

 [image: First Edition]

 jQuery Pocket Reference

David Flanagan

Editor
Simon St. Laurent

Editor
Mike Loukides

Copyright © 2010 David Flanagan

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. The Pocket
 Reference series designation, jQuery Pocket
 Reference, the image of a rufous-necked weaver bird, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

This book covers version 1.4 of the jQuery library for client-side
 JavaScript programming. It is one chapter from my much longer book JavaScript: The
 Definitive Guide. jQuery is such a powerful library and
 so well suited to pocket reference format that it seemed worth publishing
 this material on its own.
This book assumes that you already know how to program with
 JavaScript, and that you are familiar with the basics of client-side
 JavaScript programming without jQuery. For example, you should know about
 DOM methods like getElementById(),
 getElementsByTagName(), and
 addEventListener().
Thanks to Raffaele Cecco for a timely and thorough review of the book
 and of the code it contains. Thanks also to John Resig and the entire jQuery
 team for creating such a useful library, to my editor Mike Loukides for his
 enthusiasm for this project, and to the O’Reilly production department for
 getting this book out so quickly.
The examples in this book can be downloaded from the book’s web page,
 which will also include errata if any errors are discovered after
 publication:
	http://oreilly.com/catalog/0636920016182/

In general, you may use the examples in this book in your programs and
 documentation. You do not need to contact us for permission unless you’re
 reproducing a significant portion of the code. We appreciate, but do not
 require, an attribution like this:
 “From jQuery Pocket Reference by David Flanagan (O’Reilly). Copyright 2011 David Flanagan, 978-1-449-39722-7.” If you feel your
 use of code examples falls outside fair use or the permission given here, feel free to
 contact us at permissions@oreilly.com.
To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

This book is also available from the Safari Books Online service. For
 full digital access to this book and others on similar topics from O’Reilly
 and other publishers, sign up at http://my.safaribooksonline.com.

Chapter 1. Introduction to jQuery

JavaScript has an intentionally simple core API and an overly
 complicated client-side API that is marred by major incompatibilities
 between browsers. The arrival of IE9 eliminates the worst of those
 incompatibilities, but many programmers find it easier to write web
 applications using a JavaScript framework or utility library to simplify
 common tasks and hide the differences between browsers. At the time of this
 writing, jQuery is one of the most popular and widely used of these
 libraries.
Because it has become so widely used, web developers should be
 familiar with the jQuery library: even if you don’t use it in your own code,
 you are likely to encounter it in code written by others. Fortunately,
 jQuery is stable and small enough to document in pocket reference
 form.
jQuery makes it easy to find the elements of a document, and then
 manipulate those elements by adding content, editing HTML attributes and CSS
 properties, defining event handlers, and performing animations. It also has
 Ajax utilities for dynamically making HTTP requests, and general-purpose
 utility functions for working with objects and arrays.
As its name implies, the jQuery library is focused on
 queries. A typical query uses a CSS selector to
 identify a set of document elements and then returns an object that
 represents those elements. This returned object provides many useful methods
 for operating on the matching elements as a group. Whenever possible, these
 methods return the object on which they are invoked, allowing a succinct
 method-chaining idiom to be used. These features are at the heart of
 jQuery’s power and utility:
	An expressive syntax (CSS selectors) for referring to elements in the document

	An efficient query method for finding the set of document elements
 that match a CSS selector

	A useful set of methods for manipulating selected elements

	Powerful functional programming techniques for operating on sets
 of elements as a group, rather than one at a time

	A succinct idiom (method chaining) for expressing sequences of operations

This book begins with an introduction to jQuery that shows how to make
 simple queries and work with the results. The chapters that follow
 explain:
	How to set HTML attributes; CSS styles and classes; HTML form
 values; and element content, geometry, and data

	How to alter the structure of a document by inserting, replacing,
 wrapping, and deleting elements

	How to use jQuery’s cross-browser event model

	How to produce animated visual effects with jQuery

	jQuery’s Ajax utilities for making scripted HTTP requests

	jQuery’s utility functions

	The full syntax of jQuery’s selectors, and how to use jQuery’s
 advanced selection methods

	How to extend jQuery by using and writing plugins

	The jQuery UI library

The end of this book is a quick reference to all of jQuery’s methods
 and functions.
jQuery Basics

The jQuery library defines a single global function named
 jQuery(). This function is so frequently used that the
 library also defines the global symbol $ as a shortcut
 for it. These are the only two symbols jQuery defines in the global
 namespace.[1]
This single global function with two names is the central query
 function for jQuery. Here, for example, is how we ask for the set of all
 <div> tags in a document:
var divs = $("div");
The value returned by this function represents a set of zero or more
 DOM elements and is known as a jQuery object. Note that
 jQuery() is a factory function rather than a
 constructor: it returns a newly created object, but it is not used with
 the new keyword. jQuery objects define many methods for
 operating on the sets of elements they represent, and most of this book is
 devoted to explaining those methods. Below, for example, is code that
 finds, highlights, and quickly displays all hidden
 <p> tags that have a class of “more”:
$("p.more").css("background-color", "gray").show("fast");
The css() method operates on the jQuery object
 returned by $(), and returns that same object so that
 the show() method can be invoked next in a compact
 “method chain”. This method-chaining idiom is common in jQuery
 programming. As another example, the code below finds all elements in the
 document that have the CSS class “hide”, and registers an event handler on
 each one. That event handler is invoked when the user clicks on the
 element, making it slowly “slide up” and disappear:
$(".hide").click(function() { $(this).slideUp("slow"); });
Obtaining jQuery
The jQuery library is free software you can download from http://jquery.com. Once you have the code, you can
 include it in your web pages with a <script>
 tag:
<script src="jquery-1.4.4.min.js"></script>
At the time of this writing, the current version of jQuery is
 1.4.4. The “min” in the filename above indicates that this is the
 minimized version of the library, with unnecessary comments and
 whitespace removed, and internal identifiers replaced with shorter
 ones.
Another way to use jQuery in your web applications is to allow a
 content distribution network to serve it using a URL like one of
 these:
http://code.jquery.com/jquery-1.4.4.min.js
http://ajax.microsoft.com/ajax/jquery/jquery-1.4.4.min.js
http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js
Replace the “1.4.4” version number in the URLs above as necessary.
 If you use the Google CDN, you can use “1.4” to get the latest release
 in the 1.4.x series, or just “1” to get the most current release less
 than 2.0. The major advantage of loading jQuery from
 well-known URLs like these is that because of jQuery’s popularity,
 visitors to your website will likely already have a copy of the library
 in their browser’s cache and no download will be necessary.

[1] If you use $ in your own code, or are using
 another library—such as Prototype—that uses $, you
 can call jQuery.noConflict() to restore
 $ to its original value.

The jQuery() Function

The jQuery() function (a.k.a.
 $()) is the most important one in the jQuery library.
 It is heavily overloaded, however, and there are four different ways you
 can invoke it.
The first and most common way to invoke $() is to
 pass a CSS selector (a string) to it. When called this way, it returns the
 set of elements from the current document that match the selector. jQuery
 supports most of the CSS3 selector syntax, plus some extensions of its
 own. Complete details of the jQuery selector syntax are in jQuery Selectors. If you pass an element or a jQuery object as
 the second argument to $(), it returns only matching
 descendants of the specified element (or elements). This optional second
 argument value defines the starting point (or points) for the query and is
 often called the context.
The second way to invoke $() is to pass it an
 Element, Document, or Window object. Called like this, it simply wraps the
 element, document, or window in a jQuery object and returns that object,
 allowing you to use jQuery methods to manipulate the element rather than
 using raw DOM methods. It is common to see jQuery programs call
 $(document) or $(this), for example.
 jQuery objects can represent more than one element in a document, and you
 can also pass an array of elements to $(). In this
 case, the returned jQuery object represents the set of elements in your
 array.
The third way to invoke $() is to pass it a
 string of HTML text. When you do this, jQuery creates the HTML element (or
 elements) described by that text and then returns a jQuery object
 representing those elements. jQuery does not automatically insert the
 newly created elements into the document, but the jQuery methods described
 in Chapter 3 allow you to easily insert
 them where you want them. Note that you cannot pass plain text when you
 invoke $() in this way, or jQuery will think you are
 passing a CSS selector. For this style of invocation, the string you pass
 to $() must include at least one HTML tag with angle
 brackets.
When invoked in this third way, $() accepts an
 optional second argument. You can pass a Document object to specify the
 document with which the elements are to be associated. (If you are
 creating elements to be inserted into an
 <iframe>, for example, you’ll need to explicitly
 specify the Document object of that frame.) Or, you can pass a second
 argument that specifies the names and values of attributes to set on the
 newly created elements as an object:
var img = $("", // Create a new tag
 { src:url, // With this src attribute
 alt:desc }); // And this alt attribute
Finally, the fourth way to invoke $() is to pass
 a function to it. If you do this, the function you pass will be invoked
 when the document has been loaded and the DOM is ready to be manipulated.
 It is very common to see jQuery programs written as anonymous functions
 defined within a call to jQuery():
jQuery(function() { // Invoked when document has loaded
 // All jQuery code goes here
});
You’ll sometimes see $(f) written using the older
 and more verbose form: $(document).ready(f).
The function you pass to jQuery() will be invoked
 with the document object as its this value and with the
 jQuery function as its single argument. This means that
 you can undefine the global $ function and still use
 that convenient alias locally with this idiom:
jQuery.noConflict(); // Restore $ to its original state
jQuery(function($) {
 // Use $ as a local alias for the jQuery object
 // Put all your jQuery code here
});
jQuery triggers functions registered through $()
 when the “DOMContentLoaded” event is fired, or, in browsers that don’t
 support that event, when the “load” event is fired. This means that the
 document will be completely parsed, but that external resources such as
 images may not be loaded yet. If you pass a function to
 $() after the DOM is ready, that function will be
 invoked immediately—before $() returns.
The jQuery library also uses the jQuery()
 function as its namespace, and defines a number of utility functions and
 properties under it. The jQuery.noConflict() function
 mentioned above is one such utility function. Others include
 jQuery.each() for
 general-purpose iteration and
 jQuery.parseJSON() for parsing JSON text. Chapter 7 lists general-purpose utility functions, and other jQuery functions are
 described throughout this book.
jQuery Terminology
Let’s pause here to define some important terms and phrases that
 you’ll see throughout this book:
	“the jQuery function”
	The jQuery function is the value of
 jQuery or of $. This is the
 function that creates jQuery objects and registers handlers to be
 invoked when the DOM is ready; it also serves as the jQuery
 namespace. I usually refer to it as $(). Because it serves as a
 namespace, the jQuery function might also be called “the global
 jQuery object”, but it is very important not to confuse it with “a
 jQuery object”.

	“a jQuery object”
	A jQuery object is an object returned by the jQuery
 function. A jQuery object represents a set of document elements
 and can also be called a “jQuery result”, a “jQuery set”, or a
 “wrapped set”.

	“the selected elements”
	When you pass a CSS selector to the jQuery function, it
 returns a jQuery object that represents the set of document
 elements matching that selector. When describing the methods of
 the jQuery object, I’ll often use the phrase “the selected
 elements” to refer to those matching elements. For example, to
 explain the attr() method, I might write, “the
 attr() method sets HTML attributes on the
 selected elements”, rather than a more precise but awkward
 description like, “the attr() method sets HTML
 attributes on the elements of the jQuery object on which it was
 invoked”. Note that the word “selected” refers to the CSS selector
 and has nothing to do with any selection performed by the
 user.

	“a jQuery function”
	This is a function like
 jQuery.noConflict() that is defined in the
 namespace of the jQuery function. jQuery
 functions might also be described as “static methods”.

	“a jQuery method”
	A jQuery method is a method of a jQuery object returned by
 the jQuery function. The most important part of the jQuery library
 is the powerful methods it defines.

The distinction between jQuery functions and methods is sometimes
 tricky because a number of functions and methods have the same name.
 Note the differences between these two lines of code:
// Call the jQuery function each() to invoke the
// function f once for each element of the array a
$.each(a,f);

// Call the jQuery() function to obtain a jQuery
// object that represents all <a> elements in the
// document. Then call the each() method of that
// jQuery object to invoke the function f once for
// each selected element.
$("a").each(f);
The official jQuery documentation at http://jquery.com uses names like
 $.each to refer to jQuery functions, and names like
 .each (with a period but without a dollar sign) to
 refer to jQuery methods. In this book, I’ll use the term “function” and
 “method” instead. Usually it will be clear from the context that is
 being discussed.

Queries and Query Results

When you pass a jQuery selector string to $(), it
 returns a jQuery object that represents the set of matched (or “selected”)
 elements. jQuery selectors are very much like the CSS selectors you use in
 stylesheets. For example:
div // all <div> elements
#surname // the element with id="surname"
.warning // all elements with class="warning"
$() vs. querySelectorAll()
The $() function is similar to the Document
 method querySelectorAll(): both take a CSS selector
 as their argument and return an array-like object that holds the
 elements that match the selector. The jQuery implementation uses
 querySelectorAll() in browsers that support it, but
 there are good reasons to use $() instead of
 querySelectorAll() in your own code:
	querySelectorAll() has only recently been
 implemented by browser vendors, whereas $() works
 in older browsers as well as new ones.

	Because jQuery can perform selections “by hand”, the CSS3
 selectors supported by $() work in all browsers,
 not just those browsers that support CSS3.

	The array-like object returned by $() (a
 jQuery object) is much more useful than the array-like object (a
 NodeList) returned by querySelectorAll().

The specific selector syntax supported by jQuery is detailed in
 jQuery Selectors. Rather than focus on those advanced
 selector details now, we’re going to first explore what you can do with
 the results of a query.
The value returned by $() is a jQuery object.
 jQuery objects are array-like: they have a length
 property and numeric properties from 0 to length-1.
 This means that you can access the contents of the jQuery object using
 standard square-bracket array notation:
$("body").length // => 1: documents have only one body
$("body")[0] // This the same as document.body
If you prefer not to use array notation with jQuery objects, you can
 use the size() method instead of the
 length property, and the get()
 method instead of indexing with square brackets. If you need to convert a
 jQuery object to a true array, call the toArray()
 method.
In addition to the length property, jQuery
 objects have three other properties that are sometimes of interest. The
 selector property is the selector string (if any) that
 was used when the jQuery object was created. The
 context property is the context object that was passed
 as the second argument to $(), or the Document object
 otherwise. Finally, all jQuery objects have a property named
 jquery, and testing for the existence of this property
 is a simple way to distinguish jQuery objects from other array-like
 objects. The value of the jquery property is the jQuery
 version number as a string:
// Find all <script> elements in the document body
var bodyscripts = $("script", document.body);
bodyscripts.selector // => "script"
bodyscripts.context // => document.body
bodyscripts.jquery // => "1.4.2"
If you want to loop over all elements in a jQuery object, call the
 each() method instead of writing a
 for loop. The each() method is
 something like the ECMAScript 5 (ES5) forEach() array
 method. It expects a callback function as its sole argument, and invokes
 that callback function once for each element in the jQuery object (in
 document order). The callback is invoked as a method of the matched
 element, so within the callback the this keyword refers
 to an Element object. each() also passes the index and
 the element as the first and second arguments to the callback. Note that
 this and the second argument are raw document elements,
 not jQuery objects; if you want to use a jQuery method to manipulate the
 element, you’ll need to pass it to $() first.
jQuery’s each() method has one feature that is
 quite different than forEach(): if your callback
 returns false for any element, iteration is terminated
 after that element (this is like using the break
 keyword in a normal loop). each() returns the jQuery
 object on which it is called so that it can be used in method chains. Here
 is an example (it uses the prepend() method that will
 be explained in Chapter 3):
// Number the divs of the document, up to div#last
$("div").each(function(idx) { // Invoke for each <div>
 // Create a jQuery object from the element
 // And insert the index at start of it.
 $(this).prepend(idx + ": ");
 // Stop iterating when we reach #last
 if (this.id === "last")
 return false;
});
Despite the power of the each() method, it is not
 very commonly used since jQuery methods usually iterate implicitly over
 the set of matched elements and operate on them all. You typically only
 need to use each() if you need to manipulate the
 matched elements in different ways. Even then, you may not need to call
 each() since a number of jQuery methods allow you to
 pass a callback function.
The jQuery library predates the ES5 array methods and defines a
 couple of other methods that provide similar functionality. The jQuery
 method map() works much like the
 Array.map() method. It accepts a callback function as
 its argument and invokes that function once for each element of the jQuery
 object, collecting the return values of those invocations, and returning a
 new jQuery object holding those return values. map()
 invokes the callback in the same way as the each()
 method: the element is passed as the this value and as
 the second argument, and the index of the element is passed as the first
 argument. If the callback returns null or
 undefined, that value is ignored and nothing is added
 to the new jQuery object for that invocation. If the callback returns an
 array or an array-like object (such as a jQuery object), it is “flattened”
 and its elements are added individually to the new jQuery object. Note
 that the jQuery object returned by map() may not hold
 document elements, but it still works as an array-like object. Here is an
 example:
$(":header") // Find all headings.
 .map(function() { // Map them to
 return this.id; // their ids.
 })
 .toArray() // Convert to a true array
 .sort(); // And sort that array
Along with each() and map(),
 another fundamental jQuery method is index(). This
 method expects an element as its argument, and it returns the index of that
 element in the jQuery object, or -1 if it is not found. In typical jQuery
 fashion, however, this index() method is overloaded. If
 you pass a jQuery object as the argument, index()
 searches for the first element of that object. If you pass a string,
 index() uses it as a CSS selector and returns the index
 of the first element of this jQuery object in the set of elements matching
 that selector. And if you pass no argument, index()
 returns the index of the first element within its sibling
 elements.
The final general-purpose jQuery method we’ll discuss here is
 is(). It takes a selector as its argument and returns
 true if at least one of the selected elements also
 matches the specified selector. You might use it in an
 each() callback function, for example:
$("div").each(function() { // For each <div> element
 if ($(this).is(":hidden")) // Skip hidden elements
 return;
 // Do something with the visible ones here
});

Chapter 2. Element Getters and Setters

Some of the simplest and most common operations on jQuery objects are
 those that get or set the value of HTML attributes, CSS styles, element
 content, or element geometry. This chapter describes those methods. First,
 however, it is worth making some generalizations about getter and setter
 methods in jQuery:
	Rather than defining a pair of methods, jQuery uses a single
 method as both getter and setter. If you pass a new value to the method,
 it sets that value; if you don’t specify a value, it returns the current
 value.

	When used as setters, these methods set values on every element in
 the jQuery object and then return the jQuery object to allow method
 chaining.

	When used as a getter, these methods query only the first element
 of the set of elements and return a single value. (Use
 map() if you want to query all elements.) Since
 getters do not return the jQuery object they are invoked on, they can
 only appear at the end of a method chain.

	When used as setters, these methods often accept object arguments.
 In this case, each property of the object specifies a name and a value
 to be set.

	When used as setters, these methods often accept functions as
 values. In this case, the function is invoked to compute the value to be
 set. The element that the value is being computed for is the
 this value: the element index is passed as the first
 argument to the function, and the current value is passed as the second
 argument.

Keep these generalizations about getters and setters in mind as you
 read the rest of this chapter. Each section below explains an important
 category of jQuery getter/setter methods.
Getting and Setting HTML Attributes

The attr() method is the jQuery getter/setter for
 HTML attributes, and it adheres to each of the generalizations described
 above. attr() handles browser incompatibilities and
 special cases, and allows you to use either HTML attribute names or their
 JavaScript property equivalents (where they differ). For example, you can
 use either “for” or “htmlFor”, and either “class” or “className”.
 removeAttr() is a related function that completely
 removes an attribute from all selected elements. Here are some
 examples:
// Query the action attr of 1st form
$("form").attr("action");
// Set the src attribute of element with id icon
$("#icon").attr("src", "icon.gif");
// Set 4 attributes at once
$("#banner").attr({src:"banner.gif",
 alt:"Advertisement",
 width:720, height:64});
// Make all links load in new windows
$("a").attr("target", "_blank");
// Compute the target attribute to load local links
// locally and load off-site links in a new window
$("a").attr("target", function() {
 if (this.host == location.host) return "_self"
 else return "_blank";
});
// We can also pass functions like this
$("a").attr({target: function() {...}});
// Make all links load in this window
$("a").removeAttr("target");

attr() is jQuery’s master attribute-setting
 function, and you can use it to set things other than normal HTML
 attributes. If you use the attr() method to set an
 attribute named “css”, “val”, “html”, “text”, “data”, “width”, “height”,
 or “offset”, jQuery invokes the method that has the same name as that
 attribute and passes whatever value you specified as the argument. For example, calling
 attr("css", {backgroundColor:"gray"}) is the same as
 calling css({backgroundColor:"gray"}). We’ll learn
 about css(), val(),
 html(), and other methods in the sections that follow.
 Note that attr() has this behavior when you pass one of
 these special attribute names as the first argument, and also when these
 attribute names are used as property names in an object.

Getting and Setting CSS Attributes

The css() method is very much like the
 attr() method, but it works with the CSS styles of an
 element rather than the HTML attributes of the element. When querying
 style values, css() returns the current style (or
 “computed style”) of the element: the returned value may come from the
 style attribute or from a stylesheet. Note that it is
 not possible to query compound styles such as “font” or “margin”. You must
 instead query individual styles such as “font-weight”, “font-family”,
 “margin-top”, and “margin-left”. When setting styles, the
 css() method simply adds the style to the element’s
 style attribute. css() allows you to
 use hyphenated CSS style names (“background-color”) or camel-case
 JavaScript style names (“backgroundColor”). When querying style values,
 css() returns numeric values as strings, with the units
 suffix included. When setting, however, it converts numbers to strings and
 adds a “px” (pixels) suffix to them
 when necessary:
$("h1").css("font-weight"); // Get font weight of 1st <h1>
$("h1").css("fontWeight"); // Camel case works, too
$("h1").css("font"); // ERROR: can't query compound style
$("h1").css("font-variant", // Set style on all <h1> tags
 "smallcaps");
$("div.note").css("border", // Okay to set compound styles
 "solid black 2px");
// Set multiple styles at once
$("h1").css({ backgroundColor: "black",
 textColor: "white",
 fontVariant: "small-caps",
 padding: "10px 2px 4px 20px",
 border: "dotted black 4px" });
// Increase all <h1> font sizes by 25%
$("h1").css("font-size", function(i,curval) {
 return Math.round(1.25*parseInt(curval));
 });

Getting and Setting CSS Classes

Recall that the value of the class attribute
 (accessed via the className property in JavaScript) is
 interpreted as a space-separated
 list of CSS class names. Usually, we want to add, remove, or test for the
 presence of a single name in the list rather than replace one list of
 classes with another. For this reason, jQuery defines convenience methods
 for working with the class attribute.
 addClass() and removeClass() add and
 remove classes from the selected elements.
 toggleClass() adds classes to elements that don’t
 already have them, and removes classes from those that do.
 hasClass() tests for the presence of a specified class.
 Here are some examples:
// Add a CSS class to all <h1> tags
$("h1").addClass("hilite");
// Add 2 classes to <p> tags after <h1>
$("h1+p").addClass("hilite firstpara");
// Pass a function to add a computed class to each elt.
$("section").addClass(function(n) {
 return "section" + n;
});

// Remove a class from all <p> tags
$("p").removeClass("hilite");
// Multiple classes are allowed
$("p").removeClass("hilite firstpara");
// Remove computed classes from tags
$("section").removeClass(function(n) {
 return "section" + n;
});
// Remove all classes from all <div>s
$("div").removeClass();

// Toggle a CSS class: add the class if it is not
// there or remove it if it is.
$("tr:odd").toggleClass("oddrow");
// Toggle two classes at once
$("h1").toggleClass("big bold");
// Toggle a computed class or classes
$("h1").toggleClass(function(n) {
 return "big bold h1-" + n;
});
$("h1").toggleClass("hilite", true); // Like addClass
$("h1").toggleClass("hilite", false); // Like removeClass

// Testing for CSS classes: does any <p> have this class?
$("p").hasClass("firstpara")
// This does the same thing.
$("#lead").is(".firstpara")
// is() is more flexible than hasClass()
$("#lead").is(".firstpara.hilite")

Note that the hasClass() method is less flexible
 than addClass(), removeClass(), and
 toggleClass(). hasClass() works for
 only a single class name and does not support function arguments. It
 returns true if any of the selected elements has the
 specified CSS class, and it returns false if none of
 them does. The is() method (described in Queries and Query Results) is more flexible and can be used for the same
 purpose.
These jQuery methods are like the methods of the HTML5
 classList property. But the jQuery methods work in all
 browsers, not just those that support HTML5. Also, of course, the jQuery
 methods work for multiple elements and can be chained.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages737645.jpg
| —— |
Read Less, Learn More

Pocket Reference

O,RE"_LY® David Flanagan

