[image: Cover Image]

<library

mashups>

Exploring New Ways
to Deliver Library Data

Edited by
Nicole C. Engard

[image: art]

Copyright

First printing, 2009

Library Mashups: Exploring New Ways to Deliver Library Data

Copyright © 2009 by Nicole C. Engard

All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without permission in writing from the publisher, except by a reviewer, who may quote brief passages in a review. Published by Information Today, Inc., 143 Old Marlton Pike, Medford, New Jersey 08055.

Publisher’s Note: The editor and publisher have taken care in preparation of this book but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book and Information Today, Inc. was aware of a trademark claim, the designations have been printed with initial capital letters.

Library of Congress Cataloging-in-Publication Data

Library mashups : exploring new ways to deliver library data / edited by Nicole C. Engard.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-57387-372-7

1. Mashups (World Wide Web)--Library applications. 2. Libraries and the Internet. 3. Library Web sites--Design. 4. Web site development. I. Engard, Nicole C., 1979-

Z674.75.W67L52 2009

020.285’4678--dc22

2009025999

President and CEO: Thomas H. Hogan, Sr.

Editor-in-Chief and Publisher: John B. Bryans

Managing Editor: Amy M. Reeve

Project Editor: Rachel Singer Gordon

VP Graphics and Production: M. Heide Dengler

Book Designer: Kara Mia Jalkowski

Cover Designer: Danielle Nicotra

Copyeditor: Bonnie Freeman

Proofreader: Dorothy Pike

Indexer: Candace Hyatt

To Brian for his patience, support, and love,
to my father for sharing his creative drive, and
to my mother for giving me her strength

Contents

Copyright

Acknowledgments

About the Website

Foreword

Jenny Levine

Introduction

Nicole C. Engard

PART I: WHAT ARE MASHUPS?

Chapter 1: What Is a Mashup?

Darlene Fichter

Chapter 2: Behind the Scenes: Some Technical Details on Mashups

Bonaria Biancu

Chapter 3: Making Your Data Available to Be Mashed Up

Ross Singer

Chapter 4: Mashing Up With Librarian Knowledge

Thomas Brevik

PART II: MASHING UP LIBRARY WEBSITES

Chapter 5: Information in Context

Brian Herzog

Chapter 6: Mashing Up the Library Website

Lichen Rancourt

Chapter 7: Piping Out Library Data

Nicole C. Engard

Chapter 8: Mashups @ Libraries Interact

Corey Wallis

PART III: MASHING UP CATALOG DATA

Chapter 9: Library Catalog Mashup: Using Blacklight to Expose Collections

Bess Sadler, Joseph Gilbert, and Matt Mitchell

Chapter 10: Breaking Into the OPAC

Tim Spalding

Chapter 11: Mashing Up Open Data With ‡biblios.net Web Services

Joshua Ferraro

Chapter 12: SOPAC 2.0: The Thrashable, Mashable Catalog

John Blyberg

Chapter 13: Mashups With the WorldCat Affiliate Services

Karen A. Coombs

PART IV: MAPS, PICTURES, AND VIDEO … OH MY!

Chapter 14: Flickr and Digital Image Collections

Mark Dahl and Jeremy McWilliams

Chapter 15: blip.tv and Digital Video Collections in the Library

Jason A. Clark

Chapter 16: “Where’s the Nearest Computer Lab?”: Mapping Up Campus

Derik A. Badman

Chapter 17: The Repository Mashup Map

Stuart Lewis

PART V: ADDING VALUE TO YOUR SERVICES

Chapter 18: The LibraryThing API and Libraries

Robin Hastings

Chapter 19: ZACK Bookmaps

Wolfram Schneider

Chapter 20: Federated Database Search Mashup

Stephen Hedges, Laura Solomon, and Karl Jendretzky

Chapter 21: Electronic Dissertation Mashups Using SRU

Michael C. Witt

Afterword

Nicole C. Engard

Appendix A: Websites

Appendix B: Glossary

About the Contributors

About the Editor

Index

Acknowledgments

I would like to thank many people for their help in making this guide a reality. First, I must thank Rachel Singer Gordon for asking me to write a book for the last 3 years and supporting me while I was working on it. Second, I have to thank Kathy Coon, my mentor, for urging me to write my first library technology article. Without that push I wouldn’t be here today.

I’d also like to thank the many authors who contributed to this title, to create a wide-reaching overview of mashups for libraries. Without all of your contributions, this book wouldn’t exist. Last, I thank my husband, Brian, and my children (shelties Coda and Beau) for their understanding while I spent more time with my computer than with them over the past year.

About the Website

mashups.web2learning.net

Each chapter in this book references websites with definitions and examples of mashups. Although links to each of these can be found in Appendix A, the web is not static, and links may move or disappear; even during the editing of this book, several have changed.

For that reason, I will be maintaining mashups.web2learning.net, a website that will retain an up-to-date list of links for you to reference whenever you’d like. This website will also save you the trouble of having to type cumbersome links by hand; just visit mashups. web2learning.net and choose either the Links page or the chapter the link appeared in from the table of contents, and you will be able to click through to visit the site.

Should you notice any broken links on the site or in the book, please feel free to email me updates at nengard@gmail.com.

Disclaimer

Neither the publisher nor the author make any claim as to the results that may be obtained through the use of this webpage or of any of the Internet resources it references or links to. Neither publisher nor author will be held liable for any results, or lack thereof, obtained by the use of this page or any of its links; for any third-party charges; or for any hardware, software, or other problems that may occur as the result of using it. This webpage is subject to change or discontinuation without notice at the discretion of the publisher and author.

Foreword

The book you hold in your hands is about possibilities and inspiration. As I read through the chapters of Library Mashups, I was struck by the language used by the various authors. The majority of chapters include the term “easy” or “easily,” a reflection of one of the major strengths of applying Web 2.0 principles to libraries.

In fact, reading through the book, it becomes clear how libraries are using these new tools to implement traditional library values in a way that hasn’t been possible online until now. We’re used to applying words like free, value, robust, enrich, and opportunities to physical library services, but we’ve been less able to apply these terms to our online services. In fact, our catalogs (often our most valuable online asset) are usually described in the opposite terms—cumbersome, silo, difficult, arcane, and closed.

What a welcome change it is to read a book that includes an entire section on library catalogs and uses such positive and optimistic words as “any,” “all,” “social,” and “open.” And not just “open source,” but “open access” and “open data,” all of which support the mission of libraries: open and unfettered access to ideas and information. The chapters you’ll find here highlight ways libraries can repurpose thirdparty data and tools to enrich their own services, as well as how to free their own resources to live outside the confines of their own websites.

A secondary theme to this book can be summed up in two specific word sets: easy/quick and just do/simply. None of these words tend to be used when discussing maintenance of library websites, and yet the authors in this text continually note how easy it is to get started mashing up data, particularly in the first section. Every reader will find something of value in these case studies, whether you’re a “newbie” beginner or a veteran programmer. The ideas expressed and made concrete are not just “we could do this.” Every author includes specific examples showing what can be done here and now, not someday, and for a variety of content types, not just catalogs or web pages. The inclusion of working examples for a coin collection, digital image archive, video archive, and even a campus map show how librarians can add great value using these new tools.

Even more impressive is the constant attention to and discussion of larger issues such as ownership of data, copyright, and accurate metadata. So many resources that explain mashups cover only the technical aspects of using a third-party, likely commercial, service. In this work, however, it’s clear that these libraries carefully considered all of the ramifications of using the tools they chose and implemented specific procedures to maintain copies of the data within their own domains in case something suddenly happened to the external provider. This type of forethought is sure to be valuable in the future, and too many resources on this topic fail to even mention this issue, let alone provide plans for dealing with it. This book is a unique and valuable resource for this quality alone.

While some in our profession have questioned the value of Web 2.0, and its corollary Library 2.0, this book illustrates not only what is different from the past but also how libraries can continue adding new value in the future. Creatively utilizing these new tools has empowered libraries to experiment and create new resources, as well as enhance traditional ones. Pay attention as you read to the sense of empowerment that permeates the authors’ writings, and you’ll realize that the changes we’re seeing online are not a harbinger of doom for libraries. Rather, they are a promise for our future. As most of the authors note, they were able to accomplish great things with limited resources, little to no budget, and relatively few staff (sometimes just one person). While resources vary greatly from library to library, there is surely something here that will inspire you and make you think differently about some service your library currently offers.

Dream big, and set your content free.

—Jenny Levine
The Shifted Librarian

Introduction

Nicole C. Engard

I designed my first website in 1997. I use the word designed lightly, as it was full of gaudy background images—and at least one animated graphic on each page! I was so proud of that site, as I’m sure many of us were when we created our first. However, times have changed, and the tools have gotten so much better.

That first website was a hint into my future: It was a collection of all of my bookmarks organized into categories for easy browsing. (Sound like a future librarian to you?) I created a resource that my friends and family used when they needed to find information online. After years of maintaining this website with only simple HTML, I became frustrated by the lack of an easy way to keep things up-to-date and abandoned it.

It took more than 10 years, but the day is finally here when I can re-create that website (without the flashy images and gaudy background, of course) and easily maintain a collection of useful links with my friends, family, and colleagues. That website is the companion to this book, found at mashups.web2learning.net. It was created using a simple mashup of my Delicious bookmarks (www.delicious.com/librarymashups) and a WordPress (www.wordpress.org) blog—a method I learned from reading a chapter in this book.

Mashups (as many of the contributors to this title will tell you) are web applications that use content from more than one source to create a single new service, displayed in a single graphical interface. This means that I can bookmark all of the links found in this book and share them with you on my WordPress-powered website with minimal effort. In fact, I just had to check a few boxes on a form and then copy and paste a snippet of code.

The following chapters will share similar methods and tips that will help you graduate your library website from its static form to a dynamic, easy-to-maintain tool that your patrons will return to over and over. Libraries and library-related groups around the world share their mashup experiences in hopes of showing you that updating your website does not have to be a full-time job—and does not have to be a chore you dread.

Although the Delicious mashup I used for my website was practically effortless, it is important to note that not all mashups are that simple. Some of the authors in this book go to great lengths to detail exactly how mashups work and the technology behind them. While this information is both important and useful, don’t let it scare you off from trying to use mashups in your own library. In many cases, web applications (like Delicious) will provide graphical interfaces to make mashing up data as simple as filling in a form.

The first section of this book, “What Are Mashups?,” introduces mashup terminology and provides general reference sources to continue your mashup education. While reading these chapters, and the rest of the book, remember to turn to Appendix B for a glossary of terms, which will help when you come across a term that you don’t know or remember.

In the second section of this book, “Mashing Up Library Websites,” the authors show you how to use mashups to improve your static library website. These chapters outline how sites you may currently be using for fun and personal organization can be turned into powerful tools for delivering information to your patrons and showing the human side of your library.

In the third section, “Mashing Up Catalog Data,” things get a bit technical as the authors show us how to pull valuable information out of our integrated library systems in order to remix it and improve its visibility to our patrons. As we all know, getting information out of most library catalogs (with the exception of open source offerings) is nearly, if not actually, impossible—but these authors don’t let that discourage them, and neither should you.

In the fourth section, “Maps, Pictures, and Video … Oh My!” we see how libraries are using some of the most popular types of mashups. By using tools such as Google Maps (maps.google.com), Flickr (www.flickr.com), and blip.tv (blip.tv), these libraries are able to create entirely new tools for their patrons, improving patrons’ online experiences and providing superior service.

Last but not least, the fifth section, “Adding Value to Your Services,” gives you additional mashup ideas for making your library’s online presence that much more valuable to patrons. Ideas like adding data from LibraryThing (www.librarything.com) to your library site and pushing your local repository data out to other campus resources show you that the power of mashups can be harnessed by anyone with a will to make a change.

The goal of this guide is to teach you the basics of what mashups are and how they have been used in libraries worldwide. It is my hope that after reading this book, you will be inspired to make at least one change to your library site. This can be as simple as copying and pasting a bit of code into your site or adding a collection of ever-changing links. Take what you learn from these authors and add a dash of your own imagination; you’ll be surprised what can evolve.

Part I

What Are Mashups?

CHAPTER 1

What Is a Mashup?

Darlene Fichter
University of Saskatchewan Library

A mashup is a web application that uses content from more than one source to create a single new service displayed in a single graphical interface. For example, you could combine the addresses and photographs of your library branches with a Google map to create a map mashup (Figure 1.1). The term mashup originally comes from pop music, where people seamlessly combine music from one song with the vocal track from another—thereby mashing them together to create something new.

[image: art]

Figure 1.1 Google Maps mashup of New York Public Library branches

Mashups have recently exploded on the web, for two main reasons. First, many of the major internet companies, such as Yahoo! (www.yahoo.com), Google (www.google.com), and Amazon (www.amazon.com), have opened up their data to be used with other data sources without a lengthy licensing negotiation. In just a minute or two, you can set up and use the data resources they make available. The other reason for this rapid growth is the advent of new tools that make creating mashups easy for anyone, regardless of their technical know-how.

Popular Mashups

The most popular type of mashup is a map mashup. Map mashups make up 36 percent of the mashups tracked by ProgrammableWeb (www.programmableweb.com), the most comprehensive listing of mashups. Figure 1.2 shows the distribution of mashups by type.

[image: art]

Figure 1.2 Pie chart showing popularity of different types of mashups

Other types of popular mashups mix video and photos. For example, the Viral Video Chart (viralvideochart.unrulymedia.com) site tracks YouTube (www.youtube.com), MySpace (www.myspace.com), and Google Video (video.google.com) in order to identify the most talked about new clips, overall and by category (Figure 1.3).

[image: art]

Figure 1.3 Most talked-about videos for the past 365 days

There are many wonderful mashup services built using photos. Here are three examples to spark your imagination:

1. Colr Pickr (krazydad.com/colrpickr), developed by Jim Bumgardner, lets you search Flickr (www.flickr.com) photos by color. Flickr is a widely used photo-sharing site (offering both free and professional accounts) that attracts many libraries and librarians. Use Colr Pickr to click on a color in a photo or color wheel, and it will retrieve photos that have a large concentration of that color.

2. There are also mashup tools that use photographs to create books, posters, magazine covers, and so on. Most of us have received photograph booklets comprised of stunning images with short captions. One way to create these photograph books is to use a mashup tool called Bookr (www. pimpampum.net/bookr). Start by searching Flickr to locate images. Then, add these photos to a booklet page and type in your caption. Save your work, and email the book to friends or publish it on your blog or library website.

3. A mashup tool called Ad Generator (theadgenerator.org), created by Alexis Lloyd for his MFA thesis project, is intended to inform, enlighten, and entertain site visitors. The mashup randomly combines slogans and images to explore the relationship among language, manipulation, and images.

Mashups come in all shapes and sizes, from the very simple to the complex. Some mix and mash up search results, others introduce interesting visualizations, and still others aggregate and combine newsfeeds. Libraries have lots of opportunities to use mashups to help liven up their websites, deliver new and interesting services, or entertain website visitors. We’ll explore some of these options later in this chapter and throughout this book and hopefully spark some new ideas for mashups at your own library.

Mashup Ecosystem

The mashup ecosystem contains some wonderful ingredients to make a rich and fertile environment; Figure 1.4 identifies the major players in the mashup ecosystem. The fundamental component of the mashup ecosystem is the “open” data providers operating in the internet “cloud.” Companies and organizations such as Yahoo!, Google, Technorati (technorati.com), EVDB (eventful.com), Flickr, government departments, academic research units, and think tanks offer up social, economic, and scientific data. The beauty of the internet is that it’s easy to open up data sources. No one needs permission. An organization simply makes a data source available, describes how to access it, and announces its availability, normally setting out the acceptable uses for that data source. Many companies permit free use of their data sources for noncommercial applications; sometimes there are caps on the number of requests per day. Commercial licensing options are also available for some data sources so that corporations can mash up the data source inside the enterprise or use it to build an application for consumers. Most libraries fall into the nonprofit use of data, so it’s easy to find data sources to use.

[image: art]

Figure 1.4 Mashup ecosystem

Once the ecosystem is populated with a rich array of data sources, an easy means to access or query the data source is needed so that you can combine the data on your website or in your mashup application. For example, if you would like to add pushpins for library locations to the map of your city or town, you need a mechanism to request a local map zoomed into the appropriate scale to show library locations. Typically, data providers permit access to their information, either as an RSS feed or other XML (eXtensible Markup Language) marked-up format, or via an application programming interface (API). An API spells out how to formulate a query for the data. Usually these queries are written by programmers in languages such as PHP, JavaScript, Perl, Java, .NET, or Python. Programmers are very familiar with APIs and can easily write a few lines of code to collect the data. What if you’re not a programmer? No worries—there are lots of web-based applications that let you make use of APIs by pointing, clicking, and pasting a snippet of generated code into your website or blog.

Check out some of the data sources that you can remix into mashups at ProgrammableWeb, Roy Tennant’s list of Library Application Program Interfaces (techessence.info/apis), and the JISC Information Environment Service Registry (iesr.ac.uk).

Once the ecosystem is well supplied with raw ingredients, the environment is set to support various “life forms,” or new creations. These raw materials need an engaged group of creators and consumers. The creators are the people with a “spark.” They can see how two or more things can be combined to make something new, richer, or better. And of course, creators need an audience, or consumers, eager to explore and make use of their work. Mashups have been very successful because they allow the end user to be a creator and because there is an eager audience for these new creations.

Where do libraries fit into this ecosystem? Everywhere. We can be data providers, allowing our customers and mashup developers to remix our data, including acquisition lists, most popular titles, catalog records, event and program information, digital collections, and so forth. Libraries are also mashup creators, mixing open data sources with each other or with in-house data sources. And last but not least, we are consumers. Libraries benefit from mashups for internal use and as information sources for our patrons.

Library-Created Mashup Tour

Let’s dive in and take a look at how some libraries are using mashups to create new services and features for their websites.

1. Library Locations

Let’s start with a couple of examples of the most popular type of mashup, the map mashup. The simplest map mashup can be created by adding a map link to your library locations page. The link calls up Google Maps (maps.google.com) with a pushpin for the location of your library and an overlay window that provides some basic information, such as library hours. For an example of this approach, look at Cambridge Libraries and Galleries’ location page (cambridge libraries.ca/library.cfm?subsection=locations).

On the Hillsborough County Public Library Cooperative (HCPLC) website, a Google Maps mashup shows the locations of the libraries and partner agencies (www.hcplc.org/hcplc/liblocales)(Figure 1.5). Another page uses color-coded pushpins to group different kinds of service locations (www.hcplc.org/hcplc/liblocales/locationsallmap.html). One of the nice features of a Google Maps mashup is the “get directions” capability.

2. Sweetening Up the Library Catalog

The University of Texas tries to provide its users with more from the OPAC by using Google Books Preview. Whenever a visitor looks at a page in the catalog, a script runs behind the scenes to check whether the book is available in Google Book Search. If it is, a hyperlink for Preview appears. Clicking this link will open an overlay window for browsing the full text. Figure 1.6 shows the Preview window overlaying the catalog search results for the title Reworking the Student Departure Puzzle.

[image: art]

Figure 1.5 Google Maps mashup of Hillsborough County Public Library Cooperative locations

[image: art]

Figure 1.6 Google Books Preview integrated into library catalog result page

The developers also display book cover images that are mashed in using the Amazon API (aws.amazon.com), as well as tags and reviews from LibraryThing (www.librarything.com).

3. Creating Discovery Tools for Collections

A popular type of library mashup that enhances discovery of collections and resources is the book cover carousel. Just like the “new book” or “recommended book” shelves in libraries, library websites can offer a dynamic display of book covers by combining book lists and book covers. We’ll take a look at one of these later, in the user-created mashups section.

Figure 1.7 shows an ideal use of a map mashup for discovery. McMaster University Library had print indexes to its aerial photographs collection. By putting these online with a Google Maps mashup, the library allowed researchers to see the photos available for a particular location and/or a particular year. It’s incredibly fast and easy to browse what’s available.

[image: art]

Figure 1.7 Google Maps mashup of Hamilton area air photos circa 1919

User-Created Library Mashup Tour

Next let’s see how some libraries have become data providers and how some library users are mixing up that data to provide interesting, exciting, and occasionally wacky mashups.

1. Finding Short Books

Let’s start with a bit of a wacky mashup—the LazyLibrary (www.lazylibrary.com). Every school and public librarian has heard a request from reluctant or time-pressed readers for a short book about “topic X.” According to the LazyLibrary website, “this mashup pulls in book data from Amazon and filters out anything with more than 200 pages. Add to that an exceptional user interface and you have one solid service for anyone looking to get more out of reading less” (Figure 1.8).

[image: art]

Figure 1.8 “Short Books” about pets from LazyLibrary

2. Visualizing Your Bookshelf

Edward Vielmetti, also known as Superpatron (vielmetti.typepad. com/superpatron), was an early pioneer in showing how library users can remix library data streams. He took an RSS feed from the Ann Arbor District Library’s catalog (www.aadl.org/catalog) and created a wall of book covers showing new nonfiction books, new children’s books, and new knitting books (Figure 1.9).

The book covers were from Syndetic Solutions, and the RSS feed was generated by a catalog search. Vielmetti did this as a proof-ofconcept exercise, and his work inspired Kate, an avid knitter who blogs at Four Obsessions: Reading, Writing, Cooking and Crafting (4obsessions.blogspot.com), to post the new knitting books and their covers on her blog (Figure 1.10). She also added the RSS feed to her reader to get the jump on requesting new items. Kate has another area on her blog where she displays covers of books she’s checked out of the library.

[image: art]

Figure 1.9 Wall of Knitting Book Covers created from the RSS feed from the Ann Arbor District Library

[image: art]

Figure 1.10 Four Obsessions’ display of knitting book covers

3. The Portable Library

Jesse Andrews is a self-proclaimed book lover and developer of Book Burro (www.bookburro.org), a client-side mashup. Book Burro is an extension for the Firefox and Flock web browsers. With Book Burro, any time you are surfing and encounter a page with book information, a small panel will overlay the page with options to click for more information, such as library holdings and online bookstore prices. Figure 1.11 shows the activation of the small panel and the search options.

[image: art]

Figure 1.11 Pale yellow Book Burro overlay on Amazon book page

Library Mashups: The Good, the Bad, and the Ugly

Hopefully this brief tour of library-related mashups has given you a peek at the diversity, creativity, and utility of library mashups. Throughout the rest of this book, other library-related mashups will be explored and described in detail. By creating and remixing publicly available data, libraries can offer richer and more dynamic services to library patrons and empower them to develop some wonderful services.

Mashups are not perfect, however. There are some downsides and some caveats to creating and using mashups. Some of the first ones that pop to mind are privacy, rights management, reliability, and provenance.

First and foremost, when creating a mashup, respect copyright and rights management terms. Not all data sources available via an API or XML data stream can be remixed, and it’s critical that copyright and the uses allowed by the copyright holder be respected.

Second, privacy is definitely a factor for any provider, particularly for libraries that are vigilant in protecting the privacy of our users and their borrowing habits. The issue of privacy extends beyond just one data provider, however. For anyone involved with releasing survey data and maintaining user confidentiality, the risk of disclosure of an individual’s identity is not new. It is a bit of a new realm, however, for some of the web companies that are releasing data and finding themselves caught on the wrong foot. Two well-known examples of privacy violation are the AOL release search query data and Google Street View (maps.google.com/help/maps/streetview) sightings.1

Let’s look at an example of how mashing up from multiple data sources can have surprising and downright unpleasant consequences. Tom Owad was one of the first people to show some of the “Big Brother” effects of open data and mashups. He searched a common name on Amazon and captured a sample of 250,000 people with that name who had wish lists. (Wish lists can list your first and last name, city, and state, if you choose to do so.) Next, he winnowed the list down to people who requested certain “controversial” books, such as George Orwell’s 1984. Once he had that result set, he used the Yahoo! People Search (people.yahoo.com) and was able to find the exact street address and phone number for some of these people. With Google Maps, he was able to pull up a satellite view of their homes. He sent one of them a copy of 1984 as a gift in the mail and blogged about his discoveries. You can read about the steps he took in more detail on his site, Applefritter (www.applefritter.com/banned books).

Before you leap to the conclusion that the internet has to return to a set of balkanized websites to preserve privacy, pause for a moment and consider how we might find a balance between being totally open and totally closed. Sharing data streams and combining them via mashups and web services is in its infancy online, but not so in the world of academic research, statistical agencies, and organizations that have for decades created public-use microdata files that are anonymized to allow reuse. A bit of thoughtful planning can minimize the risk of disclosure. The media coverage of the missteps by high-profile companies has helped sensitize us and raise awareness about disclosure risks with data providers.

Fortunately, libraries already have a high level of awareness of the risks of disclosure, and we simply need to apply what we know when opening up library data sources. For example, we may be able to randomly show books returned during the past 24 hours, but we probably don’t want to show this information in real time because doing so would create the possibility of someone identifying an individual borrower by watching the library’s circulation desk and website at the same time. The lesson to learn from the Amazon wish list example is the need to release library data carefully for remixing, keeping in mind that it will be combined with other data sources.

One major drawback of mashups is their long-term reliability. The mashup ecosystem is still only a few hundred days old; it’s in its infancy. Although a company or organization may provide a data stream via an API today, will it continue to do so in 6 months—or 6 years? When you build a mashup on open data, in many cases you are relying on the kindness of strangers and the future health of the organization offering the service. You need to consider carefully who is offering the resource and that entity’s capacity and commitment to supporting it over time. You also need to consider plan B—what if the data stream goes away? Is there another source you can use? The bottom line is: How much should you invest in building a discovery tool or mashup site? This will really depend on the source of the data, the benefits, and the resources involved. Another important factor is scale. If there is a cap on the number of queries per day, the mashup may work fine at the outset, but what if it really takes off? Some providers, such as Google Maps, offer a licensing arrangement for high-volume or commercial applications.

Last but not least, in terms of major considerations when thinking about creating or using a mashup, is the provenance and authority of the mashup resource. The casual viewer often cannot easily discern who provided what piece of data in a mashup, making it difficult to assess credibility and authority. Some mashup developers state the sources of their data streams; others do not. Even if they do state their source, have they manipulated the data—either deliberately, or inadvertently through a miscalculation?

Conclusion

Each month more organizations are opening up data sources, and the mashup ecosystem becomes richer. Mashup code libraries and hosted mashup sites targeting nonprogrammers, such as Microsoft Popfly (www.popfly.com) and Yahoo! Pipes (pipes.yahoo.com), add more features and services. Put on your creative thinking cap and start dreaming about new services and features that would delight, entertain, inform, and promote libraries. Think about ways to allow your library users to remix library data. There are many exciting opportunities for libraries and users to create interesting mashups.

Endnote

1. In August 2006, AOL released search data logs for more than half a million anonymized users from a 3-month period for academic researchers to analyze. Although the logs were anonymized, the search queries themselves included private information. Within just a few days, there was an outcry about the privacy breach; AOL took down the data set and apologized. In 2007, Google launched its new service—Street View—with street-level photographs of North American cities in which you could clearly see faces of people caught on camera. Some of these included benign but unsettling photographs, such as a crisp photograph of Mary Kalin-Casey’s cat sunning itself inside her living room. Other photographs were not so benign, including burglars breaking into apartments, nude sunbathers, and arrests.

CHAPTER 2

Behind the Scenes: Some Technical Details on Mashups

Bonaria Biancu
Università degli Studi di Milano-Bicocca

API: The Secret of the Mashup

According to the description on ProgrammableWeb (www.program mableweb.com), a mashup involves the combination of data from two or more web sources to build new applications and services.1 To create a mashup, it is therefore essential to be able to gather structured information from websites (or to extract the available content and convert it to a structured format). The most effective and desirable access mechanism to a web service is its application programming interface (API). APIs are a set of functions, procedures, or classes for accessing a web service. They reveal the underlying logic on which a service is built, its key resources, and the functions amenable to be performed from outside the site. In other words, they allow a computer program to access and manipulate data on a web service the same way that a website interface lets the human user surf and dive into its content.

Each site chooses how to expose its content to the outside, so there may be great differences between API providers—or even within the same provider for its different services. Naturally, publicly documenting APIs and offering them free of charge makes them easier for programmers to use.

Why do websites choose to provide a public API, exposing their valuable information for free online? The more obvious reasons include driving people to their site and name recognition, but allowing users to intensively manipulate the contents of a website or to invoke its services from within a third-party client is also an excellent way to test the application: When hundreds (or even thousands) of people begin to develop web services on top of a site, the site is put to the test, and any bug in the code is likely to be discovered and fixed.

Those seeking API information are likely to look in the “developer” section of a website, in the site map, or in the help or FAQ pages, while those offering APIs should also make sure that their tools are listed on sites that gather information about APIs (discussed later in this chapter).

A very important aspect to take into consideration when using an API is its license or terms of service (TOS), which are the conditions set out by the API provider. There may be limitations on the type of use that developers should make of an API. In most cases, public APIs are free for noncommercial use, while for commercial use the provider may charge a fee or block access entirely. Additionally, there are often limits applied to the rate and bandwidth usage of the client’s requests.

It is also worth noting that APIs evolve over time and may change, so users should check the documentation online from time to time. Another issue to pay attention to is the copyright status of the data being used in the mashup: Items published online may not be legally available for reuse by others, or your application might be asked to meet specific requirements to obtain permissions for republication or reuse. For these reasons, pay careful attention to the license under which information has been published and the conditions under which it may be used by third parties. Whenever a specific license is lacking, apply the laws in force in your country.

In addition to the application logic that allows developers to know what resources are made available and what operations can be performed on them, an important aspect of an API is its communication protocols: How, from a technical point of view, does one invoke the programming interface for the information exchange to take place? What are the syntax requirements for the API requests? Also, what format will the provider use to package information to be sent back to the client making the request? What transport channels must or may be used for the most rapid and secure content exchange? To better understand and answer these questions, we need to take a quick glance at the world of web services and its main features.

Web Services Architectures

The World Wide Web Consortium, known as W3C, defines a web service as “a software system designed to support interoperable machineto-machine interaction over a network” (www.w3.org/TR/ws-arch/#whatis). A web service is a technology that enables information and communication exchange between different applications. Understanding how they work is clearly a fundamental requirement for correct use of programming interfaces and the creation of effective mashups.

Web services are based on a conceptual model that has a service provider, an application that makes certain information available or that provides the capability to perform certain operations, and a service consumer, which will make use of the information or the services. The service consumer (the website in which the mashup takes place) issues a request to a service provider (the website that provides the API). If this request is issued correctly, the service provider sends back a response formatted according to the service’s rules.

In practice, the transport protocol and the language most commonly used are HTTP and XML (eXtensible Markup Language). If your program will acquire information, data, or services from a website through its API, you need to know the particular communication requirements for that site and how to format the request according to those requirements. You will then send your request over HTTP choosing one of its methods.

Frameworks in the web service architecture may be different, depending on the technology and protocols employed. The most widely used are REpresentational State Transfer (REST) and SOAP (which originally stood for simple object access protocol, a definition that is no longer used), which lay the foundations of resourceoriented and service-oriented architecture, respectively.

REST is the simplest, and thus by far the most used, protocol in the creation of mashups. As we shall see in the section titled “An Example With Yahoo! Answers,” REST consists of a simple-to-implement interface based on a resource-oriented architecture. REST assumes a service user that requests information (or triggers operations) from a specific application. The request employs a URL (Uniform Resource Identifier) containing the API parameters and is transmitted using one of the methods (e.g., GET) over HTTP. Note that REST architecture requires operations to be invoked by the HTTP method, not from within the URL sent over the network, provided that the URL carries only the scoping information (that is, the requested resources). This means that, in a pure REST style, if you simply ask for information from a web service, you should use the GET HTTP method, but if you ask the service to perform any operation on its resources, your request should use a different method, either POST, PUT, or DELETE.2

When the query is sent over the network, the service provider sends back a response with the information formatted in a language (typically in XML, although other response formats, such as JSON [JavaScript Object Notation], are being increasingly adopted). The client can then use the response as an input for other operations or can render it graphically in a webpage. As you can see, the REST web service’s request-response logic is the same as that used on the web when a human user navigates through various online venues. The only differences are that on one hand the transactions are activated through the API calls rather than URLs sent via browser and, on the other hand, the response format is intended for computer—rather than human—consumption.

SOAP is another web service style that has developed alongside REST; it relies on international standards and protocols and has been adopted primarily in the enterprise world. SOAP uses HTTP as the transport protocol for exchanging information, but it requires that both the requests sent by the service consumer and the answers returned by the service provider be wrapped in an XML envelope. The provider itself describes the web service through specific XML schemas that are then published online so that the consumer application can conform to it.

Most Web 2.0 sites use REST interfaces for their APIs. This makes sense when you consider that one of the goals of Web 2.0 is to lower the technical barriers that in the past have prevented the average user from active participation in online information production. It is easy to issue a request by adding parameters to a URL and sending it to a server from a browser or an HTML form. It is even easier if the URL takes the GET method. Building a rich and compelling mashup is possible with little or no knowledge of programming, thanks to REST.

SOAP is definitely more complex to implement, and according to REST fans (the so-called RESTafarians), it fails to promote the ease of use and effectiveness inherent in the World Wide Web concept. It is, however, important to understand the basics of the SOAP architectural style, both because many sites use only SOAP and because SOAP is more standardized and refined than REST. You might also find SOAP to be a requirement for business-oriented development projects.

Where to Find APIs Online

As you first approach the world of mashups, it is very useful to have access to the experience of other users, as well as to learn which websites are most open to information reuse. A helpful resource to consider for this type of training is ProgrammableWeb. This site has the most comprehensive list of mashups; it also collects news from the web, trends from the industry landscape, technical information, guides, and references. On ProgrammableWeb, mashups can be browsed by category, popularity, date, and tags. Every mashup has an associated description of its functionalities, along with the APIs used, tags, author information, and links to related mashups. In addition, ProgrammableWeb users can vote on the mashups, add them to their favorites list, and follow up on new applications using the same API via RSS feeds.

As Raymond Yee explains in his excellent book Pro Web 2.0 Mashups (blog.mashupguide.net), a useful way to develop creative mashup ideas is by studying the applications already created by other users. Ask yourself questions like:

• What is being combined?

• Why are these elements being combined?

• Where is the remixing or the recombination happening?

• How are various elements being combined (that is, first in the interface but also behind the scenes in the technical machinery)?

• How can the mashup be extended?3

These questions and their answers provide a useful grid with which to analyze any mashup found on ProgrammableWeb and help you thoroughly understand the dynamics and problems involved in a mashup.

You can also learn quite a bit by studying the message conveyed by the components that enable the mashup, in particular the APIs—the real workhorses of mashups. On this site, each API has an associated analytical fact sheet that gives a general description, tags, latest news, a list of mashups that use it, which protocols are implemented (web service styles such as REST and SOAP, and data formats), functionalities (for example, different types of methods to be invoked), security models (authentication, SSL, etc.), support (offered both from the vendor and from the community worldwide), and the signup requirements and licensing TOS. Often there are also guides on how to use the API, including feedback from those who have used it.

The information provided on ProgrammableWeb and in its how-to documents is very valuable, giving an idea of the range of sites that allow you to exploit their services. Moreover, beginning mashup developers will appreciate the simplicity of the site’s contents and the ability to search the database for code libraries and development tools.

ProgrammableWeb is a general directory; although it describes several thousand mashups, very few are library-oriented. However, thanks to the efforts of the Library 2.0 movement and to the release of information management software that is more modular and standards-compliant, library-related mashups and public APIs are beginning to gain a certain public attention. The Library Software Manifesto (techessence.info/manifesto) calls for free access to APIs for libraries that have purchased a library system. It is often only because of such public access interfaces that all the data—bibliographic or not—stored in library databases can be exploited beyond the set of uses provided by vendors (here we talk of legal and permitted uses!). Although libraries, as organizations that deal primarily with information, may seem to be logical players in the world of data and web services, in the past there has not been much awareness about the importance of open APIs or the potential they could have for libraries’ goals. For example, there are few APIs for online catalogs, apart from the queries allowed by the Z39.50 protocol. It is difficult, or even impossible, to create a mashup like John Blyberg’s SOPAC (www.thesocialopac.net; see Chapter 12) without having an API that supports it. Often librarians do not know whether the software in use in the library has an API, and vendors do not volunteer this type of information.

This makes the effort of the Mashed Library social network (mashedlibrary.ning.com) that much more important. This group collected a list of library-oriented APIs and web services that were then incorporated into a permanent list on TechEssence.info (techessence.info/apis). Many of the APIs listed interact with OPACs (Online Public Access Catalogs); others relate to the software for digital resource management made available by some of the major players in the information technology scene, such as OCLC consortium, Amazon (www.amazon.com), the library-related product vendor Talis, and the social cataloging service LibraryThing (www.librarything.com). I should also mention the JISC Information Environment Service Registry (iesr.ac.uk), a machine-readable registry of electronic resources, including APIs, with access information and documentation, and the SRU (Search and Retrieve URL) web service, developed by the Library of Congress as an evolution of the Z39.50 protocol.

It is time to foster bottom-up initiatives in the library and information science arena and to harness librarians’ creativity to make more flexible and up-to-date use of library software. It is time to extensively exploit integrated library systems in a more user-oriented manner, shaping the ways different sources of digital content expose their data to make information suitable to be used by third-party applications such as a blog, a web calendar, or an RSS feed. This way, users themselves will be able to create applications that neither vendors nor librarians might ever imagine.

If, after reading this book, you want to get your hands dirty with mashup development, you can take either the ProgrammableWeb or the TechEssence list as a starting point for discovering API magic.

Mashups Without APIs

So far we have described APIs and their styles of communication, but what happens if a site does not have structured interfaces through which other services can retrieve the needed information? Although many sites are equipped with APIs, not all make them publicly available to third-party applications; in some cases you can use the API only by paying a fee, while in others, APIs are kept secret by companies or organizations because they are considered strategic for the commercial success of a product or service. There are also websites that do not offer any programming interfaces with which to interact. In these cases it is more difficult to utilize the data; nonetheless, you may still have a chance to create a mashup by tapping into the sources provided.

Useful Mashup Resources

• cURL, curl.haxx.se

• Google Code, APIs, and developer tools, code.google.com/more

• MashupCamp, www.mashupcamp.com

• Poster Add-on, addons.mozilla.org/enUS/firefox/addon/2691

• ProgrammableWeb Mashup feed, www.mashupfeed.com

• W3 Schools SOAP Tutorial, www.w3schools.com/soap

• Raymond Yee, Pro Web 2.0 Mashups: Remixing Data and Web Services (Berkeley, CA: Apress, 2008)

• Sam Ruby and Leonard Richardson, RESTful Web Services (Farnham, UK: O’Reilly, 2007)

Raymond Yee suggests that you first study the specific URL language used by the site. This is useful even if a public API is present, but it becomes crucial in a case where there is no API and you have to discover on your own the underlying information architecture adopted by a site. The way in which web addresses are built may provide clues about whether and how information is structured into URL-identifiable resources, or perhaps even categorized, tagged, or organized in some way so that a computer program may operate with it.

One reliable source of consistently formatted data that allows for reuse in web services is a site’s feed. Feeds are nothing more than small chunks of information formatted in XML or in one of its dialects (such as RSS or ATOM) and are normally used by websites to disseminate updated content that users can read by means of aggregators or feed readers. In fact, feeds can be seen as a basic RESTful web service, given that an XML-formatted response is invoked by a URL request over HTTP.

Utilizing the file that underlies the typical orange icon indicating the presence of a feed, developers can parse the information and use it as input for another application or render it directly in a webpage. The presence of content import-export features or the use of web development techniques like Ajax (Asynchronous JavaScript and XML; a programming language comprised of JavaScript and XML that is used for creating dynamic web applications) are other hints that the site has data that is able to be processed by an external program.

If a site does not provide an intelligible URL language, feeds, or other gateways to access its data, then you must rely solely on its web interface using the technique known as screen scraping. Through this mechanism, information intended exclusively for human consumption is extracted from the webpage and sent as input to a computer program. The screen scraper program then acts on the content presentation layer of the webpages and uses its HTML tags as hooks to identify the desired information resources.

Naturally, these hacking techniques produce results that are often fleeting and unreliable. If a site doesn’t allow for an API, there may be solid reasons—including legal ones—that it does not make its data available for third-party use. You must analyze carefully whether screen scraping can be used in a particular situation, even if it represents the only opportunity you have to obtain some piece of information.

An Example With Yahoo! Answers

Let’s move from theory to practice and see how a real web service requests data from an online source and processes it to make it usable in a mashup. Given that mashups generally combine data from two or more information resources, for each source in your mashup you will need to understand its particular inputs and outputs, as we illustrate here with Yahoo! Answers (answers.yahoo.com).

There are many websites that make their APIs available to users: search engines such as Google (www.google.com), which provides the opportunity to query its index; media-sharing sites such as Flickr (www.flickr.com) and YouTube (www.youtube.com), from which you can pull pictures and movies; aggregators such as Technorati (www.technorati.com) and Feedreader (www.feedreader.com), from which to get user-generated content and feeds; and many others. Yahoo! (www.yahoo.com) itself offers a wide variety of APIs and web services that interact with its search engine as well as with many others of its online services, such as maps, music, financial information, social bookmarking services, and so on. In the Yahoo! Developer Network (YDN; developer.yahoo.com), you can find all of the necessary information about the application interfaces and other related technologies, along with guides and video-tutorials, web design libraries, a mashup gallery, reports on hacking initiatives, and support from both the company’s team and the developer community. The service chosen as an example for this chapter is Yahoo! Answers.

In its own words, Yahoo! Answers is “an online community where anyone can ask and answer questions on any topic. Yahoo! Answers connects people to the information they’re seeking with those who know it.” Consulting the YDN Answers section (developer.yahoo. com/answers), we discover that APIs allowing access to questions and answers posted by Yahoo! Answers’ users are available for public use. The API uses a REST interface, so we know this means we need to do the following:

• Build a URL with parameters specified by the API.

• Send it using one of the required HTTP methods.

If you want to use the Yahoo! Answers API, you have to request an Application ID (developer.yahoo.com/wsregapp). This procedure is often required by sites hosting open APIs because this way the API provider (that is, the service provider) can track the number and types of the requests and the bandwidth each application makes use of, in addition to the characteristics of the client requesting the content.

There are four types of queries provided by the API: question Search, getByCategory, getQuestion, and getByUser. These reply with, respectively, questions that match your query’s argument, questions from a certain category, details of all the answers given to a question, and Yahoo! Answers questions from a specific user. The API page also has a form so that you can immediately try your queries and verify the answers returned by the service provider. The only HTTP method available to the API is GET; therefore, you can only read information from the site, not upload, edit, or delete data on the server.

The first of the queries, questionSearch, “finds open, resolved, or up-for-vote questions that include your search terms.” To access searches, you must build a request that retrieves questions using the parameters provided by the API.

The target URL to which the request must be sent is

http://answers.yahooapis.com/AnswersService/V1/questionSearch

where http://answers.yahooapis.com/ is the API hostname, and AnswersService is the service. The acronym V1, located just after it, refers to the API version number, and questionSearch represents the query type we have chosen.

Here are some of the query arguments that you can employ for this kind of request:

• query – search terms (required)

• category_id – search only in the specified category ID or IDs (IDs may be seen in the request URLs when you browse Yahoo! Answers categories)

• region – filter based on country (e.g., us: United States; uk: United Kingdom; it: Italy)

• sort – sorting order of result set

- relevance – by relevance (default)

- date_desc – by date (newest first)

- date_asc – by date (oldest first; omit for default “relevance”)

- appid – by the application ID (required)

- output – definition of the output for the call (accepted values are “xml,” “json,” “php,” and “rss”; omit for default “xml.”)4

For example, if you would like to get questions asked by users in the U.S. regarding solar energy in the Green Living subcategory and have the results sorted by date, with the most recent questions first, you send

GET

http://answers.yahooapis.com/AnswersService/V1/questionSearch?

appid=MyYahooAppId&query=solar%20energy&category_id=2115500307®ion=us&sort=date_desc5

Note that you must substitute MyYahooAppId with your application ID and that arguments and that values must be URL-encoded.6

The number 2115500307 in category_id is the identifier for the Environment/Green Living category as shown in the URL of the corresponding Yahoo! Answers page. By default the maximum number of results is 10, and the default response format is XML. Because we have not specified either of those parameters, the defaults will be used.

You can test this URL by pasting it in the location bar of your browser.7 The result is an XML-formatted response containing the requested information, plus a set of further parameters, such as the id and the nick name of the user who asked the question, the number of answers provided for each question and—if they exist—the preferred ones among them. The XML code may be parsed and sent as input for a third-party application or rendered in an HTML page for displaying the results in your preferred style. For example, a consortium of libraries on a geographical scale could cooperate in reference services, developing a mashup that draws within a unique interface questions about a certain topic from the online reference service’s users and from the local Yahoo! ones.

It is also possible to get a feed-style response choosing RSS as the output format (&output=rss). In this case the URL resulting from the API call is an RSS feed address that can be used by a feed reader to get notified over time when new questions meeting your criteria appear on Yahoo! Answers.

The JSON output format returns a serialized JavaScript, a less complex format than the XML that is provided by default. JSON can be used in combination with the callback function provided among the API parameters to solve the cross-site security issues like the Same Origin Policy that you are likely to encounter if you write your application in a client-side scripting language such as JavaScript. Last, remember that this web service limits you to 5,000 queries per IP (Internet Protocol) address per day and that you are asked to agree to the Yahoo! API Terms of Use (info.yahoo.com/legal/us/yahoo/api/api-2140.html) and TOS (info.yahoo.com/legal/us/yahoo/utos/utos-173.html). In addition, websites and applications using this Yahoo! web service must display the attribution “Powered by Yahoo! Answers.”

Mashup Editors

A significant advantage of the current level of attention to mashups is the fact that there are more and more tools and services being developed that make building a mashup increasingly simple, even for the average internet user. Some of these entirely eliminate the need for programming, hiding such technical details behind the interface. Some big web companies have begun working on editors for mashups, that is, applications that allow you to combine information instantiating simple commands in a visual user interface. As Nicole C. Engard explains in Chapter 7, Yahoo! Pipes (pipes.yahoo.com) has revolutionized the mashup editor.

Microsoft, too, is taking part in the mashup trend and has enhanced its offerings with a web editor for mashups called Popfly (www.popfly.com). This program, which requires the use of the Silverlight (silverlight.net) plug-in, allows the creation of mashups “without writing a line of code,” thanks to a graphic editor in which you can drag and drop 3-dimensional components (the blocks) from a sidebar containing offerings of Images and videos, News and RSS, Social networks, and others, plus a basic Tools set. The latter provides the operations that can be applied to the other modules, such as Merge, Sort, or List the content. Sophisticated users can switch to the advanced view that displays the JavaScript code that lies behind each module, which they can then edit directly. It is also possible to customize your application with HTML and to test the running mashup in the debug console.

Thanks to the interconnection of the Popfly editor with Web 2.0 social sites, you can easily create mashups like slideshows of your favorite pictures and podcast and video players. Popfly also offers a space for hosting both webpages and applications developed with the mashup editor.

Among other visual mashup editors that deserve a mention are openkapow (openkapow.com), Intel Mash Maker (mashmaker.intel. com/web/index.php), and Dapper (www.dapper.net), as well as more business-oriented tools like the JackBe Presto Platform (www.jack be.com/products) and Serena software (www.serena.com/mashups).

In general, however, for those who are taking their first steps on the mashup path and have limited development skills, it is better to start with one of the first editors described here (Yahoo! Pipes or Microsoft Popfly). These are fully documented and have many examples and quite a few pre-built modules that one can exploit. They also have active online communities that can provide support for beginners and advanced users alike.

Endnotes

1. I would like to thank Karen Coyle and Raymond Yee for their generous feedback and support in writing this chapter.

2. The differences among pure REST and styles such as REST-RPC are well explained in RESTful Web Services (see Sidebar titled “Useful Mashup Resources”). Although most web services claim to be RESTful, they often expose data in a hybrid manner (for instance, they put API methods inside the URL rather than utilizing HTTP protocol). See also Duncan Cragg’s blog posts: STREST (Service-Trampled REST) Will Break Web 2.0 (duncan-cragg.org/blog/post/strest-service-trampled-rest-will-break-web-20), and The REST Dialogues (duncan-cragg.org/blog/tag/dialogue).

3. Raymond Yee, Pro Web 2.0 Mashups: Remixing Data and Web Services (Berkeley, CA : Apress, 2008), 3.

4. The arguments and their explanations are quoted from questionSearch page (developer. yahoo.com/answers/V1/questionSearch.html).

5. See YDN to get information about how to build REST URLs (developer.yahoo.com/search/rest.html).

6. URL encoding (or percent encoding) is a technique used to convert special characters in a URL to a valid format. One example of this is the space between words in terms like solar energy, which will be encoded to %20. For more information, see the Wikipedia page (en.wikipedia.org/wiki/Percent-encoding) and a list of encoded characters (www.w3schools.com/TAGS/ref_urlencode.asp).

7. You can call the API from within a web service written in a server-side programming language such as Perl and PHP or from an Ajax client. You can also try the API functionalities by sending the request through a command-line program like cURL (Client URL Library) or through the Firefox Poster add-on. YDN offers a Software Development Kit (developer.yahoo.com/download/download.html) with code libraries available for public use, to implement web services in diverse programming languages.

Additional References

Arkin, Assan. “Scraping with style: scrAPI toolkit for Ruby.” blog.labnotes.org/2006/07/11/scraping-with-style-scrapi-toolkit-for-ruby (accessed January 11, 2009).

Bloch, Joshua. “How to Design a Good API and Why It Matters.” www.slideshare.net/guestbe92f4/how-to-design-a-good-a-p-i-and-why-it-matters-g-o-o-g-l-e (accessed January 11, 2009).

Campbell, Ryan. “How to Add an API to Your Web Service.” ParticleTree. particletree. com/features/how-to-add-an-api-to-your-web-service (accessed January 11, 2009).

Fox, Pamela. “Web 2.0 & Mashups: How People Can Tap into the ‘Grid’ for Fun & Profit.” Open Grid Forum. www.slideshare.net/wuzziwug/web-20-mashups-how-people-can-tap-into-the-grid-for-fun-profit-20924 (accessed January 11, 2009).

Garrett, Jesse J. “Ajax: A New Approach to Web Applications.” Adaptive Path. www.adaptivepath.com/ideas/essays/archives/000385.php (accessed January 11, 2009).

Gregorio, Joe. “How to Create a REST Protocol.” XML.com. www.xml.com/pub/a/2004/12/01/restful-web.html (accessed January 11, 2009).

He, Hao. “Implementing REST Web Services: Best Practices and Guidelines.” XML.com. www.xml.com/pub/a/2004/08/11/rest.html (accessed January 11, 2009).

Heilmann, Christian. Beginning JavaScript with DOM Scripting and Ajax: From Novice to Professional. Berkeley, CA: Apress, 2006.

Herren, John. “Mashup University 4. Intro to Mashups.” www.slideshare.net/jhherren/mashup-university-4-intro-to-mashups (accessed January 11, 2009).

Levitt, Jason. “JSON and the Dynamic Script Tag: Easy, XML-less Web Services for JavaScript.” XML.com. www.xml.com/pub/a/2005/12/21/json-dynamic-script-tag.html (accessed January 11, 2009).

“Mashup the Library: A Workshop on Mashup Technology and the Art of Remixing Library and Information Resources.” CARL North Information Technology Program Archives. carl-acrl.org/ig/carlitn/archives.html (accessed January 11, 2009).

OASIS. “SOA Reference Model.” www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm (accessed January 11, 2009).

Schnell, Eric. “Mashups and Web Services.” In Library 2.0 and beyond: Innovative technologies and tomorrow’s user, edited by Nancy Courtney, 63–74. Westport, CT: Libraries Unlimited, 2007.

Theurer, Dan. “Web Services + JSON = Dump Your Proxy.” Dan Theurer: Web services, technology and random thoughts! www.theurer.cc/blog/2005/12/15/web-services-json-dump-your-proxy (accessed January 11, 2009).

Udell, Jon. “The Beauty of REST.” XML.com. www.xml.com/pub/a/2004/03/17/udell.html (accessed January 11, 2009).

Yee, Raymond. “Semantic Search the US Library of Congress.” ProgrammableWeb. blog.programmableweb.com/2008/04/29/semantic-search-the-us-library-ofcongress accessed January 11, 2009).

Zakas, Nicholas C., Jeremy McPeak, and Joe Fawcett. Professional Ajax. 2nd ed. Indianapolis, IN: Wiley, 2007.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/Art_P185a.jpg

OEBPS/images/Art_P037c.jpg
S FFFE<span cass=Tos sAccoutingpan</TD>
FFFFFF oS8T
70 bt AF Tt casse o
Shyenoimnisiite
ek i comes 3yl ok s o 4t cames By << TD
e
AR " ol i scrooname-somibrrin'ssoribraranci

Madbo: <a classe'u ol xS0 Ity e moobs com somieraranaylodas
10T

12034323905 432 308D

OEBPS/images/Art_P040a.jpg
\daresses (1)* Econacts (4= | tvenrs - [1 ags »

PR ~Cc S cince Uraries & nformation Servces —» [SMTY
Ervironmd Bockmark with Fiefo

SlSoinan_Export Al Sookmarwith i
i omasan Y SSASTT—— " with Google Vap

Elman: sty (heareaat Find with Wapuest
Mol o Orihology brary, Yle Pessody Miseun,
G 0 209115, Now Maver, T 063308118 'Add 10 Yihoo! Contaci

T (ol down o Aiated Unraries)

Sostal Sctercs Ubraies & Iformaton Serices (5)
Clresaon: (203 4323300 €mai: ss@se
Reference: (203) 4323301 Eoma: sacs(Bysie e
ol Sl Since U, Yl Ui

OEBPS/images/Art_P079.jpg
New Year's Party & Day One

OEBPS/images/Art_P168.jpg
n

OEBPS/images/Art_P220.jpg

OEBPS/images/Art_P077.jpg
flickr

Manchester Library's photostream ==

owan

s anoira 020 nasor e

S S, v A1,

i

OEBPS/images/Art_P261b.jpg

OEBPS/images/Art_P037a.jpg
suvect conact GRS Teeshone. e ™ Agaress

gty
forotond

OEBPS/images/Art_P176.jpg
Karen Book List

.

Ambient findability /

21 reviews @

LibraryThing
L)

OEBPS/images/Art_P044.jpg
o s crgNETlorlotlr>
i rorschoma o ol g put ryScemontr 175
S oS G BT A ORI

i e 1B 0750212164 o= cctome Bl e clr 5P O
T v ryimos comigesookalostsolrsTho Now Yor Tmosesas 0 #1 2
e PO s i i 5sann comssancaockar S Exsancecies bty
or <o
st clascsrator sy Moreoe songyits nd S s i ovel, < cas i
e Sna Has Comingaio.at b
Gortal Libary, 15 Flor =
i

P
by

OEBPS/images/Art_P230.jpg

OEBPS/css/page-template.xpgt

OEBPS/images/Art_P068a.jpg
St suten

Tag uten

@ > € 0B ol A s

OEBPS/images/Art_P089.jpg
EPIPes LibLime News®
Lvos EwdAl ool

Sources
(Foten GSV)

(Fonim)
Feireed) | O

© 4 W fowds fodbumer oLl
© 4 Wfandafodtumer oL
| © 4y s eotumercomnin

b Usar inputs.
p Operators. Time ke 0.2486265. Refresh
Ghi » Rpps ihck
» “Man is a tool-using animal’-unless it's me.
p string » obasa on Libraries
p Date » Xohacon 2005
b Location » Liblise at ALA Midwinter
b Number ¥ Programing resolutions
oo » Exploring Koha with REPLs
» xoha. ses
R Test. Cas

427 more.

sttt

OEBPS/images/Art_P186.jpg
‘Sellon s duse

Y
S

St ey St b

OEBPS/images/Art_P283.jpg
Why Chosea Purdue

Discover Purdue's Wide Array of Graduate Programs

Rankings
B .2 et el s S S M Mtras R

OEBPS/images/Art_P075.jpg

OEBPS/images/Art_P190.jpg

OEBPS/images/Art_P127.jpg
pe—

Berin
Bad.Lov

R ark 1Y, RCA. Warufctedsnd dtbuas
by UG Ditbuton 1958

e creutin desk
D

1 B
2 iy oy
H "

OEBPS/images/Art_P237.jpg

OEBPS/images/Art_P062.jpg
(M Tube}

OEBPS/images/Art_P219.jpg

OEBPS/images/9781573879200.jpg
Exploring New Ways
to Deliver Library Data

OEBPS/images/Art_P080.jpg

OEBPS/images/Art_P093.jpg
Library Mashups

OEBPS/images/Art_P199.jpg

OEBPS/images/Art_P039a.jpg
<t me-5lA HREF s oy i 0 scsciSocial Scenoa
e Wi S (55
LT Frospact Svestecas.

<G (209) 462:3300 b Brosp Exmal <
i 150y . skl Ao

e, (203) 43231 ey o, A Emad:<a
it TGyl e SEhel Byl Ak

o camottat e Scel Seianca vy, val Unvardy cic

<P, Box 208260, New Haven, CT 065208263400
ey
i by yle ecsoccsldracions ntTrave Diecons<s-Brbspnbes
s ol T £y 1. O 5 oSS
o

OEBPS/images/Art_P251.jpg
oy ot | Tori]

(2

B ety *8 o’
-

OEBPS/images/Art_P012b.jpg

OEBPS/images/Art_P200.jpg

OEBPS/images/Art_P014.jpg

OEBPS/images/Art_P170.jpg

OEBPS/images/Art_P118b.jpg

OEBPS/images/Art_P173b.jpg
WorldCat Search B

)

2 Sowaresotearo o e sptcaions

OEBPS/images/Art_P066.jpg
R —

o docous I e —

[err—

OEBPS/images/Art_P091.jpg
PIPES | Library Sdence in Kansas
Lyon BoandAl CotapseAl

CuRL
© [htoineris konabranyconieghbe
© [laslivan20scencesformaterss?

L///"‘n

(Yahoo! Search) me taker: 22820745 Relesh

Unarnute A dag 1s the 1ife'of & Librarien /
o Toathe The sitarsaciver

Open LI'S Tiekicasey o <open siasenttecaoiibency</epens
sing :

’
»
’
»

OEBPS/images/Art_P047.jpg
formats id="http://canarydatabase.org/record/109">
<format name="endnote" type="text/plain'/>
<format name="bibtex" type="text/plain"/>

<format name="ris" type="text/plain"/>

<format name="mods" type="application/xml"/>

formats>

OEBPS/images/Art_P120a.jpg

OEBPS/images/Art_P004.jpg
NYPL Locations

your local i
Mannattan | The Gon| | Sisen isld Sdgzpoad

Clk vy oeston maer for mare ot

(e

Blacmingdate Branch
150 West 01h Sheet 10025 610
212 220

Koz oy

sl Bldng Hors

105 | 10 | ane

@ Roscaret Lsarios @) Cortrl L. & Boro Ot @ Lol Lo

Centerto Rasting & Wiing

OEBPS/images/Art_P217.jpg
Departments, Colges, Schools
Acsounting
Adverising
Afian Amerian Stdies
American Suies
Antropology
Aneniscnre
Ason S
BeasieySchoal of Lav
Biciozy
Brosdesing, Telecormunicaion & Mass Medis (TMM)

‘What's in the buding?
Acadenic Records (Regiser)
Accounts Prysbls
Adninsrtve ComputerServices
Advising Center (Liberal Ars)
Al AffirsRelasions
Abitics
Bames nd Novle
BellBuiing
Bursars Offce
Camous Bookstore:

OEBPS/images/Art_P188.jpg
1 1

accessCeramics

OEBPS/images/Art_P102.jpg
g 7 Add New Link

OEBPS/images/Art_P286.jpg
S —————

Colecions ofresarch at,
andarchives realed and o

Libraries Puc Uty

NICHOLS, ANDREWP QUALTY CONTROL FROCEDVES
i Uy, 008 s Duy M. Bk

AFRAS MONTASIR MAHGOTE 4 EEAL TDE FFS:
AFFL SIGULS, Dk e, P sy 201, A Dy M Bl

PURDUE

TRV ERSITY.

OEBPS/images/Art_P234.jpg
Hybrid

Satellite

Map

6

Covan® 9
Dublin

onegal @5

reland, g%
idare

imenck @
Lol

°

Cork:

7

Google

0
’3'.

sk of Man

United
Kingdor

e

Bgningna :
P 5 oenirass
5y
- e,
: B Oy bo
Ui

Map Gata ©2008 Tele Atias.

OEBPS/images/Art_P260.jpg

OEBPS/images/Art_P005b.jpg
Top 20 Viral Videos (aseapaFiens EYRSS|

TonMm Tows Do W
Susan Boyl Stuns Crowd with Epic Singng

Oren Lavie - Hor Morning Elegance

Winers the Hol s Matt? (2008), une vidéo de BAKO. whers, e,
pel, mat, pays

Dalymaton 6123 naw posts 2203

Crisian the Lion

avic Aer et

OEBPS/images/Art_P258.jpg
v ot i v

e
B i o o

e

et o Lary Wk o s &30 Ot
e (3. £ Ol 200°3. 5. 151 059600275

o (o8 R P (Campter preram o) Pr
Gryammersyote) | Srogommeaos Frara g - Sotuare

OEBPS/images/Art_P215.jpg
@ 1300 © 1700 N Broad stret (ormerly Vivacqua) @ 1310 Lincouras Walk Q)
1938 Liscooras Walk @ 1940) Alter Hall @ Anderson Hal Q)
Annenberg Hall @ Atiantic Terminal @ Avenue North A @ Avenue North B
@ Bapist Temple. @ Birrack Hall @ Bacton all @ Beury Hall Q)
Biology-Life Sciences Building @) Campus Polce Center Station @

OEBPS/images/Art_P048a.jpg
Semantic Web

OEBPS/images/Art_P010.jpg

OEBPS/images/Art_P038.jpg

OEBPS/images/Art_P085.jpg

OEBPS/images/Art_P046b.jpg
ploanarydatabase ory

< class=ni W=t canarydatabase 0 eccra 109> e

<ocy>
i

OEBPS/images/Art_P055.jpg
Ferrmmica s ety i b ke e, b

OEBPS/images/Art_P040b.jpg

OEBPS/images/Art_P185b.jpg
e r::,“.a;“a;;-z‘;.,m":?::‘...m..m. p—

OEBPS/images/Art_P262.jpg
T S S S R L

(3 lieps e Su-

o ——
s

e

Hocednd

ZACK Gateway Marage SeachEngines.

s erane o soraon cotases e e e "_i:u;fl

OEBPS/images/Art_P043b.jpg
<be B
iday, Seplombor 12 1 1200 .m <sparc=<iv=
i xmin et e, g lementa i determs= 1l orglccamsr
out= U ISBI 0750212164 ><span fol='dctoms 1sPartOF tesourca="p icopedia g/
eourceiow.York_Tims_Bet Sollo Tat>Tho Now York Trmes<spars and #1 <epan
1= deorms SPArOT fosouce=Tiiphnuw ossence.comlessenca books/ SEssence<spars
bestseing autor <o >
sirong property="de creatorMary Nonroe <stongvsits and signs her new nove,
propery—-ceis'Sha Had It Comingf <ot -
ental Liary st Foor< =

OEBPS/images/Art_P288.jpg
Doctora Disertatons.

S —
sa

et e e s A 3 L i A 0L
i o s s e e

et s ot et sl s
po—
e

ot 8 e s o e i e s o s

[T E—————

OEBPS/images/Art_P275.jpg

OEBPS/images/Art_P167.jpg

OEBPS/images/Art_P046a.jpg
M SR
et ver—730 88 2004amp11._id=canarydatabaso org canarydbaamp i val_imi=io ol
e b umalampil a1 0076088 amp i ch mi-or mkovcebstony

1o contaminaton and bocy condton o winerng et (Ui alge) o 1 Bigan const
Fom 1953 10 1858 </spor>

OEBPS/images/Art_P037b.jpg
R e s e e g s e,
e e e
toobs: . somibrarianatyde<TO»<TF> -

OEBPS/images/Art_P175.jpg
Widget Title: | Karen Book List

Search Type | Title

Search |ambient findabilty

Limit by Specific Library (OCLC Symbol)

Number of results to display| 3 =]

Show Book Cover ¥

Amazon Web Services Developer Key

—

Show Google Links (1

Show Rating ¥

OEBPS/images/Art_P256.jpg
[@ o -

OEBPS/images/Art_P248.jpg

OEBPS/images/Art_P068b.jpg

OEBPS/images/Art_P106.jpg
Libraries Interact

OEBPS/images/Art_P053b.jpg
iio
=3
5
S
=
Lol i) m

2

(o)
Ehe

The Shanghal Union of incustrial € |
Hystica
by Nury Vit

B Al ik et i

T T
S o e AT

e e o

OEBPS/images/Art_P149.jpg
10 # 4 2 [200239103
5 # 4 1 [BLG) e]
uthorty Record
03 4 0 o0k 000 i 200180 4500
o0 # 5 e
02 # # 12 [GCRVEEL 008 570300 mesol a3
010 £ 4 jamsmnm
20 # # ta 18010034 o35, jq ocouClocata2ent
050 0 0 12 [QATETEI 05 ¢ 4 s ECmETL
0 £ 4 2K ek ANR
0 0 13 BOETZ 500 10 acog bt
o by ek A
250 # # ta Poocks 7 (unCoge)
4 2 Boging 01, 00 . (o)
00 4 # 2 FREZIE 670 s rekm.p. ok on prosgemring nd et
rodosT . Ssis Wes i Oy, Wash) cove (2 Cae)
oo+ 7 3 Doy S0
4 0 13 [EiDm 5 ¢ conciese

I e

PRNE

OEBPS/images/Art_P150.jpg
iblios et

OEBPS/images/Art_P009.jpg

OEBPS/images/Art_P203.jpg
TERRA; The N

1 TERRA S Thh s N L
. TERRA St 8 Hore 0 Camus

TERRA 1 o by T
TERTA 13 e ey of B om Caryen
TERRA S10.Onho W PART FOUR
TERRA 9. Onth W PART THREE.
TERRA 508.Onhe W PART TWO
TERA 57 Onhe g PART ONE

OEBPS/images/Art_P061.jpg
Roouts | Cush oot | Ca
Loy

Featured Book: S
Brown

Featured Book: 5
Brown

~Chidrens
Teane
*Rdmiisraton

“Catle
s Passes

Library Hours Cha
Binte st ol

Library Hours ca

Book

OEBPS/images/Art_P078.jpg

OEBPS/images/Art_P092a.jpg
Library Science in Kansas
Bookson oy Sciarce o NEKLS & SEKLS.

et
ot 8ot IS E) (O Gogh) E)Get s RS E)Gta JSON. Nerscotoney

Dictonaryforsary and infrmatin sierce.

[Te————

OEBPS/images/Art_P039b.jpg
H classa'voard” ida"ssi™>

o et A class= T o’ HREES T sy alo s 01

5ol Scionco Liraes &am; ormaton Sences/hs (SSLick

iy

S cace s e 140 Prospact St

SisGrulaton:<soonclasec Tl 208 432-3300<pans ks Brbep E o <2
fass="cmar et SeiS 0yl o35l @yolo culamciod

<SRtoronce <o lics=>(209) 432 391 dspan nbsp; rbep; Anbep -l

s oma et ot ol yol o kel Byl s>

“SdcomoAvad todoms Scca Scieics e, Yot U sy b

Siespan clasew s e box PO, Box 208283</spans, copan class="ocalty>New|
avencispas CTeipare cSpancass= ot cos 08520 825521
cpars i

=
e i vy e cisocssleecions > Travl Diectonsclasdnbsp |
Arbspica = i by e aduhaurs bt Hourselas

OEBPS/images/Art_P191.jpg
1 1
accessCeramics ==

OEBPS/images/Art_P187.jpg
Playing Catch In the Dark

OEBPS/images/Art_P045.jpg
bv class="vevent>
o cass= G Wo='2008.05-1271200 00 >Frcay, Sepiemoor 12 1200 pm <abor>
v orgi slements 1 mins e W o g dnarmsr
bouturISB 075821214 »espan ol ctoms sPariOF sourco=ipdopodia.crg
fosourcoMon.York_Tenes_BostSolle s>The New Yok Trmeseispannd #1 <span
ol ctemsisPariC” rosotece=Tp v 5591 com0ssencab00ks SEssoncodspar
bestseing autnor

o clata sy <srong propary="dccrestor Sy Monros <rongviss and signs
e vt nove, < oy 1"~ v Had 1 Caming<lv pari<i >
o casse caton >Cental Lbray 1t Fior<spanes i
e
v

OEBPS/images/Art_P094.jpg

OEBPS/images/Art_P037d.jpg

OEBPS/images/Art_P108.jpg
Diverse Group Tag Cloud

—— ot

OEBPS/images/Art_P284.jpg

OEBPS/images/Art_P173c.jpg
- sve

| st s

FITY]

i andMecs Qe e sutshng by Greenspon, Pt

OEBPS/images/Art_P279.jpg
R E ——————
Purdue e-Pubs

OEBPS/images/Art_P076.jpg

OEBPS/images/Art_P169.jpg

OEBPS/images/Art_P236.jpg
Rescarch Archive @ Victia Universit o Wellngton
Tyee R rttusond o el

pltom: depae

P 07

i s UL e v < et
Contans 338 s

OEBPS/images/Art_P120b.jpg

OEBPS/images/Art_P090.jpg
OuRL
© 4y Vo s eadburmr coniLiLin

© 4y o s eadsurmr coniLibin
© 4y oo osdourrr comUbi

h—@s

O sonty
© tempuOss Hin descanding [8)ader

b Usa iputs
b Opursirs
b un
b suing
b ose
b Locaton e a0 25708%5 Ratt
b nomper " open Souren Tiving
s L seprs o et o Facon 200
i e et el e 1
b Deprocatsd (el

OEBPS/images/Art_P189.jpg
e %
L ——
p—

OEBPS/images/Art_P082.jpg
Manchester City Library

OEBPS/images/Art_P285.jpg
Darcy Bullock

PPy S~ o—

B BT T e e

OEBPS/images/Art_P043a.jpg
Dr >
iday Septembr 12 at 12:00 p.m <sparo<div>
v Sfe="margin 0n O Opr'>The New York Times and #1
Esconco bostasling author <o
Srong>Haty Morvoe <stiongawisits and sians he new 1ovel, <>She Had i Comings
or i
ental Librry, 15t Floorebr
o

OEBPS/images/Art_P250.jpg
em B s s » st R

2 s Rt Mok, R 1957 Lk Ao, 20 15, 1 s
[t ———)

. Eign bl o he el St Moo b oors, s Loxn i & Nk,
3055356 e 8503 m * vy
froveid

4 o Reber T o, o 1957, Egod o P 19525, ek

5 Enon R o hecu M St Moo S Nors s Lo P 01, 200
IPariE et e ety

6 i Rober o v G Kopeoeic Har R, 1957 e L 023155, 0

. Bt i Al Db, o, Al e i, 967 .1l o s

. oot e Ems o G G S 1913 Lmdn: T Dok 979 55119 e
P 13m0 o e b G s S s A

5 xRt o, . Rt 1957 LA, 156,99 3900 8.1 -~

s

OEBPS/images/Art_P235.jpg
Hybrid

Satellite

Map

Google

‘Map data ©2008 Tele Atias.

uiiied
5
Batarts SaKihgon
o P AL ﬁc
o fae rhant (L
o Dublin’ b3
g Mar:’ves <om
e S e
menciel .11/ el . B st
2‘3 e e
o *"HP o0 ’
core “oq0
Cardiff - Wrisjgy (2B
Fowireo & p S L e ¥
ile-2

OEBPS/images/Art_P173a.jpg
— WorldCat Search

OEBPS/images/Art_P012a.jpg
E -]

OEBPS/images/Art_P048b.jpg
TRRAALIIUES-GINpULOL::
infa/shoo020eeess

e e e B

Goret x5 <https//lcsh. nfo/shzonzenmsesss.
Goret ix 75 to:// csh. info/Shos0OnS1ds.
<t/ Lcsh.info/shamAD0R 793 .

ateTines
Shossbroocer Biconcept,
9:concept,
scorcent

Svcsiedtortoliots STI on FirstSearch, Hay 6, 262

TR G AR

OEBPS/images/Art_P013.jpg
JUR OBSESSIONS: READING,
WRITING, COOKING AND
CRAFTING

L returm to ber
o thattharoi s ol i ovig kit

e T g 0 ey e g
RS ———_T i —
e R S —
Sartant o v o g)

e el gt g ot st s by o
i bkt T ot il
g i e . Tk 25, Ao gt v 5
e
et s alo] st s naion o acios ad engst
Iy oot e o he L Toml ok ki
ettt s ok o el

[T—— .

OEBPS/images/Art_P171.jpg
Gt e

OEBPS/images/Art_P118a.jpg

OEBPS/images/Art_P197.jpg
U —
“terorop ® -

OEBPS/images/Art_P261a.jpg
ibe S Y

Bibliographic Dictionary

burh RS el

OEBPS/images/Art_P011.jpg
Lioyd Reeds Map Collection
Homata res A Photos Avalae Hom HisaerUnveriy Liary

OEBPS/images/Art_P148.jpg
1
i
t
n
1
1
ki
i
n
u
t
n
f
i

e T
oo Bt)

p—
e
Cagle, Jon M3

e, s
e rtff[1

e e 10 EHZ]
P

Cagle, Pat {7 0

] e] o WP 4= [
] I Em]

‘oo, Wi * B marep o)

s BT]

e

OEBPS/images/Art_P053a.jpg
anskebok.no
Tttt

p— o
¥ Camiie Do Ot red)

OEBPS/images/Art_P122.jpg
e

OEBPS/images/Art_P259.jpg
[y D —

[RRE—

(Computer program |a"n“guage$l@)
miersprache) Perlvs Per! 5.
v Programmie

o . S
Goge Ml s

OEBPS/images/Art_P274.jpg
OHIO WEB LIBRARY

OEBPS/images/Publisher.jpg
1l inormation Today, Inc.
e o

OEBPS/images/Art_P092b.jpg

OEBPS/images/Art_P276.jpg
OHIO WEB LIBRARY

OEBPS/images/Art_P257.jpg
ZACK Search Results

[i ==
a0 < avo o 08
= F T

0. ot Caton (i) Nrtin vatibche Sbl-Vesuna
Notara vy ofCoacs Hemiche stundiasin

o ety U it Blmaten i

e Yor S Lrry -
SBIESIS - Normagn Urare NGRS (ETHICS acrtogenss. 1051

05 sseyom

OEBPS/images/Art_P287.jpg
Vindure |rvpiana

OEBPS/images/Art_P227.jpg

OEBPS/images/Art_P201.jpg

OEBPS/images/Art_P005a.jpg
Top Mashup Tags
Seealt

Giick on sice or label to see detai | O sea the whole Mashup Tag Cloud

mapeing Ge%)
photo (10%)
shopping (9%)
search (8%)
ideo (%)
avel (5%)
5 socil (5%)
Dmusic (55%)
Cinews (4%)
Emessaging (4%)

roprammablewabiaom O8/28/00

OEBPS/images/Art_P007.jpg
Applications

Internet

OEBPS/images/Art_P067.jpg
r

= deous T C

[

