is hard. The issues aren't
 that simple. (from http://www.jwz.org/gruntle/nomo.html)

A related mistake is that of skimping on presentation and packaging,
 figuring that these can always be done later, when the project is well
 under way. Presentation and packaging comprise a wide range of tasks, all
 revolving around the theme of reducing the barrier to entry. Making the
 project inviting to the uninitiated means writing user and developer
 documentation, setting up a project web site that's informative to
 newcomers, automating as much of the software's compilation and
 installation as possible, etc. Many programmers unfortunately treat this
 work as being of secondary importance to the code itself. There are a
 couple of reasons for this. First, it can feel like busywork, because its
 benefits are most visible to those least familiar with the project, and
 vice versa. After all, the people who develop the code don't really need
 the packaging. They already know how to install, administer, and use the
 software, because they wrote it. Second, the skills required to do
 presentation and packaging well are often completely different from those
 required to write code. People tend to focus on what they're good at, even
 if it might serve the project better to spend a little time on something
 that suits them less. Chapter 2
 discusses presentation and packaging in detail, and explains why it's
 crucial that they be a priority from the very start of the project.
Next comes the fallacy that little or no project management is required in open source, or
 conversely, that the same management practices used for in-house
 development will work equally well on an open source project. Management
 in an open source project isn't always very visible, but in the successful
 projects, it's usually happening behind the scenes in some form or
 another. A small thought experiment suffices to show why. An open source
 project consists of a random collection of programmers—already a
 notoriously independent-minded category—who have most likely never met
 each other, and who may each have different personal goals in working on
 the project. The thought experiment is simply to imagine what would happen
 to such a group without management. Barring miracles,
 it would collapse or drift apart very quickly. Things won't simply run
 themselves, much as we might wish otherwise. But the management, though it
 may be quite active, is often informal, subtle, and low-key. The only
 thing keeping a development group together is their shared belief that
 they can do more in concert than individually. Thus the goal of management
 is mostly to ensure that they continue to believe this, by setting
 standards for communications, by making sure useful developers don't get
 marginalized due to personal idiosyncrasies, and in general by making the
 project a place developers want to keep coming back to. Specific
 techniques for doing this are discussed throughout the rest of this
 book.
Finally, there is a general category of problems that may be
 called "failures of cultural navigation." Ten years ago, even five, it
 would have been premature to talk about a global culture of free software,
 but not anymore. A recognizable culture has slowly emerged, and while it
 is certainly not monolithic—it is at least as prone to internal dissent
 and factionalism as any geographically bound culture—it does have a
 basically consistent core. Most successful open source projects exhibit
 some or all of the characteristics of this core. They reward certain types
 of behaviors, and punish others; they create an atmosphere that encourages
 unplanned participation, sometimes at the expense of central coordination;
 they have concepts of rudeness and politeness that can differ
 substantially from those prevalent elsewhere. Most importantly, longtime
 participants have generally internalized these standards, so that they
 share a rough consensus about expected conduct. Unsuccessful projects
 usually deviate in significant ways from this core, albeit
 unintentionally, and often do not have a consensus about what constitutes
 reasonable default behavior. This means that when problems arise, the
 situation can quickly deteriorate, as the participants lack an already
 established stock of cultural reflexes to fall back on for resolving
 differences.
This book is a practical guide, not an anthropological study or a
 history. However, a working knowledge of the origins of today's free
 software culture is an essential foundation for any practical advice. A
 person who understands the culture can travel far and wide in the open
 source world, encountering many local variations in custom and dialect,
 yet still be able to participate comfortably and effectively everywhere.
 In contrast, a person who does not understand the culture will find the
 process of organizing or participating in a project difficult and full of
 surprises. Since the number of people developing free software is still
 growing by leaps and bounds, there are many people in that latter
 category—this is largely a culture of recent immigrants, and will continue
 to be so for some time. If you think you might be one of them, the next
 section provides background for discussions you'll encounter later, both
 in this book and on the Internet. (On the other hand, if you've been
 working with open source for a while, you may already know a lot of its
 history, so feel free to skip the next section.)
History

Software sharing has been around as long as software
 itself. In the early days of computers, manufacturers felt that
 competitive advantages were to be had mainly in hardware innovation, and
 therefore didn't pay much attention to software as a business asset.
 Many of the customers for these early machines were scientists or
 technicians, who were able to modify and extend the software shipped
 with the machine themselves. Customers sometimes distributed their
 patches back not only to the manufacturer, but to other owners of
 similar machines. The manufacturers often tolerated and even encouraged
 this: in their eyes, improvements to the software, from whatever source,
 just made the machine more attractive to other potential
 customers.
Although this early period resembled today's free software culture
 in many ways, it differed in two crucial respects. First, there was as
 yet little standardization of hardware—it was a time of flourishing
 innovation in computer design, but the diversity of computing
 architectures meant that everything was incompatible with everything
 else. Thus, software written for one machine would generally not work on
 another. Programmers tended to acquire expertise in a particular
 architecture or family of architectures (whereas today they would be
 more likely to acquire expertise in a programming language or family of
 languages, confident that their expertise will be transferable to
 whatever computing hardware they happen to find themselves working
 with). Because a person's expertise tended to be specific to one kind of
 computer, their accumulation of expertise had the effect of making that
 computer more attractive to them and their colleagues. It was therefore
 in the manufacturer's interests for machine-specific code and knowledge
 to spread as widely as possible.
Second, there was no Internet. Though there were fewer legal
 restrictions on sharing than today, there were more technical ones: the
 means of getting data from place to place were inconvenient and
 cumbersome, relatively speaking. There were some small, local networks,
 good for sharing information among employees at the same research lab or
 company. But there remained barriers to overcome if one wanted to share
 with everyone, no matter where they were. These barriers
 were overcome in many cases. Sometimes different
 groups made contact with each other independently, sending disks or
 tapes through land mail, and sometimes the manufacturers themselves
 served as central clearing houses for patches. It also helped that many
 of the early computer developers worked at universities, where
 publishing one's knowledge was expected. But the physical realities of
 data transmission meant there was always an impedance to sharing, an
 impedance proportional to the distance (real or organizational) that the
 software had to travel. Widespread, frictionless sharing, as we know it
 today, was not possible.
The Rise of Proprietary Software and Free Software

As the industry matured, several interrelated changes occurred
 simultaneously. The wild diversity of hardware designs gradually gave
 way to a few clear winners—winners through superior technology,
 superior marketing, or some combination of the two. At the same time,
 and not entirely coincidentally, the development of so-called "high
 level" programming languages meant that one could write a program
 once, in one language, and have it automatically translated
 ("compiled") to run on different kinds of computers. The implications
 of this were not lost on the hardware manufacturers: a customer could
 now undertake a major software engineering effort without necessarily
 locking themselves into one particular computer architecture. When
 this was combined with the gradual narrowing of performance
 differences between various computers, as the less efficient designs
 were weeded out, a manufacturer that treated its hardware as its only
 asset could look forward to a future of declining profit margins. Raw
 computing power was becoming a fungible good, while software was
 becoming the differentiator. Selling software, or at least treating it
 as an integral part of hardware sales, began to look like a good
 strategy.
This meant that manufacturers had to start enforcing the
 copyrights on their code more strictly. If users simply continued to
 share and modify code freely among themselves, they might
 independently reimplement some of the improvements now being sold as
 "added value" by the supplier. Worse, shared code could get into the
 hands of competitors. The irony is that all this was happening around
 the time the Internet was getting off the ground. Just when truly
 unobstructed software sharing was finally becoming technically
 possible, changes in the computer business made it economically
 undesirable, at least from the point of view of any single company.
 The suppliers clamped down, either denying users access to the code
 that ran their machines, or insisting on non-disclosure agreements
 that made effective sharing impossible.
Conscious resistance

As the world of unrestricted code swapping slowly faded away,
 a counterreaction crystallized in the mind of at least one
 programmer. Richard Stallman worked in the Artificial Intelligence Lab at the Massachusetts
 Institute of Technology in the 1970s and early '80s, during what
 turned out to be a golden age and a golden location for code
 sharing. The AI Lab had a strong "hacker ethic,"[2] and people were not only encouraged but expected to
 share whatever improvements they made to the system. As Stallman
 wrote later:
We did not call our software "free software", because that
 term did not yet exist; but that is what it was. Whenever people
 from another university or a company wanted to port and use a
 program, we gladly let them. If you saw someone using an
 unfamiliar and interesting program, you could always ask to see
 the source code, so that you could read it, change it, or
 cannibalize parts of it to make a new program. (from http://www.gnu.org/gnu/thegnuproject.html)

This Edenic community collapsed around Stallman shortly after
 1980, when the changes that had been happening in the rest of the
 industry finally caught up with the AI Lab. A startup company hired
 away many of the Lab's programmers to work on an operating system
 similar to what they had been working on at the Lab, only now under
 an exclusive license. At the same time, the AI Lab acquired new
 equipment that came with a proprietary operating system.
Stallman saw the larger pattern in what was happening:
The modern computers of the era, such as the VAX or the
 68020, had their own operating systems, but none of them were free
 software: you had to sign a non-disclosure agreement even to get
 an executable copy.
This meant that the first step in using a computer was to
 promise not to help your neighbor. A cooperating community was
 forbidden. The rule made by the owners of proprietary software
 was, "If you share with your neighbor, you are a pirate. If you
 want any changes, beg us to make them."

By some quirk of personality, he decided to resist the trend.
 Instead of continuing to work at the now-decimated AI Lab, or taking
 a job writing code at one of the new companies, where the results of
 his work would be kept locked in a box, he resigned from the Lab and
 started the GNU Project and the Free Software Foundation (FSF). The goal of
 GNU[3] was to develop a completely free and open computer
 operating system and body of application software, in which users
 would never be prevented from hacking or from sharing their
 modifications. He was, in essence, setting out to recreate what had
 been destroyed at the AI Lab, but on a worldwide scale and without
 the vulnerabilities that had made the AI Lab's culture susceptible
 to disintegration.
In addition to working on the new operating system, Stallman
 devised a copyright license whose terms guaranteed that his code
 would be perpetually free. The GNU General Public License (GPL) is a clever piece of
 legal judo: it says that the code may be copied and modified without
 restriction, and that both copies and derivative works (i.e.,
 modified versions) must be distributed under the same license as the
 original, with no additional restrictions. In effect, it uses
 copyright law to achieve an effect opposite to that of traditional
 copyright: instead of limiting the software's distribution, it
 prevents anyone, even the author, from limiting
 it. For Stallman, this was better than simply putting his code into
 the public domain. If it were in the public domain, any particular
 copy of it could be incorporated into a proprietary program (as has
 also been known to happen to code under permissive copyright
 licenses). While such incorporation wouldn't in any way diminish the
 original code's continued availability, it would have meant that
 Stallman's efforts could benefit the enemy—proprietary software. The
 GPL can be thought of as a form of protectionism for free software,
 because it prevents non-free software from taking full advantage of
 GPLed code. The GPL and its relationship to other free software
 licenses are discussed in detail in Chapter 9.
With the help of many programmers, some of whom shared
 Stallman's ideology and some of whom simply wanted to see a lot of
 free code available, the GNU Project began releasing free
 replacements for many of the most critical components of an
 operating system. Because of the now-widespread standardization in
 computer hardware and software, it was possible to use the GNU
 replacements on otherwise non-free systems, and many people did. The
 GNU text editor (Emacs) and C compiler (GCC) were particularly
 successful, gaining large and loyal followings not on ideological
 grounds, but simply on their technical merits. By about 1990, GNU
 had produced most of a free operating system, except for the
 kernel—the part that the machine actually boots up, and that is
 responsible for managing memory, disk, and other system
 resources.
Unfortunately, the GNU project had chosen a kernel design that
 turned out to be harder to implement than expected. The ensuing
 delay prevented the Free Software Foundation from making the first
 release of an entirely free operating system. The final piece was
 put into place instead by Linus Torvalds, a Finnish computer science
 student who, with the help of volunteers around the world, had
 completed a free kernel using a more conservative design. He named
 it Linux, and when it was combined with the existing GNU
 programs, the result was a completely free operating system. For the
 first time, you could boot up your computer and do work without
 using any proprietary software.[4]
Much of the software on this new operating system was not
 produced by the GNU project. In fact, GNU wasn't even the only group
 working on producing a free operating system (for example, the code
 that eventually became NetBSD and FreeBSD was already under
 development by this time). The importance of the Free Software Foundation was not only in the code they
 wrote, but in their political rhetoric. By talking about free
 software as a cause instead of a convenience, they made it difficult
 for programmers not to have a political
 consciousness about it. Even those who disagreed with the FSF had to
 engage the issue, if only to stake out a different position. The
 FSF's effectiveness as propagandists lay in tying their code to a
 message, by means of the GPL and other texts. As their code spread
 widely, that message spread as well.

Accidental resistance

There were many other things going on in the nascent free
 software scene, however, and few were as explictly ideological as
 Stallman's GNU Project. One of the most important was the Berkeley Software Distribution (BSD), a gradual
 reimplementation of the Unix operating system—which up until the
 late 1970s had been a loosely proprietary research project at
 AT&T—by programmers at the University of California at Berkeley.
 The BSD group did not make any overt political statements about the
 need for programmers to band together and share with one another,
 but they practiced the idea with flair and
 enthusiasm, by coordinating a massive distributed development effort
 in which the Unix command-line utilities and code libraries, and
 eventually the operating system kernel itself, were rewritten from
 scratch mostly by volunteers. The BSD project became a prime example
 of non-ideological free software development, and also served as a
 training ground for many developers who would go on to remain active
 in the open source world.
Another crucible of cooperative development was the
 X Window System, a free, network-transparent graphical
 computing environment, developed at MIT in the mid-1980s in
 partnership with hardware vendors who had a common interest in being
 able to offer their customers a windowing system. Far from opposing
 proprietary software, the X license deliberately allowed proprietary
 extensions on top of the free core—each member of the consortium
 wanted the chance to enhance the default X distribution, and thereby
 gain a competitive advantage over the other members. X
 Windows[5] itself was free software, but mainly as a way to level
 the playing field between competing business interests, not out of
 some desire to end the dominance of proprietary software. Yet
 another example, predating the GNU project by a few years, was
 TeX, Donald Knuth's free, publishing-quality typesetting
 system. He released it under a license that allowed anyone to modify
 and distribute the code, but not to call the result "TeX" unless it
 passed a very strict set of compatibility tests (this is an example
 of the "trademark-protecting" class of free licenses, discussed more
 in Chapter 9). Knuth
 wasn't taking a stand one way or the other on the question of
 free-versus-proprietary software, he just needed a better
 typesetting system in order to complete his
 real goal—a book on computer programming—and
 saw no reason not to release his system to the world when
 done.
Without listing every project and every license, it's safe to
 say that by the late 80s, there was a lot of free software available
 under a wide variety of licenses. The diversity of licenses
 reflected a corresponding diversity of motivations. Even some of the
 programers who chose the GNU GPL were much less ideologically driven
 than the GNU project itself. Although they enjoyed working on free
 software, many developers did not consider proprietary software a
 social evil. There were people who felt a moral impulse to rid the
 world of "software hoarding" (Stallman's term for non-free
 software), but others were motivated more by technical excitement,
 or by the pleasure of working with like-minded collaborators, or
 even by a simple human desire for glory. Yet by and large these
 disparate motivations did not interact in destructive ways. This is
 partly because software, unlike other creative forms like prose or
 the visual arts, must pass semi-objective tests in order to be
 considered successful: it must run, and be reasonably free of bugs.
 This gives all participants in a project a kind of automatic common
 ground, a reason and a framework for working together without
 worrying too much about qualifications beyond the technical.
Developers had another reason to stick together as well: it
 turned out that the free software world was producing some very
 high-quality code. In some cases, it was demonstrably technically
 superior to the nearest non-free alternative; in others, it was at
 least comparable, and of course it always cost less. While only a
 few people might have been motivated to run free software on
 strictly philosophical grounds, a great many people were happy to
 run it because it did a better job. And of those who used it, some
 percentage were always willing to donate their time and skills to
 help maintain and improve the software.
This tendency to produce good code was certainly not
 universal, but it was happening with increasing frequency in free
 software projects around the world. Businesses that depended heavily
 on software gradually began to take notice. Many of them discovered
 that they were already using free software in day-to-day operations,
 and simply hadn't known it (upper management isn't always aware of
 everything the IT department does). Corporations began to take a
 more active and public role in free software projects, contributing
 time and equipment, and sometimes even directly funding the
 development of free programs. Such investments could, in the best
 scenarios, repay themselves many times over. The sponsor only pays a
 small number of expert programmers to devote themselves to the
 project full time, but reaps the benefits of
 everyone's contributions, including work from
 unpaid volunteers and from programmers being paid by other
 corporations.

Free Versus Open Source

As the corporate world gave more and more attention to
 free software, programmers were faced with new issues of presentation.
 One was the word "free" itself. On first hearing the term "free
 software," many people mistakenly think it means just "zero-cost
 software." It's true that all free software is zero-cost,[6] but not all zero-cost software is free. For example,
 during the battle of the browsers in the 1990s, both Netscape and
 Microsoft gave away their competing web browsers at no charge, in a
 scramble to gain market share. Neither browser was free in the "free
 software" sense. You couldn't get the source code, and even if you
 could, you didn't have the right to modify or redistribute
 it.[7] The only thing you could do was download an executable
 and run it. The browsers were no more free than shrink-wrapped
 software bought in a store; they merely had a lower price.
This confusion over the word "free" is due entirely to an unfortunate ambiguity in the
 English language. Most other tongues distinguish low prices from
 liberty (the distinction between gratis and
 libre is immediately clear to speakers of Romance
 languages, for example). But English's position as the de facto bridge
 language of the Internet means that a problem with English is, to some
 degree, a problem for everyone. The misunderstanding around the word
 "free" was so prevalent that free software programmers eventually
 evolved a standard formula in response: "It's
 free as in freedom—think
 free speech, not free beer."
 Still, having to explain it over and over is tiring. Many programmers
 felt, with some justification, that the ambiguous word "free" was
 hampering the public's understanding of this software.
But the problem went deeper than that. The word "free" carried
 with it an inescapable moral connotation: if freedom was an end in
 itself, it didn't matter whether free software also happened to be
 better, or more profitable for certain businesses in certain
 circumstances. Those were merely pleasant side effects of a motive
 that was, at bottom, neither technical nor mercantile, but moral.
 Furthermore, the "free as in freedom" position forced a glaring
 inconsistency on corporations who wanted to support particular free
 programs in one aspect of their business, but continue marketing
 proprietary software in others.
These dilemmas came to a community that was already poised for
 an identity crisis. The programmers who actually
 write free software have never been of one mind
 about the overall goal, if any, of the free software movement. Even to
 say that opinions run from one extreme to the other would be
 misleading, in that it would falsely imply a linear range where there
 is instead a multidimensional scattering. However, two broad
 categories of belief can be distinguished, if we are willing to ignore
 subtleties for the moment. One group takes Stallman's view, that the
 freedom to share and modify is the most important thing, and that
 therefore if you stop talking about freedom, you've left out the core
 issue. Others feel that the software itself is the most important
 argument in its favor, and are uncomfortable with proclaiming
 proprietary software inherently bad. Some, but not all, free software
 programmers believe that the author (or employer, in the case of paid
 work) should have the right to control the terms
 of distribution, and that no moral judgement need be attached to the
 choice of particular terms.
For a long time, these differences did not need to be carefully
 examined or articulated, but free software's burgeoning success in the
 business world made the issue unavoidable. In 1998, the term
 open source was created as an alternative to "free", by a coalition
 of programmers who eventually became The Open Source Initiative (OSI).[8] The OSI felt not only that "free software" was
 potentially confusing, but that the word "free" was just one symptom
 of a general problem: that the movement needed a marketing program to
 pitch it to the corporate world, and that talk of morals and the
 social benefits of sharing would never fly in corporate boardrooms. In
 their own words:
The Open Source Initiative is a marketing program for free
 software. It's a pitch for "free software" on solid pragmatic
 grounds rather than ideological tub-thumping. The winning substance
 has not changed, the losing attitude and symbolism have. ...
The case that needs to be made to most techies isn't about the
 concept of open source, but the name. Why not call it, as we
 traditionally have, free software?
One direct reason is that the term "free software" is easily
 misunderstood in ways that lead to conflict....
But the real reason for the re-labeling is a marketing one.
 We're trying to pitch our concept to the corporate world now. We
 have a winning product, but our positioning, in the past, has been
 awful. The term "free software" has been misunderstood by business
 persons, who mistake the desire to share with anti-commercialism, or
 worse, theft.
Mainstream corporate CEOs and CTOs will never buy "free
 software." But if we take the very same tradition, the same people,
 and the same free-software licenses and change the label to "open
 source"? That, they'll buy.
Some hackers find this hard to believe, but that's because
 they're techies who think in concrete, substantial terms and don't
 understand how important image is when you're selling
 something.
In marketing, appearance is reality. The appearance that we're
 willing to climb down off the barricades and work with the corporate
 world counts for as much as the reality of our behavior, our
 convictions, and our software.
(from http://www.opensource.org/advocacy/faq.php and http://www.opensource.org/advocacy/case_for_hackers.php#marketing)

The tips of many icebergs of controversy are visible in that
 text. It refers to "our convictions" but smartly avoids spelling out
 exactly what those convictions are. For some, it might be the
 conviction that code developed according to an open process will be
 better code; for others, it might be the conviction that all
 information should be shared. There's the use of the word "theft" to
 refer (presumably) to illegal copying—a usage that many object to, on
 the grounds that it's not theft if the original possessor still has
 the item afterwards. There's the tantalizing hint that the free
 software movement might be mistakenly accused of anti-commercialism,
 but it leaves carefully unexamined the question of whether such an
 accusation would have any basis in fact.
None of which is to say that the OSI's web site is inconsistent
 or misleading. It's not. Rather, it is an example of exactly what the
 OSI claims had been missing from the free software movement: good
 marketing, where "good" means "viable in the business world." The Open
 Source Initiative gave a lot of people exactly what they had been
 looking for—a vocabulary for talking about free software as a
 development methodology and business strategy, instead of as a moral
 crusade.
The appearance of the Open Source Initiative changed the
 landscape of free software. It formalized a dichotomy that had long
 been unnamed, and in doing so forced the movement to acknowledge that
 it had internal politics as well as external. The effect today is that
 both sides have had to find common ground, since most projects include
 programmers from both camps, as well as participants who don't fit any
 clear category. This doesn't mean people never talk about moral
 motivations—lapses in the traditional "hacker ethic" are sometimes
 called out, for example. But it is rare for a free software/open
 source developer to openly question the basic motivations of others in
 a project. The contribution trumps the contributor. If someone writes
 good code, you don't ask them whether they do it for moral reasons, or
 because their employer paid them to, or because they're building up
 their resumé, or whatever. You evaluate the contribution on technical
 grounds, and respond on technical grounds. Even explicitly political
 organizations like the Debian project, whose goal is to offer a 100%
 free (that is, "free as in freedom") computing environment, are fairly
 relaxed about integrating with non-free code and cooperating with
 programmers who don't share exactly the same goals.

[1] SourceForge.net, one popular hosting site, had 79,225 projects
 registered as of mid-April 2004. This is nowhere near the total number
 of free software projects on the Internet, of course; it's just the
 number that chose to use SourceForge.

[2] Stallman uses the word "hacker" in the sense of "someone
 who loves to program and enjoys being clever about it," not the
 relatively new meaning of "someone who breaks into
 computers."

[3] It stands for "GNU's Not Unix," and the "GNU" in that
 expansion stands for...the same thing.

[4] Technically, Linux was not the first. A free operating
 system for IBM-compatible computers, called 386BSD, had come out
 shortly before Linux. However, it was a lot harder to get 386BSD
 up and running. Linux made such a splash not only because it was
 free, but because it actually had a high chance of booting your
 computer when you installed it.

[5] They prefer it to be called the "X Window System," but in
 practice, people usually call it "X Windows," because three
 words is just too cumbersome.

[6] One may charge a fee for giving out copies of free software,
 but since one cannot stop the recipients from offering it at no
 charge afterwards, the price is effectively driven to zero
 immediately.

[7] The source code to Netscape Navigator
 was eventually released under an open source
 license, in 1998, and became the foundation for the Mozilla web
 browser. See http://www.mozilla.org/.

[8] OSI's web home is http://www.opensource.org/.

The Situation Today

When running a free software project, you won't need to talk about
 such weighty philosophical matters on a daily basis. Programmers will
 not insist that everyone else in the project agree with their views on
 all things (those who do insist on this quickly find themselves unable
 to work on any project). But you do need to be aware that the question
 of "free" versus "open source" exists, partly to avoid saying things
 that might be inimical to some of the participants, and partly because
 understanding developers' motivations is the best way—in some sense, the
 only way—to manage a project.
Free software is a culture by choice. To operate
 successfully in it, you have to understand why people choose to be in it
 in the first place. Coercive techniques don't work. If people are
 unhappy in one project, they will just wander off to another one. Free
 software is remarkable even among volunteer communities for its
 lightness of investment. Most of the people involved have never actually
 met the other participants face-to-face, and simply donate bits of time
 whenever they feel like it. The normal conduits by which humans bond
 with each other and form lasting groups are narrowed down to a tiny
 channel: the written word, carried over electronic wires. Because of
 this, it can take a long time for a cohesive and dedicated group to
 form. Conversely, it's quite easy for a project to lose a potential
 volunteer in the first five minutes of acquaintanceship. If a project
 doesn't make a good first impression, newcomers rarely give it a second
 chance.
The transience, or rather the potential
 transience, of relationships is perhaps the single most daunting task
 facing a new project. What will persuade all these people to stick
 together long enough to produce something useful? The answer to that
 question is complex enough to occupy the rest of this book, but if it
 had to be expressed in one sentence, it would be this:
People should feel that their connection to a project, and
 influence over it, is directly proportional to their
 contributions.

No class of developers, or potential developers, should ever feel
 discounted or discriminated against for non-technical reasons. Clearly,
 projects with corporate sponsorship and/or salaried developers need to
 be especially careful in this regard, as Chapter 5 discusses in detail. Of
 course, this doesn't mean that if there's no corporate sponsorship then
 you have nothing to worry about. Money is merely one of many factors
 that can affect the success of a project. There are also questions of
 what language to choose, what license, what development process,
 precisely what kind of infrastructure to set up, how to publicize the
 project's inception effectively, and much more. Starting a project out
 on the right foot is the topic of the next chapter.

Chapter 2. Getting Started

The classic model of how free software projects get started
 was supplied by Eric Raymond, in a now-famous paper on open source processes
 entitled "The Cathedral and the Bazaar." He wrote:
Every good work of software starts by scratching a developer's
 personal itch.(from http://www.catb.org/~esr/writings/cathedral-bazaar/)

Note that Raymond wasn't saying that open source projects happen
 only when some individual gets an itch. Rather, he was saying that
 good software results when the programmer has a
 personal interest in seeing the problem solved; the relevance of this to
 free software was that a personal itch happened to be the most frequent
 motivation for starting a free software project.
This is still how most free projects are started, but less so now
 than in 1997, when Raymond wrote those words. Today, we have the
 phenomenon of organizations—including for-profit corporations—starting
 large, centrally-managed open source projects from scratch. The lone
 programmer, banging out some code to solve a local problem and then
 realizing the result has wider applicability, is still the source of much
 new free software, but is not the only story.
Raymond's point is still insightful, however. The essential
 condition is that the producers of the software have a direct interest in
 its success, because they use it themselves. If the software doesn't do
 what it's supposed to do, the person or organization producing it will
 feel the dissatisfaction in their daily work. For example, the OpenAdapter project (http://www.openadapter.org/), which was started by
 investment bank Dresdner Kleinwort Wasserstein as an open source framework
 for integrating disparate financial information systems, can hardly be
 said to scratch any individual programmer's personal itch. It scratches an
 institutional itch. But that itch arises directly from the experiences of
 the institution and its partners, and therefore if the project fails to
 relieve them, they will know. This arrangement produces good software
 because the feedback loop flows in the right direction. The program isn't
 being written to be sold to someone else so they can solve
 their problem. It's being written to solve one's
 own problem, and then shared with everyone, much as
 though the problem were a disease and the software were medicine whose
 distribution is meant to completely eradicate the epidemic.
This chapter is about how to introduce a new free software
 project to the world, but many of its recommendations would sound familiar
 to a health organization distributing medicine. The goals are very
 similar: you want to make it clear what the medicine does, get it into the
 hands of the right people, and make sure that those who receive it know
 how to use it. But with software, you also want to entice some of the
 recipients into joining the ongoing research effort to improve the
 medicine.
Free software distribution is a twofold task. The software needs to
 acquire users, and to acquire developers. These two needs are not
 necessarily in conflict, but they do add some complexity to a project's
 initial presentation. Some information is useful for both audiences, some
 is useful only for one or the other. Both kinds of information should
 subscribe to the principle of scaled presentation; that is, the degree of
 detail presented at each stage should correspond directly to the amount of
 time and effort put in by the reader. More effort should always equal more
 reward. When the two do not correlate tightly, people may quickly lose
 faith and stop investing effort.
The corollary to this is that appearances
 matter. Programmers, in particular, often don't like to believe
 this. Their love of substance over form is almost a point of professional
 pride. It's no accident that so many programmers exhibit an antipathy for
 marketing and public relations work, nor that professional graphic
 designers are often horrified at what programmers come up with on their
 own.
This is a pity, because there are situations where form
 is substance, and project presentation is one of
 them. For example, the very first thing a visitor learns about a project
 is what its web site looks like. This information is absorbed before any
 of the actual content on the site is comprehended—before any of the text
 has been read or links clicked on. However unjust it may be, people cannot
 stop themselves from forming an immediate first impression. The site's
 appearance signals whether care was taken in organizing the project's
 presentation. Humans have extremely sensitive antennae for detecting the
 investment of care. Most of us can tell in one glance whether a web site
 was thrown together quickly or was given serious thought. This is the
 first piece of information your project puts out, and the impression it
 creates will carry over to the rest of the project by association.
Thus, while much of this chapter talks about the content your
 project should start out with, remember that its look and feel matters
 too. Because the project web site has to work for two different types of
 visitors—users and developers—special attention must be paid to clarity
 and directedness. Although this is not the place for a general treatise on
 web design, one principle is important enough to deserve mention,
 particularly when the site serves multiple (if overlapping) audiences:
 people should have a rough idea where a link goes before clicking on it.
 For example, it should be obvious from looking at the
 links to user documentation that they lead to user
 documentation, and not to, say, developer documentation. Running a project
 is partly about supplying information, but it's also about supplying
 comfort. The mere presence of certain standard offerings, in expected
 places, reassures users and developers who are deciding whether they want
 to get involved. It says that this project has its act together, has
 anticipated the questions people will ask, and has made an effort to
 answer them in a way that requires minimal exertion on the part of the
 asker. By giving off this aura of preparedness, the project sends out a
 message: "Your time will not be wasted if you get involved," which is
 exactly what people need to hear.
First, Look Around

Before starting an open source project, there is one important
 caveat:
Always look around to see if there's an existing project
 that does what you want. The chances are pretty good that whatever
 problem you want solved now, someone else wanted solved before you. If
 they did solve it, and released their code under a free license, then
 there's no reason for you to reinvent the wheel today. There are
 exceptions, of course: if you want to start a project as an educational
 experience, pre-existing code won't help; or maybe the project you have
 in mind is so specialized that you know there is zero chance anyone else
 has done it. But generally, there's no point in not looking, and the
 payoff can be huge. If the usual Internet search engines don't turn up
 anything, try searching on http://freshmeat.net/ (an open source project news site, about which more will
 be said later), on http://www.sourceforge.net/, and in the Free Software Foundation's directory of free software at
 http://directory.fsf.org/.
Even if you don't find exactly what you were looking for, you
 might find something so close that it makes more sense to join that
 project and add functionality than to start from scratch
 yourself.

Starting from What You Have

You've looked around, found that nothing out there really fits
 your needs, and decided to start a new project.
What now?
The hardest part about launching a free software project
 is transforming a private vision into a public one. You or your
 organization may know perfectly well what you want, but expressing that
 goal comprehensibly to the world is a fair amount of work. It is
 essential, however, that you take the time to do it. You and the other
 founders must decide what the project is really about—that is, decide
 its limitations, what it won't do as well as what
 it will—and write up a mission statement. This part is usually not too
 hard, though it can sometimes reveal unspoken assumptions and even
 disagreements about the nature of the project, which is fine: better to
 resolve those now than later. The next step is to package up the project
 for public consumption, and this is, basically, pure drudgery.
What makes it so laborious is that it consists mainly of
 organizing and documenting things everyone already knows—"everyone,"
 that is, who's been involved in the project so far. Thus, for the people
 doing the work, there is no immediate benefit. They do not need a
 README file giving an overview of
 the project, nor a design document or user manual. They do not need a
 carefully arranged code tree conforming to the informal but widespread
 standards of software source distributions. Whatever way the source code
 is arranged is fine for them, because they're already accustomed to it
 anyway, and if the code runs at all, they know how to use it. It doesn't
 even matter, for them, if the fundamental architectural assumptions of
 the project remain undocumented; they're already familiar with that
 too.
Newcomers, on the other hand, need these things. Fortunately, they
 don't need them all at once. It's not necessary for you to provide every
 possible resource before taking a project public. In a perfect world,
 perhaps, every new open source project would start out life with a
 thorough design document, a complete user manual (with special markings
 for features planned but not yet implemented), beautifully and portably
 packaged code, capable of running on any computing platform, and so on.
 In reality, taking care of all these loose ends would be prohibitively
 time-consuming, and anyway, it's work that one can reasonably hope
 volunteers will help with once the project is under way.
What is necessary, however, is that enough
 investment be put into presentation that newcomers can get past the
 initial obstacle of unfamiliarity. Think of it as the first step in a
 bootstrapping process, to bring the project to a kind of minimum
 activation energy. I've heard this threshold called the
 hacktivation energy: the amount of energy a newcomer must put in before she
 starts getting something back. The lower a project's hacktivation
 energy, the better. Your first task is bring the hacktivation energy
 down to a level that encourages people to get involved.
Each of the following subsections describes one important aspect
 of starting a new project. They are presented roughly in the order that
 a new visitor would encounter them, though, of course, the order in
 which you actually implement them might be different. You can treat them
 as a checklist. When starting a project, just go down the list and make
 sure you've got each item covered, or at least that you're comfortable
 with the potential consequences if you've left one out.
Choose a Good Name

Put yourself in the shoes of someone who's just heard
 about your project, perhaps by having stumbled across it while
 searching for software to solve some problem. The first thing they'll
 encounter is the project's name.
A good name will not automatically make your project successful,
 and a bad name will not doom it—well, a really
 bad name probably could do that, but we start from the assumption that
 no one here is actively trying to make their project fail. However, a
 bad name can slow down adoption of the project, either because people
 don't take it seriously, or because they simply have trouble
 remembering it.
A good name:
	Gives some idea what the project does, or at least is
 related in an obvious way, such that if one knows the name and
 knows what the project does, the name will come quickly to mind
 thereafter.

	Is easy to remember. Here, there is no getting around the
 fact that English has become the default language of the Internet:
 "easy to remember" means "easy for someone who can read English to
 remember." Names that are puns dependent on native-speaker
 pronunciation, for example, will be opaque to the many nonnative
 English readers out there. If the pun is particularly compelling
 and memorable, it may still be worth it; just keep in mind that
 many people seeing the name will not hear it in their head the way
 a native speaker would.

	Is not the same as some other project's name, and does not
 infringe on any trademarks. This is just good manners, as well as
 good legal sense. You don't want to create identity confusion.
 It's hard enough to keep track of everything that's available on
 the Net already, without different things have the same
 name.

	The resources mentioned earlier in Section 2.1 are useful
 in discovering whether another project already has the name you're
 thinking of. Free trademark searches are available at http://www.nameprotect.org/ and http://www.uspto.gov/.

	If possible, is available as a domain name in the
 .com, .net, and
 .org top-level domains. You should pick one,
 probably .org, to advertise as the official
 home site for the project; the other two should forward there and
 are simply to prevent third parties from creating identity
 confusion around the project's name. Even if you intend to host
 the project at some other site (see Section 2.2.12), you
 can still register project-specific domains and forward them to
 the hosting site. It helps users a lot to have a simple URL to
 remember.

Have a Clear Mission Statement

Once they've found the project's web site, the next
 thing people will look for is a quick description, a mission
 statement, so they can decide (within 30 seconds) whether or not
 they're interested in learning more. This should be prominently placed
 on the front page, preferably right under the project's name.
The mission statement should be concrete, limiting, and above
 all, short. Here's an example of a good one, from http://www.openoffice.org/:
To create, as a community, the leading international office
 suite that will run on all major platforms and provide access to all
 functionality and data through open-component based APIs and an
 XML-based file format.

In just a few words, they've hit all the high points, largely by
 drawing on the reader's prior knowledge. By saying "as a
 community," they signal that no one corporation will
 dominate development; "international" means that
 the software will allow people to work in multiple languages and
 locales; "all major platforms" means it will be
 portable to Unix, Macintosh, and Windows. The rest signals that open
 interfaces and easily understandable file formats are an important
 part of the goal. They don't come right out and say that they're
 trying to be a free alternative to Microsoft Office, but most people
 can probably read between the lines. Although this mission statement
 looks broad at first glance, in fact it is quite circumscribed: the
 words "office suite" mean something very concrete
 to those familiar with such software. Again, the reader's presumed
 prior knowledge (in this case probably from MS Office) is used to keep
 the mission statement concise.
The nature of a mission statement depends partly on who is
 writing it, not just on the software it describes. For example, it
 makes sense for OpenOffice.org to use the words "as a
 community" because the project was started, and is still
 largely sponsored, by Sun Microsystems. By including those words, Sun
 indicates its sensitivity to worries that it might try to dominate the
 development process. With this sort of thing, merely demonstrating
 awareness of the potential for a problem goes a
 long way toward avoiding the problem entirely. On the other hand,
 projects that aren't sponsored by a single corporation probably don't
 need such language; after all, development by community is the norm,
 so there would ordinarily be no reason to list it as part of the
 mission.

State that the Project Is Free

Those who remain interested after reading the mission statement
 will next want to see more details, perhaps some user or developer
 documentation, and eventually will want to download something. But
 before any of that, they'll need to be sure it's open source.
The front page must make it unambiguously clear that
 the project is open source. This may seem obvious, but you
 would be surprised how many projects forget to do it. I have seen free
 software project web sites where the front page not only did not say
 which particular free license the software was distributed under, but
 did not even state outright that the software was free at all.
 Sometimes the crucial bit of information was relegated to the
 Downloads page, or the Developers page, or some other place that
 required one more mouse click to get to. In extreme cases, the license
 was not given anywhere on the web site at all—the only way to find it
 was to download the software and look inside.
Don't make this mistake. Such an omission can lose many
 potential developers and users. State up front, right below the
 mission statement, that the project is "free software" or "open source
 software," and give the exact license. A quick guide to choosing a
 license is given in Section
 2.3, later in this chapter, and licensing issues are discussed
 in detail in Chapter
 9.
At this point, our hypothetical visitor has determined—probably
 in a minute or less—that she's interested in spending, say, at least
 five more minutes investigating this project. The next sections
 describe what she should encounter in those five minutes.

Features and Requirements List

There should be a brief list of the features the
 software supports (if something isn't completed yet, you can still
 list it, but put "planned" or "in
 progress" next to it), and the kind of computing
 environment required to run the software. Think of the
 features/requirements list as what you would give to someone asking
 for a quick summary of the software. It is often just a logical
 expansion of the mission statement. For example, the mission statement
 might say:
To create a full-text indexer and search engine with a rich
 API, for use by programmers in providing search services for large
 collections of text files.

The features and requirements list would give the details,
 clarifying the mission statement's scope.
Features:
	Searches plain text, HTML, and XML

	Word or phrase searching

	(planned) Fuzzy matching

	(planned) Incremental updating of indexes

	(planned) Indexing of remote web sites

Requirements:
	Python 2.2 or higher

	Enough disk space to hold the indexes (approximately twice
 original data size)

With this information, readers can quickly get a feel for
 whether this software has any hope of working for them, and they can
 consider getting involved as developers too.

Development Status

People always want to know how a project is doing. For
 new projects, they want to know the gap between the project's promise
 and current reality. For mature projects, they want to know how
 actively it is maintained, how often it puts out new releases, how
 responsive it is likely to be to bug reports, etc.
To answer these questions, you should provide a development
 status page, listing the project's near-term goals and needs (for
 example, it might be looking for developers with a particular kind of
 expertise). The page can also give a history of past releases, with
 feature lists, so visitors can get an idea of how the project defines
 "progress" and how quickly it makes progress according to that
 definition.
Don't be afraid of looking unready, and don't give in to the
 temptation to hype the development status. Everyone knows that
 software evolves by stages; there's no shame in saying "This is alpha
 software with known bugs. It runs, and works at least some of the
 time, but use at your own risk." Such language won't scare away the
 kinds of developers you need at that stage. As for users, one of the
 worst things a project can do is attract users before the software is
 ready for them. A reputation for instability or bugginess is very hard
 to shake, once acquired. Conservativism pays off in the long run; it's
 always better for the software to be more stable
 than the user expected than less, and pleasant surprises produce the
 best kind of word-of-mouth.
Alpha and Beta
The term alpha usually means a first release, with which users can
 get real work done and which has all the intended functionality, but
 which also has known bugs. The main purpose of alpha software is to
 generate feedback, so the developers know what to work on. The next
 stage, beta, means the software has had all the serious bugs
 fixed, but has not yet been tested enough to certify for release.
 The purpose of beta software is to either become the official
 release, assuming no bugs are found, or provide detailed feedback to
 the developers so they can reach the official release quickly. The
 difference between alpha and beta is very much a matter of
 judgment.

Downloads

The software should be downloadable as source code in
 standard formats. When a project is first getting started, binary
 (executable) packages are not necessary, unless the software has such
 complicated build requirements or dependencies that merely getting it
 to run would be a lot of work for most people. (But if this is the
 case, the project is going to have a hard time attracting developers
 anyway!)
The distribution mechanism should be as convenient, standard,
 and low-overhead as possible. If you were trying to eradicate a
 disease, you wouldn't distribute the medicine in such a way that it
 requires a non-standard syringe size to administer. Likewise, software
 should conform to standard build and installation methods; the more it
 deviates from the standards, the more potential users and developers
 will give up and go away confused.
That sounds obvious, but many projects don't bother to
 standardize their installation procedures until very late in the game,
 telling themselves they can do it any time: "We'll sort all
 that stuff out when the code is closer to being ready."
 What they don't realize is that by putting off the boring work of
 finishing the build and installation procedures, they are actually
 making the code take longer to get ready—because they discourage
 developers who might otherwise have contributed to the code. Most
 insidiously, they don't know they're losing all
 those developers, because the process is an accumulation of
 non-events: someone visits a web site, downloads the software, tries
 to build it, fails, gives up and goes away. Who will ever know it
 happened, except the person themselves? No one working on the project
 will realize that someone's interest and good will have been silently
 squandered.
Boring work with a high payoff should always be done early, and
 significantly lowering the project's barrier to entry through good
 packaging brings a very high payoff.
When you release a downloadable package, it is vital that you
 give a unique version number to the release, so that people can
 compare any two releases and know which supersedes the other. A
 detailed discussion of version numbering can be found in Section 7.1 in Chapter
 7.
The details of standardizing build and installation procedures
 are covered in Section
 7.4. in Chapter 7.

Version Control and Bug Tracker Access

Downloading source packages is fine for those who just
 want to install and use the software, but it's not enough for those
 who want to debug or add new features. Nightly source snapshots can
 help, but they're still not fine-grained enough for a thriving
 development community. People need real-time access to the latest
 sources, and the way to give them that is to use a version control
 system. The presence of anonymously accessible version controlled
 sources is a sign—to both users and developers—that this project is
 making an effort to give people what they need to participate. If you
 can't offer version control right away, then put up a sign saying you
 intend to set it up soon. Version control infrastructure is discussed
 in detail in Section
 3.3 in Chapter 3.
The same goes for the project's bug tracker. The importance of a
 bug tracking system lies not only in its usefulness to developers, but
 in what it signifies for project observers. For many people, an
 accessible bug database is one of the strongest signs that a project
 should be taken seriously. Furthermore, the higher the number of bugs
 in the database, the better the project looks. This might seem
 counterintuitive, but remember that the number of bugs recorded really
 depends on three things: the absolute number of bugs present in the
 software, the number of users using the software, and the convenience
 with which those users can register new bugs. Of these three factors,
 the latter two are more significant than the first. Any software of
 sufficient size and complexity has an essentially arbitrary number of
 bugs waiting to be discovered. The real question is, how well will the
 project do at recording and prioritizing those bugs? A project with a
 large and well-maintained bug database (meaning bugs are responded to
 promptly, duplicate bugs are unified, etc.) therefore makes a better
 impression than a project with no bug database, or a nearly empty
 database.
Of course, if your project is just getting started, then the bug
 database will contain very few bugs, and there's not much you can do
 about that. But if the status page emphasizes the project's youth, and
 if people looking at the bug database can see that most filings have
 taken place recently, they can extrapolate from that the project still
 has a healthy rate of filings, and they will not
 be unduly alarmed by the low absolute number of bugs recorded.
Note that bug trackers are often used to track not only software
 bugs, but enhancement requests, documentation changes, pending tasks,
 and more. The details of running a bug tracker are covered in Section 3.4 in Chapter 3,
 so I won't go into them here. The important thing from a presentation
 point of view is just to have a bug tracker, and
 to make sure that fact is visible from the front page of the
 project.

Communications Channels

Visitors usually want to know how to reach the human
 beings involved with the project. Provide the addresses of mailing
 lists, chat rooms, and IRC channels, and any other forums where others
 involved with the software can be reached. Make it clear that you and
 the other authors of the project are subscribed to these mailing
 lists, so people see there's a way to give feedback that will reach
 the developers. Your presence on the lists does not imply a commitment
 to answer all questions or implement all feature requests. In the long
 run, most users will probably never join the forums anyway, but they
 will be comforted to know that they could if they
 ever needed to.
In the early stages of a project, there's no need to have
 separate user and developer forums. It's much better to have everyone
 involved with the software talking together, in one "room." Among
 early adopters, the distinction between developer and user is often
 fuzzy; to the extent that the distinction can be made, the ratio of
 developers to users is usually much higher in the early days of the
 project than later on. While you can't assume that every early adopter
 is a programmer who wants to hack on the software, you can assume that
 they are at least interested in following development discussions and
 in getting a sense of the project's direction.
As this chapter is only about getting a project started, it's
 enough merely to say that these communications forums need to exist.
 Later, in Section 6.4
 in Chapter 6, we'll examine
 where and how to set up such forums, the ways in which they might need
 moderation or other management, and how to separate user forums from
 developer forums, when the time comes, without creating an
 unbridgeable gulf.

Developer Guidelines

If someone is considering contributing to the project,
 he'll look for developer guidelines. Developer guidelines are not so
 much technical as social: they explain how the developers interact
 with each other and with the users, and ultimately how things get
 done.
This topic is covered in detail in Section 4.4 in Chapter 4,
 but the basic elements of developer guidelines are:
	Pointers to forums for interaction with other
 developers

	Instructions on how to report bugs and submit patches

	Some indication of how development is
 usually done—is the project a benevolent dictatorship, a
 democracy, or something else

No pejorative sense is intended by "dictatorship," by the way.
 It's perfectly okay to run a tyranny where one particular developer
 has veto power over all changes. Many successful projects work this
 way. The important thing is that the project come right out and say
 so. A tyranny pretending to be a democracy will turn people off; a
 tyranny that says it's a tyranny will do fine as long as the tyrant is
 competent and trusted.
See http://svn.collab.net/repos/svn/trunk/HACKING for an
 example of particularly thorough developer guidelines, or http://www.openoffice.org/dev_docs/guidelines.html for
 broader guidelines that focus more on governance and the spirit of
 participation and less on technical matters.
The separate issue of providing a programmer's introduction to
 the software is discussed in Section 2.2.10.2 later
 in this chapter.

Documentation

Documentation is essential. There needs to be
 something for people to read, even if it's
 rudimentary and incomplete. This falls squarely into the "drudgery"
 category referred to earlier, and is often the first area where a new
 open source project falls down. Coming up with a mission statement and
 feature list, choosing a license, summarizing development status—these
 are all relatively small tasks, which can be definitively completed
 and usually need not be returned to once done. Documentation, on the
 other hand, is never really finished, which may be one reason people
 sometimes delay starting it at all.
The most insidious thing is that documentation's utility to
 those writing it is the reverse of its utility to those who will read
 it. The most important documentation for initial users is the basics:
 how to quickly set up the software, an overview of how it works,
 perhaps some guides to doing common tasks. Yet these are exactly the
 things the writers of the documentation know all
 too well—so well that it can be difficult for them to see things from
 the reader's point of view, and to laboriously spell out the steps
 that (to the writers) seem so obvious as to be unworthy of
 mention.
There's no magic solution to this problem. Someone just needs to
 sit down and write the stuff, and then run it by typical new users to
 test its quality. Use a simple, easy-to-edit format such as HTML,
 plain text, texinfo, or some variant of XML—something that's
 convenient for lightweight, quick improvements on the spur of the
 moment. This is not only to remove any overhead that might impede the
 original writers from making incremental improvements, but also for
 those who join the project later and want to work on the
 documentation.
One way to ensure basic initial documentation gets done is to
 limit its scope in advance. That way, writing it at least won't feel
 like an open-ended task. A good rule of thumb is that it should meet
 the following minimal criteria:
	Tell the reader clearly how much technical expertise she's
 expected to have.

	Describe clearly and thoroughly how to set up the software,
 and somewhere near the beginning of the documentation, tell the
 user how to run some sort of diagnostic test or simple command to
 confirm that they've set things up correctly. Startup
 documentation is in some ways more important than actual usage
 documentation. The more effort someone has invested in installing
 and getting started with the software, the more persistent she'll
 be in figuring out advanced functionality that's not
 well-documented. When people abandon a project, they abandon
 early; therefore, it's the earliest stages, like installation,
 that need the most support.

	Give one tutorial-style example of how to do a common task.
 Obviously, many examples for many tasks would be even better, but
 if time is limited, pick one task and walk through it thoroughly.
 Once someone sees that the software can be
 used for one thing, they'll start to explore what else it can do
 on their own—and, if you're lucky, start filling in the
 documentation themselves. Which brings us to the next
 point...

	Label the areas where the documentation is known to be
 incomplete. By showing the readers that you are aware of its
 deficiencies, you align yourself with their point of view. Your
 empathy reassures them that they don't face a struggle to convince
 the project of what's important. These labels needn't represent
 promises to fill in the gaps by any particular date —it's equally
 legitimate to treat them as open requests for volunteer
 help.

The last point is of wider importance, actually, and can be
 applied to the entire project, not just the documentation. An accurate
 accounting of known deficiencies is the norm in the open source world.
 You don't have to exaggerate the project's shortcomings, just identify
 them scrupulously and dispassionately when the context calls for it
 (whether in the documentation, in the bug tracking database, or on a
 mailing list discussion). No one will treat this as defeatism on the
 part of the project, nor as a commitment to solve the problems by a
 certain date, unless the project makes such a commitment explicitly.
 Since anyone who uses the software will discover the deficiencies for
 themselves, it's much better for them to be psychologically
 prepared—then the project will look like it has a solid knowledge of
 how it's doing.
Maintaining an FAQ
An FAQ ("Frequently Asked Questions" document) can be one of
 the best investments a project makes in terms of educational payoff.
 FAQs are highly tuned to the questions users and developers actually
 ask—as opposed to the questions you might have
 expected them to ask—and therefore, a
 well-maintained FAQ tends to give those who consult it exactly what
 they're looking for. The FAQ is often the first place users look
 when they encounter a problem, often even in preference to the
 official manual, and it's probably the document in your project most
 likely to be linked to from other sites.
Unfortunately, you cannot make the FAQ at the start of the
 project. Good FAQs are not written, they are grown. They are by
 definition reactive documents, evolving over time in response to
 people's day-to-day usage of the software. Since it's impossible to
 correctly anticipate the questions people will ask, it is impossible
 to sit down and write a useful FAQ from scratch.
Therefore, don't waste your time trying to. You may, however,
 find it useful to set up a mostly blank FAQ template, so there will
 be an obvious place for people to contribute questions and answers
 after the project is under way. At this stage, the most important
 property is not completeness, but convenience: if the FAQ is easy to
 add to, people will add to it. (Proper FAQ maintenance is a
 non-trivial and intriguing problem, and is discussed more in Section 8.2.5 in
 Chapter 8.)

Availability of documentation

Documentation should be available from two places:
 online (directly from the web site), and in the
 downloadable distribution of the software (see Section 7.4 in Chapter
 7). It needs to be online, in browseable form, because people often
 read documentation before downloading software
 for the first time, as a way of helping them decide whether to
 download at all. But it should also accompany the software, on the
 principle that downloading should supply (i.e., make locally
 accessible) everything one needs to use the package.
For online documentation, make sure that there is a link that
 brings up the entire documentation in one HTML
 page (put a note like "monolithic" or "all-in-one" or "single large
 page" next to the link, so people know that it might take a while to
 load). This is useful because people often want to search for a
 specific word or phrase across the entire documentation. Generally,
 they already know what they're looking for, they just can't remember
 what section it's in. For such people, nothing is more frustrating
 than encountering one HTML page for the table of contents, then a
 different page for the introduction, then a different page for
 installation instructions, etc. When the pages are broken up like
 that, their browser's search function is useless. The separate-page
 style is useful for those who already know what section they need,
 or who want to read the entire documentation from front to back in
 sequence. But this is not the most common way
 documentation is accessed. Far more often, someone who is basically
 familiar with the software is coming back to search for a specific
 word or phrase. To fail to provide them with a single, searchable
 document would only make their lives harder.

Developer documentation

Developer documentation is written to help programmers
 understand the code, so they can repair and extend it. This is
 somewhat different from the developer
 guidelines discussed earlier, which are more social than
 technical. Developer guidelines tell programmers how to get along
 with each other; developer documentation tells them how to get along
 with the code itself. The two are often packaged together in one
 document for convenience (as with the http://svn.collab.net/repos/svn/trunk/HACKING example
 given earlier), but they don't have to be.
Although developer documentation can be very helpful, there's
 no reason to delay a release to do it. As long as the original
 authors are available (and willing) to answer questions about the
 code, that's enough to start with. In fact, having to answer the
 same questions over and over is a common motivation for writing
 documentation. But even before it's written, determined contributors
 will still manage to find their way around the code. The force that
 drives people to spend time learning a code base is that the code
 does something useful for them. If people have faith in that, they
 will take the time to figure things out; if they don't have that
 faith, no amount of developer documentation will get or keep
 them.
So if you have time to write documentation for only one
 audience, write it for users. All user documentation is, in effect,
 developer documentation as well; any programmer who's going to work
 on a piece of software will need to be familiar with how to use it.
 Later, when you see programmers asking the same questions over and
 over, take the time to write up some separate documents just for
 them.
Some projects use wikis for their initial documentation, or
 even as their primary documentation. In my experience, this really
 works only if the wiki is actively edited by a few people who agree
 on how the documentation is to be organized and what sort of "voice"
 it should have. See Section 3.6 in Chapter 3
 for more.

Example Output and Screenshots

If the project involves a graphical user interface, or
 if it produces graphical or otherwise distinctive output, put some
 samples up on the project web site. In the case of interface, this
 means screenshots; for output, it might be screenshots or just files.
 Both cater to people's need for instant gratification: a single
 screenshot can be more convincing than paragraphs of descriptive text
 and mailing list chatter, because a screenshot is inarguable proof
 that the software works. It may be buggy, it may
 be hard to install, it may be incompletely documented, but that
 screenshot is still proof that if one puts in enough effort, one can
 get it to run.
Screenshots
Since screenshots can be daunting until you've actually made a
 few, here are basic instructions for making them. Using the GNU
 Image Manipulation Program (GIMP) (http://www.gimp.org/), open File → Acquire → Screenshot, choose Single Window or Whole
 Screen, then click OK. Now your next mouse click will capture the
 window or screen clicked on as an image in the GIMP. Crop and resize
 the image as necessary, using the instructions at http://www.gimp.org/tutorials/Lite_Quickies/#crop.

There are many other things you could put on the project web
 site, if you have the time, or if for one reason or another they are
 especially appropriate: a news page, a project history page, a related
 links page, a site-search feature, a donations link, etc. None of
 these are necessities at startup time, but keep them in mind for the
 future.

Canned Hosting

There are a few sites that provide free hosting and
 infrastructure for open source projects: a web area, version control,
 a bug tracker, a download area, chat forums, regular backups, etc. The
 details vary from site to site, but the same basic services are
 offered at all of them. By using one of these sites, you get a lot for
 free; what you give up, obviously, is fine-grained control over the
 user experience. The hosting service decides what software the site
 runs, and may control or at least influence the look and feel of the
 project's web pages.
See Section
 3.7.1 in Chapter 3 for a more detailed discussion of the
 advantages and disadvantages of canned hosting, and a list of sites
 that offer it.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages9858.jpg
producing *~
open source
softwa_[e

HOW TO RUN R SUCCESSFUL FREE SOFTWARE PROJECT

O'REILLY*®

