

 [image: First Edition]

 Programming Amazon EC2

Jurg van Vliet

Flavia Paganelli

Editor
Julie Steele

Editor
Mike Loukides

Copyright © 2011 I-MO BV

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Programming
 Amazon EC2, the image of a bushmaster snake, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Foreword

Werner VP & CTO at Amazon.com Vogels
VP & CTO at Amazon.com

March 14, 2006, was an important day, even though it is unlikely that
 it will ever become more than a footnote in some history books. On that day,
 Amazon Web Services launched the first of its utility computing services:
 the Amazon Simple Storage Service (Amazon S3). In my eyes that was the day
 that changed the way IT was done; it gave everyone access to an
 ultra-reliable and highly scalable storage service without having to invest
 tens of thousands of dollars for an exclusive enterprise storage solution.
 And even better, the service sat directly on the Internet, and objects were
 directly HTTP addressable.
The motivation behind the launch of the service was simple: the AWS
 team had asked itself what innovation could happen if it could give everyone
 access to the same scalable and reliable technologies that were available to
 Amazon engineers. A student in her dorm room could have an idea that could
 become the next Amazon or the next Google, and the only thing that would
 hold her back was access to the resources needed to fulfill that potential.
 AWS aimed at removing these barriers and constraints so people could unleash
 their innovation and focus on building great new products instead of having
 to invest in infrastructure both intellectually and financially.
Today, Amazon S3 has grown to store more than 260 billion objects and
 routinely runs more than 200,000 storage operations per second. The service
 has become a fundamental building block for many applications, from
 enterprise ERP log files to blog storage, streaming videos, software
 distribution, medical records, and astronomy data.
By routinely running over 200,000 storage operations per second,
 Amazon S3 is a marvel of technology under the covers. It is designed to
 support a wide range of usage scenarios and is optimized in very innovative
 ways to make sure every customer gets great service, regardless of whether
 he is streaming videos or just housing some home photos. One of my
 colleagues had a great analogy about how the Amazon S3 software had to
 evolve: it was like starting with a single-engine Cessna that had to be
 rebuilt into a Boeing 747 while continuing to fly and continuously
 refueling, and with passengers that changed planes without noticing it. The
 Amazon S3 team has done a great job of making the service something millions
 and millions of people rely on every day.
[image: image with no caption]

Following Amazon S3, we launched Amazon Simple Queue Service (Amazon
 SQS), and then Amazon Elastic Compute Cloud (Amazon EC2) just a few months
 later. These services demonstrated the power of what we have come to call
 Cloud Computing: access to highly reliable and scalable infrastructure with
 a utility payment model that drives innovation and dramatically shortens
 time to market for new products. Many CIOs have told me that while their
 first motivation to start using AWS was driven by the attractive financial
 model, the main reason for staying with AWS is that it has made their IT
 departments agile and allowed them to become enablers of innovation within
 their organization.
The AWS platform of technology infrastructure services and features
 has grown rapidly since that day in March 2006, and we continue to keep that
 same quick pace of innovation and relentless customer focus today.
Although AWS, as well as its ecosystem, has launched many tools that
 make using the services really simple, at its core it is still a fully
 programmable service with incredible power, served through an API. Jurg and
 Flavia have done a great job in this book of building a practical guide for
 how to build real systems using AWS. Their writing is based on real
 experiences using each and every one of the AWS services, and their advice
 is rooted in building foundations upon which applications on the AWS
 platform can scale and remain reliable. I first came in contact with them
 when they were building Decaf, an Android application used to control your
 AWS resources from your mobile device. Since then, I have seen them help
 countless customers move onto the AWS platform, and also help existing
 customers scale better and become more reliable while taking advantage of
 the AWS elasticity to drive costs down. Their strong customer focus makes
 them great AWS partners.
[image: image with no caption]

The list of services and features from these past years may seem
 overwhelming, but our customers continue to ask for more ways to help us
 remove nonessential infrastructure tasks from their plate so that they can
 focus on what really matters to them: delivering better products and
 services to their customers.
AWS will continue to innovate on behalf of our customers, and there
 are still very exciting things to come.

Preface

Thank you for picking up a copy of this book. Amazon Web Services (AWS) has amazed everyone: Amazon has made
 lots of friends, and all its “enemies” are too busy admiring AWS to do much
 fighting back. At the moment, there is no comparable public Infrastructure
 as a Service (IaaS); AWS offers the services at a scale that has not been
 seen before. We wrote this book so you can get the most out of AWS’
 services. If you come from conventional hardware infrastructures, once you
 are on AWS, you won’t want to go back.
AWS is not easy; it combines skills of several different (established)
 crafts. It is different from traditional systems administration, and it’s
 not just developing a piece of software. If you have practiced one or both
 of these skills, all you need is to be inquisitive and open to
 learning.
Our background is in software engineering. We are computer scientists
 with extensive software engineering experience in all sorts of different
 fields and organizations. But the cloud in general and AWS in particular
 caught our interest some years ago. We got serious about this by building
 Decaf, an Android smartphone application that manages Amazon
 EC2 (Elastic Compute Cloud) accounts. We were finalists in the Android
 Developer Challenge in 2009. We will use Decaf to illustrate various AWS
 services and techniques throughout this book.
Around the same time, in early 2010, we decided we wanted to build
 applications on AWS. We founded 9Apps and set out to find a select group of partners who
 shared our development interests. Our expertise is AWS, and our
 responsibility is to keep it running at all times. We design, build, and
 operate these infrastructures.
Much of our experience comes from working with these teams and
 building these applications, and we
 will use several of them as examples throughout the book. Here is a short
 introduction to the companies whose applications we will use:
	Directness
	Directness helps customers connect brands to businesses. With a
 set of tools for making surveys and collecting, interpreting, and
 presenting consumers’ feedback, this application is very successful in
 its approach and works with a number of international firms. The
 problem is scaling the collection of customer responses, transforming
 it into usable information, and presenting it to the client.
 Directness can only grow if we solve this problem.

	Kulitzer
	Kulitzer is a web application that allows users to organize
 creative contests. Users can invite participants to enter the contest,
 an audience to watch, and a jury to pick a winner. Technically, you
 can consider Kulitzer a classical consumer web app.

	Layar
	Layar is an augmented reality (AR) smartphone browser that is
 amazing everyone. This application enriches the user’s view of the
 world by overlapping different objects or information in the camera
 view, relevant to the location. For example, users can see what people
 have been tweeting near them, the houses that are for sale in the
 neighborhood, or tourist attractions near where they are
 walking.
The Layar application continues to win prize after prize, and is
 featured in many technical and mainstream publications. Layar started
 using Google App Engine for its servers, but for several reasons has
 since moved to AWS.

	Marvia
	Ever needed to create some “print ready” PDFs? It’s not an
 easy task. You probably needed desktop publishing professionals and
 the help of a marketing agency, all for a significant price tag.
 Marvia is an application that can dramatically reduce the effort and
 cost involved in PDF creation. It allows you to create reusable
 templates with a drag-and-drop web application. Or you can integrate
 your own system with Marvia’s API to automate the generation of
 leaflets and other material.

	Publitas
	Publitas does the opposite of what Marvia does, in a way. It
 lets you transform your traditional publication material to an online
 experience. The tool, called ePublisher, is very feature-rich and is
 attracting a lot of attention. You can input your material in PDF
 format to the application and it will generate online content. You can
 then enrich the content with extra functionality, such as supporting
 sharing in social networks and adding music, video, search, and print.
 The challenge with the Publitas software is that its existing
 customers are established and well-known businesses that are sometimes
 already so powerful that exposure ratings resemble those of a mass
 medium like television.

Audience

Of course, we welcome all readers of this book, and we hope it
 inspires you to get into AWS and utilize it in the best possible way to be
 successful. But we set out to write this book with a particular purpose:
 to be an AWS guide for building and growing applications from small to
 “Internet scale.” It will be useful if you want to host your blog or small
 web application, but it will also help you grow like Zynga did with
 Farmville. (Some say Zynga is the fastest growing company in the
 world.)
This book does not focus on detail; for example, we are not going to
 tell you exactly which parameters each command receives, and we are not
 going to list all the available commands. But we will show you the
 approach and implementation. We rely on examples to illustrate the
 concepts and to provide a starting point for your own projects. We try to
 give you a sense of all AWS functionality, which would be nearly
 impossible if we were to show the details of every feature.
To get the most out of this book, you should be comfortable with the
 command line, and having experience writing software will be useful for
 some of the chapters. And it certainly wouldn’t hurt if you know what
 Ubuntu is (or CentOS or Windows 2003, for that matter) and how to install
 software. But most of all, you should simply be curious about what you can
 do with AWS. There’s often more than one way of doing things, and since
 AWS is so new, many of those ways have not yet been fully explored.
If you are a seasoned software/systems engineer or administrator,
 there are many things in this book that will challenge you. You might
 think you know it all. Well, you don’t!

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Programming Amazon EC2 by Jurg van Vliet and Flavia
 Paganelli. Copyright 2011 I-MO BV, 978-1-449-39368-7.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9781449393687

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

There are many people we would like to thank for making this book
 into what it is now. But first of all, it would never have been possible
 without our parents, Aurora Gómez, Hans van Vliet, Marry van Vliet, and
 Ricardo Paganelli.
Right from the start we have been testing our ideas with many
 friends and colleagues; their early feedback shaped this book
 significantly. Thanks to Adam Dorell, Arjan van Woensel, Björn van Vliet,
 Dirk Groten, Eduardo Röhr, Eric Hammond, Federico Mikaelian, Fleur van Vliet, Grant Wilson,
 Indraneel Bommisetty, Joerg Seibel, Khalil Seyedmehdi, Marten Mickos, Matt
 Miesnieks, Pambo Pascalides, Pedro Moranga Gonçalves, Pim Derneden, Roy Chandra, Steven
 van Wel, Werner Vogels, Wouter Broekhof, and Zoran Kovačević.
Of course, you need “strange eyes” going over every detail and
 meticulously trying out examples to find errors. Our technical reviewers,
 Anthony Maës, Ben Immanuel, Graziano
 Obertelli, and Menno van der Sman, did just that.
And finally, there is the wonderful and extremely professional team
 at O’Reilly. Without Mike, Julie, and all the others there wouldn't even
 have been a book. To Amy Thomson, Adam Zaremba, Julie Steele, Mike
 Loukides, Sumita Mukherji, and the rest we met and worked with, thank
 you!

Chapter 1. Introducing AWS

From 0 to AWS

By the late 1990s, Amazon had proven its success—it showed that people were
 willing to shop online. Amazon
 generated $15.7 million in sales in 1996, its first full fiscal
 year. Just three years later, Amazon saw $1.6 billion in sales, and Jeff
 Bezos was chosen Person
 of the Year by Time magazine. Realizing its sales volume was only
 0.5% that of Wal-Mart, Amazon set some new business goals. One of these
 goals was to change from shop to platform.
At this time, Amazon was struggling with its infrastructure. It was a
 classic monolithic system, which was very difficult to scale, and Amazon
 wanted to open it up to third-party developers. In 2002, Amazon created
 the initial AWS, an interface to programmatically access Amazon’s
 features. This first set of APIs is described in the wonderful book Amazon
 Hacks by Paul Bausch (O’Reilly), which still sits
 prominently on one of our shelves.
But the main problem persisted—the size of the Amazon website was
 just too big for conventional (web) application development techniques.
 Somehow, Jeff Bezos found Werner Vogels (now CTO of Amazon) and lured him to Amazon in
 2004 to help fix these problems. And this is when it started for the rest
 of us. The problem of size was addressed, and slowly AWS transformed
 from “shop API” to an “infrastructure cloud.” To illustrate exactly what
 AWS can do for you, we want to take you through the last six years of AWS
 evolution (see Figure 1-1 for a timeline). This is
 not just a historical journey, but also a friendly way to introduce the
 most important components for starting with AWS.
AWS has two unique qualities:
	It doesn’t cost much to get started. For example, you don’t have
 to buy a server to run it.

	It scales and continues to run at a low cost. For example, you
 can scale elastically, only paying for what you need.

The second quality is by design, since dealing with scale was the
 initial problem AWS was designed to address. The first quality is somewhat
 of a bonus, but Amazon has really used this quality to its (and our)
 advantage. No service in AWS is useless, so let’s go through them in the order they
 were introduced, and try to understand what problems they were designed to
 solve.
[image: Timeline of AWS]

Figure 1-1. Timeline of AWS

Biggest Problem First

If your system gets too big, the easiest (and perhaps only)
 solution is to break it up into smaller pieces that have as few
 dependencies on each other as possible. This is often referred to as
 decoupling. The first big systems that applied
 this technique were not web applications; they were applications for big
 corporations like airlines and banks. These applications were built
 using tools such as CORBA and
 the concept of “component-based software engineering.” Similar design
 principles were used to coin the more recent term service-oriented
 architecture or SOA which is mostly applied to web applications
 and their interactions.
Amazon adopted one of the elements of these broker systems, namely
 message passing. If you break up a big system
 into smaller components, they probably still need to exchange some
 information. They can pass messages to each other, and the order in
 which these messages are passed is often important. The simplest way of
 organizing a message passing system, respecting order, is a queue (Figure 1-2). And that is exactly what
 Amazon built first in 2004: Amazon Simple Queue Service or
 SQS.
By using SQS, according to AWS, “developers
 can simply move data between distributed components of their
 applications that perform different tasks, without losing messages or
 requiring each component to be always available.” This is exactly what
 Amazon needed to start deconstructing its own monolithic application.
 One interesting feature of SQS is that you can rely on the queue as a
 buffer between your components, implementing
 elasticity. In many cases, your web shop will have
 huge peaks, generating 80% of the orders in 20% of the time. You can
 have a component that processes these orders, and a queue containing
 them. Your web application puts orders in the queue, and then your
 processing component can work on the orders the entire day without
 overloading your web application.
[image: Passing messages using a queue]

Figure 1-2. Passing messages using a queue

Infinite Storage

In every application, storage is an issue. There is a very famous quote attributed to
 Bill Gates that 640 K “ought to be enough for anybody.” Of course, he
 denies having said this, but it does hit a nerve. We all buy hard disks
 believing they will be more than enough for our requirements, but within
 two years we already need more. It seems there is always something to
 store and there is never enough space to store it. What we need is
 infinite storage.
To fix this problem once and for all, Amazon introduced Amazon Simple
 Storage Service or S3. It was released in 2006, two years after Amazon
 announced SQS. The time Amazon took to release it shows that storage is
 not an easy problem to solve. S3 allows you to store objects of up to 5
 terabytes, and the number of objects you can store is unlimited. An
 average DivX is somewhere between 600 and 700 megabytes. Building a
 video rental service on top of S3 is not such a bad idea, as Netflix
 realized.
According to AWS, S3 is “designed to provide 99.999999999%
 durability and 99.99% availability of objects over a given year.” This
 is a bit abstract, and people often ask us what it means. We have tried
 to calculate it ourselves, but the tech reviewers did not agree with our
 math skills. So this is the perfect opportunity to quote someone else.
 According to Amazon Evangelist Jeff Barr, this many 9s means that, “If you store 10,000
 objects with us, on average we may lose one of them every 10 million
 years or so.” Impressive! S3 as a service is covered by a service level agreement (SLA), making these numbers not
 just a promise but a full contract.
S3 was extremely well received. Even Microsoft was (or is) one of
 the customers using S3 as a storage solution, as advertised in one of
 the announcements of AWS: “Global
 enterprises like Microsoft are using Amazon S3 to dramatically reduce
 their storage costs without compromising scale or reliability”.
 In only two years, S3 grew to store 10 billion objects. In early 2010,
 AWS reported to store 102 billion objects in S3. Figure 1-3 illustrates the growth of S3 since its
 release.
[image: S3’s huge popularity expressed in objects stored]

Figure 1-3. S3’s huge popularity expressed in objects stored

Computing Per Hour

Though we still think that S3 is the most revolutionary of
 services because no one had solved the problem of unlimited storage
 before, the service with the most impact is undoubtedly Amazon Elastic
 Compute Cloud or EC2. Introduced as limited beta in the same
 year that S3 was launched (2006), EC2 turned computing upside down. AWS
 used XEN virtualization to create a whole new cloud category,
 Infrastructure as a Service, long before people started googling for
 IaaS. Though server virtualization already existed for quite a while,
 buying one hour of computing power in the form of a Linux (and later
 Windows) server did not exist yet.
Remember, Amazon was trying to decouple, to separate its huge
 system into components. For Amazon, EC2 was the logical missing piece of
 the puzzle because Amazon was in the middle of implementing a strict
 form of SOA. In Amazon’s view, it was necessary to change the
 organization. Each team would be in charge of a functional part of the
 application, like wish lists or search. Amazon wanted each (small) team
 not only to build its own infrastructure, but also for developers to
 operate their apps themselves. Werner Vogels said it in very simple
 terms: “You build it, you run it.”
In 2007, EC2 was opened to everyone, but it took more than a year
 before AWS announced general availability, including SLA. There were
 some very important features added in the meantime, most of them as a
 result of working with the initial community of EC2 users. During this
 period of refining EC2, AWS earned the respect of the development
 community. It showed that Amazon listened and, more importantly, cared.
 And this is still true today. The Amazon support forum is perhaps its
 strongest asset.
By offering computing capacity per hour, AWS created elasticity of
 infrastructures from the point of view of the application developer
 (which is also our point of view.) When it was this easy to launch
 servers, which Amazon calls instances, a whole new range of applications
 became reachable to a lot of people. Event-driven websites, for example,
 can scale up just before and during the event and can run at low
 capacity the rest of the time. Also, computational-intensive
 applications, such as weather forecasting, are much easier and cheaper
 to build. Renting one instance for 10,000 hours is just as cheap as
 renting 10,000 instances for an hour.

Very Scalable Data Store

Amazon’s big system is decoupled with the use of SQS and S3.
 Components can communicate effectively using queues and can share large
 amounts of data using S3. But these services are not sufficient as glue
 between the different applications. In fact, most of the interesting
 data is structured and is stored in shared databases. It is the
 relational database that dominates this space, but relational databases
 are not terribly good at scaling, at least for commodity hardware
 components. Amazon introduced Relational Database Server (RDS) recently, sort of
 “relational database as a service,” but its own problem dictated that it
 needed something else first.
Although normalizing data is what we have been taught, it is not
 the only way of handling information. It is surprising what you can
 achieve when you limit yourself to a searchable list of structured
 records. You will lose some speed on each individual transaction because
 you have to do more operations, but you gain infinite scalability. You
 will be able to do many more simultaneous transactions. Amazon
 implemented this in an internal system called Dynamo, and later, AWS launched Amazon
 SimpleDB.
It might appear that the lack of joins severely limits the
 usefulness of a database, especially when you have a client-server
 architecture with dumb terminals and a mainframe server. You don’t want
 to ask the mainframe seven questions when one would be enough. A browser
 is far from a dumb client, though. It is optimized to request multiple
 sources at the same time. Now, with a service specially designed for
 many parallel searches, we have a lot of possibilities. By accessing a
 user’s client ID, we can get her wish list, her shopping card, and her
 recent searches, all at the same time.
There are alternatives to SimpleDB, and some are more relational
 than others. And with the emergence of big data, this field, also
 referred to as NoSQL, is getting a lot of attention. But there are a
 couple of reasons why it will take time before SimpleDB and others will
 become successful. The most important reason is that we have not been
 taught to think without relations. Another reason is that most
 frameworks imply a relational database for their models. But SimpleDB is
 incredibly powerful. It will take time, but slowly but SimpleDB will
 surely find its place in (web) development.

Optimizing Even More

The core principle of AWS is optimization, measured in hardware utilization. From the
 point of view of a cloud provider like AWS, you need economies of scale.
 As a developer or cloud consumer, you need tools to operate these
 infrastructure services. By listening to its users and talking to
 prospective customers, AWS realized this very point. And almost all the
 services introduced in this last phase are meant to help developers
 optimize their applications.
One of the steps of optimization is creating a service to take
 over the work of a certain task. An example we have seen before is S3,
 which offers storage as a service. A common task in web (or Internet)
 environments is load balancing. And just as with storage or queues, it
 would be nice to have something that can scale more or less infinitely.
 AWS introduced a service called Elastic Load Balancing
 or ELB to do exactly this.
When the workload is too much for one instance, you can start some
 more. Often, but not always, such a group of instances doing the same
 kind of work is behind an Elastic Load Balancer (also called an ELB). To
 manage a group like this, AWS introduced Auto
 Scaling. With Auto Scaling you can define rules for growing and
 shrinking a group of instances. You can automatically launch a number of
 new instances when CPU utilization or network traffic exceeds certain
 thresholds, and scale down again on other triggers.
To optimize use, you need to know what is going on; you need to
 know how the infrastructure assets are being used. AWS introduced
 CloudWatch to monitor many aspects of the infrastructure
 assets. With CloudWatch, it is possible to measure metrics like CPU
 utilization, network IO, and disk IO over different dimensions like an
 instance or even all instances in one region.
AWS is constantly looking to optimize from the point of view of
 application development. It tries to make building web apps as easy as
 possible. In 2009, it created RDS, a managed MySQL service, which eases the burden of
 optimization, backups, scaling, etc. Early in 2010, AWS introduced the
 high availability version of RDS. AWS also complemented S3 with
 CloudFront, a very cheap content delivery network, or CDN. CloudFront now supports
 downloads and streaming and has many edge locations around the
 world.

Going Global

AWS first launched on the east coast of the United States, in
 northern Virginia. From the start, the regions were designed with the
 possibility of failure in mind. A region consists of availability zones, which are physically
 separate data centers. Zones are designed to be independent, so failure
 in one doesn’t affect the others. When you can, use this feature of AWS,
 because it can harden your application.
While AWS was adding zones to the US East region, it also started
 building new regions. The second to come online was Europe, in Ireland.
 And after that, AWS opened another region in the US, on the west coast
 in northern California. One highly anticipated new region was expected
 (and hinted at) in Asia Pacific. And in April 2010, AWS opened region
 number four in Singapore.

Growing into Your Application

In 2001, the Agile Manifesto for software development was
 formulated because a group of people felt it was necessary to have more
 lightweight software development methodologies than were in use at that
 time. Though this movement has found its place in many different
 situations, it can be argued that the Web was a major factor in its
 widespread adoption. Application development for the Web has one major
 advantage over packaged software: in most cases it is distributed exactly
 once. Iterative development is much easier in such an environment.
Iterative (agile) infrastructure engineering is not really possible with physical hardware. There is
 always a significant hardware investment, which almost always results in
 scarcity of these resources. More often than not, it is just impossible to
 take out a couple of servers to redesign and rebuild a critical part of
 your infrastructure. With AWS, you can easily build your new application
 server, redirect production traffic when you are ready, and
 terminate the old servers. For just a few dollars,
 you can upgrade your production environment without the usual
 stress.
This particular advantage of clouds over physical hardware is
 important. It allows for applying an agile way of working to
 infrastructures, and lets you iteratively grow into your application. You
 can use this to create room for mistakes, which are made everywhere. It
 also allows for stress testing your infrastructure and scaling out to run
 tens or even hundreds of servers. And, as we did in the early days of
 Layar, you can move your entire
 infrastructure from the United States to Europe in just a day.
In the following sections, we will look at the AWS services you can
 expect to use in the different iterations of your application.
Start with Realistic Expectations

When asking the question, “Does the application have to be highly
 available?”, the answer is usually a clear and loud “yes.” This is often
 expensive, but the expectation is set and we work very hard to live up
 to it. If you ask the slightly different question, “Is it acceptable to
 risk small periods of downtime provided we can restore quickly without
 significant loss of data?”, the answer is the same, especially when it
 becomes clear that this is much less expensive. Restoring quickly
 without significant loss of data is difficult with hardware, because you
 don’t always have spare systems readily available. With AWS, however,
 you have all the spare resources you want. Later, we’ll show you how to
 install the necessary command-line tools, but all you need to start five servers is:
$ ec2-run-instances ami-480df921 -n 5
When it is necessary to handle more traffic, you can add
 servers—called instances in EC2—to relieve the load on the existing
 infrastructure. After adjusting the application so it can handle this
 changing infrastructure, you can have any number of instances doing the
 same work. This way of scaling—scaling out—offers an interesting opportunity.
 By creating more instances doing the same work, you just made that part
 of your infrastructure highly available. Not only is your system able to
 handle more traffic or more load, it is also more resilient. One failure
 will no longer bring down your app.
After a certain amount of scaling out, this method won’t work
 anymore. Your application is probably becoming too complex to manage. It
 is time for something else; the application needs to be broken up into
 smaller, interoperating applications. Luckily, the system is agile and
 we can isolate and extract one component at a time. This has significant
 consequences for the application. The application needs to implement
 ways for its different parts to communicate and share information. By
 using the AWS services, the quality of the application only gets better.
 Now entire components can fail and the app itself will remain
 functional, or at least responsive.

Simply Small

AWS has many useful and necessary tools to help you design for
 failure. You can assign Elastic IP addresses to an instance, so if the instance
 dies or you replace it, you reassign the Elastic IP address. You can
 also use Elastic Block Store (EBS) volumes for instance storage.
 With EBS, you can “carry around” your disks from instance to instance.
 By making regular snapshots of the EBS volumes, you have an easy
 way to back up your data. An instance is launched from an
 image, a read-only copy of the initial state of
 your instance. For example, you can create an image containing the
 Ubuntu operating system with Apache web server, PHP, and your web
 application installed. And a boot script can automatically attach
 volumes and assign IP addresses. Using these tools will allow you to
 instantly launch a fresh copy of your application within minutes.
Most applications start with some sort of database, and the most
 popular database is MySQL. The AWS RDS offers MySQL as a service. RDS offers numerous
 advantages like backup/restore and scalability. The advantages it brings
 are significant. If you don’t use this service, make sure you have an
 extremely good reason not to. Scaling a relational database is
 notoriously hard, as is making it resilient to failure. With RDS, you
 can start small, and if your traffic grows you can scale up the database
 as an immediate solution. That gives you time to implement optimizations
 to get the most out of the database, after which you can scale it down
 again. This is simple and convenient: priceless. The command-line tools make it easy to launch a very
 powerful database:
$ rds-create-db-instance kulitzer \
 --db-instance-class db.m1.small \
 --engine MySQL5.1 \
 --allocated-storage 5 \
 --db-security-groups default \
 --master-user-password Sdg_5hh \
 --master-username arjan \
 --backup-retention-period 2
Having the freedom to fail (occasionally, of course) also offers
 another opportunity: you can start searching for the boundaries of the
 application’s performance. Experiencing difficulties because of
 increasing traffic helps you get to know the different components and
 optimize them. If you limit yourself in infrastructure assets, you are
 forced to optimize to get the most out of your infrastructure. Because
 the infrastructure is not so big yet, it is easier to understand and
 identify the problem, making it easier to improve. Also, use your
 freedom to play around. Stop your instance or scale your RDS instance.
 Learn the behavior of the tools and technologies you are deploying. This
 approach will pay back later on, when your app gets critical and you
 need more resources to do the work.
One straightforward way to optimize your infrastructure is to
 offload the “dumb” tasks. Most modern frameworks have facilities for
 working with media or static subdomains. The idea is that you can use
 extremely fast web servers or caches to serve out this static content.
 The actual dynamics are taken care of by a web server like Apache, for
 example. We are fortunate to be able to use CloudFront. Put your static
 assets in an S3 bucket and expose them using a
 CloudFront distribution. The advantage is that
 you are using a full-featured content delivery network with edge
 locations all over the world. But you have to take into account that a
 CDN caches aggressively, so change will take some time to propagate. You
 can solve this by implementing invalidation, building in some sort of
 versioning on your assets, or just having a bit of patience.

Growing Up

The initial setup is static. But later on, when traffic or load is picking up, you need
 to start implementing an infrastructure that can scale. With AWS, the
 biggest advantage you have is that you can create an elastic
 infrastructure, one that scales up and down depending on demand. Though
 this is a feature many people want, and some even expect out of the box,
 it is not applicable to all parts of your infrastructure. A relational
 database, for example, does not easily scale up and down automatically.
 Work that can be distributed to identical and independent instances is
 extremely well suited to an elastic setup. Luckily, web traffic fits
 this pattern, especially when you have a lot of it.
Let’s start with the hard parts of our infrastructure. First is
 the relational database. We started out with an RDS instance, which we
 said is easily scalable. It is, but, unaided, you will reach its limits
 relatively quickly. Relational data needs assistance to be fast when the
 load gets high. The obvious choice for optimization is caching, for
 which there are solutions like Memcached. But RDS is priceless if you
 want to scale. With minimum downtime, you can scale from what you have
 to something larger (or smaller):
$ rds-modify-db-instance kulitzer \
 --db-instance-class db.m1.xlarge \
 --apply-immediately
We have a strategy to get the most out of a MySQL-based data
 store, so now it is time to set up an elastic fleet of EC2 instances,
 scaling up and down on demand. AWS has two services designed to take
 most of the work out of your hands:
	Amazon ELB

	Amazon Auto Scaling

ELB is, for practical reasons, infinitely scalable, and works
 closely with EC2. It balances the load by distributing it to all the
 instances behind the load balancer. The introduction of
 sticky sessions (sending all requests from a
 client session to the same server) is recent, but with that added, ELB
 is feature-complete. With Auto Scaling, you can set up an autoscaling
 group to manage a certain group of instances. The
 autoscaling group launches and terminates instances depending on
 triggers, for example on percentage of CPU utilization. You can also set
 up the autoscaling group to add and remove these instances from the load
 balancer. All you need is an image that launches into an instance that
 can independently handle traffic it gets from the load balancer.
ELB’s scalability comes at a cost. The management overhead of this
 scaling adds latency to the transactions. But in the end, human labor is
 more expensive, and client performance does not necessarily need ultra
 low latencies in most cases. Using ELB and Auto Scaling has many
 advantages, but if necessary, you can build your own load balancers and
 autoscaling mechanism. All the AWS services are exposed as APIs. You can
 write a daemon that uses CloudWatch to implement triggers that
 launch/terminate instances.

Moving Out

The most expensive part of the infrastructure is the relational
 database component. None of the assets involved here scales easily, let
 alone automatically. The most expensive operation is the join. We
 already minimized the use of joins by caching objects, but that is not
 enough. All the big boys and girls try to get rid of their joins
 altogether. Google has BigTable and Amazon has SimpleDB, both of which
 are part of what is now known as NoSQL. Other examples of NoSQL databases are MongoDB and
 Cassandra, and they have the same underlying principle of not
 joining.
The most radical form of minimizing the use of joins is to
 decouple, and a great way to decouple is to use queues. Two applications
 performing subtasks previously performed by one application are likely
 to need less severe joins. Internally, Amazon has implemented an
 effective organization principle to enforce this behavior. Amazon
 reorganized along the lines of the functional components. Teams are
 responsible for everything concerning their particular applications.
 These decoupled applications communicate using Amazon SQS and Amazon
 Simple Notification Service (SNS), and they share using Amazon SimpleDB
 and Amazon S3.
These teams probably use MySQL and Memcached and ELB to build
 their applications. But the size of each component is reduced, and the
 traffic/load on each is now manageable once more. This pattern can be
 repeated again and again, of course.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/httpatomoreillycomsourceoreillyimages786729.png
DB Instance: production

DB Instance Cla: db.m2.xlarge 3] production %)
DB Engine Version: DB Security Groups:
Auto Minor Version Upgrade: @ Yes O No

production

Allocated Storage: 5 |GB
Multi-AZ Deployment: O Yes @ No
Backup Retention Period: (773) days
Backup Window: Start Time: (02 %) : (00 %) UTC
Duration: (213 hours.

Maintenance Window: Start Time: (sunday 13) (04 13) : (0013) UTC

Duration: (4T8) hours

Apply Immediately: &

by Note: choosing to change your DB Instance Class and/or Backup Retention Period along with selecting "Apply Immediately” causes
Vour B Instance to reboot immediately.

OEBPS/httpatomoreillycomsourceoreillyimages786754.png
ecaf, Monitor

Host

7 Directness Recommendi

Host www.recommendi.
com

Description

Checking enabled >

Ports 80 >

Pages / >

Checked 2010/10/26 11:13:40

OEBPS/httpatomoreillycomsourceoreillyimages786756.png
Your server Yourserver
SNMP Monit
dient daemon
A
SNMP —
Nagios/)
o MMonit
server
server

Emails

OEBPS/httpatomoreillycomsourceoreillyimages786723.png
Traffic Traffic Traffic
increase increase decrease
Small Medium Large Medium
instance instance instance instance
Traffic Traffic Traffic
increase increase decrease
One Two Four Two
instance instances instances instances

Salingup
and down
(manual)

Saling out
andin
(automatic

OEBPS/httpatomoreillycomsourceoreillyimages786750.png
AWS Notification - Subscription Confirmation szses | x
AWS Notifications to me show details 12/1/10 | 45 Repy | v

You have chosen to subscribe to the topi
‘amn:aws:sns:us-east-1:205414005158:decaf-alarm

To confirm this subscription, click or visit the link below (If this was in error no action is necesary):
Confiim subscription

Please do not reply directy o tis &-mai. Ifyou wish to remove yoursel from recieving al uture SNS subscription confirmation requests please send
omailto sns-optout

©Reply = Forward

OEBPS/httpatomoreillycomsourceoreillyimages786762.png
Replies: 3 - Pages: st Post: Feb 14, 2010 9:08 PM by: truthtrap

truthtrap@®

Posts: 108
Registered: 2/13/07

truthtrap(@

Posts: 108
Registered: 2/1/07

Dan@AWSE

Posts: 220
Registered: 8/5/09

© instance not accessible
Posted: Feb 14, 2010 8:16 AM CET

Reply

hi aws/all,

my instance i-3b43d553 is not accessible. it shows up fine in the console and your health dashboard shows no problems in this
particular reason.

before i restart this instance, can anyone tell me if there is a problem with the network or the particular hardware?
thanks,
jurg.

© Re: instance not accessible
Posted: Feb 14, 2010 8:29 AM CET 4 in response to: truthtrap.

Reply

(restart worked, it might have been the instance itself. but can you check if there is something else, because it was entirely
‘frozen'?)

© Re: instance not accessible Heipful Correct

Posted: Feb 14, 2010 9:34 AM CET 4 in response to: truthtrap.

Reply

Hitruthtrap,

T checked on this, and the underlying hardware supporting your instance looks healthy. It looks like there was a kernel error that
required you to reboot: check your console output (available from the management console or the EC2 API) and you'll see what I
mean. There's a line starting with 'Process' that tells you the name of a process involved.

I've never seen this particular error before, so I assume it's not common. I'l pass the error message from your console output.
along to the appropriate group here. If you run into this again, let s know that it's a problem and mention this forum post, and
we'll see what we can do. You might also consider the AMIs from Canonical (
https://help.ubuntu.com/community/EC2StartersGuide) that provide newer versions of the Linux kernel (2.6.31).

Hope this helps.

Best,
Dan

OEBPS/httpatomoreillycomsourceoreillyimages786699.png
W swsamazon.com AWS | Products | Developers | Community | Support | Account

e

Elastic MopReduce CloudFront

Welcome, Arjan van Woensel | Settings | Sign Out

Getting Started

[Navigation [Amazon £c2 console Dashboard

My Resources

To start using Amazon EC2 you will want to launch a virtual server,
known as an Amazon EC2 Instance.

Launch Instance

You are using the following Amazon EC2 resources in the

US East (virginia) region:

5 2 €8S Volumes

2 Rotresn

@ osastictes
(3 1 e85 Snapsnot

maces.
o Mot Yur nstances il lnunch nthe US East (Vignia) region. ® oxeypairs & 1 securiy Group.
> Bundie Tasks 4 0 Load Balancers % 0 Placement Groups
Service Health El
eussic suocx store
oo Related Links
umes Current Status Details
> Snapshots @ Amozon EC2 (US East - N. Virginia) Service i operating normally > Documentation
NETWORKING & SECuRITY > View complets service hesth deais > AllEC2 Resources
> Enstie 1ps > Forums
> Security Groups. > Feedback
> Placament Groups I
> Load Balancers
> Key Pairs
© 2008 - 2011, Amozon Web Services LLC or s sfiotes, Allight reserved, | Foedback | Support | Privacy Polky | Termsofse | AN SEUJOROOM company

OEBPS/httpatomoreillycomsourceoreillyimages786691.png
ComponentA

message D ooo message

Queue

Receive

ComponentB

OEBPS/httpatomoreillycomsourceoreillyimages786732.png
Create Read Replica DB Instance

You are creating a replica DB Instance from a source DB Instance. This new DB Instance will have source DB
Instance's DB Security Groups and DB Parameter Groups.

Read Replica Source:
DB Instance Identifier:* (e.9. mydbinstance)
DB Instance Class:

Auto Minor Version Upgrade: @ Yes O No

Database Port: (3306 (e.g. 3306)

Availability Zone: (o preference [

OEBPS/httpatomoreillycomsourceoreillyimages786689.png
2002

SimpleDB

Amazon

Assodates

ELB

505 3 Q2 RDS
2004 2006 2007 2008 2009 2010
Y
Amazon AWS
‘Amazon Web Services

OEBPS/httpatomoreillycomsourceoreillyimages786695.png
mazon
SErVICeS™ Sign Up For Amazon Elastic Compute Cloud, Amazon S3, and Amazon VPC

Welcome Arjan van Woensel | o You?

Identity Verification by Telephone

A simple identity verification by telephone is required to complete the sign up process. This process takes only a couple minutes
and consists of you receiving a phone call fom us, and entering a PIN number that we will give you.

m

Please follow the nstructions on the telephone and key i the following Personal Identification Number (PIN) on your telephone
‘when prompted.

Your PIN: 3823

1f you have not yet received a cal at the number indicated above, please wait.
“This page will automaticaly update with what you need to do next.

W

Privacy Policy | Customer Agreement
©2010, Amazon Web Sarvices LLC o s affiates. All ights rserved.

An amazoncom company

OEBPS/httpatomoreillycomsourceoreillyimages786734.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages786764.png
CloudWatch Monitoring Detail

CPU Utilization (Percent)

100

Y6 16 16 16 16
1085 11500 11:05 11:0 115

Monitored DB Instances: M production

Cancel)

Time Range: (Tiour) Period: (Tvinute T8) | 2 rorosn |

16
11:20

16
11125

16
11:30

16
11135

Y6 16 16
11:40 11345 11:50

Times are displayed in UTC.

OEBPS/httpatomoreillycomsourceoreillyimages786738.png
Upload
Webapp
ECinstance
Add message:
Newimage
avilable

File
uploaded

S3

Getfileto
process

Image
queue

[C]] Readanddelete

Images ready
to process

SQS

Image
processing

EQinstance

message

OEBPS/httpatomoreillycomsourceoreillyimages786727.png
Create a New Load Balancer

— 0

DEFINE LOAD
BALANCER

This wizard will walk you through setting up a new load balancer. Begin by giving your new load balancer a unique name
50 that you can identify it from other load balancers you might create. You will also need to configure ports and protocols
for your load balancer. Traffic from your clients can be routed from any load balancer port to any port on your EC2
instances. By default, we've configured your load balancer with a standard web server on port 80. We also provide several
application examples to assist you in opening up the right ports.

Load Balancer Name: [production

Listener
Configuration:

Common Applications Protocol

Apache HTTP Sever HTTP

OEBPS/httpatomoreillycomsourceoreillyimages786752.png
pingdom

User: jurg@9apps.net

Home
Home » Checks » Edit check
Reports
Uptme epor; Edit check "Recommendi"”

Response time report
Detailed log
Overview

Notfiation history.
Puble reports 1. Check
Report banners:

Email report subscription

Use the form below to modify the check. When done, save it with the “Update Check” button at
the bottom of the page.

Name of check: Recommendi

Checks

Check resolution: Lminute[3)

Contacts

My account Check type:

Extra services

Sotings HTTP O HTTP Custom

Invoices

‘Account subscriptons

TCP Port O Ping O DNS ©) UDP

Information

‘Geting stared with Pingdom

Pinggom AP|

Active probe servers

T I o

SMTP O POP3) IMAP

OEBPS/httpatomoreillycomsourceoreillyimages786725.png
Elastic Load
Balancer CoudFront (CDN)
Rails
server
(EC2instance)
MysaL
(RDS 3

)

OEBPS/httpatomoreillycomsourceoreillyimages786721.png.jpg
Feedback

Kulitzer!

‘earm recogition, awards and money

about

Kullzor s the contest
platorm for craatve people.
You can joina contest,
enter your work, and ake a
seatin the ury. Cantfing
‘any contestyou fke? Start
Your own—its roet

Gatrecogaiton foryour
work,vole for your
favourtes and oven win
prizes. O make money by
starting your own contost

Good luck!

Kulitzer Prize

create account >
fog In | help

contests you can join

o—
\‘Q =)

o omtho i Ifogmhics pofesio.. . bostthow camples)
o] == o

best scrapbooking 2009 calligraphy sem pros best plcs of mangawhal nz

Cormgimosenoors oo cormpitos | wenors cincod compod | werers arnourcs
Viow doats Vi ot Viow dotats

ballpoint drawings
complsied | wiwiers smcunced

OEBPS/httpatomoreillycomsourceoreillyimages786697.png
it If you are not sure which security credentials you should use, the link below will help you identify the credentials you

= Deveay need for the task you want to accomplish:

@ Find out which AWS Security Credentials you need

Access Credentials

‘There are three types of access credentials used to authenticate your requests to AWS services: (a) access keys, (b)
X509 certficates, and (c) key pairs. Each access credential type is explained below.

[% Access Keys || [#1X.509 Cortfcates | 1§ Koy Pairs
Use X.509 certiicates to make secure SOAP protocol requests to AWS service APs.

Exceptions: Amazon S3 and Amazon Mechanical Turk instead require your Access Keys for SOAP requests.

Created X.509 Certificate Status.

cert-4PSATBIDAE42USZMMCIZWBVYXXNGUGI3. pem ive
July 7, 2010 (Rounicad) (Make Inactive)

Create a new Certificate | Upload Your Own Certificate

For your protection, AWS doesn' ask for your private key o retain it on file. You should also never share your
private ke with anyone. In adtion, industry best practice recommends frequent certificate rotation.

@ Learn more about X.509 Certificates

Sign-In Credentials

To sign in to AWS web sites and applications, AWS requires your Amazon e-mail address and password. Addtionally, it
supports the AWS Multi-Factor Authentication option. Each sign-in credential is explained below.

Amazon E-mail Address and Password
To sign in to secure pages on the AWS web site, the AWS Management Console, the AWS Discussion Forums, and the

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages786717.png
Create a Bucket - Select a Bucket Name and Region Cancel [x/

A bucket is a container for objects stored in Amazon S3. When creating a bucket,
you can choose a Region to optimize for latency, minimize costs, or address
regulatory requirements. For more information regarding bucket naming
conventions, please visit the Amazon S3 documentation.

static.kulitzer.com.production]
: [US Standard ~J

SetUp Logging >

OEBPS/httpatomoreillycomsourceoreillyimages786687.png.jpg
AWS Pace of Innovation

(as of Q4 2010)

» Amazon Simple Notification

Service
s ';?,f‘i?e’g%lﬁ?(:crzz » RDS Multi-Availability Zone
» IBM on EC2 Support
> Windows Server 2008 on EC2> S3 Reduced Redundancy Storage
» Premium Support % AMEZon RS » New Locations and Features for
» Amazon CloudFront , Amazon Virtual Private Cloud _ Cloudfront
» EC2 Elastic IP addresses 5 Amazon Elastic MapReduce > S3 Bucket Policies
& Availability Zones 4 EBS Shared Srapahots » Cluster Instances for EC2
» Amazon EC2 » Windows Server, MySQL, » Monitoring, Auto Scaling &)
> Amazon S3 Oracle, & JBosson EC2 Elastic Load Balancing for > Amazon Linux AMI
» Developer Portal » Lower Data Transfer EC2 » Oracle on EC2
& Costs » New EC2 Features

Forums » SUSE Linux on EC2

» Micro Instances
» Lower Pricing for EC2
High Mem Instances

» AWS Services in N. California

#AmBZoN SIipIeDE > AWS Multi-Factor Authentication

SaozonHiesbie Bayments » AWS Management Console » Mdentity & Access
> S3in Europe » AWS Economics Center , AWS Servicda ih SISgEere
» EC2 new instance types » AWSin Education » RDS Reserved Database Instances

» AWS Security Center 5, RDS Read Replicas & Lower Pricing

» AWS Start-Up Challenge
b 9 > SAS70Type I Audit » Lower Outbound Transfer Pricing

» More services in EU » Data Transfer Usage Tiers
> Eublic Data Sets _» LowerEC2 Pricing Consoldated Biling for AWS
» Amazon SQS EC2 SLA » Lower S3 Pricing » Amazon S3 Versioning Feature
» Amazon Mechanical Turk : EC2in EU » Lowerpricing for » EC2 High Memory Instances

Outbound Data Transfer

» S3Tiered Pricing , Aws Solution Provider Program amazon
webservices™

OEBPS/httpatomoreillycomsourceoreillyimages786680.jpg
Survive Your Succe:

Programming

Jurg van Vliet

O’REILLY*® & Flavia Paganelli

OEBPS/httpatomoreillycomsourceoreillyimages786770.png
CloudWatch Monitoring Detai cancel [x

CPU Utilization (Percent) (Average [3) Time Range: { 1week | +] Period: 15 Minutes [3) | & Refresh

100

20

11/4 11/5 11/6 11/7 11/8 11/9 11/10
00:00 00:00 00:00 00:00 00:00 00:00 00:00

Monitored Instances: mi-58fd12a B i-99Sbbee Times are displayed in UTC.

OEBPS/httpatomoreillycomsourceoreillyimages786748.png
nternet 2]

Third parties using the APl

Web
application

EQ2instance

Images,
templates,
pdfs.. | N
3

APl

EQ2instance

prory | 4
quetes

505

Accounts

SimpleDB

AWS

InDesign

05X farm

Marvia infrastructure

OEBPS/httpatomoreillycomsourceoreillyimages786742.png
Webapplication

Upload
templates,
images

EC2instance

Read pef

Upload
newjob

Jobs
~Templates, images
. pdfs

Read
templates,
images

Upload
generated pdf

oooo

High-pririty queue

oogoo<™*

Low-priority queue
505

InDesign fam

0SX servers

OEBPS/httpatomoreillycomsourceoreillyimages786685.png
300

250

200

150

100

50

Billions of Objects in Amazon S3

Q42006

T

Q42007 Q42008 Q42009

Q42010

OEBPS/httpatomoreillycomsourceoreillyimages786772.png
Status | Parameters |Result]]

LIRS

itemName(username

000004
000003
000001
000002
000005
000006

name uses_API | PDFs_requested fair_program

locomundo Flavia Paganelli yes

truthtrap.
telegraaf
cineville
Johnny
‘mary

Jurg van Vljet yes.
30 no
10 ves

John Perez yes.

Mary Smith

contract_expiration company

2011-04-30
2011-12-31

Casae Luce

OEBPS/httpatomoreillycomsourceoreillyimages786760.png.jpg
CPU (avg)
M 8%
| 5% |
24h 12h 0 ;
DISK (totals) ® write ® read
0B/s

0B/s
24h 12h 0

NETWORK (totals) win ®out

W\f 8MB/s

5MB/s

0

OEBPS/httpatomoreillycomsourceoreillyimages786711.png
Launch DB Instance Wizard

v v v

DB INSTANCE DETALS ~ADDITIONAL CONFIGURATION MANAGEMENT OPTIONS
Please review the information below, then click Launch

Engine: MySQL
Engine Version: 5.1.50
Auto Minor Ver. Upgrade:
DB Instance Class:
Multi-AZ Deployment:

production
enoch
Master User Password: xxxxxxxx

Database Name:
Database Port: 3306
Availability Zone: 1 have no preference
DB Parameter Group: ~default.mysql5.1
DB Security Group(s): production

Backup Retention Period: 7
Backup Window: 02:00-04:00
Maintenance Window: Sunday 04:00-Sunday 08:00

Launch DB Instance

OEBPS/httpatomoreillycomsourceoreillyimages786709.png
W sws.amezon.com AWS | Products | Developers | Community | Support | Account

‘Welcome, Arjan van Woensel ~ Seitings | Sign Out

e Frm e g

53 Elastic MapReduce CloudFront RDS SNS

LSSS———nnii———————————_____—__——.—,
Region: & vt~ ﬁ‘.mwm,wﬁmw JRemszmme | 05 sttt | & Rotenn | @ i |
> EC2 Dashboard [Viewlog: (At Addresses W

B overra O
Acdaress instanca .

L
msTances
_l O 9wtz

> Spot Requests

maGEs
> ams

> Bundie Tasks.
ELASTIC BLOCK STORE
> Volumes

> Snapshots:

'NETWORKING & SECURITY

> Elastic 1Ps
0 Elastc 1Ps selected
> Security Groups
. remen ‘Select an Elastic IP address above to view Information abou it here
> Load Balancers.
> Key Pairs

© 2008 - 2011, Amazon Web Services LLC or its offiites. Allright reserved. | Feedback | Support | Privacy Poliy | TermsofuUse | AN Sm8Z0RCOM. company

OEBPS/httpatomoreillycomsourceoreillyimages786701.png
CloudFront
edge loctions

Internet

[r— Staic
Logic + content
presentation[[Ee)
instance Qoudfront
[A
Retieved rm
Static
content
MysaL
Data ,

S3

database

RDS instance

OEBPS/httpatomoreillycomsourceoreillyimages786715.png
Restore DB Instance

You are creating a new DB Instance from a DB Snapshot. This DB Instance will have the default
DB Security Group and DB Parameter Groups.

DB Snapshot ID:
DB Instance Identifier:*
DB Instance Class:
Multi-AZ Deployment:
Database Port:

Availability Zone:

production-01

(e.g. mydbinstance)

Leunch 0B s

OEBPS/httpatomoreillycomsourceoreillyimages786740.png
Upload
new job Read job
Upload | Jabs read
Webappliation | “™P25 | . Templates, images | femPlates
images images
F——»| . pafs
—— InDesign farm
s reoapdl 3 Upload e

qenerated pdf

OEBPS/httpatomoreillycomsourceoreillyimages786707.png
Request Instances Wizard
v v v v

CHOOSE AN AMI INSTANCE DETALS CREATE KEY PAIR CONFIGURE FREWALL

Please review the information below, then click Launch.

+ 423 Ubuntu AMI ID ami-a2f405cb (i386) Edit AMI

1
Availability Zone: No Preference
Instance Type: Small (m1.small)
©On Demand Edit Instance Details

Disabled
Use Default
Use Default
Edit Advanced Details

Key Pair Name: arjan Edit Key Pair

Security Group(s): Edit Firewall

OEBPS/httpatomoreillycomsourceoreillyimages786746.png
Main Kulitzer Files
|:|'> uploaded
EQinstance
S3
The Academy Images Image
Award Kulitzer [::> queue processing
EQinstance 505 EC2instance
The Best AWS Users
Book Kulitzer [:>
SimpleDB
EQinstance

OEBPS/httpatomoreillycomsourceoreillyimages786744.png
= Queue

7 queuel

Created
Timestamp

1285862098

Approximate

Visibility
Timeout

120

Approximate
Number Of
Messages Not
Visible

Queue Arn

arn:aws:sgs:us-
east-1:2054140051

OEBPS/httpatomoreillycomsourceoreillyimages786703.png
Create Key Pair Cancel (x

A key pair has been created for you with
the name arjan.

Your private key should begin
downloading in a few seconds, please
save it in a safe location.

OEBPS/httpatomoreillycomsourceoreillyimages786766.png
Create New Subscription

Topic Name cloudwatch-alarms

Protocol (Emai __[5)

Endpoint flavial@9apps.net

OEBPS/httpatomoreillycomsourceoreillyimages786768.png
Load on the different components. The databaseis the bottleneck.

5%
100 &3

requests/ | —)

second -
BB Database

% (R0S)

Webservers
(ECQ2)

OEBPS/httpatomoreillycomsourceoreillyimages786774.png
Status | Parameters |ResultL

itemName(username | name. uses APl PDFs_requested fair_program _ contract_expiration _|company
1 000004 locomundo Flavia Paganelli yes 1 ves 2011-12-31 SApps

2 000003 twuthwap JurgvanViet yes 4 ves 2011-12-31 9Apps

3 000001 telegraaf Basvan Dieren yes 30 no 2011-04-30 Telegraaf
4 000002 cineville LauraGonzalez yes 10 ves 2011-12-31 Cineville

5 000005 johmny JjohnPerez yes o no 2011-04-30 Telegraaf
6 000006 mary Mary Smith no 2 yes. 2011-06-30 Casa e Luce

OEBPS/httpatomoreillycomsourceoreillyimages786693.png
The Cloud Scales: Amazon 53 Growth

Peak Requests
200,000+
per second

102 Billion

40 Bilion
14 Billion
—

2.9 Billion

262 Billon

Total Number of Objects Stored in Amazon S3

' amazon

OEBPS/httpatomoreillycomsourceoreillyimages786758.png
CloudWatch Monitoring Details

CPU Utilization (Percent)

100

12/31 1/1 1/2
00:00 00:00 00:00

Monitored DB Instances: M production

Cancel)

Time Range: (T wesk 1) Period: (15 Minutes 18) | & Refrosh |

1/5 1/6
00:00 00:00

Times are displayed in UTC.

OEBPS/httpatomoreillycomsourceoreillyimages786719.png
Create Distribution

Delivery Method: @ Download O Streaming

Origin*: [media.kulitzer.com.production 2]
Logging:
CNAMES:

Commen

Distribution Status: @ Enabled O Disabled

*Required Field

OEBPS/httpatomoreillycomsourceoreillyimages786713.png
¥ DB Security Group: production

Description || Recent Events

Connection Type Details.
CcIoR/IP CIDR: 0.0.0.0/0

Security Group: web

EC2 Security GrouP | aws Account ID: 457964863276

Status

authorized

authorized

Actions

OEBPS/httpatomoreillycomsourceoreillyimages786705.png
Wl swsmazoncom AWS | Products | Developers | Community | Support | Account

B

Elastic MapReduce CloudFront

‘Welcome, Arjan van Woensel ~ Seitings | Sign Out

Region: T 2 orogmer) fy Pomssios |

[Amazoniacivetmages — —— ———————]

+ £c2 Dashboard Viwiog: Alimages

T8) (A iatorms_1%)[ami-a21405cb

T3 Showttde || & Rattosh || @ top |

ELASTIC BLOCK STORE
> Volumes
> Snapshots:

'NETWORKING & SECURITY
> Elastic 1ps

3G e & 2
Name > AMIID Source Owner | Visiilly Staws Platiorn

R a @) amia2(405cb 099720100477/abs/ubuntu-mages/uburtuucid-10.04-386 server 2010 009720108477 | Putic @ avaiable | 3 Ubuntu

> Spot Requests

ces

> amis

> Bundie Tasks

0.£C2 Amazon Machin Images selected
Select an image above

> Security Groups

> Placement Groups.
> Load Balancers.

> Key Pairs

© 2008 - 2011, Amazon Web Services LLC or its affiistes. Al right reserved.

Feedback | Support

Privacy Policy

Termsofuse | An amazoncom. company

OEBPS/httpatomoreillycomsourceoreillyimages786736.png
Configuration

Edit the attributes of your configuration below. When you are finished making edits, click "Apply
Changes".

[Server | Load Balancer | | Auto Scaing || Databsse | Notfcations || Container

Container/JVM Options

These settings control container behavior and allow you to pass key/value pairs in as OS
environment variables. Learn more »»

Initial VM Heap Size (MB) [256m
Maximum JVM Heap Size (MB) [256m

Maximum JVM Permanent ration oo
Size (MB)

JVM Command Line Options
O Enable log file rotation to Amazon S3

Note: When enabled Elastic Beanstalk wil rotate your
Tomeat log files to an S3 bucket every hour.

Environment Properties
These orooerties are passed into the aoolication as environment variables. Learn more »>

