

 [image: Programming with Qt, 2nd Edition]

 Programming with Qt, 2nd Edition

Matthias Kalle Dalheimer

Editor
Ariane Hesse

Copyright © 2010 O'Reilly Media, Inc.

[image:]

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596000646/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

A Productive Weekend

A few years ago, someone emailed me on a Friday.
He wanted to start a small project, but did not really have the
resources for it. He outlined the requirements and asked how long
it would take me.
The next Monday, he phoned to ask if I thought the project
was feasible and how much time I would need. I said that I already had a working prototype. I had hacked it together
in a few hours the day before—and because I had used Qt, I had still found
enough time to play outside with my son. Needless to say, I got the
contract. Does this sound too good to be true? Well, I admit, I
lied a bit. It was raining cats and dogs that Sunday and we had
to play inside. But the rest is true.
The Qt class library makes it easy to write applications that
are visually attractive, fast, and ready to run on Windows, Unix, MacOS X, and (Linux-based) embedded systems in a very short time. Had I used Motif, gtk, or
another toolkit for this task, I might not have managed it in such a short
time. If I had to port my program to Windows, the number of choices
would have been even smaller, and for embedded systems there are
hardly any alternatives.
Until the first edition of this book, there was not much Qt
documentation for beginners.
The package itself includes a tutorial, but leaves out a lot. There
are other example programs, but often you have to search through
several files to find what you are looking for and sometimes you don’t
find it at all. Some people think it’s hard to get started
with Qt, but after they have overcome the initial hurdles, they
see that Qt helps them in a lot of ways when they write their applications.
That’s why I decided to write this book. It will teach you
how to program with Qt from the start and it will help you make
more sense of the documentation that comes with Qt.

What You Should Know

Qt,[1] written and
distributed by the Norwegian company Trolltech,
is a C++ class library and this book requires
some C++ knowledge. However, you don’t
have to be a C++ expert to start programming with
Qt. We have included a short overview of C++ language
features that are used in Qt programs.
Qt is mostly about GUI programming (although it can also help
you write a web server and other non-GUI applications). Accordingly,
it helps to know a bit about
how GUI programs are written. If you already know what an event
loop is and how GUI programs are usually structured, this knowledge will make
things easier for you at the beginning. I have tried to keep
this book as self-contained as possible, though, so if
you have never written a GUI program before, now would be a good
time to start. Qt makes GUI programming much easier—even easier than with most (if not all) other toolkits.
I assume that you know how to use a text editor to enter program
source code and that you know how to start your compiler and linker
to generate an executable program. Unless there is something Qt-specific
about these operations, I won’t talk about these topics.
All programs in this book were tested with Linux 2.4.7 and the
G++ compiler, and Windows 2000 and
the Microsoft Visual C++ compiler. If you use
another version of Unix or Windows 95/98/NT, you should have no problems.
If you use OS/2,[2] however, you are out of
luck. Qt has not been ported to this platform (yet). At the time of
this writing, a version for MacOS X is in the works and we have
tested the examples against a beta version. The Macintosh version is now also publically available.

[1] Qt can either be
pronounced cue-tee or cute. Both ways are considered correct.

[2] You should
be able to run Qt programs with XFree86 for OS/2, but I
have never tried this.

Organization of
This Book

This book is organized to make finding the information you
need as easy as possible. If you have not programmed with Qt before, you
should read the first three chapters of this book to grasp the basic concepts.
The following chapters and sections are relatively independent
and you should be able to jump around and read whatever you are
interested in. If your application contains any custom graphics,
you will probably want to read Chapter 9. Reading Chapter 4 and Chapter 5 is a very good idea because
you can make better use of Qt’s
features if you know what is available. Before reading the chapter on
Qt Designer, it is a good idea to have at least read these two chapters
so that you know about the widgets that the Designer offers
you to use, as well as how dialogs are built up in general. To help you
set up your
own tour through the book, the following list of chapters includes
short descriptions of their contents. Of course, if you decide
to read through the whole book, I would be more than glad!
	
 Chapter 1
 , Introduction

	Introduces you to basic Qt concepts. It gives you
some information about why people use GUI toolkits in the first
place and explains what is special about Qt. You will learn how
and where you can get Qt, whether or not you have to pay for it,
and where to go if you are stuck with a Qt-related problem.

	
 Chapter 2
 , First Steps in Qt Programming

	Is a Qt programming primer. We start with a simple “Hello
world” example, learn about signals and slots, and finish the chapter
by creating a small painting program that lets you scribble on a
virtual canvas in various colors.

	
 Chapter 3
 , Learning More About Qt

	Continues the Qt primer. We develop the painting
application into something more useful. By the end of this chapter,
you will know how to use files and understand programming menus and other features
of Qt.

	
 Chapter 4
 , A Guided Tour Through the Simple Widgets

	Is a presentation of all simple widgets available
in Qt. This chapter helps you pick the right widget for any given
task. If an appropriate widget is not listed, you’ll know
that you have to develop your own. You will also find explanations
of the most useful methods, code examples, and hints for
using existing widgets.

	
 Chapter 5
 , A Guided Tour Through the Qt Dialog Boxes

	Continues the tour through the available GUI elements
in Qt by showing which dialogs are available. It also shows you
how to program your own dialogs and tab dialogs.

	
 Chapter 6
 , Using Layout Managers

	Explains how widgets are laid out automatically within their parent window so that their positions are computed
at runtime according to their needs. This topic is complex,
so I provide several examples to make it easier to
understand.

	
 Chapter 7
 , Some Thoughts on GUI Design

	Provides you with some hints about writing applications
that users will like. This chapter includes guidelines about when to use
which widget.

	
 Chapter 8
 , Container Classes

	Explains how to use classes for building up lists,
arrays, and dictionaries and explains how to traverse all elements in a
container.

	
 Chapter 9
 , Graphics

	Shows how to create custom graphics, including animations,
printing, colors, two-dimensional transformations, and canvases.

	
 Chapter 10
 , Text Processing

	Has sections on internationalization, working with
regular expressions, reading and writing XML documents,
checking input into text-entry fields, and working with rich text, a
markup system for text with different attributes (not the same as Microsoft’s rich text format). The classes
explained here can often reduce the length of your code and ease
your programming efforts.

	
 Chapter 11
 , Working with Files and Directories

	Explains how to access files and directories and
maintain portability using the classes that Qt provides. These classes
can shield your code from native APIs.

	
 Chapter 12
 , Interapplication Communication

	Tells you how Qt applications can exchange data
with one another, or with other applications. It describes the clipboard
and drag-and-drop.

	
 Chapter 13
 , Interfacing with the Operating System

	Provides information about interfacing with the
operating system, including how to work with date and time values, how
to load libraries dynamically, and how to start child processes from Qt
programs.

	
 Chapter 14
 , Writing your Own Widgets

	Explains how to write your own widgets.

	
 Chapter 15
 , Focus Handling

	Explains how to control the way Qt passes the keyboard
focus to widgets. This information is not crucial for getting an application
up and running, but it is important if you don’t want your
users to hate you.

	
 Chapter 16
 , Advanced Event Handling

	Contains information about advanced event handling,
such as filtering the events that go to a widget and sending synthetic
events.

	
 Chapter 17
 , Advanced Signals and Slots

	Builds on the tutorial’s introduction to signals and slots and describes advanced usage of signals
and slots. We’ll also talk about actions here that abstract from user
interaction patterns.

	
 Chapter 18
 , Providing Help

	Explains various options for providing help to users of a Qt application.

	
 Chapter 19
 , Accessing Databases

	Shows you how to interact with relational databases
from Qt programs, including retrieving, updating, and displaying the
database data.

	
 Chapter 20
 , Multithreading

	Explains what you have to observe when you want to
write multithreaded programs with Qt, as well as the classes that Qt
provides for
creating multiple threads and synchronizing them.

	
 Chapter 21
 , Debugging

	Offers hints about Qt that can make debugging easier.

	
 Chapter 22
 , Portability

	Explains how you can best achieve portability for
your Qt programs.

	
 Chapter 23
 , Qt Network Programming

	Gives examples of using Qt for non-GUI
tasks by presenting a little HTTP server program and an FTP downloader
created with the help of the network extension in Qt.

	
 Chapter 24
 , Interfacing Qt with Other Languages and Libraries

	Explains how to interface Qt with other languages
and libraries. Its sections include using Qt with Perl, integrating
Qt and Xt widgets, using OpenGL in Qt programs, and writing Netscape
plug-ins with Qt.

	
 Chapter 25
 , Using the Visual C++ IDE for Qt Programs

	Provides hints about how to use the Visual C++ IDE
(Visual Studio) from Microsoft for writing Qt programs.

	
 Appendix A
 , Answers to Exercises

	Provides complete, commented answers to all exercises
in the tutorial.

Conventions Used
in This Book

The following typographic conventions appear in this book:
	
 Italic

	Used for filenames, directory names, and command names. It is
also used to highlight comments in command examples and to define
terms the first time they appear.

	
 Constant Width

	Used in examples and in regular text to show
methods, classes, keywords, objects, properties, operators, variables, function names, types, and the output from commands or programs.

	
 Constant-Width Bold

	Used in examples to show the user’s
actual input at the terminal.

	
 Constant-Width Italic

	Used in examples to show variables for which
a context-specific substitution should be made. The variable
filename,
for example, would be replaced by an actual filename.

	Footnotes
	Used to attach parenthetical notes which you
should not read on your first perusal of this book. The
material in the footnote is often advanced information that might confuse you until you have thoroughly mastered the basics.

Comments and Questions

Please address comments and questions concerning this book to the publisher:
O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any
additional information. You can access this page at:

http://www.oreilly.com/catalog/prowqt/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and
the O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments

A book like this is always a major undertaking. Without the
help of many people, this book would never have become a reality.
When it comes to technical content, I owe much to the tremendous
guys at Trolltech: Haavard Nord, Eirik Eng, Eirik Aavitsland, Paul
Olav Tvete, Arnt Gulbrandsen, Warwick Allison, Matthias Ettrich,
Volker Hilsheimer, Reginald Stadlbauer, Patricia Jung, and Jasmin
Blanchette have provided me with an unimaginable support and never tired of reading through the various drafts I produced.
Haavard Nord deserves special mention because this book was his
idea in the first place and he helped convince the people at O’Reilly
that it would be a good thing.
Jesper Pedersen and Steffen Hansen, my colleagues at
Klarälvdalens Datakonsult AB, also read through the drafts and helped
with many questions about Qt. Together with Lutz Rogowski,
Karl-Heinz Zimmer, Michel Boyer de la Giroday, and my wife Tanja Dalheimer, this company has a lot of Qt knowledge.
The many people at the companies where we have taught Qt
also provided insight into the problems Qt beginners most often face.
Several other people helped improve the quality of this book
by reading drafts, correcting errors, and making suggestions: Ashley Winters, author of Perl-Qt; Stefan Taferner
and Uwe Thiem from the KDE team; Jörg Fehlmann; Safuat Hamdy from the
University of Hamburg; and Chris Schläger of SuSE GmbH.
As always, my colleagues at O’Reilly Germany were
very helpful. Elke Hansel, editor of the first edition, and Ariane Hesse, editor of the second edition, got the ball
rolling and managed the production process. They also handled the
relations with our American colleagues. Since the first edition of
this book was our first
American-German coproduction—written and produced in Germany and copyedited in Cambridge, Massachusetts—I can imagine that a lot
of organizational work was done behind the scenes. Add to this the
technical proofreaders in Des Moines (Washington), Norway, Denmark, Sweden,
Germany, Austria, Canada, and Namibia, and you can see that this book is truly
an international effort.
Of our American colleagues, I have to give special credit
to Paula Ferguson. Her expertise and experience with books about
GUI programming helped give this book a better structure. If you
find this book to be well organized, Paula is largely responsible. Christien and Sarah Jane Shangraw, David Chu, and Ann Schirmer helped by keeping
the deadlines, reminding me whenever one was near, and by keeping the production process going.
When an author hands over the final draft of a book to the
editor, only part of the work has been done. Lots of people are
involved in correcting spelling mistakes, copy editing,
setting the page layout, printing, binding, and other important jobs before the
book finally hits the stores. As an author, you often don’t
even know the names of these production people, but I’d
like them to know that I appreciate their work very much. When
an author with German as a native language writes a book in English,
there is probably more copy editing to do than usual.
Also, a huge “thank you” goes to the KDE developers,
especially the leader and founder of the KDE project, Matthias Ettrich.
Without this project, I would probably never have delved so deeply
into Qt coding. Teaching KDE and Qt programming at various workshops
has given me much insight into where people have problems with
Qt programming, and I have tried to incorporate this insight into the
book.
Several other people out there in Netland helped a great deal, either by asking the right questions or by giving
the right answers. For example, Valient Gough of Stellacore provided
helpful insight into using Qt for a large graphics-intensive
commercial application.
For some reason, authors always list their family last in
these acknowledgment sections. I don’t know why this is
so, but who am I to break with tradition? So here I go: I cannot really
say that my son Jan Lennart, who is five years old now, helped me
write the book. However, he taught me that some things are much more important
than programming, books, or even computers. Pouring water from one
bucket to another for hours, setting up wooden miniature railways,
and discussing the necessity of brushing your teeth and whether kindergarten is really over for the day when the staff turns
off the lights helped me keep my work in perspective.
This has not stopped me from teaching my son, who when he was
younger liked to sit on my lap while I typed, how to use
XEmacs. He even knows how to get into modes I had never heard of!
Lately, though, his interest has shifted to Sesame Street multimedia
applications with monsters demonstrating how to count. However, his younger brother, Tim Fredrik, who will be three months old by the time this book appears on the shelves, might help take over the typing soon. Finally, a huge
thank you to my wife Tanja, who was as supportive as ever and accepted
that there were evenings when I had to write rather than spend time
with her. Family support is probably the most underestimated
tool of any author.

Chapter 1. Introduction

Qt is a C++ class library and GUI toolkit
for Unix, Windows, and embedded systems (with the latter running on Linux). In
this chapter, we will introduce GUI
programming in general and Qt programming in particular. We tell you
why you need a GUI toolkit and why Qt is a good choice for such
a toolkit. You can check
Section 1.7 to make sure you
know enough about C++. This chapter also tells
you where you can turn if you have any problems with Qt.
Why GUI Toolkits?

GUI toolkits are not well known in the MS Windows
or Macintosh world, but they are ubiquitous on Unix. This is because
the Windows GUI programming API and Macintosh programming tools
already contain high-level features such as buttons, scrollbars, and
functions for manipulating colors, fonts, and other visual
flourishes. On Unix systems, things are different. The pre-eminent
windowing system on Unix—the X Window System—is very flexible,
but it does not
offer the programmer much help. About the only thing you get are
functions that help you draw primitive graphics like lines and rectangles,
set the foreground and background color, and have user interactions
and other events reported back to you. These functions are
network transparent, which is
a very good thing, but these limited graphical features
are nevertheless difficult to program. There is nothing for creating
buttons or scrollbars, let alone more complex items such as dialog
boxes, toolbars, or tab pages.

Of course, nobody wants to code an entire application this
way—not even the toughest of hardcore Unix programmers.
This is why several toolkits have been invented to facilitate GUI
programming tasks for Unix. There are many toolkits to choose from. Probably
the most well-known of them is
Motif, because many major Unix vendors have adopted it as their
native GUI toolkit. The Common Desktop Environment (CDE),
which ships with some Unix-based
operating systems like Solaris and HP-UX, is based on Motif. Motif is not only a GUI
toolkit, but also a specification for a certain look and feel.
Motif is fairly standard, having been developed by an organization
supported by many vendors: the Open Software Foundation, now called The
Open Group. Why shouldn’t you use it?
According to many programmers, using Motif is
difficult, error prone, and not very much fun. It is problematic
because it’s based on the Xt Intrinsics, an old framework
for GUI toolkits that ships with every implementation of the X Window
System. The Intrinsics try to emulate object orientation
in C. They succeed to a certain extent, but programming with this
style is awkward and sacrifices niceties like type safety. Also,
Motif programs are much longer than Qt programs that accomplish
the same thing.
However, Motif is a standard, especially in the look and feel
department. It would be nice if you could have the same look, but
with an easier programming API. Well, that’s exactly what
Qt provides—although that’s not all it can do.

We have talked a little about Unix, so it’s
time to make the Windows people feel at home, too. The Windows API
contains functions to create GUI elements, manipulate colors,
and so on. Using these functions is undoubtedly easier than programming the
X Window System directly, but it’s still too cumbersome to get
real work done. The Windows tools like Microsoft Foundation Classes
(MFC) are in the same state as those for Unix—high-level
functions are available, but they are not easy enough to use to
facilitate the creation of sophisticated user interfaces. Programmers
still have to spend too much time creating the user interface instead
of concentrating on their application’s core. This is where
application frameworks such as Qt come in.
A framework is more than a toolkit or a GUI-programming API;
it is a complete programming system that hides the boring, error-prone,
low-level details from the application programmer. For
example, we would expect a framework to automatically distribute
user interactions, such as key presses or mouseclicks,
to whatever function or procedure we have defined to handle these
interactions. The programming language C++ is
well suited for GUI programming, which is why most frameworks
use it. Frameworks exist for Smalltalk, Objective C,
and other languages as well, but we won’t talk about them
here.
Our framework should allow us to define objects that represent
one user-interface element, such as a button or a menu,
and handle all user interactions with these elements. We want
to be able to define relationships between elements in terms of
parent-child relations and geometrical relations. We also
want to have all the boring initialization and termination stuff
set up for us automatically.
With a good framework to tackle these details, you should
be able to concentrate on your application’s functionality
as much as possible. Your toolkit should help you as much as possible
in creating the user interface.

Why Portability?

You might have asked yourself why portability is such an important
goal. If you develop software for a living, probably the most important
reason for having portability is to increase your possible target
market. Why should you leave out millions of Unix users just
because you are a Windows programmer? Can you afford not to
try to sell your programs for Windows just because you prefer Unix?
Toolkits make it feasible to develop a program once and recompile
it to run on other platforms. Mind you, it is still not easy and
there are pitfalls to watch out for. But without such a toolkit,
multiplatform programming is feasible only for the largest companies.
Even if you don’t develop your software for the open
market, your custom software clients may require you to write programs
in a portable fashion so they can sell or use them on additional
platforms.
Even if you develop free software, you should remember that portable software often means better software. There
might be hidden bugs in your program that a version for another
platform uncovers easily. Also, following uniform standards makes it easier for
other people to read and maintain your code. In addition, you can
get more users if you write software that can be compiled on more
than one platform, thereby making the development of free software more
satisfactory.

Why Qt?

On Unix systems, Qt is the best option; it’s portable,
fast, and easy to use. Also,
if you write free software for Unix-like operating systems
such as Linux, FreeBSD, or Solaris, programming with Qt is free. In
other words, you don’t have to pay license fees. We
will talk more about this advantage in Section 1.5.

If you are a Windows programmer, you have undoubtedly heard
about MFC, the Microsoft Foundation Classes. These classes are shipped with
most Windows compilers and they fulfill all the requirements
that we informally listed earlier. They are complete in terms
of supported user-interface elements and you can buy a
lot of third-party add ons.
If MFC contains everything you need, why should you try another
library—one that’s completely unknown to many Windows
programmers? There’s one important reason: portability. When
you use Qt, you can write your programs once on Windows and then recompile them
to run on a lot of Unix variants, too. In addition, a lot of programmers
who have used both MFC and Qt consider programming with Qt to be
easier. After you have overcome the initial hurdles, you will find
that programming with Qt is “the way it should be”—that is, it just
feels natural. There’s another reason, too—one that will
appeal to most programmers: programs written with Qt tend to be
very fast. This is because the programmers who wrote Qt spent a
lot of time optimizing it.
Of course, other products allow portable programming
for Unix and MS Windows. These products include commercial libraries like
Zinc and free libraries like wxWindows. I have evaluated most of
them for my projects and have always found Qt to be the
best option. Of course, you should judge their merits for yourself.
Try several alternatives, write sample applications, and see which
toolkit is the best for you. Also, if you want to develop not only for
Unix and MS Windows, but also for the Macintosh, there is no
alternative but Qt.

Finally, if you are developing for embedded systems
(notably, embedded systems running a version of Linux), you would have
a hard time finding any GUI toolkit that comes close to Qt in
terms of functionality.

Qt has its share of bugs and we will mention them
as we go along. Fortunately, Qt has short release cycles,
so chances are you can download or purchase a new and improved
version in a few weeks or months. In the meantime, Qt developers
can often help you with workarounds or patches.

Implementing Cross-Platform GUI Libraries

GUI toolkits
that allow cross-platform programming can follow one of several
strategies according to how the native toolkit API is
used.[3] For
Windows, this native toolkit API is the Win32 API. For
the purposes of this discussion, we will assume that Motif is the “native”
toolkit API on Unix systems, even though no one toolkit on Unix
is truly native. Motif comes closest because it is most common. On
the MacOS X, the Carbon framework could be considered the native
API.
API Layering

Many cross-platform toolkits use API layering.
This means that they provide their own API on top of the native
API. There is one implementation of this toolkit for every native API
that it supports. One such toolkit is wxWindows. The wxWindows methods
map to Win32 API calls on Windows and to either Motif or Xt API
calls on Unix (as far as I know, no version exists for the MacOS
X).
The advantages of API layering are that the toolkit is relatively
easy to write and that the look and feel is
100 percent compatible with the native look and feel.
The disadvantages should not be ignored, however. Programs written
with toolkits that use API layering are usually slower than those
that use the native APIs directly because each call has to be routed
through an additional layer. Native toolkits can differ significantly
in their structure, which can lead to awkward control flow in the
portable toolkit. In addition, those toolkits typically provide
the lowest common denominator of functionality, offering only
functions that are available in all supported native APIs. Finally,
inheriting in widgets and specializing in them is difficult because widgets
are drawn by the native toolkit and not by the relatively thin C++
wrapper.

API Emulation

Some other portable toolkits emulate the API of one system
on all other systems. These toolkits include products such as
MainWin by Mainsoft
or Wind/U by Bristol Technology, which provide the Win32
API on Unix systems. It should be clear that you need no additional software
for the emulated platform because the native API of this platform is
used. The API emulation is only needed for other, non-native, platforms.
While this might sound like a good idea, it often isn’t.
Platforms are too different to make API emulation very practical.
Also, programs on platforms that are not emulated are faster than
those on the emulated platform because of the additional
layer. The towering of layers can be even more frightening; it is
not uncommon to have an MFC layer on top of the Win32 layer on top
of a Motif layer on top of an Xt layer on top of the Xlib layer...you get the idea. A further disadvantage is that all native toolkits
have some features that are undocumented, but are used or exploited
nevertheless, and all will have a few hidden bugs. API-emulating
toolkits are also very unlikely to emulate bugs and undocumented
features, so programs created with them may turn out to be unstable.

GUI Emulation

The so-called GUI-emulating toolkits include
Qt. GUI-emulating toolkits don’t
use any native-toolkit calls at all. Instead, they use
the drawing or graphics primitives of the respective platforms.
Each widget is drawn inside the emulating toolkit.
Again, this procedure has advantages and disadvantages. Since no
additional layers except the most
primitive ones are used, Qt and other GUI emulators are faster than
other cross-platform toolkits. Also, since all drawing
is done inside the toolkit, it is easy to display an application
in Motif style on MS Windows, or in Windows style
on Unix. With GUI emulation, it is also easy to inherit any
widget and to redefine its behavior.
This technique also has some disadvantages. First,
the emulation might not always be 100 percent exact,
resulting in few differences in the look and feel
between programs written with native calls and programs written
with Qt. Usually, these differences are so small that users hardly
notice them. The second disadvantage might have more impact. For
every new widget that is introduced to a platform from the manufacturer
of the native toolkit, code has to be written that draws this widget
in all possible states—including normal, active, and disabled. Writing this
code is a lot of work—so much that it can take a lot of time until
widgets are supported in the cross-platform toolkit
(and some might never be supported). This applies not only to the
makers of the toolkit, but also to users who want to add widgets
of their own. If they want to do a complete emulation, they have
to write drawing code for all supported platforms. However, the
same caveat also applies to users of API-layering and API-emulating
toolkits. Since Version 2.0, Qt uses a sophisticated style system
that eases these burdens somewhat, but does not do away with them
completely.
In summary, despite its disadvantages, the GUI-emulation
technique is the most powerful. Users care much more about the GUI’s
responsiveness than about the fact that it does or does not use
the latest UI gimmicks. There’s no denying the fact that
GUI-emulating toolkits are faster.

[3] If you are interested in how many
platform-independent GUI toolkits exist, see the PIGUI
FAQ at http://www.zeta.org.au/~rosko/pigui.htm.

Acquiring Qt

The standard way to acquire a commercial license for Qt is to order it from the manufacturer, Trolltech. The company accepts credit cards
and fax orders. You can find pricing information and an order form
at http://www.trolltech.com/purchase/.
When ordering, you can decide whether you want to get Qt delivered
via normal mail on CD or if you would prefer to
download it from the vendor’s FTP server.
If you develop only open-source software on Unix,
you don’t need the commercial edition. Simply download
the source code of Qt from the FTP server at
ftp://ftp.trolltech.com/qt/source
.
You will have to compile the source code yourself, as explained
in the next section. If you are unsure of which file to obtain, go to
http://www.trolltech.com/products/download/ for guidance to the file you need.

If you run one of the very popular free Unix-like
operating systems such as Linux or FreeBSD, your
distribution probably contains a version of Qt. It might not always
be the latest version, however.
Qt Editions

Qt comes in several different editions. The difference
is both what you are allowed to do with it and which features are
included. The following editions are available:
	Qt Free Edition
	Only available on Unix/X11 and embedded
systems. Contains all features of the Qt Enterprise Edition (i.e., it
is the “full” package) and can only be used to develop software that
is licensed under the GPL. There is no right to support with this
edition.

	Qt Non-Commercial Edition
	Only available on MS-Windows. Contains all
features of the Qt Enterprise Edition (i.e., it is the “full” package)
and can only be used to develop noncommercial software (please see
the accompanying license file for a more precise definition). There is
no right to support with this edition.

	Qt Professional Edition
	Available on all supported platforms
(Unix/X11, embedded systems, MS-Windows, and Macintosh). Lets you develop any
type of software under any license, but leaves out some
advanced modules such as the table module, the XML module, and the
networking module. Includes the right to technical support.

	Qt Enterprise Edition
	Available on all supported platforms
(Unix/X11, embedded systems, MS-Windows, and Macintosh). Lets you develop any
type of software under any license and contains all Qt
features. Includes the right to technical support.

If you are unsure which edition to get, contact
sales@trolltech.com. If you want to
develop GPL’d software for Unix/X11, get the Free Edition.

How Free Is Qt?

There have been a lot of flame wars on Usenet about the use
of Qt to obtain free software. Since most of the arguments presented there
are based on wrong or incomplete information, I won’t
comment on them, but I just want to state my opinion on this
subject anyway. Note that if you develop commercial software, you will
probably wonder what this
is all about. Rest assured: you don’t need to know anything about it.
	If you develop GPL’d software for Unix
systems, you can use Qt for free and do not have to pay license
fees. Qt is released under the GPL, which, of course,
fulfills the Open Source Definition.

	Nobody who uses Qt simply by using a program written
with it has to pay license fees. There is no such thing as a
runtime license fee. There is, however, a per-runtime distribution fee for commercial software developed with Qt/Embedded.

	In my opinion, good commercial software is better
than bad free software, which is why I would rather use a very good
toolkit with commercial backing like Qt (especially if the developers let me
use it for free) than an inferior, entirely free toolkit.

	Since developers of free software are not paid for
their work, they are driven only by their own motivation. This motivation
is undoubtedly higher if they have high-quality tools that
let them achieve the desired results as soon and as painlessly as possible.
The same concept applies to GUI toolkits. Qt is a very high-quality
tool.

	I have the opinion that one of the most important
kinds of freedom is the freedom of choice. I want to be able
to choose between different word processors and different GUI toolkits.
It might be the case that for a particular project of yours, Qt might
not be the best choice; but without evaluating it, you will never know
what you are missing.

Compiling and Installing Qt

In this section, we will describe how to build Qt on the
supported systems—first Unix systems (including Qt/Embedded and the
Macintosh, which behaves like a Unix system),
followed by Windows systems.
Installing Qt or Qt/Embedded on Unix or MacOS X systems

Whether you buy Qt on CD or download the commercial
or free version, you will end up with a tar file.[4] Unpack
this file by issuing the following command:
zcat qt-x11-3.0.1.tar.gz | tar xvf -
If you have the GNU version of tar on your system, you can use this command:
tar xvzf qt-x11-3.0.1.tar.gz
Qt will be unpacked in a directory called
qt-x11-commercial-3.0.1 (or a similar directory for the
embedded and MacOS X platforms).
Of course, you can save yourself work if you unpack the archive
where you want to have it, which might be
/usr/local.
You should now read the INSTALL file in this
directory to see if there are any special directions for your
system.
Building Qt/Embedded

Since Qt/Embedded is basically a Qt for Unix (notably
Linux) that brings its own window system, there are hardly any
differences in building Qt/Embedded and Qt for Unix/X11; you can
just follow these instructions for building Qt/Embedded. But note that
you either need framebuffer support compiled into your Linux kernel or
the qvfb tool mentioned later.

 Qt is pretty big, but you will rarely need everything
in it. You could build a leaner
version of Qt. During the build, the file
$QTDIR/include/qconfig.h is included. You
can add several preprocessor macros that exclude certain
parts of Qt from compilation. See the sample files
qconfig-large.h,
qconfig-medium.h,
qconfig-minimal.h, or
qconfig-small.h for examples, or the file
$QTDIR/doc/html/features.html in the
reference documentation for a complete list.

In most cases, building the Qt library is straightforward.
The process has two steps. The first step configures Qt for your system
and the second builds the Qt library and examples.
A note about version numbers: when you read this book, there
could already be a newer version of Qt. In this case, the version
numbers in the filenames will change, but the general
process will probably not.
As the very first step, you need to set the environment
variable $QTDIR to where you unpack
Qt; for me, that setting would be
/home/kalle/qt-x11-commercial-3.0.1:
export QTDIR=/home/kalle/qt-x11-commercial-3.0.1
or, if you use the C-Shell or the tcsh:
setenv QTDIR /home/kalle/qt-x11-commercial-3.0.1
You might want to put the appropriate command in one of
your startup files so that you do not need to enter it again each time
you log in.
Now check the options for configuring Qt by simply executing the
command:
./configure -h
from the $QTDIR directory.
Qt will respond with the switches that the
configure command knows about:
Usage: configure [-prefix dir] \
 [-docdir dir] [-headerdir dir] [-libdir dir] [-bindir dir] \
 [-debug] [-release] [-qt-gif] [-no-gif] [-sm] [-no-sm] [-stl] [-no-st] \
 [-qt-zlib] [-system-zlib] [-qt-libpng] [-system-libpng] \
 [-no-jpeg] [-system-jpeg] [-no-thread] [-thread] \
 [-Istring] [-lstring] [-Lstring] [-Rstring] [-enable-<module>] \
 [-disable-<module>] [-with-<module setting>] [-without-<module setting>]

Installation options:

 These are optional, but you may specify install directories.

 -prefix dir This will install everything relative to dir
 (default /usr/local/qt)

 You may use these to separate different parts of the install:

 -bindir dir Executables will be installed to dir
 (default PREFIX/bin)
 -libdir dir Libraries will be installed to dir
 (default PREFIX/lib)
 -docdir dir Documentation will be installed to dir
 (default PREFIX/doc)
 -headerdir dir Headers will be installed to dir
 (default PREFIX/include)

 The defaults (*) are usually acceptable. If marked with a plus (+) a test
 for that feature has not been done yet, but will be evaluated later, the
 plus simply denotes the default value. Here is a short explanation of each option:

 * -release Compile and link Qt with debugging turned off.
 -debug Compile and link Qt with debugging turned on.

 * -shared Create and use a shared Qt library (libqt.so).
 -static Create and use a static Qt library (libqt.a).

 * -no-gif Do not compile in GIF reading support.
 -qt-gif Compile in GIF reading support.
 See src/kernel/qgif.h

 * -qt-zlib Use the zlib bundled with Qt.
 -system-zlib Use zlib from the operating system
 See http://www.info-zip.org/pub/infozip/zlib

 -make directory This will generate makefiles for all project files
 in directory. You can specify this option multiple
 times so as to only make specific directories.

 -nomake regexp This will prevent matches of regexp from being built
 you may use this to exclude certain projects in
 a directory included in -make.

 -profile Enable profiling with gprof (adds -pg options)

 -no-g++-exceptions . Disable exceptions on platforms using the GNU C++
 compiler by using the -fno-exceptions flag.

 -platform target ... The platform you are building on
 (/home/kalle/qt-x11-commercial-3.0.1/mkspecs/linux-g++).

 -xplatform target .. The target platform when cross-compiling.

 See the PLATFORMS file for a list of supported
 operating systems and compilers.

 -Dstring Add an explicit define to the preprocessor.
 -Istring Add an explicit include path.
 -Lstring Add an explicit library path.
 -Rstring Add an explicit dynamic library runtime search path.
 -lstring Add an explicit library.

 -enable-<module> Enables a module where module is one of:
 styles tools kernel widgets dialogs iconview
 workspace network canvas table xml opengl sql
 -disable-<module> Disables a module where module is one of:
 styles tools kernel widgets dialogs iconview
 workspace network canvas table xml opengl sql

 -qt-sql-<driver> Enable a SQL <driver> in the Qt Library, by
 default none are turned on.
 -plugin-sql-<driver> Enable SQL <driver> as a plugin to be linked
 to at run time.
 -no-sql-<driver> Disable SQL <driver> entirely.

 Possible values for <driver>:
 [mysql oci odbc psql tds]
 Auto-Detected on this system: []

 -qt-style-<style> Enable a GUI <style> in the Qt Library, by
 default all available are on.
 -plugin-style-<style> Enable GUI <style> as a plugin to be linked
 to at run time.
 -no-style-<style> Disable GUI <style>style entirely.

 * -no-thread Do not compile with threading support.
 -thread Compile with threading support.

 -no-stl Do not compile in support for STL.
 + -stl Compile with support for STL.

 -remote Enable remote control support.
 * -no-remote Disable remote control support.

Image Formats:

 -plugin-imgfmt-<format> Enable format (png, jpeg, or mng) to
 be linked to at runtime. Uses specified
 lib <format>.
 -qt-imgfmt-<format> ... Enable format (png, jpeg, or mng) to
 be linked into Qt. Uses specified
 lib <format>.
 -no-imgfmt-<format> ... Fully disable format (png, jpeg, or mng)
 from Qt.

Third Party Image Loading Libraries:

 * -qt-libpng Use the libpng bundled with Qt.
 -system-libpng Use libpng from the operating system.
 See http://www.libpng.org/pub/png

 * -qt-libjpeg Use the libjpeg bundled with Qt.
 -system-libjpeg Use jpeglib from the operating system.
 See http://www.ijg.org

 * -qt-libmng Use the libmng bundled with Qt.
 -system-libmng Use libmng from the operating system.
 See http://www.libmng.com

Qt/X11 only:

 * -no-nas-sound Do not compile in NAS sound support.
 -system-nas-sound .. Use NAS libaudio from the operating system.
 See http://radscan.com/nas.html

 -no-sm Do not support X Session Management.
 * -sm Support X Session Management, links in -lSM -lICE.

 -no-xinerama Do not compile Xinerama (multihead) support.
 * -xinerama Compile Xinerama support.
 Requires X11/extensions/Xinerama.h and libXinerama.

 -no-xrender Do not compile XRender support.
 * -xrender Compile XRender support.
 Requires X11/extensions/Xrender.h and libXrender.

 * -no-xft Do not compile XftFreeType (anti-aliased font) support.
 -xft Compile XftFreeType support.
 Requires X11/Xft/XftFreetype.h and libXft.

 * -no-tablet Do not compile Tablet support.
 -tablet Compile Tablet support (currently only on IRIX).

 -no-xkb Do not compile XKB (X KeyBoard extension) support.
 * -xkb Compile XKB support.
For each option group at the beginning, the default one is marked
with an asterisk. In other words, if you want a marked option, you
do not need to specify it explicitly. In most cases, the defaults will
work just fine for you. An exception will be if you use a
platform with more than one compiler known to Qt and you want to use a
compiler that is not the default. In this case, you might need to
specify your platform with the -platform
option; see the PLATFORMS file included with Qt
for a list of supported platforms.

 If you plan to debug Qt itself, you should specify the
-debug option, which ensures that a
nonoptimized version of Qt with debugging symbols is built.
If you build Qt/Embedded, you can select the
color depths to be supported and whether special hardware acceleration
for certain graphics cards should be included (these switches were not
shown earlier). I would recommend that
you specify -qvfb because the virtual
framebuffer is a very useful tool when you develop software for
embedded systems on your desktop machine.
Now issue the configure command again, but this
time specify the options you need, or none at all if you are happy
with the defaults as shown in the following example:
This is the Qt Enterprise Edition.

Type '?' to view the Qt Enterprise Edition License.
Type 'yes' to accept this license offer.
Type 'no' to decline this license offer.

Do you accept the terms of the Qt Enterprise Edition License?
Creating qmake. Please wait...
gmake: Nothing to be done for `all'.

Build type: /home/kalle/qt-x11-commercial-3.0.1/mkspecs/linux-g++

Configuration nocrosscompiler minimal-config small-config medium-config
 large-config full-config enterprise release dll png no-gif
 zlib bigcodecs x11sm xinerama xrender xkb styles tools
 kernel widgets dialogs iconview workspace network canvas
 table xml opengl sql stl
Remote support no
STL support yes
Thread support no
GIF support no
MNG support plugin (qt)
JPEG support plugin (qt)
PNG support yes (qt)
NAS sound support ... no
Session management .. yes
Xinerama support yes
Tablet support no
XRender support yes
XftFreeType support . no
XKB Support yes

Finding project files. Please wait...
 227 projects found.

Creating makefiles. Please wait...
...

Qt is now configured for building. Just run gmake.
To reconfigure, run gmake clean and configure.
As you can see, the configure script
first asks you to accept the Qt license. Type
yes. If you use an edition other than the
Enterprise Edition I am using here, the output might be slightly different, but the
procedure should be the same. Note that we have omitted the output at
the end where the configure script tells you about the many makefiles
being created, as well as further up where the
qmake build tool is built.
As the output tells you, you can now start building Qt
by issuing:
make
Now go get yourself some tea, or even a full lunch—Qt is large and
all the additional tools like the Qt Designer and the example programs
have to be built, too.
When the compiler is done, you are ready to use Qt; there is no real
“install” step. As the built Qt library will be in
$QTDIR/lib and all the Qt tools will be in
$QTDIR/bin, you should add these directories to the
environment variables that tell your system where to look for shared
libraries and executable programs. On Linux and Solaris systems, this
location would be LD_LIBRARY_PATH and
PATH; for other systems, please consult
your system documentation. Please do not forget this step. If you do,
you will run into problems later on.
On some systems, you can also add the directory that contains
the library to a system configuration file, such as
/etc/ld.so.conf on
Linux systems.
Finally, when compiling Qt programs, don’t forget
to tell your compiler about the include files with
-I$QTDIR/include
and to inform your linker about the library with
-L$QTDIR/lib -lqt.
There is a little catch when you want to build parts of Qt that need
external libraries—like the database drivers that need the respective
database access libraries. We’ll talk about configuring Qt for using
the database drivers later in the book, but you might have to specify
the path to the include and library files when building Qt
itself with the -I and -L
options. Please see the chapter on databases for more
information.

Compiling and Installing Qt on Windows

Compiling and installing Qt on Windows is easy. Depending on what
you downloaded or got on a CD-ROM, you have either an executable file
or a ZIP file. If you have the latter, unpack the ZIP file to a temporary
directory with a program like pkunzip or
winzip. You’ll find the file
install.exe in the temporary directory.
Building Qt is straightforward—just follow the directions on the
screen and make the requested selections. At the end, the selected
compiler will start and build the Qt library, the additional tools
like the designer, and the example and tutorial files.
Things can get problematic, however, if you need external libraries
(e.g., for the database drivers). At the time of this writing, there is
no way to tell the installer about additional paths to header or
library files. The best thing you can do in this case is:
	Let the installer do its work as far as it
gets. It will probably report an error during building some
time.

	Quit the installer. In the Windows control panel,
add an environment variable QTDIR to point to your
installation directory. (Normally, the installer would do this
automatically, but not if it cannot finish its task.) Change the
values of the PATH variable to include
%QTDIR%\bin and
%QTDIR%\lib.

	Open a command-line prompt. Go to the Qt
installation directory and load the file
src\Makefile into a text editor such as
Notepad. Look for the include paths specified with
-I and add an entry for the path to the missing
header files here. Do the same for libraries, if necessary.

	Run nmake (or whichever
make program you are using) manually. It will
take off where the build from within the installer broke and finish
building Qt and the accompanying programs.

Admittedly, this process is more complicated than it should be,
and chances are that Trolltech has improved the installer by the time
you read this. It is possible to specify the additional paths to
the header and library files already in the installer. To run
nmake, type:
nmake

After Qt is built and ready to use, you might
want to add the directory qt\include to
the environment variable your compiler uses for locating header
files (include for Visual C++) and add qt\lib to the environment
variable your compiler uses for locating libraries
(path for Visual C++).

[4] For
some platforms, notably Linux, precompiled binaries in various package formats
may be available. Please see your operating system documentation
for information about how to install these packages.

C++ as Used by Qt

If you are unsure whether your C++ knowledge
is extensive enough for programming with Qt, this section can help.
It gives you a short rundown of the part of C++ that
Qt and Qt programs use, so you will know if you lack some
C++ skills.

If you want to read about some of the language features mentioned
here, we recommend C++: The Core Language by
Gregory Satir and Doug Brown (O’Reilly).
This book concentrates on the most important parts of the language
and covers almost everything mentioned here.
	
 Objects and Classes

	

Of course, Qt uses classes—it is a class library.
You should know what member functions are and how to call them.
Also, you need to know how to write your own classes and
how to derive a new class from an existing one. You do not need
to be an experienced designer of class hierarchies, though. We will
provide enough information here on building up your hierarchies
for GUI programming.

	
 Access Methods

	

Qt uses a lot of access methods, which are methods that get and set
values of private class variables. Set methods usually start with
set... (e.g., setText()), while
get methods have no prefix (not even get—,
e.g., text()). This is fairly basic stuff;
there’s no sophistication involved here.

	
 Polymorphism and Virtual Functions

	

Qt uses virtual functions to notify your objects about low-level
events (such as mouseclicks or repaint events), so you should be
comfortable with these functions. Unlike other toolkits
and class libraries, Qt uses the innovative signal/slot
mechanism rather than virtual functions as the central means of
communication between objects. This feature is specific to Qt, so it is
covered later in this book.

	
 Inheritance

	

Of course, Qt uses inheritance, but for the most part, it relies on
single inheritance. Multiple inheritance is rarely used—in fact,
it is used so rarely that you might never get to see it. If
you have never understood what this “virtual inheritance” means,
rest assured: Qt does not use it at all.

	
 Operator Overloading

	

Qt overloads some operators, but usually these operators “just work.”
For example, you can pass a QString object to a function that expects
a const char* because a cast operator jumps
in to convert your QString object to a character pointer.

	
 Templates

	

Qt uses templates for its collection classes. You cannot compile Qt
with a compiler that does not understand templates, or one that
has a broken implementation of templates. The use of templates
is not yet compulsory in your own code, if you don’t want to use the
collection classes. But since these tools are very useful, you might
want to make yourself familiar with basic template usage. Again, there
is not much sophistication here.

	
 The bool Datatype

	

Qt uses the new bool datatype quite
often. Unfortunately, some old compilers don’t support it, and
consequently don’t know the keywords true and
false, either. In these cases, you can use the
replacement macros TRUE and
FALSE that are provided by Qt. In this book, we use
true and false, but if you have
one of those outdated compilers, you can always replace
true with TRUE and
false with
FALSE.

	
 Other Features

	

Qt does not use namespaces, runtime type
identification (RTTI), new style casts, other new C++ features, or features that aren’t available
on all compilers yet. The Standard Template Library (STL) is not used
either, but you may use it in your own programs.

Getting Help

You may run into problems that you cannot solve with the Qt
reference documentation or this book. There are several places where
you can ask for help:
	If you have a professional or enterprise license for Qt, you are
entitled to technical support
via email. You will receive the email address
with your copy of Qt. Usually, you will get answers very quickly,
but if your questions are difficult, please be patient.

	You can subscribe to the Qt Interest mailing list, through which a
thousand Qt users exchange ideas and help one another. The
developers of Qt monitor this mailing list as well, and sometimes jump
in if nobody else knows an answer.
Please keep in mind that the other developers on this list are not
there just to help you. Most of them are very supportive, but nobody
is required to answer your questions. To subscribe, send an email message
with the text subscribe insert your email address here in the subject to
qt-interest-request@trolltech.com.
After you have subscribed, you can post a message to the list by sending email
to qt-interest@trolltech.com.

	

The K Desktop Environment (KDE) (see
http://www.kde.org) mailing lists are
populated with some very experienced
Qt developers, too, so you can ask for help there if you are writing
a KDE application. Remember that most KDE programmers do their work
voluntarily in their spare time, so please be polite and do not
demand quick answers.
Please see the web site
http://www.kde.org/mailinglists.html for
information about which lists exist and how to subscribe to them.

Chapter 2. First Steps in Qt Programming

The time has come to start getting our hands dirty with some
real code. Of course, our first program will be the traditional “Hello,
world” exercise. We’ll then gradually build from there
to create a small, but complete, paint program. The topics in this
chapter are important building blocks for almost every Qt programming
task, so make sure you understand them.
Hello, world!

This program, which creates a little window with “Hello,
world” in it, is very simple. It contains code (see Example 2-1) that you will
see often in Qt programs.[5]

Example 2-1. helloworld.cpp: Hello, world in Qt
#include <qapplication.h>
#include <qlabel.h>

int main(int argc, char* argv[])
{
 QApplication myapp(argc, argv);

 QLabel* mylabel = new QLabel("Hello, world", 0);
 mylabel->resize(120, 30);

 myapp.setMainWidget(mylabel);
 mylabel->show();
 return myapp.exec();
}

Let’s go through this code line by line. The first
two lines include Qt header files. For most cases, a one-to-one
relationship exists between Qt classes and Qt header files. The header
file names are almost always the same as the class names, with all
letters in lowercase and the conventional .h appended
to each name. In some rare cases, several classes are grouped together
in one header file. For example, you can find both the class declarations
of QListView and QListViewItem in qlistview.h.[6] When
in doubt, check the documentation. Shortly, we’ll cover how the Qt
reference documentation is organized. In this example,
qapplication.h is for
the class QApplication and qlabel.h is
for QLabel.

Line 6 is the next crucial line. Here, an object of class
QApplication is
created. Every Qt application must have exactly one object of
class QApplication.
This object is responsible for all event handling and it holds
everything together. It also provides some useful methods (member
functions), which we’ll talk about later.
You probably have noticed that the command-line parameters
that our application receives from the runtime library are passed
to the constructor of the QApplication object.
This step is done because QApplication accepts some
special command-line arguments, which it handles and removes later
from the command-line variables. Your application
never sees these special command-line arguments. Among
them are -style, which tells Qt which
widget style to use by default; and -nograb,
which tells Qt never to grab the mouse or the keyboard to facilitate
debugging. If your application interprets its own command-line
parameters, make sure to interpret them after having passed the
command line to QApplication.

In line 8, we create an object of class QLabel.
This class provides a simple label UI element that
can be used for
labeling other UI elements. Labels contain text or images; we’ll
use text here. Note that we pass the text to
be shown to the constructor. We could have chosen to set it later
with the method setText(),
instead. We also pass a 0 as a second argument to
the constructor. This argument says that the widget should
not have a parent.

The label is a widget. Unix programmers might be familiar
with the term widget, which is a contraction of window
and gadget, but Windows programmers might have never heard it used
in a programming context. If you have some experience with Windows
programming, you know the concept—the same things are called controls in Windows programming lingo. Almost everything that you see in
a UI written with Qt is a widget. A button is a widget,
a scrollbar is a widget, and a complete dialog box is a widget,
too. Widgets may also have subwidgets, as in the case of the dialog box
that contains buttons, text-entry fields, etc.
Technically, a widget is an object of a class that is derived from
QWidget. On screen, widgets are usually rectangular
areas with a certain behavior.
Qt contains many predefined widgets and you can also define your
own. QLabel is a widget class as well because it
inherits from QWidget indirectly.
Warning
In Qt, every widget should be constructed on the
heap (i.e.,
with new) because they will be deleted
automatically when their parent
is deleted. Creating widgets on the stack
(i.e., not with new)
is a common mistake for Qt beginners and can lead to hard-to-find
bugs. In particular, the widgets are deleted when the enclosing block
ends (e.g., at function end). This behavior of Qt is advantageous
because you often do
not need to hold pointers to widgets if all you will do with them
in the future is delete them. This can make your code much simpler.
You don’t have to understand this concept fully now, but remember to always construct your widgets on the heap.

In line 9, we resize the label widget. Resizing the label means that we
tell the widget to get another width and height. We use a width
of 120 pixels and a height of 30 pixels here because that size is just
big enough to display the “Hello, world” text. Since Qt chooses
smart default, which makes the label look “right,” you could also leave
out this line and leave it to Qt to pick a size.
Line 11 is very important, too, though you may not understand
it yet. In this line, we tell the QApplication object
that the label is its main widget. The main widget is
the widget that makes the application exit when it is closed. If
we did not define a main widget, we could close the window with
the usual Close button—but the program would still exist invisibly.
This invisible program wastes resources and without
this line, closing the application by using the Close button will not
end the program, so remember to set a main widget. If you have more
than one top-level widget in your application and cannot really say
which one the main widget is, you might want to use:
QObject::connect(qApp, SIGNAL(lastWindowClosed()), qApp, SLOT(quit()));
There are many things in this line that you don’t
understand yet—but you might come across it when you look at other
people’s programs, so it is good to at least recognize its
purpose: the application quits as soon as its last window is closed.
The next thing to do is show your widgets. In this program, there’s
only one widget: the label. Every widget can be either shown or
hidden, and widgets that are not children of another shown widget
are hidden by default. If we did not show the label widget here, the
program would run, but we would not see anything.

 Finally, we start event processing. This processing is done by calling
the method QApplication::exec(). The application
object pools all needed events from the underlying window system
and dispatches them to the widgets where they belong. Since widgets know
how to draw themselves, there is nothing left to do. Even if we
obscure our program window with another window, then pull it back
to the front so that it needs repainting, the application object
and the widget take care of the repainting themselves and no application
code is needed. Automation is one of the differences between a toolkit
in which you usually have to dispatch the events yourself and an application
framework that does it all for you.
Now it’s time to compile and run our program. If
you use Windows and the Microsoft Visual C++ compiler,
the following command line should work for you, provided that you
have installed
Qt in c:\qt and assuming
that you have saved the code in a file called
helloworld.cpp:
cl -Ic:\qt\include helloworld.cpp
c:\qt\lib\qt.lib \
 user32.lib gdi32.lib comdlg32.lib ole32.lib imm32.lib wsock32.lib
Depending on which options you selected during the installation of Qt, the library file itself might have a name different from qt. If you use another compiler, please see your compiler documentation
for details about invoking the compiler and linker. Chapter 25 explains
how to use the Visual C++ IDE for Qt programs.
On Unix systems (and on MacOS X, which as far as building
Qt programs is concerned behaves mostly like Unix), a command line
like the following
one should suffice, if you set the environment variable QTDIR as
described in Section 1.6 in Chapter 1:
c++ -I$QTDIR/include -L$QTDIR/lib -lqt -o helloworld helloworld.cpp
The command for calling the C++ compiler
might be different on your system. Starting with c++ usually
works on all systems that use the GNU C++ compiler.
On AIX, use xlC; on Solaris, you can try CC. If you have configured Qt to be multithreaded, you need to use -lqt-mt instead of -lqt.
When you are done with compiling and linking, you can start
your program. You should see a little window greeting you with “Hello,
world.” Congratulations! You have just compiled and run your first
Qt program. Figure 2-1 shows
what it will look like.
[image: Screenshot of the first Qt program]

Figure 2-1. Screenshot of the first Qt program

Before we whip up some more interesting UI elements, we’ll
first talk about how you find your way around the Qt reference documentation.
Exercises

Exercises probably wouldn’t make much sense to you
at this point. Just make sure that you can compile a Qt application
like the one presented in this section on your system, and get your
web browser ready for the next section.

[5] In
industry-quality programs, you should check the return
value of every memory allocation. We omit these checks in the example
programs to avoid hiding the actual purpose.

[6] In earlier releases of Qt, the names of the header files were
shorter and harder to guess. For example, instead of qapplication.h,
you had to use qapp.h. The old names are still
available for backward compatibility.

Using the Qt Reference Documentation

Qt comes with documentation in HTML format, and it is simply
excellent. That’s the main reason why you won’t find
a reference section in this book. It’s not very difficult
to find your way around the documentation, but it pays to take some
time to get acquainted with it. It will help you work faster.
There are two ways to use the reference
documentation. First, you can use any web browser (as described later
in this section), since
the documentation is shipped in plain HTML. Second, you can also use
the program Qt Assistant, which is shipped
together with Qt. The assistant has the advantage that it indexes the
whole documentation, which makes it easier to search for something if
you have absolutely no idea where to look for it in the documentation. On
the other hand, you are probably already comfortable with your web
browser, and its features for bookmarks are likely to be stronger
than those of Qt Assistant as well. Qt Assistant is started by issuing
assistant (assuming that you have installed Qt
correctly as described in the previous chapter). It is fairly
self-explanatory, so we will concentrate on guiding you through
the Qt documentation using a web browser here (Qt Assistant has a
browser-like view, so you can even follow what we describe here
with Qt Assistant, if you like).
To read the documentation, fire up your web browser. Since
Qt does not use any special HTML tricks, and because it doesn’t rely on Java or
JavaScript, you can use any web browser. Konqueror, Netscape Navigator,
Internet
Explorer, Lynx, or Opera are fine, for example. If you have several browsers
to choose from, use the one you already know best. If you still
don’t know which browser to use, pick one with good bookmark
support.
Point your browser to the file index.html in
the doc/html directory of your Qt installation. You
will see something similar to the page in Figure 2-2.
[image: The start page of the Qt reference documentation]

Figure 2-2. The start page of the Qt reference documentation

To get an idea of how Qt’s class tree is organized,
choose the item Annotated Classes in the
API Reference section. If
you click on this link, you will be presented with a list of all
public Qt classes with a one-line description of what each
one does. After you have worked with Qt for some time, you will
probably have mastered this information, thereby allowing you to simply
choose All Classes List. This list does
not contain annotations and it displays more classes on a single screen,
but for now we will stick with the Annotated
Classes. There is also Main Classes, which
shows a list of the classes that the Qt developers think are
especially important. However, this list might not show what is important to you, so
I would suggest you get used to the full list instead.
Let’s read a bit about one of the two classes that
we know already, QLabel. Click on the word QLabel (the
classes are sorted alphabetically) and you will see a screen like
the one shown in Figure 2-3.
[image: The reference documentation for QLabel]

Figure 2-3. The reference documentation for QLabel

The first thing you see is a repetition of the one-line
description of the class. The name of the header file and the name
of the base classes follow. The link to the “List
of all member functions” is useful in case you are unsure about which
methods this class inherits from its ancestors. However, the main thing
to look for in every class description is the list of its public
member functions. These functions form the first large block. It may suffice
to look at this block to find the method you need because the names
are usually self-explanatory. If you need more information
about a method, just click on its name to be led to its long description.
Since the complete documentation is interlinked, you can also click
on the names of other Qt classes that might appear as parameter
types and thus jump to their descriptions.
After the list of public and protected members and the
list of properties (we’ll talk about properties later), you will find
the detailed description of the class. Here you often find complete
examples about how to use this class, which you can copy into your
sources.
Let’s jump back one more time to the documentation’s start page.
In the section “Overviews,”
you will find more interesting information about Qt, but most of it
is of little use to the beginner. Come back after you have
read this section and the next chapter.
Exercises

	Read about the other class
you already know, QApplication, in the reference
documentation.

	Using the Qt
reference documentation, find out which class QFrame is
derived from and which classes are derived from it. For example,
see if you can set the frame style of an object of class
QLabel. (Hint: use the class overview.)

Adding an Exit Button

In this section, we will extend our little “Hello,
world” program with a push button. A push button
is a common interface element on every platform: you just click
on it, and something happens. In Qt, push buttons are represented
by the class QPushButton—a subclass
of QButton, which itself is a subclass of QWidget,
the base class for all Qt UI elements. Besides showing how to create
a push button, which is not very different from
the label we created two sections ago, this example gives you a
first impression of how to react to user interaction in Qt. The
first task will be very simple: when the user presses the button
(which will ingeniously be labeled “Quit”), the whole program
will terminate. Before we start explaining, you should look at the program
in Example 2-2 and its output
in Figure 2-4.
Example 2-2. pushbutton.cpp: Adding a push button to Hello, world
#include <qapplication.h>
#include <qlabel.h>
#include <qpushbutton.h>

int main(int argc, char* argv[])
{
 QApplication myapp(argc, argv);

 QWidget* mywidget = new QWidget;
 mywidget->setGeometry(400, 300, 120, 90);

 QLabel* mylabel = new QLabel("Hello world", mywidget);
 mylabel->setGeometry(10, 10, 80, 30);

 QPushButton* myquitbutton = new QPushButton("Quit", mywidget);
 myquitbutton->setGeometry(10, 50, 100, 30);
 QObject::connect(myquitbutton, SIGNAL(clicked()), &myapp, SLOT(quit()));

 myapp.setMainWidget(mywidget);
 mywidget->show();
 return myapp.exec();
}

[image: Output of the button program]

Figure 2-4. Output of the button program

We had to change some things here to accommodate more than
one widget. Since we now have two, we have to create an additional
widget to bring together the label and the push button.
This additional widget is represented by the variable mywidget.
It is an object of the class QWidget, meaning
that it has no special widget properties, but knows about all the
general things that widgets can do, such as resizing and moving.
In the constructors for the QLabel object
and the QPushButton object,
we pass the address of mywidget as the second
argument. This pass is important because it makes mywidget the
parent of the label and the push button widget. Much of
GUI programming is getting the parent-child relationships
between the widgets right. If a parent is not shown, its children
aren’t either. In our little program, the parent widget mywidget mainly
serves to group the other two widgets together and provide a main
widget for the application (remember, it’s important to
set a main widget).

 Another difference you probably have noticed is that we set
the positions with the method setGeometry() in
this example. This method is defined in QWidget
and is therefore available for both the push button and
the label. The four parameters are the horizontal position, the vertical
position (both of the top left corner), the width, and the
height, all expressed in pixels. The horizontal
and vertical positions are always relative to the parent widget.
In the case of mywidget, there is no parent widget;
the positions are therefore relative to the whole screen. Note that in
Qt, the position 0,0 is the upper-left corner of whatever a widget is
contained in.
Line 17 probably looks like complete magic to you. We’ll
talk about these things in detail in Section 2.4, but here is a short
explanation: whenever a push button
is clicked, it emits a signal—in this case,
a clicked() signal. This signal means “To
whom it may concern: somebody clicked me. Do whatever you want with
this information.” Other parts of the program can then connect to
the signal to be notified whenever the user clicks the
push button. To connect to a signal, you have to provide
a slot, which is then connected to the signal.
You can do whatever is needed to react to the button click
in this slot. In this case, we use a predefined slot from the QApplication class.
This slot, quit(), simply terminates the whole
application.

The signal-and-slot mechanism is the
most important thing to know when programming with Qt. That’s
why the next section explores it further.
Exercises

	Add another push button, which
should sit above the “Hello, world” label to the program
shown in Example 2-2. This
button should be labeled “Click me” and should also terminate
the application when clicked. Hint: you will have to adjust the
button and label positions.

	Change the program you wrote for the last exercise
so that one of the buttons terminates the application when it is
pressed (so the mouse button does not have to be released).
Hint: use the signal pressed().

Introduction to Signals and Slots

As explained in the last section, signals and slots are the
most important topic in Qt programming. To help you understand
how signals and slots work, we’ll look at
how other GUI toolkits link events, such as when the user presses a
button to program code. We will see why there are disadvantages
with these methods, which will give us a better understanding of
why the developers of Qt chose the signal-and-slot mechanism.
If you already know about other GUI toolkits or libraries such as MFC
or Motif, you can skip to Section 2.4.2.
The Problem of Callback Functions

The underlying window system reports user interactions with
so-called “events.” These events are usually very primitive
and just say “the user pressed the left mouse button while
the mouse was at position 100, 200” or “the user pressed
the k key.” Of course, it would be possible to determine from the
mouse position which widget the mouse was over when the user pressed
the button and then react accordingly, but this would be a very
boring, cumbersome, and error-prone task that we
rightfully expect the toolkit to take over for us.
Accordingly, the toolkit determines which widget the mouse
was over—in other words, which widget should be informed about the
mouseclick. The next question is how and where the programmer should
put the code to be executed in reaction to the mouseclick.
GUI toolkits differ most fundamentally in how they answer this question.
Motif uses callbacks.[7] Callbacks are C functions
that must accept certain arguments and are “registered”
with a widget. Every Motif widget knows about certain callback types
for which callback functions may be registered. For example, the
push button knows about callbacks when the mouse is pressed,
released, and clicked. The disadvantage of this method is the missing
type safety. If you register a function with an incorrect
signature (and it accepts the wrong types of parameters), your
application will probably crash. The compiler cannot guard you from
this outcome.
There is no connection between the widget and the callback,
which is just any other standalone function that happens to be registered
as a callback function. In addition, when it comes to object-oriented
programming with C++, callbacks are even more
awkward. Because of the implicitly passed this pointer,
you can only use static methods as callbacks.
Other toolkits, such as wxWindows, a free C++ GUI toolkit
for Unix and Windows
systems, rely exclusively on virtual methods. Whenever
you want to be informed about a user event on a widget, you have
to derive your own class from that widget’s class and override
a particular virtual method there. Usually, a widget class has several
virtual functions to override, just like a Motif widget knows about
several callback types. You override only those for which you want
to define a reaction. Overriding has the advantage of being a clean object-oriented
solution, but it does not scale well to large user interfaces. You
find yourself deriving new classes all the time just because you
want to react to a button click. Also, a common wish
when programming GUI programs is to separate the user interface
from the core application functionality, which is not possible when
you have to program application functionality in virtual methods
of GUI classes. Of course, you can simply call functions or methods
from other classes there, but it is still cumbersome.
The Microsoft Foundation Classes (MFC), which are now bundled
with most C++ compilers on the MS Windows
platform, use yet another method. They use macros to link C++ methods
to events from the window system (called “messages” in
Windows lingo). This use of macros avoids problems with virtual functions and
means less overhead in the executable code. Virtual functions always
involve a vtable, which is a jump table for all the
virtual functions of a class, and another pointer indirection when
calling them.
Other problems are introduced here, however. First, the
message maps that these macros form are hard to read and
hard to write. This might not be a serious problem for most MFC programmers,
since the IDE usually provides “smart” dialog boxes or wizards
to help create them. On the other hand, many programmers believe
that a toolkit should be usable on its own, without support from
a certain type of IDE. In addition, one of the design goals of C++ was
to remove the need for the preprocessor. The message maps are not
type safe in any way, since macros can hardly be type safe.
This is not a problem if your IDE ensures that you cannot get the types
wrong, but it would be much better if the compiler had a chance
to do it. Also, all these wizards separate you more from your code
than you might want. This separation has been dubbed “the same as if the
compiler would delete the source code after having generated the object
file”—in other words, you don’t really know what all these tools have
generated for you. Usually, this generated code is very hard to
understand.

A New Approach

To overcome some of the difficulties mentioned in the last
section, the developers of Qt invented the signal-and-slot
mechanism. While it has some disadvantages of its own, its many
advantages have led to the adoption of this general principle in
other GUI toolkits as well.

The idea is that a widget sends out (emits)
a signal that something has happened without knowing who will use it.[8] This is
not unlike the old telephone switchboards, for which incoming lines
were connected to outgoing lines via patch cables. Neither the incoming nor
the outgoing lines needed to know anything about the other lines;
they didn’t even need to know whether they would be used.
On the other side is the program code, which should be executed
whenever a signal is emitted. This program code can connect to any
signal that has an appropriate type (we’ll see in a minute
what that means). The only thing this code (or rather, its programmer)
has to know is which signals are available and what their types
are—just like you have to know which incoming and outgoing lines
are available to use them on a switchboard. To bring the
signal and your code together, you have to connect them—just
like plugging a patch cable into the two outlets in question. Your
code must fulfill one technical condition: it must be declared a slot.
We’ll see in a minute what that means.
We now have signals that are emitted by widgets (not only
by widgets, but that is the most common use) and slot
code that should be called whenever a signal is emitted.
The widget that emits the signal does not know who connected
to it.[9] In fact, in most programs,
many signals will never be connected to any slot. On the other hand,
when you write a slot, you do not have to know beforehand which
signals you will connect to it. Some dark and mysterious part of
the Qt library, nebulously called the “Qt kernel” and manifested
in the class QObject, takes care of the connections
and passes signals on to slots when this connection is desired.

 There is a strict separation between the different
parts. The reason this strict separation is desirable is that it
lends itself to component-based programming. In this programming
paradigm, you write components that fulfill a defined role. The
components are defined via their external interface. In Qt components,
this interface mainly consists of the signals they emit and the slots they
provide. Components can then be exchanged between applications.
Component-based programming has been around for quite
a long time, but it has only really come to the attention of a wider
public with the advent of JavaBeans.
The main point about components is that components should
not need to know what they will be used for.

Signals and Slots in Qt

It’s time that we take a closer look at how the signal-and-slot
mechanism is implemented in C++—a language that
makes no special provisions for component-based programming
apart from its abstraction mechanisms.
Qt defines some new keywords, which are translated by the
preprocessor into syntactically correct C++. In
addition, a special kind of additional preprocessor is needed that extracts
information about signals and slots from class definitions, and then
generates glue code. While this might not be an optimal solution,
it is not as inconvenient as it sounds and it enables a very efficient
implementation.
Let’s start with some general requirements. Signals
and slots are only available within a C++ class—you
cannot make a standalone function a slot.
This is not a real restriction because
standalone functions should be used very sparingly in C++ anyway.
Next, every class that wants to define at least a single signal
or slot must be derived from the class QObject.
Since you will find yourself deriving classes from
QWidget or
even more specialized classes most of the time, you usually don’t
have to worry about this because QWidget is
derived from QObject. Finally, every definition
of a class that wants to declare at least a single signal or slot
must contain the macro Q_OBJECT somewhere.
Remember not to put a semicolon after the Q_OBJECT macro
because some compilers will choke on it.
To put this information together, here is a general skeleton for a class
that uses signals and/or slots:
class MyClass : public QObject
{
 Q_OBJECT
...
signals:
// Your signals go here, e.g.
 void somethingDone();
...
public slots:
// Your public slots go here, e.g.
 void slotDoSomething();

private slots:
// Your private slots go here, e.g.
 void slotDoSomethingInternal();

// You can of course have more declarations.
};
Signals are declared by using the keyword signals just
like an access specifier in your class declaration. Apart from that,
you declare them just like any member function. You never have to
implement signals directly—just declare them and Qt takes
care of the rest.
When your component wants to send out a signal, it uses the
keyword emit.[10] This could
look like the following (provided that void highlighted(int) has
been declared as a signal in the class declaration):
emit highlighted(5);
Slots are declared and implemented just like any other C++ method.
In fact, they are methods that can just as well be called the conventional
way. The only thing you have to take care of is adding the keyword slots to
the access specifier for the methods, as shown in the previous example.
Of course, you can also define protected slots, and making
them virtual is no problem. The only thing you can’t do
with them is make them static.
Slots can have any parameters, but to be connected to a certain
signal, they must use the same parameter types as the signal. If
you want to connect your slot later to a signal that has one int parameter,
your slot should have one int parameter, too.[11] It’s
a good idea to use generic (possibly built-in) types for
the parameters of your slots. This way, chances are higher that
you can reuse your component. If you use int as
a parameter type, everyone can connect to your slot because every
program knows about int. If
you use MySpecialAndSomehowRestrictedIntegerType as
a parameter type, on the other hand, only the programs that know about this type
can reuse your component.
When determining the types of
the arguments of signals and slots, remember that most of the time it is not
advisable to pass full objects around; doing so can be very slow. You
should instead use references or pointers. There are, however, quite
a lot of classes in Qt that are implicitly shared, which means that
copying them and passing them around is not much slower than using
pointers or references. Among these classes is the class QColor,
which is why we pass full objects of this class around in the examples
in this and the next chapter.

 You can name your slot any way you want, but some programmers
have adopted the convention to have the term slot in
the slot name. If you don’t mind typing the extra four
letters, using this convention could be a good
idea. On the other hand, the predefined
Qt slots don’t adhere to this convention. Decide for yourself.
To use signals and slots in your code, you must be able to
bring them together. This is done with the method QObject::connect(),
which connects one signal to one slot. It comes in many overloaded
variants. For the first part of this book, however, we will use only the
static variant with four parameters. This one can be used everywhere
in a program, even in standalone functions. We recommend that you
always use this version, since you don’t
have to remember which parameter to leave out in which position.
This method needs to know four things: the object that sends
out the signal, the signal that it should connect the slot to, the
object that will receive the signal, and the slot that will be connected
to the signal. The signal and the slot are just typed in with their names
and parameter types and wrapped
with SIGNAL() and SLOT(),
respectively. A common mistake in this place is to specify values
instead of types, as in writing SIGNAL(activated(3)) instead
of SIGNAL(activated(int)). Also, Qt does not allow default
arguments.
To make this concept less abstract, here is an example:
QObject::connect(mymenu, SIGNAL(activated(int)),
 mycodeobject,
 SLOT(slotDoMenuFunction(int)));
You don’t need to understand the exact parameters
now, so this example should just give you an impression of
what a connect() call
looks like.
You can connect any number of slots to a signal and you can
connect any number of signals to a slot, both by calling
QObject::connect() multiple times. The order in which the
slots are called is not guaranteed. Therefore, you cannot rely on
the fact that the slots will be called in the order in which you
have connected them to the signals. There are some plans to define
an order for the calls of the slots, but so far, you should not
rely on any order.

Another
Example of Signals and Slots

The following example is more complex. Since you do not yet
know how to write your own widgets, we won’t emit user-defined signals
here. We’ll just connect a predefined signal with a predefined
slot.
Our example consists of a QSlider, a longish
widget with a knob for choosing a numerical value within a range,
and a QLCDNumber, which is a nice little widget that displays
a number, just as seven-segment LCD displays do. Naturally,
the number display should reflect the setting of the slider. You
can find the code in Example 2-3. Figure 2-5 shows what the output
should look like.
Example 2-3. slidernumber.cpp: connecting a slider and an LCD number
#include <qapplication.h>
#include <qslider.h>
#include <qlcdnumber.h>

int main(int argc, char* argv[])
{
 QApplication myapp(argc, argv);

 QWidget* mywidget = new QWidget();
 mywidget->setGeometry(400, 300, 170, 110);

 QSlider* myslider = new QSlider(0, // minimum value
 9, // maximum value
 1, // step
 1, // initial value
 QSlider::Horizontal, // orientation
 mywidget // parent
);
 myslider->setGeometry(10, 10, 150, 30);

 QLCDNumber* mylcdnum = new QLCDNumber(1, // number of digits
 mywidget // parent
);
 mylcdnum->setGeometry(60, 50, 50, 50);
 mylcdnum->display(1); // display initial value

 // connect slider and number display
 QObject::connect(myslider, SIGNAL(sliderMoved(int)),
 mylcdnum, SLOT(display(int)));

 myapp.setMainWidget(mywidget);
 mywidget->show();
 return myapp.exec();
}

[image: A slider and a number display]

Figure 2-5. A slider and a number display

In lines 13 through 19, a QSlider widget
is created. We pass several parameters in the constructor that determine
which values can be chosen, how the slider looks, etc. In lines
22 through 24, we create a QLCDNumber widget
and make it display one digit only. The crucial lines in this program
are 29 and 30. We connect the slider’s
signal sliderMoved() (which is
emitted whenever the user moves the slider knob) to the
display’s display() slot. Now the position
of the slider knob is automatically reflected by the number display without
a single line of application code (apart from
the connect() call,
of course).

 Note how we call the display() slot manually
to display an initial value in the number display.
We can do this since a slot is just another ordinary method of
a class.
Also note how the parameters of the signal and the slot match:
both have one parameter of type int. In this case, a
value is passed from the signal to the slot. Compare
this case with the clicked()
signal in Example 2-2, where the emission
of the signal was the information itself. Here, we get two bits
of information: that the slider was moved and its new value. This
value is passed to the slot just as any other actual parameter would
be.

Running moc

Whenever you define a class of your own that uses signals
or slots, it is not enough to simply compile it. You
must also run Meta-Object Compiler (moc)
supplied with Qt on the file the class declaration
is in. Running moc outputs glue code that is
needed for the signal/slot mechanism to work. You have
two possibilities to add this glue code to your application:
	Include the code generated by moc in
one of your source files—usually the source file that implements
the class declaration moc was run on—with a
simple #include "moc-file.cpp" statement. This solution
is easy, but including the program code via the preprocessor
is considered bad style and does not scale well to large programs. For
small examples, however, it does the job.
To do so, run moc on the file containing
the class declaration:
moc -o moc_file.cpp myfile.h
and then compile myfile.cpp the usual
way. It then includes the moc-generated
code. In the previous command line, the -o
option specifies that the following filename is the name of the
output file; the next filename is the input file.

	Compile the code generated by moc separately
and link it to your application. This is the preferred style. You
can simply define rules in your makefiles to do so, and programs
are available that generate these rules automatically. We’ll
talk about these programs in Section 22.4 in Chapter 22. To follow
this method, call moc as shown, then compile both
the normal source file and the
moc-generated
file (i.e., myfile.cpp and
moc-file.cpp). Finally, link the two resulting
object files.

If you fail to either include Q_OBJECT in
your class or link the moc-generated
code to your application, the linker will tell you.
It’s not always easy to find out what you have done wrong,
however, especially if you are not yet accustomed to using moc.
For example, here is a typical linker output that you might see if you
forget to link the moc-generated
file from g++ on a
Unix or MacOS X system:
/tmp/ccD1LUlA.o: In function `MyClass::MyClass(void)':
/tmp/ccD1LUlA.o(.text+0x1e): undefined reference to `MyClass::QPaintDevice
 virtual table'
/tmp/ccD1LUlA.o(.text+0x25): undefined reference to `MyClass virtual table'
/tmp/ccD1LUlA.o: In function `MyClass::~MyClass(void)':
/tmp/ccD1LUlA.o(.text+0x7ad): undefined reference to `MyClass::QPaintDevice
 virtual table'
/tmp/ccD1LUlA.o(.text+0x7b4): undefined reference to `MyClass virtual table'
Here is the message from Visual C++ for the same problem:
myclass.obj : error LNK2001: unresolved external symbol "protected:
 virtual void __thiscall MyClass::initMetaObject(void)"
 (?initMetaObject@MyClass@@MAEXXZ)
myclass.obj : error LNK2001: unresolved external symbol "public: virtual
 char const * __thiscall MyClass::className(void)const "
 (?className@MyClass@@UBEPBDXZ)
myclass.obj : error LNK2001: unresolved external symbol "public: static
 class QMetaObject * __cdecl MyClass::staticMetaObject(void)"
 (?staticMetaObject@MyClass@@SAPAVQMetaObject@@XZ)
myclass.exe : fatal error LNK1120: 3 unresolved external references
If you forget to include the Q_OBJECT macro,
moc itself
will give you the following error message:
Error: The declaration of the class "MyClass" contains properties but no
 Q_OBJECT macro!
In addition, there will be compiler error messages.

Exercises

	Change Example 2-3 so that
the number is updated only when the user releases the slider knob.
(Hint: check the documentation of QSlider for
other signals it emits.)

	Add two push buttons to Example 2-3 to increase and decrease
the slider value by one.

[7] The
term “callback” sometimes refers these functions in
other toolkits as well, though these functions might have another
official name in that toolkit’s lingo. Whenever you hear “callback,”
think “function that is called in reaction to some user
interaction on a widget.”

[8] Note that Qt signals have nothing to do with Unix signals, even though both are notification mechanisms. Among
other differences, Qt signals are synchronous (they are simple
function calls), while Unix signals are
asynchronous.

[9] It can ask for this information by reimplementing QObject::connectNotify(),
but this is generally not a good idea because it makes for tighter
coupling of the components.

[10] Note that emit is
absolutely Qt-specific; it is not some strange and unknown
feature of your C++ compiler. The preprocessor
makes sure that emit resolves to valid C++ code.

[11] It is also possible for a slot to discard parameters. For
example, a signal with an int parameter can be
connected to a slot with no arguments.

Event Handling and Simple Drawings with QPainter

Now that you know how to create widgets and how to use signals
and slots, we can target our initial goal: writing a small paint
program. In this section, we will learn how to use the class QPainter,
which encapsulates Qt’s drawing routines. At the end
of this section, we will have a small program for scribbling your
own drawings in a predefined color. You will also learn a bit about
handling low-level events.

 QPainter is
one of Qt’s strengths. It is a class that bundles many
highly optimizing routines for drawing graphical objects such as
lines, circles, and Bézier curves. In addition, it supports different
coordinate systems and geometrical transformations including rotating,
scaling, and shearing. Furthermore, it supports the use of these operations
with widgets, pixmaps, metafiles, and printers alike.
Since we want to use the mouse for drawing, we have to learn
how to react to mouse events that are not related to special widgets
such as push buttons. We will have to be notified that the
mouse has been pressed, released, or dragged in the plain void.
You might suspect that we are in for more signals and slots now,
but that is not the case. The developers of Qt have chosen another
mechanism to report low-level events: virtual methods.
As you may recall from the last chapter, toolkits like wxWindows
rely exclusively on virtual methods for event reporting. We have
already explained why this is a bad idea: you always have to derive
your own classes just to get notified about a button click.
This criticism applies only to widgets that work out of the
box, though; a push button does everything itself. When
the user clicks on it, it changes its appearance accordingly and
notifies the application program via a signal. When it is obscured
by some other window and later unhidden again, it automatically
redisplays itself without help from the rest of the application or the window
system.
This situation is different in roll-your-own
widgets. You have to derive your widget from QWidget anyway
to handle the redisplay, and if you already have derived your own
class, it does not matter much if you override some virtual methods
for low-level events such as mouse movements and key presses.
Some Qt programming beginners are confused as to why Qt has
two ways to report user interaction to the application: signals
and virtual methods. They are not sure how Qt uses them, either.
To use an analogy from language, look at low-level events
such as mouse movements and key presses as pure syntax. No meaning is
associated with them. On the other hand, pressing
and releasing the mouse button over a push button has semantics.
Obviously, the user wanted to click that button. These higher-level
events are reported with signals, while low-level events
like simple mouse movements are reported with virtual methods. We
will call the former “semantic events” or “high-level
events” and the latter “syntactic events” or “low-level
events.”
Let’s plunge right into the code for the first iteration
of our painting application. You can find it in Example 2-4 along with the output in Figure 2-6.
Example 2-4. qtscribble1.cpp: a first try at a painting program
#include <qapplication.h>
#include <qpainter.h>
#include <qpixmap.h>
#include <qwidget.h>

/**
 * A class that lets the user draw with the mouse. The
 * window knows how to redraw itself.
 */
class ScribbleWindow : public QWidget
{
public:
 ScribbleWindow();

protected:
 virtual void mousePressEvent(QMouseEvent*);
 virtual void mouseMoveEvent(QMouseEvent*);
 virtual void paintEvent(QPaintEvent*);
 virtual void resizeEvent(QResizeEvent*);

private:
 QPoint _last;

 QPixmap _buffer;
};

/** The constructor. Rather simple for now. */
ScribbleWindow::ScribbleWindow()
{
 // don't blank the window before repainting
 setBackgroundMode(NoBackground);
}

/**
 * This virtual method is called whenever the user presses the
 * mouse over the window. It records the position of the mouse
 * at the time of the click.
 */
void ScribbleWindow::mousePressEvent(QMouseEvent* event)
{
 _last = event->pos(); // retrieve the coordinates from the event
}

/**
 * This virtual method is called whenever the user moves the mouse
 * while the mouse button is pressed. If we had called
 * setMouseTracking(true) before, this method would also be called
 * when the mouse was moved without any button pressed. We know that
 * we haven't, and thus don't have to check whether any buttons are
 * pressed.
 */
void ScribbleWindow::mouseMoveEvent(QMouseEvent* event)
{
 // create a QPainter object for drawing onto the window
 QPainter windowpainter;
 // and another QPainter object for drawing into an off-screen pixmap
 QPainter bufferpainter;

 // start painting
 windowpainter.begin(this); // this painter paints onto the window
 bufferpainter.begin(&_buffer); // and this one paints in the buffer

 // draw a line in both the window and the buffer
 windowpainter.drawLine(_last, event->pos());
 bufferpainter.drawLine(_last, event->pos());

 // done with painting
 windowpainter.end();
 bufferpainter.end();

 // remember the current mouse position
 _last = event->pos();
}

/**
 * This virtual method is called whenever the widget needs
 * painting, for example, when it has been obscured and then revealed again.
 */
void ScribbleWindow::paintEvent(QPaintEvent* event)
{
 // copy the image from the buffer pixmap to the window
 bitBlt(this, 0, 0, &_buffer);
}

/**
 * This virtual method is called whenever the window is resized. We
 * use it to make sure that the off-screen buffer is always the same
 * size as the window.
 * In order to retain the original scribbling, it is first copied
 * to a temporary buffer. After the main buffer has been resized and
 * filled with white, the image is copied from the temporary buffer to
 * the main buffer.
 */
void ScribbleWindow::resizeEvent(QResizeEvent* event)
{
 QPixmap save(_buffer);
 _buffer.resize(event->size());
 _buffer.fill(white);
 bitBlt(&_buffer, 0, 0, &save);
}

int main(int argc, char* argv[])
{
 QApplication myapp(argc, argv);

 ScribbleWindow* mywidget = new ScribbleWindow();
 mywidget->setGeometry(50, 50, 400, 400);

 myapp.setMainWidget(mywidget);
 mywidget->show();
 return myapp.exec();
}

[image: Output from Example 2-4]

Figure 2-6. Output from Example 2-4

In this example (whose output is shown in Figure 2-6), we define a class called ScribbleWindow that
is derived from QWidget. We override
four virtual methods: paintEvent(), mousePressEvent(), mouseMoveEvent(),
and resizeEvent(). To reduce flickering when the window is repainted, the constructor calls setBackgroundMode(NoBackground).

 In mousePressEvent(), we record that the
mouse was pressed at this position. When we receive notification
that the mouse was moved, we draw a line from this point to
the new mouse position. Drawing from this point gives us a smooth,
contiguous line instead of several scattered points.

 mouseMoveEvent() is one of the most interesting
methods in this example. Here it is again:
void ScribbleWindow::mouseMoveEvent(QMouseEvent* event)
{
 // create a QPainter object for drawing onto the window
 QPainter windowpainter;
 // and another QPainter object for drawing into an off-screen pixmap
 QPainter bufferpainter;

 // start painting
 windowpainter.begin(this); // this painter paints onto the window
 bufferpainter.begin(&_buffer); // and this one paints in the buffer

 // draw a line in both the window and the buffer
 windowpainter.drawLine(_last, event->pos());
 bufferpainter.drawLine(_last, event->pos());
 // done with painting
 windowpainter.end();
 bufferpainter.end();

 // remember the current mouse position
 _last = event->pos();
}
To explain why almost all the code here comes in pairs,
we have to talk about paint events.
Every widget should be able to paint itself. The window system
usually does not help the widget to remember its contents when it
becomes obscured.[12] Therefore, the widget has to remember whatever
has been painted into it so that it can repaint itself whenever the
window system sends it a paint event. A widget can remember its contents
in several ways:
	It can use another off-screen
buffer that has the same size as the widget that contains a copy
of the widget contents. This off-screen buffer holds pixels
just as the widget does, but it does not show them on screen.
Qt provides the class QPixmap for these off-screen
buffers, which, like QWidget, is derived from
QPaintDevice and can be used for drawing just
as QWidget can. This technique is simple,
but it is only suitable for small programs. An additional amount of memory
proportional to the size of the widget is needed to store the buffer.

	The widget can represent its contents nongraphically.
For example, in our program, we only work with lines between two
points. We could maintain a list of the lines that the user has
drawn and restore the widget contents by reading this list and
redrawing the lines. This method is mainly used in object-oriented
drawing programs, such as CAD programs, because these programs have
to save the drawn objects anyway.

	The third
possibility is saving the drawings in a vectorial way.
Instead of drawing into a QWidget or a QPixmap object,
we can draw into a QPicture object that records
the drawing actions, such as “drawing a line from (10,10)
to (20,20),” rather than the pixels.

 Back to ScribbleWindow::mouseMoveEvent().
Since we want to paint in two different QPaintDevices—the
window and the pixmap that is serving as an off-screen buffer—we
need two QPainter objects. You may draw things
with a QPainter object only after you have “opened”
it for painting, and you must “close” it afterwards. That’s what
the methods QPainter::begin() and QPainter::end() are
for. QPainter::begin() expects a pointer to
a QPaintDevice (e.g., a QWidget or
a QPixmap) object on which the QPainter will
draw. If you just create the QPainter object
for a few drawing operations on a single window and then throw it away,
you can just pass the QPaintDevice object to
draw on in the constructor of QPainter. In this
case, you do not need the calls to begin() and end(). We draw our line in both the window and the buffer and finally record
the new mouse position as a starting point for the next line.
If we had used the second or third of the three techniques mentioned
earlier, we would not have any drawing operations here. Instead,
we would just record what to draw later and make all the drawing
operations in paintEvent().

 Let’s move on to ScribbleWindow::paintEvent(),
which is repeated here:
void ScribbleWindow::paintEvent(QPaintEvent* event)
{
 // copy the image from the buffer pixmap to the window
 bitBlt(this, 0, 0, &_buffer);
}
This method is called whenever the window needs refreshing.
Since we have an exact copy of the image that the window should
show in our buffer, we simply copy this image into the window. To do so,
we use the function bitBlt() whenever rectangular
areas of pixels should be copied from one place to another. This
function creates logical operations between the pixel source and the destination.
See the Qt documentation on QPaintDevice for
more information.
Since we repaint every pixel in the whole window by copying the whole
buffer over, it is not necessary that Qt clears the window
before calling paintEvent(). To turn off this
default behavior, we have called setBackgroundMode(NoBackground) in the constructor of our class. Doing so tells Qt never
to clear the window when repainting is necessary. (For more about
this technique, see Section 9.6 in Chapter 9.)
Finally, we have to look at the method ScribbleWindow::resizeEvent():
void ScribbleWindow::resizeEvent(QResizeEvent* event)
{
 QPixmap save(_buffer);
 _buffer.resize(event->size());
 _buffer.fill(white);
 bitBlt(&_buffer, 0, 0, &save);
}
In this method, we make sure that the off-screen
buffer is always the same size as the window itself. Checking the size is important
because the buffer must be able to contain all the pixels drawn
into the window. If you never resize the window yourself, this method
will only be called once when ScribbleWindow::setGeometry() is
called from within main(). However, if you do
resize the window, this method is called each time you do so.
There is an additional twist here: if you resize a pixmap
object to a size that is larger than the previous one, the additional
pixels have an undefined value. Therefore, we fill the whole pixmap
with white. Unfortunately, filling the pixmap also
destroys the scribblings made
so far, and since the user will not expect his scribblings to disappear
just because he resized the window, we have to think of a solution.
In this case, we chose the easiest one: the old state of the buffer
pixmap is simply copied over to a new pixmap save as a
temporary buffer. After the buffer pixmap _buffer has
been cleared, we simply copy over the saved data from the temporary
buffer with bitBlt(). If your buffer is already large,
you might not want to do this. In this case, you could fill only
the new parts of _buffer—but this requires
more code.
Exercises

	Extend the program in Example 2-4 so that it draws
wider lines when you draw with the right mouse button. You can
learn how to differentiate between mouse buttons in the documentation
of QMouseEvent.

	Extend the program in Example 2-4 so that you
can change line colors with key presses. To be notified about key presses in the scribble window, implement
ScribbleWindow::keyPressEvent(QKeyEvent*). You can use
the method QPainter::setPen() to choose another
drawing color. You can pass it either a QColor object
that you have created yourself or just one of the
predefined color objects: black, white,
darkGray, gray, lightGray,
red, green, blue,
cyan, magenta, yellow,
darkRed, darkGreen, darkBlue,
darkCyan, darkMagenta, and darkYellow.
You do not need to provide access to all these colors—pick three or
four that you like best.

	Extend the program in Example 2-4 so
that double-clicking the mouse in the window exits the
program. You can be notified about double-clicks by overriding
QWidget::mouseDoubleClickEvent() in the class
ScribbleWindow. Note: Closing the application can
be done by calling qApp->quit().

[12] Some servers for the X Window
System on Unix platforms have a backing store that does this, but
you cannot expect your user to have the necessary hardware to utilize
it.

Chapter 3. Learning More About Qt

By now, you know the basics of programming with Qt, but we
have only begun. In this chapter, we continue to work on our painting
program by adding features such as menus and file access.
Adding Menus

In this section, you will learn how to work with menus. Qt
menus mainly consist of two classes: QMenuBar and QPopupMenu.
Both are derived from a common base class, QMenuData.
Thus, working with menu bars and pop-up menus
is very similar. A menu bar serves as a container for its menus,
which are just objects of the type QPopupMenu. These
menus can have other submenus, which are also objects of type QPopupMenu.
In addition, you can also use pop-up menus (also called contextual menus) directly,
for example, when the user presses the right mouse button.

For our painting program, we will define three menus:
a File menu that will contain only a Quit entry, a Color menu
that will allow the user to choose the painting color, and a Help menu
that will contain only an About entry. We’ll
add more items to these menus later.
Again, we first present you with the complete code and tell
you how it works afterwards. The code is in Example 3-1; its output is in Figure 3-1. The new or
changed lines have been set in boldface for your convenience.
Example 3-1. qtscribble2.cpp: Adding a menu bar to our painting application
#include <qapplication.h>
#include <qmenubar.h>
#include <qmessagebox.h>
#include <qpainter.h>
#include <qpixmap.h>
#include <qpopupmenu.h>
#include <qwidget.h>

enum MenuIDs{
 COLOR_MENU_ID_BLACK,
 COLOR_MENU_ID_RED,
 COLOR_MENU_ID_BLUE,
 COLOR_MENU_ID_GREEN,
 COLOR_MENU_ID_YELLOW };

/**
 * A class that lets the user draw with the mouse. The
 * window knows how to redraw itself.
 */
class ScribbleWindow : public QWidget
{
 Q_OBJECT // necessary because ScribbleWindow contains slots

public:
 ScribbleWindow();
 ~ScribbleWindow();

protected:
 virtual void mousePressEvent(QMouseEvent*);
 virtual void mouseMoveEvent(QMouseEvent*);
 virtual void paintEvent(QPaintEvent*);
 virtual void resizeEvent(QResizeEvent*);

private slots:
 void slotAbout();
 void slotAboutQt();
 void slotColorMenu(int);

private:
 QPoint _last;
 QColor _currentcolor;

 QPixmap _buffer;
 QMenuBar* _menubar;
 QPopupMenu* _filemenu;
 QPopupMenu* _colormenu;
 QPopupMenu* _helpmenu;
};

#include "qtscribble2.moc"

/** The constructor. Initializes the member variables and the menu
 * system.
 */
ScribbleWindow::ScribbleWindow()
{
 _currentcolor = black;

 // don't blank the window before repainting
 setBackgroundMode(NoBackground);

 /* The next lines build the menu bar. We first create the menus
 * one by one, then add them to the menu bar. */
 _filemenu = new QPopupMenu; // create a file menu
 _filemenu->insertItem("&Quit", qApp, SLOT(quit()));
 _colormenu = new QPopupMenu; // create a color menu
 _colormenu->insertItem("B&lack", COLOR_MENU_ID_BLACK);
 _colormenu->insertItem("&Red", COLOR_MENU_ID_RED);
 _colormenu->insertItem("&Blue", COLOR_MENU_ID_BLUE);
 _colormenu->insertItem("&Green", COLOR_MENU_ID_GREEN);
 _colormenu->insertItem("&Yellow", COLOR_MENU_ID_YELLOW);
 QObject::connect(_colormenu, SIGNAL(activated(int)),
 this, SLOT(slotColorMenu(int)));
 _helpmenu = new QPopupMenu; // create a help menu
 _helpmenu->insertItem("&About QtScribble", this, SLOT(slotAbout()));
 _helpmenu->insertItem("About &Qt", this, SLOT(slotAboutQt()));
 _menubar = new QMenuBar(this); // create a menu bar
 _menubar->insertItem("&File", _filemenu);
 _menubar->insertItem("&Color", _colormenu);
 _menubar->insertSeparator();
 _menubar->insertItem("&Help", _helpmenu);
}

/**
 * The destructor. Does nothing for now.
 */
ScribbleWindow::~ScribbleWindow()
{
}

/**
 * This virtual method is called when the pointer is on the window
 * and the user presses the mouse button. It just records the position
 * of the mouse at the time of the click.
 */
void ScribbleWindow::mousePressEvent(QMouseEvent* event)
{
 _last = event->pos(); // retrieve the coordinates from the event
}

/**
 * This virtual method is called when the pointer is on the window
 * and the user presses the mouse button (this is also known as
 * "dragging"). If we had called setMouseTracking(true) before,
 * this method would also be called when the mouse was moved without
 * any button pressed. We know that we haven't, and thus don't have
 * to check whether any buttons are pressed.
 */
void ScribbleWindow::mouseMoveEvent(QMouseEvent* event)

 // create a QPainter object for drawing onto the window
 QPainter windowpainter;
 // and another QPainter object for drawing into an off-screen pixmap
 QPainter bufferpainter;

 // start painting
 windowpainter.begin(this); // this painter paints onto the window
 bufferpainter.begin(&_buffer); // and this one in the buffer

 // set a standard pen with the currently selected color
 windowpainter.setPen(_currentcolor);
 bufferpainter.setPen(_currentcolor);

 // draw a line in both the window and the buffer
 windowpainter.drawLine(_last, event->pos());
 bufferpainter.drawLine(_last, event->pos());

 // done with painting
 windowpainter.end();
 bufferpainter.end();

 // remember the current mouse position
 _last = event->pos();
}

/**
 * This virtual method is called whenever the widget needs
 * painting, such as when it has been obscured and then revealed again.
 */
void ScribbleWindow::paintEvent(QPaintEvent* event)
{
 // copy the image from the buffer pixmap to the window
 bitBlt(this, 0, 0, &_buffer);
}

/**
 * This virtual method is called whenever the window is resized. We
 * use it to make sure that the off-screen buffer is always the same
 * size as the window.
 * In order to retain the original drawing, it is first copied
 * to a temporary buffer. After the main buffer has been resized and
 * filled with white, the image is copied from the temporary buffer to
 * the main buffer.
 */
void ScribbleWindow::resizeEvent(QResizeEvent* event)
{
 QPixmap save(_buffer);
 _buffer.resize(event->size());
 _buffer.fill(white);
 bitBlt(&_buffer, 0, 0, &save);
}

void ScribbleWindow::slotAbout()
{
 QMessageBox::information(this, "About QtScribble 2",
 "This is the QtScribble 2 application\n"
 "Copyright 1998-2001 by Matthias Kalle Dalheimer\n"
);
}

void ScribbleWindow::slotAboutQt()
{
 QMessageBox::aboutQt(this, "About Qt");
}

void ScribbleWindow::slotColorMenu(int item)
{
 switch(item)
 {
 case COLOR_MENU_ID_BLACK:
 _currentcolor = black;
 break;
 case COLOR_MENU_ID_RED:
 _currentcolor = darkRed;
 break;
 case COLOR_MENU_ID_BLUE:
 _currentcolor = darkBlue;
 break;
 case COLOR_MENU_ID_GREEN:
 _currentcolor = darkGreen;
 break;
 case COLOR_MENU_ID_YELLOW:
 _currentcolor = yellow;
 break;
 }
}

int main(int argc, char* argv[])
{
 QApplication myapp(argc, argv);

 ScribbleWindow* mywidget = new ScribbleWindow();
 mywidget->setGeometry(50, 50, 400, 400);

 myapp.setMainWidget(mywidget);
 mywidget->show();
 return myapp.exec();
}

[image: Painting application with menu bar]

Figure 3-1. Painting application with menu bar

The first thing to note is the inclusion of the macro Q_OBJECT in
the class declaration of ScribbleWindow. It is
needed because this class uses the signal-and-slot
mechanism. It does so by providing three slots: slotAbout(), slotAboutQt(), and slotColorMenu().

 The constructor is much larger now because we create our
menu system here:
ScribbleWindow::ScribbleWindow()
{
 // initialize member variables
 _currentcolor = black;

 // don't blank the window before repainting
 setBackgroundMode(NoBackground);
 /* The next lines build up the menu bar. We first create the menus
 * one by one and add them afterwards to the menu bar. */
 _filemenu = new QPopupMenu; // create a file menu
 _filemenu->insertItem("&Quit", qApp, SLOT(quit()));

 _colormenu = new QPopupMenu; // create a color menu
 _colormenu->insertItem("B&lack", COLOR_MENU_ID_BLACK);
 _colormenu->insertItem("&Red", COLOR_MENU_ID_RED);
 _colormenu->insertItem("&Blue", COLOR_MENU_ID_BLUE);
 _colormenu->insertItem("&Green", COLOR_MENU_ID_GREEN);
 _colormenu->insertItem("&Yellow", COLOR_MENU_ID_YELLOW);
 QObject::connect(_colormenu, SIGNAL(activated(int)),
 this, SLOT(slotColorMenu(int)));

 _helpmenu = new QPopupMenu; // create a help menu
 _helpmenu->insertItem("&About QtScribble", this, SLOT(slotAbout()));
 _helpmenu->insertItem("About &Qt", this, SLOT(slotAboutQt()));
 _menubar = new QMenuBar(this); // create a menu bar
 _menubar->insertItem("&File", _filemenu);
 _menubar->insertItem("&Color", _colormenu);
 _menubar->insertSeparator();
 _menubar->insertItem("&Help", _helpmenu);
}

First we create each menu by creating objects of class QPopupMenu and
adding menu entries with insertItem(). Then we create an object of class QMenuBar and insert
the menus into this menu bar. You could also use the class QMainWindow,
which automatically provides an empty menu bar and arranges it
in the application window together with any toolbars and status
bars that you might have. For now, we will insert our menu bar by
hand. Another option to insert menu entries is using
actions. We will cover actions later as
well.

There are 15 overloaded versions of
QMenuData::insertItem(),
most of which have default arguments. The version you have to use
depends on two things: whether you want to insert a string, a pixmap,
or both in the menu, and how you want to be notified when a certain
menu entry is chosen.
You can either name a slot for a certain menu
entry or just assign ID numbers to the entries and connect
a slot to a signal for the whole menu. The ID of the selected entry will
then be passed to your slot. We will use it there to determine which
menu entry was selected.

You can also use the ID to enable or disable a menu item,
change it, or manipulate it. The nice thing is
that using the ID even works recursively for all submenus if you ensure that
all IDs are unique. Thus, you do not need to remember in which menu
or submenu a certain menu item is; you can always start from the menu
bar:
_menubar->setItemEnabled(SOME_ID, false);
Qt will then find out where the menu item is located and
disable it.
Note that you do not necessarily need to assign your own
menu IDs. If you do not specify one, Qt will internally generate a
unique ID and return this ID as the return value of
insertItem(). If you store this value somewhere,
you do not need to worry about keeping your own IDs unique.

The global variable qApp is declared and
defined in qapplication.h and it is guaranteed to
hold a pointer to the only object of the class QApplication.
You can always use it to refer to your application object.

In our example, we use only text as entries (using pixmaps
will be one of the exercises), but we use both methods of notification.
For example, look at the entries in the Help menu.
After the text for the entry, there are parameters for the object
that contains the slot and the name of the slot itself. Whenever
the menu entry in question is selected, the named slot is invoked.
The parameters of this form are like the third and fourth argument
of a call to QObject::connect(). In fact, there
is also a method QMenuData::connectItem() that
you can use to connect a slot to a menu entry after it has been
inserted.

 The second method is used for the Color menu.
The menu entries are inserted along with an ID number, and the whole
menu is connected via its activated(int) signal
to the slot slotColorMenu(int). As you would expect,
the signal’s parameter contains the ID number of the selected menu entry. If you peek ahead to the slot slotColorMenu(), you
will find a switch statement that chooses a color
based on this ID. If you want to be clever, you could create
an array of colors that uses the menu ID as an index, thus saving
this switch statement.
It’s not always easy to decide whether you should
use one slot method for each entry in a menu or one slot method
for the whole menu. A guideline could be that whenever the menu
entries denote parameters of the same function—as in the case of
the Color menu (where the entries could be considered color parameters
of the function changeColor())—you should use only one
slot. On the other hand, if the entries denote completely different
functions, such as Search and Replace and Paste
in an Edit menu, it’s probably better
to use different methods.

You might wonder why ampersand (&) characters
are in the text for the menu entries. These characters denote shortcuts; you can
use the letter after the ampersand character to manage the menu
via the keyboard. For example, when the File menu
is popped up, you can move to the Blue entry
by pressing the B key.
In this version of the painting application, we have also
defined a destructor, but for now we will leave
it blank. The next changes are in the method ScribbleWindow::mouseMoveEvent():
void ScribbleWindow::mouseMoveEvent(QMouseEvent* event)
{
 // create a QPainter object for drawing onto the window
 QPainter windowpainter;
 // and another QPainter object for drawing into an off-screen pixmap
 QPainter bufferpainter;

 // start painting
 windowpainter.begin(this); // this painter paints onto the window
 bufferpainter.begin(&_buffer); // and this one in the buffer

 // set a standard pen with the currently selected color
 windowpainter.setPen(_currentcolor);
 bufferpainter.setPen(_currentcolor);

 // draw a line in both the window and the buffer
 windowpainter.drawLine(_last, event->pos());
 bufferpainter.drawLine(_last, event->pos());

 // done with painting
 windowpainter.end();
 bufferpainter.end();

 // remember the current mouse position
 _last = event->pos();
}
We assign the Color that has been selected
via the Color menu to the two QPainter objects
in use here.
Even though there are no changes to ScribbleWindow::resizeEvent(),
we would like to draw your attention to something you might not
have thought about yet. The menu bar is a child of the scribble
window, and thus occupies some of its space in which the user cannot
draw. This is no problem, since the user can resize the window when
more space is needed. In a real application, however, we would have
to take this space occupied by the menu bar into account. What would be needed here is called geometry management: the art of arranging the widgets that form a
GUI so that each widget gets the space and position it needs and
the window still looks okay when it is resized. You can’t
see it, but we already have a bit of geometry management going on
here: the menu bar automatially resizes itself so that it always
has the same width as its parent.

 In the method slotAbout(), you make the
acquaintance of another class, QMessageBox, which
is used to communicate important information to the user:
void ScribbleWindow::slotAbout()
{
 QMessageBox::information(this, "About QtScribble 2",
 "This is the QtScribble 2 application\n"
 "Copyright 1998-2001 by Matthias Kalle Dalheimer\n"
);
}

You probably won’t have any problems recognizing
a message box when you see one. Although you can configure a
QMessageBox on your own by adding child widgets, it is mostly used
by its comfortable static methods information(),
warning(), error(), and
fatal().
You pass at least the parent widget, the title string, and the text of
the message. You can also pass the text that should appear on up
to three buttons. In ScribbleWindow::slotAboutQt(),
we use another static method of QMessageBox,
aboutQt(),
which shows a dialog box with information about Qt. You can add this feature to your Help menu.

 ScribbleWindow::slotColorMenu() serves
as the slot for a whole menu:
void ScribbleWindow::slotColorMenu(int item)
{
 switch(item)
 {
 case COLOR_MENU_ID_BLACK:
 _currentcolor = black;
 break;
 case COLOR_MENU_ID_RED:
 _currentcolor = darkRed;
 break;
 case COLOR_MENU_ID_BLUE:
 _currentcolor = darkBlue;
 break;
 case COLOR_MENU_ID_GREEN:
 _currentcolor = darkGreen;
 break;
 case COLOR_MENU_ID_YELLOW:
 _currentcolor = yellow;
 break;
 }
}
The parameter passed is the ID number of the selected menu entry.
It is a good idea to use symbolic constants instead of plain numbers, both when you insert
the entries into the menu and when you react to menu selections.
This way, your program won’t get out of sync if you add
new menu entries in between.
You now know what is going on in the code, but you might not
yet know how to compile it. Since we use slots here,
we have to run moc. You have probably already
seen the line:
#include "qtscribble2.moc"
which includes the code generated by moc.
This file can be generated by issuing:
moc -o qtscribble2.moc qtscribble2.cpp
on the command line. You might want to add such a line to
your makefiles or to your build environment. I would like to emphasize
that it is better style to compile the moc-generated
file separately and link the resulting object file to your application.
This works only when you have the class declaration in a separate
header file, which is not really suitable for toy programs found
in books such as this one. This is why I will continue this style of
including the moc-generated
files. Keep in mind, though, that the other style is preferable
and scales better to larger projects.
If you have tried executing moc as
described, and if the system told you it could not run
moc, then you probably forgot to set the
environment variables PATH (on Windows, MacOS X, and
Unix systems) and LD_LIBRARY_PATH (on Linux and
Solaris—it is also necessary on other Unix systems, but might be
called something else there; e.g., for MacOS X, it would be
DYLD_LIBRARY_PATH).
You now know how to create a menu bar for your application.
Creating the menu bar lets you provide many functions to your users.
In the next section, we’ll expand our painting application
further by adding scrollbars.
Exercises

	Replace
the text entries in the Color menu in Example 3-1 by pixmaps.
To do this, you will have to create a QPixmap object
for every entry, give it a suitable size, and fill it with the respective
color. Here is a code snippet that you might want to use:
redpixmap = new QPixmap(20, 20);
redpixmap.fill(red);

	Change the code from the previous exercise again
so that the Color menu shows colored pixmaps
and text together.

	Add another
menu, called Pen Width, which lets the user select
pen thicknesses (for example 1, 2,
and 4; pen width 3 looks bad).
You can set a pen thickness in a QPainter object
with the following code:
painter.setPen(QPen(color, width));
With variables in place, this might read:
painter.setPen(QPen(red, 2));
This code creates a pen with the specified characteristics and
assigns it to the QPainter object.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages155982.png
Name

(T

Location Start Date | End Date

AL Tor Absolute Beginners Moscow, Russia 2001-10-05 2001-10-12

[FTML for Top Cracks

Stockholm, Sweden 2002-05-03 2002-05-07

OEBPS/httpatomoreillycomsourceoreillyimages155892.png

OEBPS/httpatomoreillycomsourceoreillyimages155954.png
QFontDialog

Font style

Normal

Courier [oitstrear] Halic
Terminal [oitstrear] _| {oniique
Charter Bold
Clean Bold lalic
Terminal [dec] Bold Obligue
Fixed [et]
Effects Sample
I stikeout [eewe
I~ Underline
Serpt

Western (150 885!

Close

OEBPS/httpatomoreillycomsourceoreillyimages155984.png
- dbtable

2 |HTML for Top Cri Stockhalm, Swed 05/03/2002 | 05/07/2002

OEBPS/httpatomoreillycomsourceoreillyimages156040.png
Toppings
I~ Mushiooms
T~ Pineapple.
I~ Anchovies
™ Ham

Size

© durior
© Standard
© Faniy

OEBPS/httpatomoreillycomsourceoreillyimages155972.png
QPrintDialog

- Print destination
4 Print o printer.

Printer Host Comment
asci locally connected _ Aliases: Ip1,djet500-a4
raw locally connected Aliases: |p3, djet500-a4

+ Printto fle

Browse,

- Priner settings
4 Printin color if available

 Printin grayscale

Paper famat

Porrait

A4 (210x297 mm, 8.26x11.7 inches)

I~

I~

- Optians
4 Print all
~ Print range

To page:

From page: =

=
=i

4 Print first page first
~ Print last page first

Number of copies

i E

Cancel

OEBPS/httpatomoreillycomsourceoreillyimages156052.png
Toppings
I~ Mushiooms
T~ Pineapple.
I~ Anchovies
™ Ham

Sie
© durior

© Standard
© Faniy

o B

OEBPS/httpatomoreillycomsourceoreillyimages155960.png
- QTabDialog u]

— QTabDialog o

Base | nnings | sy |
Some Range~Cantrals and a LCD-Number

300 § =i

3

8ass | innings | syie |
Some Range~Controls and a LCD-Number:

300 ~ 4
2]]

Apply Cancel

ok | eppy | cancel |

Windows

‘Mot

OEBPS/httpatomoreillycomsourceoreillyimages155922.png
File Edit Options Help

OEBPS/httpatomoreillycomsourceoreillyimages156022.png

OEBPS/httpatomoreillycomsourceoreillyimages155930.png
gase | innings | styte. | Base | nnings | styte |

& First

4 First
€ second ~ Second
€ Third ~ Third

Windows

Mot

OEBPS/httpatomoreillycomsourceoreillyimages155908.png

OEBPS/httpatomoreillycomsourceoreillyimages156034.png.jpg

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages156002.png

OEBPS/httpatomoreillycomsourceoreillyimages155904.png
Choice 1 Choice 1

Windows Motif (new style) Motif (old style)

OEBPS/httpatomoreillycomsourceoreillyimages155894.png
Bisss e

OEBPS/httpatomoreillycomsourceoreillyimages156010.png

OEBPS/httpatomoreillycomsourceoreillyimages155916.png
= @DateTime Edil[D=1[E3)
Borizont 2l 1800172

OEBPS/httpatomoreillycomsourceoreillyimages155956.png
QMessageBo:

This s a QMessageBox with a
message. It can even display

Aich-Text!

o

OEBPS/httpatomoreillycomsourceoreillyimages155948.png
ize (oytos) | Uson sum— 14 =
:

OEBPS/httpatomoreillycomsourceoreillyimages155976.png
(D=1

Q o
File Edit Translation Validation Phrases View Help
@S [@]- «[) bB[@]« » % ww]a]r]]
9/ [ars [souce o4 e
Done [Conext[rems 7 iy Heating Vi ik
T MyCiass I

Source text
My Text

Transiation

A phrases and guesses:

Definition

Saurce phrase %

Transiation

i [woo_

OEBPS/httpatomoreillycomsourceoreillyimages156014.png
CETT— 21X

Toppings
:Mg . sie
shreoms. © Jurior
I~ Ham € Stondd
 Famil
I” Pineapple v
I~ Anchovi

I ExtaChesse

o B

OEBPS/httpatomoreillycomsourceoreillyimages156030.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages208649.jpg
Writing Portable GUI Applications
on UNIX & Win32

O’REILLY* Matthias Kalle Dalbeimer

OEBPS/httpatomoreillycomsourceoreillyimages155914.png
Ol

-
-}

OEBPS/httpatomoreillycomsourceoreillyimages155940.png
Reaty

OEBPS/httpatomoreillycomsourceoreillyimages155936.png
This is a Label
it spans.
multiple fines

OEBPS/httpatomoreillycomsourceoreillyimages155996.png
Insert inta: [<No Project> <]

O O

Cos Project wizard widget

Main Window Configuration Dialog Dialog with Buttons ~ Dialog with Buttans

{Battom) (Right)
Tah Dialog CesSource File Ces HeaderFile Ces Main-File
(main.cop)

b

Cancel

OEBPS/httpatomoreillycomsourceoreillyimages155924.png
Group hox

OEBPS/httpatomoreillycomsourceoreillyimages155898.png
& First 4 First
© Second + Second

¢ Third ~ Third

Windows Motif

OEBPS/httpatomoreillycomsourceoreillyimages156020.png

OEBPS/httpatomoreillycomsourceoreillyimages156008.png
Clase

(GDiakog

ButtanGroup

QButtontiroup

® CheckBoxt

(QCheckBox

® CheckBox2

(QCheckBox

® checkBox3

(QCheckBox

® CheckBoxd

(QCheckBox

OEBPS/httpatomoreillycomsourceoreillyimages156018.png
CETT— 21X

Toppings
:Mg . sie
shreoms. © Jurior
I~ Ham € Stondd
 Famil
I” Pineapple v
I~ Anchovi

I ExtaChesse

o B

OEBPS/httpatomoreillycomsourceoreillyimages155990.png
[OIEE)
st Date. [To70E0T 3
T T |
-
nser | uptte | _Delee

OEBPS/httpatomoreillycomsourceoreillyimages156028.png
BultanGroup
T~ Mushrooms
T~ Ham

™ Pineapple.

T

OEBPS/httpatomoreillycomsourceoreillyimages155928.png

OEBPS/httpatomoreillycomsourceoreillyimages156044.png
I~ Mushiooms

T~ Pineapple. Standard
I Anchavies | | © Famiy
™ Ham

T Extia Chesse.

o =

OEBPS/httpatomoreillycomsourceoreillyimages156060.png
I~ Toppings Sie
Mushiooms Junior

© oo || © singad
© schoies || D Faniy
O i

0] e e

0K @ Cancel

OEBPS/httpatomoreillycomsourceoreillyimages155934.png
This is a QMultiLineEdit with text 4] This is a GMultiLineEdit with text

The GMultiLineEdit widget is a sit The GMultiLineEdit widget is a sit

The GMultiLineEdit widget provid The QMultiLineEdit widget provid
amounts of text. There are no arbi

amounts of text. There are no arbi
narfarmanca will siffar
<

Windows

OEBPS/httpatomoreillycomsourceoreillyimages156004.png
I~ Mushiooms
™ Ham

T~ Pineapple.

I o

OEBPS/httpatomoreillycomsourceoreillyimages156038.png

OEBPS/httpatomoreillycomsourceoreillyimages156024.png
Signals (PuskButton?): Slots [PizzaE iy}

StaeChangedir]

toggled{bool) accepl)
released)

pressed()

Connestions:

Comect

EdtSits

Disconnect

Cancel

gk,

OEBPS/httpatomoreillycomsourceoreillyimages155980.png
IR qkbrowsebaxtest SR

a flMouy
JNRYZ

OEBPS/httpatomoreillycomsourceoreillyimages155878.png
[EXEEIrN

Hello warlg

OEBPS/httpatomoreillycomsourceoreillyimages155992.png

OEBPS/httpatomoreillycomsourceoreillyimages155958.png
- QProgressDial 5 B [

Please wait

amm 34%

Cancel

- QProgressDiak B B [

Please wait

- 34%
Cancel

Windows

Motif

OEBPS/httpatomoreillycomsourceoreillyimages155988.png
DETE]
statoate poorTos
Enavate poorTore

|

OEBPS/httpatomoreillycomsourceoreillyimages156042.png
Toppings Size
I~ Mushiooms © durior
T~ Pineapple. Standard
I~ Anchovies © Faniy
™ Ham

T Extia Chesse.

o |3 s F

OEBPS/httpatomoreillycomsourceoreillyimages156048.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages156056.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages155952.png
— QColorDialog 5]

Basic colors

Custom colors

Y Y e
It ot o

s
e Custor Colors => e
oK cancel_| Add To Custom Calors |

111
111

Red:
Green
Blue:

OEBPS/httpatomoreillycomsourceoreillyimages155942.png.jpg
Windows Motif

OEBPS/httpatomoreillycomsourceoreillyimages156006.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages155966.png

OEBPS/httpatomoreillycomsourceoreillyimages155964.png
layoutl

Buton 1 | Butonz | Butons

OEBPS/httpatomoreillycomsourceoreillyimages155896.png
IV First W First

I~ Second | Second

I™ Third | Third
Windows Motif

OEBPS/httpatomoreillycomsourceoreillyimages156050.png
m2

i~ Toppings Sie
T Mushiooms | | Junior
T~ Pineapple. Standard
I Anchavies | | © Famiy
™ Ham

Jnf - T ExvaCheese funf

o =

OEBPS/httpatomoreillycomsourceoreillyimages156062.png
Choose avallable menus and toolhars

Choose the available menus and toolbars
- File Actions
like New, Open File, Save, Print, stc.

Iv {Menii ¥ Toolbar |7 Create Slots and Connections for the actions

- Edit Actions
like Cut, Copy, Paste, Undo and Redo, etc.

¥ Menu ¥ Toolbar |7 Create Sots and Connections for the actions

- Help Actions
like Contents and About, etc

¥ Menu ¥ Toolbar |7 Create Sots and Connections for the actions

cancel

Help

OEBPS/httpatomoreillycomsourceoreillyimages156000.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages155938.png
(i

—{

OEBPS/httpatomoreillycomsourceoreillyimages155974.png
Style

QCommon Siyle

——

QMotif Syle

QWindows Style

QEE Syle

QMotifPlus Style

056 Syle

QPlatinum Style

OEBPS/httpatomoreillycomsourceoreillyimages155900.png
First item T4 [Firstitem

Second item Second item

Third item Third item

Fourth item Fourth item

Sixth item ~ Sidh item v

Windows Motif

OEBPS/httpatomoreillycomsourceoreillyimages156012.png
OK]

OEBPS/httpatomoreillycomsourceoreillyimages155970.png
layout5

[s]
Buton 1 | Butonz | Butons

Buton4 | Butns | Butons

OEBPS/httpatomoreillycomsourceoreillyimages155888.png

OEBPS/httpatomoreillycomsourceoreillyimages155884.png
fol =i a]

Hello warlg

Quit

OEBPS/httpatomoreillycomsourceoreillyimages156058.png

OEBPS/httpatomoreillycomsourceoreillyimages155920.png
Hew
Open
save
Save as
Brint
Quit

OEBPS/httpatomoreillycomsourceoreillyimages155998.png
Gt Designer by Trolitech

Ele_Eait Prglect Search Tools Layout Ereview Window Holp

D@ B d]o o]) D@Br [+ [m

e 5 33 (1

o EEEcrF 008 EB0EEETEEIEEACIETE oABR==E0 @
L2
i =
—
T ——
S TTTTT—
|
F
Wiges | s |
G B
Dot [otong
=
x|
e | b
ey Ve B
F—
peve e
adaepoiey T
& s 5,01
@ nwinnsie—|[szer 5]
& sanemert 5,01
a busie 5o)

@ paleteF oragrounac.
@ pasteBackgrounaC.. []
palsteBackgroundp.

patste (——
backgroundorign _|Widgetorgin il
@ font nelvelica-12
cursor Jorow
@ caption [Fom
con
@ icontext

[Ready

OEBPS/httpatomoreillycomsourceoreillyimages156036.png
ButanGroup
i I~ Mushiooms [~ Ham [~ Anchovies [~ Finsapple t

OEBPS/httpatomoreillycomsourceoreillyimages155880.png
Localion Edit View Go Booknarks Tools Sefings Window Help

2e2D B0 XBHBES XA’ &

> Loceton (@) e morenaler - conmere s 0 Ut <]q

© Atout Gt
Gt Etons

Common Probiens

o Faos

® Window systen specic notes

o How o buy GI

BNBBSGEH

® Al Cassas
Maln Classes

Grouped Classes

‘@ Anatted Classas

‘@ Innertance Hisrarchy

‘@ Al Functons (ong)
Hoader File Index.

‘@ Atout Troltch
Howo report 2 bug
@ Maling Lt normation

Home | Al Classes | Main Classes | Annofated | Grouped Classes | Functions

Qt Reference Documentation

© stalaton
orial

Exanples

® Siep-by-sep Examples

@ Atout Morhiss

® 50

® quate
Gt Designer

Gt Lingulst

® Ot asastant

‘@ GEnted - nine fls/mages

® QVFb - virual framebufler or GVEmbedted

@ Koy Features In G130
Change Noes for Gt 30

Change History

© Foring fram G 2x¢ta Gt 3¢

@ Q1 Object Mol
Signals and Siois

Using the Meta Object Conple (noc)

‘@ Geonety Manageer

@ Events and Event Filars

‘@ Drag and Drop (2'D)
ifemationalizaion (101)

Debugging Techniques

® Widget Scrsenshots

‘@ Thiead Support n G1

@ Ot Conponsnt Mode!

‘@ Standard Accslratos
@ Publc License

(GNU General Public License.

@ Other Licenses usert n G1

o Credts

Copyright © 2001 Traitecn

Traemarcs

Gtversion 300

OEBPS/httpatomoreillycomsourceoreillyimages155910.png
a2

OEBPS/httpatomoreillycomsourceoreillyimages156026.png
[21X

Siot | Access [InUse

Newsiot | _Delete Siot
’, Slot Propeties

St [sendDrder] Accgss: [pubie |

Help

OEBPS/httpatomoreillycomsourceoreillyimages155902.png
Choice 1 M Choice 1 !

Windows Motif

OEBPS/httpatomoreillycomsourceoreillyimages155962.png
Persanal Data.

[T —
Enter your personal
data here weonere |
The required fields are (i
FistNane, (astName ppans e[
and E-Miai

evat [

OEBPS/httpatomoreillycomsourceoreillyimages155886.png

OEBPS/httpatomoreillycomsourceoreillyimages155986.png
HTML for Absolute Beginners
Location [voscow, Russia |
statpate fomiioos |
Enapate fomioiz |

OEBPS/httpatomoreillycomsourceoreillyimages155946.png
Windows Motif

OEBPS/httpatomoreillycomsourceoreillyimages155926.png

OEBPS/httpatomoreillycomsourceoreillyimages156032.png
Buttontioups
I Mushrooms

™ Ham
T~ Pineapple.
I~ Anchovies

OEBPS/httpatomoreillycomsourceoreillyimages155918.png
Windows

OEBPS/httpatomoreillycomsourceoreillyimages155994.png.jpg
rooAERE==E@ @

T = |

Wiagets | source |

OEBPS/httpatomoreillycomsourceoreillyimages155912.png
QDateEdilE3]
072001 4

OEBPS/httpatomoreillycomsourceoreillyimages155906.png
T T
Windows Motif

OEBPS/httpatomoreillycomsourceoreillyimages155978.png
[akcooruseltest [N

OEBPS/httpatomoreillycomsourceoreillyimages155950.png
——— QFlleDllyy —————

Look in

3 fhomeireggier

)
C1Deskiop
C1aNUstep
CaMail
CINew Folder 2
C10fces1
Casiag
CTelemati
Cyautosave
Cabilder
Cabin
icompany
Cadoc
Cydownioad
Caelisp
Cikde
Ckde_cvs

Cikpresenter
(Dkword

(mico

(Ansmail

(other_src.

Cpics

Cipictures

Ctmp

(troll_cvs,

vmware

[dragonprg

[hoficegt

Cinetscapeps

[skyinepeg

Clssh-trck

Clvemacs-21.1.8- 1586 pe-win32 EXE

i nane: |

File type: [

OEBPS/httpatomoreillycomsourceoreillyimages155968.png
layoutd

Buton 1 | Butonz | Butons

Bution 4 Bution 5

OEBPS/httpatomoreillycomsourceoreillyimages156054.png
[mrom _______HE

i~ Toppings Sie
T Mushiooms | | Junior
™ Ham " Standard
T~ Pineapple. Fanily
T~ Anchavis

OEBPS/httpatomoreillycomsourceoreillyimages155890.png
x|

Elle Color Help

OEBPS/httpatomoreillycomsourceoreillyimages156046.png
mrom ________SEIE]

i~ Toppings Sie
T Mushiooms | | Junior
™ Ham Standard
T~ Pineapple. " Fanily
T~ Anchavis

T~ ExiaCheese

o B

OEBPS/httpatomoreillycomsourceoreillyimages155944.png
Name Type 5 Name Type
S . Directory V Directory
@ (Goin Directory Gbin Directory
& Qooot Directory oot Directory
@3System.map File 3System.map File
&3System.old File 3System.old File
Gog Directory Gy Directory
¢3boot 0800 File 300t 0800 File
Ghooth File Ghooth File
Gchainb File Gchainb File
‘@3chos bsect File Z3chos bsect File
@3chos loader File -&3chos loader File
@3chos loader-bsect File &3chos loader-bsect File
‘@3chos loader-linux File Z3chos loader-linux File
iostsfound Directory ostsfound Directory
P = pff e

Windows

Motif

OEBPS/httpatomoreillycomsourceoreillyimages156016.png
mromt TR

;ﬁ“‘"gs Size
Mushooms - i
I~ Ham € Stondd

 Famil
I” Pineapple v
I~ Anchovi

I ExtraChesse

o B

OEBPS/httpatomoreillycomsourceoreillyimages155932.png
Hello

OEBPS/httpatomoreillycomsourceoreillyimages155882.png
QLabel C1 onquero
Location Edit View Go Bookmarks Tools Seftings Window

p

eI N B0 XDHIEY XAKX &

B Location [flehome/kalle/qt-x1 1-commercial-3.0 0/doc/htmi/glabel himl

]| Home | Al Classes | Main Classes | Annotated | Grouped Classes | Functians
AN QLabel Class Reference
g The GLabel vidget provides text or inage dispiay. More.
#include <qlabel h>
&
|| mnerts oFrame.
2 || uist ot a member functions.
B .
Public Members
® QLabel (QWidget " parent, const char * name = 0, WF1ags = 0)
® QLabel (const QSting & text, QWidget * parent, const char * name = 0, WF1ags f=0)
® QLavel (QWidget* buddy, const GString & text, GWidget * parent, const char * name = 0, WFlags = 0)
® -Glabel

Qstring text (const
QPixiap * pixmap () const

QPicture * picture () const

QMovie *movie (canst

TextFormat textFormat (const

void setTextFormat (TextFormat)

int alignment () const

virtual void setAlignment (int)

intindent (const

void setindent (int)

bool autoResize (const (obsotete)

virtual void setéuloResize (bool enable) (obsoete)
bool hasScaledContents canst

void setScaledContents (bool)

virtual void setBuddy (QWidget * buddy)

QWidget * buddy canst

virtual void setFont (const GFont & f)

Public Slots

virtual void setText (const QString &)
virtual void SetPxmap (const QPBnap &)

virtual void setPicture (const GPicture & picture)
virtual void setMovie (const QMovie & movie)
virual void Sethum (int num)

virtual void sethum (double fum)

void clear

Properties

® Alignment alignment - the alignment of the Iabel's contents

® intindent - the label's indent in pixels

@ QPixmap pixmap - the labels pixmap

® bool scaledContents - whether the label will scale ts contents to il all available space
QString text - the label text

@ TextFormat textFormat - the label's text format

Dunbnbndd blnsale

i

