

[image: image]

Java™7

A Beginner’s Tutorial

Third Edition

Budi Kurniawan

JavaTM7 : A Beginner's Tutorial
Copyright © 2011 by Budi Kurniawan
Third Edition: October 2011

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

ISBN: 978-0-9808396-1-6

Printed in the United States of America
Book and Cover Designer: Mona Setiadi

Technical Reviewer: Paul Deck
Indexer: Chris Mayle

Trademarks
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
UNIX is a registered trademark of The Open Group.

Microsoft Internet Explorer is either a registered trademark or a trademark of Microsoft
Corporation in The United States and/or other countries.
Apache is a trademark of The Apache Software Foundation.
Firefox is a registered trademark of the Mozilla Foundation.
Google is a trademark of Google, Inc.

Throughout this book the printing of trademarked names without the trademark symbol is for editorial purpose only. We have no intention of infringement of the trademark.

Warning and Disclaimer
Every effort has been made to make this book as accurate as possible. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information in this book.

Table of Contents

Introduction

Java, the Language and the Technology

An Overview of Object-Oriented Programming

About This Book

Downloading and Installing Java

Downloading Program Examples and Answers

Chapter 1: Your First Taste of Java

Your First Java Program

Java Code Conventions

Integrated Development Environments (IDEs)

Summary

Questions

Chapter 2: Language Fundamentals

ASCII and Unicode

Separators

Primitives

Variables

Constants

Literals

Primitive Conversions

Operators

Comments

Summary

Questions

Chapter 3: Statements

An Overview of Java Statements

The if Statement

The while Statement

The do-while Statement

The for Statement

The break Statement

The continue Statement

The switch Statement

Summary

Questions

Chapter 4: Objects and Classes

What Is a Java Object?

Java Classes

Creating Objects

The null Keyword

Objects in Memory

Java Packages

Encapsulation and Access Control

The this Keyword

Using Other Classes

Final Variables

Static Members

Static Final Variables

Static import

Variable Scope

Method Overloading

By Value or By Reference?

Loading, Linking, and Initialization

Object Creation Initialization

Comparing Objects

The Garbage Collector

Summary

Questions

Chapter 5: Core Classes

java.lang.Object

java.lang.String

java.lang.StringBuffer and java.lang.StringBuilder

Primitive Wrappers

Arrays

java.lang.Class

java.lang.System

java.util.Scanner

Boxing and Unboxing

Varargs

The format and printf Methods

Summary

Questions

Chapter 6: Inheritance

An Overview of Inheritance

Accessibility

Method Overriding

Calling the Superclass's Constructors

Calling the Superclass's Hidden Members

Type Casting

Final Classes

The instanceof Keyword

Summary

Questions

Chapter 7: Error Handling

Catching Exceptions

try without catch

Catching Multiple Exceptions

The try-with-resources Statement

The java.lang.Exception Class

Throwing an Exception from a Method

User-Defined Exceptions

Final Words on Exception Handling

Summary

Question

Chapter 8: Numbers and Dates

Number Parsing

Number Formatting

Number Parsing with java.text.NumberFormat

The java.lang.Math Class

The java.util.Date Class

The java.util.Calendar Class

Date Parsing and Formatting with DateFormat

Summary

Questions

Chapter 9: Interfaces and Abstract Classes

The Concept of Interface

The Interface, Technically Speaking

Base Classes

Abstract Classes

Summary

Questions

Chapter 10: Enums

An Overview of Enum

Enums in a Class

The java.lang.Enum Class

Iterating Enumerated Values

Switching on Enum

Summary

Questions

Chapter 11: The Collections Framework

An Overview of the Collections Framework

The Collection Interface

List and ArrayList

Iterating Over a Collection with Iterator and for

Set and HashSet

Queue and LinkedList

Collection Conversion

Map and HashMap

Making Objects Comparable and Sortable

Summary

Questions

Chapter 12: Generics

Life without Generics

Introducing Generic Types

Using Generic Types without Type Parameters

Using the ? Wildcard

Using Bounded Wildcards in Methods

Writing Generic Types

Summary

Questions

Chapter 13: Input/Output

File Systems and Paths

File and Directory Handling and Manipulation

Input/Output Streams

Reading Binary Data

Writing Binary Data

Writing Text (Characters)

Reading Text (Characters)

Logging with PrintStream

Random Access Files

Object Serialization

Summary

Questions

Chapter 14: Nested and Inner Classes

An Overview of Nested Classes

Static Nested Classes

Member Inner Classes

Local Inner Classes

Anonymous Inner Classes

Behind Nested and Inner Classes

Summary

Questions

Chapter 15: Swing Basics

AWT Components

Useful AWT Classes

Basic Swing Components

Summary

Questions

Chapter 16: Swinging Higher

Layout Managers

Event Handling

Working with Menus

The Look and Feel

Fast Splash Screens

System Tray Support

Desktop Help Applications

Summary

Questions

Chapter 17: Polymorphism

Defining Polymorphism

Polymorphism in Action

Polymorphism in a Drawing Application

Polymorphism and Reflection

Summary

Questions

Chapter 18: Annotations

An Overview of Annotations

Standard Annotations

Common Annotations

Standard Meta-Annotations

Custom Annotation Types

Summary

Questions

Chapter 19: Internationalization

Locales

Internationalizing Applications

An Internationalized Swing Application

Summary

Questions

Chapter 20: Applets

A Brief History of Applets

The Applet API

Security Restrictions

Writing and Deploying Applets

How AppletViewer Works

Passing Parameters to an Applet

SoundPlayerApplet

JApplet

Applet Deployment in a JAR File

Faster Loading

Summary

Questions

Chapter 21: Java Networking

An Overview of Networking

The Hypertext Transfer Protocol (HTTP)

java.net.URL

java.net.URLConnection

java.net.Socket

java.net.ServerSocket

A Web Server Application

Summary

Questions

Chapter 22: Java Database Connectivity

Introduction to JDBC

Four Steps to Data Access

Closing JDBC Objects

Reading Metadata

The SQLTool Example

Summary

Questions

Chapter 23: Java Threads

Introduction to Java Threads

Creating a Thread

Working with Multiple Threads

Thread Priority

Stopping a Thread

Synchronization

Visibility

Thread Coordination

Using Timers

Swing Timers

Summary

Questions

Chapter 24: Concurrency Utilities

Atomic Variables

Executor and ExecutorService

Callable and Future

Swing Worker

Locks

Summary

Questions

Chapter 25: Security

Java Security Overview

Using the Security Manager

Policy Files

Permissions

Using the Policy Tool

Applet Security

Programming with Security

Cryptography Overview

Creating Certificates

The KeyTool Program

The JarSigner Tool

Java Cryptography API

Summary

Questions

Chapter 26: Java Web Applications

Servlet Application Architecture

Servlet API Overview

Servlet

Writing a Basic Servlet Application

ServletRequest

ServletResponse

ServletConfig

ServletContext

GenericServlet

HTTP Servlets

Using the Deployment Descriptor

Summary

Questions

Chapter 27: JavaServer Pages

A JSP Overview

jspInit, jspDestroy, and Other Methods

Implicit Objects

JSP Syntactic Elements

Handling Errors

Summary

Questions

Chapter 28: Javadoc

Writing Documentation in Java Classes

Javadoc Syntax

Summary

Question

Chapter 29: Application Deployment

JWS Overview

JNLP File Syntax

A Deployment Example

Security Concerns

Summary

Questions

Appendix A: javac

Options

Command Line Argument Files

Appendix B: java

Options

Appendix C: jar

Syntax

Options

Examples

Setting an Application's Entry Point

Appendix D: NetBeans

Download and Installation

Creating a Project

Creating a Class

Running a Java Class

Adding Libraries

Debugging Code

Appendix E: Eclipse

Download and Installation

Creating a Project

Creating a Class

Running a Java Class

Adding Libraries

Debugging Code

Index

Introduction

Welcome to Java 7: A Beginner's Tutorial (3rd Edition). Java is a mature programming language that is easy to learn. At the same time it is also a vast collection of technologies that are so diverse that beginners often don't know where to start. If you are one of them, then this book is for you because it has been designed as a tutorial for novices.

As a beginner's tutorial, this book does not teach you every Java technology there is. (It is impossible to cram everything into a single volume anyway, and that's why most Java titles are focused on one technology.) Rather, this book covers the most important Java programming topics that you need to master to be able to learn other technologies yourself. Nonetheless this book is comprehensive that by fully understanding all the chapters and doing the exercises you'll be able to perform an intermediate Java programmer's daily tasks quite well.

This book offers all the three subjects that a professional Java programmer must be proficient in:

[image: images] Java as a programming language;

[image: images] Object-oriented programming (OOP) with Java;

[image: images] Java core libraries.

What makes structuring an effective Java course difficult is the fact that the three subjects are interdependent. On the one hand, Java is an OOP language, so its syntax is easier to learn if you already know about OOP. On the other hand, OOP features such as inheritance, polymorphism, and data encapsulation, are best taught if accompanied by real-world examples. Unfortunately, understanding real-world Java programs requires knowledge of the Java core libraries.

Because of such interdependence, the three main topics are not grouped into three isolated parts. Instead, chapters discussing a major topic and chapters teaching another are interwoven. For example, before explaining polymorphism, this book makes sure that you are familiar with certain Java classes so that real-world examples can be given. In addition, because a language feature such as generics cannot be explained effectively without the comprehension of a certain set of classes, it is covered after the discussion of the supporting classes.

There are also situations whereby a topic can be found in two or more places. For instance, the for statement is a basic language feature that should be discussed in an early chapter. However, for can also be used to iterate over a collection of objects, a feature that should only be given after the Collections Framework is taught. Therefore, for is first presented in Chapter 3, “Statements” and then revisited in Chapter 11, “The Collections Framework.”

The rest of this introduction presents a high-level overview of Java, an introduction to OOP, a brief description of each chapter, and instructions for installing the Java software.

Java, the Language and the Technology

Java is not only an object-oriented programming language, it is also a set of technologies that make software development more rapid and resulting applications more robust and secure. For years Java has been the technology of choice because of the benefits it offers:

[image: images] platform independence

[image: images] ease of use

[image: images] complete libraries that speed up application development

[image: images] security

[image: images] scalability

[image: images] extensive industry support

Sun Microsystems introduced Java in 1995 and Java—even though it had been a general-purpose language right from the start—was soon well known as the language for writing applets, small programs that run inside web browsers and add interactivity to static websites. The growth of the Internet had much to contribute to the early success of Java.

Having said that, applets were not the only factor that made Java shine. The other most appealing feature of Java was its platform-independence promise, hence the slogan “Write Once, Run Anywhere.” What this means is the very same program you write will run on Windows, Unix, Mac, Linux, and other operating systems. This was something no other programming language could do. At that time, C and C++ were the two most commonly used languages for developing serious applications. Java seemed to have stolen their thunder since its first birthday.

That was Java version 1.0.

In 1997, Java 1.1 was released, adding significant features such as a better event model, Java Beans, and internationalization to the original.

Java 1.2 was launched in December 1998. Three days after it was released, the version number was changed to 2, marking the beginning of a huge marketing campaign that started in 1999 to sell Java as the “next generation” technology. Java 2 was sold in four flavors: the Standard Edition (J2SE), the Enterprise Edition (J2EE), the Micro Edition (J2ME), and Java Card (that never adopted “2” in its brand name).

The next version released in 2000 was 1.3, hence J2SE 1.3. 1.4 came two years later to make J2SE 1.4. J2SE version 1.5 was released in 2004. However, the name Java 2 version 1.5 was then changed to Java 5.

On November 13, 2006, a month before the official release date of Java 6, Sun Microsystems announced that it had open-sourced Java. Java SE 6 was the first Java release for which Sun Microsystems had invited outside developers to contribute code and help fix bugs. True that the company had in the past accepted contributions from non-employees, like the work of Doug Lea on multithreading, but this was the first time Sun had posted an open invitation. The company admitted that they had limited resources, and outside contributors would help them cross the finish line sooner.

In May 2007 Sun released its Java source code to the OpenJDK community as free software. IBM, Oracle and Apple later joined OpenJDK.

In 2010 Oracle acquired Sun.

Java 7, code-named Dolphin, was released in July 2011 and a result of open-source collaboration through OpenJDK.

What Makes Java Platform Independent?

You must have heard of the terms “platform-independent” or “cross-platform,” which means your program can run on multiple operating systems. This is one major factor that made Java popular. But, what makes Java platform independent?

In traditional programming, source code is compiled into executable code. This executable code can run only on the platform it is intended to run. In other words, code written and compiled for Windows will only run on Windows, code written in Linux will only run on Linux, and so on. This is depicted in Figure I.1.

[image: images]

Figure I.1: Traditional programming paradigm

A Java program, on the other hand, is compiled to bytecode. You cannot run bytecode by itself because it is not native code. Bytecode can only run on a Java Virtual Machine (JVM). A JVM is a native application that interprets bytecode. By making the JVM available on many platforms, Sun transformed Java into a cross-platform language. As shown in Figure I.2, the very same bytecode can run on any operating system for which a JVM has been developed.

[image: images]

Figure I.2: Java programming model

Currently JVMs are available for Windows, Unix, Linux, Free BSD, and practically all other major operating systems in the world.

JDK, JRE, JVM, What's the Difference?

I mentioned that Java programs must be compiled. In fact, any programming language needs a compiler to be really useful. A compiler is a program that converts program source code to an executable format, either a bytecode, native code, or something else. Before you can start programming Java, you need to download a Java compiler. The Java compiler is a program named javac, which is short for Java compiler.

While javac can compile Java sources to bytecode, to run bytecode you need a Java Virtual Machine. In addition, because you will invariably use classes in the Java core libraries, you also need to download these libraries. The Java Runtime Environment (JRE) contains both a JVM and class libraries. As you may suspect, the JRE for Windows is different from that for Linux, which is different from the one for yet another operating system.

The Java software is available in two distributions:

[image: images] The JRE, which includes a JVM and the core libraries. This is good for running bytecode.

[image: images] The JDK, which includes the JRE plus a compiler and other tools. This is required software to write and compile Java programs.

To summarize, a JVM is a native application that runs bytecode. The JRE is an environment that includes a JVM and Java class libraries. The JDK includes the JRE plus other tools including a Java compiler.

The first version of the JDK is 1.0. The versions after that are 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7. For minor releases, add another number to the version number. For instance, 1.7.1 is the first minor upgrade to version 1.7.

JDK 1.7 (code-named Dolphin) is better known as JDK 7. The version of the JRE included in a JDK is the same as the JDK. Therefore, JDK 1.7 contains JRE 1.7. The JDK is also often called the SDK (Software Development Kit).

In addition to the JDK, a Java programmer needs to download Java documentation that explains classes in the core libraries. You can download the documentation from the same URL that provides the JRE and the JDK.

Java 2, J2SE, J2EE, J2ME, Java 7, What Are They?

Sun Microsystems has done a great deal promoting Java. Part of its marketing strategy was to coin the name Java 2, which was basically JDK 1.2. There were three editions of Java 2:

[image: images] Java 2 Platform, Standard Edition (J2SE). J2SE is basically the JDK. It also serves as the foundation for technologies defined in J2EE.

[image: images] Java 2 Platform, Enterprise Edition (J2EE). It defines the standard for developing component-based multi-tier enterprise applications. Features include Web services support and development tools (SDK).

[image: images] Java 2 Platform, Micro Edition (J2ME). It provides an environment for applications that run on consumer devices, such as mobile phones, personal digital assistants (PDAs), and TV set-top boxes. J2ME includes a JVM and a limited set of class libraries.

Name changes occurred in version 5. J2SE became Java Platform, Standard Edition 5 (Java SE 5). Also, the 2 in J2EE and J2ME was dropped. The current version of the enterprise edition is Java Platform, Enterprise Edition 6 (Java EE 6). J2ME is now called Java Platform, Micro Edition (Java ME, without a version number). In this book, Java 7 is used to refer to Java SE 7.

Unlike the first versions of Java that were products of Sun, Java SE 7 (and J2SE 1.4, Java SE 5, and Java SE 6) are sets of specifications that define features that need to be implemented in the release. The software itself is called the reference implementation. Oracle, IBM, and others work together through OpenJDK to provide the Java SE 7 reference implementation and reference implementations for the next versions of Java.

Java EE 6 are also sets of specifications that include technologies such as servlets, JavaServer Pages, JavaServer Faces, Java Messaging Service, etc. To develop and run J2EE and Java EE 6 applications, you will need a J2EE/Java EE 6 application server. Anyone can implement a J2EE/Java EE 6 application server. This explains the availability of various application servers in the market, including some open source ones. Here are examples of J2EE/Java EE 6 application servers:

[image: images] Oracle's WebLogic (previously BEA's WebLogic)

[image: images] IBM's WebSphere

[image: images] Sun Microsystems’ Sun Java Application Server

[image: images] Oracle's 10g Application Server

[image: images] GlassFish

[image: images] JBoss

[image: images] Jonas

[image: images] Apache Geronimo

JBoss, GlassFish, Jonas, and Geronimo are open source application servers. They have different licenses, though, so make sure you read them before you decide to use the products.

The Java Community Process (JCP) Program

Java's continuous dominance as the technology of choice owes much to Sun's strategy to include other industry players in determining the future of Java. This way, many people feel that they also own Java. Many large corporations, such as IBM, Oracle, Nokia, Fujitsu, etc, invest heavily in Java because they too can propose a specification for a technology and put forward what they want to see in the next version of a Java technology. This collaborative effort takes the form of the JCP Program. The URL of its Web site is http://www.jcp.org.

Specifications produced by the JCP Program are known as Java Specification Requests (JSRs). For example, JSR 336 specifies Java SE 7.

An Overview of Object-Oriented Programming

Object-oriented programming (OOP) works by modeling applications on real-world objects. Three principles of OOP are encapsulation, inheritance, and polymorphism.

The benefits of OOP are real. These are the reason why most modern programming languages, including Java, are object-oriented (OO). I can even cite two well-known examples of language transformation to support OOP: The C language evolved into C++ and Visual Basic was upgraded into Visual Basic.NET.

This section explains the benefits of OOP and provides an assessment of how easy or hard it is to learn OOP.

The Benefits of OOP

The benefits of OOP include easy code maintenance, code reuse, and extendibility. These benefits are presented in more detail below.

1. Ease of maintenance. Modern software applications tend to be very large. Once upon a time, a “large” system comprised a few thousand lines of code. Now, even those consisting of one million lines are not considered that large. When a system gets larger, it starts giving its developers problems. Bjarne Stroustrup, the father of C++, once said something like this. A small program can be written in anything, anyhow. If you don't quit easily, you'll make it work, at the end. But a large program is a different story. If you don't use techniques of “good programming,” new errors will emerge as fast as you fix the old ones.
The reason for this is there is interdependency among different parts of a large program. When you change something in some part of the program, you may not realize how the change might affect other parts. OOP makes it easy to make applications modular, and modularity makes maintenance less of a headache. Modularity is inherent in OOP because a class, which is a template for objects, is a module by itself. A good design should allow a class to contain similar functionality and related data. An important and related term that is used often in OOP is coupling, which means the degree of interaction between two modules. Loosely coupling among parts make code reuse—another benefit of OOP—easier to achieve.

2. Reusability. Reusability means that code that has previously been written can be reused by the code author and others who need the same functionality provided by the original code. It is not surprising, then, that an OOP language often comes with a set of ready-to-use libraries. In the case of Java, the language is accompanied by hundreds of class libraries or Application Programming Interfaces (APIs) that have been carefully designed and tested. It is also easy to write and distribute your own library. Support for reusability in a programming platform is very attractive because it shortens development time.
One of the main challenges to class reusability is creating good documentation for the class library. How fast can a programmer find a class that provides the functionality he/she is looking for? Is it faster to find such a class or write a new one from scratch? Fortunately, Java core and extended APIs come with extensive documentation.
Reusability does not only apply to the coding phase through the reuse of classes and other types; when designing an application in an OO system, solutions to OO design problems can also be reused. These solutions are called design patterns. To make it easier to refer to each solution, each pattern is given a name. The early catalog of reusable design patterns can be found in the classic book Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

3. Extendibility
Every application is unique. It has its own requirements and specifications. In terms of reusability, sometimes you cannot find an existing class that provides the exact functionality that your application requires. However, you will probably find one or two that provide part of the functionality. Extendibility means that you can still use those classes by extending them to suit your need. You still save time, because you don't have to write code from scratch.
In OOP, extendibility is achieved through inheritance. You can extend an existing class, add some methods or data to it, or change the behavior of methods you don't like. If you know the basic functionality that will be used in many cases, but you don't want your class to provide very specific functions, you can provide a generic class that can be extended later to provide functionality specific to an application.

Is OOP Hard?

Java programmers need to master OOP. As it happens, it does make a difference if you have had programmed using a procedural language, such as C or Pascal. In the light of this, there is bad news and good news.

First the bad news.

Researchers have been debating the best way to teach OOP at school; some argue that it is best to teach procedural programming before OOP is introduced. In many curricula, we see that an OOP course can be taken when a student is nearing the final year of his/her university term.

More recent studies, however, argue that someone with procedural programming skill thinks in a paradigm very different from how OO programmers view and try to solve problems. When this person needs to learn OOP, the greatest struggle he/she faces is having to go through a paradigm shift. It is said that it takes six to 18 months to switch your mindset from procedural to object-oriented paradigms. Another study shows that students who have not learned procedural programming do not find OOP that difficult.

Now the good news.

Java qualifies as one of the easiest OOP languages to learn. For example, you do not need to worry about pointers, don't have to spend precious time solving memory leaks caused by failing to destroy unused objects, etc. On top of that, Java comes with very comprehensive class libraries with relatively very few bugs in their early versions. Once you know the nuts and bolts of OOP, programming with Java is really easy.

About This Book

The following presents the overview of each chapter.

Chapter 1, “Your First Taste of Java” aims at giving you the feel of working with Java. This includes writing a simple Java program, compiling it using the javac tool, and running it using the java program. In addition, some advice on code conventions and integrated development environments is also given.

Chapter 2, “Language Fundamentals”, teaches you the Java language syntax. You will be introduced to topics such as character sets, primitives, variables, operators, etc.

Chapter 3, “Statements”, explains Java statements for, while, do-while, if, if-else, switch, break, and continue.

Chapter 4, “Objects and Classes,” is the first OOP lesson in this book. It starts by explaining what a Java object is an how it is stored in memory. It then continues with a discussion of classes, class members, and two OOP concepts (abstraction and encapsulation). Some related topics, such as garbage collection and object comparison, are briefly discussed.

Chapter 5, “Core Classes” covers important classes in the Java core libraries: java.lang.Object, java.lang.String, java.lang.StringBuffer and java.lang.StringBuilder, wrapper classes, and java.util.Scanner. Boxing/unboxing and varargs are also taught. This is an important chapter because the classes explained in this chapter are some of the most commonly used classes in Java.

Chapter 6, “Inheritance” discusses an OOP feature that enables code extendibility. This chapter teaches you how to extend a class, affect the visibility of a subclass, override a method, and so forth.

Undoubtedly, error handling is an important feature of any programming language. As a mature language, Java has a very robust error handling mechanism that can help prevent bugs from creeping in. Chapter 7, “Error Handling” is a detailed discussion of this mechanism.

Chapter 8, “Numbers and Dates” deals with three issues when working with numbers and dates: parsing, formatting, and manipulation. This chapter introduces Java classes that can help you with these tasks.

Chapter 9, “Interfaces and Abstract Classes”, explains that an interface is more than a class without implementation. An interface defines a contract between a service provider and a client. This chapter explains how to work with interfaces and abstract classes.

Chapter 10, “Enums” covers enum, a type added to Java since version 5.

Chapter 11, “The Collections Framework” shows how you can use the members of the java.util package to group objects and manipulate them.

Generics are a very important feature in Java and Chapter 12, “Generics” adequately explains this feature.

Chapter 13, “Input/Output” introduces the concept of streams and explains how you can use the four stream types in the java.io package to perform input-output operations. In addition, object serialization and deserialization are discussed.

Chapter 14, “Nested and Inner Classes” explains how you can write a class within another class and why this OOP feature can be very useful.

Chapter 15, “Swing Basics” is the first installment of the two chapters on Swing. It briefly discusses the AWT components and thoroughly explains some basic Swing components.

Chapter 16, “Swinging Higher” is the second chapter on Swing. It covers more advanced techniques such as layout management, event handling, and Swing's look and feel.

Polymorphism is one of the main pillars of OOP. It is incredibly useful in situations whereby the type of an object in not known at compile time. Chapter 17, “Polymorphism” explains this feature and provides useful examples.

Chapter 18, “Annotations” talks about one of the features in Java. It explains the standard annotations that come with the JDK, common annotations, meta-annotations, and custom annotations.

Today it is common for software applications to be deployable to different countries and regions. Such applications need to be designed with internationalization in mind. Chapter 19, “Internationalization” explores techniques that Java programmers can use.

Applets are small programs that run on the Web browser. Chapter 20, “Applets” explains the lifecycle of an applet, security restrictions, and JApplet.

Chapter 21, “Java Networking” deals with classes that can be used in network programming. A simple Web server application is presented to illustrate how to use these classes.

Accessing databases and manipulating data are some of the most important tasks in business applications. There are many flavors of database servers and accessing different databases requires different skills. Fortunately for Java programmers, Java Database Connectivity (JDBC) technology provides a uniform way of accessing databases. JDBC is discussed in Chapter 22, “Java Database Connectivity.”

A thread is a basic processing unit to which an operating system allocates processor time, and more than one thread can be executing code inside a process. Chapter 23, “Java Threads,” shows that in Java multithreaded programming is not only the domain of expert programmers.

Chapter 24, “The Concurrency Utilities” is the second chapter on multi-threaded programming. It discusses interfaces and classes that make writing multi-threaded programs easier.

Chapter 25, “Security” is a tutorial on how Java application users can restrict running Java applications and how you can use cryptography to secure your application and data.

Chapter 26, “Java Web Applications” explores the Servlet technology and the Servlet API and presents several examples.

Chapter 27, “JavaServer Pages” explains another Web development technology and shows how to write JSP pages.

Chapter 28, “Generating Java Doc” discusses the javadoc tool that Java programmers can use to generate documentation for their APIs.

Chapter 29, “Application Deployment,” talks about Java Web Start and how to use it to deploy Java applications over the Internet, across a local network, and from a CD.

Appendix A, “javac”, Appendix B, “java”, and Appendix C, “jar” explain the javac, java, and jar tools, respectively.

Appendix D, “NetBeans” and Appendix E, “Eclipse” provide brief tutorials on NetBeans and Eclipse, respectively.

Downloading and Installing Java

Before you can start compiling and running Java programs, you need to download and install the JDK as well as configure some system environment variables.

Downloading and Installing the JDK

You can download the JRE and the JDK for Windows, Linux, and Solaris from Oracle's website:

[image: images]

Once you click the link, you'll be redirected to a page that lets you select an installation for your platform: Windows, Linux, or Solaris. The 64 bit versions for those platforms are available. Also, note that the same link also provides the JRE. However, for development you need the JDK not only the JRE, which is only good for running compiled Java classes. The JDK includes the JRE.

After downloading the JDK, you need to install it. Installation varies from one operating system to another. These subsections detail the installation process.

Installation on Windows

Installation on Windows is easy. Simply double-click the icon of the executable file you downloaded and follow the instructions. Figure I.3 shows the first dialog of the installation wizard.

Installation on Linux

On Linux platforms, the JDK is available in two installation formats.

[image: images] RPM, for Linux platforms that supports the RPM package management system, such as Red Hat and SuSE.

[image: images] Self-extracting package. A compressed file containing packages to be installed.

[image: images]

Figure I.3: Installing JDK 7 on Windows

If you are using the RPM, follow these steps:

1. Become root by using the su command

2. Extract the downloaded file.

3. Change directory to where the downloaded file is located and chmod:

[image: images]

where rpmFile is the RPM file.

4. Run the RPM file:

[image: images]

If you are using the self-extracting binary installation, follow these steps.

1. Extract the downloaded file.

2. Use chmod to give the file the execute permissions:

[image: images]

 Here, binFile is the downloaded bin file for your platform.

3. Change directory to the location where you would like the files to be installed.

4. Run the self-extracting binary. Execute the downloaded file with the path prepended to it. For example, if the file is in the current directory, prepend it with ''./'' (necessary if ''.'' is not in the PATH environment variable):

[image: images]

Setting System Environment Variables

After you install the JDK, you can start compiling and running Java programs. However, you can only invoke the compiler and the JRE from the location of the javac and java programs or by including the installation path in your command. To make compiling and running programs easier, it is important that you set the PATH environment variable on your computer so that you can invoke javac and java from any directory.

Setting the Path Environment Variable on Windows

To set the PATH environment variable on Windows, do these steps:

1. Click Start, Settings, Control Panel.

2. Double-click System.

3. Select the Advanced tab and then click on Environment Variables.

4. Locate the Path environment variable in the User Variables or System Variables panes. The value of Path is a series of directories separated by semicolons. Now, add the full path to the bin directory of your Java installation directory to the end of the existing value of Path. The directory looks something like:

[image: images]

5. Click Set, OK, or Apply.

Setting the Path Environment Variable on UNIX and Linux

Set the path environment variable on these operating systems depends on the shell you use.

For the C shell, add the following to the end of your ~/.cshrc file:

[image: images]

where path/to/jdk/bin is the bin directory under your JDK installation directory.

For the Bourne Again shell, add this line to the end of your ~/.bashrc or ~/.bash_profile file:

[image: images]

Here, path/to/jdk/bin is the bin directory under your JDK installation directory.

Testing the Installation

To confirm that you have installed the JDK correctly, type javac on the command line from any directory on your machine. If you see instructions on how to correctly run javac, then you have successfully installed it. On the other hand, if you can only run javac from the bin directory of the JDK installation directory, your PATH environment variable was not configured properly.

JDK 7 For Macintosh

Pre-7 JDKs for Mac are available from Apple's website at http://support.apple.com/downloads. Apple used to port and maintain Mac-JDKs but will no longer do so after its last update of JDK 6. Instead, Apple will push JDKs for Mac through OpenJDK.

JDK 7 for Mac is therefore available here:

[image: images]

Unfortunately, at the time of writing, there is no binary you can download and install. Don't despair, though. Another project has been started that provides a ready-to-install JDK 7 for Macintosh. You can download a DMG file here:

[image: images]

The binary will run on Snow Leopard (10.6) and Lion (10.7) and will not run on previous versions of OS/X.

Downloading Java API Documentation

When programming Java, you will invariably use classes from the core libraries. Even seasoned programmers look up the documentation for those libraries when they are coding. Therefore, you should download the documentation from here.

[image: images]

(You need to scroll down until you see “Java SE 7 Documentation.”)

The API is also available online here:

[image: images]

Downloading Program Examples and Answers

The program examples accompanying this book and answers to the questions in each chapter can be downloaded from this URL:

[image: images]

Extract the zip file to a working directory.

Chapter 1

Your First Taste of Java

Developing a Java program involves writing code, compiling it into bytecode, and running the bytecode. This is a process you will repeat again and again during your career as a Java programmer, and it is crucial that you feel comfortable with it. The main objective of this chapter therefore is to give you the opportunity to experience the process of software development in Java.

As it is important to write code that not only works but that is also easy to read and maintain, this chapter introduces you to Java code conventions. And, since smart developers use an integrated development environments (IDEs) to make their lives easier, the last section of this chapter provides some advice on Java IDEs.

Your First Java Program

This section highlights steps in Java development: writing the program, compiling it into bytecode, and running the bytecode.

Writing a Java Program

You can use any text editor to write a Java program. Open a text editor and write the code in Listing 1.1. Alternatively, if you have downloaded the program examples accompanying this book, you can simply copy it to your text editor.

Listing 1.1: A simple Java program

class MyFirstJava {
 public static void main(String[] args) {
 System.out.println("Java rocks.");
 }
}

For now, suffice it to say that Java code must reside in a class. Also, make sure you save the code in Listing 1.1 in a MyFirstJava.java file. All Java source files must have java extension.

Compiling Your Java Program

You use the javac program in the bin directory of your JDK installation directory to compile Java programs. Assuming you have edited the PATH environment variable in your computer (if not, see the section “Downloading and Installing Java” in Introduction), you should be able to invoke javac from any directory. To compile the MyFirstJava class in Listing 1.1, do the following:

1. Open a command prompt and change directory to the directory where the MyFirstProgram.java file was saved in.

2. Type the following command.

javac MyFirstJava.java

If everything goes well, javac will create a file named MyFirstJava.class in your working directory.

Note

The javac tool has more features that you can use by passing options. For example, you can tell it where you want the generated class file to be created. Appendix A, “javac” discusses javac in clear detail.

Running Your Java Program

To run your Java program, use the java program that is part of the JDK. Again, having added the PATH environment variable, you should be able to invoke java from any directory. From your working directory, type the following and press Enter.

java MyFirstJava

Note that you do not include the class extension when running a Java program.

You will see the following on your console.

Java rocks.

Congratulations. You have successfully written your first Java program. Since the sole aim of this chapter is to familiarize yourself with the writing and compiling process, I will not be attempting to explain how the program works.

You can also pass arguments to a Java program. For example, if you have a class named Calculator and you want to pass two arguments to it, you can do it like this:

java Calculator arg-1 arg-2

Here, arg-1 is the first argument and arg-2 the second. You can pass as many arguments as you want. The java program will then make these arguments available to your Java program as an array of strings. You'll learn to handle arguments in Chapter 5, “Core Classes.”

Note

The java tool is an advanced program that you can configure by passing options. For instance, you can set the amount of memory allocated to it. Appendix B, “java” explains these options.

Note

The java tool can also be used to run a Java class that is packaged in a jar file. Check the section “Setting an Application's Entry Point” in Appendix C, “jar.”

Java Code Conventions

It is important to write correct Java programs that run. However, it is also crucial to write programs that are easy to read and maintain. It is believed that eighty percent of the lifetime cost of a piece of software is spent on maintenance. Also, the turnover of programmers is high, thus it is very likely that someone other than you will maintain your code during its lifetime. Whoever inherits your code will appreciate clear and easy-to-read program sources.

Using consistent code conventions is one way to make your code easier to read. (Other ways include proper code organization and sufficient commenting.) Code conventions include filenames, file organization, indentation, comments, declaration, statements, white space, and naming conventions.

A class declaration starts with the keyword class followed by a class name and the opening brace {. You can place the opening brace on the same line as the class name, as shown in Listing 1.1, or you can write it on the next line, as demonstrated in Listing 1.2.

Listing 1.2: MyFirstJava written using a different code convention

class MyFirstJava
{
 public static void main(String[] args)
 {
 System.out.println("Java rocks.");
 }
}

The code in Listing 1.2 is as good as the one in Listing 1.1. It is just that the class has been written using a different convention. You should adopt a consistent style for all your program elements. It is up to you to define your own code conventions, however Sun Microsystems has published a document that outlines standards that its employees should follow. The document can be viewed here. (Of course, the document is now part of Oracle.com)

http://www.oracle.com/technetwork/java/codeconv-138413.html

Program samples in this book will follow the recommended conventions outlined in this document. I'd also like to encourage you to develop the habit of following these conventions since the first day of your programming career, so that writing clear code comes naturally at a later stage.

Your first lesson on styles is about indentation. The unit of indentation must be four spaces. If tabs are used in place of spaces, they must be set every eight spaces (not four).

Integrated Development Environments (IDEs)

It is true that you can write Java programs using a text editor. However, an IDE will help. Not only will it check the syntax of your code, an IDE can also auto complete code, debug, and trace your programs. In addition, compilation can happen automatically as you type, and running a Java program is simply a matter of clicking a button. As a result, you will develop in much shorter time.

There are dozens of Java IDEs out there, and, fortunately, the best of them are free. Here is a brief list.

[image: images] NetBeans (free and open source)

[image: images] Eclipse (free and open source)

[image: images] Sun's Java Studio Enterprise (free)

[image: images] Sun's Java Studio Creator (free)

[image: images] Oracle JDeveloper (free)

[image: images] Borland JBuilder

[image: images] IBM's WebSphere Studio Application Developer

[image: images] BEA WebLogic Workshop

[image: images] IntelliJ IDEA

The two most popular are NetBeans and Eclipse and the past few years have seen a war between the two to become the number one. NetBeans and Eclipse are both open source with strong backers. Sun Microsystems launched NetBeans in 2000 after buying the Czech company Netbeans Ceska Republika and is still heavily investing in it. Eclipse was originated by IBM to compete with NetBeans.

Which one is better depends on who you ask, but their popularity has become the impetus that propelled other software makers to give away their IDEs too. Even Microsoft, whose .NET technology is Java's most fierce competitor, followed suit by no longer charging for the Express Edition of its Visual Studio.NET.

This book provides a brief tutorial of NetBeans and Eclipse in Appendix D and Appendix E, respectively. Do consider using an IDE because it helps a lot.

Summary

This chapter helped you write your first Java program. You used a text editor to write the program, used javac to compile it to a class file, and ran the class file with the java tool.

As programs grow in complexity and projects get larger, an IDE will help expedite application development. Two tutorials on open source IDEs are given in Appendix D and Appendix E.

Questions

1. If you had saved the code in Listing 1.1 using a different name, such as whatever.java, would it have compiled?

2. If you had used a file extension other than java when saving the code in Listing 1.1, for example as MyFirstJava.txt, would it have compiled?

Chapter 2

Language Fundamentals

Java is an object-oriented programming (OOP) language, therefore an understanding of OOP is of utmost importance. Chapter 4, “Objects and Classes” is the first lesson of OOP in this book. However, before you explore many features and techniques in OOP, make sure you study the prerequisite: basic programming concepts discussed in this chapter. The topics covered are as follows.

[image: images] Encoding Sets. Java supports the Unicode character encoding set and program element names are not restricted to ASCII (American Standard Code for Information Interchange) characters. Text can be written using characters in practically any human language in use today.

[image: images] Primitives. Java is an OOP language and Java programs deal with objects most of the time. However, there are also non-object elements that represent numbers and simple values such as true and false. These simple non-object programming elements are called primitives.

[image: images] Variables. Variables are place holders whose contents can change. There are many types of variables.

[image: images] Constants. Place holders whose values cannot be changed.

[image: images] Literals. Literals are representations of data values that are understood by the Java compiler.

[image: images] Primitive conversion. Changing the type of a primitive to another type.

[image: images] Operators. Operators are notations indicating that certain operations are to be performed.

Note

If you have programmed with C or C++, two popular languages at the time Java was invented, you should feel at home learning Java because Java syntax is very similar to that of C and C++. However, the creator of Java added a number of features not available in C and C++ and excluded a few aspects of them.

ASCII and Unicode

Traditionally, computers in English speaking countries only used the ASCII (American Standard Code for Information Interchange) character set to represent alphanumeric characters. Each character in the ASCII is represented by 7 bits. There are therefore 128 characters in this character set. These include the lower case and upper case Latin letters, numbers, and punctuation marks.

The ASCII character set was later extended to include another 128 characters, such as the German characters ä, ö, ü, and the British currency symbol £. This character set is called extended ASCII and each character is represented by 8 bits.

ASCII and the extended ASCII are only two of the many character sets available. Another popular one is the character set standardized by the ISO (International Standards Organization), ISO-8859-1, also known as Latin-1. Each character in ISO-8859-1 is represented by 8 bits as well. This character set contains all the characters required for writing text in many of the western European languages, such as German, Danish, Dutch, French, Italian, Spanish, Portuguese, and, of course, English. An eight-bit-per-character character set is convenient because a byte is also 8 bits long. As such, storing and transmitting text written in an 8-bit character set is most efficient.

However, not every language uses Latin letters. Chinese, Korean, and Thai are examples of languages that use different character sets. For example, each character in the Chinese language represents a word, not a letter. There are thousands of these characters and 8 bit is not enough to represent all the characters in the character set. The Japanese use a different character set for their language too. In total, there are hundreds of different character sets for all languages in the world. This is confusing, because a code that represents a particular character in a character set represents a different character in another character set.

Unicode is a character set developed by a non-profit organization called the Unicode Consortium (www.unicode.org). This body attempts to include all characters in all languages in the world into one single character set. A unique number in Unicode represents exactly one character. Currently at version 6, Unicode is used in Java, XML, ECMAScript, LDAP, etc. It has also been adopted by industry leaders such as IBM, Microsoft, Oracle, Google, HP, Apple, and others.

Initially, a Unicode character was represented by 16 bits, which were enough to represent more than 65,000 different characters. 65,000 characters are sufficient for encoding most of the characters in major languages in the world. However, the Unicode consortium planned to allow for encoding for as many as a million more characters. With this amount, you then need more than 16 bits to represent each character. In fact, a 32 bit system is considered a convenient way of storing Unicode characters.

Now, you see a problem already. While Unicode provides enough space for all the characters used in all languages, storing and transmitting Unicode text is not as efficient as storing and transmitting ASCII or Latin-1 characters. In the Internet world, this is a huge problem. Imagine having to transfer 4 times as much data as ASCII text!

Fortunately, character encoding can make it more efficient to store and transmit Unicode text. You can think of character encoding as analogous to data compression. And, there are many types of character encodings available today. The Unicode Consortium endorses three of them:

[image: images] UTF-8. This is popular for HTML and for protocols whereby Unicode characters are transformed into a variable length encoding of bytes. It has the advantages that the Unicode characters corresponding to the familiar ASCII set have the same byte values as ASCII, and that Unicode characters transformed into UTF-8 can be used with much existing software. Most browsers support the UTF-8 character encoding.

[image: images] UTF-16. In this character encoding, all the more commonly used characters fit into a single 16-bit code unit, and other less often used characters are accessible via pairs of 16-bit code units.

[image: images] UTF-32. This character encoding uses 32 bits for every single character. This is clearly not a choice for Internet applications. At least, not at present.

ASCII characters still play a dominant role in software programming. Java too uses ASCII for almost all input elements, except comments, identifiers, and the contents of characters and strings. For the latter, Java supports Unicode characters. This means, you can write comments, identifiers, and strings in languages other than English. For example, if you are a Chinese speaker living in Beijing, you can use Chinese characters for variable names. As a comparison, here is a piece of Java code that declares an identifier named password, which consists of ASCII characters:

String password = "secret";

By contrast, the following identifier is in simplified Chinese characters.

String [image: images] = "secret";

Separators

There are several characters Java uses as separators. These special characters are presented in Table 2.1.

	Symbol
	Name
	Description

	()
	Parentheses
	Used in:
1. method signatures to contain lists of arguments.
2. expressions to raise operator precedence.
3. narrowing conversions.
4. loops to contain expressions to be evaluated

	{ }
	Braces
	Used in:
1. declaration of types.
2. blocks of statements
3. array initialization.

	[]
	Brackets
	Used in:
1. array declaration.
2. array value dereferencing

	< >
	Angle brackets
	Used to pass parameter to parameterized types.

	;
	Semicolon
	Used to terminate statements and in the for statement to separate the initialization code, the expression, and the update code.

	:
	Colon
	Used in the for statement that iterates over an array or a collection.

	,
	Comma
	Used to separate arguments in method declarations.

	.
	Period
	Used to separate package names from subpackages and type names, and to separate a field or method from a reference variable.

Table 2.1: Java separators

It is very important that you familiarize yourself with the symbols and the names. Don't worry if you don't understand the terms in the Description column after reading it.

Primitives

As mentioned in Introduction, when writing an object-oriented (OO) application, you create an object model that resembles the real world. For example, a payroll application would have Employee objects, Tax objects, Company objects, etc. In Java, however, objects are not the only data type. There is another data type called primitive. There are eight primitive types in Java, each with a specific format and size. Table 2.2 lists Java primitives.

The first six primitives (byte, short, int, long, float, double) represent numbers. Each of these has a different size. For example, a byte can contain any whole number between -128 and 127. To understand how the smallest and largest numbers for an integer were obtained, look at its size in bits. A byte is 8 bits long so there are 28 or 256 possible values. The first 128 values are reserved for -128 to -1, then 0 takes one place, leaving 127 positive values. Therefore, the range for a byte is -128 to 127.

If you need a placeholder to contain number 1000000, you need an int. A long is even larger, and you might ask, if a long can contain a larger set of numbers than a byte and an int, why not always use a long? It is because a long takes 64 bits and therefore consume more memory space than bytes and ints. Thus, to save space, you want to use the primitive with the smallest possible data size.

The primitives byte, short, int, and long can only hold integers or whole numbers, for numbers with decimal points you need either a float or a double.

	Primitive
	Description
	Range

	byte
	Byte-length integer (8 bits)
	-128 (-27) to 127 (27-1)

	short
	Short integer (16 bits)
	-32,768 (-215) to 32,767 (-215-1)

	int
	Integer (32 bits)
	-2,147,483,648 (-231) to
2,147,483,647 (-231-1)

	long
	Long integer (64 bits)
	-9,223,372,036,854,775,808 (-263) to 9,223,372,036,854,775,807 (263-1)

	float
	Single-precision floating point (32-bit IEEE 7541)
	Smallest positive nonzero: 14e-45
Largest positive nonzero: 3.4028234e38

	double
	Double-precision floating point (64-bit IEEE 754)
	Smallest positive nonzero: 4.9e-324
Largest positive nonzero: 1.7976931348623157e308

	char
	A Unicode character
	[See Unicode 6 specification]

	boolean
	A boolean value
	true or false

Table 2.2: Java primitives

A char type can contain a single Unicode character, such as ‘a’, ‘9’, and ‘&’. The use of Unicode allows chars to also contain characters that do not exist in the English alphabet, such as this Japanese character ‘’. A boolean can contain one of two possible states (false or true).

Note

The reason why in Java not everything is an object is speed. Objects are more expensive to create and operate on than primitives. In programming an operation is said to be ‘expensive’ if it is resource intensive or consumes a lot of CPU cycles to complete.

Now that you know that there are two types of data in Java (primitives and objects), let's continue by studying how to use primitives. (Objects are discussed in Chapter 4, “Objects and Classes.”) Let's start with variables.

Variables

Variables are data placeholders. Java is a strongly typed language, therefore every variable must have a declared type. There are two data types in Java:

[image: images] reference types. A variable of reference type provides a reference to an object.

[image: images] primitive types. A variable of primitive type holds a primitive.

How Java Stores Integer Values

You must have heard that computers work with binary numbers, which are numbers that consists of only zeros and ones. This section provides an overview that may come in useful when you learn mathematical operators.

A byte takes 8 bits, meaning there are eight bits allocated to store a byte. The leftmost bit is the sign bit. 0 indicates a positive number, and 1 denotes a negative number. 0000 0000 is the binary representation of 0, 0000 0001 of 1, 0000 0010 of 2, 0000 0011 of 3, and 0111 1111 of 127, which is the largest positive number that a byte can contain.

Now, how do you get the binary representation of a negative number? It's easy. Get the binary representation of its positive equivalent first, and reverse all the bits and add 1. For example, to get the binary representation of -3 you start with 3, which is 0000 0011. Reversing the bits results in

1111 1100

Adding 1 gives you

1111 1101

which is -3 in binary.

For ints, the rule is the same, i.e. the leftmost bit is the sign bit. The only difference is that an int takes 32 bits. To calculate the binary form of -1 in an int, we start from 1, which is

0000 0000 0000 0000 0000 0000 0000 0001

Reversing all the bits results in:

1111 1111 1111 1111 1111 1111 1111 1110

Adding 1 gives us the number we want (-1).

1111 1111 1111 1111 1111 1111 1111 1111

In addition to the data type, a Java variable also has a name or an identifier. There are a few ground rules in choosing identifiers.

1. An identifier is an unlimited-length sequence of Java letters and Java digits. An identifier must begin with a Java letter.

2. An identifier must not be a Java keyword (given in Table 2.3), a boolean literal, or the null literal.

3. It must be unique within its scope. Scopes are discussed in Chapter 4, “Objects and Classes.”

Java Letters and Java Digits

Java letters include uppercase and lowercase ASCII Latin letters A to Z (\u0041-\u005a—note that \u denotes a Unicode character) and a to z (\u0061-\u007a), and, for historical reasons, the ASCII underscore (_ or \u005f) and the dollar sign ($, or \u0024). The $ character should be used only in mechanically generated source code or, rarely, to access preexisting names on legacy systems.

Java digits include the ASCII digits 0-9 (\u0030-\u0039).

abstract continue for new switch
assert default if package synchronized
boolean do goto private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

Table 2.3: Java keywords

Here are some legal identifiers:

salary
x2
_x3
row_count
[image: images]

Here are some invalid variables:

2x
java+variable

2x is invalid because it starts with a number. java+variable is invalid because it contains a plus sign.

Also note that names are case-sensitive. x2 and X2 are two different identifiers.

You declare a variable by writing the type first, followed by the name plus a semicolon. Here are some examples of variable declarations.

byte x;
int rowCount;
char c;

In the examples above you declare three variables:

[image: images] The variable x of type byte

[image: images] The variable rowCount of type int

[image: images] The variable c of type char

x, rowCount, and c are variable names or identifiers.

It is also possible to declare multiple variables having the same type on the same line, separating two variables with a comma. For instance:

int a, b;

which is the same as

int a;
int b;

However, writing multiple declarations on the same line is not recommended as it reduces readability.

Finally, it is possible to assign a value to a variable at the same time the variable is declared:

byte x = 12;
int rowCount = 1000;
char c = 'x';

Sun's Naming Convention for Variables

Variable names should be short yet meaningful. They should be in mixed case with a lowercase first letter. Subsequent words start with capital letters. Variable names should not start with underscore _ or dollar sign $ characters. For example, here are some examples of variable names that are in compliance with Sun's code conventions: userName, count, firstTimeLogin.

Constants

In Java constants are variables whose values, once assigned, cannot be changed. You declare a constant by using the keyword final. By convention, constant names are all in upper case with words separated by underscores.

Here are examples of constants or final variables.

final int ROW_COUNT = 50;
final boolean ALLOW_USER_ACCESS = true;

Literals

From time to time you will need to assign values to variables in your program, such as number 2 to an int or the character ‘c’ to a char. For this, you need to write the value representation in a format that the Java compiler understands. This source code representation of a value is called literal. There are three types of literals: literals of primitive types, string literals, and the null literal. Only literals of primitive types are discussed in this chapter. The null literal is discussed in Chapter 4, “Objects and Classes” and string literals in Chapter 5, “Core Classes.”

Literals of primitive types have four subtypes: integer literals, floating-point literals, character literals, and boolean literals. Each of these subtypes is explained below.

Integer Literals

Integer literals may be written in decimal (base 10, something we are used to), hexadecimal (base 16), or octal (base 8). For example, one hundred can be expressed as 100. The following are integer literals in decimal:

2
123456

As another example, the following code assigns 10 to variable x of type int.

int x = 10;

Hexadecimal integers are written by using the prefixes 0x or 0X. For example, the hexadecimal number 9E is written as 0X9E or 0x9E. Octal integers are written by prefixing the numbers with 0. For instance, the following is an octal number 567:

0567

Integer literals are used to assign values to variables of types byte, short, int, and long. Note, however, you must not assign a value that exceeds the capacity of a variable. For instance, the highest number for a byte is 127. Therefore, the following code generates a compile error because 200 is too big for a byte.

byte b = 200;

To assign a value to a long, suffix the number with the letter L or l. L is preferable because it is easily distinguishable from digit 1. A long can contain values between -9223372036854775808L and 9223372036854775807L (263).

Beginners of Java often ask why we need to use the suffix l or L, because even without it, such as in the following, the program still compiles.

long a = 123;

This is only partly true. An integer literal without a suffix L or l is regarded as an int. Therefore, the following will generate a compile error because 9876543210 is larger than the capacity for an int:

long a = 9876543210;

To rectify the problem, add an L or l at the end of the number like this:

long a = 9876543210L;

Longs, ints, shorts, and bytes can also be expressed in binaries by prefixing the binaries with 0B or 0b. For instance:

byte twelve = 0B1100; // = 12

If an integer literal is too long, readability suffers. For this reason, starting from Java 7 you can use underscores to separate digits in integer literals. For example, these two have the same meaning but the second one is obviously easier to read.

int million = 1000000;
int million = 1_000_000;

It does not matter where you put the underscores. You can use one every three digits, like the example above, or any number of digits. Here are some more examples:

short next = 12_345;
int twelve = 0B_1100;
long multiplier = 12_34_56_78_90_00L;

Floating-Point Literals

Numbers such as 0.4, 1.23, 0.5e10 are floating point numbers. A floating point number has the following parts:

[image: images] a whole number part

[image: images] a decimal point

[image: images] a fractional part

[image: images] an optional exponent

Take 1.23 as an example. For this floating point, the whole number part is 1, the fractional part is 23, and there is no optional exponent. In 0.5e10, 0 is the whole number part, 5 the fractional part, and 10 is the exponent.

In Java, there are two types of floating points:

[image: images] float. 32 bits in size. The largest positive float is 3.40282347e+38 and the smallest positive finite nonzero float is 1.40239846e-45.

[image: images] double. 64 bits in size. The largest positive double is 1.79769313486231570e+308 and the smallest positive finite nonzero double is 4.94065645841246544e-324.

In both floats and doubles, a whole number part of 0 is optional. In other words, 0.5 can be written as .5. Also, the exponent can be represented by either e or E.

To express float literals, you use one of the following formats.

Digits . [Digits] [ExponentPart] f_or_F
. Digits [ExponentPart] f_or_F
Digits ExponentPart f_or_F
Digits [ExponentPart] f_or_F

Note that the part in brackets is optional.

The f_or_F part makes a floating point literal a float. The absence of this part makes a float literal a double. To explicitly express a double literal, you can suffix it with D or d.

To write double literals, use one of these formats.

Digits . [Digits] [ExponentPart] d_or_D
. Digits [ExponentPart] d_or_D
Digits ExponentPart d_or_D
Digits [ExponentPart] d_or_D

In both floats and doubles, ExponentPart is defined as follows.

ExponentIndicator SignedInteger

where ExponentIndicator is either e or E and SignedInteger is .

Signopt Digits

and Sign is either + or - and a plus sign is optional.

Examples of float literals include the following:

2e1f
8.f
.5f
0f
3.14f
9.0001e+12f

Here are examples of double literals:

2e1
8.
.5
0.0D
3.14
9e-9d
7e123D

Boolean Literals

The boolean type has two values, represented by literals true and false. For example, the following code declares a boolean variable includeSign and assigns it the value of true.

boolean includeSign = true;

Character Literals

A character literal is a Unicode character or an escape sequence enclosed in single quotes. An escape sequence is the representation of a Unicode character that cannot be entered using the keyboard or that has a special function in Java. For example, the carriage return and linefeed characters are used to terminate a line and do not have visual representation. To express a linefeed character, you need to escape it, i.e. write its character representation. Also, single quote characters need to be escaped because single quotes are used to enclosed characters.

Here are some examples of character literals:

'a'
'z'
'A'
'Z'
'0'
'ü'
'%'
[image: images]

Here are character literals that are escape sequences:

'\b' the backspace character
'\t' the tab character
'\\' the backslash
'\'' single quote
'\"' double quote
'\n' linefeed
'\r' carriage return

In addition, Java allows you to escape a Unicode character so that you can express a Unicode character using a sequence of ASCII characters. For example, the Unicode code for the character is 2299. You can write the following character literal to express this character:

[image: images]

However, if you do not have the tool to produce that character using your keyboard, you can escape it this way:

'\u2299'

Primitive Conversions

When dealing with different data types, you often need to perform conversions. For example, assigning the value of a variable to another variable involves a conversion. If both variables have the same type, the assignment will always succeed. Conversion from a type to the same type is called identity conversion. For example, the following operation is guaranteed to be successful:

int a = 90;
int b = a;

However, conversion to a different type is not guaranteed to be successful or even possible. There are two other kinds of primitive conversions, the widening conversion and the narrowing conversion.

The Widening Conversion

The widening primitive conversion occurs from a type to another type whose size is the same or larger than that of the first type, such as from int (32 bits) to long (64 bits). The widening conversion is permitted in the following cases:

[image: images] byte to short, int, long, float, or double

[image: images] short to int, long, float, or double

[image: images] char to int, long, float, or double

[image: images] int to long, float, or double

[image: images] long to float or double

[image: images] float to double

A widening conversion from an integer type to another integer type will not risk information loss. At the same token, a conversion from float to double preserves all the information. However, a conversion from an int or a long to a float may result in loss of precision.

The widening primitive conversion occurs implicitly. You do not need to do anything in your code. For example:

int a = 10;
long b = a; // widening conversion

The Narrowing Conversion

The narrowing conversion occurs from a type to a different type that has a smaller size, such as from a long (64 bits) to an int (32 bits). In general, the narrowing primitive conversion can occur in these cases:

[image: images] short to byte or char

[image: images] char to byte or short

[image: images] int to byte, short, or char

[image: images] long to byte, short, or char

[image: images] float to byte, short, char, int, or long

[image: images] double to byte, short, char, int, long, or float

Unlike the widening primitive conversion, the narrowing primitive conversion must be explicit. You need to specify the target type in parentheses. For example, here is a narrowing conversion from long to int.

long a = 10;
int b = (int) a; // narrowing conversion

The (int) on the second line tells the compiler that a narrowing conversion should occur.

The narrowing conversion may incur information loss, if the converted value is larger than the capacity of the target type. The preceding example did not cause information loss because 10 is small enough for an int. However, in the following conversion, there is some information loss because 9876543210L is too big for an int.

long a = 9876543210L;
int b = (int) a; // the value of b is now 1286608618

A narrowing conversion that results in information loss introduces a defect in your program.

Operators

A computer program is a collection of operations that together achieve a certain function. There are many types of operations, including addition, subtraction, multiplication, division, and bit shifting. In this section you will learn various Java operations.

An operator performs an operation on one, two, or three operands. Operands are the objects of an operation and the operator is a symbol representing the action. For example, here is an additive operation:

x + 4

In this case, x and 4 and the operands and + is the operator.

An operator may or may not return a result.

Note

Any legal combination of operators and operands are called an expression. For example, x + 4 is an expression. A boolean expression results in either true or false. An integer expression produces an integer. And, the result of a floating-point expression is a floating point number.

Operators that require only one operand are called unary operators. There are a few unary operators in Java. Binary operators, the most common type of Java operator, take two operands. There is also one ternary operator, the ? : operator, that requires three operands.

 Table 2.4 list Java operators.

= > < ! ~ ? :
== <= >= != && || ++ --
+ - * / & | ^ % << >> >>>
+= -= *= /= &= |= ^= %= <<= >>= >>>=

Table 2.4: Java operators

In Java, there are six categories of operators.

[image: images] Unary operators

[image: images] Arithmetic operators

[image: images] Relational and conditional operators

[image: images] Shift and logical operators

[image: images] Assignment operators

[image: images] Other operators

Each of these operators is discussed in the following sections.

Unary Operators

Unary operators operate on one operand. There are six unary operators, all discussed in this section.

Unary Minus Operator −

The unary minus operator returns the negative of its operand. The operand must be a numeric primitive or a variable of a numeric primitive type. For example, in the following code, the value of y is -4.5;

float x = 4.5f;
float y = -x;

Unary Plus Operator +

This operator returns the value of its operand. The operand must be a numeric primitive or a variable of a numeric primitive type. For example, in the following code, the value of y is 4.5.

float x = 4.5f;
float y = +x;

This operator does not have much significance since its absence makes no difference.

Increment Operator ++

This operator increments the value of its operand by one. The operand must be a variable of a numeric primitive type. The operator can appear before or after the operand. If the operator appears before the operand, it is called the prefix increment operator. If it is written after the operand, it becomes the postfix increment operator.

As an example, here is a prefix increment operator in action:

int x = 4;
++x;

After ++x, the value of x is 5. The preceding code is the same as

int x = 4;
x++;

After x++, the value of x is 5.

However, if the result of an increment operator is assigned to another variable in the same expression, there is a difference between the prefix operator and its postfix twin. Consider this example.

int x = 4;
int y = ++x;
// y = 5, x = 5

The prefix increment operator is applied before the assignment. x is incremented to 5, and then its value is copied to y.

However, check the use of the postfix increment operator here.

int x = 4;
int y = x++;
// y = 4, x = 5

With the postfix increment operator, the value of the operand (x) is incremented after the value of the operand is assigned to another variable (y).

Note that the increment operator is most often applied to ints. However, it also works with other types of numeric primitives, such as float and long.

Decrement Operator --

This operator decrements the value of its operand by one. The operand must be a variable of a numeric primitive type. Like the increment operator, there are also the prefix decrement operator and the postfix decrement operator. For instance, the following code decrements x and assigns the value to y.

int x = 4;
int y = --x;
// x = 3; y = 3

In the following example, the postfix decrement operator is used:

int x = 4;
int y = x--;
// x = 3; y = 4

Logical Complement Operator !

This operator can only be applied to a boolean primitive or an instance of java.lang.Boolean. The value of this operator is true if the operand is false, and false if the operand is true. For example:

boolean x = false;
boolean y = !x;
// at this point, y is true and x is false

Bitwise Complement Operator ~

The operand of this operator must be an integer primitive or a variable of an integer primitive type. The result is the bitwise complement of the operand. For example:

int j = 2;
int k = ~j; // k = -3; j = 2

To understand how this operator works, you need to convert the operand to a binary number and reverse all the bits. The binary form of 2 in an integer is:

0000 0000 0000 0000 0000 0000 0000 0010

Its bitwise complement is

1111 1111 1111 1111 1111 1111 1111 1101

which is the representation of -3 in an integer.

Arithmetic Operators

There are four types of arithmetic operations: addition, subtraction, multiplication, division, and modulus. Each arithmetic operator is discussed here.

Addition Operator +

The addition operator adds two operands. The types of the operands must be convertible to a numeric primitive. For example:

byte x = 3;
int y = x + 5; // y = 8

Make sure the variable that accepts the addition result has a big enough capacity. For example, in the following code the value of k is -294967296 and not 4 billion.

int j = 2000000000; // 2 billion
int k = j + j; // not enough capacity. A bug!!!

On the other hand, the following works as expected:

long j = 2000000000; // 2 billion
long k = j + j; // the value of k is 4 billion

Subtraction Operator −

This operator performs subtraction between two operands. The types of the operands must be convertible to a numeric primitive type. As an example:

int x = 2;
int y = x – 1; // y = 1

Multiplication Operator *

This operator perform multiplication between two operands. The type of the operands must be convertible to a numeric primitive type. As an example:

int x = 4;
int y = x * 4; // y = 16

Division Operator /

This operator perform division between two operands. The left hand operand is the dividend and the right hand operand the divisor. Both the dividend and the divisor must be of a type convertible to a numeric primitive type. As an example:

int x = 4;
int y = x / 2; // y = 2

Note that at runtime a division operation raises an error if the divisor is zero.

The result of a division using the / operator is always an integer. If the divisor does not divide the dividends equally, the remainder will be ignored. For example

int x = 4;
int y = x / 3; // y = 1

The java.lang.Math class, explained in Chapter 5, “Core Classes,” can perform more sophisticated division operations.

Modulus Operator %

This operator perform division between two operands and returns the remainder. The left hand operand is the dividend and the right hand operand the divisor. Both the dividend and the divisor must be of a type that is convertible to a numeric primitive type. For example the result of the following operation is 2.

8 % 3

Equality Operators

There are two equality operators, == (equal to) and != (not equal to), both operating on two operands that can be integers, floating points, characters, or boolean. The outcome of equality operators is a boolean.

For example, the value of c is true after the comparison.

int a = 5;
int b = 5;
boolean c = a == b;

As another example,

boolean x = true;
boolean y = true;
boolean z = x != y;

The value of z is false after comparison because x is equal to y.

Relational Operators

There are five relational operators: <, >, <=, and >=, and instanceof. The last one is discussed in Chapter 4, “Objects and Classes.” Each of the first four operators is explained in this section.

The <, >, <=, and >= operators operate on two operands whose types must be convertible to a numeric primitive type. Relational operations return a boolean.

The < operator evaluates if the value of the left-hand operand is less than the value of the right-hand operand. For example, the following operation returns false:

9 < 6

The > operator evaluates if the value of the left-hand operand is greater than the value of the right-hand operand. For example, this operation returns true:

9 > 6

The <= operator tests if the value of the left-hand operand is less than or equal to the value of the right-hand operand. For example, the following operation evaluates to false:

9 <= 6

The >= operator tests if the value of the left-hand operand is greater than or equal to the value of the right-hand operand. For example, this operation returns true:

9 >= 9

Conditional Operators

There are three conditional operators: the AND operator &&, the OR operator ||, and the ? : operator. Each of these is detailed below.

The && operator

This operator takes two expressions as operands and both expressions must return a value that must be convertible to boolean. It returns true if both operands evaluate to true. Otherwise, it returns false. If the left-hand operand evaluates to false, the right-hand operand will not be evaluated. For example, the following returns false.

(5 < 3) && (6 < 9)

The || Operator

This operator takes two expressions as operands and both expressions must return a value that must be convertible to boolean. || returns true if one of the operands evaluates to true. If the left-hand operand evaluates to true, the right-hand operand will not be evaluated. For instance, the following returns true.

(5 < 3) || (6 < 9)

The ? : Operator

This operator operates on three operands. The syntax is

expression1 ? expression2 : expression3

Here, expression1 must return a value convertible to boolean. If expression1 evaluates to true, expression2 is returned. Otherwise, expression3 is returned.

For example, the following expression returns 4.

(8 < 4) ? 2 : 4

Shift Operators

A shift operator takes two operands whose type must be convertible to an integer primitive. The left-hand operand is the value to be shifted, the right-hand operand indicates the shift distance. There are three types of shift operators:

[image: images] the left shift operator <<

[image: images] the right shift operator >>

[image: images] the unsigned right shift operator >>>

The Left Shift Operator <<

The left shift operator bit-shifts a number to the left, padding the right bits with 0. The value of n << s is n left-shifted s bit positions. This is the same as multiplication by two to the power of s.

For example, left-shifting an int whose value is 1 with a shift distance of 3 (1 << 3) results in 8. Again, to figure this out, you convert the operand to a binary number.

0000 0000 0000 0000 0000 0000 0000 0001

Shifting to the left 3 shift units results in:

0000 0000 0000 0000 0000 0000 0000 1000

which is equivalent to 8 (the same as 1 * 23).

Another rule is this. If the left-hand operand is an int, only the first five bits of the shift distance will be used. In other words, the shift distance must be within the range 0 and 31. If you pass an number greater than 31, only the first five bits will be used. This is to say, if x is an int, x << 32 is the same as x << 0; x << 33 is the same as x << 1.

If the left-hand operand is a long, only the first six bits of the shift distance will be used. In other words, the shift distance actually used is within the range 0 and 63.

The Right Shift Operator >>

The right shift operator >> bit-shifts the left-hand operand to the right. The value of n >> s is n right-shifted s bit positions. The resulting value is n/2s.

As an example, 16 >> 1 isequal to 8. To prove this, write the binary representation of 16.

0000 0000 0000 0000 0000 0000 0001 0000

Then, shifting it to the right by 1 bit results in.

0000 0000 0000 0000 0000 0000 0000 1000

which is equal to 8.

The Unsigned Right Shift Operator >>>

The value of n >>> s depends on whether n is positive or negative. For a positive n, the value is the same as n >> s.

If n is negative, the value depends on the type of n. If n is an int, the value is (n>>s)+(2<<~s). If n is a long, the value is (n>>s)+(2L<<~s).

Assignment Operators

There are twelve assignment operators:

= += -= *= /= %= <<= >>= >>>= &= ^= |=

Assignment operators take two operands whose type must be of an integral primitive. The left-hand operand must be a variable. For instance:

int x = 5;

Except for the assignment operator =, the rest work the same way and you should see each of them as consisting of two operators. For example, += is actually + and =. The assignment operator <<= has two operators, << and =.

The two-part assignment operators work by applying the first operator to both operands and then assign the result to the left-hand operand. For example x += 5 is the same as x = x + 5.

x -= 5 is the same as x = x - 5.

x <<= 5 is equivalent to x = x << 5.

x &= 5 produces the same result as x = x &= 5.

Integer Bitwise Operators & | ^

The bitwise operators & | ^ perform a bit to bit operation on two operands whose types must be convertible to int. & indicates an AND operation, | an OR operation, and ^ an exclusive OR operation. For example,

0xFFFF & 0x0000 = 0x0000
0xF0F0 & 0xFFFF = 0xF0F0
0xFFFF | 0x000F = 0xFFFF
0xFFF0 ^ 0x00FF = 0xFF0F

Logical Operators & | ^

The logical operators & | ^ perform a logical operation on two operands that are convertible to boolean. & indicates an AND operation, | an OR operation, and ^ an exclusive OR operation. For example,

true & true = true
true & false = false
true | false = true
false | false = false
true ^ true = false
false ^ false = false
false ^ true = true

Operator Precedence

In most programs, multiple operators often appear in an expression, such as.

int a = 1;
int b = 2;
int c = 3;
int d = a + b * c;

What is the value of d after the code is executed? If you say 9, you're wrong. It's actually 7.

Multiplication operator * takes precedence over addition operator +. As a result, multiplication will be performed before addition. However, if you want the addition to be executed first, you can use parentheses.

int d = (a + b) * c;

The latter will assign 9 to d.

Table 2.5 lists all the operators in the order of precedence. Operators in the same column have equal precedence.

Note that parentheses have the highest precedence. Parentheses can also make expressions clearer. For example, consider the following code:

int x = 5;
int y = 5;
boolean z = x * 5 == y + 20;

	Operator
	

	postfix operators
	[] . (params) expr++ expr--

	unary operators
	++expr --expr +expr -expr ~ !

	creation or cast
	new (type)expr

	multiplicative
	* / %

	additive
	+ -

	shift
	<< >> >>>

	relational
	< > <= >= instanceof

	equality
	== !=

	bitwise AND
	&

	bitwise exclusive OR
	^

	bitwise inclusive OR
	|

	logical AND
	&&

	logical OR
	||

	conditional
	?:

	assignment
	= += -= *= /= %= &= ^= |= <<= >>= >>>=

Table 2.5: The precedence of operators

The value of z after comparison is true. However, the expression is far from clear.

You can rewrite the last line using parentheses.

boolean z = (x * 5) == (y + 20);

which does not change the result because * and + have higher precedence than ==, but this makes the expression much clearer.

Promotion

Some unary operators (such as +, -, and ~) and binary operators (such as +, -, *, /) cause automatic promotion, i.e. elevation to a wider type such as from byte to int. Consider the following code:

byte x = 5;
byte y = -x; // error

The second line surprisingly causes an error even though a byte can accommodate -5. The reason for this is the unary operator - causes the result of -x to be promoted to int. To rectify the problem, either change y to int or perform an explicit narrowing conversion like this.

byte x = 5;
byte y = (byte) –x;

For unary operators, if the type of the operand is byte, short, or char, the outcome is promoted to int.

For binary operators, the promotion rules are as follows.

[image: images] If any of the operands is of type byte or short, then both operands will be converted to int and the outcome will be an int.

[image: images] If any of the operands is of type double, then the other operand is converted to double and the outcome will be a double.

[image: images] If any of the operands is of type float, then the other operand is converted to float and the outcome will be a float.

[image: images] If any of the operands is of type long, then the other operand is converted to long and the outcome will be a long.

For example, the following code causes a compile error:

short x = 200;
short y = 400;
short z = x + y;

You can fix this by changing z to int or perform an explicit narrowing conversion of x + y, such as

short z = (short) (x + y);

Note that the parentheses around x + y is required, otherwise only x would be converted to int and the result of addition of a short and an int will be an int.

Comments

It is good practice to write comments throughout your code, sufficiently explaining what functionality a class provides, what a method does, what a field contains, and so forth.

There are two types of comments in Java, both with syntax similar to comments in C and C++.

[image: images] Traditional comments. Enclose a traditional comment in /* and */.

[image: images] End-of-line comments. Use double slashes (//) which causes the rest of the line after // to be ignored by the compiler.

For example, here is a comment that describes a method

/*
 toUpperCase capitalizes the characters of in a String object
*/
public void toUpperCase(String s) {

Here is an end-of-line comment:

public int rowCount; //the number of rows from the database

Traditional comments do not nest, which means

/*
 /* comment 1 */
 comment 2 */

is invalid because the first */ after the first /* will terminate the comment. As such, the comment above will have the extra comment 2 */, which will generate a compiler error.

On the other hand, end-of-line comments can contain anything, including the sequences of characters /* and */, such as this:

// /* this comment is okay */

Summary

This chapter presents Java language fundamentals, the basic concepts and topics that you should master before proceeding to more advanced subjects. Topics of discussion include character sets, variables, primitives, literals, operators, operator precedence, and comments.

Chapter 3 continues with statements, another important topic of the Java language.

Questions

1. What does ASCII stand for?

2. Does Java use ASCII characters or Unicode characters?

3. What are reference type variables, and what are primitive type variables?

4. How are constants implemented in Java?

5. What is an expression?

6. Name at least ten operators in Java.

7. What is the ternary operator in Java?

8. What is operator precedence?

9. Name two types of Java comments.

1 Standard 754 by the Institute of Electrical and Electronics Engineers (IEEE)

Chapter 3

Statements

A computer program is a compilation of instructions called statements. There are many types of statements in Java and some—such as if, while, for, and switch—are conditional statements that determine the flow of the program. Even though statements are not features specific to object-oriented programming, they are vital parts of the language fundamentals. This chapter discusses Java statements, starting with an overview and then providing details of each of them. The return statement, which is the statement to exit a method, is discussed in Chapter 4, “Objects and Classes.”

An Overview of Java Statements

In programming, a statement is an instruction to do something. Statements control the sequence of execution of a program. Assigning a value to a variable is an example of a statement.

x = z + 5;

Even a variable declaration is a statement.

long secondsElapsed;

By contrast, an expression is a combination of operators and operands that gets evaluated. For example, z + 5 is an expression.

In Java a statement is terminated with a semicolon and multiple statements can be written on a single line.

x = y + 1; z = y + 2;

However, writing multiple statements on a single line is not recommended as it obscures code readability.

Note

In Java, an empty statement is legal and does nothing:
;

Some expressions can be made statements by terminating them with a semicolon. For example, x++ is an expression. However, this is a statement:

x++;

Statements can be grouped in a block. By definition, a block is a sequence of the following programming elements within braces:

[image: images] statements

[image: images] local class declarations

[image: images] local variable declaration statements

A statement and a statement block can be labeled. Label names follow the same rule as Java identifiers and are terminated with a colon. For example, the following statement is labeled sectionA.

sectionA: x = y + 1;

And, here is an example of labeling a block:

start: {
 // statements
}

The purpose of labeling a statement or a block is so that it can be referenced by the break and continue statements.

The if Statement

The if statement is a conditional branch statement. The syntax of the if statement is either one of these two:

if (booleanExpression) {
 statement(s)
}
if (booleanExpression) {
 statement(s)
} else {
 statement(s)
}

If booleanExpression evaluates to false and there is an else block, the statements in the else block are executed.

For example, in the following if statement, the if block will be executed if x is greater than 4.

if (x > 4) {
 // statements
}

In the following example, the if block will be executed if a is greater than 3. Otherwise, the else block will be executed.

if (a > 3) {
 // statements
} else {
 // statements
}

Note that the good coding style suggests that statements in a block be indented.

If you are evaluating a boolean in your if statement, it's not necessary to use the == operator like this:

boolean fileExist = ...
if (fileExist == true) {

Instead, you can simply write

if (fileExists) {

By the same token, instead of writing

if (fileExists == false) {

write

if (!fileExists) {

If the expression to be evaluated is too long to be written in a single line, it is recommended that you use two units of indentation for subsequent lines. For example.

if (numberOfLoginAttempts < numberOfMaximumLoginAttempts
 || numberOfMinimumLoginAttempts > y) {
 y++;
}

If there is only one statement in an if or else block, the braces are optional.

if (a > 3)
 a++;
else
 a = 3;

However, this may pose what is called the dangling else problem. Consider the following example:

if (a > 0 || b < 5)
 if (a > 2)
 System.out.println("a > 2");
 else
 System.out.println("a < 2");

The else statement is dangling because it is not clear which if statement the else statement is associated with. An else statement is always associated with the immediately preceding if. Using braces makes your code clearer.

if (a > 0 || b < 5) {
 if (a > 2) {
 System.out.println("a > 2");
 } else {
 System.out.println("a < 2");
 }
}

If there are multiple selections, you can also use if with a series of else statements.

if (booleanExpression1) {
 // statements
} else if (booleanExpression2) {
 // statements
}
...
else {
 // statements
}

For example

if (a == 1) {
 System.out.println("one");
} else if (a == 2) {
 System.out.println("two");
} else if (a == 3) {
 System.out.println("three");
} else {
 System.out.println("invalid");
}

In this case, the else statements that are immediately followed by an if do not use braces. See also the discussion of the switch statement in the section, “The switch Statement” later in this chapter.

The while Statement

In many occasions, you may want to perform an action several times in a row. In other words, you have a block of code that you want executed repeatedly. Intuitively, this can be done by repeating the lines of code.2

java.awt.Toolkit.getDefaultToolkit().beep();

And, to wait for half a second you use these lines of code.

try {
 Thread.currentThread().sleep(500);
} catch (Exception e) {
}

Therefore, to produce three beeps with a 500 milliseconds interval between two beeps, you can simply repeat the same code:

java.awt.Toolkit.getDefaultToolkit().beep();
try {
 Thread.currentThread().sleep(500);
} catch (Exception e) {
}
java.awt.Toolkit.getDefaultToolkit().beep();
try {
 Thread.currentThread().sleep(500);
} catch (Exception e) {
}
java.awt.Toolkit.getDefaultToolkit().beep();

However, there are circumstances where repeating code does not work. Here are some of those:

[image: images] The number of repetition is higher than 5, which means the number of lines of code increases five fold. If there is a line that you need to fix in the block, copies of the same line must also be modified.

[image: images] If the number of repetitions is not known in advance.

A much cleverer way is to put the repeated code in a loop. This way, you only write the code once but you can instruct Java to execute the code any number of times. One way to create a loop is by using the while statement, which is the topic of discussion of this section. Another way is to use the for statement, which is explained in the next section.

The while statement has the following syntax.

while (booleanExpression) {
 statement(s)
}

Here, statement(s) will be executed as long as booleanExpression evaluates to true. If there is only a single statement inside the braces, you may omit the braces. For clarity, however, you should always use braces even when there is only one statement.

As an example of the while statement, the following code prints integer numbers that are less than three.

int i = 0;
while (i < 3) {
 System.out.println(i);
 i++;
}

Note that the execution of the code in the loop is dependent on the value of i, which is incremented with each iteration until it reaches 3.

To produce three beeps with an interval of 500 milliseconds, use this code:

int j = 0;
while (j < 3) {
 java.awt.Toolkit.getDefaultToolkit().beep();
 try {
 Thread.currentThread().sleep(500);
 } catch (Exception e) {
 }
 j++;
}

Sometimes, you use an expression that always evaluates to true (such as the boolean literal true) but relies on the break statement to escape from the loop.

int k = 0;
while (true) {
 System.out.println(k);
 k++;
 if (k > 2) {
 break;
 }
}

You will learn about the break statement in the section, “The break Statement” later in this chapter.

The do-while Statement

The do-while statement is like the while statement, except that the associated block always gets executed at least once. Its syntax is as follows:

do {
 statement(s)
} while (booleanExpression);

With do-while, you put the statement(s) to be executed after the do keyword. Just like the while statement, you can omit the braces if there is only one statement within them. However, always use braces for the sake of clarity.

For example, here is an example of the do-while statement:

int i = 0;
do {
 System.out.println(i);
 i++;
} while (i < 3);

This prints the following to the console:

0
1
2

The following do-while demonstrates that at least the code in the do block will be executed once even though the initial value of j used to test the expression j < 3 evaluates to false.

int j = 4;
do {
 System.out.println(j);
 j++;
} while (j < 3);

This prints the following on the console.

4

The for Statement

The for statement is like the while statement, i.e. you use it to enclose code that needs to be executed multiple times. However, for is more complex than while.

The for statement starts with an initialization, followed by an expression evaluation for each iteration and the execution of a statement block if the expression evaluates to true. An update statement will also be executed after the execution of the statement block for each iteration.

The for statement has following syntax:

for (init ; booleanExpression ; update) {
 statement(s)
}

Here, init is an initialization that will be performed before the first iteration, booleanExpression is a boolean expression which will cause the execution of statement(s) if it evaluates to true, and update is a statement that will be executed after the execution of the statement block. init, expression, and update are optional.

The for statement will stop only if one of the following conditions is met:

[image: images] booleanEpression evaluates to false

[image: images] A break or continue statement is executed

[image: images] A runtime error occurs.

It is common to declare a variable and assign a value to it in the initialization part. The variable declared will be visible to the expression and update parts as well as to the statement block.

For example, the following for statement loops five times and each time prints the value of i.

for (int i = 0; i < 3; i++) {
 System.out.println(i);
}

The for statement starts by declaring an int named i and assigning 0 to it:

int i = 0;

It then evaluates the expression i < 3, which evaluates to true since i equals 0. As a result, the statement block is executed, and the value of i is printed. It then performs the update statement i++, which increments i to 1. That concludes the first loop.

The for statement then evaluates the value of i < 3 again. The result is again true because i equals 1. This causes the statement block to be executed and 1 is printed on the console. Afterwards, the update statement i++ is executed, incrementing i to 2. That concludes the second loop.

Next, the expression i < 3 is evaluated and the result is true because i equals 2. This causes the statement block to be run and 2 is printed on the console. Afterwards, the update statement i++ is executed, causing i to be equal to 3. This concludes the second loop.

Next, the expression i < 3 is evaluated again, and the result is false. This stops the for loop.

This is what you see on the console:

0
1
2

Note that the variable i is not visible anywhere else since it is declared within the for loop.

Note also that if the statement block within for only consists of one statement, you can remove the braces, so in this case the above for statement can be rewritten as:

for (int i = 0; i < 3; i++)
 System.out.println(i);

However, using braces even if there is only one statement makes your code clearer.

Here is another example of the for statement.

for (int i = 0; i < 3; i++) {
 if (i % 2 == 0) {
 System.out.println(i);
 }
}

This one loops three times. For each iteration the value of i is tested. If i is even, its value is printed. The result of the for loop is as follows:

0
2

The following for loop is similar to the previous case, but uses i += 2 as the update statement. As a result, it only loops twice, when i equals 0 and when it is 2.

for (int i = 0; i < 3; i += 2) {
 System.out.println(i);
}

The result is

0
2

A statement that decrements a variable is often used too. Consider the following for loop:

for (int i = 3; i > 0; i--) {
 System.out.println(i);
}

which prints:

3
2
1

The initialization part of the for statement is optional. In the following for loop, the variable j is declared outside the loop, so potentially j can be used from other points in the code outside the for statement block.

int j = 0;
for (; j < 3; j++) {
 System.out.println(j);
}
// j is visible here

As mentioned previously, the update statement is optional. The following for statement moves the update statement to the end of the statement block. The result is the same.

int k = 0;
for (; k < 3;) {
 System.out.println(k);
 k++;
}

In theory, you can even omit the booleanExpression part. For example, the following for statement does not have one, and the loop is only terminated with the break statement. See the section, “The break Statement” for more information.

int m = 0;
for (; ;) {
 System.out.println(m);
 m++;
 if (m > 4) {
 break;
 }
}

If you compare for and while, you'll see that you can always replace the while statement with for. This is to say that

while (expression) {
 ...
}

can always be written as

be written as
for (; expression;) {
 ...
}

Note

In addition, for can iterate over an array or a collection. See Chapters 5, “Core Classes” and Chapter 11, “The Collections Framework” for the discussions of the enhanced for.

The break Statement

The break statement is used to break from an enclosing do, while, for, or switch statement. It is a compile error to use break anywhere else.

For example, consider the following code

int i = 0;
while (true) {
 System.out.println(i);
 if (i > 3) {
 break;
 }
}

The result is

0
1
2
3

Note that break breaks the loop without executing the rest of the statements in the block.

Here is another example of break, this time in a for loop.

int m = 0;
for (; ;) {
 System.out.println(m);
 m++;
 if (m > 4) {
 break;
 }
}

The break statement can be followed by a label. The presence of a label will transfer control to the start of the code identified by the label. For example, consider this code.

start:
for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 4; j++) {
 if (j == 2) {
 break start;
 }
 System.out.println(i + ":" + j);
 }
}

The use of label start identifies the first for loop. The statement break start; therefore breaks from the first loop. The result of running the preceding code is as follows.

0:0
0:1

Java does not have a goto statement like in C or C++, and labels are meant as a form of goto. However, just as using goto in C/C++ may obscure your code, the use of labels in Java may make your code unstructured. The general advice is to avoid labels if possible and to always use them with caution.

The continue Statement

The continue statement is like break but it only stops the execution of the current iteration and causes control to begin with the next iteration.

For example, the following code prints the number 0 to 9, except 5.

for (int i = 0; i < 10; i++) {
 if (i == 5) {
 continue;
 }
 System.out.println(i);
}

When i is equals to 5, the expression of the if statement evaluates to true and causes the continue statement to be called. As a result, the statement below it that prints the value of i is not executed and control continues with the next loop, i.e. for i equal to 6.

As with break, continue may be followed by a label to identify which enclosing loop to continue to. As with labels with break, employ continue label with caution and avoid it if you can.

Here is an example of continue with a label.

start:
for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 4; j++) {
 if (j == 2) {
 continue start;
 }
 System.out.println(i + ":" + j);
 }
}

The result of running this code is as follows:

0:0
0:1
1:0
1:1
2:0
2:1

The switch Statement

An alternative to a series of else if, as discussed in the last part of the section, “The if Statement,” is the switch statement. switch allows you to choose a block of statements to run from a selection of code, based on the return value of an expression. The expression used in the switch statement must return an int, a String, or an enumerated value.

Note

The String class is discussed in Chapter 5, “Core Classes” and enumerated values in Chapter 10, “Enums.”

The syntax of the switch statement is as follows.

switch(expression) {
case value_1 :
 statement(s);
 break;
case value_2 :
 statement(s);
 break;
 .
 .
 .
case value_n :
 statement(s);
 break;
default:
 statement(s);
}

Failure to add a break statement after a case will not generate a compile error but may have more serious consequences because the statements on the next case will be executed.

Here is an example of the switch statement. If the value of i is 1, “One player is playing this game.” is printed. If the value is 2, “Two players are playing this game is printed.” If the value is 3, “Three players are playing this game is printed. For any other value, “You did not enter a valid value.” will be printed.

int i = ...;
switch (i) {
case 1 :
 System.out.println("One player is playing this game.");
 break;
case 2 :
 System.out.println("Two players are playing this game.");
 break;
case 3 :
 System.out.println("Three players are playing this game.");
 break;
default:
 System.out.println("You did not enter a valid value.");
}

For examples of switching on a String or an enumerated value, see Chapter 5, “Core Classes” and Chapter 10, “Enums,” respectively.

Summary

The sequence of execution of a Java program is controlled by statements. In this chapter, you have learned the following Java control statements: if, while, do-while, for, break, continue, and switch. Understanding how to use these statements is crucial to writing correct programs.

Questions

1. What is the difference between an expression and a statement?

2. How do you escape from the following while loop?

while (true) {
 // statements
}

3. Is there any difference between using the postfix increment operator and the prefix increment operator as the update statement of a for loop?

for (int x = 0; x < length; x++)
for (int x = 0; x < length; ++x)

4. What will be printed on the console if the code below is executed:

int i = 1;
switch (i) {
case 1 :
 System.out.println("One player is playing this game.");
case 2 :
 System.out.println("Two players are playing this game.");
 break;
default:
 System.out.println("You did not enter a valid value.");
}

Hint: no break after case 1.

2What this line of code and the following lines of code do will become clear after you read Chapter 4.

Chapter 4

Objects and Classes

Object-oriented programming (OOP) works by modeling applications on real-world objects. The benefits of OOP, as discussed in Introduction, are real, which explains why OOP is the paradigm of choice today and why OOP languages like Java are popular. This chapter introduces you to objects and classes. If you are new to OOP, you may want to read this chapter carefully. A good understanding of OOP is the key to writing quality programs.

This chapter starts by explaining what an object is and what constitutes a class. It then teaches you how to create objects in Java using the new keyword, how objects are stored in memory, how classes can be organized into packages, how to use access control to achieve encapsulation, how the Java Virtual Machine (JVM) loads and links your objects, and how Java manages unused objects. In addition, method overloading and static class members are explained.

What Is a Java Object?

When developing an application in an OOP language, you create a model that resembles a real-life situation to solve your problem. Take for example a company payroll application, which can calculate the take home pay of an employee and the amount of income tax to be paid. An application like this would have a Company object to represent the company using the application, Employee objects that represent the employees in the company, Tax objects to represent the tax details of each employee, and so on. Before you can start programming such applications, however, you need to understand what Java objects are and how to create them.

Let's begin with a look at objects in life. Objects are everywhere, living (persons, pets, etc) and otherwise (cars, houses, streets, etc); concrete (books, televisions, etc) and abstract (love, knowledge, tax rate, regulations, and so forth). Every object has two features: attributes and actions the object is able to perform. For example, the following are some of a car's attributes:

[image: images] color

[image: images] number of tires

[image: images] plate number

[image: images] number of valves

Additionally, a car can perform these actions:

[image: images] run

[image: images] brake

As another example, a dog has the following attributes: color, age, type, weight, etc. And it also can bark, run, urinate, sniff, etc.

A Java object also has attribute(s) and can perform action(s). In Java, attributes are called fields and actions are called methods. In other programming languages these may be known differently. For example, methods are often called functions.

Both fields and methods are optional, meaning some Java objects may not have fields but have methods and some others may have fields but not methods. Some, of course, have both attributes and methods and some have neither.

How do you create Java objects? This is the same as asking, “How do you make cars?” Cars are expensive objects that need careful design that takes into account many things, such as safety and cost-effectiveness. You need a good blueprint to make good cars. To create Java objects, you need similar blueprints: classes.

Java Classes

A class is a blueprint or a template to create objects of identical type. If you have an Employee class, you can create any number of Employee objects. To create Street objects, you need a Street class. A class determines what kind of objects you get. For example, if you create an Employee class that has age and position fields, all Employee objects created out of this Employee class will have age and position fields as well. No more no less. The class determines the object.

In summary, classes are an OOP tool that enable programmers to create the abstraction of a problem. In OOP, abstraction is the act of using programming objects to represent real-world objects. As such, programming objects do not need to have the details of real-world objects. For instance, if an Employee object in a payroll application needs only be able to work and receive a salary, then the Employee class needs only two methods, work and receiveSalary. OOP abstraction ignores the fact that a real-world employee can do many other things including eat, run, kiss, and kick.

Classes are the fundamental building blocks of a Java program. All program elements in Java must reside in a class, even if you are writing a simple program that does not require Java's object-oriented features. A Java beginner needs to consider three things when writing a class:

[image: images] the class name

[image: images] the fields

[image: images] the methods

There are other things that can be present in a class, but they will be discussed later.

A class declaration must use the keyword class followed by a class name. Also, a class has a body within braces. Here is a general syntax for a class:

class className {
 [class body]
}

For example, Listing 4.1 shows a Java class named Employee, where the lines in bold are the class body.

Listing 4.1: The Employee class

class Employee {
 int age;
 double salary;
}

Note

By convention, class names capitalize the initial of each word. For example, here are some names that follow the convention: Employee, Boss, DateUtility, PostOffice, RegularRateCalculator. This type of naming convention is known as Pascal naming convention. The other convention, the camel naming convention, capitalize the initial of each word, except the first word. Method and field names use the camel naming convention.

A class definition must be saved in a file that has the same name as the class name. The file name must also have the java extension. For instance, the Employee class in Listing 4.1 must be saved as Employee.java.

Note

In UML class diagrams, a class is represented by a rectangle that consists of three parts: the topmost part is the class name, the middle part is the list of fields, and the bottom part is the list of methods. (See Figure 4.1) The fields and methods can be hidden if showing them is not important.

[image: images]

Figure 4.1: The Employee class in the UML class diagram

Fields

Fields are variables. They can be primitives or references to objects. For example, the Employee class in Listing 4.1 has two fields, age and salary. In Chapter 2, “Language Fundamentals” you learned how to declare and initialize variables of primitive types.

However, a field can also refer to another object. For instance, an Empoyee class may have an address field of type Address, which is a class that represents a street address:

Address address;

In other words, an object can contain other objects, that is if the class of the former contains variables that reference to the latter.

Field names should follow the camel naming convention. The initial of each word in the field, except for the first word, is written with a capital letter. For example, here are some “good” field names: age, maxAge, address, validAddress, numberOfRows.

Methods

Methods define actions that a class's objects (or instances) can do. A method has a declaration part and a body. The declaration part consists of a return value, the method name, and a list of arguments. The body contains code that perform the action.

To declare a method, use the following syntax:

returnType methodName (listOfArguments)

The return type of a method can be a primitive, an object, or void. The return type void means that the method returns nothing. The declaration part of a method is also called the signature of the method.

For example, here is the getSalary method that returns a double.

double getSalary()

The getSalary method does not accept arguments.

As another example, here is a method that returns an Address object.

Address getAddress()

And, here is a method that accepts an argument:

int negate(int number)

If a method takes more than one argument, two arguments are separated by a comma. For example, the following add method takes two ints and return an int.

int add(int a, int b)

Also note that a method may have a variable number of arguments. For details, see the section, “Varargs” in Chapter 5, “Core Classes.”

The Method main

A special method called main provides the entry point to an application. An application normally has many classes and only one of the classes needs to have a main method. This method allows the class containing it to be invoked.

The signature of the main method is as follows.

public static void main(String[] args)

If you wonder why there is “public static void” before main, you will get the answer towards the end of this chapter.

In addition, you can pass arguments to main when using java to run a class. To pass arguments, type them after the class name. Two arguments are separated by a space.

java className arg1 arg2 arg3 ...

All arguments must be passed as strings. For instance, to pass two arguments, “1” and “safeMode” when running the Test class, you type this:

java Test 1 safeMode

Strings are discussed in Chapter 5, “Core Classes.”

Constructors

Every class must have at least one constructor. Otherwise, no objects could be created out of the class and the class would be useless. As such, if your class does not explicitly define a constructor, the compiler adds one for you.

A constructor is used to construct an object. A constructor looks like a method and is sometimes called a constructor method. However, unlike a method, a constructor does not have a return value, not even void. Additionally, a constructor must have the same name as the class.

The syntax for a constructor is as follows.

constructorName (listOfArguments) {
 [constructor body]
}

A constructor may have zero argument, in which case it is called a no-argument (or no-arg, for short) constructor. Constructor arguments can be used to initialize the fields in the object.

If the Java compiler adds a no-arg constructor to a class because the class has none, the addition will be implicit, i.e. it will not be displayed in the source file. However, if there is a constructor, regardless of the number of arguments it accepts, no constructor will be added to the class by the compiler.

As an example, Listing 4.2 adds two constructors to the Employee class in Listing 4.1.

Listing 4.2: The Employee class with constructors

public class Employee {
 public int age;
 public double salary;
 public Employee() {
 }
 public Employee(int ageValue, double salaryValue) {
 age = ageValue;
 salary = salaryValue;
 }
}

The second constructor is particularly useful. Without it, to assign values to age and position, you would need to write extra lines of code to initialize the fields:

employee.age = 20;
employee.salary = 90000.00;

With the second constructor, you can pass the values at the same time you create an object.

new Employee(20, 90000.00);

The new keyword is new to you, but you will learn how to use it in the next section.

Class Members in UML Class Diagrams

Figure 4.1 depicts a class in a UML class diagram. The diagram provides a quick summary of all fields and methods. You could do more in UML. UML allows you to include field types and method signatures. For example, Figure 4.2 presents the Book class with five fields and one method.

[image: images]

Figure 4.2: Including class member information in a class diagram

Note that in a UML class diagram a field and its type is separated by a colon. A method's argument list is presented in parentheses and its return type is written after a colon.

Creating Objects

Now that you know how to write a class, it is time to learn how to create an object from a class. An object is also called an instance. The word construct is often used in lieu of create, thus constructing an Employee object. Another term commonly used is instantiate. Instantiating the Employee class is the same as creating an instance of Employee.

There are a number of ways to create an object, but the most common one is by using the new keyword. new is always followed by the constructor of the class to be instantiated. For example, to create an Employee object, you write:

new Employee();

Most of the time, you will want to assign the created object to an object variable (or a reference variable), so that you can manipulate the object later. To achieve this, you just need to declare an object reference with the same type as the object. For instance:

Employee employee = new Employee();

Here, employee is an object reference of type Employee.

Once you have an object, you can call its methods and access its fields, by using the object reference that was assigned the object. You use a period (.) to call a method or a field. For example:

objectReference.methodName
objectReference.fieldName

The following code, for instance, creates an Employee object and assigns values to its age and salary fields:

Employee employee = new Employee();
employee.age = 24;
employee.salary = 50000;

When an object is created, the JVM also performs initialization that assign default values to fields. This will be discussed further in the section, “Object Creation Initialization” later in this chapter.

The null Keyword

A reference variable refers to an object. There are times, however, when a reference variable does not have a value (it is not referencing an object). Such a reference variable is said to have a null value. For example, the following class level reference variable is of type Book but has not been assigned a value;

Book book; // book is null

If you declare a local reference variable within a method but do not assign an object to it, you will need to assign null to it to satisfy the compiler:

Book book = null;

Class-level reference variables will be initialized when an instance is created, therefore you do not need to assign null to them.

Trying to access the field or method of a null variable reference raises an error, such as in the following code:

Book book = null;
System.out.println(book.title); // error because book is null

You can test if a reference variable is null by using the == operator. For instance.

if (book == null) {
 book = new Book();
}
System.out.println(book.title);

Objects in Memory

When you declare a variable in your class, either in the class level or in the method level, you allocate memory space for data that will be assigned to the variable. For primitives, it is easy to calculate the amount of memory taken. For example, declaring an int costs you four bytes and declaring a long sets you back eight bytes. However, calculation for reference variables is different.

When a program runs, some memory space is allocated for data. This data space is logically divided into two, the stack and the heap. Primitives are allocated in the stack and Java objects reside in the heap.

When you declare a primitive, a few bytes are allocated in the stack. When you declare a reference variable, some bytes are also set aside in the stack, but the memory does not contain an object's data, it contains the address of the object in the heap. In other words, when you declare

Book book;

Some bytes are set aside for the reference variable book. The initial value of book is null because there is not yet object assigned to it. When you write

Book book = new Book();

you create an instance of Book, which is stored in the heap, and assign the address of the instance to the reference variable book. A Java reference variable is like a C++ pointer except that you cannot manipulate a reference variable. In Java, a reference variable is used to access the member of the object it is referring to. Therefore, if the Book class has the public review method, you can call the method by using this syntax:

book.review();

An object can be referenced by more than one reference variable. For example,

Book myBook = new Book();
Book yourBook = myBook;

The second line copies the value of myBook to yourBook. As a result, yourBook is now referencing the same Book object as myBook.

Figure 4.3 illustrates memory allocation for a Book object referenced by myBook and yourBook.

[image: images]

Figure 4.3: An object referenced by two variables

On the other hand, the following code creates two different Book objects:

Book myBook = new Book();
Book yourBook = new Book();

The memory allocation for this code is illustrated in Figure 4.4.

Now, how about an object that contains another object? For example, consider the code in Listing 4.3 that shows the Employee class that contains an Address class.

[image: images]

Figure 4.4: Two objects referenced by two variables

Listing 4.3: The Employee class that contains another class

package app04;
public class Employee {
 Address address = new Address();
}

When you create an Employee object using the following code, an Address object is also created.

Employee employee = new Employee();

Figure 4.5 depicts the position of each object in the heap.

[image: images]

Figure 4.5: An object “within” another object

It turns out that the Address object is not really inside the Employee object. However, the address field within the Employee object has a reference to the Address object, thus allowing the Employee object to manipulate the Address object. Because in Java there is no way of accessing an object except through a reference variable assigned the object's address, no one else can access the Address object ‘within’ the Employee object.

Java Packages

If you are developing an application that consists of different parts, you may want to organize your classes to retain maintainability. With Java, you can group related classes or classes with similar functionality in packages. For example, standard Java classes come in packages. Java core classes are in the java.lang package. All classes for performing input and output operations are members of the java.io package, and so on. If a package needs to be organized in more detail, you can create packages that share part of the name of the former. For example, the Java class library comes with the java.lang.annotation and java.lang.reflect packages. However, mind you that sharing part of the name does not make two packages related. The java.lang package and the java.lang.reflect package are different packages.

Package names that start with java are reserved for the core libraries. Consequently, you cannot create a package that starts with the word java. You can compile classes that belong to such a package, but you cannot run them.

In addition, packages starting with javax are meant for extension libraries that accompany the core libraries. You should not create packages that start with javax either.

In addition to class organization, packaging can avoid naming conflict. For example, an application may use the MathUtil class from company A and an identically named class from another company if both classes belong to different packages. For this purpose, by convention your package names should be based on your domain name in reverse. Therefore, Sun's package names start with com.sun. My domain name is brainysoftware.com, so it's appropriate for me to start my package name with com.brainysoftware. For example, I would place all my applets in the com.brainysoftware.applet package and my servlets in com.brainysoftware.servlet.

A package is not a physical object, and therefore you do not need to create one. To group a class in a package, use the keyword package followed by the package name. For example, the following MathUtil class is part of the com.brainysoftware.common package:

package com.brainysoftware.common;
public class MathUtil {
 ...
}

Java also introduces the term fully qualified name, which refers to a class name that carries with it its package name. The fully qualified name of a class is its package name followed by a period and the class name. Therefore, the fully qualified name of the MathUtil class that belongs to package com.sun.common is com.sun.common.MathUtil.

A class that has no package declaration is said to belong to the default package. For example, the Employee class in Listing 4.1 belongs to the default package. You should always use a package because types in the default package cannot be used by other types outside the default package (except by using a technique called reflection). It is a bad idea for a class to not have a package.

Even though a package is not a physical object, package names have a bearing on the physical location of their class source files. A package name represents a directory structure in which a period in a package name indicates a subfolder. For example, all Java source files in the com.brainysoftware.common package must reside in the common directory that is a subdirectory of the brainysoftware directory. In turn, the latter must be a subdirectory of the com directory. Figure 4.6 depicts a folder structure for the com.brainysoftware.common.MathUtil class.

[image: images]

Figure 4.6: The physical location of a class in a package

Compiling a class in a non-default package presents a challenge for beginners. To compile such a class, you need to include the package name, replacing the dot (.) with /. For example, to compile the com.brainysoftware.common.MathUtil class, change directory to the working directory (the directory which is the parent directory of com) and type

javac com/brainysoftware/common/MathUtil.java

By default, javac will place the result in the same directory structure as the source. In this case, the MathUtil.class file will be created in the com/brainysoftware/common directory.

Running a class that belongs to a package follows a similar rule: you must include the package name, replacing . with /. For example, to run the com.brainysoftware.common.MathUtil class, type the following from your working directory.

java com/brainysoftware/common/MathUtil

The packaging of your classes also affects the visibility of your classes, as you will witness in the next section.

Note

Code samples accompanying this book are grouped into packages too. The packages are named appXX, where XX is the chapter number.

Encapsulation and Access Control

An OOP principle, encapsulation is a mechanism that protects parts of an object that need to be secure and exposes only parts that are safe to be exposed. A television is a good example of encapsulation. Inside it are thousands of electronic components that together form the parts that can receive signals and decode them into images and sound. These components are not to be exposed to users, however, so Sony and other manufacturers wrap them in a strong metallic cover that does not break easily. For a television to be easy to use, it exposes buttons that the user can touch to turn on and off the set, adjust brightness, turn up and down the volume, and so on.

Back to encapsulation in OOP, let's take as an example a class that can encode and decode messages. The class exposes two methods called encode and decode, that users of the class can access. Internally, there are dozens of variables used to store temporary values and other methods that perform supporting tasks. The author of the class hides these variables and other methods because allowing access to them may compromise the security of the encoding/decoding algorithms. Besides, exposing too many things makes the class harder to use. As you can see later, encapsulation is a powerful feature.

Java supports encapsulation through access control. Access control is governed by access control modifiers. There are four access control modifiers in Java: public, protected, private, and the default access level. Access control modifiers can be applied to classes or class members. We'll look at them in the following subsections.

Class Access Control Modifiers

In an application with many classes, a class may be instantiated and used from other classes that are members of the same package or different packages. You can control from which packages your class can be “seen” by employing an access control modifier at the beginning of the class declaration.

A class can have either the public or the default access control level. You make a class public by using the public access control modifier. A class whose declaration bears no access control modifier has default access. A public class is visible from anywhere. Listing 4.4 shows a public class named Book.

Listing 4.4: The public Book class

package app04;
public class Book {
 String isbn;
 String title;
 int width;
 int height;
 int numberOfPages;
}

The Book class is a member of the app04 package and has five fields. Since Book is public, it can be instantiated from any other classes. In fact, the majority of the classes in the Java core libraries are public classes. For example, here is the declaration of the java.io.File class:

public class File

A public class must be saved in a file that has the same name as the class, and the extension must be java. The Book class in Listing 4.4 must be saved in the Book.java file. Also, because Book belongs to package app04, the Book.java file must reside inside the app04 directory.

Note

A Java source file can only contain one public class. However, it can contain multiple classes that are not public.

When there is no access control modifier preceding a class declaration, the class has the default access level. For example, Listing 4.5 presents the Chapter class that has the default access level.

Listing 4.5: The Chapter class, with the default access level

package app04;
class Chapter {
 String title;
 int numberOfPages;

 public void review() {
 Page page = new Page();
 int sentenceCount = page.numberOfSentences;
 int pageNumber = page.getPageNumber();
 }
}

Classes with the default access level can only be used by other classes that belong to the same package. For instance, the Chapter class can be instantiated from inside the Book class because Book belongs to the same package as Chapter. However, Chapter is not visible from other packages.

For example, you can add the following getChapter method inside the Book class:

Chapter getChapter() {
 return new Chapter();
}

On the other hand, if you try to add the same getChapter method to a class that does not belong to the app04 package, a compile error will be raised.

Class Member Access Control Modifiers

Class members (methods, fields, constructors, etc) can have one of four access control levels: public, protected, private, and default access. The public access control modifier is used to make a class member public, the protected modifier to make a class member public, and the private modifier to make a class member private. Without an access control modifier, a class member will have the default access level.

Table 4.1 shows the visibility of each access level.

	Access Level
	From classes in other packages
	From classes in the same package
	From child classes
	From the same class

	public
	yes
	yes
	yes
	yes

	protected
	no
	yes
	yes
	yes

	default
	no
	yes
	no
	yes

	private
	no
	no
	no
	yes

Table 4.1: Class member access levels

Note

The default access is sometimes called package private. To avoid confusion, this book will only use the term default access.

A public class member can be accessed by any other classes that can access the class containing the class member. For example, the toString method of the java.lang.Object class is public. Here is the method signature:

public String toString()

Once you construct an Object object, you can call its toString method because toString is public.

Object obj = new Object();
obj.toString();

Recall that you access a class member by using this syntax:

referenceVariable.memberName

In the preceding code, obj is a reference variable to an instance of java.lang.Object and toString is the method defined in the java.lang.Object class.

A protected class member has a more restricted access level. It can be accessed only from

[image: images] any class in the same package as the class containing the member

[image: images] a child class of the class containing the member

Note

A child class is a class that extends another class. Chapter 6, “Inheritance” explains this concept.

For instance, consider the public Page class in Listing 4.6.

Listing 4.6: The Page class

package app04;
public class Page {
 int numberOfSentences = 10;
 private int pageNumber = 5;
 protected int getPageNumber() {
 return pageNumber;
 }
}

Page has two fields (numberOfSentences and pageNumber) and one method (getPageNumber). First of all, because the Page class is public, it can be instantiated from any other class. However, even if you can instantiate it, there is no guarantee you can access its members by using the referenceVariable.memberName syntax. It depends on from which class you are accessing the Page class's members.

Its getPageNumber method is protected, so it can be accessed from any classes that belong to app04, the package that houses the Page class. For example, consider the review method in the Chapter class (given in Listing 4.5).

public void review() {
 Page page = new Page();
 int sentenceCount = page.numberOfSentences;
 int pageNumber = page.getPageNumber();
}

The Chapter class can access the getPageNumber method because Chapter belongs to the same package as the Page class. Therefore, Chapter can access all protected members of the Page class.

The default access allows classes in the same package access a class member. For instance, the Chapter class can access the Page class's numberOfSentences field because the Page and Chapter classes belong to the same package. However, numberOfSentences is not accessible from a subclass of Page if the subclass belongs to a different package. This differentiates the protected and default access levels and will be explained in detail in Chapter 6, “Inheritance.”

A class's private members can only be accessed from inside the same class. For example, there is no way you can access the Page class's private pageNumber field from anywhere other than the Page class itself. However, look at the following code from the Page class definition.

private int pageNumber = 5;
protected int getPageNumber() {
 return pageNumber;
}

The pageNumber field is private, so it can be accessed from the getPageNumber method, which is defined in the same class. The return value of getPageNumber is pageNumber, which is private. Beginners are often confused by this kind of code. If pageNumber is private, why do we use it as a return value of a protected method (getPageNumber)? Note that access to pageNumber is still private, so other classes cannot modify this field. However, using it as a return value of a non-private method is allowed.

How about constructors? Access levels to constructors are the same as those for fields and methods. Therefore, constructors can have public, protected, default, and private access levels. You may think that all constructors must be public because the intention of having a constructor is to make the class instantiatable. However, to your surprise, this is not so. Some constructors are made private so that their classes cannot be instantiated by using the new keyword. Private constructors are normally used in singleton classes. If you are interested in this topic, there are articles on this topic that you can find easily on the Internet.

Note

In a UML class diagram, you can include information on class member access level. Prefix a public member with +, a protected member with # and a private member with -. Members with no prefix are regarded as having the default access level. Figure 4.7 shows the Manager class with members having various access levels.

[image: images]

Figure 4.7: Including class member access level in a UML class diagram

The this Keyword

You use the this keyword from any method or constructor to refer to the current object. For example, if you have a class-level field having the same name as a local variable, you can use this syntax to refer to the former:

this.field

A common use is in the constructor that accepts values used to initialize fields. Consider the Box class in Listing 4.7.

Listing 4.7: The Box class

package com.brainysoftware.jdk5.app04;
public class Box {
 int length;
 int width;
 int height;
 public Box(int length, int width, int height) {
 this.length = length;
 this.width = width;
 this.height = height;
 }
}

The Box class has three fields, length, width, and height. Its constructor accepts three arguments used to initialize the fields. It is very convenient to use length, width, and height as the parameter names because they reflect what they are. Inside the constructor, length refers to the length argument, not the length field. this.length refers to the class-level length field.

It is of course possible to change the argument names, such as this.

public Box (int lengthArg, int widthArg, int heightArg) {
 length = lengthArg;
 width = widthArg;
 height = heightArg;
}

This way, the class-level fields are not shadowed by local variables and you do not need to use the this keyword to refer to the class-level fields However, using the this keyword spares you from having to think of different names for your method or constructor arguments.

Using Other Classes

It is common to use other classes from the class you are writing. Using classes in the same package as your current class is allowed by default. However, to use classes in other packages, you must first import the packages or the classes you want to use.

Java provides the keyword import to indicate that you want to use a package or a class from a package. For example, to use the java.io.File class from your code, you must have the following import statement:

package app04;
import java.io.File;

public class Demo {
 ...
}

Note that import statements must come after the package statement but before the class declaration. The import keyword can appear multiple times in a class.

package app04;
import java.io.File;
import java.util.List;

public class Demo {
 ...
}

Sometimes you need many classes in the same package. You can import all classes in the same package by using the wild character *. For example, the following code imports all members of the java.io package.

package app04;
import java.io.*;
public class Demo {
 ...
}

Now, not only can you use the java.io.File class, but you can use other members in the java.io package too. However, to make your code more readable, it is recommended that you import a package member one at a time. In other words, if you need to use both the java.io.File class and the java.io.FileReader class, it is better to have two import statements like the following than to use the * character.

import java.io.File;
import java.io.FileReader;

Note

Members of the java.lang package are imported automatically. Thus, to use the java.lang.String, for example, you do not need to explicitly import the class.

The only way to use classes that belong to other packages without importing them is to use the fully qualified names of the classes in your code. For example, the following code declares the java.io.File class using its fully qualified name.

java.io.File file = new java.io.File(filename);

If you import identically-named classes from different packages, you must use the fully qualified names when declaring the classes. For example, the Java core libraries contain the classes java.sql.Date and java.util.Date. Importing both upsets the compiler. In this case, you must write the fully qualified names of java.sql.Date and java.util.Date in your class to use them.

Note

Java classes can be deployed in a jar file. Appendix A details how to compile a class that uses other classes in a jar file. Appendix B shows how to run a Java class in a jar file. Appendix C provides instructions on the jar tool, a program that comes with the JDK to package your Java classes and related resources.

A class that uses another class is said to “depend on” the latter. A UML diagram that depicts this dependency is shown in Figure 4.8.

[image: images]

Figure 4.8: Dependency in the UML class diagram

A dependency relationship is represented by a dashed line with an arrow. In Figure 4.8 the Book class is dependent on Chapter because the getChapter method returns a Chapter object.

Final Variables

Java does not reserve the keyword constant to create constants. However, in Java you can prefix a variable declaration with the keyword final to make its value unchangeable. You can make both local variables and class fields final.

For example, the number of months in a year never changes, so you can write:

final int numberOfMonths = 12;

As another example, in a class that performs mathematical calculation, you can declare the variable pi whose value is equal to 22/7 (the circumference of a circle divided by its diameter, in math represented by the Greek letter π).

final float pi = (float) 22 / 7;

Once assigned a value, the value cannot change. Attempting to change it will result in a compile error.

Note that the casting (float) after 22 / 7 is needed to convert the value of division to float. Otherwise, an int will be returned and the pi variable will have a value of 3.0, instead of 3.1428.

Also note that since Java uses Unicode characters, you can simply define the variable pi as π if you don't think typing it is harder than typing pi.

final float π = (float) 22 / 7;

Note

You can also make a method final, thus prohibiting it from being overridden in a subclass. This will be discussed in Chapter 6, “Inheritance.”

Static Members

You have learned that to access a public field or method of an object, you use a period after the object reference, such as:

// Create an instance of Book
Book book = new Book();
// access the review method
book.review();

This implies that you must create an object first before you can access its members. However, in previous chapters, there were examples that used System.out.print to print values to the console. You may have noticed that you could call the out field without first having to construct a System object. How come you did not have to do something like this?

System ref = new System();
ref.out;

Rather, you use a period after the class name:

System.out

Java (and many OOP languages) supports the notion of static members, which are class members that can be called without first instantiating the class. The out field in java.lang.System is static, which explains why you can write System.out.

Static members are not tied to class instances. Rather, they can be called without having an instance. In fact, the method main, which acts as the entry point to a class, is static because it must be called before any object is created.

To create a static member, you use the keyword static in front of a field or method declaration. If there is an access modifier, the static keyword may come before or after the access modifier. These two are correct:

public static int a;
static public int b;

However, the first form is more often used.

For example, Listing 4.8 shows the MathUtil class with a static method:

Listing 4.8: The MathUtil class

package app04;
public class MathUtil {
 public static int add(int a, int b) {
 return a + b;
 }
}

To use the add method, you can simply call it this way:

MathUtil.add(a, b)

The term instance methods/fields are used to refer to non-static methods and fields.

From inside a static method, you cannot call instance methods or instance fields because they only exist after you create an object. You can access other static methods or fields from a static method, however.

A common confusion that a beginner often encounter is when they cannot compile their class because they are calling instance members from the main method. Listing 4.9 shows such a class.

Listing 4.9: Calling non-static members from a static method

package app04;
public class StaticDemo {
 public int b = 8;
 public static void main(String[] args) {
 System.out.println(b);
 }
}

The line in bold causes a compile error because it attempts to access non-static field b from the main static method. There are two solutions to this.

1. Make b static

2. Create an instance of the class, then access b by using the object reference.

Which solution is appropriate depends on the situation. It often takes years of OOP experience to come up with a good decision that you're comfortable with.

Note

You can only declare a static variable in a class level. You cannot declare local static variables even if the method is static.

How about static reference variables? You can declare static reference variables. The variable will contain an address, but the object referenced is stored in the heap. For instance

static Book book = new Book();

Static reference variables provide a good way of exposing the same object that needs to be shared among other different objects.

[image: images]

Figure 4.9: Static members in UML class diagrams

Note

In UML class diagrams, static members are underlined. For example, Figure 4.9 shows the MathUtil class with the static method add.

Static Final Variables

In the section, “Final Variables” earlier in the chapter, you learned that you could create a final variable by using the keyword final. However, final variables at a class level or local variables will always have the same value when the program is run. If you have multiple objects of the same class with final variables, the value of the final variables in those objects will have the same values. It is more common (and also more prudent) to make a final variable static too. This way, all objects share the same value.

The naming convention for static final variables is to have them in upper case and separate two words with an underscore. For example

static final int NUMBER_OF_MONTHS = 12;
static final float PI = (float) 22 / 7;

The positions of static and final are interchangeable, but it is more common to use “static final” than “final static.”

If you want to make a static final variable accessible from outside the class, you can make it public too:

public static final int NUMBER_OF_MONTHS = 12;
public static final float PI = (float) 22 / 7;

To better organize your constants, sometimes you want to put all your static final variables in a class. This class most often does not have a method or other fields and is never instantiated.

For example, sometimes you want to represent a month as an int, therefore January is 1, February is 2, and so on. Then, you use the word January instead of number 1 because it's more descriptive. Listing 4.10 shows the Months class that contains the names of months and its representation.

Listing 4.10: The Months class

package app04;
public class Months {
 public static final int JANUARY = 1;
 public static final int FEBRUARY = 2;
 public static final int MARCH = 3;
 public static final int APRIL = 4;
 public static final int MAY = 5;
 public static final int JUNE = 6;
 public static final int JULY = 7;
 public static final int AUGUST = 8;
 public static final int SEPTEMBER = 9;
 public static final int OCTOBER = 10;
 public static final int NOVEMBER = 11;
 public static final int DECEMBER = 12;
}

In your code, you can get the representation of January by writing.

int thisMonth = Months.JANUARY;

Classes similar to Months are very common prior to Java 5. However, Java now offers the new type enum that can eliminate the need for public static final variables. enum is explain in Chapter 10, “Enums.”

Static final reference variables are also possible. However, note that only the variable is final, which means once it is assigned an address to an instance, it cannot be assigned another object of the same type. The fields in the referenced object itself can be changed.

In the following line of code

public static final Book book = new Book();

book always refer to this particular instance of Book. Reassigning it to another Book object raises a compile error:

book = new Book(); // compile error

However, you can change the Book object's field value.

book.title = "No Excuses"; // assuming the title field is public

Static import

There are a number of classes in the Java core libraries that contain static final fields. One of them is the java.util.Calendar class, that has the static final fields representing days of the week (MONDAY, TUESDAY, etc). To use a static final field in the Calendar class, you must first import the Calendar class.

import java.util.Calendar;

Then, you can use it by using the notation className.staticField.

if (today == Calendar.SATURDAY)

However, you can also import static fields using the import static keywords. For example, you can do

import static java.util.Calendar.SATURDAY;

Then, to use the imported static field, you do not need the class name:

if (today == SATURDAY)

Note

The java.util.Calendar class is discussed in more detail in Chapter 5, “Core Classes.”

Variable Scope

You have seen that you can declare variables in several different places:

[image: images] In a class body as class fields. Variables declared here are referred to as class-level variables.

[image: images] As parameters of a method or constructor.

[image: images] In a method's body or a constructor's body.

[image: images] Within a statement block, such as inside a while or for block.

Now it's time to learn the scope of variables.

Variable scope refers to the accessibility of a variable. The rule is that variables defined in a block are only accessible from within the block. The scope of the variable is the block in which it is defined. For example, consider the following for statement.

for (int x = 0; x < 5; x++) {
 System.out.println(x);
}

The variable x is declared within the for statement. As a result, x is only available from within this for block. It is not accessible or visible from anywhere else. When the JVM executes the for statement, it creates x. When it is finished executing the for block, it destroys x. After x is destroyed, x is said to be out of scope.

Rule number 2 is a nested block can access variables declared in the outer block. Consider this code.

for (int x = 0; x < 5; x++) {
 for (int y = 0; y < 3; y++) {
 System.out.println(x);
 System.out.println(y);
 }
}

The preceding code is valid because the inner for block can access x, which is declared in the outer for block.

Following the rules, variables declared as method parameters can be accessed from within the method body. Also, class-level variables are accessible from anywhere in the class.

If a method declares a local variable that has the same name as a class-level variable, the former will ‘shadow’ the latter. To access the class-level variable from inside the method body, use the this keyword.

Method Overloading

Method names are very important and should reflect what the methods do. In many circumstances, you may want to use the same name for multiple methods because they have similar functionality. For instance, the method printString may take a String argument and prints the string. However, the same class may also provide a method that prints part of a String and accepts two arguments, the String to be printed and the character position to start printing from. You want to call the latter method printString too because it does print a String, but that would be the same as the first printString method.

Thankfully, it is okay in Java to have multiple methods having the same name, as long as each method accept different sets of argument types. In other words, in our example, it is legal to have these two methods in the same class.

public String printString(String string)
public String printString(String string, int offset)

This feature is called method overloading.

The return value of the method is not taken into consideration. As such, these two methods must not exist in the same class:

public int countRows(int number);
public String countRows(int number);

This is because a method can be called without assigning its return value to a variable. In such situations, having the above countRows methods would confuse the compiler as it would not know which method is being called when you write

System.out.println(countRows(3));.

A trickier situation is depicted in the following methods whose signatures are very similar.

public int printNumber(int i) {
 return i*2;
}
public long printNumber(long l) {
 return l*3;
}

It is legal to have these two methods in the same class. However, you might wonder, which method is being called if you write printNumber(3)?

The key is to recall from Chapter 2, “Language Fundamentals” that a numeric literal will be translated into an int unless it is suffixed L or l.. Therefore, printNumber(3) will invoke this method:

public int printNumber(int i)

To call the second, pass a long:

printNumber(3L);

Note

Static methods can also be overloaded.

By Value or By Reference?

You can pass primitive variables or reference variables to a method. Primitive variables are passed by value and reference variables are passed by reference. What this means is when you pass a primitive variable, the JVM will copy the value of the passed-in variable to a new local variable. If you change the value of the local variable, the change will not affect the passed in primitive variable.

If you pass a reference variable, the local variable will refer to the same object as the passed in reference variable. If you change the object referenced within your method, the change will also be reflected in the calling code. Listing 4.11 shows the ReferencePassingTest class that demonstrates this.

Listing 4.11: The ReferencePassingTest class

package app04;
class Point {
 public int x;
 public int y;
}
public class ReferencePassingTest {
 public static void increment(int x) {
 x++;
 }
 public static void reset(Point point) {
 point.x = 0;
 point.y = 0;
 }
 public static void main(String[] args) {
 int a = 9;
 increment(a);
 System.out.println(a); // prints 9
 Point p = new Point();
 p.x = 400;
 p.y = 600;
 reset(p);
 System.out.println(p.x); // prints 0
 }
}

There are two methods in ReferencePassingTest, increment and reset. The increment method takes an int and increments it. The reset method accepts a Point object and resets its x and y fields.

Now pay attention to the main method. We passed a (whose value is 9) to the increment method. After the method invocation, we printed the value of a and you get 9, which means that the value of a did not change.

Afterwards, you create a Point object and assign the reference to p. You then initialize its fields and pass it to the reset method. The changes in the reset method affects the Point object because objects are passed by reference. As a result, when you print the value of p.x, you get 0.

Loading, Linking, and Initialization

Now that you've learned how to create classes and objects, let's take a look at what happens when the JVM executes a class.

You run a Java program by using the java tool. For example, you use the following command to run the DemoTest class.

java DemoTest

After the JVM is loaded into memory, it starts its job by invoking the DemoTest class's main method. There are three things the JVM will do next in the specified order: loading, linking, and initialization.

Loading

The JVM loads the binary representation of the Java class (in this case, the DemoTest class) to memory and may cache it in memory, just in case the class is used again in the future. If the specified class is not found, an error will be thrown and the process stops here.

Linking

There are three things that need to be done in this phase: verification, preparation, and resolution (optional). Verification means the JVM checks that the binary representation complies with the semantic requirements of the Java programming language and the JVM. If, for example, you tamper with a class file created as a result of compilation, the class file may no longer work.

Preparation prepares the specified class for execution. This involves allocating memory space for static variables and other data structured for that class.

Resolution checks if the specified class references other classes/interfaces and if the other classes/interfaces can also be found and loaded. Checks will be done recursively to the referenced classes/interfaces.

For example, if the specified class contains the following code:

MathUtil.add(4, 3)

the JVM will load, link, and initialize the MathUtil class before calling the static add method.

Or, if the following code is found in the DemoTest class:

Book book = new Book();

the JVM will load, link, and initialize the Book class before an instance of Book is created.

Note that a JVM implementation may choose to perform resolution at a later stage, i.e. when the executing code actually requires the use of the referenced class/interface.

Initialization

In this last step, the JVM initializes static variables with assigned or default values and executes static initializers (code in static blocks). Initialization occurs just before the main method is executed. However, before the specified class can be initialized, its parent class will have to be initialized. If the parent class has not been loaded and linked, the JVM will first load and link the parent class. Again, when the parent class is about to be initialized, the parent's parent will be treated the same. This process occurs recursively until the initialized class is the topmost class in the hierarchy.

For example, if a class contains the following declaration

public static int z = 5;

the variable z will be assigned the value 5. If no initialization code is found, a static variable is given a default value. Table 4.2 lists default values for Java primitives and reference variables.

	Type
	Default Value

	boolean
	false

	byte
	0

	short
	0

	int
	0

	long
	0L

	char
	\u0000

	float
	0.0f

	double
	0.0d

	object reference
	null

Table 4.2: Default values for primitives and references

In addition, code in static blocks will be executed. For example, Listing 4.12 shows the StaticCodeTest class with static code that gets executed when the class is loaded. Like static members, you can only access static members from static code.

Listing 4.12: StaticCodeTest

package app04;
public class StaticInitializationTest {
 public static int a = 5;
 public static int b = a * 2;
 static {
 System.out.println("static");
 System.out.println(b);
 }
 public static void main(String[] args) {
 System.out.println("main method");
 }
}

If you run this class, you will see the following on your console:

static
10
main method

Object Creation Initialization

Initialization happens when a class is loaded, as described in the section “Linking, Loading, and Initialization” earlier in this chapter. However, you can also write code that performs initialization every time an instance of a class is created.

When the JVM encounters code that instantiates a class, the JVM does the following.

1. Allocates memory space for a new object, with room for the instance variables declared in the class plus room for instance variables declared in its parent classes.

2. Processes the invoked constructor. If the constructor has parameters, the JVM creates variables for these parameter and assigns them values passed to the constructor.

3. If the invoked constructor begins with a call to another constructor (using the this keyword), the JVM processes the called constructor.

4. Performs instance initialization and instance variable initialization for this class. Instance variables that are not assigned a value will be assigned default values (See Table 4.2). Instance initialization applies to code in braces:

{
 // code
}

5. Executes the rest of the body of the invoked constructor.

6. Returns a reference variable that refers to the new object.

Note that instance initialization is different from static initialization. The latter occurs when a class is loaded and has nothing to do with instantiation. Instance initialization, by contrast, is performed when an object is created. In addition, unlike static initializers, instance initialization may access instance variables.

For example, Listing 4.13 presents a class named InitTest1 that has the initialization section. There is also some static initialization code to give you the idea of what is being run.

Listing 4.13: The InitTest1 class

package app04;

public class InitTest1 {
 int x = 3;
 int y;
 // instance initialization code
 {
 y = x * 2;
 System.out.println(y);
 }

 // static initialization code
 static {
 System.out.println("Static initialization");
 }
 public static void main(String[] args) {
 InitTest1 test = new InitTest1();
 InitTest1 moreTest = new InitTest1();
 }
}

When run, the InitTest class prints the following on the console:

Static initialization
6
6

The static initialization is performed first, before any instantiation takes place. This is where the JVM prints the “Static initialization” message. Afterwards, the InitTest1 class is instantiated twice, explaining why you see “6” twice.

The problem with having instance initialization code is this. As your class grows bigger it becomes harder to notice that there exists initialization code.

Another way to write initialization code is in the constructor. In fact, initialization code in a constructor is more noticeable and hence preferable. Listing 4.14 shows the InitTest2 class that puts initialization code in the constructor.

Listing 4.14: The InitTest2 class

package app04;
public class InitTest2 {
 int x = 3;
 int y;
 // instance initialization code
 public InitTest2() {
 y = x * 2;
 System.out.println(y);
 }
 // static initialization code
 static {
 	System.out.println("Static initialization");
 }
 public static void main(String[] args) {
 InitTest2 test = new InitTest2();
 InitTest2 moreTest = new InitTest2();
 }
}

The problem with this is when you have more than one constructor and each of them must call the same code. The solution is to wrap the initialization code in a method and let the constructors call them. Listing 4.15 shows this

Listing 4.15: The InitTest3 class

package app04;

public class InitTest3 {
 int x = 3;
 int y;
 // instance initialization code
 public InitTest3() {
 init();
 }
 public InitTest3(int x) {
 this.x = x;
 init();
 }
 private void init() {
 y = x * 2;
 System.out.println(y);
 }
 // static initialization code
 static {
 System.out.println("Static initialization");
 }
 public static void main(String[] args) {
 InitTest3 test = new InitTest3();
 InitTest3 moreTest = new InitTest3();
 }
}

Note that the InitTest3 class is preferable because the calls to the init method from the constructors make the initialization code more obvious than if it is in an initialization block.

Comparing Objects

In real life, when I say “My car is the same as your car” I mean my car is of the same type as yours, as new as your car, has the same color, etc.

In Java, you manipulate objects by using the variables that reference them. Bear in mind that reference variables do not contain objects but rather contain addresses to the objects in the memory. Therefore, when you compare two reference variables a and b, such as in this code

if (a == b)

you are actually asking if a and b are referencing the same object, and not whether or not the objects referenced by a and b are identical.

Consider this example.

Object a = new Object();
Object b = new Object();

The type of object a references is identical to the type of object b references. However, a and b reference two different instances and a and b contains different memory addresses. Therefore, (a == b) returns false.

Comparing object references this way is hardly useful because most of the time you are more concerned with the objects, not the addresses of the objects. If what you want is compare objects, you need to look for methods specifically provided by the class to compare objects. For example, to compare two String objects, you can call its equals method. (See Chapter 5, “Core Classes”) Whether or not comparing the contents of two objects is possible depends on whether or not the corresponding class supports it. A class can support object comparison by implementing the equals and hashCode methods it inherits from java.lang.Object. (See the section “java.lang.Object” in Chapter 5)

In addition, there are utility classes you can use to compare objects. See the discussion of java.lang.Comparable and java.util.Comparator in the section “Making Your Objects Comparable and Sortable” in Chapter 11, “The Collections Framework.”

The Garbage Collector

In several examples so far, I have shown you how to create objects using the new keyword, but you have never seen code that explicitly destroys unused objects to release memory space. If you are a C++ programmer you may have wondered if I had shown flawed code, because in C++ you must destroy objects after use.

Java comes equipped with a feature called the garbage collector, which destroys unused objects and frees memory. Unused objects are defined as objects that are no longer referenced or objects whose references are already out of scope.

With this feature, Java becomes much easier than C++ because Java programmers do not need to worry about reclaiming memory space. This, however, does not entail that you may create objects as many as you want because memory is (still) limited and it takes some time for the garbage collector to start. That's right, you can still run out of memory.

Summary

OOP models applications on real-world objects. Since Java is an OOP language, objects play a central role in Java programming. Objects are created based on a template called a class. In this chapter you've learned how to write a class and class members. There are many types of class members, including three that were discussed in this chapter: fields, methods, and constructors. There are other types of Java members such as enum and inner classes, which will be covered in other chapters.

In this chapter you have also learned two powerful OOP features, abstraction and encapsulation. Abstraction in OOP is the act of using programming objects to represent real-world objects. Encapsulation is a mechanism that protects parts of an object that need to be secure and exposes only parts that are safe to be exposed. Another feature discussed in this chapter is method overloading. Method overloading allows a class to have methods with the same name as long as their signatures are sufficiently different.

Java also comes with a garbage collector that eliminates to manually destroy unused objects. Objects are garbage collected when they are out of scope or no longer referenced.

Questions

1. Name at least three element types that a class can contain.

2. What are the differences between a method and a constructor?

3. Does a class in a class diagram display its constructors?

4. What does null mean?

5. What do you use the this keyword for?

6. When you use the == operator to compare two object references, do you actually compare the contents of the objects? Why?

7. What is the scope of variables?

8. What does “out of scope” mean?

9. How does the garbage collector decide which objects to destroy?

10. What is method overloading?

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/java7_html_33b194e4.jpg
esktop Helper Applications

File Browser Email

OEBPS/images/java7_html_3d0257e.jpg
nu Test 1
File Edit Help

Java Application Window

OEBPS/images/java7_html_296869ff.jpg
«anterface»

Order AccessObject

OracleOrder AccessObject I ‘ MySQLOrderAccessObject

OEBPS/images/87_2.jpg
Stack Heap

employee Employee
address

OEBPS/images/java7_html_7d5a9581.jpg
)| What are your favorite animals?

Dogs -

ok || cancer

OEBPS/images/java7_html_m3405c139.jpg
3 Testing Signed Applet

rosoft Internet Explorer HEIE

[P e o) Fovrts) Tock) i T
| address [B) Clappriecisestworipocs pppietiotist o S0 ks> & - |

Trying to create Testod n the browser' installaion directory. Writing successful

OEBPS/images/i15_1.jpg
chmod a+x rpmFi.

OEBPS/images/i15_2.jpg

OEBPS/images/i15_3.jpg
. e

OEBPS/images/java7_html_m53c70983.jpg
|3 o ChontNetwork BB

File Name:

Files of Type: |l Files

OEBPS/images/java7_html_m3b5c1407.jpg
5] NoLayout Test

First Name:

OEBPS/images/java7_html_m40e9d61.jpg
Dffrent users and prjects can shre the same conpiaton
Traries (s e for detl).

) Greste Man s sqton QLT
) setas anproect

OEBPS/images/java7_html_m545b0779.jpg
My AWT Frame 5

Name [Register [+

OEBPS/images/java7_html_m57c7b6d5.jpg

OEBPS/images/java7_html_m66b0a0ee.jpg
(5] aLabel Test o' X

LastName LastName
Firet Naze
(mandatory) (mandswry) A A i

OEBPS/images/156_1.jpg

OEBPS/images/java7_html_402593d0.jpg

OEBPS/images/java7_html_6c8cc1c8.jpg
B et st Devecpment Lo M

ORACLE

Welcome to the Installation Wizard for Java™ SE Development Kit 7

This i
Kt7.

wil gide you through the nstalltion process for the Java SE Development

OEBPS/images/java7_html_m417f079c.jpg
[aMenutest1 “ =" Bd
File

Copy
Paste

OEBPS/images/java7_html_m5cdd7e18.jpg
[stop Thread T... &° & X

218 Stop

OEBPS/images/java7_html_9f771c0.jpg
(5] BorderLayout Test o X
Registration Form

iame: <your name>| Register

Clear Form

OEBPS/images/java7_html_d00fea5.jpg
| Fio et vew Fovortes Toos Help

| @sack - © - (X (@) o] Osewch Foravortes @] (- i || Links >

initg...start)... pain(o)

b T [T T [(W o

OEBPS/images/java7_html_474c9333.jpg
Warning - Security

. 0 you want to trus the signed applet distrbuted by "

ki Kurmiawan”

Publsher authenticty can not be verfed.

A\ o sty ottt wes sy o conpny 't st

L sty coticsonis ot rred s s

OEBPS/images/java7_html_m72dca1f5.jpg
[JTextareaTest

b Textarea object 1
epresents a multin
e area for displayin
gtext You can chan
e the number of lin
esthat can be displ

JTexérea object [
epresents a mutiin
e area for displayin
(g text You can chan,
lge the number oflin .

OEBPS/images/java7_html_19c4d24b.jpg
Jl=i)

_i(A Demo Swing Application
=2 crouching Panda Software, Inc.

Starting installer.

] [cancel |

OEBPS/images/java7_html_m1e4ead14.jpg
LTool -|
Fie £t View Novgate Source Refxctor fun Debug Pofle Teom Tooks Window Hop

Q- sexcn civ)

PEHES D (e T H D BG

- @nliries | servees || smirecs uGsatesiovs u]

=& saool RE-8-QAes@Peelal

Blaa

& [y Source Pockages
S s
& sarmine
B s

1 * sparan azgs the

“T public stavic void main(Scring(] azgs) (

OEBPS/images/java7_html_m24736e18.jpg
(5] JRadioButton Test © & =" [X]

Color: ®Red O Green (O Blue

OEBPS/images/java7_html_fefc056.jpg
Address Dialog

OEBPS/images/java7_html_7885d8d0.jpg
5] FowLayout Test

s JTexttrea object [x ITextarea objectr[=]
epresents a multin [epresents a multin

e area for displayin |e area for displayin
gtext You can chan |gtext You can chan

e the number ofin |ge the number of lin v
es that can be displ

OEBPS/images/w_619_4.jpg
@ app27

(= WEB-INF

welcome. jsp

OEBPS/images/java7_html_724329a4.jpg
= com
= & brainysoftuare
= & commen
7] MathUtijava

OEBPS/images/java7_html_m51973ddc.jpg
[BorderLayout Test o* "

OEBPS/images/99_1.jpg
Book

3
b+ St
mmberOfPages < Tnteger

e < Stong.
wdh - Tutegee

e Gl
e iCapres (areges chapteaNumbe] Gl

T
e [TmbeOTPrges <Teger
il Stang

e v

OEBPS/images/java7_html_3fc598de.jpg
[ridLayout Test o7 X
Button1 | Button2 | Button3
Button4 | Button5 | Button6
Button7 | Buttons

OEBPS/images/java7_html_3fcfc362.jpg
{ 4[> J [+]@ nup:/1ocaihost:8080/app26a/servietConfigemo &

Admin:Hary Taciak
‘Email:admin@example.com

OEBPS/images/java7_html_380a6d58.jpg
5] JcomhoBox Test

red

[areen
lred
lorange
ldark blue

o' X

OEBPS/page-template.xpgt

OEBPS/images/java7_html_3a51e92d.jpg
Certificates X
el 1> 5
Tusted Roct Cerication Athrties | Trsted ublshrs | Ut pubhers | 41>

Tesued To [issuedey [Expratio.. | Frendly Name
Ethawte Server CA Thawte Serv... 1/1j2021 Thaste Server CA
Elthawte Timestampi.. Thante Times... 1/1/2021 Thaste Timestamping CA
[EUTH - DATACOD SGC TN -DATAC... 6/25/2019 LN~ DATACorp S6C.
EUTNASERFirst-Cle... UTN-USERFr.. 7/10/2019 UTH - USERFirst-Clent A
T USERFist-Hor... UTN-USERFY... 7/10[2019 UTN - USERFirst-Hardware
EUTH-USERFist-Net,.. UTN-USERFY... 7/10(2019 UTN - USERFirst-Network.
EUTNAISERFirst-Obj... UTN-USERF.. 7/10/2019 UTH - USERFrst-Object
(Everisign Commercia,.. Verisign Com... 12/31/1999 YeriSign Commercial Soft
(Everisign Commercia... Verisign Com... 18/2004 VeriSign CommercialSoft

advaesd

Centficate ntended purposes

L |
close

OEBPS/images/cover.jpg
¥ srainy sofware
A Beginner’s Tutorial

Third Edition

Object-oriented programming techniques
Java core libraries
Multithreaded programming
Swing
Web application development

Budi Kurniawan

OEBPS/images/java7_html_cf737ab.jpg
oK

OEBPS/images/java7_html_m3211732.jpg
[

‘Add New Permission:

rission

[TargetName:
[Actions:
Signed By.

L1«

o] cance

OEBPS/images/86_1.jpg
Stack Heap

yourBook

OEBPS/images/82_3.jpg
Book

Teight Tnteger
isbn - Stng
aumberOfPages : Integer
e : Steng.

widl : Integee

‘eiChapier (Tnteger chaperNumber) : Cliapree

OEBPS/images/java7_html_3cfc4b62.jpg
Compile

OEBPS/images/k_151.jpg
FPagent

TR

OEBPS/images/i18_1.jpg
bt £ dioin: GEne. L L

OEBPS/images/i18_2.jpg
BEEied aowntaad. orncle. Sam

sl taceslans

OEBPS/images/java7_html_m2d71240.jpg
[simplebraw &* & X

@ Line| O Oval O Rectangle

OEBPS/images/86_3.jpg
Stack Heap

myBook
yourBook

OEBPS/images/i18_3.jpg
iload/ 3 aviTBadE

raSEaRd. £ip

OEBPS/images/i14_1.jpg
http tml

k/java/iavass/downloads/index

OEBPS/images/java7_html_m4d2c266e.jpg
‘ Keylistener Test1 o z” [
WELCOME]

OEBPS/images/k_193_1.jpg
— 1

ntectcer

B

OEBPS/images/java7_html_3fcb5e0a.jpg
Applet
Registration Form

Name:{<your name= |~ Register

Clear Form

Applet started

OEBPS/images/java7_html_m222ee047.jpg
Select a wizard

Creste s Jsva project I

wiards

&l

E Java Projct From Existing it Buidfle
& P project

o

& General

& v

& Pl Development

<Bark. et > Erish Cancel

OEBPS/images/java7_html_m6f2068fc.jpg
Policy Entry

Coepase: |
sinedey |
I |
Prncpas
i Permicsion Eatpermision R

Done | cancel

OEBPS/images/java7_html_1051ae20.jpg
= X
Button 1
Button 2
Button 3

OEBPS/images/java7_html_m4c3e7099.jpg
B astTest o & X

green

orange
dark bue

OEBPS/images/java7_html_m6dfd926.jpg
wantetfacen wantetfacen antecfacen
Temtor Collction Conparator
et et prrry nteracer
e Lit Quene Map
FeeayList Abemacilip ntertacen
SortdMap

Fihllap,

OEBPS/images/n438_3.jpg
[app20
-] app20

LifeCyoleApplet class
runApplet html

OEBPS/images/java7_html_24a3d6cb.jpg
R

[Te:componem][Tist] [Contamer] [Scrollbar]

[TexFa i Temthres |) s

OEBPS/images/java7_html_m1e2c3c4a.jpg
Enen. o = ©

-

OEBPS/images/k_1.jpg

OEBPS/images/k_2.jpg

OEBPS/images/java7_html_40ada67.jpg
OutputStrean

1

FileOutputSiceam

FipedOupuiStzeam

FiteoutputSiean,

ByteAmyoutputSizeam.

ChjectOutpurstceam

OEBPS/images/k_3.jpg

OEBPS/images/java7_html_6aab533.jpg
Web
Browser

Request

Response

+*Serviet/JSP Container

PR

Servlet

Servlet

Servlet

ST)

OEBPS/images/k_4.jpg

OEBPS/images/33_1.jpg

OEBPS/images/java7_html_153f1267.jpg
Applet

initg...start)...paint(g)... stop(... start... paint(g).

Applet started

OEBPS/images/java7_html_4f854fd9.jpg
] Entire Network

EllE=EHE)

Microsoft Terminal Services|
=] Microsoft Windows Network
[Web Client Network

File Name:

Files of Type: |l Files

OEBPS/images/java7_html_4d7ee7ca.jpg
= app26a
v G WEB-INF
v & classes
v & app26a
MyServiet class

&lib

OEBPS/images/java7_html_m5167b236.jpg
Applet Runner o !

paint(g)... nit0... startg... paini(c)

OEBPS/images/java7_html_m2be6995.jpg
Create a Java project J

Enter a project nare.

{

Broject name:

Contents

& Create new project in workspace

€ Create projectfrom existing source

RE

& Use default JRE (Currently jre1 5.0.04) Confinure defu

€ Use a project speciic JRE:

Project layout
& Use project folder as root for sources and clas fies

" Create separate source nd output folders Configure defaut

< =

OEBPS/images/java7_html_7d197768.jpg
0006 Order Form
i <> I + | @ http://localhost:8080/app26b/form [3 IQ' Google i

Order Form
Name: Ted Mosby
Address: 123 XYZ Street Markham ON L1L L3L
Country: Canada
- . Please leave at door
‘Shipping Instructions: py 1+ gicturb the dog

Delivery Method: null
Catalog Request: ~ Yes

Debug Info
instruction: Please leave at door

Don't disturb the dog.

address: 123 XYZ Street Markham ON LIL L3L
‘name: Ted Mosby

catalogRequest: on

country: Canada

OEBPS/images/java7_html_m5da30a6f.jpg
JTextField Test o° &” [

User Name:fjverage
Password;

OEBPS/images/k_197_1.jpg
TnputStream

OEBPS/images/java7_html_7cf82942.jpg
Message

oK

OEBPS/images/java7_html_m2fc4fb62.jpg
Order Form

Name:

Address:

Country:
Delivery Method:

‘Shipping Instructions:

OFirst Class OSecond Class

Please send me the latest product catalog: ()

(eser) (Submit)

OEBPS/images/w_627_1.jpg
Gcopy ;2010 BrainySoftware
<ar/>

OEBPS/images/102_3.jpg
MathUti]

teger s, luteges b) - Lege

OEBPS/images/java7_html_5761915c.jpg
(1> [+ [@ o ocanoscsosorappzeaimy ¢

Hello from MyServlet

OEBPS/images/java7_html_m7a94f9e3.jpg
ol x|

| He b tenw Famies Do tb

| &

| Address [&] nttpifocahostionenindex bl ~| (3 Go || Links >

BRAINY Softcsare

Welcome to BrainySoftware.

|

OEBPS/images/java7_html_742623eb.jpg

OEBPS/images/i17_2.jpg
17

T

T

OEBPS/images/java7_html_789bae89.jpg
© O O Register

OEBPS/images/java7_html_m456b8162.jpg
Windows JVM

=
=

Compile

Linux JVM

OEBPS/images/i17_3.jpg
T SO T SR

OEBPS/images/java7_html_m697c52d9.jpg
[

=]

BufferedViiter

=]

PipedWcter

T Ouputueamier

—

ChacAnayWeter

T PV

OEBPS/images/java7_html_557519a7.jpg
Java - Eclipse SDK o x!

Hlo Edt Souce Refocor Nevite Search Projct Eun Wndow Help
I9-B2%-0-Q- |E@ e BEme

| ® 4 | workingsets - |) - .

== = B[22 outine 33 =

it FIEE An outline is not available.

=4 RE System Library [fe1.5.0_04]

[Problems 52 Javadoc | Decration| ¢ 3p ¥ = O

O errors, 0 warrings, 0 nfos

Description [Resource | path

| satTou oot @

OEBPS/images/i17_1.jpg

OEBPS/images/java7_html_m5201bd27.jpg
Java - SQLTool. java - Eclipse SOK- HE
Ele Edt Sowce Refactor Navigate Search Project Run Window Help

les- 130 Q- |BE G- |® | woigses ~ R
I TG e Snvasromsen [Gwa.
R ODsmwwes=0O
& [package con brainysotevare. sqitool; =

© mbritvar o publto class sauToot ¢

[}

= Gsqurea N

& man(Stingl) * eparam args
JRE System Library [re1.5.0_04] *
punlic static voia main(string(] args) (
a /¢ 1000 Auto-generated methoa stup |

Outine 22 BT
AL e
@ com.brainysoftware.sakool

= O, satToo [Fide Static Felds
© % man(Snal)

[T | comormtonmesd- Toaa-set ool | 1o 0]

OEBPS/images/java7_html_m46d5ee61.jpg
My First Swing Appl

Welcome

OEBPS/images/java7_html_19df831c.jpg
A ‘ould you like to create desktap and start menu shortcuts for
A Demo swing Applcation”

) (o) [confore

OEBPS/images/java7_html_m402f5abd.jpg
3 Overview - Microsoft Internet Explorer

Ed o belp

Favorkes

wiciass || [NTMIER Package Class Tree Deprecated Index Help

PRV NEXT fRavEs o FRavES
Package

com.brail Packages

com brai

con ftware.common

~|| | combrainysoftware. component
‘ »

Al
Csses || EMEREPackage Class Tree Deprecated Index Help
Smngiﬁ_ PREV NEXT FRAMES NO FRAMES

L1 _>l_l 5

& [1 [[[[vy Computer 7

OEBPS/images/java7_html_216f31e3.jpg

OEBPS/images/78_2.jpg
Employee

age
salary

receiveSalary ()
work

OEBPS/images/java7_html_m62d67f87.jpg
Enter an SOL Statement

OEBPS/images/java7_html_m41d855c0.jpg
java awt Panel

javas swing JApplet

OEBPS/images/java7_html_736f56d4.jpg
Borderla... o " [X]

<your name=| Register

OEBPS/images/java7_html_4fca45e0.jpg
JCheckBox Test e~

Car Features (/]AC [CDPlayer (] Cruise Control []Keyless Entry [] Anti-Theft Alarm] Central Lock

OEBPS/images/java7_html_278d28e1.jpg
€ New Java Class
Java Class

Package: com brainysoftware.sdtodl Browse,
I~ Enclosing type: —

Neme: QLTool

Modfiers: @ ol O defakt @
I~ sbstroct [~ final [~

Superclass: Javaang.Object Browse.

Iterfaces =
|

Which method stubs would you ke to create?
¥ publc static void main(stringl] args)
I~ Constructors from superclass
¥ Inheried abstract methods

0 you want to add comments as configured in the propertis of the current project?
I™ Generate comments

B

OEBPS/images/java7_html_5d300303.jpg
=

Cer

@ Bud Furniawen (693 Furniwan)

] Value
erson T
fseiafutber 1125421413]
[Sonsure Agorkhn (A LwRFOSA]
ssver Ich=Bud Kusriswan, OU=IT, O=Brainy 501..
ety From:Sun Aup 07 21:30:13 56T 2005, To;
fsubect (=B Kusriswan, OU=IT, 0=Brainy 50...
Sonature 2 1440 135 48 F325595.

000: 30 2¢ 02 14 40 13 57 48
010: 74 SF 1B 50 91 53 91 46
020: 08 42 05 77 6 78 €1 AT

7o 25 59 97 72 00 07 C3 0.8,
02 14 14 70 68 74 18 69
24 9B 74 37 c6 17

OEBPS/images/java7_html_f85f252.jpg
A

OEBPS/images/496u.jpg

OEBPS/images/java7_html_m4f119af4.jpg
| Fio et vew Fovortes Toos Help

Economic Survey

S e | s

OEBPS/images/java7_html_34612e5.jpg
dinterfacen
Sener

wntefacen
ServeRequest

wntectacen
SeneRespone

dinterfacen
SenetConest

GenericServlet

antesfacen
SenetCone

antestacen

RequestDigpateher

anterfacen
Filer

OEBPS/images/java7_html_384f4d1e.jpg
5] My First Swing Application ° =" [

felcome

OEBPS/images/java7_html_2d8b583d.jpg
v (= dasses
v G app2sc

impleServiet.class

jelcomeServiet.class

=303

R web.xml

OEBPS/images/java7_html_4a391a8a.jpg
[Aw,'rs,m][TCombotor) () Yan‘\\Bm][]PJﬂel][1zvsznm=][e Diig)

=

THenltem

OEBPS/images/java7_html_6922f9a0.jpg
Do you want to continue?

Yes || No

OEBPS/images/java7_html_2174cb4c.jpg
Thread Te. X

898 204

OEBPS/images/i16_3.jpg

OEBPS/images/java7_html_m1b34d197.jpg
Application
(HTTP, FTP, telnet)

Transport
(TCP, UDP)

Network
(Ip)

—_—
_—

Physical

OEBPS/images/java7_html_m4159c805.jpg
Thank You X

oK

OEBPS/images/k_191_1.jpg
Lacen
Printable

F print (Docnment document) ¢ vord|

HPDuver

CanonDrver

OEBPS/images/i16_1.jpg

OEBPS/images/java7_html_6224df89.jpg
= X
Register|

OEBPS/images/i16_2.jpg

OEBPS/images/java7_html_m70b5caea.jpg
Register.

Register.

OEBPS/images/java7_html_m577a220d.jpg

OEBPS/images/39_3.jpg

OEBPS/images/39_1.jpg

OEBPS/images/java7_html_4dbc0b93.jpg
Error X

Y

oK

OEBPS/images/java7_html_m2184444.jpg

OEBPS/images/java7_html_6cb2b88b.jpg
Policy Tool B =1 £
File Edit

Potcye: |
Keystore: |

Add Policy Entry | Edit Policy Entry | Remove Policy Entry

OEBPS/images/java7_html_m370fa013.jpg
Enter Your Name

Hohn Average

ok || cancel

OEBPS/images/java7_html_1d8cd313.jpg
New Java Class

Steps. Name and Location

1 Choose Fil Type Class Name: [NewClass.
2. Name and Location

Project: sQLTool
Locaton: [Source Packages. =
Paciage: saitool -

Created File: |C:\workspace SQLTool srclsatool Wewlass java

<ok | [vexi> | [oo) [(cond | [meb]

OEBPS/images/java7_html_5f334ddb.jpg
javac et Servit

wintexfacen nteefacen dntertacen
v et SerloRaguest Jatas et SerletResponce

v servler GenericServiet dnterfacen anterfacen
HtpSuneRequest EtSenefResponse

HittpServler antesfacen

HpSession

OEBPS/images/java7_html_643b102b.jpg
Java - Eclipse SOK [-[5[]

e Edt Souce Refoctor Navgse Search Propct R Window Hep

Irs- |$-0-Q- l8#e- o8 | &
| Workigsets - | 87 - 51 - & e
I e T

5% 0 cutine s ot avadable.

[proems 53 Jovadoc ecoaton| % 3 7 = O
Oerrors, 0 wamings, O rfos
Description | Resource | path

nsaon 0

OEBPS/images/96_1.jpg
Manager
+ employeeld
~salury

Fwork
manage

OEBPS/images/java7_html_6b164b4a.jpg
Reader

1

=]

TipedReader

=]

TopuSieamReader

=]

ChathmsyReader

T FieReder

OEBPS/images/java7_html_3d21d50a.jpg
Show Message
Close

499

OEBPS/images/java7_html_m122a9833.jpg
[Timer Test o7 X

lick Start to begin start

OEBPS/images/java7_html_m85d3cf2.jpg
[actionListener Test... o =" X

Color: ®Red O Green (O Blue

OEBPS/images/java7_html_m5528bdcd.jpg
= KX
Select File

OEBPS/images/java7_html_4b361b55.jpg
I

Filenpuiteam

FrpedlnputSizeam

FitenputSiceam

[

I

]

ByieAmaylnputeam

SequenceInputSizea

CbjectlnputSizean

OEBPS/images/squf.jpg

OEBPS/images/java7_html_m1562fc4a.jpg
B swingWorker Demo.

OEBPS/images/k_153_1.jpg
B Tl Dog
umbeiONVings | | numberOfns | [mumberOfLegs
iy 0 () ealk

OEBPS/images/java7_html_40c8dc4e.jpg
Thr.. o @ X
8133 6964

OEBPS/images/28_2.jpg
o

OEBPS/images/java7_html_m422506f1.jpg

OEBPS/images/java7_html_m2fe732ac.jpg
Debug - SQLTool.java - Eclipse SDK HE
Ele Edt Sowce Refactor Navigate Search Project Run Window Help

3 13-0-%- |® | vwokngses - 14 £ S50t
[8-8 - e - $mvatronsng &'dava

LsE~E

%5 Debug 32
[TEEIEYS
5 8 conbramsoftwae soool saLTon o lcsbos 46 2 |
= 4 Teedron Guspended Gredgoe e 91—
| S EUEmE Sk
« »

) saurodljeve 52
package com.brainysoftuare.sqltool;

public class SQLTool (

& e
* cparam args
B

© public static void main(String(] args) (

77 7000 huto-generated method stub

Ki} 1l TR
B cosl 5] B X% GG 2B 13--0)
'sQLTool [ava Applcation] C:Program Fles\Javalye1.5.0_0#|binljavaw.exe (Dec 9, 2005

