

 [image: First Edition]

 Java Generics and Collections

Maurice Naftalin

Philip Wadler

Editor
Mike Loukides

Copyright © 2009 O'Reilly Media, Inc.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
 titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
 (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Java Generics and Collections, the image of an alligator,
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
 their products are claimed as trademarks. Where those designations appear
 in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
 the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
 the publisher and authors assume no responsibility for errors or omissions,
 or for damages resulting from the use of the information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

[image:]

O'Reilly Media

Dedication

We dedicate this book to Joyce Naftalin, Lionel Naftalin, Adam Wadler, and Leora Wadler
—Maurice Naftalin and Philip Wadler

SPECIAL OFFER: Upgrade this ebook with O’Reilly

Click here for more information on this offer!
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596527754/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

Java now supports generics, the most significant
 change to the language since the addition of inner classes in Java 1.2—some
 would say the most significant change to the language ever.
Say you wish to process lists. Some may be lists of integers, others
 lists of strings, and yet others lists of lists of strings. In Java before
 generics this is simple. You can represent all three by the same class,
 called List, which has elements of class
 Object:
	list of integers
	List

	list of strings
	List

	list of lists of strings
	List

In order to keep the language simple, you are forced to do some of the
 work yourself: you must keep track of the fact that you have a list of
 integers (or strings or lists of strings), and when you extract an element
 from the list you must cast it from Object back to Integer (or String or List). For instance, the Collections Framework
 before generics made extensive use of this idiom.
Einstein is reputed to have said, “Everything should be as simple as
 possible but no simpler”. And some might say the approach above is too
 simple. In Java with generics you may distinguish different types of
 lists:
	list of integers
	List<Integer>

	list of strings
	List<String>

	list of lists of strings
	List<List<String>>

Now the compiler keeps track of whether you have a list of integers
 (or strings or lists of strings), and no explicit cast back to Integer (or String or List<String>) is required. In some ways,
 this is similar to generics in Ada or
 templates in C++, but the actual inspiration is
 parametric polymorphism as found in functional
 languages such as ML and Haskell.
Part I of this book provides a thorough introduction to generics. We
 discuss the interactions between generics and subtyping, and how to use
 wildcards and bounds; we describe techniques for evolving your code; we
 explain subtleties connected with casts and arrays; we treat advanced topics
 such as the interaction between generics and security, and how to maintain
 binary compatibility; and we update common design patterns to exploit
 generics.
Much has been written on generics, and their introduction into Java
 has sparked some controversy. Certainly, the design of generics involves
 swings and roundabouts: making it easy to evolve code requires that objects
 not reify run-time information describing generic type
 parameters, but the absence of this information introduces corner cases into
 operations such as casting and array creation.We present a balanced
 treatment of generics, explaining how to exploit their strengths and work
 around their weaknesses.
Part II provides a comprehensive introduction to the Collections
 Framework. Newton is reputed to have said, “If I have seen farther than
 others, it is because I stand on the shoulders of giants”. The best
 programmers live by this motto, building on existing frameworks and reusable
 code wherever appropriate. The Java Collections Framework provides reusable
 interfaces and implementations for a number of common collection types,
 including lists, sets, queues, and maps. There is also a framework for
 comparing values, which is useful in sorting or building ordered trees. (Of
 course, not all programmers exploit reuse. As Hamming said of computer
 scientists, “Instead of standing on each other’s shoulders, we stand on each
 other’s toes.”)
Thanks to generics, code using collections is easier to read and the
 compiler will catch more type errors. Further, collections provide excellent
 illustrations of the use of generics. One might say that generics and
 collections were made for each other, and, indeed, ease of use of
 collections was one of the main reasons for introducing generics in the
 first place.
Java 5 and 6 not only update the Collections Framework to exploit
 generics, but also enhance the framework in other ways, introducing
 interfaces and classes to support concurrency and the new enum types. We believe that these developments
 mark the beginning of a shift in programming style, with heavier use of the
 Collections Framework and, in particular, increased use of collections in
 favor of arrays. In Part II, we describe the entire framework from first
 principles in order to help you use collections more effectively, flagging
 the new features of Java 5 and 6 as we present them.
Following common terminology, we refer to the successive versions of
 Java as 1.0 up to 1.4 and then 5 and 6. We say ‘Java before generics’ to
 refer to Java 1.0 through 1.4, and ‘Java with generics’ to refer to Java 5
 and 6.
The design of generics for Java is influenced by a number of previous
 proposals—notably, GJ, by Bracha, Odersky, Stoutamire, and Wadler; the
 addition of wildcards to GJ, proposed by Igarashi and Viroli; and further
 development of wildcards, by Torgersen, Hansen, Ernst, von der Ahé, Bracha,
 and Gafter. Design of generics was carried out under the Java Community
 Process by a team led by Bracha, and including Odersky, Thorup, and Wadler
 (as parts of JSR 14 and JSR 201). Odersky’s GJ compiler is the basis of
 Sun’s current javac compiler.
Obtaining the Example Programs

Some of the example programs in this book are available online
 at:
	ftp://ftp.oreilly.com/published/oreilly/javagenerics

If you can’t get the examples directly over the Internet but can
 send and receive email, you can use ftpmail to get
 them. For help using ftpmail, send an email to
	ftpmail@online.oreilly.com

with no subject and the single word “help” in the body of the
 message.

How to Contact Us

You can address comments and questions about this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

O’Reilly has a web page for this book, which lists errata and any
 additional information. You can access this page at:
	http://www.oreilly.com/catalog/javagenerics

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about books, conferences, software, Resource
 Centers, and the O’Reilly Network, see the O’Reilly web site at:
	http://www.oreilly.com

Conventions Used in This Book

We use the following font and format conventions:
	Code is shown in a fixed-width font, with boldface used for
 emphasis:
class Client {
 public static void main(String[] args) {
 Stack<Integer> stack = new ArrayStack<Integer>();
 for (int i = 0; i<4; i++) stack.push(i);
 assert stack.toString().equals("stack[0, 1, 2, 3]");
 }
}

	We often include code that corresponds to the body of an
 appropriate main method:
Stack<Integer> stack = new ArrayStack<Integer>();
for (int i = 0; i<4; i++) stack.push(i);
assert stack.toString().equals("stack[0, 1, 2, 3]");

	Code fragments are printed in fixed-width font when they appear
 within a paragraph (as when we referred to a main method in the preceding item).

	We often omit standard imports. Code that uses the Java
 Collection Framework or other utility classes should be preceded by
 the line:
import java.util.*;

	Sample interactive sessions, showing command-line input and
 corresponding output, are shown in constant-width font, with
 user-supplied input preceded by a percent sign:
% javac g/Stack.java g/ArrayStack.java g/Stacks.java l/Client.java
Note: Client.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

	When user-supplied input is two lines long, the first line is
 ended with a backslash:
% javac -Xlint:unchecked g/Stack.java g/ArrayStack.java \
% g/Stacks.java l/Client.java
l/Client.java:4: warning: [unchecked] unchecked call
to push(E) as a member of the raw type Stack
 for (int i = 0; i<4; i++) stack.push(new Integer(i));

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "Java Generics and Collections, by Maurice Naftalin
 and Philip Wadler. Copyright 2006 O’Reilly Media, Inc.,
 0-596-52775-6.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
 library that lets you easily search thousands of top tech books, cut and
 paste code samples, download chapters, and find quick answers when you
 need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

The folks at Sun (past and present) were fantastically good about
 answering our questions. They were always happy to explain a tricky point
 or mull over a design tradeoff. Thanks to Joshua Bloch, Gilad Bracha,
 Martin Buchholz, Joseph D. Darcy, Neal M. Gafter, Mark Reinhold, David
 Stoutamire, Scott Violet, and Peter von der Ahé.
It has been a pleasure to work with the following researchers, who
 contributed to the design of generics for Java: Erik Ernst, Christian
 Plesner Hansen, Atsushi Igarashi, Martin Odersky, Mads Torgersen, and
 Mirko Viroli.
We received comments and help from a number of people. Thanks to
 Brian Goetz, David Holmes, Heinz M. Kabutz, Deepti Kalra, Angelika Langer,
 Stefan Liebeg, Doug Lea, Tim Munro, Steve Murphy, and C K Shibin.
We enjoyed reading Heinz M. Kabutz’s The Java Specialists’
 Newsletter and Angelika Langer’s Java Generics
 FAQ, both available online.
Our editor, Michael Loukides,was always ready with good advice. Paul
 C. Anagnostopoulos ofWindfall Software turned our LATEX into camera-ready
 copy, and JeremyYallop produced the index.
Our families kept us sane (and insane). Love to Adam, Ben,
 Catherine, Daniel, Isaac, Joe, Leora, Lionel, and Ruth.

Part I. Generics

Generics are a powerful, and sometimes controversial, new feature of
 the Java programming language. This part of the book describes generics,
 using the Collections Framework as a source of examples. A comprehensive
 introduction to the Collections Framework appears in the second part of
 the book.
The first five chapters focus on the fundamentals of generics. Chapter 1 gives an overview of generics and other new
 features in Java 5, including boxing, foreach loops,
 and functions with a variable number of arguments. Chapter 2 reviews how subtyping works and
 explains how wildcards let you use subtyping in connection with generics.
 Chapter 3 describes how generics work with
 the Comparable interface, which
 requires a notion of bounds on type variables. Chapter 4 looks at how generics work with various
 declarations, including constructors, static members, and nested classes.
 Chapter 5 explains how to evolve legacy
 code to exploit generics, and how ease of evolution is a key advantage of
 the design of generics in Java. Once you have these five chapters under
 your belt, you will be able to use generics effectively in most basic
 situations.
The next four chapters treat advanced topics. Chapter 6 explains how the same design that leads to ease
 of evolution also necessarily leads to a few rough edges in the treatment
 of casts, exceptions, and arrays. The fit between generics and arrays is
 the worst rough corner of the language, and we formulate two principles to
 help you work around the problems. Chapter 7 explains
 new features that relate generics and reflection, including the newly
 generified type Class<T> and
 additions to the Java library that support reflection of generic types.
 Chapter 8 contains advice on how to use
 generics effectively in practical coding. We consider checked collections,
 security issues, specialized classes, and binary compatibility. Chapter 9 presents five extended examples, looking at
 how generics affect five well-known design patterns: Visitor, Interpreter,
 Function, Strategy, and Subject-Observer.

Chapter 1. Introduction

Generics and collections work well with a number of other new features
 introduced in the latest versions of Java, including boxing and unboxing, a new form of loop, and functions that accept a
 variable number of arguments. We begin with an example that illustrates all
 of these. As we shall see, combining them is
 synergistic: the whole is greater than the sum of its
 parts.
Taking that as our motto, let’s do something simple with sums: put
 three numbers into a list and add them together. Here is how to do it in Java with
 generics:
List<Integer> ints = Arrays.asList(1,2,3);
int s = 0;
for (int n : ints) { s += n; }
assert s == 6;
You can probably read this code without much explanation, but let’s
 touch on the key features. The interface List and the class Arrays are part of the Collections Framework (both
 are found in the package java.util). The
 type List is now
 generic; you write List<E> to indicate a list with elements of
 type E. Here we write List<Integer> to indicate that the elements
 of the list belong to the class Integer,
 the wrapper class that corresponds to the primitive type int. Boxing and unboxing operations, used to
 convert from the primitive type to the wrapper class, are automatically
 inserted. The static method asList takes
 any number of arguments, places them into an array, and returns a new list
 backed by the array. The new loop form, foreach, is
 used to bind a variable successively to each element of the list, and the
 loop body adds these into the sum. The assertion statement (introduced in
 Java 1.4), is used to check that the sum is correct; when
 assertions are enabled, it throws an error if the condition does not
 evaluate to true.
Here is how the same code looks in Java before generics:
List ints = Arrays.asList(new Integer[] {
 new Integer(1), new Integer(2), new Integer(3)
});
int s = 0;
for (Iterator it = ints.iterator(); it.hasNext();) {
 int n = ((Integer)it.next()).intValue();
 s += n;
}
assert s == 6;
Reading this code is not quite so easy. Without generics, there is no way to indicate in the type declaration what kind of elements you intend to store in
 the list, so instead of writing List<Integer>, you write List. Now it is the coder rather than the compiler
 who is responsible for remembering the type of the list elements, so you
 must write the cast to (Integer) when
 extracting elements from the list. Without boxing and unboxing, you must explicitly allocate each object belonging
 to the wrapper class Integer and use the
 intValue method to extract the
 corresponding primitive int. Without
 functions that accept a variable number of arguments, you must explicitly
 allocate an array to pass to the asList
 method. Without the new form of loop, you must explicitly declare an
 iterator and advance it through the list.
By the way, here is how to do the same thing with an array in Java
 before generics:
int[] ints = new int[] { 1,2,3 };
int s = 0;
for (int i = 0; i < ints.length; i++) { s += ints[i]; }
assert s == 6;
This is slightly longer than the corresponding code that uses generics
 and collections, is arguably a bit less readable, and is certainly
 less flexible. Collections let you easily grow or shrink the size of the
 collection, or switch to a different representation when appropriate, such
 as a linked list or hash table or ordered tree. The introduction of generics, boxing and
 unboxing, foreach loops, and
 varargs in Java marks the first time that using
 collections is just as simple, perhaps even simpler, than using
 arrays.
Now let’s look at each of these features in a little more
 detail.
Generics

An interface or class may be declared to take one or more type parameters, which are written in angle brackets and should be supplied when you declare a
 variable belonging to the interface or class or when you create a new
 instance of a class.
We saw one example in the previous section. Here is another:
List<String> words = new ArrayList<String>();
words.add("Hello ");
words.add("world!");
String s = words.get(0)+words.get(1);
assert s.equals("Hello world!");
In the Collections Framework, class ArrayList<E> implements interface List<E>. This trivial code fragment
 declares the variable words to contain
 a list of strings, creates an instance of an ArrayList, adds two strings to the list, and
 gets them out again.
In Java before generics, the same code would be written as follows:
List words = new ArrayList();
words.add("Hello ");
words.add("world!");
String s = ((String)words.get(0))+((String)words.get(1))
assert s.equals("Hello world!");
Without generics, the type parameters are omitted, but you must explicitly cast
 whenever an element is extracted from the list.
In fact, the bytecode compiled from the two sources above will be
 identical. We say that generics are implemented by
 erasure because the types List<Integer>,
 List<String>, and List<List<String>> are all
 represented at run-time by the same type, List. We also use erasure
 to describe the process that converts the first program to the second. The
 term erasure is a slight misnomer, since the process
 erases type parameters but adds casts.
Generics implicitly perform the same cast that is explicitly
 performed without generics. If such casts could fail, it might be hard to
 debug code written with generics. This is why it is reassuring that
 generics come with the following guarantee:
	Cast-iron guarantee: the implicit casts
 added by the compilation of generics never fail.

There is also some fine print on this guarantee: it applies only
 when no unchecked warnings have been issued by the
 compiler. Later, we will discuss at some length what causes unchecked
 warnings to be issued and how to minimize their effect.
Implementing generics by erasure has a number of important effects.
 It keeps things simple, in that generics do not add anything fundamentally
 new. It keeps things small, in that there is exactly one implementation of
 List, not one version for each type.
 And it eases evolution, since the same library can be accessed in both nongeneric and generic
 forms.
This last point is worth some elaboration. It means that you don’t
 get nasty problems due to maintaining two versions of the libraries: a
 nongeneric legacy version that works with Java
 1.4 or earlier, and a generic version
 that works with Java 5 and 6. At the bytecode level, code that doesn’t use
 generics looks just like code that does. There is no need to switch to
 generics all at once—you can evolve your code by updating just one
 package, class, or method at a time to start using generics. We even
 explain how you may declare generic types for legacy code. (Of course, the
 cast-iron guarantee mentioned above holds only if you add generic types
 that match the legacy code.)
Another consequence of implementing generics by erasure is that
 array types differ in key ways from parameterized types. Executing
new String[size]
allocates an array, and stores in that array an indication that its
 components are of type String. In
 contrast, executing:
new ArrayList<String>()
allocates a list, but does not store in the list any indication of
 the type of its elements. In the jargon, we say that Java
 reifies array component types but does not reify list
 element types (or other generic types). Later, we will see how this design
 eases evolution (see Chapter 5) but
 complicates casts, instance tests, and array creation (see Chapter 6).
Generics Versus Templates Generics in Java resemble templates in
 C++. There are just two important things to bear in mind
 about the relationship between Java generics and C++ templates: syntax and
 semantics. The syntax is deliberately similar and the semantics are
 deliberately different.
Syntactically, angle brackets were chosen because they are familiar
 to C++ users, and because square brackets would be hard to parse. However,
 there is one difference in syntax. In C++, nested parameters require extra
 spaces, so you see things like this:
List< List<String> >
In Java, no spaces are required, and it’s fine to write this:
List<List<String>>
You may use extra spaces if you prefer, but they’re not required.
 (In C++, a problem arises because >> without the space denotes the
 right-shift operator. Java fixes the problem by a trick in the
 grammar.)
Semantically, Java generics are defined by
 erasure, whereas C++ templates are defined by
 expansion. In C++ templates, each instance of a
 template at a new type is compiled separately. If you use a list of
 integers, a list of strings, and a list of lists of string, there will be
 three versions of the code. If you use lists of a hundred different types,
 there will be a hundred versions of the code—a problem known as
 code bloat. In Java, no matter how many types of
 lists you use, there is always one version of the code, so bloat does not
 occur.
Expansion may lead to more efficient implementation than erasure,
 since it offers more opportunities for optimization, particularly for
 primitive types such as int. For code
 that is manipulating large amounts of data—for instance, large arrays in
 scientific computing—this difference may be significant. However, in
 practice, for most purposes the difference in efficiency is not important,
 whereas the problems caused by code bloat can be crucial.
In C++, you also may instantiate a template with a constant value
 rather than a type, making it possible to use templates as a sort of
 “macroprocessor on steroids” that can perform arbitrarily complex
 computations at compile time. Java generics are deliberately restricted to
 types, to keep them simple and easy to understand.

Boxing and Unboxing

Recall that every type in Java is either a
 reference type or a primitive
 type. A reference type is any class, interface, or array type. All
 reference types are subtypes of class Object, and any variable of reference type may
 be set to the value null. As shown in
 the following table, there are eight primitive types, and each of these has a corresponding
 library class of reference type. The library classes are located in the
 package java.lang.
	Primitive
	Reference

	byte
	Byte

	short
	Short

	int
	Integer

	long
	Long

	float
	Float

	double
	Double

	boolean
	Boolean

	char
	Character

Conversion of a primitive type to the corresponding reference type
 is called boxing and conversion of the reference type
 to the corresponding primitive type is called
 unboxing.
Java with generics automatically inserts boxing and unboxing
 coercions where appropriate. If an expression e of type int
 appears where a value of type Integer
 is expected, boxing converts it to new
 Integer(e) (however, it may cache frequently occurring values).
 If an expression e of type Integer appears where a value of type int is expected, unboxing converts it to the
 expression e.intValue(). For example,
 the sequence:
List<Integer> ints = new ArrayList<Integer>();
ints.add(1);
int n = ints.get(0);
is equivalent to the sequence:
List<Integer> ints = new ArrayList<Integer>();
ints.add(Integer.valueOf(1));
int n = ints.get(0).intValue();
The call Integer.valueOf(1) is similar in effect
 to the expression new Integer(1), but may cache some
 values for improved performance, as we explain shortly.
Here, again, is the code to find the sum of a list of integers,
 conveniently packaged as a static method:
public static int sum (List<Integer> ints) {
 int s = 0;
 for (int n : ints) { s += n; }
 return s;
}
Why does the argument have type List<Integer> and not List<int>? Because type parameters must always be bound to reference types, not primitive types. Why does the result have type int and not Integer? Because result types may be either
 primitive or reference types, and it is more efficient to use the former
 than the latter. Unboxing occurs when each Integer in the list ints is bound to the variable n of type int.
We could rewrite the method, replacing each occurrence of int with Integer:
public static Integer sumInteger(List<Integer> ints) {
 Integer s = 0;
 for (Integer n : ints) { s += n; }
 return s;
}
This code compiles but performs a lot of needless work. Each
 iteration of the loop unboxes the values in s and n,
 performs the addition, and boxes up the result again. With Sun’s current
 compiler, measurements show that this version is about 60 percent slower
 than the original.
Look Out for This! One subtlety of
 boxing and unboxing is that == is defined differently on primitive and on reference
 types. On type int, it is defined by
 equality of values, and on type Integer, it is defined by object identity. So
 both of the following assertions succeed using Sun’s JVM:
List<Integer> bigs = Arrays.asList(100,200,300);
assert sumInteger(bigs) == sum(bigs);
assert sumInteger(bigs) != sumInteger(bigs); // not recommended
In the first assertion, unboxing causes values to be compared, so
 the results are equal. In the second assertion, there is no unboxing, and
 the two method calls return distinct Integer objects, so the results are unequal even
 though both Integer objects represent
 the same value, 600.We recommend that you never use == to compare values
 of type Integer. Either unbox first, so
 == compares values of type int, or else
 use equals to compare values of type
 Integer.
A further subtlety is that boxed values may be cached. Caching is required when boxing an int or short
 value between–128 and 127, a char value
 between '\u0000' and '\u007f', a byte, or a boolean; and caching is permitted when boxing
 other values. Hence, in contrast to our earlier example, we have the
 following:
List<Integer> smalls = Arrays.asList(1,2,3);
assert sumInteger(smalls) == sum(smalls);
assert sumInteger(smalls) == sumInteger(smalls); // not recommended
This is because 6 is smaller than 128, so boxing the value 6 always
 returns exactly the same object. In general, it is not specified whether
 boxing the same value twice should return identical or distinct objects,
 so the inequality assertion shown earlier may either fail or
 succeed depending on the implementation. Even for small values, for which
 == will compare values of type Integer
 correctly, we recommend against its use. It is clearer and cleaner to use
 equals rather than == to compare values
 of reference type, such as Integer or
 String.

Foreach

Here, again, is our code that computes the sum of a list of integers.
List<Integer> ints = Arrays.asList(1,2,3);
int s = 0;
for (int n : ints) { s += n; }
assert s == 6;
The loop in the third line is called a foreach
 loop even though it is written with the keyword for. It is equivalent to the following:
for (Iterator<Integer> it = ints. iterator(); it.hasNext();) {
 int n = it.next();
 s += n;
}
The emphasized code corresponds to what was written by the user, and
 the unemphasized code is added in a systematic way by the compiler. It
 introduces the variable it of type
 Iterator<Integer> to iterate over
 the list ints of type List<Integer>. In general, the compiler
 invents a new name that is guaranteed not to clash with any name already
 in the code. Note that unboxing occurs when the expression it.next() of type Integer is assigned to the variable n of type int.
The foreach loop can be applied to any object
 that implements the interface Iterable<E> (in package java.lang), which in turn refers to the
 interface Iterator<E> (in package
 java.util). These define the methods
 iterator, hasNext, and next, which are used by the translation of the
 foreach loop (iterators also have a method remove, which is not used by the
 translation):
interface Iterable<E> {
 public Iterator<E> iterator();
}
interface Iterator<E> {
 public boolean hasNext();
 public E next();
 public void remove();
}
All collections, sets, and lists in the Collections Framework
 implement the Iterable<E>
 interface; and classes defined by other vendors or users may implement it
 as well.
The foreach loop may also be applied to an
 array:
public static int sumArray(int[] a) {
 int s = 0;
 for (int n : a) { s += n; }
 return s;
}
The foreach loop was deliberately kept simple and catches only the most
 common case. You need to explicitly introduce an iterator if you wish to use the remove method or to iterate over more than one list in parallel.
 Here is a method that removes negative elements from a list of
 doubles:
public static void removeNegative(List<Double> v) {
 for (Iterator<Double> it = v.iterator(); it.hasNext();) {
 if (it.next() < 0) it.remove();
 }
}
Here is a method to compute the dot product of two vectors, represented as lists of doubles,
 both of the same length. Given two vectors,
 u1, … ,
 un and
 v1, … ,
 vn, it computes
 u1 *
 v1> +
 … + un *
 vn:
public static double dot(List<Double> u, List<Double> v) {
 if (u.size() != v.size())
 throw new IllegalArgumentException("different sizes");
 double d = 0;
 Iterator<Double> uIt = u.iterator();
 Iterator<Double> vIt = v.iterator();
 while (uIt.hasNext()) {
 assert uIt.hasNext() && vIt.hasNext();
 d += uIt.next() * vIt.next();
 }
 assert !uIt.hasNext() && !vIt.hasNext();
 return d;
}
Two iterators, uIt and vIt, advance across the lists u and v in
 lock step. The loop condition checks only the first iterator, but the
 assertions confirm that we could have used the second iterator instead,
 since we previously tested both lists to confirm that they have the same
 length.

Generic Methods and Varargs

Here is a method that accepts an array of any type and converts it
 to a list:
class Lists {
 public static <T> List<T> toList(T[] arr) {
 List<T> list = new ArrayList<T>();
 for (T elt : arr) list.add(elt);
 return list;
 }
}
The static method toList accepts an
 array of type T[] and returns a list of
 type List<T>, and does so for
 any type T. This
 is indicated by writing <T> at
 the beginning of the method signature, which declares T as a new type variable. A method which
 declares a type variable in this way is called a generic
 method. The scope of the type variable T is local to the method itself; it may appear
 in the method signature and the method body, but not outside the method.
The method may be invoked as follows:
List<Integer> ints = Lists.toList(new Integer[] { 1, 2, 3 });
List<String> words = Lists.toList(new String[] { "hello", "world" });
In the first line, boxing converts 1, 2, 3
 from int to Integer.
Packing the arguments into an array is cumbersome. The
 vararg feature permits a special, more convenient
 syntax for the case in which the last argument of a method is an array. To
 use this feature, we replace T[] with
 T… in the method declaration:
class Lists {
 public static <T> List<T> toList(T... arr) {
 List<T> list = new ArrayList<T>();
 for (T elt : arr) list.add(elt);
 return list;
 }
}
Now the method may be invoked as follows:
List<Integer> ints = Lists.toList(1, 2, 3);
List<String> words = Lists.toList("hello", "world");
This is just shorthand for what we wrote above. At run time, the
 arguments are packed into an array which is passed to the method, just as
 previously.
Any number of arguments may precede a last
 vararg argument. Here is a method that accepts a list
 and adds all the additional arguments to the end of the list:
public static <T> void addAll(List<T> list, T... arr) {
 for (T elt : arr) list.add(elt);
}
Whenever a vararg is declared, one may either
 pass a list of arguments to be implicitly packed into an array, or
 explicitly pass the array directly. Thus, the preceding method may be
 invoked as follows:
List<Integer> ints = new ArrayList<Integer>();
Lists.addAll(ints, 1, 2);
Lists.addAll(ints, new Integer[] { 3, 4 });
assert ints.toString().equals("[1, 2, 3, 4]");
We will see later that when we attempt to create an array containing
 a generic type, we will always receive an
 unchecked warning. Since varargs
 always create an array, they should be used only when the argument does
 not have a generic type (see Array Creation and Varargs).
In the preceding examples, the type parameter to the generic method is inferred, but it may also be given explicitly, as
 in the following examples:
List<Integer> ints = Lists.<Integer>toList();
List<Object> objs = Lists.<Object>toList(1, "two");
Explicit parameters are usually not required, but they are helpful
 in the examples given here. In the first example, without the type
 parameter there is too little information for the type inference algorithm
 used by Sun's compiler to infer the correct type. It infers that the
 argument to toList is an empty array of
 an arbitrary generic type rather than an empty array of integers, and this
 triggers the unchecked warning described earlier. (The Eclipse compiler
 uses a different inference algorithm, and compiles the same line correctly
 without the explicit parameter.) In the second example, without the type
 parameter there is too much information for the type inference algorithm
 to infer the correct type. You might think that Object is the only type that an integer and a
 string have in common, but in fact they also both implement the interfaces
 Serializable and Comparable. The type inference algorithm cannot
 choose which of these three is the correct type.
In general, the following rule of thumb suffices: in a call to a
 generic method, if there are one or more arguments that correspond to a
 type parameter and they all have the same type then the type parameter may
 be inferred; if there are no arguments that correspond to the type
 parameter or the arguments belong to different subtypes of the intended
 type then the type parameter must be given explicitly.
When a type parameter is passed to a generic method invocation, it appears in angle brackets to the left, just as in the method
 declaration. The Java grammar requires that type parameters may appear
 only in method invocations that use a dotted form. Even if the method
 toList is defined in the same class
 that invokes the code, we cannot shorten it as follows:
List<Integer> ints = <Integer>toList(); // compile-time error
This is illegal because it will confuse the parser.
Methods Arrays.asList and
 Collections.addAll in the Collections Framework are similar to toList and addAll shown earlier. (Both classes are in
 package java.util.) The Collections Framework version of asList does not return an ArrayList, but instead returns a specialized
 list class that is backed by a given array. Also, its version of addAll acts on general collections, not just
 lists.

Assertions

We clarify our code by liberal use of the assert statement. Each occurrence of assert is followed by a boolean expression that
 is expected to evaluate to true. If
 assertions are enabled and the expression evaluates to false, an AssertionError is thrown, including an
 indication of where the error occurred. Assertions are enabled by invoking
 the JVM with the -ea or -enableassertions flag.
We only write assertions that we expect to evaluate to true. Since assertions may not be enabled, an
 assertion should never have side effects upon which any nonassertion code
 depends. When checking for a condition that might not hold (such as
 confirming that the arguments to a method call are valid), we use a
 conditional and throw an exception explicitly.
To sum up, we have seen how generics, boxing and unboxing,
 foreach loops, and varargs work
 together to make Java code easier to write, having illustrated this
 through the use of the Collections Framework.

Chapter 2. Subtyping and Wildcards

Now that we’ve covered the basics, we can start to cover more-advanced
 features of generics, such as subtyping and wildcards. In this section, we’ll review how subtyping works
 and we’ll see how wildcards let you use subtyping in connection with
 generics. We’ll illustrate our points with examples from the Collections Framework.
Subtyping and the Substitution Principle

Subtyping is a key feature of object-oriented languages such as Java. In Java, one type is
 a subtype of another if they are related by an
 extends or implements clause. Here are some
 examples:
	Integer
	is a subtype of
	Number

	Double
	is a subtype of
	Number

	ArrayList<E>
	is a subtype of
	List<E>

	List<E>
	is a subtype of
	Collection<E>

	Collection<E>
	is a subtype of
	Iterable<E>

Subtyping is transitive, meaning that if one type is a subtype of a
 second, and the second is a subtype of a third, then the first is a
 subtype of the third. So, from the last two lines in the preceding list,
 it follows that List<E> is a
 subtype of Iterable<E>. If one
 type is a subtype of another, we also say that the second is a
 supertype of the first. Every reference type is a subtype of Object, and Object is a supertype of every reference type.
 We also say, trivially, that every type is a subtype of itself.
The Substitution Principle tells us that wherever a value of one
 type is expected, one may provide a value of any subtype of that
 type:
Substitution Principle: a variable of a given
 type may be assigned a value of any subtype of that type, and a method
 with a parameter of a given type may be invoked with an
 argument of any subtype of that type.

Consider the interface Collection<E>. One of its methods is
 add, which takes a parameter of type E:

interface Collection<E> {
 public boolean add(E elt);
 ...
}
According to the Substitution Principle, if we have a collection of numbers,
 we may add an integer or a double to it, because Integer and Double are subtypes of Number.
List<Number> nums = new ArrayList<Number>();
nums.add(2);
nums.add(3.14);
assert nums.toString().equals("[2, 3.14]");
Here, subtyping is used in two ways for each method call. The first
 call is permitted because nums has type
 List<Number>, which is a
 subtype of Collection<Number>, and 2 has type Integer (thanks to boxing), which is a subtype
 of Number. The second call is similarly
 permitted. In both calls, the E in
 List<E> is taken to be Number.
It may seem reasonable to expect that since Integer is a subtype of Number, it follows that List<Integer> is a subtype of List<Number>. But this is
 not the case, because the Substitution Principle
 would rapidly get us into trouble. It is not always safe to assign a value
 of type List<Integer> to a
 variable of type List<Number>.
 Consider the following code fragment:
List<Integer> ints = new ArrayList<Integer>();
ints.add(1);
ints.add(2);
List<Number> nums = ints; // compile-time error
nums.add(3.14);
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!
This code assigns variable ints
 to point at a list of integers, and then assigns nums to point at the same
 list of integers; hence the call in the fifth line adds a double to this
 list, as shown in the last line. This must not be allowed! The problem is
 prevented by observing that here the Substitution Principle does
 not apply: the assignment on the fourth line is not
 allowed because List<Integer> is
 not a subtype of List<Number>,
 and the compiler reports that the fourth line is in error.
What about the reverse? Can we take List<Number> to be a subtype of List<Integer>? No, that doesn’t work
 either, as shown by the following code:
List<Number> nums = new ArrayList<Number>();
nums.add(2.78);
nums.add(3.14);
List<Integer> ints = nums; // compile-time error
assert ints.toString().equals("[2.78, 3.14]"); // uh oh!
The problem is prevented by observing that here the Substitution
 Principle does not apply: the assignment on the
 fourth line is not allowed
 because List<Number> is
 not a subtype of List<Integer>, and the compiler reports
 that the fourth line is in error.
So List<Integer> is not a
 subtype of List<Number>, nor is List<Number> a subtype of List<Integer>; all we have is the trivial
 case, where List<Integer> is a
 subtype of itself, and we also have that List<Integer> is a subtype of Collection<Integer>.
Arrays behave quite differently; with them, Integer[] is a subtype of
 Number[]. We will compare the treatment
 of lists and arrays later (see Arrays).
Sometimes we would like lists to behave more like arrays, in that we
 want to accept not only a list with elements of a given type, but also a
 list with elements of any subtype of a given type. For this purpose, we
 use wildcards.

Wildcards with extends

Another method in the Collection
 interface is addAll, which adds all of
 the members of one collection to another collection:
interface Collection<E> {
 ...
 public boolean addAll(Collection<? extends E> c);
 ...
}
Clearly, given a collection of elements of type E, it is OK to add all members of another
 collection with elements of type E. The
 quizzical phrase "? extends E" means
 that it is also OK to add all members of a collection with elements of any
 type that is a subtype of E. The question mark is called a
 wildcard, since it stands for some type that is a
 subtype of E.
Here is an example. We create an empty list of numbers, and add to
 it first a list of integers and then a list of doubles:
List<Number> nums = new ArrayList<Number>();
List<Integer> ints = Arrays.asList(1, 2);
List<Double> dbls = Arrays.asList(2.78, 3.14);
nums.addAll(ints);
nums.addAll(dbls);
assert nums.toString().equals("[1, 2, 2.78, 3.14]");
The first call is permitted because nums has type List<Number>, which is a subtype of
 Collection<Number>, and ints has type List<Integer>, which is a subtype of
 Collection<? extends Number>. The
 second call is similarly permitted. In both calls, E is taken to be Number. If the method signature for addAll had been written without the wildcard,
 then the calls to add lists of integers and doubles to a list of numbers
 would not have been permitted; you would only have been able to add a list
 that was explicitly declared to be a list of numbers.
We can also use wildcards when declaring variables. Here is a
 variant of the example at the end of the preceding section, changed by
 adding a wildcard to the second line:
List<Integer> ints = new ArrayList<Integer>();
ints.add(1);
ints.add(2);
List<? extends Number> nums = ints;
nums.add(3.14); // compile-time error
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

Before, the fourth line caused a compile-time error (because List<Integer> is not a subtype of List<Number>), but the fifth line was fine
 (because a double is a number, so you can add a double to a List<Number>). Now, the fourth line is
 fine (because List<Integer> is a
 subtype of List<? extends
 Number>), but the fifth line causes a compile-time error
 (because you cannot add a double to a List<?
 extends Number>, since it might be a list of some other
 subtype of number). As before, the last line shows why one of the
 preceding lines is illegal!
In general, if a structure contains elements with a type of the form
 ? extends E, we can get elements out of
 the structure, but we cannot put elements into the structure. To put
 elements into the structure we need another kind of wildcard, as explained in the next section.

Wildcards with super

Here is a method that copies into a destination list all of the
 elements from a source list, from the convenience class Collections:
public static <T> void copy(List<? super T> dst, List<? extends T> src) {
 for (int i = 0; i < src.size(); i++) {
 dst.set(i, src.get(i));
 }
}

The quizzical phrase ? super T
 means that the destination list may have elements of any type that is a
 supertype of T,
 just as the source list may have elements of any type that is a
 subtype of T.
Here is a sample call.
List<Object> objs = Arrays.<Object>asList(2, 3.14, "four");
List<Integer> ints = Arrays.asList(5, 6);
Collections.copy(objs, ints);
assert objs.toString().equals("[5, 6, four]");
As with any generic method, the type parameter may be inferred or may be given explicitly.
 In this case, there are four possible choices, all of which type-check and
 all of which have the same effect:
Collections.copy(objs, ints);
Collections.<Object>copy(objs, ints);
Collections.<Number>copy(objs, ints);
Collections.<Integer>copy(objs, ints);
The first call leaves the type parameter implicit; it is taken to be
 Integer, since that is the most
 specific choice that works. In the third line, the type parameter T is taken to be Number. The call is permitted because objs has type List<Object>, which is a subtype of
 List<? super Number> (since
 Object is a supertype of Number, as
 required by the wildcard) and ints has type List<Integer>, which is a subtype of
 List<? extends Number> (since
 Integer is a subtype of Number, as required by the extends wildcard).
We could also declare the method with several possible signatures.
public static <T> void copy(List<T> dst, List<T> src)
public static <T> void copy(List<T> dst, List<? extends T> src)
public static <T> void copy(List<? super T> dst, List<T> src)
public static <T> void copy(List<? super T> dst, List<? extends T> src)
The first of these is too restrictive, as it only permits calls when
 the destination and source have exactly the same type. The remaining three
 are equivalent for calls that use implicit type parameters, but differ for explicit type parameters. For the example calls above, the
 second signature works only when the type parameter is Object, the third signature works only when the
 type parameter is Integer, and the last
 signature works (as we have seen) for all three type parameters—i.e.,
 Object, Number, and Integer. Always use wildcards where you can in a signature, since this permits
 the widest range of calls.

The Get and Put Principle

It may be good practice to insert wildcards whenever possible, but
 how do you decide which wildcard to use? Where should
 you use extends, where should you use
 super, and where is it inappropriate to
 use a wildcard at all?
Fortunately, a simple principle determines which is
 appropriate.
The Get and Put Principle: use an extends wildcard when you only
 get values out of a structure, use a super wildcard when you only
 put values into a structure, and don’t use a
 wildcard when you both get and put.

We already saw this principle at work in the signature of the
 copy method:
public static <T> void copy(List<? super T> dest, List<? extends T> src)
The method gets values out of the source src, so it is declared with an extends wildcard, and it puts values into the
 destination dst, so it is declared with
 a super wildcard.
Whenever you use an iterator, you get values out of a structure, so
 use an extends wildcard. Here is a
 method that takes a collection of numbers, converts each to a double, and
 sums them up:
public static double sum(Collection<? extends Number> nums) {
 double s = 0.0;
 for (Number num : nums) s += num.doubleValue();
 return s;
}
Since this uses extends, all of
 the following calls are legal:
List<Integer> ints = Arrays.asList(1,2,3);
assert sum(ints) == 6.0;

List<Double> doubles = Arrays.asList(2.78,3.14);
assert sum(doubles) == 5.92;

List<Number> nums = Arrays.<Number>asList(1,2,2.78,3.14);
assert sum(nums) == 8.92;
The first two calls would not be legal if extends was not used.
Whenever you use the add method,
 you put values into a structure, so use a super wildcard. Here is a method that takes a
 collection of numbers and an integer n, and puts the first n integers, starting from zero, into the
 collection:
public static void count(Collection<? super Integer> ints, int n) {
 for (int i = 0; i < n; i++) ints.add(i);
}
Since this uses super, all of the
 following calls are legal:
List<Integer> ints = new ArrayList<Integer>();
count(ints, 5);
assert ints.toString().equals("[0, 1, 2, 3, 4]");

List<Number> nums = new ArrayList<Number>();
count(nums, 5); nums.add(5.0);
assert nums.toString().equals("[0, 1, 2, 3, 4, 5.0]");

List<Object> objs = new ArrayList<Object>();
count(objs, 5); objs.add("five");
assert objs.toString().equals("[0, 1, 2, 3, 4, five]");
The last two calls would not be legal if super was not used.
Whenever you both put values into and get values out of the same
 structure, you should not use a wildcard.
public static double sumCount(Collection<Number> nums, int n) {
 count(nums, n);
 return sum(nums);
}
The collection is passed to both sum and count, so its element type must both extend
 Number (as sum requires) and be super to Integer (as count requires). The only two classes that
 satisfy both of these constraints are Number and Integer, and we have picked the first of these.
 Here is a sample call:
List<Number> nums = new ArrayList<Number>();
double sum = sumCount(nums,5);
assert sum == 10;
Since there is no wildcard, the argument must be a collection of Number.
If you don’t like having to choose between Number and Integer, it might occur to you that if Java let
 you write a wildcard with both extends
 and super, you would not need to
 choose. For instance, we could write the following:
double sumCount(Collection<? extends Number super Integer> coll, int n)
// not legal Java!
Then we could call sumCount on
 either a collection of numbers or a collection of integers. But Java
 doesn’t permit this. The only reason for outlawing it
 is simplicity, and conceivably Java might support such notation in the
 future. But, for now, if you need to both get and put then don’t use
 wildcards.
The Get and Put Principle also works the other way around. If an
 extends wildcard is present, pretty
 much all you will be able to do is get but not put values of that type;
 and if a super wildcard is present,
 pretty much all you will be able to do is put but not get values of that
 type.
For example, consider the following code fragment, which uses a list
 declared with an extends
 wildcard:
List<Integer> ints = new ArrayList<Integer>();
ints.add(1);
ints.add(2);
List<? extends Number> nums = ints;
double dbl = sum(nums); // ok
nums.add(3.14); // compile-time error
The call to sum is fine, because
 it gets values from the list, but the call to add is not, because it puts a value into the
 list. This is just as well, since otherwise we could add a double to a
 list of integers!
Conversely, consider the following code fragment, which uses a list
 declared with a super wildcard:
List<Object> objs = new ArrayList<Object>();
objs.add(1);
objs.add("two");
List<? super Integer> ints = objs;
ints.add(3); // ok
double dbl = sum(ints); // compile-time error
Now the call to add is fine,
 because it puts a value into the list, but the call to sum is not, because it gets a value from the
 list. This is just as well, because the sum of a list containing a string
 makes no sense!
The exception proves the rule, and each of these rules has one
 exception. You cannot put anything into a type declared with an extends wildcard—except for the value null, which belongs to every reference type:
List<Integer> ints = new ArrayList<Integer>();
ints.add(1);
ints.add(2);
List<? extends Number> nums = ints;
nums.add(null); // ok
assert nums.toString().equals("[1, 2, null]");
Similarly, you cannot get anything out from a type declared with a
 super wildcard—except for a value of type Object, which is a supertype of every reference type:
List<Object> objs = Arrays.<Object>asList(1,"two");
List<? super Integer> ints = objs;
String str = "";
for (Object obj : ints) str += obj.toString();
assert str.equals("1two");
You may find it helpful to think of ?
 extends T as containing every type in an interval bounded by the
 type of null below and by T above (where the type of null is a subtype of every reference type). Similarly, you may think
 of ? super T as containing every type
 in an interval bounded by T below and
 by Object above.
It is tempting to think that an extends wildcard ensures immutability, but it
 does not. As we saw earlier, given a list of type List<? extends Number>, you may still add
 null values to the list. You may also remove list elements (using remove, removeAll, or retainAll) or permute the list (using swap, sort,
 or shuffle in the convenience class
 Collections; see Changing the Order of List Elements). If you want to ensure
 that a list cannot be changed, use the method unmodifiableList in the class Collections; similar methods exist for other
 collection classes (see Unmodifiable Collections). If
 you want to ensure that list elements cannot be changed, consider
 following the rules for making a class immutable given by Joshua
 Bloch in his book Effective Java
 (Addison-Wesley) in Chapter 4 (item “Minimize mutability”/“Favor
 immutability”); for example, in Part II, the classes CodingTask and PhoneTask in Using the Methods of Collection are immutable, as is the
 class PriorityTask in SortedSet and NavigableSet.
Because String is final and can
 have no subtypes, you might expect that List<String> is the same type as List<? extends String>. But in fact the
 former is a subtype of the latter, but not the same type, as can be seen
 by an application of our principles. The Substitution Principle tells us it is a subtype, because it
 is fine to pass a value of the former type where the latter is expected.
 The Get and Put Principle tells us that it is not the same type,
 because we can add a string to a value of the former type but not the
 latter.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages252073.png
Key1 hashesto 0

(a)

ey1

valuel

key2 hashesto

(b)

Key1

valuel

ey

valuel

key3alsoashes
04—

G

ey1

ey
value2
ey

valued

OEBPS/httpatomoreillycomsourceoreillyimages252065.png
NavigableMap<K,V>

“+pollfirstEntry() : Map.Entry<K,V>

+polllastentry() :Map.Entry<K V>

+Hirstentry() : Map.Entry<K,V>

~+HastEntry() : Map.Entry<K V>

-+subMapt fromKey : K, fromindlusive:boolean, tokey : K, tolnclusive : boolean) :NavigableMap<K,V>
-+headMapy toKey :K, tolnclusive :boolean) :NavigableMap<K, V>

+tailMap(fromKey :K, fromindlusive : boolean) : NavigableMap<K,V>

+ceilingEntry(key :K) :Map.Entry<K,V>

+eeilingRey(key K) :K
+HoorEntry(key K) -Map.Entry<K V>
+Hloorkey(key:
-+highertnty(key:K) Map[mry()(V>

+descendingap() : NavigableMap<K V>
-+descendingKeySet(): Navigableset<k>
-+navigableeySet):Navigableset <>

OEBPS/httpatomoreillycomsourceoreillyimages252061.png
Deque<E>

+addFirst(e:) : void

+addlast(e:E) : void

+push(e:E) : void

-+removefirstOccurrence(o : Object) : boolean
+removeLastOccurrence(o : Object) : boolean
+descendinglterator() : Iterator<f>
+offerfirst(e : E) : boolean

+offerLast(e: E) : boolean

+peekFirst() : E

+peekLast() : E

+pollfirst() : E

+polllast() :E

+getfirst() : E

+getlast(): E

+removefirst() : E

+removelast() : E

+pop() : E

OEBPS/httpatomoreillycomsourceoreillyimages252075.png
WeakdashMap<K V> vt concurent
dentityHashMap<K V>
EnumMap<K extends Enum<K>,V>
HashMap<kV> — Conarenthap<K, V>
n
LinkedHashMap<K,V> ConcurrenthashMap<K,V>

— Conuretovigableiap<K V>
Teelap<K V> =

ConcurentSkiplistMap<K V>

OEBPS/httpatomoreillycomsourceoreillyimages252029.png
ConcurrentNavigableMap<K,V>

“+subMap(fromKey -, frominclusive : boolean, tokey K, tonclusve - boolean) : ConcurentavigableMap<K V>
-+subMap(fromKey : K, tokey -) : ConcurrentNavigableMap<k V>

-+headMap(toKey : K, incusve : boolean): ConcurentavigableMap<K V>

“+headMap(tokey : K) :ConcurrentNavigableMap<K, V>

-+tailMap{ fromKey :K,incusve : boolean): ConcurentavigableMap <K V>

“+tailMap fromKey :) : ConcurrentNavigableMap<K,V>

+descendinghap(): ConcurrentavigableMap <K, V>

~HheySet() : NavigableSet<E>

OEBPS/httpatomoreillycomsourceoreillyimages252093.png
@<L]

o8 o

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages252081.png
SortedMap<K,V>

HirstKey() : K

+lastKey() : K

~+comparator(): Comparator<? super K>
-+subMap(fromKey : K, toKey : K) : SortedMap<K,V>
~+headMap(toKey : K) : SortedMap<K,V>
~+tailMap(fromKey : K) : SortedMap<K,V>

OEBPS/httpatomoreillycomsourceoreillyimages252055.png
@D @D
LT

ey value

@

ey valie

®)

OEBPS/httpatomoreillycomsourceoreillyimages252047.png
L e e ESEE— E:
s 3%

PriortyQueve<E> AmayDeque<E>

ArryBlodkingQuese<E> LinkedBlockingQueve<E>

PriorityBlockingQueue <> 1 DelayQueue<E extends Delayed> LinkedBlockingDeque <>
SynchronousQueue<E>

OEBPS/httpatomoreillycomsourceoreillyimages252083.png
Collection<E>

List<E>
[AVAVAN

CopyOnWriteArrayList<E> LinkedList<E> ArmayList<E>
(java.util.concurrent)

OEBPS/httpatomoreillycomsourceoreillyimages252057.png
PRR_sarwe QD

' TTT

[E—
Occupied

locations
L]

Size Size
(a) (b)

OEBPS/httpatomoreillycomsourceoreillyimages252051.png
Iterable<T> Map<K V>
(java. lang)

Collctign<E> SortedMap<K V>
Concurenthap< V>
(java.util.concurrent)
Navigableblop<K V>
Set List<E> Queve<t>
SortedSet<E> ConcurenthavigableMap <K V>
Deque<E> (java.util.concurrent)

NavigableSet<E> BlockingQueue<E>
(java.util,concurrent)

BlockingDeque<E>
(java.util.concurrent)

OEBPS/httpatomoreillycomsourceoreillyimages252045.png
Map<K,V>

+put(key : K, value :V) :V
+putAll(t) : void

“+dlear() : void

~+remove(key : Object) :V

“+get(key : Object) :V

+containsKey(key : Object) : boolean
~+containsValue(value : Object) : boolean
size) :int

+isEmpty() : boolean

-+entrySet() : Set<Map.Entry<K,V>>
+keySet() : Set<K>

~+values() : Collection<V>

OEBPS/httpatomoreillycomsourceoreillyimages252053.png
v Currency converter =B/ %

currency rate value

DOLLAR 1.000000 25.00
EURO 0.8320000 20.75
POUND 0.560000 14.00

OEBPS/httpatomoreillycomsourceoreillyimages252095.png
Collection<E>

+add(0:E) : boolean

+addAll(c: Collection<? extends E>) : boolean
-+remove(0 : Object) : boolean

~+lear() : void

~+removeAll(c: Collection<?>) : boolean
+retainAll(c: Collection<?>) : boolean
+contains(0 : Object) :boolean
-+containsAll(¢ : Collection<?>) : boolean
~+isEmpty() : boolean

+size() :int

+iterator() : Iterator<£>

+toArray() : Object]]
+<T>toArray(T[]a) T[]

OEBPS/httpatomoreillycomsourceoreillyimages252033.png
RN s OIN O

Insertinganclement Deltingan lement

(0]

OEBPS/httpatomoreillycomsourceoreillyimages252086.jpg
-
Speed Up The Java Development Process

JEAZ
enerics

and Collections

Maurice Naftalin

O’REILLY*® & Philip Wadler

OEBPS/httpatomoreillycomsourceoreillyimages252049.png

OEBPS/httpatomoreillycomsourceoreillyimages252031.png

OEBPS/httpatomoreillycomsourceoreillyimages252089.png
List<E>

int, element) : boolean

<int, ¢ Collection<? extends >) : boolean
~+get(index) : E

+remove(index) : E

+set(index, element) : E

+index0f(0) :int

HastindexOf{ o) :int

+subList(fromindex, tolndex) : List<E>

Histlterator() : Listlterator<E>

Histlterator(index) : Listlterator<E>

OEBPS/httpatomoreillycomsourceoreillyimages252037.png

OEBPS/httpatomoreillycomsourceoreillyimages252071.png
SortedSet<E>

+irst(): £

+last(): E

-+comparator() : Comparator<?super >

“+subSet(fromElement : <E>, toFlement : <E>) : SortedSet<F>
+headSet(toElement : <E>) : SortedSet<F>

“+tailSet(fromElement : <E>) : SortedSet<£>

OEBPS/httpatomoreillycomsourceoreillyimages252063.png
SortedSet<E>

Enmseictembsinnc>> Hebtt<> OpWigse <> Kergaile <>

(java.util.concurrent)

LinkedHashset<E> TreeSet<E> Conaurrentskiplistset<E>
(Java.util. concurrent)

OEBPS/httpatomoreillycomsourceoreillyimages252079.png
Level2

Level 1

Level 0

O —-E

d

6

=]

———f

1

=]

THEHEHEHEH R

OEBPS/httpatomoreillycomsourceoreillyimages252077.png

OEBPS/httpatomoreillycomsourceoreillyimages252059.png
BlockingDeque<E>

~+offerfirst(e : E, timeout : long, unit : TimeUnit) : boolean
+offerLast(e: E, timeout : long, unit : TimeUnit) : boolean

“+pollfirst(timeout: long, ur
+pollLast{ timeout :long, ur
+akefirst(): E
“+akelast(): E

OEBPS/httpatomoreillycomsourceoreillyimages252039.png
A

OEBPS/httpatomoreillycomsourceoreillyimages252067.png
Queue<E>

~+offer(e: E) :boolean
+element() :E
+removed() : E
+peek() :E

+poll():E

OEBPS/httpatomoreillycomsourceoreillyimages252041.png
VAR
/\/\ /\/\ /\

OEBPS/httpatomoreillycomsourceoreillyimages252035.png
element indices
0 1 2

0 1 2 3
Listterator positions

OEBPS/httpatomoreillycomsourceoreillyimages252043.png
NavigableSet<E>

+pollfirst() : E
+polllast(): £
+subSet(fromElement : E, fromindlusive : boolean,

toFlement : £, tolnclusive : boolean) : NavigableSet<£>
-+headSet(toFlement : £, inclusive : boolean) : NavigableSet<E>
-+tailSet(fromElement : £, inclusive : boolean) : NavigableSet<£>
+eeiling(e:E):E
+loor(e:E): E
+higher(e
+ower(e:E):E
-+descendingSet() : NavigableSet<£>
+descendinglterator() : Iterator<E>

OEBPS/httpatomoreillycomsourceoreillyimages252069.png
uuuuuuuu

OEBPS/httpatomoreillycomsourceoreillyimages252091.png
BlockingQueue<E>

~+offer(e : E, timeout:long, unit : TimeUnit) : boolean
+put(e:E):void

+poll(timeout : long, unit : TimeUnit) : E

+ake():E

+drainTo(c: Collection<? super >) :int

“+drainTo(c: Collection<? super >, maxElements) : int
-+remainingCapacity() : int

