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Preface

The second edition, like the previous one, Marine Mammals: Evolutionary Biology, is written for two audiences: as a text for an upper-level undergraduate or graduate-level course on marine mammal biology and as a source book for marine mammal scientists in research, education, management, and legal/policy development positions. One of our major goals is to introduce the reader to the tremendous breadth of topics that comprise the rapidly expanding interdisciplinary field of marine mammal science today. Our motivation for writing this book was the lack of a comprehensive text on marine mammal biology, particularly one that employs a comparative, phylogenetic approach. We have attempted, where possible, to demonstrate that hypotheses of the evolutionary relationships of marine mammals provide a powerful framework for tracing the evolution of their morphology, behavior, and ecology. This approach has much to offer but is limited, in many cases, by available comparative data. We hope that this book stimulates others to pursue marine mammal research in this exciting new direction.
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1 Introduction


1.1. Marine Mammals—“What Are They?”

Some 100 living species of mammals (listed in the Appendix) depend on the ocean for most or all of their life needs. Living marine mammals include a diverse assemblage of species that have representatives in three mammalian orders. Within the order Carnivora are the pinnipeds (i.e., seals, sea lions, walruses), the sea otter, and the polar bear. The order Cetacea includes whales, dolphins, and porpoises, and the order Sirenia is composed of sea cows (manatees and dugongs). Marine mammals were no less diverse in the past and include extinct groups such as the hippopotamus-like desmostylians, the bizarre bear-like carnivore Kolponomos, and the aquatic sloth Thalassocnus.




1.2. Adaptations for Aquatic Life

Marine mammals are well adapted for life in the water though they differ in the degree to which they are adapted to this habitat. Pinnipeds, sea otters, and polar bears are amphibious, spending some time on land or ice to give birth and to molt, whereas cetaceans and sirenians are fully aquatic. A few major aquatic adaptations are briefly reviewed in this chapter and are covered in greater detail in subsequent chapters. Adaptations of the skin, specifically its increased insulation (through development of blubber or a dense fur layer) and countercurrent heat exchange systems, help them cope with the cold. Similarly, the eyes, nose, ears, and limbs of marine mammals have changed in association with their ability to live in a variety of aquatic environments, which include saltwater, brackish, and freshwater. Perhaps the most notable among sensory adaptations are the high frequency sounds produced by some whales for use in navigation and foraging. Other marine mammals (e.g., pinnipeds, polar bears, and sea otters) have an acute sense of smell; these same groups also possess well-developed whiskers with sensitive nerve fibers that serve as tactile sense organs. Pinnipeds have front and hind limbs modified as flippers that propel them both in the water and on land. In cetaceans and sirenians, the hind limbs are virtually absent and locomotion is accomplished by vertical movement of the tail. Most marine mammals cope with living in salt water by conserving water in their heavily lobulated kidneys, which are efficient at concentrating urine.

Many marine mammals are capable of prolonged and deep dives. Adaptations of the respiratory system, such as flexible ribs that allow the lungs to collapse and thickened tissue in the middle ear of pinnipeds and cetaceans, enable them to withstand the tremendous pressures encountered at great depths. The long dives of these animals are accomplished by a variety of circulatory changes including a slowed heart rate, reduced oxygen consumption, and shunting blood to only essential organs and tissues.




1.3. Scope and Use of This Book

Our goal for this second edition remains the same as for the first edition: to provide an overview of the biology of marine mammals with emphasis on their evolution, anatomy, behavior, and ecology. These topics are presented and discussed using, in so far as possible, an explicit phylogenetic context. In doing so we consider different ways of incorporating evolutionary history into comparative analyses of marine mammal biology. The phylogenetic approach advocated in this book is a young but vigorously developing research field that we believe has much to offer marine mammal science. Over the past six years, interest in this approach has grown and we are pleased to offer a number of new case studies that integrate a phylogenetic approach into studies of marine mammal biodiversity.

The book is divided into two major sections: Part I: Evolutionary History (Chapters 2–6) is where the origin and diversity of marine mammals are revealed, and Part II: Evolutionary Biology, Ecology, and Behavior (Chapters 7–15) is where we attempt to explain how this diversity arose by examining patterns of morphological, behavioral, and ecologic diversity. We have intended to explain these concepts, wherever possible, by example and with a minimum of professional jargon. Words and phrases included in the glossary appear in boldface type at their first appearance in the text. “Further reading” sections have been placed at the end of each chapter and are intended to guide the reader to more detailed information about a particular topic.




1.4. Time Scale

A historical discussion of marine mammals requires a standard time framework for relating evolutionary events. Figure 1.1 presents the geologic time scale that is used throughout this book (based on Harland et al., 1990). Our interest lies in the Cenozoic Era, the last 65 million years of earth history, during which time all marine mammals made their first appearance. Whales and sirenians were the first to appear, beginning approximately 50 million years ago (Ma) during the early Eocene. Pinnipeds trace their ancestry back between 29 and 23 Ma to the late Oligocene. The sea otter lineage goes back approximately 7 Ma to the late Miocene, although the modern sea otter is known in the fossil record only as far back as the early Pleistocene (1.6 Ma). Polar bears appear even later, during the late Pleistocene (0.5 Ma). The desmostylians, extinct relatives of sirenians, range from the early Oligocene through the late Miocene. The extinct carnivoran Kolponomos is known from a brief time interval during the early Miocene, and the extinct marine sloth Thalassocnus lived during the late Miocene–late Pliocene (7–3 Ma).


[image: ]
Figure 1.1. Chronologic ranges of marine mammal taxa. Solid bars show reported maximum ranges. Ma = million years ago. (Time scale and correlations are from Harland et al., 1990, and Berggren et al., 1995.)






1.5. Early Observations of Marine Mammals

The study of marine mammals probably began with casual observations of the appearance and behavior of whales in the 4th century B.C. Still, the knowledge and history of these animals themselves go much further back. Drawings of seals and dolphins on pieces of reindeer antler and in caves have been found from Paleolithic times. The Greek philosopher Aristotle (384–322 B.C.) in his Historia Animalium describes dolphins, killer whales, and baleen whales, noting that “the [latter] has no teeth but does have hair that resemble hog bristles.” Unfortunately, Aristotle’s observations were dismissed by many later workers because of his misclassification of dolphins as fish. Following Aristotle, the only other authority on whales in ancient times was Pliny the Elder (24–79 A.D.). In his 37-volume Naturalis Historia, he included a book on whales and dolphins in which he provided accounts based on Aristotle’s findings and his own observations. Knowledge of marine mammals languished for a thousand years after Aristotle and Pliny during the Dark Ages. During the Renaissance, a rapid increase in exploration of the oceans was followed by the publication of scientific reports from various expeditions. The earliest of these was the Speculum Regale, an account of Iceland in the 13th century that considered whales the only truly interesting sight the island had to offer. Its author correctly distinguished between northern right whales and bowhead whales, which were still confused by many naturalists five centuries later. In the 16th century, explorers discovered the rich feeding grounds in the high Arctic and the large whale populations that these supported. In the mid-1500s, Konrad Gesner in his Historia Animalium presented illustrations of whales; among them was one so large that sailors mistook it for an island (Figure 1.2).

A walrus is also illustrated in Gesner’s work (Figure 1.3a). Among the earliest drawings of seals, Vitulus marinus (Figure 1.3b) in Pierre Belon’s De Aquatilibus (1553) is most remarkable for its accuracy, particularly in the detail of the hind limbs. In Guillaume Rondelet’s De Piscibus (1554), two seals are illustrated, one probably representing the common seal and the other the Mediterranean monk seal (Figure 1.3c, d; King, 1983). In another book, The Natural History of Quadrupeds (1763) by R. Brookes, it is obvious from the illustration and description of the male with a large snout or trunk that the elephant seal is depicted as a cheerful “sea lion” with a “seaweed tail” (Figure 1.3e; King, 1983).


[image: ]
Figure 1.2. Woodcut by Conrad Gesner, from Historia Animalium, first published between 1551 and 1558, shows a whale so large that sailors mistook it for an island.



[image: ]
Figure 1.3. Early illustrations of pinnipeds. (a) Walrus from Conrad Gesner’s Historia Animalium, probably taken from a drawing by Albert Dürer. (b) Seal from P. Belon, De Aquatilibus (1553). (c) Seal from Guillaume Rondelet, De Piscibus (1554). (d) Seal from Guillaume Rondelet, De Piscibus (1554). (e) “Sea lion” from R. Brookes, The Natural History of Quadrupeds (1763).



In 1596, the Dutch navigator Wilhelm Barents discovered Spitzbergen (the largest island in the Svalbard Archipelago, north of Norway) and early in the 17th century commercial whalers were sent there by Dutch and English companies to establish a whaling town. Although these expeditions were concerned primarily with whale products, they also produced a number of publications that provided reasonably accurate descriptions of the external appearance of the most common kinds of whales. The best of these are found in Spitzbergische oder Groenlandische Reisen Beschreibung (1675) by Frederich Martens and Bloyeyende Opkomst der Aloude en Hedendaagsche Groenlandsche Visschery (1720) by C. G. Zorgdrager, both of which contained engravings that continued to be reproduced in books until the early 19th century. Georg Wilhem Steller, ship’s naturalist and physician for Vitus Bering’s second expedition to North America, was among the first Europeans to explore Alaska and the Aleutian and Commander Islands. His notes of marine mammals living in the Bering Sea, The Beasts of the Sea (1751), contained a natural history account of the sea otter, sea lion, fur seal, and the now extinct Steller sea cow, the only first-hand scientific observation of this species.

Another naturalist, Lacépéde, compiled a volume on whales (1804), in which most of the illustrations were copied from previous publications (Figure 1.4). Lacépéde acknowledged that not having ever seen a whale, he had made his descriptions from those of other naturalists. In the first half of the 19th century, additions to the literature included Peter Camper’s Observations Anatomiques sur Plusiers Especes de Cétacés (1820). The foremost European cetologist of the second half of the 19th century was P.-J. Van Beneden, a Belgian zoologist whose many monographs on whales and pinnipeds (including Histoire Naturelle des Cétacés des Mers d’Europe, 1889) were published in Brussels between 1867 and 1892. John Edward Gray, who became Keeper of the Zoology Department at the British Museum of Natural History, published his Catalogue of Seals and Whales in the British Museum in 1866. John Allen (1880), in his comprehensive monograph of North American pinnipeds, provided keys to the families and genera, described the North American species, and gave accounts of pinniped species in other parts of the world.


[image: ]
Figure 1.4. Woodcut of baleen whales from Lacépéde (1804).



Meanwhile, the whaling industries of several countries were making other contributions to the study of whales. Whaling captains such as William Scoresby and Charles Scammon made their own observations in the field or collected those of their colleagues. Scoresby published An Account of the Arctic Regions (1820), which is still a valuable source of information on the northern right whale. Scammon’s book, The Marine Mammals of the North-Western Coast of North America, was published in 1874 and has become a classic, particularly valued for its description of the natural history of the gray whale in California.

Land-based whaling stations used in more modern whaling provided the material for Frederick True’s 1904 monograph The Whalebone Whales of the Western North Atlantic and Roy Chapman Andrews’s 1916 monograph on the Sei whale in the Pacific.

Apart from whalers, the only people seriously interested in the study of whales (cetology) at this time were comparative anatomists (for a more detailed account of the beginnings of cetology see Matthews, 1978). Among their ranks were Rondelet, Bartholin, Camper, Cuvier, Hunter, and Owen. These pioneers in the study of cetacean anatomy made the most of specimens that came their way and the writings that many of them produced show that they made accurate observations. Cuvier in particular made several fundamental advances in cetology. His Le Régne Animal (1817) and Recherches sur les Ossemens Fossiles (1823) contain the original descriptions and illustrations of the three species of cetacean that he named (Cuvier’s beaked whale, Risso’s dolphin, and the spotted dolphin).

During this time, confusion over the affinities of another marine mammal group, the dugongs, led some to consider them an unusual tropical form of walrus. In a publication from 1800, the manatee is inaccurately shown as hog-nosed (Figure 1.5a). The earliest illustration of a sirenian to be published, the West Indian manatee from the 1535 edition of La Historia General de la Indias by Gonzalo Fernandez de Oviedo y Valdés, is little changed from this depiction more than two centuries later (Figure 1.5b).


[image: ]
Figure 1.5. Early illustrations of manatees. (a) An “American manatee” (species, unknown) from a lithograph (Reynolds and Odell, 1991). (b) West Indian manatee from the 1535 edition of La Historia General de la Indias by Gonzalo Fernandez de Oviedo y Valdes.



Descriptions of the anatomy of various pinnipeds followed including the walrus (Murie, 1870) and the Steller sea lion (Murie, 1872, 1874). Another accomplished anatomist, W.C.S. Miller (1888), dissected a variety of pinnipeds including the southern fur seal and southern elephant seal, recovered on the H.M.S. Challenger expedition to the Antarctic during the years 1873–1875. Thompson (1915) published the first account of the osteology of Antarctic seals including the Ross seal, the Weddell seal, and the leopard seal. Howell (1929) published his well-known comparative study of both phocids and otariids based on the California sea lion and the ringed seal. He followed this with a book on aquatic adaptations in mammals (Howell, 1930).




1.6. Emergence of Marine Mammal Science

Marine mammal science has emerged as a discipline in its own right only in the last 20–30 years. This increasing interest in marine mammals is clearly shown by the expansion of the literature dealing with these animals. J. A. Allen’s bibliography of cetaceans and sirenians (1882), covering the 350 years from 1495 to 1840, contains 1014 titles, just under three publications per year. In the period from 1845 to 1960, between 3000 and 4000 articles were published, with a conservative estimate of about 28 titles a year (Matthews, 1966). By comparison, c. 24,000 papers on marine mammals were published between 1961 and 1998 according to the Zoological Record, a rate of 646 per year. From 1999 to 2004, marine mammal publications increased to a rate of more than 856 per year. Among the major influences that contributed to the birth of marine mammal science was the growing recognition that marine mammal populations were limited in numbers and that their exploitation had to be regulated (Boyd, 1993). The aim of many early studies was to obtain accurate information about the biology of these animals for use in establishing an effective management policy for sustainable exploitation. It is ironic that the decline in whale stocks heralded the beginning of the scientific study of marine mammals. As a result of concerns regarding stock viability, the Discovery investigations (1925–1951) were undertaken to examine the biology of whale stocks in the Southern Ocean. Not only was the biology of whales examined but also their food supplies and their distributions and abundances in relation to oceanographic conditions. For example, British scientists N. A. Mackintosh and J. F. G. Wheeler (1929) examined 1600 carcasses for gut contents in order to produce their report on blue and fin whales. Leonard Harrison-Matthews had comparable samples in his reports on the humpback whale, sperm whale, and southern right whale in 1938 (Watson, 1981).

In the 1950s, the theme of the Discovery investigations was continued by the Falkland Islands Dependencies Survey (later known as the British Antarctic Survey) when it established a research program on the southern elephant seal on South Georgia Island under the directorship of R. M. Laws. In parallel with these and other studies, with a focus on population ecology, there also was growing interest in the anatomy and physiology of marine mammals (Irving, 1939; Scholander, 1940; Slijper, 1962; Norris, 1966; Andersen, 1969; Ridgway, 1972; Harrison, 1972–1977). The establishment of various scientific committees (e.g., the International Whaling Commission’s Scientific Committee in 1946 and the U.S. Marine Mammal Commission in 1972) to provide advice about the status of various marine mammal populations also required knowledge and data on the general biology of these animals and thus served to stimulate research. Since the early 1980s, the biology of various marine mammal species has been the subject of many notable books, beginning with Ridgway and Harrison’s series entitled Handbook of Marine Mammals (1981–1998). This has been followed by detailed separate accounts of the biology of the Pacific walrus (Fay, 1982), gray whale (Jones et al., 1984), bowhead whale (Burns et al., 1993), bottlenose dolphin (Leatherwood and Reeves, 1990; Reynolds et al., 2000), Hawaiian spinner dolphin (Norris et al., 1994), harbor porpoise (Read et al., 1997) sperm whale (Whitehead, 2003), harp and hooded seals (Lavigne and Kovacs, 1988), elephant seals (Le Boeuf and Laws, 1994), and the northern fur seal (Gentry, 1998). Comprehensive treatments of marine mammal groups are available for pinnipeds (King, 1983; Bonner, 1990; Riedman, 1990; Renouf, 1991), for whales (Matthews, 1978; Gaskin, 1982; Evans, 1987; Mann et al., 2000), for manatees and dugongs (Hartman, 1979; Reynolds and Odell, 1991), and for sea otters (Kenyon, 1969; Riedman and Estes, 1990). Valuable field identification guides for all marine mammals are found in Reeves et al. (2002), for pinnipeds and sirenians in Reeves et al. (1992), and for whales and dolphins in Leatherwood and Reeves (1983) and Carwardine (1995). Recent additions to the growing literature on marine mammal biology include edited books on health and medicine (Dierauf et al., 2001), cell and molecular biology (Pfeiffer, 2002), conservation biology (Evans and Raga, 2001), evolutionary biology (Hoelzel, 2002), and even an encyclopedia on marine mammals (Perrin et al., 2002).

Matthews (1966) wrote “the greatest revolution in the study of the Cetacea… has come with the possibility of keeping living cetaceans in oceanariums.” However, one of the most significant advances in marine mammal science in recent years has undoubtedly been the move toward studying animals under wild, unrestrained conditions at sea. This is in large part the result of technological advances in microelectronics (e.g., satellite telemetry and time-depth recorders). For example, the application of microelectronics led to the discovery that elephant seals regularly dive to depths of 1000 m with consistently long dive durations, typically lasting 15 to 45 minutes. This feature of elephant seal biology, in addition to studies on a variety of other species, has forced physiologists to reexamine our understanding of the biochemical pathways used by these animals to maximize the efficiency of oxygen utilization. Studies with crittercams provide a visual record of everything that a marine mammal sees. For example, crittercams have revealed Wedell seals flushing prey from crevices in the ice.

Technological advances in molecular biology (e.g., analysis of DNA variation) have also provided unparalleled opportunities to examine interactions among populations and the roles of individuals within those populations. For example, using DNA fingerprinting and other techniques, it is possible to assess paternity and kinship among whales, animals for which this has previously been virtually impossible owing to the difficulty of observing them mating underwater. These techniques have also made it possible to measure effective population sizes and interpret historical events such as population bottlenecks. Molecular techniques also have contributed to our knowledge of the systematics and taxonomy of various marine mammal groups.

As pointed out by Watkins and Wartzok (1985), information and research about marine mammals range “from intensive to eclectic.” Much of the available data is difficult to synthesize because techniques vary widely and sample sizes often are necessarily small. This is not a reflection of poor science but rather the environmental, practical, and legal complications implicit in marine mammal research. It is apparent that the database must be expanded. Even within a relatively homogeneous group like odontocete whales, one well-known species (the bottlenose dolphin, Tursiops truncatus) cannot be used reliably to characterize all toothed whales. With this in mind, we hope that as readers of this book you will be able to identify areas in which research must be done. We encourage you to pursue research on marine mammals—there are still many gaps in our knowledge of this diverse and unique assemblage of mammals.




1.7. Further Reading and Resources

There are a large number of Internet addresses with information about marine mammal programs and organizations; a few that we consider the most useful are listed here: http://www.marinemammalogy.org—Society for Marine Mammalogy (SMM), a professional international organization of marine mammal scientists, publishes a journal (quarterly) of original research on marine mammals: Marine Mammal Science. http://web.inter.NL.net/users/J.W.Broekema/ecs/index.htm—European Cetacean Society (ECS), professional biologists and others interested in whales and dolphins. http://www.earthwatch.org—Earthwatch Institute, offers opportunities for marine mammal enthusiasts to work as volunteers with research scientists.

Also, for career and hobbyist information about marine mammals see books by Glen (1997) The Dolphin and Whale Career Guide, Samansky (2002) Starting Your Career as a Marine Mammal Trainer, and Strategies for Pursuing a Career in Marine Mammal Science published by SMM and available online.
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Part I

Evolutionary History





2 Systematics and Classification


2.1. Introduction: Systematics—What Is It and Why Do It?

Systematics is the study of biological diversity that has as its emphasis on the reconstruction of phylogeny, the evolutionary history of a particular group of organisms (e.g., species). Systematic knowledge provides a framework for interpreting biological diversity. Because it does this in an evolutionary context it is possible to examine the ways in which attributes of organisms change over time, the direction in which attributes change, the relative frequency with which they change, and whether change in one attribute is correlated with change in another. It also is possible to compare the descendants of a single ancestor to look for patterns of origin and extinction or relative size and diversity of these groups. Systematics also can be used to test hypotheses of adaptation. For example, consider the evolution of the ability to hear high frequency sounds, or echolocation, in toothed whales. One hypothesis for how toothed whales developed echolocation suggests that the lower jaw evolved as a unique pathway for the transmission of high frequency sounds under water. However, based on a study of the hearing apparatus of archaic whales, Thewissen et al. (1996) proposed that the lower jaw of toothed whales may have arisen for a different function, that of transmitting low frequency sounds from the ground, as do several vertebrates including the mole rat. According to this hypothesis, the lower jaw became specialized later for hearing high frequency sound. In this way the lower jaw of toothed whales may be an exaptation for hearing high frequency sounds. An exaptation is defined as any adaptation that performs a function different from the function that it originally held. A more complete understanding of the evolution of echolocation requires examination of other characters involved such as the presence of a melon and the morphology of the middle ear and jaw as well as the bony connections between the ear and skull (see Chapter 11).

An understanding of the evolutionary relationships among species can also assist in identifying priorities for conservation (Brooks et al., 1992). For example, the argument for the conservation priority of sperm whales is strengthened by knowing that this lineage occupies a key phylogenetic position as basal relative to the other species of toothed whales. These pivotal species are of particular importance in providing baseline comparative data for understanding the evolutionary history of the other species of toothed whales. Sperm whales provide information on the origin of various morphological characters that permit suction feeding and the adaptive role of these features in the early evolution of toothed whales.

Perhaps most importantly, systematics predicts properties of organisms. For example, as discussed by Promislow (1996), it has been noted that some toothed whales (e.g., pilot whales and killer whales) that have extended parental care also show signs of reproductive aging (i.e., pregnancy rates decline with increasing age of females), whereas baleen whales (e.g., fin whales) demonstrate neither extended parental care nor reproductive aging (Marsh and Kasuya, 1986). Systematics predicts that these patterns would hold more generally among other whales and that we should expect other toothed whales to show reproductive aging.

Finally, systematics also provides a useful foundation from which to study other biological patterns and processes. Examples of such studies include the coevolution of pinniped parasites and their hosts (Hoberg, 1992, 1995), evolution of locomotion and feeding in pinnipeds (Berta and Adam, 2001; Adam and Berta, 2002), evolution of body size in phocids (Wyss, 1994), evolution of phocid breeding patterns (Perry et al., 1995) and pinniped recognition behavior (Insley et al., 2003), and the evolution of hearing in whales (Nummela et al., 2004). Male social behavior among cetaceans was studied using a phylogenetic approach (Lusseau, 2003), and Kaliszewska et al. (2005) explored the population structure of right whales, based on genetic studies of lice that live in association with these whales.




2.2. Some Basic Terminology and Concepts

The discovery and description of species and the recognition of patterns of relationships among them is founded on the concept of evolution. Patterns of relationships among species are based on changes in the features or characters of an organism. Characters are diverse, heritable attributes of organisms that include DNA base pairs, anatomical and physiological features, and behavioral traits. Two or more forms of a given character are termed the character states. For example, the character “locomotor pattern” might consist of the states “alternate paddling of the four limbs (quadrupedal paddling),” “paddling by the hind limbs only (pelvic paddling),” “lateral undulations of the vertebral column and hind limb (caudal undulation),” and “vertical movements of the tail (caudal oscillation).” Evolution of a character may be recognized as a change from a preexisting, or ancestral (also referred to as plesiomorphic or primitive), character state to a new derived (also referred to as apomorphic) character state. For example, in the evolution of locomotor patterns in cetaceans, the pattern hypothesized for the earliest whales is one in which they swam by paddling with the hind limbs. Later diverging whales modified this feature and show two derived conditions: (1) lateral undulations of the vertebral column and hind limbs and (2) vertical movements of the tail.

The basic tenet of phylogenetic systematics, or cladistics (from the Greek word meaning “branch”), is that shared derived character states constitute evidence that the species possessing these features share a common ancestry. In other words, the shared derived features or synapomorphies represent unique evolutionary events that may be used to link two or more species together in a common evolutionary history. Thus, by sequentially linking species together based on their common possession of synapomorphies, the evolutionary history of those taxa (named groups of organisms) can be inferred.

Relationships among taxonomic groups (e.g., species) are commonly represented in the form of a cladogram, or phylogenetic tree, a branching diagram that conceptually represents the best estimate of phylogeny (Figure 2.1). The lines or branches of the cladogram are known as lineages or clades. Lineages represent the sequence of ancestor-descendant populations through time. Branching of the lineages at nodes on the cladogram represents speciation events, a splitting of a lineage resulting in the formation of two species from one common ancestor. Trees can be drawn to display the branching pattern only or in the case of molecular phylogenetic trees drawn with proportional branch lengths that correspond to the amount of evolution (approximate percentage sequence divergence) between the two nodes they connect.

The task in inferring a phylogeny for a group of organisms is to determine which characters are derived and which are ancestral. If the ancestral condition of a character or character state is established, then the direction of evolution, from ancestral to derived, can be inferred, and synapomorphies can be recognized. The methodology for inferring direction of character evolution is critical to cladistic analysis. Outgroup comparison is the most widely used procedure. It relies on the argument that a character state found in close relatives of a group (the outgroup) is likely also to be the ancestral or primitive state for the group of organisms in question (the ingroup). Usually more than one outgroup is used in an analysis, the most important being the first or genealogically closest outgroup to the ingroup, called the sister group. In many cases, the primitive state for a taxon can be ambiguous. The primitive state can only be determined if the primitive states for the nearest outgroup are easy to identify and those states are the same for at least the two nearest outgroups (Maddison et al., 1984).

Using the previous example, determination of the primitive cetacean locomotor pattern is based on its similarity to that of an extinct relative to the cetaceans, a group of four legged mammals known as the mesonychids (i.e., an outgroup), which are thought to have swam by quadrupedal paddling. Locomotion in whales went through several stages. Ancestral whales (i.e., Ambulocetus) swam by pelvic paddling propelled by the hind limbs only. Later diverging whales (i.e., Kutchicetus) went through a caudal undulation stage propelled by the feet and tail. Finally, extinct dorudontid cetaceans and modern whales adopted caudal oscillation using vertical movements of the tail as their swimming mode (Figure 2.2; Fish, 1993).
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Figure 2.1. A cladogram illustrating general terms discussed in the text.



Derived characters are used to link monophyletic groups, groups of taxa that consist of a common ancestor plus all descendants of that ancestor. In contrast to a monophyletic group, paraphyletic and polyphyletic groups (designated by quotation marks) include a common ancestor and some, but not all, of the descendants of that ancestor. A real example of a paraphyletic group is the recognition of an extinct group of cetaceans known as “archaeocetes.” A rapidly improving fossil record and phylogenetic knowledge of whales now support the inclusion of “archaeocetes” as the ancestors of both baleen whales and toothed whales rather than as a separate taxonomic category (e.g., Thewissen et al., 1996). In a polyphyletic group, taxa that are separated from each other by more than two ancestors are placed together without including all the descendants of their common ancestor. For example, recent molecular data supports river dolphins as a polyphyletic group because Indian river dolphins do not share the same common ancestor as other river dolphins (Figure 2.3).

Monophyletic groups can be characterized in two ways. First, a monophyletic group can be defined in terms of ancestry, and second, it can be diagnosed in terms of characters (see Appendix 3). For example, whales or cetaceans can be defined as including the common ancestor of Pakicetus (an extinct whale) and all of its descendants including both modern toothed and baleen whales. Note that this definition is based on ancestry and does not change because there will always be a common ancestor for whales. On the other hand, cetaceans can be diagnosed by a number of characters (e.g., thick, dense auditory bulla and morphology of cusps on posterior teeth; see also Chapter 4). The usefulness of the distinction between definition and diagnosis is that, although the definition may not change, the diagnosis can be altered to reflect changes in our knowledge of the distribution of characters. New data, new characters, or reanalysis of existing characters can modify the diagnosis. For example, in the early 1990s discoveries of new fossil cetaceans (e.g., Ambulocetus and Rodhocetus) have provided new characters illuminating the transition between whales and their closest ungulate relatives. The definition of Cetacea has not changed, but the diagnosis has been modified according to this new character information. A third term also used in this book, characterization, refers to a list of distinguishing features, both shared primitive and shared derived characters, that are particularly useful in field or laboratory identification of various species.
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Figure 2.2. Distribution of character states for locomotor pattern among cetaceans. Reconstructions of the archaic whales Pakicetus, Rodhocetus, Kutchicetus, and Dorudon are illustrated by Carl Buell. The modern mysticete, the bowhead whale, Balaena mysticetus, is illustrated by P. Folkens.
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Figure 2.3. Alternative hypotheses for the phylogeny of river dolphins. (a) Molecular view supporting river dolphin polyphyly (b) Morphologic view of river dolphin monophyly.



A concept critical to cladistics is that of homology. Homology can be defined as the similarity of features resulting from common ancestry. Two or more features are homologous if their common ancestor possessed the same feature. For example, the flipper of a seal and the flipper of a walrus are homologous as flippers because their common ancestor had flippers. In contrast to homology, similarity not due to homology is termed homoplasy. The flipper of a seal and the flipper of a whale are homoplasious as flippers because their common ancestor lacked flippers. Homoplasy may arise in one of two ways: convergence (parallelism) or reversal. Convergence is the independent evolution of a similar feature in two or more lineages. Thus, seal flippers and whale flippers evolved independently as swimming appendages; their similarity is homoplasious by convergent evolution. Reversal is the loss of a derived feature coupled with the reestablishment of an ancestral feature. For example, in phocine seals (e.g., Erignathus, Cystophora, and the Phocini) the development of strong claws, lengthening of the third digit of the foot, and deemphasis of the first digit of the hand are character reversals because none of them characterize phocids ancestrally but are present in terrestrial arctoid carnivores.

It is a common, but incorrect, practice to refer to taxa as being either primitive or derived. This is deceptive, because individual taxa that have diverged earlier than others may have undergone considerable evolutionary modification on their own relative to taxa that have diverged later in time. For example, otariid seals have many derived characters, although they have diverged earlier than phocid seals. In short, taxa are not primitive, although characters may be.




2.3. How Do You Do Cladistics?

Cladograms are constructed using the following steps:

1. Select a group whose evolutionary relationships interest you. Name and define all taxa for that group. Assume that the taxa are monophyletic.

2. Select and define characters and character states for each taxon.

3. Arrange the characters and their states in a data matrix (see example in Table 2.1).

4. For each character, determine which state is ancestral (primitive) and which is derived. This is done using outgroup comparison. For example, if the distribution of character #1, thick fat layers of the skin, is taken into consideration, two character states are recognized: “absent” and “present.” In Table 2.1, the outgroup (bears) have the former condition, which is equivalent to the ancestral state. This same state is also seen in one of the ingroup taxa, the fur seals and sea lions. The other ingroup taxa have thick fat layers “present,” which is a synapomorphy that unites walruses and seals to the exclusion of fur seals and sea lions.

5. Construct all possible cladograms by sequentially grouping taxa based on the common possession of one or more shared derived character states (circles around character states in Table 2.1) and choose the one that has the most shared derived character states distributed among monophyletic groups (Figure 2.4b). Note that the tree in Figure 2.4a shows no resolution of relationships among taxa, referred to as a polytomy, and that the trees in Figure 2.4c and 24.d show mostly characters that are unique to one taxon and tell us nothing about relationships among different taxa.


Table 2.1. Data Set for Analysis of Recent Pinnipeds Plus an Outgroup Showing Five Characters and Their Character States
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Figure 2.4. Four possible cladograms of relationship and character-state distributions for the three ingroups listed in Table 2.1. Part b has the most shared derived characters.



The use of molecular characters (i.e., nucleotide sequence data) in cladistic analysis follows the same logic as other types of character data. Molecular data chosen should be nonrecombinant, maternally inherited alleles or fixed attributes. Next, generate sequences from these sources. The main repository for these sequences is the public nucleotide database (e.g., GenBank in the United States). Third, align the sequences. This is based on the assumption that sequence similarity equals sequence homology. This is a critical step and the identification of homologous nucleotide sequences can be as difficult in molecular phylogeny as it is in morphological studies. Finally, construct trees from the aligned sequence data.




2.4. Testing Phylogenetic Hypotheses

An important aspect of the reconstruction of phylogenetic relationships is known as the principle of parsimony. The basic tenet of the principle of parsimony is that the cladogram that contains the fewest number of evolutionary steps, or changes between character states of a given character summed for all characters, is accepted as being the best estimate of phylogeny. For example, for all the possible cladograms for the data set of Table 2.1, the one (see Figure 2.4b) illustrated in detail in Figure 2.5a is the shortest because it contains the fewest number of evolutionary steps.

An alternative method to parsimony that is most often used with molecular data is maximum likelihood. This method is based on different assumptions about how characters evolve and a different method for joining taxa together. The approach begins with a mathematical formula that describes the probability that different types of nucleotide substitutions will occur. Given a particular phylogenetic tree with known branch lengths, a computer program can evaluate all possible tree topologies and compute the probability of producing the observed data, given the specified model of character change. This probability is reported as the tree’s likelihood. The criterion for accepting or rejecting competing trees is to choose the one with the highest likelihood. One advantage of this approach is that by giving an exact probability for each tree this method facilitates quantitative comparison among trees. Closely related to likelihood methods are Bayesian methods for inferring phylogenies (Hulsenbeck et al., 2001). Bayesian inferences of phylogeny employ a Markov chain Monte Carlo algorithm to solve the computation aspects of sampling trees according to their posterior probabilities. The posterior probability of a tree can be interpreted as the probability that the tree is correct. To obtain posterior probabilities this approach requires a likelihood model and various parameters (e.g., phylogeny, branch lengths, and a nucleotide substitution model). One advantage of Bayesian inference is its ability to handle large data sets.

The methods used to search for the most parsimonious tree depend on the size and complexity of the data matrix. These methods are available in several computer programs [e.g., PAUP (Swofford, 2000); HENNIG86 (Farris, 1988); MacClade (Maddison and Maddison, 2000)]. The latter is particularly useful in visually assessing the evolution of characters. Recently, systematists have become concerned about the relative accuracy of phylogenetic trees (i.e., how much confidence can be placed in a specific phylogenetic reconstruction). Studies indicate that methods of phylogenetic analysis are most accurate if sufficient consideration is given to such parameters as sampling, rigorous analysis, and computer capabilities (Hillis, 1995).
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Figure 2.5. Two of the four possible cladograms. (a) Most parsimonious cladogram. Note a total of five evolutionary events. (b) Alternative cladogram showing different relationships for taxa. Note that this cladogram requires nine evolutionary events, four more than the most parsimonious cladogram.



A related issue in systematics is how to evaluate different data sets (e.g., morphology, behavior, and DNA sequences), particularly whether they should be combined (also referred to as a “total evidence” approach) or analyzed separately (Bull et al., 1993; Hillis, 1995). The results of a total evidence analysis can then be compared with the results of the separate analyses. Before data sets can be combined, it is necessary to determine if they are congruent, that is, the order of branching is not contradictory. Several statistical tests have been developed to test for significant incongruences among data sets (e.g., Hulsenbeck and Bull, 1996; Page, 1996). Having compared several or all possible trees often leads to the question: How good is the tree? If more than one tree is supported by the data, investigators typically examine the topologies of trees close to the optimal trees. Computer programs can evaluate multiple trees and create a consensus tree that represents the branching pattern supported by all of the nearly optimal trees.

Determining the accuracy and reliability of phylogenetic information in a given data set is an important aspect of phylogenetic analysis. There are several methods (i.e., bootstrap analysis and Bremer support) commonly employed that provide various ways to identify which portions of a tree are well supported and which are weak. If bootstrap support for a particular branch is high (i.e., 70% or higher), an investigator will usually conclude that it likely indicates a reliable grouping.




2.5. Going Beyond the Phylogenetic Framework: Elucidating Evolutionary and Ecological Patterns

Once a phylogenetic framework is produced, one of its most interesting uses is to elucidate questions that integrate evolution, behavior, and ecology. One technique used in this book to facilitate such evolutionary studies is optimization, or mapping (Funk and Brooks, 1990; Brooks and McLennan, 1991, 2002; Maddison and Maddison, 2000). Once a cladogram has been constructed, a feature or condition is selected to be examined in light of the phylogeny of the group. Examples included in this book include the evolution of body size, host-parasite associations, mating-reproductive behavior, hearing, feeding, and locomotor behavior. The condition of the terminal taxon (at the ends of branches) is identified and “mapped” onto the cladogram. There are various ways of mapping character changes onto the cladogram as discussed by Maddison and Maddison (2000). Hypothetical states are assigned to the nodes that reflect the most parsimonious arrangement of these conditions at each node. This allows one to determine the evolutionary trend of the condition in question. For example, consider the evolution of body size in phocid seals. One traditional assumption had been that small body size is the ancestral condition among phocids. This view is based on the assumption that seals of large body size represent an evolutionary advancement because they have a decreased surface area that in turn reduces body heat loss, an advantage in cold environments. This assumption, however, lacks historical evidence. When body size is mapped onto a phylogeny for seals and their relatives (walruses and sea lions; Figure 2.6), there is a more parsimonious explanation for the data (Wyss, 1994). Accordingly, large body size is the ancestral condition for seals. A decrease in body size evolved secondarily among phocine seals (e.g., harbor, ribbon, and spotted seal). This hypothesis led Wyss (1994) to question whether this decrease in size among phocids was correlated with any other pattern of character evolution. He discovered that phocines were characterized by massive character reversals and he hypothesized that these reversals might be related to shifts in timing during development (neoteny). In addition to a decrease in body size, a number of other characters among phocines provided evidence for developmental juvenilization (i.e., failure of certain regions of the skull to ossify, resulting in perforations in the basicranium and the lack of fusion of certain cranial bones). In this example, a phylogenetic approach provided a framework for questions regarding the relationship between the evolution of body size and the pattern of evolution of other characters. A developmental explanation for the observed body size pattern was then proposed and further evidenced by other characters.


[image: ]
Figure 2.6. Body size mapped onto pinniped phylogeny. (Based on Wyss, 1994, and Bininda-Emonds and Russell, 1996.)



Another growing area of interest in the comparative study of phylogenies is how to deal with different types of character change, such as discrete or categorical (e.g., presence or absence of limbs) versus continuously varying characters (e.g., amount of time spent foraging). Several different methods have been proposed to incorporate phylogenetic information into comparative analyses. Examples of these techniques include Felsenstein’s (1985) method of independent contrasts and the spatial autocorrelation techniques of Chevrud et al. (1985). These methods are designed for use with primarily continuous characters and as such are beyond the scope of this text (see Felsenstein, 2004 for a recent review).




2.6. Taxonomy and Classification

In addition to phylogeny reconstruction an integral component of systematics is taxonomy, the description, identification, and classification of species. Although the taxonomy of mammals is relatively well known compared to other groups of organisms, we still are discovering previously unknown species of marine mammals. In the last decade, two new species of beaked whale were described (Reyes et al., 1991; Dalebout et al., 2002), another was resurrected (Van Helden et al., 2002), a new dolphin was reported (Beasley et al., 2005), and evidence was presented for distinguishing three forms (probably subspecies) of killer whale (Pitman and Ensor, 2003). Among baleen whales a new species of balaenopterid was also reported (Wada et al., 2003).

Recently, there has been recognition that DNA sequences can provide universal characters for taxonomic identification. This discovery has lead to the application of DNA or molecular taxonomy, the identification of specimens of known species (e.g., Baker et al., 2003; Dalebout et al., 2004). Such genetic characters are particularly useful for species in which morphological characters are subtle or difficult to compare because of rarity of specimens or widespread distributions. Given a database of “reference” sequences based on validated specimens (i.e., identified by experts for which diagnostic skeletal material or photographs are available), unknown “test” specimens can be identified to species based on their phylogenetic grouping with sequences from recognized species to the exclusion of sequences from other species. An example of the application of molecular taxonomy is the little known family Ziphiidae (beaked whales), which resulted in the correct identification of specimens involving animals previously misidentified from morphology (Dalebout et al., 1998, 2002, 2004).

Nomenclature is the formal system of naming taxa according to a standardized scheme, which for animals is the International Code of Zoological Nomenclature. These formal names are known as scientific names. The most important thing to remember about nomenclature is that all species may bear only one scientific name. The scientific name is, by convention, expressed using Latin and Greek words.

Species names are always italicized (or underlined) and always consists of two parts, the genus name (always capitalized, e.g., Trichechus) plus the specific epithet (e.g., manatus). For this reason, species names are known as binomials and this type of nomenclature is called binomial nomenclature. Species also have common names. In the previous example, Trichechus manatus is also known in English by its common name, West Indian manatee.

Classification is the arrangement of taxa (e.g., species) into some type of hierarchy. Taxonomic ranks are hierarchical, meaning that each rank is inclusive of all other ranks beneath it. The major taxonomic ranks used in this book are as follows:





	Major taxonomic ranks
	Example



	Order
	Sirenia



	Family
	Trichechidae



	Genus
	Trichechus



	Species
	manatus




 

We need a system of classification so that we can communicate more easily about organisms. The two major ways to classify organisms are phenetic and phylogenetic. Phenetic classification is based on overall similarity of the taxa. Phylogenetic classification is that which is based on evolutionary history, or pattern of descent, which may or may not correspond to overall similarity. Phylogenetic systematists contend that classification should be based on phylogeny and should include only monophyletic groups. We have provided the most recent information on the classification and phylogeny of marine mammals. The classification of many marine mammal groups, however, is in a constant state of change due to new discoveries and information. Indeed, some systematists have offered compelling arguments for the elimination of taxonomic ranks altogether. In general, it is more important to know the names and characteristics of larger taxonomic groups like the Pinnipedia and the Sirenia than it is to memorize their rank.




2.7. Summary and Conclusions

A primary goal of systematics, the reconstruction of phylogenetic relationships, provides a framework in biology for interpreting patterns of evolution, behavior, and ecology. Relationships are reconstructed based on shared derived similarities between species, whether similarities in morphologic characters or in molecular sequences, that provide evidence that these species share a common ancestry. The direction of evolution of a character is inferred by outgroup comparison. The best estimate (most parsimonious) of phylogeny is the one requiring the fewest number of evolutionary changes. Phylogenetically based comparative analyses have proven to be a powerful tool for generating and testing ideas about the links between behavior and ecology. Taxonomy involves the description, identification, naming, and classification of species. Molecular taxonomy, the use of DNA sequences for identification of specimens of known species, is especially applicable for species in which morphological characters are difficult to observe or compare.




2.8. Further Reading

Readers are referred to texts by Wiley (1981), Wiley et al. (1991), Smith (1994), and Felsenstein (2004) for discussion of the principles and practice of phylogenetic systematics. Treatment of molecular data in phylogeny reconstruction is reviewed by Swofford et al. (1996), Graur and Li (2000), and Nei and Kumar (2000). Brooks and McLennan (1991, 2002), Harvey and Pagel (1991), Martins (1996), and Krebs and Davies (1997) provide examples of the use of phylogeny in studies of ecology and behavior.

Important websites with information on software programs related to phylogenetics are http://evolution.genetics.washington.edu created by Joe Felsenstein and the home pages of the Tree of Life Web project (http://tolweb.org/tree/phylogeny.html).

For a comprehensive reference data set to assist in the genetic identification of cetaceans see www.DNA-surveillance
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3 Pinniped Evolution and Systematics


3.1. Introduction

Modern pinnipeds are aquatic members of the mammalian Order Carnivora and comprise three monophyletic families: the Otariidae (eared seals or fur seals and sea lions), the Odobenidae (walruses), and the Phocidae (true or earless seals). Pinnipeds comprise slightly more than one fourth (28%) of the diversity of marine mammals. Thirty-four to thirty-six living different species of pinnipeds are distributed throughout the world: 19 phocids, 14–16 otariids, and the walrus. Roughly 90% of an estimated 50 million individual pinnipeds are phocids; the remaining 10% are otariids and odobenids (Riedman, 1990; Rice, 1998). The fossil record indicates that extant pinnipeds represent only a small fraction of what was once a much more diverse group. For example, only a single species of walrus exists today, whereas no less than 10 genera and 13 species existed in the past (Deméré, 1994a). The earliest well-documented record of pinnipeds is from the late Oligocene (27 to 25 Ma; Figure 3.1), although a slightly earlier record (29 Ma) is less well substantiated.

New discoveries of fossil pinnipeds together with comparative studies of living taxa have enabled a more complete understanding of pinniped origin, diversification, and morphology. These topics are explored in this chapter. Characters defining major groups of pinnipeds are also listed for reference. Controversies regarding the relationship of pinnipeds to other carnivores, relationships among pinnipeds, and the alliance of an extinct pinniped group, desmatophocids, also are considered.




3.2. Origin and Evolution


3.2.1. Pinnipeds Defined

The name pinniped comes from the Latin pinna and pedis meaning “feather-footed,” referring to the paddle-like fore- and hind limbs of seals, sea lions, and walruses, which they use in locomotion on land and in the water. Pinnipeds spend considerable amounts of time both in the water and on land or ice, differing from cetaceans and sirenians, which are entirely aquatic. In addition to blubber, some pinnipeds have a thick covering of fur.

[image: ]
Figure 3.1. Chronological ranges of extinct and living pinnipeds. Ma = million years ago.



In seeking the origin of pinnipeds we must first define them. Is the group monophyletic or not? Although this question has been subject to considerable controversy during the last century (e.g., see Flynn et al.,1988), the majority of scientists today agree that the Pinnipedia represent a natural, monophyletic group. Pinnipeds are diagnosed by a suite of derived morphological characters (for a complete list see Wyss, 1987, 1988; Berta and Wyss, 1994). All pinnipeds, including both fossil and recent taxa, possess the characters described later, although some of these characters have been modified or lost secondarily in later diverging taxa.

Some of the well known synapomorphies possessed by pinnipeds (enumerated in Figure 3.2 and illustrated in Figures 3.3–3.5) are defined as follows:

1. Large infraorbital foramen. The infraorbital foramen, as the name indicates, is located below the eye orbit and allows passage of blood vessels and nerves. It is large in pinnipeds in contrast to its small size in most terrestrial carnivores.

2. Maxilla makes a significant contribution to the orbital wall. Pinnipeds display a unique condition among carnivores in which the maxilla (upper jaw) forms part of the lateral and anterior walls of the orbit of the eye. In terrestrial carnivores, the maxilla is usually limited in its posterior extent by contact of several facial bones (jugal, palatine, and/or lacrimal).

3. Lacrimal absent or fusing early in ontogeny and does not contact the jugal. Associated with the pinniped configuration of the maxilla (character 2) is the great reduction or absence of one of the facial bones, the lacrimal. Terrestrial carnivores have a lacrimal that contacts the jugal or is separated from it by a thin sliver of the maxilla and thus can be distinguished from pinnipeds.

[image: ]
Figure 3.2. A cladogram depicting the relationships of the major clades of pinnipeds. Numbers at nodes refer to synapomorphies listed in the text and † = extinct taxa; see also Figures 3.3, 3.4, and 3.5. For more detailed cladograms of individual families, see Figures 3.12, 3.19, and 3.20. (Modified from Wyss, 1988; Berta and Wyss, 1994; Deméré, 1994b.)



4. Greater and lesser humeral tubercles enlarged. Pinnipeds are distinguished from terrestrial carnivores by having strongly developed tubercles (rounded prominences) on the proximal end of the humerus (upper arm bone).

5. Deltopectoral crest of humerus strongly developed. The crest on the shaft of the humerus for insertion of the deltopectoral muscles in pinnipeds is strongly developed in contrast to the weak development observed in terrestrial carnivores.

6. Short and robust humerus. The short and robust humerus of pinnipeds is in contrast to the long, slender humerus of terrestrial carnivores.

7. Digit I on the hand emphasized. In the hand of pinnipeds the first digit (thumb equivalent) is elongated, whereas in other carnivores the central digits are the most strongly developed.

8. Digit I and V on the foot emphasized. Pinnipeds have elongated side toes (digits I and V, equivalent to the big toe and little toe) of the foot, whereas in other carnivores the central digits are the most strongly developed.




3.2.2. Pinniped Affinities

Since the name Pinnipedia was first proposed by Illiger in 1811, there has been debate on the relationships of pinnipeds to one another and to other mammals. Two hypotheses have been proposed. The monophyletic hypothesis proposes that the three pinniped families share a single common evolutionary origin (Figure 3.6a). The diphyletic view (also referred to as pinniped diphyly; Figure 3.6b) calls for the origin of pinnipeds from two carnivore lineages, the alliance of odobenids and otariids being somewhere near ursids (bears) and a separate origin for phocids from the mustelids (weasels, skunks, otters, and kin).
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Figure 3.3. Lateral views of the skulls of representative pinnipeds and a generalized terrestrial arctoid. (a) Bear, Ursus americanus. (b) Fossil pinnipedimorph, Enaliarctos mealsi. (c) Otariid, Zalophus californianus. (d) Walrus, Odobenus rosmarus. (e) Phocid, Monachus schauinslandi, illustrating pinniped synapomorphies. Character numbers (see text for further description): 1 = large infraorbital foramen; 2 = maxilla (stippled) makes a significant contribution to the orbital wall; 3 = lacrimal absent or fusing early and does not contact jugal. (From Berta and Wyss, 1994.)



[image: ]
Figure 3.4. Left forelimbs of representative pinnipeds (b–e) and a generalized terrestrial arctoid (a) in dorsal view illustrating pinniped synapomorphies. Labels as in Figure. 3.3 plus character numbers (see text for further description): 4 = greater and lesser humeral tubercles enlarged; 5 = deltopectoral crest of humerus strongly developed; 6 = short, robust humerus; 7 = digit I on manus emphasized. (From Berta and Wyss, 1994.)



[image: ]
Figure 3.5. Left hind limbs of representative pinnipeds (b–e) and a generalized terrestrial arctoid (a) in dorsal view illustrating pinniped synapomorphies. Labels as in Figure 3.3. Character number (see text for further description): 8 = digit I and V. on the foot emphasized. (From Berta and Wyss, 1994.)



Traditionally, morphological and paleontological evidence supported pinniped diphyly (McLaren, 1960; Tedford, 1976; Repenning et al., 1979; Muizon, 1982). On the basis of his reevaluation of the morphological evidence, Wyss (1987) argued in favor of a return to the single origin interpretation. This hypothesis of pinniped monophyly has received considerable support from both morphological (Flynn et al., 1988; Berta et al., 1989; Wyss and Flynn, 1993; Berta and Wyss, 1994) and biomolecular studies (Sarich, 1969; Árnason and Widegren, 1986; Vrana et al., 1994; Lento et al., 1995; Árnason et al., 1995; Flynn and Nedbal, 1998; Flynn et al., 2000; Davis et al., 2004).

All recent workers, on the basis of both molecular and morphologic data, agree that the closest relatives of pinnipeds are arctoid carnivores, which include procyonids (raccoons and their allies), mustelids, and ursids, although which specific arctoid group forms the closest alliance with pinnipeds is still disputed (see recent review Flynn and Wesley-Hunt, 2005). There is evidence to support a mustelid (Bininda-Emonds and Russell, 1996; Flynn and Nedbal, 1998; Bininda-Emonds et al., 1999), ursid (Wyss and Flynn, 1993; Berta and Wyss, 1994), and ursid-mustelid (Davis et al., 2004) ancestry.

Although both morphological and molecular data support pinniped monophyly there is still disagreement on relationships among pinnipeds. Most of the controversy lies in the debate as to whether the walrus is most closely related to phocids or to otariids. Some recent morphologic evidence for extant pinnipeds unites the walrus and phocids as sister groups (Figure 3.7a; Wyss, 1987; Wyss and Flynn, 1993; Berta and Wyss, 1994) and is discussed later in this chapter. An alternative view based mostly on molecular data (Vrana etal., 1994; Lento et al., 1995; Árnason etal., 1995; Davis etal., 2004) but with support from total evidence analyses (e.g., Flynn and Nedbal, 1998) supports an alliance between the walrus and otariids (Figure 3.7b).

[image: ]
Figure 3.6. Alternative hypotheses for relationships among pinnipeds. (a) Monophyly with ursids as the closest pinniped relatives. (b) Diphyly in which phocids and mustelids are united as sister taxa, as are otariids, odobenids, and ursids.






3.2.3. Early “Pinnipeds”

An understanding of the evolution of early “pinnipeds” necessitates a knowledge of certain fossil taxa. The earliest diverging lineage of “pinnipeds” actually are members of the Pinnipedimorpha clade and appear to have originated in the eastern North Pacific (Oregon) during the late Oligocene (27–25 Ma; see Figure 3.1). The earliest known pinnipedimorph, Enaliarctos, is represented by five species (Mitchell and Tedford, 1973; Berta, 1991). The ancestral pinnipedimorph dentition, exemplified by E. barnesi and E. mealsi, is heterodont, with large blade-like cusps on the upper cheekteeth well-adapted for shearing (Figure 3.8). These dental features together with those from the skull (when compared with terrestrial carnivores) indicate closest similarity in terms of derived characters with archaic bears (amphicynodonts; see Figure 3.8).

[image: ]
Figure 3.7. Alternative hypotheses for position of the walrus. (a) “Otarioidea” clade. (b) Phocomorpha clade.



Other species of the genus Enaliarctos show a trend toward the decreasing shearing function of the cheekteeth (e.g., reduction in the number and size of cusps). These dental trends herald the development of simple peg-like, or homodont, cheekteeth characteristic of most living pinnipeds (Berta, 1991). The latest record of Enaliarctos is along the Oregon coast from rocks of 25–18 Ma in age. An “enaliarctine” pinniped also has been reported from the western North Pacific (Japan) in rocks of late early Miocene (17.5–17 Ma; Kohno, 1992), although the specimen needs further study before its taxonomic assignment can be confirmed.

The pinnipedimorph E. mealsi is represented by a nearly complete skeleton collected from the Pyramid Hill Sandstone Member of the Jewett Sand in central California (Figure 3.9; Berta et al., 1989; Berta and Ray, 1990). The entire animal is estimated at 1.4–1.5 m in length and between 73 and 88 kg in weight, roughly the size and weight of a small male harbor seal.

Considerable lateral and vertical movement of the vertebral column was possible in E. mealsi. Also, both the fore- and hind limbs were modified as flippers and used in aquatic locomotion. Several features of the hind limb suggest that E. mealsi was highly capable of maneuvering on land and probably spent more time near the shore than extant pinnipeds (see also Chapter 8).
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Figure 3.8. Skulls and dentitions of representative pinnipeds and a generalized terrestrial arctoid in ventral view. (a) Archaic bear, Pachcynodon (Oligocene, France). (b) Fossil pinnipedimorph, Enaliarctos mealsi (early Miocene). (c) Modern otariid, Arctocephalus (Recent, South Atlantic). (From Tedford, 1976.)



[image: ]
Figure 3.9. The pinnipedimorph, Enaliarctos mealsi. (a) Skeletal reconstruction. (b) Life restoration. Total estimated length, snout to tail, 1.4–1.5 m. Shaded areas are unpreserved bones. (From Berta and Ray, 1990.)



A later diverging lineage of fossil pinnipeds more closely allied with pinnipeds than with Enaliarctos is Pteronarctos and Pacificotaria from the early-middle Miocene (19–15 Ma) of coastal Oregon (Barnes, 1989, 1992; Berta, 1994; see Figure 3.1). A striking osteological feature in all pinnipeds is the geometry of bones that comprise the orbital region (Wyss, 1987). In Pteronarctos, the first evidence of the uniquely developed maxilla is seen. Also, in Pteronarctos the lacrimal is greatly reduced or absent, as it is in pinnipeds. A shallow pit on the palate between the last premolar and the first molar, seen in Pteronarctos and pinnipeds, is indicative of a reduced shearing capability of the teeth and begins a trend toward homodonty.




3.2.4. Modern Pinnipeds


3.2.4.1. Family Otariidae: Sea Lions and Fur Seals

Of the two groups of seals, the otariids are characterized by the presence of external ear flaps, or pinnae, and for this reason they are sometimes called eared seals (Figure 3.10). Another characteristic feature of otariids that can be used to distinguish them from phocids is their method of movement on land. Otariids can turn their hindflippers forward and use them to walk (described in more detail in Chapter 8). Otariids generally are smaller than most phocids and are shallow divers targeting fast swimming fish as their major food source. The eared seals and sea lions, Family Otariidae, can be diagnosed as a monophyletic group by several osteological and soft anatomical characters (Figures 3.2 and 3.11) as follows:
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Figure 3.10. Representative otariids. (a) Southern sea lion, Otaria byronia and (b) South African fur seal, Arctocephalus pusillus, illustrating pinna. Note also the thick, dense fur characteristic of fur seals. (Illustrations by P. Folkens from Reeves et al., 1992.)



9. Frontals extend anteriorly between nasals. In otariids, the suture between the frontal and nasal bones is W-shaped (i.e., the frontals extend between the nasals). In other pinnipeds and terrestrial carnivores, the contact between these bones is either transverse (terrestrial carnivores and walruses) or V-shaped (phocids).

10. Supraorbital process of the frontal bone is large and shelf-like, especially among adult males. In otariids, the unique size and shape of the supraorbital process, located above the eye orbit, readily distinguishes them from other pinnipeds. The supraorbital process is absent in phocids and the modern walrus.

11. Secondary spine subdivides the supraspinous fossa of the scapula. A ridge subdividing the supraspinous fossa of the scapula (shoulder blade) is present in otariids but not in walruses or phocids.

12. Uniformly spaced pelage units. In otariids, pelage units (a primary hair and its surrounding secondaries) are spaced uniformly. In odobenids and phocids, the units are arranged in groups of two to four or in rows (see Chapter 7, Figure 7.10).

13. Trachea has an anterior bifurcation of the bronchi. In odobenids and phocids, the trachea divides into two primary bronchi immediately outside the lung (Fay, 1981; King, 1983a). In otariids, this division occurs more anteriorly, closer to the larynx and associated structures.

The Otariidae often are divided into two subfamilies, the Otariinae (sea lions) and the Arctocephalinae (fur seals). Five genera and species of sea lions are recognized: Eumetopias, Neophoca, Otaria, Zalophus, and Phocarctos. Sea lions are characterized and readily distinguished from fur seals by their sparse pelage (see Figure 3.10a). The fur seals, named for their thick dense fur, are divided into two genera. Arctocephalus (generic name means bear head), or southern fur seals, live mostly in the southern hemisphere and a single species of northern fur seal, Callorhinus ursinus (generic name means beautiful nose), inhabits the northern hemisphere (see Figure 3.10b). Relationships among the otariids based on morphology (Berta and Deméré, 1986; Berta and Wyss, 1994) indicate that only the Otariinae are monophyletic with a sister group relationship suggested with Arctocephalus. Callorhinus and the extinct taxon Thalassoleon are positioned as sequential sister taxa to this clade (Figure 3.12). Another recent analysis (Bininda-Emonds et al., 1999) suggested that both subgroups were monophyletic.
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Figure 3.11. Otariid synapomorphies. (Illustrations by P. Adam.) Character numbers (see text for further description). (a–c) Skulls in dorsal view: 9 = frontals extend anteriorly between nasals, contact between these bones is transverse (walrus) or V-shaped (phocids); 10 = supraorbital process of the frontal bone is large and shelf-like, this process is absent in the modern walrus and phocids. (d–f) Left scapulae in medial view: 11 = secondary spine subdividing the supraspinous fossa of the scapula, this ridge is absent in the walrus and phocids. (g–i) Lungs in ventral view: 13 = trachea has an anterior bifurcation of the bronchi. (Modified from King, 1983b.) This division occurs immediately outside the lungs in the walrus and phocids.



Molecular sequence data (Lento et al., 1995, 1997; Wynen et al., 2001) revealed paraphyly among both fur seals and sea lions. New Zealand fur seal (Arctocephalus forsteri) and the northern fur seal (Callorhinus ursinus), both arctocephalines, are separated from each other by two sea lion lineages (Steller’s sea lion, Eumetopias jubatus, and Hooker’s sea lion, Phocarctos hookerí), and the two sea lions are no more closely related to each other than they are to other otariid taxa (i.e., the arctocephalines). A different arrangement among otariids is suggested by Árnason et al. (1995), but a limited number of species were sampled. Their study supports an alliance between Arctocephalus forsteri and the Antarctic fur seal, Arctocephalus gazella, and unites Steller’s sea lion, Eumetopias, and the California sea lion, Zalophus. In addition to the extant fur seal genera Callorhinus and Arctocephalus, several extinct otariids are known. The earliest otariid is Pithanotaria starri from the late Miocene (11 Ma) of California. It is a small animal characterized by double rooted cheekteeth and a postcranial skeleton that allies it with other otariids. A second extinct late Miocene taxon (8–6 Ma), Thalassoleon (Figure 3.13), recently reviewed by Deméré and Berta (in press) is represented by three species: T. mexicanus from Cedros Island, Baja California, Mexico, and southern California; T. macnallyae from California; and T. inouei from central Japan. Thalassoleon is distinguished from Pithanotaria by its larger size and in lacking a thickened ridge of tooth enamel at the base of the third upper incisor (Berta, 1994). A single extinct species of northern fur seal, Callorhinus gilmorei, from the late Pliocene in southern California and Mexico (Berta and Deméré, 1986) and Japan (Kohno and Yanagisawa, 1997) has been described on the basis of a partial mandible, some teeth, and postcranial bones. Several species of the southern fur seal genus Arctocephalus are known from the fossil record. The earliest known taxa are A. pusillus (South Africa) and A. townsendi (California) from the late Pleistocene (Repenning and Tedford, 1977).

[image: ]
Figure 3.12. Phylogeny of the Otariidae based on morphologic data showing monophyletic Otariinae and paraphyletic “Arctocephalinae” with † = extinct taxa. (From Berta and Wyss, 1994, and Berta and Deméré, 1986.)
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Figure 3.13. Skull of an early otariid, Thalassoleon mexicanus, from the late Miocene of western North America in (a) lateral and (b) ventral views. Original 25 cm long. (From Repenning and Tedford, 1977.)



The fossil record of sea lions is not well known. Only the late Pleistocene occurrences of Otaria byronia from Brazil (Drehmer and Ribeiro, 1998) and Neophoca palatina (King, 1983b) from New Zealand can be considered reliable (Deméré et al., 2003).




3.2.4.2. Family Odobenidae: Walruses

Arguably the most characteristic feature of the modern walrus, Odobenus rosmarus, is a pair of elongated ever-growing upper canine teeth (tusks) found in adults of both sexes (Figure 3.14b). A rapidly improving fossil record indicates that these unique structures evolved in a single lineage of walruses and that “tusks do not a walrus make.” The modern walrus is a large-bodied shallow diver that feeds principally on benthic invertebrates, especially molluscs. Two subspecies of Odobenus rosmarus are usually recognized, Odobenus r. rosmarus from the North Atlantic and Odobenus r. divergens from the North Pacific. A population from the Laptev Sea has been described as a third subspecies, Odobenus. r. laptevi (Chapskii, 1940). Monophyly of the walrus family, the Odobenidae, is based on four unequivocal synapomorphies (Deméré and Berta, 2001; Figures 3.2, 3.14, and 3.15):
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Figure 3.14. A walrus synapomorphy. Skull of an (a) otariid and (b) walrus in ventral view illustrating differences in the pterygoid region. Character number: 14 = broad, thick pterygoid strut; in the otariid the pterygoid strut is narrow. (From Deméré and Berta, 2001.)



14. Pterygoid strut broad and thick. The pterygoid strut is the horizontally positioned expanse of palatine, alisphenoid, and pterygoid lateral to the internal nares and hamular process. Basal pinnipedimorphs are characterized by having a narrow pterygoid strut, which in walruses is broad with a ventral exposure of the alisphenoid and pterygoid.
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Figure 3.15. Skulls of fossil odobenids. (a) Lateral and ventral views of Imagotaria downsi from the Miocene of western North America. Original 30 cm long. (From Repenning and Tedford, 1977.) (b) Lateral view of Protodobenus japonicus from the early Pliocene of Japan. Original 25 cm. (From Horikawa, 1995.)



15. P4 protocone shelf strong and posterolingually placed with convex posterior margin. In basal walruses (i.e., Proneotherium, Imagotaria, and Prototaria) the P4 protocone is a posteromedially placed shelf. That differs from Enaliarctos, which has a anterolingually placed protocone shelf. In later diverging walruses (i.e., Dusignathus and odobenines) the protocone shelf is greatly reduced or absent.

16. M1 talonid heel absent. The condition in walruses (absence of talonind heel) differs from other pinnipedimorphs in which a distinct cusp, the hypoconulid, is developed on the talonid heel.

17. Calcaneum with prominent medial tuberosity. In basal pinnipedimorphs, otariids and phocids, the calacaneal tuber is straight-sided. In walruses a prominent medial protuberance is developed on the proximal end of the calcaneal tuber.

Morphological study of evolutionary relationships among walruses has identified two monophyletic groups. The Dusignathinae includes the extinct genera Dusignathus, Gomphotaria, Pontolis, and Pseudodobenus. The Odobenidae includes in addition to the modern walrus, Odobenus, the extinct genera Aivukus, Alachtherium, Gingimanducans, Prorosmarus, Protodobenus, and Valenictus (Deméré, 1994b; Horikawa, 1995). Dusignathine walruses developed enlarged upper and lower canines, whereas odobenines evolved only the enlarged upper canines seen in the modern walrus.

At the base of walrus evolution are Proneotherium and Prototaria, from the middle Miocene (16–14 Ma) of the eastern North Pacific (Kohno et al., 1995; Deméré and Berta, 2001). Other basal odobenids include Neotherium and Imagotaria from the middle-late Miocene of the eastern North Pacific (Figure 3.15). These archaic walruses are characterized by unenlarged canines and narrow, multiple rooted premolars with a trend toward molarization, adaptations suggesting retention of the fish diet hypothesized for archaic pinnipeds rather than the evolution of the specialized mollusc diet of the modern walrus. The dusignathine walrus, Dusignathus santacruzensis, and the odobenine walrus, Aivukus cedroensis, first appeared in the late Miocene of California and Baja California, Mexico. Early diverging odobenine walruses are now known from both sides of the Pacific in the early Pliocene. Prorosmarus alleni is, known from the eastern United States (Virginia) and Protodobenus japonicus from Japan. A new species of walrus, possibly the most completely known fossil odobenine walrus, Valenictus chulavistensis, was described by Deméré (1994b) as being closely related to modern Odobenus but distinguished from it in having no teeth in the lower jaw and lacking all upper postcanine teeth. The toothlessness (except for tusks) of Valenictus is unique among pinnipeds but parallels the condition seen in modern suction feeding whales and the narwhal.

Remains of the modern walrus Odobenus date back to the early Pliocene of Belgium; this taxon appeared approximately 600,000 years ago in the Pacific.




3.2.4.3. Family Phocidae: Seals

The second major grouping of living seals, the phocids, often are referred to as the earless seals for their lack of visible ear pinnae, a characteristic that readily distinguishes them from otariids. Another characteristic phocid feature is their method of movement on land. The phocids are unable to turn their hindflippers forward and progression over land is accomplished by undulations of the body (described in more detail in Chapter 8). Other characteristics of phocids include their larger body size in comparison to otariids, averaging as much as 2 tons in elephant seal males. Several phocids, most notably the elephant seal and the Weddell seal, are spectacular divers that feed on pelagic, vertically migrating squid and fish at depths of 1000 m or more.

Wyss (1988) reviewed the following characters that support monophyly of the Family Phocidae (Figures 3.2, 3.16, and 3.17):

19. Lack the ability to draw the hind limbs forward under the body due to a massively developed astragalar process and greatly reduced calcaneal tuber. The phocid astragalus (ankle bone) is distinguished by a strong posteriorly directed process over which the tendon of the flexor hallucis longus passes. The calcaneum (one of the heel bones) of phocids is correspondingly modified. The calcaneal tuber is shortened and projects only as far as the process of the astragalus. This arrangement prevents anterior flexion of the foot, resulting in seals’ inability to bring their hind limbs forward during locomotion on land.
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Figure 3.16. Phocid synapomorphies. Ventral view of ear region of (a) an otariid and (b) a phocid. Character numbers (see text for further description): 20 = pachyostotic mastoid bone—this is not the case in other pinnipeds; 21 = greatly inflated entotympanic bone—in other pinnipeds, this bone is flat or slightly inflated. (Modified from King; 1983b.)
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Figure 3.17. Phocid synapomorphies. Left astragalus (ankle) and calcaneum (heel) of (a) an otariid, (b) a walrus, and (c) a phocid. Character numbers: 19 = lack the ability to draw the hind limbs under the body due to a massively developed astragalar process and greatly reduced calcaneal tuber; these modifications do not occur in other pinnipeds. (Illustrations by P. Adam.)



20. Pachyostic mastoid region. In phocids, the mastoid (ear) region is composed of thick, dense bone (pachyostosis), which is not the case in otariids or the walrus.

21. Greatly inflated entotympanic bone. In phocids, the entotympanic bone (one of the bones forming the earbone or tympanic bulla) is inflated. In other pinnipeds, the entotympanic bone is either flat or slightly inflated.

22. Supraorbital processes completely absent. Phocids differ from other pinnipeds in the complete absence of the supraorbital process of the frontal (see Figure 3.11).

23. Strongly everted ilia. Living phocines, except Erignathus, are characterized by a lateral eversion (outward bending) of the ilium (one of the pelvic bones) accompanied by a deep lateral excavation (King, 1966). In other pinnipeds and terrestrial carnivores, the anterior termination of the ilium is simple and not everted or excavated.

Traditionally, phocids have been divided into two to four major subgroupings, monachines (monk seals), lobodontines (Antarctic seals), cystophorines (hooded and elephant seals), and phocines (remaining Northern Hemisphere seals). Based on morphologic data, Wyss (1988) argued for the monophyly of only one of these groups, the Phocinae, composed of Erignathus and Cystophora plus the tribe Phocini, consisting of Halichoerus, Histriophoca, Pagophilus, Phoca, and Pusa. According to Wyss, both the Monachinae” and the genus “Monachus” are paraphyletic with “Monachus,” in turn representing the outgroup to the elephant seals, Mirounga, and the lobodontines (including the Weddell seal, Leptonychotes; crabeater seal, Lobodon; leopard seal, Hydrurga; and the Ross seal, Ommatophoca; Figures 3.18, 3.19, and 3.20). Another morphology-based study found reasonable support for both the Monachinae and Phocinae, although with differing relationships among the taxa within each group (Bininda-Emonds and Russell, 1996). The basal position of Monachus and Erignathus, in the Monachinae and Phocinae, respectively, was not supported. Instead, both taxa were recognized as later diverging members of their respective subfamilies rendering the Lobodontini and Phocini as paraphyletic clades (Bininda-Emonds and Russell, 1996; see Figure 3.19).
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Figure 3.18. Representative “monachines” (a) Hawaiian monk seal, Monachus schauinslandi; (b) Northern elephant seal, Mirounga angustirostris, and phocines; (c) Harbor seal, Phoca vitulina; and (d) grey seal, Halichoerus grypus. (Illustrations by P. Folkens from Reeves et al., 1992.)
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Figure 3.19. Alternative phylogenies for the Phocidae based on morphologic data. (a) From Wyss (1988) and Berta and Wyss (1994). (b) From Bininda-Emonds and Russell (1996).
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Figure 3.20. Phylogeny of the Phocidae based on molecular data. (From Davis et al., 2004.)



Several molecular studies provide data on phocid interrelationships (e.g., Árnason et al., 1995; Carr and Perry, 1997; Mouchaty et al., 1995; Davis et al., 2004; Fyler et al., 2005; see Figure 3.20). In the most inclusive study to date (Davis et al., 2004), strong support was found for monophyly of both the Monachinae and Phocinae. There was also strong support for three monachine lineages: (1) the Hawaiian monk seal, Monachus schauinslandi, sister taxon to the Mediterranean monk seal, Monachus tropicalis, (2) monophyletic elephant seals (Mirounga spp.) sister taxon to (3) lobodontine seals (i.e., Hydrurga, Lobodon, Ommatophoca, and Leptonychotes). Among phocines, the bearded seal, Erignathus, was the most basal and the hooded seal, Cystophora, sister to the Phocini. Within the Phocini, Pagophilus was sister group of the Phoca species complex. The position of the grey seal, Halichoerus grypus, among species of the genus Phoca proposed earlier by Árnason et al. (1995), suggests that generic status of the grey seal is not warranted, a conclusion reached in other molecular (Mouchaty et al., 1995; O’Corry-Crowe and Westlake, 1997; but see Carr and Perry, 1997, for a different view) and morphologic (Burns and Fay, 1970) studies. Included in this redefined Phoca complex, in addition to the grey seal are the ringed seal, Phoca hispida; the spotted seal, Phoca largha; and the harbor seal, Phoca vitulina.

Four subspecies of the harbor seal are currently recognized based on morphologic, molecular, and geographic differences (Stanley et al., 1996): P. v. vitulina and P. v. concolor (the eastern and western Atlantic Ocean populations, respectively) and P. v. richardsi and P. v. stejnegeri (the eastern and western Pacific Ocean populations, respectively). A fifth subspecies, P. v. mellonae, a freshwater population from the area of Seal Lakes in northern Québec, Canada, is morphologically and behaviorally distinct from the others (Smith and Lavigne, 1994). Árnason et al.’s (1995) data support an alliance between the eastern Pacific harbor seal, P. v. richardsi, and the Eastern Atlantic harbor seal, P v. vitulina, with the spotted seal, Phoca largha, positioned as sister taxon to this clade as well as supporting a sister group relationship between the grey seal, Halichoerus grypus, and the ringed seal, Phoca hispida (see Figure 3.20).

The report of a fossil phocid from the late Oligocene (29–23 Ma) of South Carolina (Koretsky and Sanders, 2002), if its stratigraphic provenance is correct, makes it the oldest known phocid and pinniped (see Figure 3.1). Prior to this record, phocids were unknown until the middle Miocene (15 Ma) when both phocine and “monachine” seals became distinct lineages in the North Atlantic. The extinct phocine seal Leptophoca lenis and the “monachine” seal Monotherium? wymani are known from Maryland and Virginia during this time (Koretsky, 2001). Leptophoca lenis, or a closely related species, also is represented in the eastern Atlantic, from deposits in the Antwerp Basin, Belgium (Ray, 1976). Another addition to the fossil record of phocids is a new genus and species of phocine seal, based on an articulated skeleton (lacking the skull, neck, and part of the hind limbs) reported from the middle Miocene of Argentina (Cozzuol, 1996). Other fossil seals are represented by well-preserved skeletal material. For example, Acrophoca longirostris (Figure 3.21) and Piscophoca pacifica from the late Miocene and early Pliocene were found in the Pisco Formation of Peru (Muizon, 1981), and Homiphoca capensis was discovered in South Africa (Hendey and Repenning, 1972). Although originally considered “monachines” (i.e., lobodontine seals), ongoing study by Cozzuol (1996) indicates that Acrophoca, Piscophoca, and new material from the Pliocene of Peru (provisionally referred to two new genera and species) may be closer to phocines. Other phocines evolved in the vast inland Paratethys Sea from 14 to 10 Ma (Koretsky, 2001 see also Chapter 6) and differentiated mostly in the Pleistocene.
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Figure 3.21. Skeleton of an archaic phocid, Acrophoca longirostris, from the Miocene of Peru. (From Muizon, 1981.)








3.2.5. Walruses and Phocids Linked?

As noted previously, an alliance between the walrus and phocid seals and their extinct relatives, the Phocomorpha clade, has been proposed based on morphologic data. Among the synapomorphies that unite these pinnipeds are the following (see Figure 3.2):

24. Middle ear bones enlarged. The middle ear bones of the walrus and phocids are large relative to body size, which is not the case in otariids and terrestrial carnivores.

25. Abdominal testes. The testes are abdominal (inguinal) in phocids and the walrus. In contrast, the testes of otariids and terrestrial carnivores lie outside the inguinal ring in a scrotal sac.

26. Primary hair nonmedullated. The outer guard hairs in the walrus and phocids lack a pith or medulla, which is present in otariids and other carnivores (see also Chapter 7).

27. Thick subcutaneous fat. The walrus and phocids are characterized by thick layers of fat; these layers are less well developed in otariids and terrestrial carnivores.

28. External ear pinna lacking. The walrus and phocids lack external ear pinnae, the presence of which characterizes otariids and terrestrial carnivores.

29. Venous system with inflated hepatic sinus, well-developed caval sphincter, large intervertebral sphincter, duplicate posterior vena cava, and gluteal route for hind limbs. The walrus and phocids share a specialized venous system that is related, in part, to their exceptional diving capabilities (see Chapter 10). In contrast, otariids and terrestrial carnivores have a less specialized venous system that more closely approximates the typical mammalian pattern.

The question of whether walruses are more closely related to phocids or to otariids involves further exploration of both morphological and molecular data sets. Study of basal walruses will likely provide additional characters at the base of walrus evolution that can then be compared for alliance with either otariids or phocids. The molecular results, which consistently support a link between otariids and the walrus, have been explained as a methodological problem or a long-branch attraction effect. When dealing with sequence data, branch lengths refer to the expected amounts of evolutionary change along that branch. The walrus lineage is a relatively long branch and it is unlikely that intraspecific variation among the walrus subspecies will aid in bisecting the branch, although this has yet to be examined. Because there is a tendency for longer branches to attract one another and thus give a misleading tree, it is possible that the walrus and otariid alliance may be incorrect. A more conservative interpretation of the molecular data is that the walrus is an early, but not first, independent divergence from the common pinniped ancestor (Lento et al., 1995).




3.2.6. Desmatophocids: Phocid Relatives or Otarioids?

Study of pinniped evolutionary relationships has identified a group of fossil pinnipeds including Desmatophoca and Allodesmus (Figure 3.22) that are positioned as the common ancestors of phocid pinnipeds (Berta and Wyss, 1994). This interpretation differs from previous work that recognized desmatophocids as otarioid pinnipeds, a grouping that includes walruses (Barnes, 1989). The question of otarioid monophyly was examined in a comprehensive pinniped data set. The strict consensus tree that resulted by forcing otarioid monophyly was 34 steps longer than the preferred hypothesis (Berta and Wyss, 1994).

Desmatophocids are known from the early middle Miocene (23–15 Ma) of the western United States and Japan. Newly reported occurrences of Desmatophoca from Oregon confirm the presence of sexual dimorphism and large body size in these pinnipeds (Deméré and Berta, 2002). Allodesmids are known from the middle to late Miocene of California and more recently from Japan (Barnes and Hirota, 1995). They are a diverse group characterized, among other characters, by pronounced sexual dimorphism, large eye orbits, bulbous cheektooth crowns, and deep lower jaws.

A number of features are shared among phocids and their close fossil relatives Allodesmus and Desmatophoca (identified as the Phocoidea clade) and hence they support a close link between these taxa (see Figure 3.2). These synapomorphies include among others:

30. Posterior termination of nasals posterior to contact between the frontal and maxilla bones. In phocids and desmatophocids, the V-shaped contact between the frontal and maxilla bones is the result of the nasals extending posteriorly between these bones (see Figure 3.11).

31. Squamosal jugal contact mortised. A mortised or interlocking contact between the squamosal and jugal (cheekbones) distinguishes phocids and desmatophocids from other pinnipeds in which these bones overlap one another in a splint-like arrangement (see Figure 3.3).






3.3. Summary and Conclusions

Pinniped monophyly is a well-supported hypothesis based on both morphological and molecular data. The closest relatives of pinnipeds are arctoid carnivores, with most evidence supporting either a link between pinnipeds and ursids or pinnipeds and mustelids.
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Figure 3.22. Skeleton of the desmatophocid, Allodesmus kernensis, from the Miocene of western North America. Original 2.2 m long. (From Mitchell, 1975.)



The earliest pinnipedimorphs (i.e., Enaliarctos) appear in the fossil record approximately 27–25 Ma in the North Pacific. Modern pinniped lineages diverged shortly thereafter with the first appearance of the phocid seals in the North Atlantic. Phocids usually are divided into two to four subgroups including “monachines” and phocines. Although the monophyly of monachines has been questioned based on morphology, molecular data strongly support monachine and phocine monophyly. Walruses appeared about 10 million years later in the North Pacific. A rapidly improving fossil record indicates that enlarged tusks characteristic of both sexes of the modern walrus were not present ancestrally in walruses. Two monophyletic lineages of walruses are recognized (Dusignathinae and Odobeninae). The last pinniped lineage to appear in the fossil record, the otariids, are only known as far back as 11 Ma in the North Pacific. Morphologic data support monophyly of the sea lions (Otariinae) but not the fur seals (Arctocephalinae).

Molecular data indicates both fur seals and sea lions are paraphyletic. A remaining conflict is the position of the walrus. Most morphologic data support a phocid and walrus alliance, whereas the molecular data consistently supports uniting otariids and the walrus. Resolution of these conflicts will likely benefit from detailed exploration of both morphologic and molecular data sets.




3.4. Further Reading

Relationships among various arctoid carnivores and pinnipeds are reviewed in Flynn et al. (2000) and Davis et al. (2004). For descriptions of morphology see Berta (1991, 1994) and Barnes (1989, 1992) for basal pinnipedimorphs, Repenning and Tedford (1977) for fossil otariids and walruses, and Muizon (1981) and Koretky (2001) for fossil phocids. Reviews of the evolution and phylogeny of walruses include Deméré (1994a, 1994b), Kohno et al. (1995), and Deméré and Berta (2001). For alternative views on phocid phylogeny see the morphologically based studies of Wyss (1988), Bininda-Emonds and Russell (1996), and Bininda-Emonds et al. (1999) and the molecular studies of Árnason et al. (1995), Davis et al. (2004), and Fyler et al. (2005). Lento et al. (1995) and Wynen et al. (2001) provide molecular evidence for otariid relationships, but see Berta and Deméré (1986) for a different view based on morphologic data.
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4 Cetacean Evolution and Systematics


4.1. Introduction

The majority of marine mammals belong to the Order Cetacea, which includes whales, dolphins, and porpoises. Two major groups of extant whales are recognized—the Mysticeti, or baleen whales, and the Odontoceti, or toothed whales. Toothed whales are more diverse, with approximately 75 species known compared to 12–14 mysticete species. Cetaceans together with sirenians are the earliest recorded marine mammals, appearing in the Eocene about 53–54 Ma (Figure 4.1). Cetaceans are also the most diverse mammalian group to adapt to a marine existence. New discoveries of fossil whales provide compelling evidence for both the phylogenetic connections of cetaceans as well as the evolutionary transformation from a terrestrial to a fully aquatic existence.




4.2. Origin and Evolution


4.2.1. Whales Defined

The mammalian order Cetacea comes from the Greek ketos meaning whale. Whales and sirenians (see Chapter 5) are the only marine mammals to live their entire lives in water. A thick layer of blubber, rather than hair or fur, insulates them. The hind limbs have been lost and they use the horizontal tail flukes for propulsion. Steering and maintenance of stability when moving is accomplished by a pair of paddle-shaped foreflippers.

Whales have traditionally been defined as a monophyletic group. Geisler (2001) provided 15 unequivocal derived characters to diagnose Cetacea (Figure 4.2) including the following basicranial and dental features:

1. Mastoid process of petrosal not exposed posteriorly. In cetaceans, the mastoid process is not exposed posteriorly, the lambdoidal crest of the squamosal is in continuous contact with exoccipital and basioccipital. In noncetacean mammals, the mastoid region is exposed on the outside of the skull (O’Leary and Geisler, 1999).
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Figure 4.1. Chronologic ranges of extinct and living cetaceans. Ma = million years ago.



2. Pachyosteosclerotic bulla. The auditory bulla of cetaceans consists of dense, thick (pachyostotic) and osteosclerotic (replacement of spongy bone with compact bone) bone, referred to as pachyosteosclerotic bone. Pachyosteosclerosis occurs in the ear region of all cetaceans and it is absent in noncetacean mammals (Thewissen, 1994; Luo and Gingerich, 1999).
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Figure 4.2. A cladogram depicting the relationships for cetaceans and their terrestrial relatives (Thewissen et al., 2001).



3. Bulla articulates with the squamosal via a circular entoglenoid process. In cetaceans, a platform (entoglenoid process) is developed for articulation with the squamosal (Luo and Gingerich, 1999; O’Leary and Geisler, 1999). Although the bulla contacts the squamosal in archaic ungulates, a distinctive process is not developed.

4. Fourth upper premolar protocone absent. In fossil relatives of cetaceans, the protocone is present in contrast to the absence of this cusp in cetaceans (O’Leary, 1998; O’Leary and Geisler, 1999).

5. Fourth upper premolar paracone height twice that of first upper molar. In archaic cetaceans (e.g., Pakicetus and Ambulocetus), the upper fourth premolar has an anterior cusp (paracone) that is elevated twice as high as that of the first upper molar. In relatives of cetaceans, the paracone is not higher than in the first upper molar (Thewissen, 1994; O’Leary and Geisler, 1999).




4.2.2. Cetacean Affinities


4.2.2.1. Relationships of Cetaceans to Other Ungulates

Linnaeus, in an early edition of Systema Naturae (1735), included cetaceans among the fishes, but by the tenth edition he had followed Ray (1693) in recognizing them as a distinct group unrelated to fishes. Flower (1883) was the first to propose a close relationship between cetaceans and ungulates, the hoofed mammals. This idea has been endorsed on the basis of dental and cranial evidence by Van Valen (1966) and Szalay (1969) who argued for a more specific link between cetaceans and an extinct group of ungulates, mesonychian condylarths (Figures 4.3 and 4.4). Among fossil taxa, mesonychian condylarths are usually recognized as closely related to cetaceans, although recent work indicates that other ungulates are likely closer relatives (see Theodor et al., 2005). Mesonychians had wolf-like proportions including long limbs, a digitigrade stance (walking on their fingers and toes), and probably hoofs. In addition, most genera had massive, crushing dentitions that differ from other ungulates in suggesting a carnivorous diet. A connection between cetaceans and mesonychians (referred to as Cete) comes from the skull, dentition, and postcranial skeletons of a rapidly increasing number of basal whales such as Protocetus, Pakicetus, Rodhocetus, and Ambulocetus. The hind limbs of these whales distally show a paraxonic arrangement, a condition in which the axis of symmetry in the foot extend about a plane located between digits III and IV (Figure 4.5). This paraxonic arrangement bears striking resemblance to that of mesonychian condylarths as well as that of the Artiodactyla (even-toed ungulates including deer, antelope, camels, pigs, giraffes, and hippos). Morphologic evidence in support of mesonychians as the sister group of the cetaceans is reviewed by O’Leary (1998), O’Leary and Geisler (1999), Luo and Gingerich, (1999) and O’Leary et al. (2003).
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Figure 4.3. Whale synapomorphies. (a) Basicranium of mesonychian condylarth, Haplodectes hetangensis, (b) Basicranium of archaic whale, Gaviacetus razai illustrating the difference in the ear region. Character number 2 (see text for more explanation) pachyostotic bulla; in the condylarth pachyostosis is absent. (From Luo and Gingerich, 1999.)
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Figure 4.4. Skeleton of Mesonyx, a mesonychian condylarth. (From Scott, 1888.)
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Figure 4.5. Synapomorphy uniting Cete (cetaceans and mesonychian condylarths) + artiodactyls. Paraxonic foot arrangement (a) in which the axis of symmetry runs between digits III and IV (from MacFadden, 1992); in the primitive mesaxonic arrangement (b) the axis of symmetry runs through digit III.



Among extant groups, artiodactyls are most commonly cited as the sister group of the Cetacea based on morphologic data, and the majority of morphologically based studies have found the Artiodactyla to be monophyletic (e.g., Thewissen, 1994; O’Leary, 1998; O’Leary and Geisler, 1999; Geisler, 2001). Close ties between cetaceans, perissodactyls (odd-toed ungulates), and phenacodontids proposed previously by Thewissen (1994), Prothero (1993), and Prothero et al. (1988), respectively, are no longer tenable.

Like morphologic analyses, most molecular sequence data including that from both combined and separate data sets (i.e., noncoding, protein coding, nuclear, mitochondrial DNA and transposons; Irwin and Árnason, 1994; Árnason and Gullberg, 1996; Gatesy, 1998; Gatesy et al., 1996, 1999a, 1999b, 2002; Shimamura et al., 1997, 1999; Nikaido et al., 1999; Shedlock et al., 2000; Murphy et al., 2001; Árnason et al., 2004) support the derivation of Cetacea from within a paraphyletic Artiodactyla and some of these studies further suggest that cetaceans and hippopotamid artiodactyls are sister taxa and united in a clade—Cetancodonta (Árnason et al., 2000; Figure 4.6).

Until recently, morphologic data did not support molecular-based hypotheses that supported close ties between artiodactyls and cetaceans. At issue was the morphology of the ankle. Traditionally the ankle of artiodactyls, in which a trochlea is developed on the distal part of the astragalas, had long been recognized as a unique feature that enabled rapid locomotion. Recent discoveries of the ankle bones of archaic cetaceans show that a trocheated or “double pulley” ankle is also present in basal cetaceans and supports a close relationship between artiodactyls and cetaceans (Gingerich et al., 2001; Thewissen et al., 2001). If artiodactyls are paraphyletic, then either mesonychians are not closely related to cetaceans (making many dental characters convergent), or the specialized heel morphology has evolved several times independently in artiodactyls or has been lost in the mesonychian/cetacean clade. Morphologic data presented by O’Leary and Geisler (1999) support a sister group relationship between Mesonychia and Cetacea with this clade as the sister group of a monophyletic Artiodactyla. Other morphologic studies support either a sister group relationship between artiodactyls and cetaceans or agree with the hippopotamid hypothesis (Gingerich et al., 2001; Thewissen et al., 2001; Geisler and Uhen, 2003). There is need for further exploration of evidence for a link between anthracotheres (pig-like extinct artiodactyls), hippos, and early cetaceans (see Gingerich, 2005; Boisserie et al., 2005).
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Figure 4.6. Alternative hypotheses for relationships between cetaceans and various ungulate groups. (a) Morphologic data (O’Leary and Geisler, 1999; Geisler, 2001). (b) Morphologic data (Geisler and Uhen, 2003). (c) Molecular data (Gatesy et al., 2002). (d) Combined molecular and morphologic data with mesonychian condylarths excluded. (O’Leary et al., 2004).



Controversy has ensued regarding the efficacy of morphologic vs molecular characters, analysis of extant vs extinct taxa, and analysis of data subsets (e.g., see Naylor and Adams, 2001; O’Leary et al., 2003; Naylor and Adams, 2003; O’Leary et al., 2004). More extensive phylogenetic analyses are necessary to clarify relationships among whales, artiodactylans, and their extinct relatives. Such analyses should include a better sampling of species and characters in combined analyses that include morphologic and molecular data as well as fossil and extant taxa. Toward this end, the most comprehensive study to date of whales, artiodactylans, and their extinct relatives (i.e., 50 extinct and 18 extant taxa) combined approximately 36,500 morphologic and molecular characters (O’Leary et al., 2004). Because topologies were not well resolved given the instability of several taxa (i.e., Mesonychia) a subagreement tree summarized the maximum number of relationships supported by all minimum length topologies. This tree is consistent with a close relationship between cetaceans and hippopotamuses.




4.2.2.2. Relationships among Cetaceans

Prior phylogenetic analyses that used molecular data to support odontocete paraphyly, specifically a sister group relationship between sperm whales and baleen whales (Milinkovitch et al., 1993, 1994, 1996), have been shown to be weakly supported (Messenger and McGuire, 1998). Recent molecular studies have consistently supported odontocetes as monophyletic (Gatesy, 1998; Gatesy et al. 1999a; Nikaido et al., 2001). Several recent studies have made significant contributions to resolution of interrelationships among cetaceans by using comprehensive data sets (including both fossil and recent taxa) and rigorous phylogenetic methods (e.g., Messenger and McGuire, 1998; Geisler and Sanders, 2003).






4.2.3. Evolution of Early Whales—“Archaeocetes”

The earliest whales are archaeocetes, a paraphyletic stem group of cetaceans. Archaeocetes evolved from mesonychian condylarths. Archaeocete whales have been found from early to middle Eocene (52–42 Ma) deposits in Africa and North America but are best known from Pakistan and India. Archaeocetes have been divided into five or six families, the Pakicetidae, Protocetidae, Ambulocetidae, Remingtonocetidae, and Basilosauridae (Dorudontinae is sometimes recognized as a separate family) (Thewissen et al., 1998; Thewissen and Williams, 2002; Uhen, 2004).

The Pakicetidae are the oldest and most basal cetaceans and include Pakicetus, Nalacetus, Himalayacetus, and Icthyolestes (see Thewissen and Hussain, 1998 and Williams, 1998 for taxonomic reviews). Pakicetids are known from the late early Eocene of Pakistan and India (e.g., Gingerich and Russell, 1981; Gingerich et al., 1983; Thewissen and Hussain, 1998; Thewissen et al., 2001). Pakicetus possessed a very dense and inflated auditory bulla that is partially separated from the squamosal (cheek bone), a feature suggesting their ears were adapted for underwater hearing (Gingerich and Russell, 1990; Thewissen and Hussain, 1993). However, pakicetids were predominantly land or freshwater animals and, except for features of the ear, had few adaptations consistent with aquatic life. Recent discoveries of pakicetid skeletons indicate that they had running adaptations (i.e., slender metapodials, heel bone with long tuber (Thewissen et al., 2001).

The monophyletic Ambulocetidae include Ambulocetus, Gandakasia, and Himalayacetus (Thewissen and Williams, 2002). One of the most significant fossil discoveries is that of a whale with limbs and feet, Ambulocetus natans, also from the early Eocene of Pakistan (Thewissen et al., 1994). The well-developed hind limbs and toes that ended as hooves of this so-called walking whale leave no doubt that they were used in locomotion. Thewissen et al. (1994) suggested that Ambulocetus swam by undulating the vertebral column and paddling with the hind limbs, combining aspects of modern seals and otters, rather than by vertical movements of the tail fluke, as is the case in modern whales (Figure 4.7; see also Chapter 8). The front limbs and hand of Ambulocetus also were well developed, with flexible elbows, wrists, and digits. Body size estimates suggest that Ambulocetus weighed between 141 and 235 kg and was similar in size to a female Steller’s sea lion (Thewissen et al., 1996). A second genus of ambulocetid whale, Gandakasia, is distinguished from Ambulocetus by its smaller size (Thewissen et al., 1996).

A very diverse lineage of early whales, the Protocetidae, include Rodhocetus, Artiocetus, Indocetus, Babicetus, Takracetus, and Gaviacetus from India-Pakistan; Protocetus and Eocetus from Egypt; Pappocetus from Africa; Georgiacetus; and Natchitochia from the southeastern United States (Thewissen et al., 1996; Uhen, 1998a; Hulbert et al., 1998; Gingerich et al., 2001; Thewissen et al., 2001). Partial skeletons of Rodhocetus and Artiocetus suggest that protocetids swam using the robust tail as well as the fore limbs and hind limbs (Gingerich et al., 2001) (Figure 4.8).

The Remingtonocetidae, a short-lived archaeocete clade (early middle Eocene of India-Pakistan) containing the genera Remingtonocetus, Dalanistes, Andrewsiphius, Attockicetus, and Kutchicetus are characterized by long, narrow skulls and jaws and robust limbs. Morphology of the jaws of remingtonocetids suggests a diet of fast-swimming aquatic prey (Thewissen, 1998). The middle ear is large and shows some specializations for underwater hearing (Bajpal and Thewissen, 1998; Gingerich, 1998). Although it has been suggested that remingtonocetids are ancestral to odontocetes, based on the presence of pterygoid sinuses in the orbits (air filled sacs in the pterygoid bone; Kumar and Sahni, 1986), this is now considered unlikely and they are recognized as a lineage of basal cetaceans (Thewissen and Hussain, 2000).
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Figure 4.7. Ambulocetus natans (a) skeletal reconstruction (Thewissen, 2002) and (b) life restoration (Thewissen and Williams, 2002).
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Figure 4.8. Skeleton of Rodhocetus kasrani. Dashed lines and crosshatching show reconstructed parts. Original 2 m in length. (From Gingerich et al., 2001.)



The paraphyletic Basilosauridae were late diverging archaeocetes and include one lineage of large species with elongated trunk vertebrae, the Basilosaurinae, and the Dorudontinae, a group of species without elongated vertebrae (see Uhen, 2004, for a recent taxonomic review). Some basilosaurines were gigantic, approaching 25 m in length, and are known from the middle to late Eocene and probably also from the early Oligocene in the northern hemisphere (Gingerich et al., 1997). The several hundred skeletons of Basilosaurus isis are known from the middle Eocene of north central Egypt (Wadi Hitan, also known as the Valley of Whales or Zeuglodon Valley), which provide evidence of very reduced hind limbs in this species (Gingerich et al., 1990; Uhen, 2004; Figure 4.9). Although it was suggested that B. isis used its tiny limbs to grasp partners during copulation (Gingerich et al., 1990), the limbs could just as easily be interpreted as vestigial structures without function.
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Figure 4.9. Skeleton and hind limb of Basilosaurus isis. (From Gingerich et al, 1990.) (a) Skeleton in left lateral view and position of hind limb (arrow). (b) Hypothesized functional pelvic girdle and hind limb in resting posture (solid drawing) and functional extension (open). (c) Lateral view of left hind limb.



The dorudontines were smaller dolphin-like species that were taxonomically and ecologically more diverse than the basilosaurines. They are known from the late Eocene in Egypt, southeastern North America, Europe, and New Zealand (Uhen, 2004). Among the abundant fossil cetaceans from Egypt are the remains of Dorudon atrox, one of the earliest and best known fully aquatic cetaceans (Uhen, 2004). Dorudon had short forelimb flippers, reduced hind limbs, and tail-based propulsion as in modern cetaceans (Uhen, 2004). Also from this locality is a new genus and species of dorudontine, Ancalecetes simonsi (Gingerich and Uhen, 1996), which differs from D. atrox in several peculiarities of the forelimb including fused elbows that indicate very limited swimming capability (Figure 4.10). Modern whales, including both odontocetes and mysticetes, likely diverged from dorudontines (Uhen, 1998b).




4.2.4. Modern Whales

Estimates of the divergence time for the mysticete-odontocete split differ depending on data (gene sequences, short interspersed element [SINE] insertions, or fossils) and method (molecular clock, Bayesian). According to the fossil record, mysticetes and odontocetes diverged from a common archaeocete ancestor about 35 Ma (Fordyce, 1980; Barnes et al., 1985). On the basis of mitochondrial genomic analyses, Árnason et al. (2004) postulated a 35-Ma age for the split between odontocetes and baleen whales in agreement with the fossil record.

Modern whales differ from archaeocetes because they possess a number of derived characters not seen in archaeocetes. Arguably one of the most obvious features is the relationship of the bones in the skull to one another in response to the migration of the nasal openings (blowholes) to the top of the skull. Termed telescoping, the modern whale skull has premaxillary and maxillary bones that have migrated far posteriorly and presently form most of the skull roof resulting in a long rostrum (beak) and dorsal nasal openings. The occipital bone forms the back of the skull and the nasal, frontal, and parietal bones are sandwiched between the other bones (Figure 4.11).

[image: ]
Figure 4.10. Skeletal reconstructions of Dorudon atrox. (a) Skull and jaws (Uhen, 2002). (b) Skeleton in right lateral view (Gingerich and Uhen, 1996).
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Figure 4.11. Telescoping of the skull in cetaceans. Note the posterior position of the nares and the different arrangement of the cranial bones in an archaic whale (archaeocete) (a), a modern odontocete (b), and mysticete (c). Cranial bones: premaxilla (stippled), frontal (f), maxilla (m), nasals (n), parietal (p), squamosal (sq), supraoccipital (s). (Modified from Evans, 1987.)



Another derived feature of modern whales is a fixed elbow joint. The laterally flattened forelimbs are usually short and rigid with an immobile elbow. Archaeocetes have flexible elbow joints, capable of rotation.


4.2.4.1. Mysticetes

The baleen, or whalebone, whales are so named for their feeding apparatus: plates of baleen hang from the roof of the mouth and serve to strain planktonic food items. Although extant mysticetes lack teeth (except in embryonic stages) and possess baleen, this is not true for some fossil toothed mysticetes, as discussed later. Major evolutionary trends within the group include the loss of teeth, development of large body size and large heads, shortening of the intertemporal region, and shortening of the neck (Fordyce and Barnes, 1994).

Deméré et al. (in press) identified seven unequivocal synapomorphies to diagnose mysticetes (see Figure 4.11).

1. Lateral margin of maxillae thin. Mysticetes are distinguished from odontocetes in their development of thin lateral margins of the maxilla.

2. Descending process of maxilla present as a broad infraorbital plate. Mysticetes display a unique condition of the maxilla in which a descending process is developed as a broad plate below the eye orbit. Odontocetes lack development of a descending process.

3. Posterior portion of vomer exposed on basicranium and covering basisphenoid/basioccipital suture. Mysticetes are distinguished from odontocetes in having the posterior portion of the vomer exposed on the basicranium.

[image: ]
Figure 4.12. Mysticete mandibular symphysis in dorsal and medial views illustrating ancestral (a) Zygorhiza kochii and derived conditions (b) gray whale, Eschrichtius robustus. (From Deméré, 1986 and unpublished manuscript.) Illustrated by M. Emerson.



4. Basioccipital crest wide and bulbous. The wide, bulbous basioccipital crest in mysticetes is in contrast to the transversely narrow basioccipital crest in odontocetes.

5. Mandibular symphysis unfused with only a ligamental or connective tissue attachment, marked by anteroposterior groove. Mysticetes display the unique condition of having an unfused mandibular symphysis (Figure 4.12). Odontocetes possess a bony/fused mandibular symphysis.

6. Mandibular symphysis short with large boss dorsal to groove. Mysticetes are distinguished from odontocetes in having a short mandibular symphysis with a large boss dorsal to the groove. In odontocetes, the mandibular symphysis is long with a smooth surface dorsal to the groove.

7. Dorsal aspect of mandible curved laterally. Mysticetes possess a mandible that curves laterally in dorsal view (see Figure 4.12). Most odontocetes possess a mandible that appears straight when viewed dorsally; physeterids and pontoporiids are exceptions and possess medially bowed mandibles due to a long fused symphysis.


4.2.4.1.1. Archaic Mysticetes

Archaic toothed mysticetes have been grouped into three families: the Aetiocetidae, the Llanocetidae, and the Mammalodontidae. The Aetiocetidae includes four genera: Aetiocetus (A. cotylalveus, A.polydentatus [Figure 4.13], A. tomitai, A. weltoni), Chonecetus (C. goedertorum, C. sookensis), Ashrocetus (A. eguchii) and Morawanocetus (M. yabukii) (Barnes et al., 1995). Aetiocetus and Chonecetus possess multicusped teeth and nutrient foramina (openings for blood vessels) for baleen. The oldest described mysticete is the toothed Llanocetus denticrenatus, the only member of the family Llanocetidae. It is known only from a fragment of large inflated mandible (Mitchell, 1989) of late Eocene or early Oligocene age (Seymour Island, Antarctica). More complete material of the same species (actually of the same specimen) was recovered and is under study (Fordyce, 1989). The holotype skull and skeleton represent a large individual with a skull length of about 2 m. The multicusped teeth of Llanocetus denticrenatus may have functioned in filter feeding, contrasting with the long pincer-like jaws and teeth typical of other fish-eating archaeocetes (Uhen, 2004). Another archaic toothed mysticete, Mammalodon colliveri (Figure 4.14), represents the Mammalodontidae from the late Oligocene or early Miocene in Australia, and has a relatively short rostrum, flat palate, and heterodont teeth. Only the holotype has been described (see Fordyce, 1984) but other late Oligocene specimens occur in the southwest Pacific (Fordyce, 1992).
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Figure 4.13. Skull and lower jaw restoration of an archaic mysticete whale, Aetiocetus polydentatus, from the late Oligocene of Japan. (From Barnes et al., 1995.)



Baleen-bearing mysticetes include several extinct lineages. The earliest known baleen-bearing mysticete Eomysticetus whitmorei (see Figure 4.14) was described from the late Oligocene of South Carolina (Sanders and Barnes, 2002). The “Cetotheriidae” is a large, diverse, nonmonophyletic assemblage of extinct toothless mysticetes that have been grouped together primarily because they lack characters of living mysticetes (see Figure 4.14). “Cetotheres” range in age from the late Oligocene to the late Pliocene of North America, South America, Europe, Japan, Australia, and New Zealand. At least 60 species of “cetotheres” have been named; however, many are based on noncomparable elements and the entire group is in clear need of systematic revision.

Most “cetotheres” were of moderate size, up to 10 m long, but some were probably as short as 3 m. Some fossil “cetotheres” have actually been found with impressions of baleen.

Kimura and Ozawa (2001) presented the first cladistic analysis that included eight “cetotheres,” in addition to basal mysticetes (aetiocetids), and representatives of most extant families (Capereawas, excluded). Their results supported “cetotheres” as more closely related to Balaenopteridae +Eschrichtiidae than to Balaenidae and identified two subgroups one of which is more closely related to these two modern lineages than it is to other “cetotheres.” Geisler and Sanders (2003) included a more limited sample of “cetotheres” and their results supported inclusion of several Miocene “cetotheres” (Diorocetus and Pelocetus) together with extant mysticetes in a clade distinct from the eomysticetids.




4.2.4.1.2. Later Diverging Mysticetes

Relationships among the four families of modern baleen whales: Balaenopteridae (fin whales or rorquals), Balaenidae (bowhead and right whales), Eschrichtiidae (gray whale), and Neobalaenidae (pygmy right whale) have been contentious. Prior molecular studies did not sample all species nor did they yield well resolved relationships between the four major groups of mysticetes (Árnason and Gullberg, 1994; Árnason et al., 1993). In more inclusive, better resolved molecular phylogenies of mysticetes, Rychel et al. (2004) and Sasaki et al. (2005) found evidence to support Balaenidae as the most basal mysticetes, and Neobalaenidae as the next diverging lineage and sister group to the balaenopterid-eschrichtiid clade (Figure 4.15).
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Figure 4.14. Archaic mysticete skulls in dorsal view. (a) Mammalodon collivieri. (From Fordyce and Muizon, 2001.) (b) “Mauicetus” lophocephalus. (From Fordyce and Muizon, 2001.) (c) Eomysticetus whitmorei. (From Sanders and Barnes, 2002.) (d) “Cetothere” Agalocetus patulus. (From Kellogg, 1968.) Not to scale.



Prior phylogenetic analyses of mysticetes based on morphology either failed to employ rigorous systematic methods or included limited taxon/character sampling (McLeod et al., 1993; Geisler and Luo, 1996). Geisler and Sanders (2003) presented the first comprehensive morphological analysis that included significant numbers of extant and fossil mysticetes and odontocetes. Their most parsimonious tree divided extant mysticetes into two clades: Balaenopteroidea (Eschrichtiidae + Balaenopteridae) and Balaenoidea (Balaenidae + Neobalaenidae) (see Figure 4.15). Deméré et al. (in press) in a phylogenetic analysis of extinct and extant mysticetes confirmed strong support for both of these clades and provided limited resolution for a larger sample of basally positioned “cetotheres” (see Figure 4.15). This same result was also supported by total evidence analyses in this study. Future work should be directed toward clarifying the taxonomic status and evolutionary relationships among balaenopterid species (e.g., B. brydei-edeni-borealis-omurai complex), balaenids, and other mysticetes (gray, sei, and minke whales).
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Figure 4.15. Relationships among mysticetes based on molecular and morphologic data. (a) Morphologic data (Geisler and Sanders, 2001); † = extinct taxa. (b) Morphologic data (Deméré et al., in press). (c) Molecular phylogeny based on mitochondrial and nuclear sequence data (Rychel et al., 2004).




Family Balaenopteridae

The Balaenopteridae, commonly called the rorquals, which include fin whales and the humpback, are the most abundant and diverse living baleen whales. They include six to nine species ranging from the small 9-m minke whale, Balaenoptera acutorostrata, to the giant blue whale, Balaenoptera musculus. The blue whale has the distinction of being the largest mammal ever to have lived, reaching 33 m in length and weighing over 160 tons (Jefferson et al., 1993). A new species, Balaenoptera omurai, was recently reported from Japan and distinguished from related species based on morphologic and molecular characters (Wada et al., 2003).

Balaenopterids are characterized by the presence of a dorsal fin, unlike gray whales and balaenids, and by numerous throat grooves that extend past the throat region (Barnes and McLeod, 1984; Figure 4.16). The fossil record of the group extends from the middle Miocene and fossils are reported from North and South America, Europe, Asia, and Australia (Barnes, 1977; Deméré, 1986; McLeod et al., 1993; Oishi and Hasegawa, 1995; Cozzuol, 1996; Dooley et al., 2004; Deméré et al., in press).




Family Balaenidae

The family Balaenidae includes the right whales, Eubalaena, and the bowhead whale, Balaena. Some molecular data, however, do not support generic distinction between the two (Árnason and Gullberg, 1994). Three species (or subspecies according to some workers) of right whale are recognized, the North Atlantic right whale (Eubalaena glacialis) and the North Pacific right whale (Eubalaena japonica) and the South Atlantic right whale (Eubalaena australis). Hunters called them the “right” whales to kill because they inhabited coastal waters, were slow swimming, and floated when dead. Balaenids are characterized by large heads that comprise up to one third of the body length. The mouth is very strongly arched and accommodates extremely long baleen plates (Figure 4.17).

The oldest fossil balaenid, Morenocetus parvus, is from the early Miocene (23 Ma) of South America (Cabrera, 1926). M. parvus has an elongated supraorbital process and a triangular occipital shield that extends anteriorly; both characters are developed to a lesser extent than in later balaenids (McLeod et al., 1993). Relatively abundant fossils of later diverging balaenids are known, especially from Europe. Among Pliocene Balaena species is a nearly complete skeleton of a new bowhead from the Pliocene Yorktown Formation of the eastern United States (Westgate and Whitmore, 2002).




Family Neobalaenidae

Traditionally, the small, 4-m long pygmy right whale, Caperea margínala, found only in the southern hemisphere, has been included in the Balaenidae (e.g., Leatherwood and Reeves, 1983). Its placement in a separate family, the Neobalaenidae, is supported by anatomical data (Mead and Brownell, 1993). In a molecular analysis that employed both mitochondrial and nuclear genes (Rychel et al., 2004) the position of Caperea varied; it was either positioned as sister to balaenids or as diverging off the stem between balaenids and Eschrichtius (see Figure 4.15).
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Figure 4.16. A representative of the Family Balaenopteridae (blue whale, Balaenoptera musculus). (a) Dorsal view of the skull. (b) Left side of body. (Illustrated by P. Folkens.) Note the dorsal fin and throat grooves. (From Barnes and McLeod, 1984.) Original skull length 6 m.



Caperea has a unique type of cranial architecture, distinguished from other mysticetes by a larger, more anteriorly thrusted occipital shield and a shorter, wider, and less arched mouth that accommodates relatively short baleen plates (see Figure 4.17). Other differences in the pygmy right whale in comparison with balaenids include the presence of a dorsal fin, longitudinal furrows on the throat (caused by mandibular ridges that might be homologous to throat grooves), coarser baleen, smaller head size relative to the body, a proportionally shorter humerus, and four instead of five digits on the hand (Barnes and McLeod, 1984).

No well-documented fossils of neobalaenids exist.




Family Eschrichtiidae

The family Eschrichtiidae is represented by one extant species, the gray whale. It has a fossil record that goes back to the Pleistocene (100,000 years bp). The gray whale is now found only in the North Pacific although a North Atlantic population became extinct in historic time (17th or early 18th century according to Bryant, 1995). There are two North Pacific subpopulations: the western North Pacific population migrates along the coast of Asia and is extremely rare. The much larger eastern North Pacific population was severely over exploited in the late 19th and early 20th centuries but has recovered sufficiently to be removed from the list of endangered species. Molecular analyses (Árnason and Gullberg, 1996; Hasegawa et al., 1997; Rychel et al., 2004; Sasaki et al., 2005) position the gray whale as sister taxon to balaenopterids or nested within this lineage (see Figure 4.15).
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Figure 4.17. Representative balaenids and neobalaenid. Dorsal view of the skull and left side of the body. Note the large head and arched rostra. (Illustrated by P. Folkens.) (a) Bowhead, Balaena mysticetus. (b) Northern right whale, Eubalena glacialis. (c) Pygmy right whale, Caperea marginata. (From Barnes and McLeod, 1984.) Original skull lengths are 1.97 m, 3.27 m and 1.47 m, respectively.



The gray whale lacks a dorsal fin and is characterized by a small dorsal hump followed by a series of dorsal median bumps. Gray whales have two to four throat grooves in comparison to the numerous throat grooves of balaenopterids. The baleen plates differ from those of balaenids by being fewer in number, thicker, and white. A unique feature is the presence of paired occipital tuberosities on the posterior portion of the skull for insertion of muscles that originate in the neck region (Barnes and McLeod, 1984; Figure 4.18).








4.2.4.2. Odontocetes

The majority of whales are odontocetes, or toothed whales, named for the presence of teeth in adults, a feature distinguishing them from extant mysticetes. Odontocetes encompass a wide diversity of morphologies ranging from the large, deep-diving sperm whale, which has relatively few teeth and captures squid by suction feeding, to the smallest cetaceans, the porpoises, which have many spade-shaped teeth for seizing fish. Another useful distinction of odontocetes is a difference in telescoping of the skull in which the maxilla “telescopes,” or extends posteriorly, over the orbit to form an expanded bony supraorbital process of the frontal (Miller, 1923; see Figure 4.11). In living odontocetes, this supraorbital process forms an origin for a facial (maxillonasolabialis) muscle (Mead, 1975a), which inserts around the single blowhole and associated nasal passages. The facial muscle complex and nasal apparatus generate the high frequency sounds used by living odontocetes for echolocation (see Chapter 11).

Among purported diagnostic features of odontocetes include two characters that have been specifically related to echolocation abilities: the presence of a melon, a region of adipose tissue on top of the skull with varying amounts of connective tissue within it, and cranial and facial asymmetry, a condition in which bones (= cranial asymmetry) and soft structures (= facial asymmetry) on the right side of the facial region are larger and more developed than equivalent structures on the left side. Cranial asymmetry is not universal among odontocetes, in either presence or extent. Both cranial and facial asymmetry are found in all modern representatives of the seven extant odontocete families, but fossil evidence indicates that cranial asymmetry is less pronounced in the more basal members of these groups and is totally absent in some extinct taxa. When present, the skew is always to the left side with the right side larger. Heyning (1989) argued that it is more likely that cranial asymmetry evolved only once.

Milinkovitch (1995) proposed another scenario in which facial asymmetry started to develop in the ancestor of all extant cetaceans and by chance was oriented to the left. It follows from his argument that left-oriented facial asymmetry might be an ancestral character for odontocetes that was lost or greatly reduced in baleen whales. Accordingly, cranial asymmetry would accompany facial asymmetry and would have been developed independently in two (possibly up to four) odontocete lineages. Geisler and Sanders (2003) provide a test of this hypothesis in their evaluation of the distribution of asymmetry of the premaxilla in cetaceans. Their results suggest that asymmetry of the premaxilla evolved five times among odontocetes.
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Figure 4.18. The Family Eschrichtiidae (gray whale Eschrichtius robustus). Dorsal view of the skull illustrating the paired occipital tuberosities. (From Barnes and McLeod, 1984.) Original skull length 2.33 m.



Regarding the presence of a melon, Milinkovitch (1995) noted that mysticetes possess a fatty structure just anterior to the nasal passages that may be homologous to the melon of odontocetes (Heyning and Mead, 1990). It has been suggested that the “vestigial” melon of mysticetes might be a hint of more generalized paedomorphism of their facial anatomy, seen for example in a fossil delphinoid that has dramatically reversed telescoping of the skull (Muizon, 1993b). Milinkovitch (1995) further suggested that presence of a melon (along with facial and cranial asymmetry and echolocation abilities) might be ancestral for all cetaceans and that baleen whales greatly reduced or lost this character. Heyning (1997) disputed this interpretation, arguing that it assumes a priori that the melon regressed from a larger melon in the common ancestor, a claim that lacks empirical evidence. In addition, study of the inner ear of an archaic mysticete, which more nearly resembles the nonecholocating modern mysticetes than early fossil toothed whales, offers little support for the suggestion that echolocation was present in ancestral mysticetes and was lost secondarily in extant mysticetes (Geisler and Luo, 1996). In summary, Milinkovitch’s alternative interpretations of odontocete morphological synapomorphies are less parsimonious interpretations of character transformations and they lack supporting data.

The traditional monophyletic view of odontocetes is followed here based on a comprehensive reappraisal of both morphologic and molecular data (Messenger, 1995; Messenger and McGuire, 1998). In a recent reevaluation of purported odontocete synapomorphies, Geisler and Sanders (2003) identify 14 unequivocal synapomorphies, a few of which are as follows (Figure 4.19):

1. Nasals elevated above the rostrum. The height of the nasals in odontocetes ranges between 229–548% of rostral height. In the primitive condition seen in baleen whales and artiodactyls, nasal height ranges between 92–139% of rostral height.

2. Frontals higher than nasals. In odontocetes the frontals are higher than the nasals. Mysticetes and artiodactyls have frontals that are lower than the nasals.

3. Premaxillary foramen present. Odontocetes possess infraorbital or premaxillary foramina of varying shapes and sizes. Neither mysticetes nor artiodactyls possess foramina in the premaxillary bones.

4. Maxillae overlay supraorbital process. “Telescoping” of the skull in odontocetes involves the presence of ascending processes of the maxillae that cover the supraorbital processes of the frontals. This condition is not seen in mysticetes or terrestrial mammals.
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Figure 4.19. Simplified outlines of cetacean skulls in dorsal and lateral views illustrating odontocete synapomorphies. (a) and (b) a mysticete, Balaena mysticetus, (c) and (d) an odontocete, Tursiops truncatus. (Modified from Fordyce, 1982.)




4.2.4.2.1. Basal Odontocetes

The phylogenetic relationship of the generally accepted basal odontocetes (i.e., Agorphius, Xenorophus, and Archaeodelphius) from the Oligocene age (28–24 Ma) are becoming better understood (e.g., Geisler and Sanders, 2003). According to these workers Archaeodelphius is the basal-most member from the a clade that includes Xenorophus and related taxa. Geisler and Sanders (2003) mention an undescribed specimen that they refer to Agorophius pygmaeus (late Oligocene, South Carolina), which was previously represented by the holotype skull apparently now lost (Fordyce, 1981). The few known skulls of these basal odontocetes demonstrate that these animals had only a moderate degree of telescoping (the nares were anterior to the orbits) and that the cheekteeth had multiple roots and accessory cusps on the crowns (Barnes, 1984a).




4.2.4.2.2. Later Diverging Odontocetes

Only one of the two major later diverging odontocete clades proposed by Geisler and Sanders (2003), the Physeteroidea (Physeteridae + Ziphiidae), is generally accepted by most workers. The Platanistoidea (river dolphins and their kin) plus the Delphinidae + Monodontidae + Phocoenidae are more contentious.

Molecular and morphologic phylogenies for odontocetes are presented in Figures 4.20 and 4.21. Geisler and Sander’s (2003) morphologically based proposal of two major odontocete clades: the Physeteroidea (Physeteridae + Ziphiidae) and the Platanistoidea (river dolphins and their kin) plus the Delphinidae + Monodontidae + Phocoenidae differs from previous hypotheses. According to Heyning (1989, 1997) the Physeteroidea (Physeteridae +Kogiidae) are at the base of odontocetes (Figure 4.21). This is consistent with molecular analyses (Cassens et al., 2000, Nikaido et al., 2001; see Figure 4.20). The position of beaked whales, however, differs among morphological systematists. In one hypothesis, beaked whales are united in a clade with sperm whales (Fordyce, 2001; Geisler and Sanders, 2003). In an alternative arrangement, beaked whales are positioned with more crownward odontocetes (Delphinoidea and Platanistoidea) excluding sperm whales (Heyning, 1989; Heyning and Mead, 1990). The status of the Platanistoidea remains unresolved (see Messenger, 1994). The classic concept of Platanistoidea as including all extant river dolphins (i.e., Platanistidae, Pontoporiidae, Iniidae, and Lipotidae) is not supported by recent analyses of molecular data (Cassens et al., 2000; Nikaido et al., 2001) although the recent morphological analysis of Geisler and Sanders (2003) differs in supporting a monophyletic Platanistoidea. A third major odontocete clade, the Delphinoidea, although not identified by Geisler and Sanders (2003) has been traditionally recognized based on morphology (Heyning, 1997; Messenger and McGuire, 1998) and is strongly supported by molecular sequence data (Gatesy, 1998; Cassens et al., 2000; Nikaido et al., 2001).


Physeteroidea

Family Ziphiidae Beaked whales are a relatively poorly known but diverse group of toothed whales composed of at least 5 genera and 21 extant species. They are characterized by a snout that is frequently drawn out into a beak and from which the group obtains its common name, beaked whales. Ziphiids inhabit deep ocean basins and much of our information about them comes from strandings and whaling activities. One evolutionary trend in ziphiids is toward the loss of all teeth in the rostrum and most in the mandible, with the exception of one or two pairs of teeth at the anterior end of the jaw that become much enlarged (Figure 4.22). Phylogenetic analysis based on mtDNA data suggests species level taxonomic revisions (Dalebout et al., 2002; Van Helden et al., 2002). In addition to several features of the ear, premaxilla, and palatal region (e.g., see Fordyce, 1994), extant ziphiids can be distinguished from other odontocetes by possession of one pair of anteriorly converging throat grooves (see Figure 4.22).
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Figure 4.20. Alternative hypotheses for the phylogeny of extant odontocetes. (a) Cladogram based on retroposons and DNA sequence data (Nikaido et al., 2001). (b) Cladogram based on morphologic data (Heyning, 1989, 1997; Heyning and Mead, 1990).
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Figure 4.21. Alternate phylogenies for fossil and recent odontocetes based on morphology † = extinct taxa. (a) Fordyce, 2002, and (b) Geisler and Sanders, 2003.



Ziphiids have been classified either with sperm whales in the superfamily Physeteroidea or as a sister group to extant odontocetes other than physeterids. Ziphiids are known in the fossil record from the Miocene and Pliocene of Europe, North and South America, Japan, and Australia. A freshwater fossil ziphiid has been reported from the Miocene of Africa (Mead, 1975b).

Family Physeteridae The physeterids, or sperm whales, have an ancient and diverse fossil record, although only a single species, Physeter macrocephalus, survives. Derived characters of the skull that unite sperm whales include, among others, a large, deep, supracranial basin, which houses the spermaceti organ (Figure 4.23) and loss of one or both nasal bones (Fordyce, 1984). The terms sperm whale and spermaceti organ derive from the curious belief of those who named this whale that it carried its semen in its head. Sperm whales are the largest of the toothed whales, attaining a length of as much as 19 m and weighing 70 tons. They also are the longest and deepest diving vertebrates known (138 min and 3000 m; Clarke, 1976; Watkins et al., 1985).

The fossil record of the Physeteridae goes back at least to the Miocene (late early Miocene 21.5–16.3 Ma) and earlier if Ferecetotherium from the late Oligocene (23+ Ma) of Azerbaidjan is included. By middle Miocene time, physeterids were moderately diverse and the family is fairly well documented from fossils found in South America, eastern North America, western Europe, the Mediterranean region, western North America, Australia, New Zealand, and Japan (Hirota and Barnes, 1995).
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Figure 4.22. A representative of the Family Ziphiidae. (a) Lateral view of the skull and lower jaw of Gervais’ beaked whale, Mesoplodon europaeus. Note the reduced dentition. (From Van Beneden and Gervais, 1880.) (b) Right side of the body of Stejneger’s beaked whale, Mesoplodon stejnegeri. (Illustrated by P. Folkens.)



Family Kogiidae The pygmy sperm whale, Kogia breviceps, and the dwarf sperm whale, Kogia simus, are closely related to the sperm whale family, Physeteridae. The pygmy sperm whale is appropriately named, because males only attain a length of 4 m and females are no more than 3 m long. The dwarf pygmy sperm whale is even smaller, with adults ranging from 2.1 to 2.7 m. As in physeterids, there is a large anterior basin in the skull, but kogiids differ markedly in their small size, short rostrum, and other details of the skull (Fordyce and Barnes, 1994; Figure 4.24). The oldest kogiids are from the late Miocene (8.8–5.2 Ma) of South America and the early Pliocene (6.7–5 Ma) of Baja California.
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Figure 4.23. The Family Physeteridae (Sperm whale, Physeter macrocephalus). (a) Lateral view of the skull and lower jaw. Note the deep supracranial basin. (From Van Beneden and Gervais, 1880.) (b) Right side of the body. (Illustrated by P. Folkens.)






Platanistoidea

“River Dolphins” Living river dolphins include four families (Platanistidae, Lipotidae, Iniidae, and Pontoporiidae) that have invaded estuarine and freshwater habitats. According to Hamilton et al. (2001) and Cassens et al. (2000), river dolphins are a polyphyletic group of three lineages; the platanistids are sister to the remaining odontocetes and the remaining river dolphins are paraphyletically positioned at the base of the delphinoid clade (i.e., monodontids, delphinoids, and phocoenids). A once diverse radiation of platanistoids is apparent with inclusion of several extinct lineages. The superfamily Platanistoidea, a clade that according to Muizon (1987, 1988a, 1991, 1994) includes the Platanistidae plus several extinct groups (the Squalodontidae, the Squalodelphidae, and the Dalpiazinidae) and a closely related newly discovered lineage the Waipatiidae (Fordyce, 1994), has had a long and confusing history (Messenger, 1994; Cozzuol, 1996). There is some recent morphologic support for monophyly of the group (Geisler and Sanders, 2003). The squalodonts (Family Squalodontidae), or shark-toothed dolphins, named for the presence of many triangular, denticulate cheekteeth, are known from the late Oligocene to the late Miocene. They have been reported from North America, South America, Europe, Asia, New Zealand, and Australia. Squalodontids include a few species known from well-preserved skulls, complete dentitions, ear bones, and mandibles but many nominal species are based only on isolated teeth and probably belong in other families. Most squalodontids were relatively large animals with bodies 3 m or more in length. Their crania were almost fully telescoped, with the nares located on top of the head between the orbits. The dentition was polydont but still heterodont, with long pointed anterior teeth and wide, multiple-rooted cheekteeth (Figure 4.25). It is likely that the anterior teeth functioned in display rather than in feeding and the robust cheekteeth with worn tips may reflect feeding on prey such as penguins (Fordyce, 1996).

The Squalodelphidae include several early Miocene genera (Notocetus, Medocinia, and Squalodelp his; Muizon, 1981) with small, slightly asymmetrical skulls and moderately long rostra and near-homodont teeth (Muizon, 1987). The family Dalpiazinidae was established by Muizon (1988a) for Dalpiazina ombonii, an early Miocene species with a small symmetrical skull and a long rostrum armed with many near-homodont teeth (Fordyce and Barnes, 1994). Fordyce and Sampson (1992) reported an undescribed earliest Miocene species from the southwest Pacific.
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Figure 4.24. The Family Kogiidae (Pygmy sperm whale, Kogia breviceps). (a) Lateral view of the skull and lower jaw. Note the short snout and anterior basin. (From Bobrinskii et al., 1965, p. 197.) (b) Right side of the body. (Illustrated by P. Folkens.)
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Figure 4.25. Skull and lower jaw of an archaic odontocete, Prosqualodon davidsi, from the early Miocene of Tasmania. (From Fordyce et al., 1995.)



The family Waipatiidae was established by Fordyce (1994) for a single described species, Waipatia maerewhenua, characterized by a small slightly asymmetrical skull and long rostrum with small heterodont teeth.

Family Platanistidae The extant Asiatic river dolphins, Platanista spp. (the blind endangered Ganges and Indus River dolphins), comprise the family Platanistidae. They are characterized by a long narrow beak, numerous narrow pointed teeth, and broad paddle-like flippers. They have no known fossil record and the time of invasion into freshwater is unknown. Middle to late Miocene marine species of Zarhachis and Pomatodelphis are closely related to Platanista, although they differ in rostral profiles and cranial symmetry and in their development of pneumatized bony facial crests (Figure 4.26; Fordyce and Barnes, 1994).

Family Pontoporiidae The small, long-beaked franciscana, Pontoporia blainvillei, lives in coastal waters in the western South Atlantic and is the only extant pontoporiid. All pontoporiids except for the fossil Parapontoporia have virtually symmetrical cranial vertices and most have long rostra and many tiny teeth (Figure 4.27).

Fossil Pontoporia-like taxa include species of Pliopontos and Parapontoporia from temperate to subtropical marine settings in the east Pacific (Barnes, 1976, 1984b; Muizon, 1983, 1988b). Late Miocene Ponasíes and Pontoporia came from marine sediments of Argentina (Cozzuol, 1985, 1996) to colonize the nearshore coast of the La Plata estuary (Hamilton et al., 2001).
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Figure 4.26. A representative of the Family Platanistidae (Ganges river dolphin, Platanista gangetica). (a) Lateral views of the skull and lower jaw. (From Duncan, 1877–1883: p. 248.) Note the development of bony facial crests. (b) Right side of the body. (Illustrated by P. Folkens.)
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Figure 4.27. The Family Pontoporiidae (franciscana, Pontoporia blainviüei). (a) Lateral view of skull and jaws. (From Watson, 1981.) (b) Right side of the body. (Illustrated by P. Folkens.) Note the symmetrical skull, long rostrum and numerous small teeth.



Family Iniidae The bouto, Inia geoffrensis, is a freshwater species with reduced eyes found only in Amazon River drainages. The name comes from the sound of its blow. According to Heyning (1989), the monotypic extant taxon Inia is diagnosed by having the premaxillae displaced laterally and not in contact with the nasals (Figure 4.28). Dentally they are diagnosed by conical front teeth and molariform posterior teeth. According to Cozzuol (1996), iniids (including fossil taxa) are characterized by an extremely elongated rostrum and mandible, very narrow supraoccipital, greatly reduced orbital region, and pneumatized maxillae forming a crest.

The fossil record of iniids goes back to the late Miocene of South America (Cozzuol, 1996) and the early Pliocene of North America (Muizon, 1988c; Morgan, 1994). The North American record of iniids is disputed by Cozzuol (1996, and references therein). The phylogenetic history and fossil record of iniids indicates that they originated in South America in the Amazonian basin, entering river systems along the Pacific coast (Cozzuol, 1996; Hamilton et al., 2001).

Family Lipotidae The endangered baiji, or Chinese river dolphin (Lipotes vexillifer), lives in the Yangtze River, China. They are characterized by a long narrow upturned beak, a low triangular dorsal fin, broad rounded flippers, and very small eyes (Zhou et al., 1979; Figure 4.29).
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Figure 4.28. The Family Iniidae (bouto, Inia geoffrensis). (a) Lateral view of the skull. (From Geibel, 1859: p. 498.) Note the premaxillae is displaced laterally and is not in contact with the nasals, narrow supraoccipital, reduced orbit, crest-like pneumatized maxillary, and molariform posterior teeth. (b) Right side of the body. (Illustrated by P. Folkens.)
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Figure 4.29. The Family Lipotidae (Chinese River dolphin, Lipotes vexillifer). (a) Right side of the body. (Illustrated by P. Folkens.) (b) Lateral view of skull and jaws. (From Watson, 1981.) Note the long, upturned beak.



The only fossil lipotid Prolipotes, based on a fragment of mandible from China (Zhou et al., 1984) cannot be confirmed as belonging to this taxon (Hamilton et al., 2001).

Archaic “Dolphins” Archaic dolphins of the Miocene are grouped into one of three extinct families: the Kentriodontidae, the Albeirodontidae, and the Eurhinodelphidae. The earliest diverging lineage, the kentriodontids, were small animals approximately 2 m or less in length and with numerous teeth, elaborate basicranial sinuses, and symmetrical cranial vertices (Barnes, 1978; Dawson, 1996). This group’s monophyly has been questioned (Cozzuol, 1996) because of relatively diverse species and widespread distribution ranging from the late Oligocene to late Miocene in both the Atlantic and Pacific Oceans (Ichishima et al., 1995). Barnes (1984b) suggested that the Albeirodontidae, known by only one late Miocene species (Figure 4.30), was derived from kentriodontids, although Muizon (1988c) placed this taxon as sister group to phocoenids. The long beaked eurhinodelphids were widespread and moderately diverse during the early and middle Miocene and disappeared in the late Miocene (Figure 4.31). Eurhinodelphid relationships are contentious. Most recently they have been either included in a clade with kentriodontids and delphinids or allied with platanistoids (Fordyce, 2002; Geisler and Sanders, 2003).

Family Delphinidae Delphinids are the most diverse of the cetacean families and include 17 genera and 36 extant species of dolphins, killer whales, and pilot whales. Most delphinids are small to medium sized, ranging from 1.5 to 4.5 m in length. The giant among them, the killer whale, reaches 9.5 m in length. Although the Irrawaddy dolphin (Orcaella brevirostris) found only in the Indo-Pacific has been regarded as a monodontid by some (Kasuya, 1973; Barnes, 1984a), more recent morphologic and molecular work suggests that this species is a delphinid (Muizon, 1988c; Heyning, 1989; Árnason and Gullberg, 1996; Arnold and Heinsohn, 1996; Messenger and McGuire, 1998). Delphinids, including Orcaella, are united by the loss of the posterior sac of the nasal passage (Fordyce, 1994). Another distinguishing feature of delphinids is reduction of the posterior end of the left premaxilla so that it does not contact the nasal (Figure 4.32; Heyning, 1989). Le Duc et al. (1999) sequenced the cytochrome b gene for delphinids and found little resolution among subfamily groups and evidence for polyphyly in the genus Lagenorhynchus. The oldest delphinid is of latest Miocene age, possibly 11 Ma (Barnes, 1977).
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Figure 4.30. Reconstruction of a fossil dolphin, Albireo whistleri. (From Fordyce et al., 1995.)



Family Phocoenidae Porpoises include six small extant species. One of the most diagnostic features of phocoenids are premaxillae that do not extend posteriorly behind the anterior half of the nares. Phocoenids are further distinguished from other odontocetes by having spatulate-shaped rather than conical teeth (Figure 4.33; Heyning, 1989). Phocoenids and delphinids have been recognized by several workers (e.g., Barnes, 1990) as being more closely related to one another than either is to monodontids (see Figure 4.21). A recent comprehensive morphological study of cetaceans (Geisler and Sanders, 2003) rejected monophyly of the Delphinoidea and proposed that river dolphins are monophyletic and nested within that clade. Molecular data (Waddell et al., 2000; Árnason et al, 2004) supports an alliance between phocoenids and monodontids with delphinids as sister taxon to that clade.
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Figure 4.31. An archaic dolphin (Eurhinodelphis cocheteuxi) from the late Miocene of Belgium. (From Slijper, 1962.)
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Figure 4.32. Representatives of the Family Delphinidae. (a) Lateral view of skull and lower jaw of common dolphin, Delphinus delphis. (From Van Beneden and Gervais, 1880.) (b) Right side of the body of bottlenose dolphin, Tursiops trancatus. (Illustrated by P. Folkens.)
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Figure 4.33. Representatives of the Family Phocoenidae (porpoises). (a) Lateral view of the skull and lower jaw of a phocoenid illustrating the raised rounded protuberances on the premaxillae (from Gervais 1855: 327) and spatulate-shaped teeth (from Flower and Lydekker, 1891: p. 263). (b) Right side of the body of spectacled porpoise, Phocoena dioptrica. (Illustrated by P. Folkens.)



Phylogenetic relationships among extant species based on cytochrome b sequence data (Rosel et al., 1995; Figure 4.34) support a close relationship between Burmeister’s porpoise, Phocoena spinipinnis, and the vaquita, Phocoena sinus, and also the association of these two species with the spectacled porpoise, Phocoena dioptrica. The latter result differs from a previous proposal based on morphology (Barnes, 1985) that groups P. dioptrica with Dall’s porpoise, Phocoenoides dalli, in the subfamily Phocoeninae. The molecular analysis and a recent morphologic study of phocoenids (Fajardo, personal communication) found no support for this grouping. Morphologic and molecular data (Rosel et al., 1995; Fajardo personal communication) indicate that the finless porpoise, Neophocoena phocaenoides, is the most basal member of the family. Like delphinids, phocoenids have a fossil record that extends back to the late Miocene and Pliocene in North and South America (Barnes, 1977, 1984b; Muizon, 1988a).

Family Monodontidae Monodontids include two extant species, the narwhal (‘Monodon monoceros) and the beluga (Delphinapterus leucas). The narwhal is readily distinguished by the presence of a spiraled incisor tusk in males and occasionally in females (Figure 4.35). It has been suggested that the narwhal tusk may have been used in creating the legend of the unicorn, a horse with cloven hooves, a lion’s tail, and a horn in the middle of its forehead that resembles the narwhal tusk (Slijper, 1962). The living beluga is characterized by its completely white coloration (see Figure 4.35).

The narwhal and beluga have a circumpolar distribution in the Arctic. During the late Miocene and Pliocene, monodontids occupied temperate waters as far south as Baja California (Barnes, 1973, 1977, 1984a; Muizon, 1988a).

An extinct relative of monodontids is the bizarre cetacean Odobenocetops convergent in its morphology and inferred feeding habits (see also Chapter 12) with the modern walrus (Muizon, 1993a, 1993b; Muizon et al., 1999; Muizon et al, 2001). Odobenocetops is known by two species from the early Pliocene of Peru.
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Figure 4.34. Species-level phylogeny of phocoenids (Rosel et al., 1995).
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Figure 4.35. Representatives of the Family Monodontidae (narwhal, Monodon monoceros and beluga, Delphinapterus leucas). (a) Right side of the body of beluga. (Illustrated by P. Folkens.) (b) Dorsal view of the skull of the narwhal. Note the top of the nostrum has been removed to show the root of the large left tusk and the small, unerupted right tusk. (From Flower and Lydekker, 1891: p. 261).














4.3. Summary and Conclusions

Most morphologic and all molecular data are in general agreement that artiodactyls (specifically hippos) are the closest relatives of cetaceans. Odontocete monophyly is also widely accepted. The earliest archaeocete whales, a paraphyletic stem group that first appeared approximately 50 million years ago, are best known from India and Pakistan. A rapidly and continually expanding record provides evidence of considerable morphologic diversity among early whales, many with well-developed hind limbs and feet. Divergence estimates for baleen and toothed whales from a common archaeocete ancestor approximate 35 Ma based on molecular data that are in accord with the fossil record. There is evidence that some archaic mysticetes possessed both teeth and baleen. Later diverging mysticetes lost teeth but retained baleen. Relationships among modern families of baleen whales are unclear because of conflicting morphological results versus molecular data. Relationships among odontocetes are no less controversial. There is, however, general agreement of both molecular and morphological data that beaked whales and sperm whales are basal odontocetes. Relationships among other odontocete lineages will require comprehensive assessment of both fossil and recent taxa using both separate and combined analyses of morphological and molecular data.




4.4. Further Reading

The evolutionary history of fossil whales is summarized in Fordyce and Barnes (1994), Fordyce et al. (1995), and Fordyce and Muizon (2001). See Thewissen (1998) for an account of the early evolution of whales. For a popular treatment of the evolutionary significance of recent whale fossil discoveries see Gould (1994) and Zimmer (1998). The relationship of cetaceans to other ungulates based on morphologic and molecular data is reviewed in Geisler (2001) and O’Leary et al. (2003, 2004).
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Species Estimated Abundance Source
Pinnipeds
Crabeater seal 10,000,000-15,000,000 Bengtson (2002)
Harpseal 7,000,000 Lavigne (2002)
Saima seal 00 Sipila and Hyvirinen (1998)
Antaretic fur seal 3,000,000 Gentry (2002)
Hooker's scalion 11,100-14.000 Gales and Fletcher (1999)
Guadalupe fur seal >7.000 Amould (2002)
Walrus 230,000 Kovacs (2005)
Mediterrancan monk seal 350450 Gilmartinand Forcada (2002)
Cetaceans
Pantropicalspoited dolphin Lowmillions LeDue(2002)
Baiji Afew dozen Kaiya (2002)
Minke whales (combined) 035,000+ Gambell (1999)
Gray whale 26000+ Jones and Swartz (2002)
North Atlantic ight whale <300 Reynoldset al. (2002)
Sirenians
Florida manatee 3,300 Reynolds and Powell (2002)
Dugong >85.000 Marsh 2002)
Sea otter 100000 Bodkiner al. (1995)
Polar bear 21.000-28.000 Derocher et al.(1998)
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Fasting (e.g., Northern ~ Foraging Cycle
Feature Elephantseal) (eg. Antarctic furseal)  Aquatic Nursin
I Durationof fusting Al of lactation Variable (afewdays)  Short (hours-days)
2. Duration of lactation  Short (~4 weeks) Intermediate (~4months) Long (~
3. Fatcontentofmilk  High (55%) Intermediate +(40%)  Low(20%)
3. Pupsfealves orage

during later lactation

No

No Yes

Original sources listed in Riedman ( 1990), Jameson and Johnson (1993), and Stirling (1958).
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Total

Approximate  Gestation  Reproductive
Species Birth Mass (kg)  (mo) Interwal (y55)  Source
Pinnipeds
Phocids
Harborseal n 05125 1 Bowen (1991
Greyseal 16 1 1 Bowen (1991
N.clephantseal 0 1 1 Bowen (1991
Otarids
N.furseal 6 2 1 Bowen (1991
CAsealion 8 1 1 Bowen (1991
Antarctic furseal 6 2 1 Bowen (1991
Walrus 50 1416 24 Sease and Chapman
(1988)
Cetaceans
Odontocetes
Dalls porpoise na 114 na Gaskin e . (1984)"
Harbor porpoise na &1l na Gaskin e . (1984)"
Bottlenose dolphin na 2 na Perrin and Reilly
(1984)°
Spinner dolphin na na
Killerwhale 200 5 Ford et al.(1994)
Sperm whale 1050 3 Lockyer (1981)
Mysticetes
Minke whale 20 12 Mitchell (1986)
Gray whale 020 2 Sumich (19562,b)
Bluewhale 2500 23 Rice (1986)
Sirenians
Manatee 30 25 Reynolds and Odell
(1991)
Dugong na 139 37 Marsh (1995)
Other Marine Mammals
Seaotter 2 = 1 Jameson and Johnson
(1993)
Polar bear 07 8 24 Stirling (1988):
Derocherand
Stiling (1995)

ymbols: na=not sailable
*See for original sources.
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Phocid Characteristics

1. Apnea, with exhalation on initiation of diving

2. Bradycardiain 1:1 proportion with changes in cardiac output

3. Peripheral vasoconstriction and hypoperfusion (to conserve O, for central nervoussystem and the heart)

4. Hypometabolism of (vasoconstricted) ischernic tissues

5. Enhanced O, carrying capacity (enlarged blood volume, expanded red blood cell [RBC] mass within the
blood volume-i.., higher hematocrit, higher hemoglobin concentration, possibly higher myoglobin con-
centrationin muscles and heart)

6. Enlarged spleen (for regulating the hematocrit sothat very high RBCsneed ot be circulated under all phys-
iological conditions)

Otariid Characteristics

1. Apnea, initiated on inhalation anda gasexchange system that does not completely collapse.

2. Bradycardia

3. Peripheral vasoconstriction, with propulsive muscle mictovasculature presumably more relaxed than in
phocids

4. Hypometabolism of ischenictissues

5. O,carrying capacity intermediate between large phoids and terrestrial mammals.

6. Spleen not much larger as a percentage of body weight than i terrestrial mammals
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‘Mean Age at Sexual Maturity

Species Femls __ Males __ Source
Pinnipeds
Phocids
Harbor seal 27 37 Riedman (1990
Grey seal 35 6 Riedman (1990
N, Elephant seal 4 6 Ricedman (1990)"
Otariids
N.furseal 37 Riedman (1990
CAsalion 4s Ricedman (1990
Antarctifur sal 34 Ricdman (1990
Walrus 56 Riedman (1990)"
Cetaceans
Odontocetes Perrin and Reilly (1984)
Bottlenose dolphin 12 -1l Perrin and Reilly (1984)
Striped dolphin 9 9 Perrin and Reilly (1984)
Common dolphin 26 37 Perrin and Reilly(1984)
Lifinpilot whale = 2 Perrin and Reilly(1984)
Killer whale n 1214 Forderal (1994)
Sperm whale 9 2 Lockyer 1981)
Mysticetes
Gray whale 9 o Rice and Wolman (1971)
Blue whale 10 10 Rice (1986)
Minke whale 14 714 Lockyer 1984)
Sirenians
Manatee 610126 6 Reynoldsand Ocell(1991); Marmontel (1995)
Dugong 05 oI Marsh (1995)
Other Marine Mammals
Seaotter 4 67 Jameson (1989): ameson and Johnson (1993)
Polar bear 4 6 Strling (1958)

*Sce for original sources.
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Approximate Time ~ Rate of Birth
toDouble Birth Mass Increase:
Species Mass (days) (kgiday) Source
Pinnipeds
Phocids
Harbor seal 18 06 Costa (1991); Bowen (1991)°
Grey seal o 27 Costa (1991); Bowen (1991)°
N.clephant seal 10 32 Costa (1991); Bowen (1991)°
Otariids
N.furseal 85 007 Costa (1991); Bowen (1991)°
CAsalion 79 013 Costa (1991); Bowen (1991)°
Antarctc ur seal 2} 008 Costa (1991); Bowen (1991)°
Cetaceans
Mysticetes
Gray whale & 16 Sumich (1956)
Blue whale 2 108 Gambell 1979);Rice (1956)
Other Marine Mammals
Polar bear 10 01 Stiling (1958)

na=not avalable
*See for original sources.
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Species (mLikg) Hematocrit (%) Source
Pinnipeds
Phocids
Nelephant seal 100175 5062 ‘Thorson and Le Boeuf (1994)
S.clephantseal 4662 Lewiseral. 2001)
Otariids
California sea lion 4 Ridgway (1972)
Cetaceans
Odontocetes
Sperm whale 204 52 Steet eral.(1981)
Bottlenosedolphin ~ 71-95 25 Ridgway and Johnston (1966)
Mysticetes
Gray whale 6181 4045 Gilmartin et al.(1974)
3846 T.Reidarson, personal communication
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Maternal  Lactation,  Pup Mass Matemnal Investment

Species (Mass.kg) (Weeks)  Gain(Kgldsy)  FnergyMJkg Protein gikg
Phocids
Harbor seal 84 34 08 ) na
Harpseal 135 L7 23 6 2
Hooded seal 17 <1 7 4 1
Grayseal 207 25 2 7 37
‘Weddellseal 47 8 2 7 2
N.elephantseal S04 4 4 H 36
Otariids
N.furseal 37 18 008 2 159
Ant furseal 3 7 011 al 192
CA.sealion 88 a3 013 36 20
Stellerseallion m a1 038 % 204
Walrus
Pacific 738 o8 041 na na
Aantic 655 50 050 na na

Original sources listed in Costa (1991), Boness and Bowen (1996), and Kovacs and Lavigne (1992).
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Dop Size  Trend Legal Status
nipeds

Hawaiian monk seal 12001800 deer. Endangered (ESA); App.1 CITES)

Mediterranean monk seal ~ (450-525)  ma Endangered (ESA); App.1 (CITES)

Southern elephant seal na na App. IT (CITES)

Siamaa seal 200250 na Endangered (ESA); App.1 (CITES)

Stelle sca lion 87,000 2506 decr. Endangered (ESA); App.1 (CITES)

N.furseal 1020000 deer. Depleted-MMPA: App. II (CITES)

Guadalupe fur seal na na Endangered (ESA); App.1 (CITES)

Allother fur seals na na App. IT (CITES)

Cetaceans

Right whales >2000 % Endangered (ESA); App.1 CITES)
No. Pacific 200

Bowhead while <600 Endangered (ESA); App.1 (CITES)

Pyemy right whale iy
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