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FOREWORD

If you are not familiar with the strange, semisecret world of modern conjuring you may be surprised to know that there are thousands of entertaining tricks with cards, dice, coins, and other objects that require no sleight of hand. They work because they are based on mathematical principles.

Consider, for example, what mathematicians call the Gilbreath Principle, named after Norman Gilbreath, its magician discoverer. Arrange a deck so the colors alternate, red, black, red, black, and so on. Deal the cards to form a pile about equal to half the deck, then riffle shuffle the piles together. You’ll be amazed to find that every pair of cards, taken from the top of the shuffled deck, consists of a red card and a black card! Dozens of beautiful card tricks—the best are explained in this marvelous book—exploit the Gilbreath Principle and its generalizations.

Although you can astound friends with tricks based on this principle, they are in this book for another reason. The principle turned out to have applications far beyond trivial math. For example, it is closely related to the famous Mandelbrot set, an infinite fractal pattern generated on a computer screen by a simple formula.

But that is not all. The Dutch mathematician N. G. de Bruijn discovered that the Gilbreath principle applies to the theory of Penrose tiles (two shapes that tile the plane only in a nonperiodic way) as well as to the solid form of Penrose tiles, which underlies what are called quasicrystals. Still another application of the principle, carefully explained in this book, is to the design of computer algorithms for sorting procedures.

The authors are eminent mathematicians. Ron Graham, retired from Bell Labs and now a professor at the University of California, San Diego, is an expert on combinatorial math. Persi Diaconis is an equally famous statistician at Stanford University. Each man has a hobby. Ron is a top juggler. Persi is a skilled card magician.

You will learn from their book the math properties of unusual shuffles: the faro, the milk shuffle, the Monge shuffle, and the Australian or down-and-under shuffle. You will learn some tricks using the I Ching, an ancient Chinese fortune-telling volume. You will learn how parity (odd or even) can play a roll in magic as well as provide powerful shortcut proofs.

Not only is this book a superb, informally written introduction to mathematical magic, but near the book’s end the authors supply pictures and biographical sketches of magicians who have made the greatest contributions to mathematical magic, from the reclusive Charles Jordan to the eccentric Bob Hummer.

Best of all, you will be introduced to many little-known theorems of advanced mathematics. The authors lead you from delightful self-working magic tricks to serious math, then back again to magic. It will be a long time before another book so clearly and entertainingly surveys the vast field of mathematical hocus-pocus.

Martin Gardner
Norman, OK
April, 2010


PREFACE

The two of us have been mixing entertainment with mathematics for most of our lives. We started off on the entertainment side, one as a magician, the other as a juggler and trampolinist. We were seduced into studying mathematics by . . . well, the stories that are told in this book. Both of us now make a living doing mathematics; teaching, proving, and conjecturing.

The two fields have been shuffled together for us, with frequently performed talks on mathematics and magic tricks and the mathematics of juggling. The connections go deeper. Some magic tricks use “real mathematics” and lead to questions beyond the limits of modern mathematics (see our chapter on shuffling cards). Sometimes, we have been able to solve the math problems and create new magic tricks (see chapter 2).

Both of our worlds have a dense social structure; thousands of players turning ideas over and over. Some of this wisdom of the ages is woven through our book. In addition to hundreds of friends and colleagues, dozens of people have made sustained contributions to this book.

On the magic front, Steve Freeman, Ricky Jay, Bob Neale, and Ronald Wohl have been coworkers, selflessly contributing their brilliance and wisdom. The students in our Magic and Mathematics classes at Harvard and Stanford have all helped. We particularly thank Joe Fendel. We had the benefit of amazing, insightful readings of our text by Art Benjamin, Steve Butler, Colm Mulcahy, and Barry Mazur. Their combined comments rivaled the length of our book. Laurie Beckett, Michael Christ, Jerry Ferrell, Albrecht Heeffer, Bill Kalush, Mitsunobu Matsuyama, and Sherry Wood went out of their way to help us out. Our editors at Princeton University Press, Ed Tenner, Vickie Kearn, and Mark Bellis have been crucial allies.

Our families, Fan Chung Graham, Ché Graham, and Susan Holmes, have helped in so many ways that we can’t find a number system rich enough to list them. Fan’s mathematical work appears in chapters 2–4, and Ché and Susan shot (and reshot) numerous photos. Susan also contributed to the history and many other chapters.

We hope that our book will shine a friendly light on the corners of the world that are our homes.

Thanks and welcome.

Persi Diaconis and Ron Graham
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Chapter 1

MATHEMATICS IN THE AIR

Most mathematical tricks make for poor magic and in fact have very little mathematics in them. The phrase “mathematical card trick” conjures up visions of endless dealing into piles and audience members wondering how long they will have to sit politely. Our charge is to present entertaining tricks that are easy to perform and yet have interesting mathematics inside them. We cannot do this without your help. To get started, please go find four playing cards. They can be any four cards, all different or the four aces. It doesn’t matter. Let us begin by performing the trick for you. Since we can do it without being present, you’ll be able to do it for a friend on the phone. After practicing, try calling your kid brother or your mom and perform the following.

[image: images]

Figure 1. Four cards

[image: images]

Figure 2. Four cards in a packet

[image: images]

Figure 3. Looking at bottom card

Have a look at the bottom card of the packet. That’s your card and you have to remember it.

[image: images]

Figure 4. Top card placed on bottom

[image: images]

Figure 5. Current top card turned face-up

Next, the cards are going to be mixed by some simple instructions. Put the top card on the bottom of the packet. Turn the current top card face-up and place it back on top.

[image: images]

Figure 6. Cutting the deck

[image: images]

Figure 7. Spreading off and turning over the top two

Now, give the packet a cut. It doesn’t matter how many cards you cut from top to bottom: one, two, three, or four (which is the same as none). Next, spread off the top two cards, keeping them together, and turn them over, placing them back on top.

[image: images]

Figure 8. Cutting again

[image: images]

Figure 9. Turning over two again

[image: images]

Figure 10. Another cut

[image: images]

Figure 11. Turning over two

Cut the cards at random again and then turn the top two over. Give them another cut and turn two over.

Give them a final cut. This cutting and turning has mixed the cards in a random fashion. There is no way anyone can know the order. Remember the name of your card! We’re going to find it together.

[image: images]

Figure 12. Turning over the top card

[image: images]

Figure 13. Putting it on the bottom

Turn the top card over (if it’s face-down, turn it face-up; if it’s face-up, turn it face-down). Put this card on the bottom of the packet.

[image: images]

Figure 14. Putting the top card on the bottom

[image: images]

Figure 15. Turning over the top card bottom

Put the current top card on the bottom of the packet without turning it over. Finally, turn the top card over and place it back on top.

[image: images]

Figure 16. The “oddball” card

[image: images]

Figure 17. The chosen card

Now, we’re done. Name your card. Spread out the packet of four. You’ll find three cards facing one way and your card facing the opposite way!

When we perform this trick with a live audience in the same room, we try to work it on a man with a tie or a woman with a scarf. We give him or her the four cards with instructions to shuffle, peek at the bottom card, and follow the instructions above until he or she has cut and turned over two a few times. We then ask our subject to put the four cards behind his or her back. The rest of the instructions are carried out with the cards concealed this way. When the cutting and turning phase is finished, we stare intently at the person’s midsection in giving the final two steps of instructions as if we were looking through our subject. Before the final line of instruction we reach over and move the tie or scarf as if it were blocking our view. We have him or her name the card before bringing out the packet.

We have used this trick for an audience of a hundred high school students—each student received a packet of four cards, and the trick was worked simultaneously for all of them. It’s a charming trick and really seems to surprise people.

Okay. How does it work? Let’s start by making that your problem: How does it work? You’ll find it curiously difficult to give a clear explanation. In twenty years of teaching, asking students to try to explain this trick, we have yet to have anyone give a truly clear story. The plan is to lead you through this in stages (it has some math in it). The solution comes later in this chapter. Before proceeding, let’s generalize.

The trick is known as Baby Hummer in magic circles. It was invented by magician Charles Hudson as a variation on an original trick by a truly eccentric genius named Bob Hummer. We’ll learn a lot more about Hummer as we go along. Here is his original use of the principle we’re trying to explain.

Take any ten cards. Have them all face-down and hold them as if you were about to deal in a card game. Go through the following procedure, which mixes the cards face-up and face-down: Spread the top two cards off and turn them over, placing them back on top. Give the cards a straight cut (see figure 6). Repeat this “turn two and cut at random” procedure as often as you like. The cards will be in an unpredictable mess. To find the order in the mess, proceed as follows: Go through the packet, reversing every second card (the cards in positions 2, 4, 6, 8, and 10). You will find exactly five cards face-up, no matter how many times the “turn two and cut at random” procedure was repeated.

Hummer marketed this trick in a privately printed manuscript called “Face-up/Face-down Mysteries” (1942).1 This ten-card trick does not play as well for audiences as the Baby Hummer we started with. Hummer introduced a kind of swindle as a second phase. After showing that five cards are face-up and five cards are face-down, casually rearrange the cards so that the face-up and face-down cards alternate up, down, up, down, and so on. Hand the ten cards to a spectator who is instructed to put the cards under the table (or behind his or her back). Have the spectator repeat the “turn two and cut at random” procedure a few times. Take the cards back without looking at them. Now, with the cards under the table (or behind your back), remove every second card as before and turn them over. You will find that the cards all face the same way.

[image: images]

Figure 18. Reversing every second card

Again, one may ask, why does this work? Just what properties of the arrangement are preserved by Hummer’s “turn two and cut at random”procedure? To think about Hummer’s “turn two and cut at random” mixing scheme, we find it helpful to have a way of writing down all the possible arrangements that can occur. Instead of working with a deck of four or ten cards, one can just as easily work with a general deck of even size. We work with 2n cards (so, if n = 2 then 2n = 4, or if n = 5 then 2n = 10). As will be seen in a while, decks of odd size are a different kettle of fish. We can indicate the exact arrangement of 2n cards, some faceup and some face-down, by writing the numbers on the cards in order and identifying face-up with a bar on top of a number. Thus, a four-card deck with a face-up 3 on top, a face-down 1 next, a face-down 4 next, and a face-up 2 at the bottom is denoted [image: images], 1, 4, [image: images]. For a deck of ten cards, a possible arrangement is 2, [image: images], [image: images], 8, 6, [image: images], [image: images], [image: images], [image: images], 9.

The symbols 1, 2, 3, . . . , 2n can be arranged in 1 × 2 × 3 × 4 × · · · × 2n ways. This number is often denoted as (2n)! (read “2n factorial”). Each such arrangement can be decorated with bars in 2 × 2 × 2 × · · · × 2 = 22n ways (each of the 2n symbols can be barred or not). In all, this makes for 22n × (2n)! distinct arrangements. This is a huge number even for a moderate n. For 2n = 4, it is 24 × 4! = 16 × 24 = 384. For 2n = 10, it is 3,715,391,200 (close to four billion). This is the maximum possible number of arrangements. As we will see, not all of these are achievable if we start with a face-down deck using Hummer’s “turn two and cut at random” process.

Before we give the general answer, here is a starter result that shows that many of the 22n × (2n)! arrangements are not achievable. This result also clearly explains why Hummer’s ten-card trick works. We present it as a simple theorem to show that theorems can grow anywhere.


THEOREM. Let a deck of 2n cards start all face-down. After any number of “turn two and cut at random” operations, the following regularity is forced:

The number of face-up cards at even positions
equals
the number of face-up cards at odd positions.



Normally, we will put our proofs at the end of each chapter. However, we give the proof for this here. What we want to prove is certainly true when we start—there are no face-up cards in either even or odd positions at the start. Suppose the statement of the theorem holds after some fixed number of shuffles. Observe that it still holds after a single card is cut from top to bottom. Therefore, it holds if any number of cards is cut from top to bottom. So the result to be proved holds for any number of cuts. Finally, suppose that the result to be proved holds for the current deck. Note that the current deck may well have cards face-up and face-down. Let us argue that it continues to hold after the top two cards are turned over and put back on top. We see this by considering all possible arrangements of the top two cards. They may be:

down, down down, up up, down up, up.

After turning two, these four possibilities become:

up, up down, up up, down down, down.

In the middle two cases, the up-down pattern hasn’t changed, so the statement holds after turning two if it held at the start. In the first case, the odd positions and the even positions each have one more up card. Since the numbers of face-ups in even and odd positions were equal before we turned two, they are equal after. The same argument works in the last case. This covers all cases and proves the theorem.

From the theorem, it is a short step to see why Hummer’s trick works. Start with 2n cards face-down (2n = 10 for Hummer). After any number of “turn two and cut at random” shuffles, there will be some number of face-up cards. Let A be the number of face-up cards among the n cards at even positions. There must be n − A face-down cards among the even positions since there are n cards in even positions. By the theorem, the same holds for the n cards at odd positions—A face-up and n − A face-down. If you remove the cards at odd positions and turn them over, this gives n − A face-up cards to add to the A face-up cards at even positions. This makes (n − A) + A = n face-up cards in all. Of course, the other n cards are face-down. The conclusion is forced.

Did the proof we just gave ruin the trick? For us, it is a beam of light illuminating a fuzzy mystery. It makes us just as happy to see clearly as to be fooled.

To check your understanding, we mention that, in magic circles, Hummer’s principle is sometimes called CATO for “cut and turn over two.” This is in opposite order to the “turn over two and cut.” The theorem holds for CATO as well as “cut and turn over four” or “turn over an even number and cut.”

Later in this chapter we show that exactly 2 × (2n)! arrangements are achievable and just which ones these are. This more general result implies the theorem we just proved and, indeed, all possible theorems about Hummer’s mixing process.

In the meantime we turn to the question: How can a really good trick be twisted out of this math? We give as an answer a closely guarded secret of one of the great card men of the present era. Steve Freeman has given us permission to explain what we think is an amazing amplification of Hummer’s shuffles. We explain it by first describing the effect and then the modus operandi. Those wishing to understand why it works will have to study the math at the end of the chapter.

ROYAL HUMMER

First, the effect as the audience sees it. The performer hands the spectator about one-third of the deck, asking that the cards be thoroughly shuffled. Taking the cards back from the spectator, the performer explains that the cards will be further mixed, face-up and face-down, at the spectator’s discretion, to make a real mess. The cards are dealt off in pairs, the spectator deciding each time if they should be left as is or turned over. This is repeated with the cards in groups of four. At this point, there is a pile of face-up/face-down cards on the table. The performer says, “I think you must agree that the cards are truly randomly distributed.” The spectator gets one more decision—after the performer deals the cards into two piles (left, right, left, right, and so on) the spectator chooses a pile, turns it over, and puts it on top of the other pile. For the denouement, the performer explains that the highest hand in poker, the perfect poker hand, is a royal flush—ace, king, queen, jack, and ten, all of the same suit. The cards are spread and there are exactly five face-down cards. “Five cards—that just makes a poker hand.” The five are turned over one at a time—they form a royal flush.

That’s the way the trick looks. Here is how it works. Before you begin, look through the deck of cards, as if checking to see if the deck is complete, and place one of the royal flushes on top (they do not have to be in order). Remove the top twenty or so cards. The exact number doesn’t matter as long as it’s even and contains the royal flush. Have the spectator shuffle these cards. Take the cards back, turn them all face-up, and start spreading through them as you explain the next phase. Look at the first two cards.

[image: images]

Figure 19. Neither card is in the flush

[image: images]

Figure 20. Turning the second card

[image: images]

Figure 21. Second card is turned over

[image: images]

Figure 22. Pair is placed on the table

1. If neither one is in the royal flush, leave the first card faceup and flip the second card face-down, keeping both in their original position (you may use the first card to flip over the second one).

[image: images]

Figure 23. Only the first card is in the flush

[image: images]

Figure 24. First card is turned over

[image: images]

Figure 25. Second card is also turned over, with the cards kept in order

[image: images]

Figure 26. Pair is placed on the table

2. If the first one is in the royal flush and the second one is not, flip the first one facedown and then flip the second one face-down (they stay in their original positions).

[image: images]

Figure 27. Only the second card is in the flush

[image: images]

Figure 28. Placing the pair face-up in order on the table

3. If the second one is in the royal flush and the first one is not, leave both face-up.

[image: images]

Figure 29. Both cards are in the flush

[image: images]

Figure 30. Turning the first card over

[image: images]

Figure 31. Placing the pair on the table

[image: images]

Figure 32. The completed arrangement

4. If both are in the royal flush, flip the first one face-down and leave the second one face-up.

The pairs may be dropped onto the table in a pile after each is adjusted or passed into the other hand. Work through the packet a pair at a time, using the same procedure for each pair. If, by chance, you wind up with an odd number of cards, add an extra card from the rest of the deck.

Now, take off the cards in pairs, asking the spectator to decide, for each pair, whether to “leave them or turn them,” and put them into a pile on the table as dictated. When done, you can pick up the pile and go through the “leave them or turn them” process for pairs as before (or in sets of four, if desired). To finish, deal the cards into two piles (left, right, left, right, . . .). Have the spectator pick up either pile, turn it over, and place it on the other one. If the royal flush cards are not facing down, turn the whole packet over before spreading.

This is a wonderful trick. It really seems as if the mixing is haphazard. The ending shocks people. It does take some practice but it’s worth it—a self-working trick done with a borrowed deck (which doesn’t have to be complete).

Perhaps the most important lesson to be learned is how a simple mathematical principle, introduced via a fairly weak trick, can be built into something special. This is the result of fifty years of sustained development by the magic community. People from all walks of life spent time turning the trick over, suggesting variations, and being honest about their success or failure. At the beginning and end were two brilliant contributors—Bob Hummer and Steve Freeman. We are in their debt.

A word about practice. The first times you run through, following the procedures (1)–(4) above, will be awkward and slow. After a hundred or so practice runs, you should be able to do it almost subconsciously, without really looking at the cards. A skillful performer must be able to patter along (“We will be turning cards face-up and face-down as we go. You will decide which is which . . .”). The whole proceeding must have a casual, unstudied feel to it. All of this takes practice.

In the rest of this chapter, we explain some math. As a warmup, let us argue that the Baby Hummer trick that begins this chapter always works. To begin with, in the original setup we have three cards facing one way and one card (which we’ll call the “oddball”) facing the other way. We’ll say that cards in positions one and three (from the top) are “mates,” as are cards in positions two and four. The setup instructions then force the chosen card and the oddball to be mates. It is easy to check that any “turn two and cut randomly” shuffle (or Hummer shuffle, for short) will preserve this relationship (there are basically only two cases to check). Finally, the finishing instructions have the effect of turning over exactly one card and its mate. This has the effect of forcing the chosen card to be the oddball. Again, two cases to check. End of story.

With all the variations, it is natural to ask just what can be achieved from a face-down packet, originally arranged in order 1, 2, 3, . . . , 2n, after an arbitrary number of Hummer shuffles. The following theorem delineates exactly what can happen.


THEOREM. After any number of Hummer shuffles of 2n cards, any arrangement of values is possible. However, the face-up/facedown pattern is constrained as follows: Consider the card at position i. Add one to its value if face-up. Add this to i. This sum is simultaneously even (or odd) for all positions i.

EXAMPLE. Consider a four-card deck in the final arrangement: 4, [image: images], [image: images], 3. In position 1, the sum “position + value + (1 if face-up, and 0 if face-down)” is 1 + 4 + 0 = 5, which is odd. The other three positions give

2 + 2 + 1 = 5, 3 + 1 + 1 = 5, 4 + 3 + 0 = 7,

all odd values.

REMARKS. The constraint in the theorem is the only constraint. All arrangements arrived at by the Hummer shuffling are bound by it, and any pattern of cards that satisfies the constraint is achievable by Hummer shuffles. An interesting unsolved problem is to figure out the minimum number of Hummer shuffles it takes to achieve any particular pattern.



Any property of Hummer shuffles is derivable from the theorem. We record some of these as corollaries.


COROLLARY 1. The number of achievable arrangements for a deck of 2n cards after Hummer shuffling is 2 × (2n)!.

REMARK. In mathematical language, the set of all achievable arrangements of 2n cards after Hummer shuffling forms a group.

COROLLARY 2. (Explanation of Hummer’s original trick.) After any number of Hummer shuffles, the number of face-up cards at even positions equals the number of face-up cards at odd positions. Thus, if the even cards are removed and turned over, the total number of face-up cards is n.

PROOF: Consider the cards at even positions. If there are j even values, all of these must face the same way. Similarly, the n − j odd values must face the other way. At the odd positions, there will be n − j even values all facing in the opposite way to the even values at even positions. When the cards at even positions are removed and turned over, there are j + (n − j) = n facing the same way, with the remaining n facing the opposite way.

COROLLARY TO COROLLARY 2. The argument underlying corollary 2 shows that in fact, after any number of Hummer shuffles followed with every other card removed and reversed, the cards originally at even positions all face the same way (likewise, the cards originally at odd positions all face the opposite way). Let us make this into a trick: Take five red cards and five black cards and arrange them in alternate colors in a face-down pile. Hummer shuffle any number of times, remove every other card, and reverse these. All the red cards face one way and all the black cards face the opposite way. This makes for quite a surprising trick. It may be endlessly varied. For example, remove four aces and six other cards. Place the aces in every second position (i.e., in positions two, four, six, and eight). Turn the bottom card face-up. The cards may be Hummer shuffled any number of times. Follow this by reversing every other card. The four aces will face opposite the remaining cards. Charles Hudson derived a number of entertaining tricks built on this idea. His Baby Hummer trick is explained above. Steve Freeman’s Royal Hummer trick may be the ultimate version.



FINAL NOTES. We are not done understanding Hummer shuffles. The following two notes record a natural question (does it only work with even-sized decks?) and a new trick that comes from the analysis. There is a lot we still don’t know. (For example, what about turning up three?)

NOTE 1. It is natural to wonder if the trick will work with an odd number of cards. It would be nice to ask the spectator to remove a random poker hand of five cards and begin the trick from here. We assume below that “turn two and cut at random” is used throughout.

There is one regularity: There will always be an even number of cards face-up. Alas, this is the only regularity. All 2n−1 × n! signed arrangements of n cards (with n odd) are achievable with a deck of n cards.

Let us record one proof of this. First, any three cards can be manipulated so: [image: images], thus transposing positions 1 and 3. By doing this, any permutation of the even positions and also any permutation of the odd positions is possible. Consider transposing positions 1 and 3, and then 3 and 5, and then 5 and 7, . . . , and then n − 2 and n. This results in 3, 2, 5, 4, 7, 6, . . . , n − 1, 1. For example, with seven cards we get 3, 2, 5, 4, 7, 6, 1. Now transpose consecutive pairs in the even positions, moving the card labeled 2 to the right. This results in 3, 4, 5, . . . , n − 1, 2, 1. Finally, cut the bottom two cards to the top. This all results in a simple transposition. As usual, this allows us to transpose any two consecutive cards and so finally to achieve any permutation of the labels.

Next, we show how to achieve any face-up/face-down pattern with an even number of face-up cards (where we use 0 to denote a facedown card, and 1 to denote a face-up card). This is achieved “two at a time.” The following moves show how this can be done: 000 . . . 0 → 110 . . . 0 → 11110 . . . 0 → 10010 . . . 0 → 1001110 . . . 0 → 1000010 . . . 0. . . . After cutting, this gives any possible separation of the 1’s (since n is odd). This shows that any pair can be turned face-up. Working one pair at a time shows that any pattern of an even number of cards can be turned face-up. Finally, combining our ability to create arbitrary arrangements of values with an arbitrary face-up/face-down pattern gives the final result.

From the above we may conclude that there is no real extension of Hummer’s trick to an odd-sized packet. Of course, the two types of parity delineated above may form the basis for tricks.

NOTE 2. One reason for developing all this theory is the hope of inventing a new trick. Following is one that comes from our analysis.

Here is the effect. Ask a spectator to remove the ace through ten of spades and arrange them in order (ace–ten or ten–ace—it doesn’t matter which). Then turn your back and have the spectator Hummer shuffle the ten-card packet any number of times. You can promise that you don’t know anything about the order of the cards. Ask a spectator to name the values one at a time (from the top down) and you tell them if the cards are face-up or not.

From what was developed above, the only mystery is knowing the orientation (face-up or face-down) of the top card (all else follows). You simply guess! If correct, keep going. If wrong, rub your eyes and ask the spectator to concentrate. Try again! The trick as described may be done on the phone. Note you only need to know the odd/even values of consecutive cards to know their orientation.

Let us be the first to admit that, as described, this is a pretty poor trick. We hope that someone someplace will turn it over and around and come up with something performable. Please let us know (we’ll shout it from the rooftops or, if you like, keep it as secret as secret can be).

BACK TO MAGIC

To conclude on a high note, here is Steve Freeman’s favorite method of getting set for his Royal Hummer trick. This is a replacement for procedures (1)–(4) above. To begin, you have a packet of twenty or so cards that contains a royal flush, with all cards facing the same way. The royal flush is scattered throughout the packet. The cards will be split into two, one face-up packet in each hand. The hands alternately deal into one pile on the table, turning some cards over. At the end, the indifferent cards at even positions will be face-up. Indifferent cards at odd positions will be face-down. The royal flush cards are opposite. When the cards are dealt into two piles and one pile is turned over on the others, all of the indifferent cards face the same way and all of the royal flush cards are opposite.

To get comfortable with this, try a simple exercise: Take two packets of face-up cards, hold one in each hand in dealing position, and deal alternately into one pile, face-up on the table, left, right, left, right, etc. Do this until you can do it easily. Now, with the same start, try turning the left hand’s cards face-down as they are dealt, so that the cards are placed down, up, down, up, and so forth. If this is awkward, try also turning the right hand’s cards down (with the left’s face-up) and then both hands’ cards face-down. It is useful to keep the left/right alternation standardized throughout.

Now for the real thing. Begin with an even number of cards, less than half the deck, containing a royal flush, with all cards face-up. Split these into two roughly equal packets, held face-up in each hand. Each time, deal first from the left then from the right into the pile on the table. Observe the following rules:

1. If two indifferent cards show, deal the left face-up followed by the right face-down.

2. If two royal flush cards show, deal the left face-down followed by the right face-up.

3. With a flush card left and an indifferent card right, deal the left face-down followed by the right face-down.

4. With an indifferent card left and a flush card right, deal the left face-up and the right face-up.

If one hand runs out of cards, just split the remaining cards into two packets and continue. The trick continues as described above. Again, this takes practice to do naturally, accurately, and casually. Several dozen run-throughs might suffice.


Chapter 2

IN CYCLES

In this and the following two chapters, we explain a wonderful magic trick that leads to, and profits from, beautiful mathematics. The trick is one we have performed for drunks in seedy nightclubs, at Hubert’s Flea Museum, and at a banquet of the American Mathematical Society. The trick really fools magicians, mathematicians, and “normal” people too. The mathematics involved begins with basic graph theory. Indeed, it uses ideas that started the subject of graph theory. It also needs tools of finite fields and combinatorics. At the heart of the trick are de Bruijn sequences. These are used in applications far beyond card tricks—for rhyming patterns in East Indian music, for robotic vision, and for making secret codes. The magical applications suggest variations that we call universal cycles. They need new mathematics, much of which doesn’t yet exist (or, at least, is currently unknown).

The story is long enough that we tell it in three chapters. This chapter explains the trick and a bit about how it works. We explain what de Bruijn sequences are, show that they exist, and tell how to construct and count them. At the end, we give practical details on performing the trick.

Chapter 3 tells some stories: real-world applications of breaking and entering, industrial espionage, and decoding DNA, in which de Bruijn sequences are used. Chapter 4 describes some new magic tricks that involve generalizations of de Bruijn sequences. Understanding, constructing, and counting these new universal cycles leads us to the edge of what we know in mathematics. The chapters are self-contained but it all starts with the following magic trick.

THE MAGIC OF DE BRUIJN SEQUENCES

THE EFFECT

Here is what the audience sees: The performer has a deck of cards in its case (a few rubber bands around the deck will help ensure no disaster happens). The deck is tossed to an audience member who tosses it to another, and so on, until the deck is far at the back of the room. To actually perform this trick, you need at least five people in the audience but it is effective with an audience of a thousand. The final deck holder is asked to remove cards from the case, drop the case on the floor, and then give the deck a straight cut at a random position. The deck is passed to a second spectator who is asked to cut and pass it on. Finally, when a fifth spectator cuts, ask that the top card be taken off. The deck is then passed back to the fourth spectator who removes the current top card. Each of the five spectators in turn removes a card. The performer now asks, “This may sound strange but would each of you please look at your card, make a mental picture, and try to send it to me telepathically?” As this is done the performer concentrates and appears confused: “You’re doing a great job, but there is too much information coming in for me to make sense of. Would all of you who have a red card please stand up and concentrate?” Suppose that the first and third spectators stand. The performer appears relieved and says, “That’s perfect. I see a seven of hearts?” (One of the spectators shows that this is indeed the thought-of card.) “And a jack of diamonds? Yes.” Now, focusing on the other three spectators, the performer names all three black cards.

There is nothing left out of the above description; the cards are well out of the performer’s control and aren’t tricked or marked in any way. So how does it work?

THE SECRET

The secret lies in the performer’s innocent question: “Would all of you who have a red card please stand up and concentrate?” This question can be answered in thirty-two different ways: No one stands, only the first person, only the second person, only the first two, and so on, finishing with the possibility that all five spectators stand. With five spectators, each of whom stands or not, this makes 2 × 2 × 2 × 2 × 2 = 32 possible answers. It just so happens that the deck handed out has thirty-two cards. (Sorry for leaving out that detail; the spectators never complain about it!) Of course, the deck is carefully arranged so each consecutive set of five cards has a unique color pattern.

To see the idea in simple form, suppose only three spectators were asked to remove cards. They can answer in 2 × 2 × 2 = 8 ways, so an eight-card deck can be used. The eight possible answers are:

RRR   RRB   RBR   RBB   BRR   BRB   BBR   BBB.

We want to find a sequence of eight R/B colors so that each consecutive set of three occurs just once. The reader can check that the sequence RRRBBBRB does the job. The first three use up RRR. The next three RRB. Further consecutive triples (going around the corner at the end) use up RBB, BBB, BBR, BRB, RBR, BRR. This is all eight used once and only once. Thus, this trick could be worked using the following eight cards: AH, 5D, 6H, 2S, 5S, KC, 7H, 8S, where H, D, C, S stand for hearts, diamonds, clubs, and spades, respectively. Of course, the values are irrelevant but the audience doesn’t know this.

Before explaining the thirty-two-card version (and versions for larger decks), let us restate slightly. Replace the symbols R/B with the mathematicians’ favorite: 1 and 0. Then RRRBBBRB becomes 11100010. A de Bruijn sequence with window length k is a zero/one sequence of length 2k (this is just 2 × 2 × · · · × 2, k times) such that every k consecutive digits appears just once (going around the corner). Thus, 11100010 is a de Bruijn sequence of window length 3. If we have a de Bruijn sequence of window length k, we can perform the trick with 2k cards. As will emerge in the next chapter, de Bruijn sequences with large values of k are needed in applications. We need one with k = 5. The puzzle-inclined reader may want to sit down with pencil and paper (and eraser?) and try to construct one “by hand.” It’s not (so) easy. Indeed, it’s not a priori obvious that there are such sequences for arbitrary values of k. In chapter 4, on universal cycles, we give very similar-sounding problems, where the sequences do exist for some values of k, but not for others.

We have thus arrived at a math problem: Given k, do there exist de Bruijn sequences of window length k? If so, how many are there, and how can we find them? In the rest of the chapter, we will answer these questions and then show how they are applied to our card trick.

One way of answering the question “Are there de Bruijn sequences for every k?” uses graph theory. A directed graph can be represented as a bunch of dots (the vertices of the graph) and a bunch of arrows between some of these vertices (the edges of the graph). For example, figure 1 shows a graph with four vertices (A, B, C, D) and five edges. The edge from D to itself is called a loop. When you first meet graph theory, it is hard to imagine that there is much more to say. In fact, it’s a healthy field of research with several speciality journals, a dozen or so yearly conferences, and hundreds of professional graph theorists. The following example should show you why.

[image: images]

Figure 1. A simple graph

Our current problem is to see if there is always at least one de Bruijn sequence of window length k. Form a graph with vertices being the strings of zero/one symbols of length k − 1 (so there are 2k−1 of them) and an edge going from vertex x to vertex y if there is a zero/one string of length k that has x at its left and y at its right. As with many ideas, this is best understood by example. For k = 3, there are four zero/one strings of length k − 1: 00, 01, 10, 11. Figure 2 shows the de Bruijn graph on these vertices.

[image: images]

Figure 2. The de Bruijn graph on four vertices

For example, there is an edge from 01 to 11 because there is zero/one string of length three, namely, 011, that starts 01 and ends 11. Each of the edges is labeled by a zero/one triple. A de Bruijn graph can be contemplated for any k. However, they get harder to draw.

An “Eulerian circuit” in a directed graph is a walk (following the arrows) that uses each edge exactly once and winds up where it started. For example (trace with your finger), starting at the bottom (vertex 11), visit 11 (again, by edge 111), then 10, 01, 10, 00, 00, 01, 11. If we write our steps down, separated by commas, the cycle is:

11, 10, 01, 10, 00, 00, 01, 11.

Since our walk follows the arrows, each vertex in the cycle has a common “center” with the following one. Collapsing our cycle by just indicating the new digit added gives a de Bruijn cycle:

1 1 1 0 1 0 0 0.

More generally, for any k, an Eulerian circuit in the de Bruijn graph gives a de Bruijn cycle with window length k.

This may not seem like much, trading a simple problem of zero/one strings for a difficult-to-visualize problem on an abstract graph. However, following on the great mathematician Leonhard Euler, we may easily see that a connected graph (i.e., you can get from any vertex to any other vertex by following arrows) has an Eulerian circuit if and only if each vertex has an equal number of edges leading in as leading out. For the de Bruijn graph, there are exactly two edges leading out of each vertex—a zero/one (k − 1)-tuple can be finished off to a k-tuple in just two ways: add zero or add one. Similarly, there are exactly two ways of coming into a vertex. Furthermore, it is not hard to check (by changing one digit at a time) that we can go from any vertex to any other vertex along some path following the arrows. Since we have verified the conditions for Euler’s theorem, we may use its conclusion: de Bruijn sequences exist for every k. The proof of the theorem even gives an algorithm of sorts for construction: Start at any vertex (say k − 1 0’s), choose any available arrow leading out, erase this arrow, and continue. The proof shows you can cover each edge just once without getting stuck. What’s more, the construction forces a cycle; the last step winds up at the original start. (Strictly speaking, you may end up with a number of smaller cycles that can then be stitched together to get one big [Eulerian] circuit.)

A bit more is coming, but let us return to the trick. By actually drawing the graph for k = 5 (it has 16 vertices and is a bit of a mess), we find lots of de Bruijn sequences. One is:

00000100101100111110001101110101.

Let us use this to make a performable version of the trick. Get a deck of cards and remove all the aces through eights of all four suits (thirty-two cards in all). Arrange the cards in the following order:

8C,AC,2C,4C,AS,2D,5C,3S,6D,4S,AH,3D,7C,7S,7H,6H,
4H,8H,AD,3C,6C,5S,3H,7D,6S,5H,2H,5D,2S,4D,8S,8D.

This matches the zero/one string above—the colors start B,B,B,B,B,R,B,B, . . . The top card of the arranged stack is the eight of clubs (8C), the next card is the ace of clubs (AC), and the bottom card is the eight of diamonds (8D). The deck as arranged can be given any number of cuts. This does not change the cyclic pattern, only the starting point. To perform the trick, the performer must be able to “decode” the pattern prescribed by the five spectators and convert it into the names of the five cards. Here is a practical way of doing this. Table 1 lists the five cards next to each possible pattern.

Table 1. Possible card patterns

[image: images]

One way to use the table is to pencil it lightly on the top portion of a pad of paper (you can also photocopy it). Take the deck out of its case (don’t forget the rubber bands). Have five cards selected as described. Pick up the pad and a felt-tipped pen (ostensibly to aid your visualization process). Make some scribbles on the pad as you patter about the spectators’ powers of concentration. After admitting difficulty, ask the spectators holding red cards to stand up. Mentally translate this into a binary pattern, say 01001 (zero for black, one for red). Find this pattern on the list. You now know all five cards and can reveal them in a dramatic way, perhaps naming the red cards first and then the blacks.

It is important to give no clue that you are consulting a list. This can be helped by thought and practice. To begin, note that the first eight rows in the list contain patterns that start with 00, the next eight rows have patterns starting with 10, then 01, then 11. The upper half of each group of eight in the list contains patterns ending in 000, 001, 010, 011. The lower half contains patterns ending in 100, 101, 110, 111. When you see how the spectators stand up, your hands on the pad can locate the correct group of eight and the correct upper or lower half. This should be done without looking. Then, a glance down determines the exact pattern. Put a finger or thumb there. Now begin doodling on the pad, looking at the exact card names. You can write a few of the correct cards in large letters to end the revelation. There is no substitute for practice. Plan what you will say, keep talking, pretend you actually are a mind reader in a bit of trouble. We suggest fifty run-throughs as a minimum number required to perform this well.

One of our former students, now a professor himself, harnessed the computer to replace the list. He wrote a short program that takes five binary inputs and outputs the five chosen cards. He creates misdirection by asking for and inputting seemingly irrelevant data (“What country were you born in?”, “Did you have orange juice for breakfast this morning?”, etc.). He uses the computer for his “cheat sheet.” The first person to make this into an iPhone app wins a free glass of orange juice from us!

At the end of this chapter, we give a way to completely eliminate any secret lists—the whole trick can be carried out mentally. This development is possible only because of some very elegant mathematics.

Where are we in our understanding of de Bruijn sequences? The mathematics of the de Bruijn graph shows that, in principle, we can always find a de Bruijn sequence. However, we don’t have any concrete method in hand and, as will emerge, there are lots of different constructions that are useful for different applications.

One systematic approach is the “greedy algorithm.” Begin by writing a sequence of k zeroes and then adding a one whenever you can (in other words, whenever you don’t form a pattern that you have already seen). Thus, for k = 4, begin 0000 and cross this pattern off of the list. Adding ones (and crossing off the list each time) gives 00001111 as the first eight symbols. Adding another one would give a repeat, so a zero must be added instead. Continuing leads to the final sequence:

0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0.

This rule works for k = 4, and M. A. Martin (1934) showed that the rule works for all k.1 A practical person may only need to construct a sequence for a fixed value of k and wonder why a mathematician cares about all k. After all, no application will require a truly large k (larger than one hundred, say) and, even for k = 40, for example, 240 ≈ 1012 is not difficult to try on today’s computers. Why bother with a more careful analysis? While there is no explaining curiosity, we offer two questions that cry out for theory. In the card trick above, we are given k consecutive symbols and need to know where we are in the sequence. In applications in chapter 3, we have to do the opposite—given a position in a long de Bruijn sequence, what are the k following symbols?

Consider the first task. On the sequence generated from the greedy algorithm when k = 4, suppose we see 0110. Is the next symbol a one? It would be unless 1101 had been used up earlier. As it turns out, the next symbol is a zero. Thus, knowing the next symbol seems to require searching through a complete list of all the earlier occurring patterns. Of course, this is just a first thought on the matter. Maybe a more careful look at the greedy algorithm will reveal some useful structure. This is again a math problem. We can prove that, for large k, the storage list we require in order to look things up if the greedy algorithm is used must be exponentially long in k. Hal Fredricksen gives a clever variation of the greedy algorithm that requires only three times the window length k in storage. Below we discuss other constructions that make the “what is the next symbol” question easy.

Once one considers different methods of construction, it is natural to ask: “How many de Bruijn sequences with a fixed window length are there?” We consider two de Bruijn sequences to be the same if they differ only by a cyclic shift. Thus, for k = 3, it is easy to check that there are just two:

00011101 and 11100010.

For k = 4 there are 16. For k = 5 there are 211 = 2,048. De Bruijn got his name on the sequences by giving an amazing formula:

For any k, the number of de Bruijn sequences is exactly 22k−1−k.

We will leave further developments to the next section. For now, we have met de Bruijn sequences, shown that they exist, have given methods of construction, and we have been able to count them. As later chapters show, there are useful, natural variations where any of the questions of existence, construction, and counting are still open problems.

GOING FURTHER

The magic trick In Cycles is our version of a trick of Charles T. Jordan’s. Writing in 1919, Jordan described Coluria, a trick with thirty-two cards repeatedly cut with a pattern of colors revealing a selected card.2 We will tell Jordan’s amazing story in chapter 10. He was a chicken farmer from Petaluma, California, who invented and sold card tricks. He made part of his living as a professional problem solver, entering newspaper contests of “impossible questions” in cities around the country. Despite these abilities, even Jordan couldn’t quite get it right. For a deck with thirty-two cards, he asked for the colors of six consecutive cards! In the 1930s, the magical inventors William Larson and T. Page Wright marketed a trick called Suitability. Here, a deck of fifty-two cards is repeatedly cut and three cards are removed. The spectators announce the suits of their cards and the performer correctly names them. The number of possible answers is 4 × 4 × 4 = 64, so there is enough information to distinguish fifty-two possibilities. The reader is invited to find a suitable arrangement. In chapter 4, on universal cycles, we give a general solution.

In the 1960s, Karl Fulves and, separately, P. Diaconis working with the chemist Ronald Wohl, derived dozens of tricks based on variations and extensions of Jordan’s idea. Magicians have kept at it. They mistakenly call de Bruijn sequences “Gray codes.” Indeed, there are combinatorial Gray codes, which are sequences of k-tuples, each differing from the last by changing one digit. For example, 000, 001, 011, 010, 110, 111, 101, 100 is a Gray code for k = 3. The difference is that Gray codes cannot be arranged into one sequence with consecutive k-tuples differing by a shift. The distinct blocks of k differ by one digit that may be changed in any place. Gray codes are extremely useful and interesting objects. They are used in analog to digital conversion, to calculate correlations, and in Samuel Beckett plays. But as far as we know, there has never been a single use in magic. (Now there is a magic problem!)

The reader wishing for a gentle introduction to graph theory and de Bruijn sequences can do no better than to consult Sherman K. Stein’s marvelous works.3 More advanced (but still friendly) treatments are given by Hal Fredricksen and Anthony Ralston.4 A comprehensive treatment, with many topics not covered here, is in Donald Knuth’s long-awaited The Art of Computer Programming 4A, part 1.5 This covers de Bruijn sequences, Gray codes, and much, much more. An online encyclopedia on the subject is available from Frank Ruskey.6

AN ELEGANT SOLUTION TO THE MAGIC TRICK

In this section, we describe a way of getting rid of any lists in performing the trick. We also describe the full performance details. The solution involves working with the binary number system to count from zero to seven.

The usual way we write numbers is in base ten. Thus, 11 is 1 × 10 + 1, and 274 is 2 × 100 + 7 × 10 + 4 × 1. Binary numbers work with powers of two. Thus, 111 is 1 × 4 + 1 × 2 + 1 × 1 or 7, and 000 is 0 × 4 + 0 × 2 + 0 × 1 = 0. Similarly,

001 is 1,
010 is 2,
011 is 3,
100 is 4,
101 is 5,
110 is 6.

For instance, 110 is 1 × 4 + 1 × 2 + 0 × 1 = 6. Binary digits are bits (for BInary digiTs). The patterns of zeroes and ones we have been dealing with will be called “five-bit words.” We will use the right-most three bits to denote one of the eight numbers zero to seven as in the list above. The left-most two bits will denote the suit. If the five bits are called abcde, we have

[image: images]

The suit is coded according to the following rule.



	00
	club



	01
	spade



	10
	diamond



	11
	heart




Here, 0 in the left-most position denotes black, and 1 in the left-most position denotes red. We have used a standard bridge convention where hearts and spades are the major suits and diamonds and clubs are the minor suits, so that 1 in the second position denotes major and 0 denotes minor. Thus, 10 stands for the minor red suit diamonds. Most users will just memorize the four suit patterns.

This notation allows us to associate a card to each five-bit word, using the right-most three bits to denote value and the left-most two bits to denote suit. Thus, 00101 is the five of clubs. The stacked deck we introduce was derived from the sequence given on page 21 in just this way. Since there are no “zeroes” in a real deck of cards, we assign 000 to the numerical value eight (this is correct, modulo eight). Thus, the sequence begins 000001. . . . The first five bits become 8C. The second five bits become AC, and so on.

Using this arrangement then automatically tells the performer the value and suit of the left-most spectator’s card. The arrangement has been further designed so it is possible to tell the values of all five cards. To explain this, we need to introduce the operation of adding modulo two. This is a version of the well-known rule “even plus even is even, odd plus odd is even, while even plus odd is odd,” familiar from adding numbers. If even is replaced by zero, and odd by one, we get the rules for adding modulo two:

0 + 0 = 0,
1 + 1 = 0,
0 + 1 = 1,
1 + 0 = 1.

These rules allow a simple description to get the next pattern of five from a starting pattern of five. The rule is this: If abcde are five bits, the next bit is a plus c modulo two. Thus, 01001 is followed by 010010. Translating to the language of cards, 01001 is AS. This is the left-most card. The card second from the left was determined from the five-bit word 10010.

[image: images]

The second card from the left is therefore 2D.

From the original pattern, the name of the first spectator’s card is known. Further, the next bit in the sequence can be computed and so the second spectator’s card is known. The process can be continued to determine all of the bits. The rule is, to calculate the next bit in 010010, add the bits five back and three back from the end. For example, from 010010 gives 1 + 0 = 1, the boldface bits shown are five and three back. Adding gives 1 + 0 = 1, so the next block of five is by 00101, which corresponds to 5C. The fourth and fifth cards are found to be 3S and 6D by following the same rules.

A sequence formed in the way described is called a linear shift-register sequence. Such sequences are used extensively in the mathematics of computer science. While we won’t go into the theory of such sequences here, we point out a handy fact: Once you understand the rule, there is no real need to remember anything more.

Thus, suppose you are away from home and want to perform a card trick at a dinner party. The magically arranged list is not around. It’s easy to create it: Just start with any non-zero five-tuple, say 00001. Using the rule, continue the sequence: 00001011 . . . , and then set the cards as the sequence demands. It is not even necessary to write out the sequence. Just get a deck of cards and remove the aces through eights. Start with any card, for example, the ace of clubs. Now use the rule: The next card is 00010, the two of clubs. Now it is easy to keep going, setting the cards in a few minutes. You will find the pattern runs through all non-zero five-tuples and so uses all cards except the eight of clubs. The pattern of thirty-one is just as before (see page 21), with the eight of clubs removed. This is the way we do the trick, using thirty-one cards.

We conclude this section with a few further notes on the practical performance of the trick without lists. To begin with, we have found that a few hours’ practice enables rapid, sure calculation of the value of one card, given the next. Perhaps the best way to practice is simply to cut the deck, look at the top card, transform it into binary, use the rule to compute the next bit, and transform the last five bits into a card name. This can be continued.

Another approach uses the hands as a simple computing machine. In performing the trick, we observe the given pattern of reds and blacks among the five spectators. The idea is to generate the red/black pattern of the next four cards using the rule. To do this in an automatic way, use the first and second fingers of the left hand to represent the colors of the next two cards, and the first and second fingers of the right hand to represent the colors of the two following cards. This should be done without thinking. It requires assigning a definite order to fingers. Let a curled-in finger stand for a zero and a straightened finger stand for a one. Here is an example. The observed pattern is 01001. Using the rule, the next bit is zero. We curl in the second finger of the left hand. The next three bits are 1, 1, 0. These are successively represented by keeping the left first finger straight, the right first finger straight, and curling in the second finger of the right hand.

At this stage we have recorded 010010110. The five cards are thus AS, 2D, 5C, 3S, 6D. We have found this version straightforward to use in practice. There is some evident “computation” occurring in the mind of the performer, and this seems to enhance the effect of something genuinely spooky going on. This is a nice example of a trick where the method is as amazing as the effect.

Magic performance offers opportunities not present in some of our other mathematical pursuits. For example, can we do Jordan’s trick with a full deck of fifty-two cards where just five spectators are involved? Now, 25 = 32 shows that the mathematical answer to the question is no. Any arrangement of the colors must have some repeated five-tuples. The magical answer is “Why not?” Find an arrangement of fifty-two cards with thirty-two distinct five-tuples and with twenty of these that repeat just once. Then, some of the time you know all the cards for sure and some of the time you know it is one of two fixed sets of five. A single further question will determine things. For example, “Spectator One, you have a red card. I think it is a heart.” If yes, you are home. If no, you are home as well.

Throughout this book we go from magic to mathematics, and back. We have just posed a math problem arising from a magic trick: Is there a neat way to arrange a deck of fifty-two cards that does what is needed? We leave this to the interested reader.
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