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Preface

Overview

This book surveys computer algorithms and programming techniques for specifying and generating motion for graphical objects, that is, computer animation. It is primarily concerned with three-dimensional (3D) computer animation. The main audience is advanced undergraduate or beginning graduate students in Computer Science. Computer graphics programmers who want to learn the basics of computer animation programming and artists who use software packages to generate computer animation (digital animators) who want to better understand the underlying computational issues of animation software will also benefit from this book.

It should come as no surprise to anyone reading this book that activity in Computer Animation has exploded in recent years - as a research area, as an academic field of study, as a career, and even as a hobby. Feature length films are now often stored digitally and incorporate digital special effects (often referred to as computer generated imagery and abbreviated CGI). As listed by the Internet Movie Database (imdb.com) [1] as of March 2012, all of the top 10 U.S. films (All-Time U.S. Box Office) depend on extensive use of CGI. Computer animated films have become top box office attractions - according to the same movie database, 2 of the top 10 feature length films are computer animations (Shrek 2 and Toy Story 3) with a third having a significant computer animation component (Avatar). Recent Technical Achievement and Scientific and Engineering awards from the Motion Picture Academy of Arts and Sciences have been for digital image technology including render queue management, facial motion retargeting, tools to review digital effects, and efficient rendering of volumetric effects, just to name a few [2]. And, of course, the computer game industry has exploded. The Entertainment Software Association estimate that, in 2010, consumers spent $25.1 billion on video games, hardware and accessories [3].

Computer animation is more accessible that ever. Desktop, high-quality, computer animation is now possible because of sophisticated off-the-shelf animation software, cheap CPU cycles, and cheap storage coupled with digital video recording. Many technical programs and computer science departments now offer courses in computer animation and the proliferating artistic programs train digital artists in the use of off-the-shelf animation software. There are now major technical conferences and journals that archive developments in computer animation and video game algorithms and techniques.

This book addresses practical issues, provides accessible techniques, and offers straightforward implementations. Purely theoretical discussions have been avoided except to point out avenues of current and future research. In some cases, programming examples are complete working code segments—in C, which can be copied, compiled, and run to produce basic examples of the algorithms discussed; other programming examples are C-like pseudocode that can be translated into working code. C was chosen because it forms the common basis for languages such as C++ and Java, and it lends itself to illustrating the step-by-step nature of algorithms. The Appendixes cover basic material that the reader may find useful as a refresher as well as specific algorithms for use in implementations.

This text is not intended for animators using off-the-shelf animation software (except to the extent that it might help in understanding the underlying computations required for a particular technique). It does not attempt to cover the theory of computer animation, address the aesthetics of computer animation, or discuss the artistic issues involved in designing animations. It does not detail the production issues in the actual commercial enterprise of producing a finished piece of animation. And, finally, it does not address the issue of computer-assisted animation, which, for our purposes, is taken to mean the computerization of conventional hand-drawn techniques; for the most part, that area has its own set of separate issues [4] [5]. The book does concentrate on full 3D computer animation and identifies the useful algorithms and techniques that animators and programmers can use to move objects in interesting ways. While 3D techniques are the emphasis, 2D is not completely ignored.

The fundamental objective of computer animation programming is to select techniques and design tools that are expressive enough for animators to specify what they intend, yet at the same time are powerful enough to relieve animators from specifying any details they are not interested in. Obviously, no one tool is going to be right for every animator, for every animation, or even for every scene in a single animation. The appropriateness of a particular animation tool depends on the effect desired and the control required by the animator. An artistic piece of animation will usually require tools different from those required by an animation that simulates reality or educates a patient. In this spirit, alternative approaches are presented whenever possible.



Organization of the Book

This book presents background information in the first couple of chapters. Techniques that directly specify motion (kinematic - not based on underlying forces) are presented in the next 4 chapters followed by 2 chapters that cover force-based (dynamics) animation. Character animation is then covered in 3 chapters. The last chapter covers special geometric models. Appendices provide extensive support material. More detail about the chapters is given below.

Chapter 1 discusses general issues related to animation, including motion perception, the heritage of conventional animation paying particular attention to its technological innovations, overviews of animation production and computer animation production, and a snapshot of the ever-evolving history of computer animation. These provide a broad perspective of the art and craft that is animation.

Chapter 2 presents background material and reviews the basics of computer graphics necessary for animation. It reviews computational issues in computer graphics to ensure a solid background in the techniques that are important in understanding the remainder of the book. This includes a review of the rendering pipeline and a discussion of the ordering of transformations to reduce round-off errors that can creep into a series of calculations as one builds on another. A detailed section on quaternion representation of orientation is presented in this chapter as well. If the reader is well versed in computer graphics, this chapter may be skimmed to pick up relevant terminology or skipped altogether.

Chapters 3 and 4 cover interpolation. Chapter 3 presents the fundamentals. It introduces time-space curves, arc-length parameterization of a curve, and speed control along a curve. Interpolation of orientation with an emphasis on using quaternions is then covered. Various ways to work with paths are then presented. Chapter 4 presents animation techniques based on interpolation including key frame interpolation, animation languages, shape deformation, and shape interpolation including morphing.

Chapters 5 and 6 are primarily concerned with kinematic control of articulated figures. Chapter 5 is concerned with kinematics of linked appendages. It covers both forward and inverse kinematics. Chapter 6 covers the basics of motion capture (mocap). First, the basic technology is reviewed. Then the chapter discusses how the images are processed to reconstruct articulated figure kinematics, including some techniques to modify the resultant mocap data.

Chapters 7 and 8 cover animation that is more concerned with simulating real-world (e.g. physics-based) processes. Chapter 7 covers physics-based animation as well as mass-spring-damper systems, particle systems, rigid body dynamics, and enforcing constraints. It has an additional section on ways to model cloth. Chapter 8 covers the modeling and animation of fluids. It first covers models that handle specific macro-features of fluids and then covers computational fluid dynamics (CFD) as it relates to computer animation.

Chapters 9 through 11cover animation concerned with people and other critters. Chapter 9 covers human figure animation: modeling, reaching, walking, clothing, and hair. Chapter 10 covers facial animation: facial modeling, expressions, and lip-sync animation. Chapter 11 covers behavioral animation including flocking, predator–prey models, intelligent behavior and crowd behavior.

Finally, Chapter 12 covers a few special models that are useful to animation: implicit surfaces, L-systems, and subdivision surfaces.

Appendix A presents rendering issues often involved in producing images for computer animation: double buffering, compositing, computing motion blur, drop shadows, and billboarding. It assumes a general knowledge of the use of frame buffers, how a z-buffer display algorithm works, and aliasing.

Appendix B is a collection of relevant material from a variety of disciplines. It contains a survey of interpolation and approximation techniques, vector algebra and matrices, quaternion conversion code, the first principles of physics, several useful numeric techniques, optimization, and attributes of film, video, and image formats, and a few other topics.

The Web page associated with the book, containing images, code, and figures can be found at textbooks.elsevier.com/9780125320009.
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Chapter 1
Introduction

Computer animation, for many people, is synonymous with big-screen events such as Star Wars, Toy Story, and Avatar. But not all, or arguably even most, computer animation is done in Hollywood. It is not unusual for Saturday morning cartoons to be entirely computer generated. Computer games take advantage of state-of-the-art computer graphics techniques and have become a major motivating force driving research in computer animation. Real-time performance-driven computer animation has appeared at SIGGRAPH1 and on Sesame Street. Desktop computer animation is now possible at a reasonable cost. Computer animation on the Web is routine. Digital simulators for training pilots, SWAT teams, and nuclear reactor operators are commonplace. The distinguishing characteristics of these various venues are the cost, the image quality desired, and the amount and type of interaction allowed. This book does not address the issues concerned with a particular venue, but it does present algorithms and techniques used to do computer animation in all of them.

Computer animation, as used here, refers to any computer-based computation used in producing images intended to create the perception of motion. The emphasis in this book is on algorithms and techniques that process three-dimensional graphical data. In general, any value that can be changed can be animated. An object’s position and orientation are obvious candidates for animation, but all of the following can be animated as well: the object’s shape, its shading parameters, its texture coordinates, the light source parameters, and the camera parameters.

This book is organized as follows. To lay a firm foundation for the rest of the book, Chapter 2 surveys the technical background of computer graphics relevant to computer animation. This includes the fundamental geometric transformations and associated representations of graphical data. It can be skipped by those well versed in the mathematics of the computer graphics display pipeline. Chapters 3–11 cover various computer animation algorithms and techniques: Chapters 3–5 deal with directly specifying motion (kinematics), Chapter 6 covers digitizing motion (motion capture), Chapters 7 and 8 consider physically based animation (dynamics), and Chapters 9–11 concentrate on (mostly human) figure animation. Finally, Chapter 12 surveys some modeling techniques that have been used in computer animation. The appendices provide ancillary material. Appendix A covers rendering issues that are relevant for animation, and Appendix B provides detail of the mathematics used in the text.

In considering computer animation techniques, there are basically three general approaches to motion control. The first is artistic animation in which the animator has the prime responsibility for crafting the motion. The foundation of artistic animation is interpolation. Various animation techniques based on interpolation are concentrated in the early chapters (Chapters 3–5). The second is data-driven animation in which live motion is digitized and then mapped onto graphical objects. The primary technology for data-driven animation is referred to as motion capture and is the topic of Chapter 6. The third is procedural animation, in which there is a computational model that is used to control the motion. Usually, this is in the form of setting initial conditions for some type of physical or behavioral simulation. Procedural animation is concentrated in the later chapters (Chapters 7–11).

To set the context for computer animation, it is important to understand its heritage, its history, and certain relevant concepts. The rest of this chapter discusses motion perception, the technical evolution of animation, animation production, and notable works in computer animation. It provides a grounding in computer animation as a field of endeavor.

1.1 Motion perception

A picture can quickly convey a large amount of information because the human visual system is a sophisticated information processor. It follows, then, that moving images have the potential to convey even more information in a short time. Indeed, the human visual system has evolved to provide for survival in an ever-changing world; it is designed to notice and interpret movement.

It is widely recognized that a series of images, when displayed in rapid succession, are perceived by an observer as a single moving image. This is possible because the eye–brain complex has the ability, under sufficient viewing conditions and within certain playback rates, to create a sensation of continuous imagery from such a sequence of still images. A commonly held view is that this experience is due to persistence of vision, whereby the eye retains a visual imprint of an image for a brief instant once the stimulus is removed. It is argued that these imprints, called positive afterimages of the individual stills, fill in the gaps between the images to produce the perception of a continuously changing image. Peter Roget (of Roget’s Thesaurus fame) presented the idea of impressions of light being retained on the retina in 1824 [35]. But persistence of vision is not the same as perception of motion. Rotating a white light source fast enough will create the impression of a stationary white ring. Although this effect can be attributed to persistence of vision, the result is static. The sequential illumination of a group of lights typical of a movie theater marquee produces the illusion of a lighted object circling the signage. Motion is perceived, yet persistence of vision does not appear to be involved because no individual images are present. Recently, the causality of the (physiological) persistence of vision mechanism has been called into question and the perception of motion has been attributed to a (psychological) mechanism known as the phi phenomenon (as is the case in the movie marquee example given above). A related phenomenon, for example the apparent motion of a disk traveling between two flickering disks, is referred to as beta movement [1] [2] [13] [39].

Whatever the underlying mechanism is, the result is that in both film and video, a sequence of images can be displayed at rates fast enough to fool the eye into interpreting it as continuous imagery. When the perception of continuous imagery fails to be created, the display is said to flicker. In this case, the animation appears as a rapid sequence of still images to the eye–brain complex. Depending on conditions such as room lighting and viewing distance, the rate at which individual images must be played back in order to maintain the perception of continuous imagery varies. This rate is referred to as the critical flicker frequency [8].

While perception of motion addresses the lower limits for establishing the perception of continuous imagery, there are also upper limits to what the eye can perceive. The receptors in the eye continually sample light in the environment. The limitations on motion perception are determined, in part, by the reaction time of those sensors and by other mechanical limitations such as blinking and tracking. If an object moves too quickly with respect to the viewer, then the receptors in the eye will not be able to respond fast enough for the brain to distinguish sharply defined, individual detail; motion blur results [11]. In a sequence of still images, motion blur is produced by a combination of the object’s speed and the time interval over which the scene is sampled. In a still camera, a fast-moving object will not blur if the shutter speed is fast enough relative to the object’s speed. In computer graphics, motion blur will never result if the scene is sampled at a precise instant in time; to compute motion blur, the scene needs to be sampled over an interval of time or manipulated to appear as though it were [21] [32]. (See Appendix A.3 for a discussion of motion blur calculations.) If motion blur is not calculated, then images of a fast-moving object can appear disjointed, similar to viewing live action under the effects of a strobe light. This effect is often referred to as strobing. In hand-drawn animation, fast-moving objects are typically stretched in the direction of travel so that the object’s images in adjacent frames overlap [49], reducing the strobing effect.

As reflected in the previous discussion, there are actually two rates of concern. One is the playback or refresh rate—the number of images per second displayed in the viewing process. The other is the sampling or update rate—the number of different images that occur per second. The playback rate is the rate related to flicker. The sampling rate determines how jerky the motion appears. For example, a television signal conforming to the National Television Standards Committee (NTSC) format displays images at a rate of roughly 30 frames per second (fps),2 but because it is interlaced,3 fields are played at 60 frames per second to prevent flicker under normal viewing conditions [34]. In some programs (e.g., some Saturday morning cartoons) there may be only six different images per second, with each image repeatedly displayed five times. Often, lip-sync animation is drawn on twos (every other frame) because drawing it on ones (animating it in every frame) makes it appear too hectic. Film is typically shown in movie theatres at playback rates of 24 fps (in the United States) but, to reduce the flicker, each frame is actually displayed twice (double-shuttered) to obtain an effective refresh rate of 48 fps. On the other hand, because an NTSC television signal is interlaced, smoother motion can be produced by sampling the scene every 60th of a second even though the complete frames are only played back at 30 fps [8]. Computer displays are typically progressive scan (noninterlaced) devices with refresh rates above 70 fps [34]. See Appendix B.10 for some details concerning various film and video formats.

The display and perception of animation using a sequence of still images imposes certain requirements on how those images are computed and played effectively. Understanding the operation, limits, and trade-offs of the human visual system are essential when making intelligent decisions about designing any type of visual and auditory content, including computer animation.



1.2 The heritage of animation

In the most general sense, animate4 means “give life to” and includes live-action puppetry such as that found on Sesame Street and the use of electromechanical devices to move puppets, such as animatronics. History is replete with attempts to bring objects to life. This history is a combination of myth, deception, entertainment, science, and medicine. Many of the references to animation are in the form of stories about conjuring a life force into some humanoid form: from Pygmalion to Prometheus to Wagner’s homunculus in Goethe’s Faust to Shelley’s Dr. Frankenstein. Some of the history is about trying to create mechanical devices that mimic certain human activity: from Jacque Vaucanson’s mechanical flute player, drummer, and defecating duck in the 1730s to Wolfgang von Kempelen’s chess player in 1769 to Pierre Jaquet-Droz’s writing automaton of 1774 to the electromechanical humanoid robots (animatronics) popular today. The early mechanisms from the 1700s and 1800s were set in the milieu of scientific debate over the mechanistic nature of the human body (e.g., L’Homme Machine, translated as Man a Machine, was written by Julien Offray de La Mettrie in 1747 and was quite controversial). This activity in humanoid mechanical devices was propelled by a confluence of talents contributed by magicians, clock makers, philosophers, scientists, artists, anatomists, glove makers, and surgeons (see Gaby Wood’s book for an entertaining survey on the quest for mechanical life [50]). Here, however, the focus is on devices that use a sequence of individual still images to create the effect of a single moving image, because these devices have a closer relationship to hand-drawn animation.

1.2.1 Early devices

Persistence of vision and the ability to interpret a series of stills as a moving image were actively investigated in the 1800s [5], well before the film camera was invented. The recognition and subsequent investigation of this effect led to a variety of devices intended as parlor toys [23] [38]. Perhaps the simplest of these early devices is the thaumatrope, a flat disk with images drawn on both sides with two strings connected opposite each other on the rim of the disk (see Figure 1.1). The disk could be quickly flipped back and forth by twirling the strings. When flipped rapidly enough, the two images appear to be superimposed. The classic example uses the image of a bird on one side and the image of a birdcage on the other; the rotating disk visually places the bird inside the birdcage. An equally primitive technique is the flip book, a tablet of paper with an individual drawing on each page. When the pages are flipped rapidly, the viewer has the impression of motion.


[image: image]

Figure 1.1 A thaumatrope.



One of the most well known early animation devices is the zoetrope, or wheel of life. The zoetrope has a short fat cylinder that rotates on its axis of symmetry. Around the inside of the cylinder is a sequence of drawings, each one slightly different from the ones next to it. The cylinder has long vertical slits cut into its side between each adjacent pair of images so that when it is spun on its axis each slit allows the eye to see the image on the opposite wall of the cylinder (see Figure 1.2). The sequence of slits passing in front of the eye as the cylinder is spun on its axis presents a sequence of images to the eye, creating the illusion of motion.
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Figure 1.2 A zoetrope.



Related gizmos that use a rotating mechanism to present a sequence of stills to the viewer are the phenakistoscope and the praxinoscope. The phenakistoscope also uses a series of rotating slots to present a sequence of images to the viewer by positioning two disks rotating in unison on an axis; one disk has slits, and the other contains images facing the slits. One sights along the axis of rotation so the slits pass in front of the eye, which can thus view a sequence of images from the other disk. The praxinoscope uses a cylindrical arrangement of rotating mirrors inside a large cylinder of images facing the mirrors. The mirrors are angled so that, as the cylinders rotate in unison, each image is successively reflected to the observer.

Just before the turn of the century, the moving image began making its way on stage. The magic lantern (an image projector powered by candle or lamp) and shadow puppets became popular theater entertainment [3]. On the educational front, Etienne-Jules Marey [27] and Eadweard Muybridge [30] [31] investigated the motions of humans and animals. To show image sequences during his lectures, Muybridge invented the zoopraxinoscope, a projection device also based on rotating slotted disks. Then, in 1891, the seed of a revolution was planted: Thomas Edison invented the motion picture viewer (the kinetoscope), giving birth to a new industry [38].



1.2.2 The early days of “conventional” animation

Animation in America exploded in the twentieth century in the form of filming hand-drawn, two-dimensional images (referred to here also as conventional or traditional animation). Studying the early days of conventional animation is interesting in itself [26] [38] [44] [45], but the purpose of this overview is to provide an appreciation of the technological advances that drove the progress of animation during the early years.

Following Edison’s kinetoscope, there were several rapid developments in film technology. One of the most notable developments was the motion picture projector by the Lumiere brothers, Auguste and Louis, in France. They are credited with the first commercial, public screening of film in Paris on December 28, 1895. They called their device the cinematograph. It is a camera that could both project and develop film. They used it to film everyday events including a train coming into a train station; this footage, when shown to the audience, sent everyone scrambling for cover. It was also used for aerial photography (years before the airplane took to the skies).

The earliest use of a camera to make lifeless things appear to move occurred in 1896 by Georges Méliès. Méliès used simple camera tricks such as multiple exposures and stop-motion techniques to make objects appear, disappear, and change shape [18] [47]. His best known trick film is A Trip to the Moon (1902). One of the earliest pioneers in film animation was J. Stuart Blackton, an American who animated “smoke” in a scene in 1900, ushering in the field of visual effects. Blackton is credited with creating the first animated cartoon, Humorous Phases of Funny Faces (1906), by drawing and erasing on a chalkboard between takes. Emile Cohl, a Frenchman, produced several vignettes including Fantasmagorie (1908), which is considered to be the first fully animated film ever made. The American Winsor McCay is the first celebrated animator, best known for his works Little Nemo (1911) and Gertie the Dinosaur (1914). McCay is considered by many to have produced the first popular animations [26].

Like many of the early animators, McCay was an accomplished newspaper cartoonist. He redrew each complete image on rice paper mounted on cardboard and then filmed them individually. He was also the first to experiment with color in animation. Much of his early work was incorporated into vaudeville acts in which he “interacted” with an animated character on a screen. Similarly, early cartoons often incorporated live action with animated characters. To appreciate the impact of such a popular entertainment format, keep in mind the relative naïveté of audiences at the time; they had no idea how film worked, much less what hand-drawn animation was. As Arthur C. Clarke stated about sufficiently advanced technology, it must have been indistinguishable from magic.

The first major technical developments in the animation process can be traced to the efforts of John Bray, one of the first to recognize that patenting aspects of the animation process would result in a competitive advantage [26]. Starting in 1910, his work laid the foundation for conventional animation as it exists today. Earl Hurd, who joined forces with Bray in 1914, patented the use of translucent cels5 in the compositing of multiple layers of drawings into a final image and also patented gray scale drawings as opposed to black and white. Later developments by Bray and others enhanced the overlay idea to include a peg system for registration and the drawing of the background on long sheets of paper so that panning (translating the background relative to the camera, perpendicular to the view direction) could be performed more easily. Out of Bray’s studio came Max Fleischer (Betty Boop), Paul Terry (Terrytoons), George Stallings (Tom and Jerry), and Walter Lantz (Woody Woodpecker). In 1915, Fleischer patented rotoscoping (drawing images on cells by tracing over previously recorded live action). Several years later, in 1920, Bray experimented with color in the short The Debut of Thomas Cat.

While the technology was advancing, animation as an art form was still struggling. The first animated character with an identifiable personality was Felix the Cat, drawn by Otto Messmer of Pat Sullivan’s studio [26]. Felix was the most popular and most financially successful cartoon of the mid-1920s. In the late 1920s, however, new forces had to be reckoned with: sound and Walt Disney.



1.2.3 Disney

Walt Disney was, of course, the overpowering force in the history of conventional animation. Not only did his studio contribute several technical innovations, but Disney, more than anyone else, advanced animation as an art form [45]. Disney’s innovations in animation technology included the use of a storyboard to review the story and pencil sketches to review motion. In addition, he pioneered the use of sound and color in animation (although he was not the first to use color). Disney also studied live-action sequences to create more realistic motion in his films. When he used sound for the first time in Steamboat Willie (1928), he gained an advantage over his competitors.

One of the most significant technical innovations of the Disney studio was the development of the multiplane camera [26] [44]. The multiplane camera consists of a camera mounted above multiple planes, each of which holds an animation cell. Each of the planes can move in six directions (right, left, up, down, in, out), and the camera can move closer and farther away (see Figure 1.3).
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Figure 1.3 Directional range of the multiplane camera, inside of which the image is optically composited.



Multiplane camera animation is more powerful than one might think. By moving the camera closer to the planes while the planes are used to move foreground images out to the sides, a more effective zoom can be performed. Moving multiple planes at different rates can produce the parallax effect, which is the visual effect of closer objects apparently moving faster across the field of view than objects farther away, as an observer’s view pans across an environment. This is very effective in creating the illusion of depth and an enhanced sensation of three dimensions. Keeping the camera lens open during movement can produce several additional effects: figures can be extruded into shapes of higher dimension, depth cues can be incorporated into an image by blurring the figures on more distant cels, and a blurred image of a moving object can be produced.

With regard to the art of animation, Disney perfected the ability to impart unique, endearing personalities in his characters, such as those exemplified in Mickey Mouse, Pluto, Goofy, the Three Little Pigs, and the Seven Dwarfs [44] [45]. He promoted the idea that the mind of the character was the driving force of the action and that a key to believable animated motion was the analysis of real-life motion. He also developed mood pieces, for example, Skeleton Dance (1929) and Fantasia (1940).



1.2.4 Contributions of others

The 1930s saw the proliferation of animation studios, among them Fleischer, Iwerks, Van Beuren, Universal Pictures, Paramount, MGM, and Warner Brothers. The technological advances that are of concern here were mostly complete by this period. The differences between, and contributions of, the various studios have to do more with the artistic aspects of animation than with the technology involved in producing animation [26]. Many of the notable animators in these studios were graduates of Disney’s or Bray’s studio. Among the most recognizable names are Ub Iwerks, George Stallings, Max Fleischer, Bill Nolan, Chuck Jones, Paul Terry, and Walter Lantz.



1.2.5 Other media for animation

The rich heritage of hand-drawn animation in the United States makes it natural to consider it the precursor to computer animation, which also has strong roots in the United States. However, computer animation has a close relationship to other animation techniques as well.

A good comparison can be made between computer animation and some of the stop-motion techniques, such as clay and puppet animation. Typically, in three-dimensional computer animation, one of the first steps is the object modeling process. The models are then manipulated to create the three-dimensional scenes that are rendered to produce the images of the animation. In much the same way, clay and puppet stop-motion animation use three-dimensional figures that are built and then animated in separate, well-defined stages [23]. Once the physical three-dimensional figures are created, they are used to lay out a three-dimensional environment. A camera is positioned to view the environment and record an image. One or more of the figures are manipulated, and the camera may be repositioned. The camera records another image of the scene. The figures are manipulated again, another image is taken of the scene, and the process is repeated to produce the animated sequence.

Willis O’Brien of King Kong fame is generally considered the dean of this type of stop-motion animation. His understudy, who went on to create an impressive body of work in his own right, was Ray Harryhausen (Mighty Joe Young, Jason and the Argonauts, and many more). More recent impressive examples of three-dimensional stop-motion animation are Nick Park’s Wallace and Gromit series and Chicken Run and Tim Burton’s projects such as The Nightmare Before Christmas, James and the Giant Peach, Corpse Bride, and Alice in Wonderland.

Because of computer animation’s close association with video technology, it has also been associated with video art, which depends largely on the analog manipulation of the video signal in producing effects such as colorization and warping [12]. Because creating video art is inherently a two-dimensional process, the relationship is viewed mainly in the context of computer animation post-production techniques. Even this connection has faded because the popularity of recording computer animation by digital means has eliminated most analog processing.




1.3 Animation production

Although producing a final animated film is not the subject of this book, the production process merits some discussion in order to establish the context in which an animator works. It is useful for technical animators to have some familiarity with how a piece of animation is broken into parts and how a finished piece is produced. Much of this is taken directly from conventional animation and is directly applicable to any type of animation.

A piece of animation is usually discussed using a four-level hierarchy, although the specific naming convention for the levels may vary.6 Here, the overall animation—the entire project—is referred to as the production. Typically, productions are broken into major parts referred to as sequences. A sequence is a major episode and is usually identified by an associated staging area; a production usually consists of one to a dozen sequences. A sequence is broken down into one or more shots; each shot is the recording of the action from a single point of view. A shot is broken down into the individual frames of film. A frame is a single recorded image. This results in the hierarchy shown in Figure 1.4.
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Figure 1.4 Sample hierarchy of a simple animation production.



Several steps are required to successfully plan and carry out the production of a piece of animation [23] [44]. Animation is a trial-and-error process that involves feedback from one step to previous steps and usually demands several iterations through multiple steps at various times. Even so, the production of animation typically follows a standard pattern. First, a preliminary story is decided on, including a script. A storyboard is developed that lays out the action scenes by sketching representative frames. The frames are often accompanied by text that sketches out the action taking place. This is used to present, review, and critique the action as well as to examine character development.

A model sheet is developed that consists of a number of drawings for each figure in various poses and is used to ensure that each figure’s appearance is consistent as it is repeatedly drawn during the animation process. The exposure sheet records information for each frame such as sound track cues, camera moves, and compositing elements. The route sheet records the statistics and responsibility for each scene.

An animatic, or story reel, may be produced in which the storyboard frames are recorded, each for as long as the sequence it represents, thus creating a rough review of the timing. Often, a scratch track, or rough sound track, is built at the same time the storyboard is being developed and is included in the animatic. Once the storyboard has been decided on (see Figure 1.5), the detailed story is worked out to identify the actions in more detail. Key frames (also known as extremes) are then identified and produced by master animators to aid in confirmation of timing, character development, and image quality. Associate and assistant animators are responsible for producing the frames between the keys; this is called in-betweening. Test shots, short sequences rendered in full color, are used to test the rendering and motions. To completely check the motion, a pencil test may be shot, which is a full-motion rendering of an extended sequence using low-quality images such as pencil sketches. Problems identified in the test shots and pencil tests may require reworking of the key frames, detailed story, or even the storyboard.
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Figure 1.5 Sample panels from a storyboard. (a) Establishing shot: overview of the background introduces the place where the action takes place. (b) Extreme close-up: the action is shown in detail helping the viewer to get familiar with the main characters and objects. (c) Low angle: the camera position and the action happen in the same camera direction increasing the dramatic feeling of the scene. (d) POV (point of view): shows the viewer what the character would be seeing, which helps to better understand the reaction to the action. (e) Wide shot: shows the whole action making the viewer understand the motivation, the action, and the consequences all at once. (f) OTS (over the shoulder): the camera looks to one character, or action, from just behind and over the shoulder of another character to get the viewer involved with the action.

(Images courtesy of Beth Albright and Iuri Lioi.)



Inking refers to the process of transferring the penciled frames to cels. Opaquing, also called painting, is the application of color to these cels.

1.3.1 Principles of animation

To study various techniques and algorithms used in computer animation, it is useful to first understand their relationship to the animation principles used in hand-drawn animation. In an article by Lasseter [22], the principles of animation, articulated by some of the original Disney animators [45], are related to techniques commonly used in computer animation. The principles are squash and stretch, timing, secondary action, slow in and slow out, arcs, follow through and overlapping action, exaggeration, appeal, anticipation, staging, solid drawing, and straight ahead and pose to pose. Lasseter is a conventionally trained animator who worked at Disney before going to Pixar. At Pixar, he was responsible for many celebrated computer animations including Tin Toy that, in 1989, was the first computer animation to win an Academy Award. Whereas Lasseter discusses each principle in terms of how it might be implemented using computer animation techniques, the principles are organized here according to the type of motion quality they contribute to in a significant way. Because several principles relate to multiple qualities, some principles appear under more than one heading.

Simulating physics

Squash and stretch, timing, secondary action, slow in and slow out, and arcs establish the physical basis of objects in the scene. A given object possesses some degree of rigidity and should appear to have some amount of mass. This is reflected in the distortion (squash and stretch) of its shape during an action, especially a collision. The animation must support these notions consistently for a given object throughout the animation. Timing has to do with how actions are spaced according to the weight, size, and personality of an object or character and, in part, with the physics of movement as well as the artistic aspects of the animation. Secondary action supports the main action, possibly supplying physically based reactions to an action that just occurred. Slow in and slow out and arcs are concerned with how things move through space. Objects slow in and slow out of poses. When speaking of the actions involved, objects are said to “ease in” and “ease out.” Such speed variations model inertia, friction, and viscosity. Objects, because of the physical laws of nature such as gravity, usually move not in straight lines but rather in arcs.



Designing aesthetically pleasing actions

Appeal, solid drawing, and follow through/overlapping action are principles that address the aesthetic design of an action or action sequence. To keep the audience’s attention, the animator needs to make it enjoyable to watch (appeal). In addition, actions should flow into one another (follow through/overlapping action) to make the entire shot appear to continually evolve instead of looking like disjointed movements. Solid drawing refers to making the character look pliable and not stiff or wooden. Squash and stretch can also be used in this regard. Secondary actions and timing considerations also play a role in designing pleasing motion.



Effectively presenting action

Often the animator needs to employ exaggeration so a motion cannot be missed or so it makes a point (Tex Avery is well known for this type of conventional animation). Anticipation and staging concern how an action is presented to the audience. Anticipation dictates that an upcoming action is set up so that the audience knows it (or something) is coming. Staging expands on this notion of presenting an action so that it is not missed by the audience. Timing is also involved in effective presentation to the extent that an action has to be given the appropriate duration for the intended effect to reach the audience. Secondary action can also be used to create an effective presentation of an action.



Production technique

Straight ahead versus pose to pose concerns how a motion is created. Straight ahead refers to progressing from a starting point and developing the motion continually along the way. Physically based animation could be considered a form of straight ahead processing. Pose to pose, the typical approach in conventional animation, refers to identifying key frames and then interpolating the intermediate frames, an approach the computer is particularly good at.




1.3.2 Principles of filmmaking

Basic principles of filmmaking are worth reviewing in order to get a sense of how effective imagery is constructed. Several of the basic principles are listed in the following sections, although more complete references should be consulted by the interested reader (e.g., [28]). Some of the following principals are guidelines that should be followed when composing a single image; others are options of how to present the action.

Three-point lighting

There is a standard set of three lights that are used to illuminate the central figure in a scene. These are the key light, the fill light, and the rim light. The key light is often positioned up and to the side of the camera, pointing directly at the central figure. This focuses the observer’s attention on what is important. The rim light is positioned behind the central figure and serves to highlight the rim, thus outlining the figure and making the figure stand out from the background. The fill light is a flood light typically positioned below the camera that fills the figure with a soft light bringing out other details in the figure’s appearance. See Figure 1.6 (Color Plate 1) for an example.
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Figure 1.6 Three-point lighting example: (a) Key light: A single spot light is placed at 45 degrees from the top-right of the frame. This light has the highest intensity in the setup and is responsible for the cast shadows of the objects. (b) Fill light: A blue fill light from the front and right of the object is used to illuminate the dark areas created by the key light. This light is less intense and does not cast shadows or highlights on the objects. (c) Rim light: Multiple lights are placed opposite the direction of the key light. They highlight the edges, which are otherwise in shadow. These highlights help separate the objects from the background as well as from other overlapping objects in the scene. (d) All lights: This is the final lighting set up—a combination of key, fill, and rim lights. The scene is rendered with ray tracing, generating reflections on selective surfaces.

(Images courtesy of Sucheta Bhatawadekar, ACCAD.)




180 rule

When filming a line of action, for example the conversation between two figures, it is common to show each figure in isolation during the action. The camera is positioned in front of a figure but a little off to the side. The 180 degree rule states that when showing the two figures, one after the other, in isolation, the camera should stay on the same side of the line of action. Thus, the camera’s orientation should stay within the 180 degrees that is on one side of the line between the figures.



Rule of thirds

The rule of thirds says that the interesting places to place an object in an image are one-third along the way, either side-to-side or up-and-down or both. In particular, don’t center your subject in the image and don’t put your subject at the edge of the image.



Types of shots

Types of camera shots are categorized based on the distance from the camera to the subject and the angle at which the shot is taken. The distance-based shots are extreme long range, long range, medium range or bust shot, close-up, and extreme close-up. Which type of shot to use depends on the amount and location of detail that is to be shown and how much environmental context is to be included in the shot.

A low angle shot, meaning the camera is low shooting up at the subject, imparts a feeling of power or dominance to the subject. Conversely, a high angle shot, in which the camera shoots down on the subject, presents a feeling that the subject is insignificant or subordinate.



Tilt

Tilting the camera (rotating the camera about its view direction) can convey a sense of urgency, strangeness, or fear to the shot.



Framing

Framing refers to allowing enough room in the image for the action being captured. In a relatively static view, allow enough room so the subject does not fill the frame (unless there is a reason to do so). Allow enough room for motion. If your subject is walking, frame the motion so there is room in front of the subject so the subject does not appear to be walking out of the frame.



Focus the viewer’s attention

Draw the viewer’s attention to what’s important in the image. Use color, lighting, movement, focus, etc., to direct the attention of the viewer to what you want the viewer to see. For example, the eye will naturally follow converging lines, the gaze of figures in the image, a progression from dark to light or dark to bright, and an identifiable path in the image.




1.3.3 Sound

Sound is an integral part of almost all animation, whether it’s hand-drawn, computer-based, or stop-motion [23] [26]. Up through the 1920s, the early “silent films” were played in theaters with live mood music accompaniment. That changed as sound recording technology was developed for film and, later, for video.

Audio recording techniques had been around for 30 years by the time moving images were first recorded on film. It took another 30 years to develop techniques for playing a sound track in sync with recorded action. Since then, various formats have been developed for film sound tracks. Most formats record the audio on the same medium that records the images. In most of the various formats for film, for example, audio is recorded along the side of the images or between the sprocket holes in one to six tracks. Early formats used optical or magnetic analog tracks for sound, but more recent formats digitally print the sound track on the film. By recording the audio on the same stock as the film, the timing between the imagery and the audio is physically enforced by the structure of the recording technology. In some formats, a separate medium, such as a CD, is used to hold the audio. This allows more audio to be recorded, but creates a synchronization issue during playback. In the case of video, audio tracks are recorded alongside the tracks used to encode the video signal.

In the early film and video formats, audio was recorded as a low bandwidth analog signal resulting in very low-quality sound. Today’s film and video technology acknowledges the importance of sound and provides multiple, high-quality digital audio tracks. Sound has four roles in a production: voice, body sounds, special effects, and background music.

In live action, voice is recorded with the action because of timing considerations while most of the other sounds are added in a post-processing phase. In animation, voices are recorded first and the animation made to sync with it. In addition, recording visuals of the voice talent during the audio recording can be used to guide the animators as they create the facial expressions and body language that accompanies the speech.

Nonspeech sounds made by the actors, such as rustling of clothes, footsteps, and objects being handled, are called body sounds. The recorded body sounds are usually replaced by synthesized sounds, called foley, for purposes of artistic control. These synthesized sounds must be synced with the motions of the actors. The people responsible for creating these sounds are called foley artists.

Special effects, such as door slams and the revving of car engines, must also be synced with the action, but with lesser precision than voice and foley sounds.

Recording background and mood music can be added after the fact and usually require no precise timing with the action. All the sounds other than voice are added after the live action or animation is recorded.




1.4 Computer animation production

Computer animation production has borrowed most of the ideas from conventional animation production, including the use of a storyboard, test shots, and pencil testing. The storyboard has translated directly to computer animation production, although it may be done on-line. It still holds the same functional place in the animation process and is an important component in planning animation. The use of key frames, and interpolating between them, has become a fundamental technique in computer animation.

While computer animation has borrowed the production approaches of conventional animation, there are significant differences between how computer animation and conventional animation create an individual frame of the animation. In computer animation, there is usually a strict distinction among creating the models; creating a layout of the models including camera positioning and lighting; specifying the motion of the models, lights, and camera; and the rendering process applied to those models. This allows for reusing models and lighting setups. In conventional animation, all of these processes happen simultaneously as each drawing is created; the only exception is the possible reuse of backgrounds, for example, with the multilayer approach.

The two main evaluation tools of conventional animation, test shots and pencil tests, have counterparts in computer animation. A speed/quality trade-off can be made in several stages of creating a frame of computer animation: model building, lighting, motion control, and rendering. By using high-quality techniques in only one or two of these stages, that aspect of the presentation can be quickly checked in a cost-effective manner. A test shot in computer animation is produced by a high-quality rendering of a highly detailed model to see a single frame, a short sequence of frames of the final product, or every nth frame of a longer sequence from the final animation. The equivalent of a pencil test can be performed by simplifying the sophistication of the models used, by using low-quality and/or low-resolution renderings, by eliminating all but the most important lights, or by using simplified motion.

Often, it is useful to have several representations of each model available at varying levels of detail. For example, placeholder cubes can be rendered to present the gross motion of rigid bodies in space and to see spatial and temporal relationships among objects. “Solids of revolution” objects (objects created by rotating a silhouette edge at certain intervals around an axis and then defining planar surfaces to fill the space between these silhouette slices) lend themselves quite well to multiple levels of detail for a given model based on the number of slices used. Texture maps and displacement maps can be disabled until the final renderings.

To simplify motion, articulated figures7 can be kept in key poses as they navigate through an environment in order to avoid interpolation or inverse kinematics. Collision detection and response can be selectively “turned off” when not central to the effect created by the sequence. Complex effects such as smoke and water can be removed or represented by simple geometric shapes during testing.

Many aspects of the rendering can be selectively turned on or off to provide great flexibility in giving the animator clues to the finished product’s quality without committing to the full computations required in the final presentation. Often, the resulting animation can be computed in real time for very effective motion testing before committing to a full anti-aliased, transparent, texture-mapped rendering. Wire frame rendering of objects can sometimes provide sufficient visual cues to be used in testing. Shadows, smooth shading, texture maps, environmental maps, specular reflection, and solid texturing are options the animator can use for a given run of the rendering program.

Even in finished pieces of commercial animation it is common practice to take computational shortcuts when they do not affect the quality of the final product. For example, the animator can select which objects can shadow which other objects in the scene. In addition to being a compositional issue, selective shadowing saves time over a more robust approach in which every object can shadow every other object. In animation, environmental mapping is commonly used instead of ray tracing; photorealistic rendering is typically avoided.

Computer animation is well suited for producing the equivalent of test shots and pencil tests. In fact, because the quality of the separate stages of computer animation can be independently controlled, it can be argued that it is even better suited for these evaluation techniques than conventional animation.

1.4.1 Computer animation production tasks

While motion control is the primary subject of this book, it is worth noting that motion control is only one aspect of the effort required to produce computer animation. The other tasks (and the other talents) that are integral to the final product should not be overlooked. As previously mentioned, producing quality animation is a trial-and-error iterative process wherein performing one task may require rethinking one or more previously completed tasks. Even so, these tasks can be laid out in an approximate chronological order according to the way they are typically encountered. The order presented here summarizes an article that describes the system used to produce Pixar’s Toy Story [16]. See Figure 1.7.


• The Story Department translates the verbal into the visual. The screenplay enters the Story Department, the storyboard is developed, and the story reel leaves. These visuals then go to the Art Department.

• The Art Department, working from the storyboard, creates the designs and color studies for the film, including detailed model descriptions and lighting scenarios. The Art Department develops a consistent look to be used in the imagery. This look guides the Modeling, Layout, and Shading Departments.

• The Modeling Department creates the characters and the world in which they live. Every brick and stick to appear in the film must be handcrafted. Often, figures with jointed appendages, or other models with characteristic motion, are created as parameterized models. Parameters that control standard movements of the figure are defined. This facilitates the ability of animators to stay on the model, ensuring that the animation remains consistent with the concept of the model. The models are given to Layout and Shading.

• On one path between the Modeling Department and Lighting Department lies the Shading Department. Shading must translate the attributes of the object that relate to its visual appearance into texture maps, displacement shaders, and lighting models. Relevant attributes include the material the object is made of, its age, and its condition. Much of the effective appearance of an object comes not from its shape but from shading—the visual qualities of its surface.

• On the other path between Modeling and Lighting lies the Layout Department, followed by the Animation Department. Layout is responsible for taking the film from two dimensions to three dimensions. To ensure good flow, Layout implements proper staging (designing the space for the action to take place in) and blocking (planning out the general movements of the actors and camera). This guides the Animation Department.

• Working from audio, the story, and the blocking and staging produced by Layout, the Animation Department is responsible for bringing the characters to life. As mentioned above, complex figures are often parameterized by the Model Department so that a character’s basic movements (e.g., smiling, taking a step) have already been defined. Animation uses these motions as well as creating the subtler gestures and movements necessary for the “actor” to effectively carry out the scene.

• The Lighting Department assigns to each sequence a team that is responsible for translating the Art Department’s vision into digital reality. At this point the animation and camera placement have been done. Key lights are set to establish the basic lighting environment. Subtler lighting particular to an individual shot refines this in order to establish the correct mood and bring focus to the action.

• The Camera Department is responsible for actually rendering the frames. During Toy Story, Pixar used a dedicated array of hundreds of processors called the Render Farm. The term render farm is now commonly used to refer to any such collection of processors for image rendering.
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Figure 1.7 Computer animation production pipeline.




1.4.2 Digital editing

A revolution swept the film and video industries in the 1990s: the digital representation of images. Even if computer graphics and digital effects are not a consideration in the production process, it has become commonplace to store program elements in digital form instead of using the analog film and videotape formats. Digital representations have the advantage of being able to be copied with no image degradation. So, even if the material was originally recorded using analog means, it is often cost-effective to transcribe the images to digital image store. And, of course, once the material is in digital form, digital manipulation of the images is a natural capability to incorporate in any system.

In the old days …

The most useful and fundamental digital image manipulation capability is that of editing sequences of images together to create a new presentation. Originally, film sequences were edited together by physically cutting and splicing tape. This is an example of nonlinear editing, in which sequences can be inserted in any order at any time to assemble the final presentation. However, splicing is a time-consuming process, and making changes in the presentation or trying different alternatives can place a heavy burden on the stock material as well.

Electronic editing8 allows the manipulation of images as electronic signals rather than using a physical process. The standard configuration uses two source videotape players, a switching box, and an output videotape recorder. More advanced configurations include a character generator (text overlays) and special effects generator (wipes, fades, etc.) on the input side, and the switching box is replaced by an editing station (see Figure 1.8). The two source tapes are searched to locate the initial desired sequence; the tape deck on which it is found is selected for recording on the output deck and the sequence is recorded. The tapes are then searched to locate the next segment, the deck is selected for input, and the segment is recorded on the output tape. This continues until the new composite sequence has been created on the output tape. The use of two source tapes allows multiple sources to be more easily integrated into the final program. Because the output is assembled in sequential order, this is referred to as linear editing. The linear assembly of the output is considered the main drawback of this technique. Electronic editing also has the drawback that the material is copied in the editing process, introducing some image degradation. Because the output tape is commonly used to master the tapes that are sent out to be viewed, these tapes are already third generation. Another drawback is the amount of wear on the source material as the source tapes are repeatedly played and rewound as the next desired sequence is searched for. If different output versions are required (called versioning), the source material will be subjected to even more wear and tear because the source material has to undergo more handling as it is processed for multiple purposes.
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Figure 1.8 Linear editing system.



Often, to facilitate the final assemblage of the output sequence and avoid excessive wear of the original source material, copies of the source material are used in a preprocessing stage in which the final edits are determined. This is called off-line editing. The result of this stage is an edit decision list (EDL), which is a final list of the edits that need to be made to assemble the final piece. The EDL is then passed to the on-line editing stage, which uses the original source material to make the edits and create the finished piece. This process is referred to as conforming.

To keep track of edit locations, control track pulses can be incorporated onto the tape used to assemble the 30 fps NTSC video signal. Simple editing systems count the pulses, and this is called control track editing. However, the continual shuffling of the tape back and forth during the play and rewind of the editing process can result in the editing unit losing count of the pulses. This is something the operator must be aware of and take into account. In addition, because the edit counts are relative to the current tape location, the edit locations are lost when the editing station is turned off.

The Society of Motion Picture and Television Engineers time code is an absolute eight-digit tag on each frame in the form of HHMMSSFF, where HH is the hour, MM is the minute, SS is the second, and FF is the frame number. This tag is calculated from the beginning of the sequence. This allows an editing station to record the absolute frame number for an edit and then store the edit location in a file that can be retrieved for later use.

The process described so far is called assemble editing. Insert editing is possible if a control signal is first laid down on the output tape. Then sequences can be inserted anywhere on the tape in forming the final sequence. This provides some nonlinear editing capability, but it is still not possible to easily lengthen or shorten a sequence without repositioning other sequences on the tape to compensate for the change.



Digital on-line nonlinear editing

To incorporate a more flexible nonlinear approach, fully digital editing systems have become more accessible [17] [33] [48]. These can be systems dedicated to editing, or they can be software systems that run on standard computers. Analog tape may still be used as the source material and for the final product, but everything between is digitally represented and controlled9 (see Figure 1.9).
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Figure 1.9 On-line nonlinear editing system.



After a sequence has been digitized, an icon representing it can be dragged onto a time line provided by the editing system. Sequences can be placed relative to one another; they can be repeated, cut short, overlapped with other sequences, combined with transition effects, and mixed with other effects. A simplified example of such a time line is shown in Figure 1.10.
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Figure 1.10 Simplified example of a time line used for nonlinear digital editing.



The positioning of the elements in the time line is conceptual only; typically the data in the digital image store is not actually copied or moved. The output sequence can be played back in real time if the disk random access and graphics display are fast enough to fetch and compile the separate tracks on the fly. In the case of overlapping sequences with transitions, the digital store must support the access of multiple tracks simultaneously so a transition can be constructed on the fly or the transition sequence needs to be precomputed (sometimes referred to as rendering) and explicitly stored for access during playback. When the sequence is finalized it can be assembled and stored digitally or recorded on video. Whatever the case, the flexibility of this approach, with the ability to change edits and try alternatives without generational degradation, makes nonlinear digital editing systems very powerful.




1.4.3 Digital video

As the cost of computer memory decreases and processor speeds increase, the capture, compression, storage, and playback of digital video have become more prevalent [42] [46]. This has several important ramifications. First, desktop animation has become inexpensive enough to be within the reach of the consumer. Second, in the film industry it has meant that compositing is no longer optical. Optically compositing each element in a film meant another pass of the negative through an optical film printer, which meant additional degradation of image quality. With the advent of digital compositing (see Appendix A.2), the limit on the number of composited elements is removed. Third, once films are routinely stored digitally, digital techniques can be used for wire removal and to apply special effects. These digital techniques have become the bread and butter of computer graphics in the film industry.

When one works with digital video, there are several issues that need to be addressed to determine the cost, speed, storage requirements, and overall quality of the resulting system. Compression techniques can be used to conserve space or reduce transmission time, but some compression compromises the quality of the image and the speed of compression/decompression may restrict a particular technique’s suitability for a given application. During video capture, any image compression must operate in real time. Formats used for storage and playback can be encoded off-line, but the decoding must support real-time playback. Video resolution, video frame rates, and full-color imagery require that 27 MB/sec be supported for video playback.10 An hour of uncompressed video requires just under 100 GB of storage.11 While lossless compression (the original data can be exactly reconstructed) is possible, most video compression is lossy (not all of the original signal is recoverable) because of the favorable quality/space trade-off. There are several digital video formats used by different manufacturers of video equipment for various applications as well as video formats for streaming video and storage; these formats include D1, D2, D3, D5, miniDV, DVC, Digital8, MPEG-4, digital Betacam, H.261, and H.263. Better signal quality can be attained with the use of component instead of composite signals. Discussion of these and other issues related to digital video is beyond the scope of this book. Information on some of the more popular formats can be found in Appendix B.10.



1.4.4 Digital audio

Audio is just as important to computer animation as it is to traditional animation. Over the years, audio technology, like image technology, has gone digital. Early audio recordings used an electromechanical stylus to etch representations of the signal into wax drums or plastic platters. Later, the signal was used to modulate the magnetization of some type of ferromagnetic material on plastic tape. Digital audio has since taken over. Digital audio has the same advantages as digital imagery when it comes to duplicating and editing. Digital audio can be copied, cut and pasted, transitioned, and looped over without any degradation in signal quality—a distinct advantage over its analog counterpart. The sound capability in personal computers has dramatically improved over the years so that now high-quality sound capability is standard. As with digital imagery, there are file formats and compression standards to consider when dealing with digital audio. In addition, there is a standard for digitally controlling musical devices.

Digital musical device control

Musical instrument digital interface (MIDI) is a standard developed in 1983 to control musical instruments without being tied to any one instrument in particular. MIDI commands are keynote commands to musical devices and are intended to represent a musical performance. Mostly, the commands take the form of “note x on” and “note x off” where x is any of the standard musical notes. There are also control commands to set pitch, loudness, etc. Some devices can also send out MIDI commands as they are played in order to record the performance as keys are depressed and released. MIDI supports up to 16 channels and devices can be daisy-chained so that, for example, a device can be set up to respond only to a particular track.



Digital audio sampling

Sounds are pressure waves of air. In audio recording, the pressure waves are converted to some representation of the waveform. When it is recorded digitally, the wave is sampled at certain intervals—the sampling rate—with a certain number of bits per sample—the sample size—using a certain number of tracks. The sampling rate determines the highest frequency, called the Nyquist frequency, which can accurately be reconstructed. A voice signal can be sampled at a much lower rate than CD-quality music because the highest frequency of a voice signal is much lower than the highest frequency that might occur in a piece of music. The number of bits per sample determines how much distortion there is in the recorded signal. The number of tracks is how many independent signals comprise the music—one for mono, two for stereo, more for various “surround sound” recordings or for later editing. A voice signal and AM radio are sampled at approximately 10 K samples per second with 8-bits per sample using one track. CD-quality music is sampled at 44.1 K samples per second with 16-bits per sample using two tracks.

Similar to digital imagery, the digital recording can then be compressed for more efficient storage and transmission. The compression can either be lossless (the original signal can be reconstructed exactly) or lossy (some of the original signal is lost in the compression/decompression procedure—usually the very high frequencies). General data compression techniques can be used, but don’t do as well on audio data as the compression schemes that use the fact that the file contains audio, referred to as being perceptually based. Compression of speech can use techniques that are less sensitive to preserving all of the frequency components of the sound. Common audio data compression techniques include MP3, MPEG-4 ALS, TTA, and FLAC.






1.5 A brief history of computer animation

1.5.1 Early activity (pre-1980)

The earliest computer animation of the late 1960s and early 1970s was produced by a mix of researchers in university labs and individual visionary artists [24] [25] [37]. At the time, raster displays driven by frame buffers were just being developed and digital output to television was still in the experimental stage. The displays in use were primarily storage tubes and refresh vector displays. Storage tubes retain an image indefinitely because of internal circuitry that continuously streams electrons to the display. However, because the image cannot be easily modified, storage tubes were used mainly to draw complex static models. Vector (calligraphic) displays use a display list of line- and arc-drawing instructions that an internal processor uses to repeatedly draw an image that would otherwise quickly fade on the screen. Vector displays can draw moving images by carefully changing the display list between refreshes. These displays were popular for interactive design tasks.

During this time period, static images were often recorded onto film by placing a camera in front of the display and recording an image of vectors on the screen. In this way, shaded images could be produced by opening the shutter of the film camera and essentially scan converting the elements (e.g., polygons) by drawing closely spaced horizontal vectors to fill the figure; after scan conversion was completed, the shutter was closed to terminate the image recording. The intensity of the image could be regulated by using the intensity control of the vector display or by controlling other aspects of the image recording such as by varying the density of the vectors. An image of a single color was generated by placing a colored filter in front of the camera lens. A full-color image could be produced by breaking the image into its red, green, and blue components and triple exposing the film with each exposure using the corresponding colored filter. This same approach could be used to produce animation as long as the motion camera was capable of single-frame recording. Single-frame recording required precise frame registration, usually available only in expensive film equipment. Animated sequences could be colored by triple exposing the entire film. The programmer (animator) was fortunate if both the camera and the filters could be controlled by computer.

The earliest research in computer graphics and animation occurred at the Massachusetts Institute of Technology in 1963 when Ivan Sutherland developed an interactive constraint satisfaction system on a vector refresh display [41]. The user could construct an assembly of lines by specifying constraints between the various graphical elements. If one of the graphical elements moved, the system calculated the reaction of other elements to this manipulation based on satisfying the specified constraints. By interactively manipulating one of the graphical elements, the user could produce complex motion in the rest of the assembly. Later, at the University of Utah, Sutherland helped David Evans establish the first significant research program in computer graphics and animation.

As early as the early 1960s, computer animation was produced as artistic expression. The early artistic animators in this period included Ken Knowlton, Lillian Schwartz, S. Van Der Beek, John Whitney, Sr., and A. M. Noll. Typical artistic animations consisted of animated abstract line drawings displayed on vector refresh displays. Chuck Csuri, an artist at Ohio State University, produced pieces such as Hummingbird (1967) that were more representational.

In the early 1970s, computer animation in university research labs became more widespread. Computer graphics, as well as computer animation, received an important impetus through government funding at the University of Utah [14]. As a result, Utah produced several groundbreaking works in animation: an animated hand and face by Ed Catmull (Hand/Face, 1972), a walking and talking human figure by Barry Wessler (Not Just Reality, 1973), and a talking face by Fred Parke (Talking Face, 1974). Although the imagery was extremely primitive by today’s standards, the presentations of lip-synced facial animation and linked-appendage figure animation were impressive demonstrations well ahead of their time.

In 1972, Chuck Csuri founded the Computer Graphics Research Group (CGRG) at Ohio State with the focus of bringing computer technology to bear on creating animation [10]. Tom DeFanti produced the Graphics Symbiosis System (GRASS) in the early 1970s that scripted interactive control of animated objects on a vector display device. Later in the 1970s, CGRG produced animations using a real-time video playback system developed at North Carolina State University under the direction of John Staudhammer. Software developed at CGRG compressed frames of animation and stored them to disk. During playback, the compressed digital frames were retrieved from the disk and piped to the special-purpose hardware, which took the digital information, decompressed it on the fly, and converted it into a video signal for display on a standard television. The animation was driven by the ANIMA II language [15]. In the mid-1980s, Julian Gomez developed TWIXT [43], a track-based key-frame animation system.

In 1973, the first computer-language-based key-frame animation system, ANTICS, was developed by Alan Kitching at the Atlas Computer Laboratory under the auspices of the Royal College of Art in the United Kingdom. [19] [20]. ANTICS is a Fortran software package specifically designed for animators and graphic designers. It is a two-dimensional system that provides capabilities analogous to traditional cel animation.

In the mid-1970s, Norm Badler at the University of Pennsylvania conducted investigations into posing a human figure. He developed a constraint system to move the figure from one pose to another. He has continued this research and established the Center for Human Modeling and Simulation at the University of Pennsylvania. Jack is a software package developed at the center that supports the positioning and animation of anthropometrically valid human figures in a virtual world [7].

In the late 1970s, the New York Institute of Technology (NYIT) produced several computer animation systems, thanks to individuals such as Ed Catmull and Alvy Ray Smith [24]. At the end of the 1970s, NYIT embarked on an ambitious project to produce a wholly computer-generated feature film using three-dimensional computer animation, titled The Works. While the project was never completed, excerpts were shown at several SIGGRAPH conferences as progress was made. The excerpts demonstrated high-quality rendering, jointed figures, and interacting objects. The system used at NYIT was BBOP, a three-dimensional key-frame figure animation system [40].

In 1974, the first computer animation nominated for an Academy Award, Hunger, was produced by Rene Jodoin; it was directed and animated by Peter Foldes. This piece used a 2½ D system that depended heavily on object shape modification and line interpolation techniques [6]. The system was developed by Nestor Burtnyk and Marceli Wein at the National Research Council of Canada in conjunction with the National Film Board of Canada. Hunger was the first animated story using computer animation.

In the early 1980s Daniel Thalmann and Nadia Magnenat-Thalmann started work in computer animation at the University of Montreal [24]. Over the years, their labs have produced several impressive animations, including Dream Flight (N. Magnenat-Thalmann, D. Thalmann, P. Bergeron, 1982), Tony de Peltrie (P. Bergeron, 1985), and Rendez-vous à Montréal (N. Magnenat-Thalmann and D. Thalmann, 1987).

Others who advanced computer animation during this period were Ed Emshwiller at NYIT, who demonstrated moving texture maps in Sunstone (1979); Jim Blinn, who produced the Voyager flyby animations at the Jet Propulsion Laboratory (1979); Don Greenberg, who used architectural walkthroughs of the Cornell University campus (1971); and Nelson Max at the Education Development Center, who animated space-filling curves (1972).

Commercial efforts at computer animation first occurred in the late 1960s with Lee Harrison’s SCANIMATE system based on analog computing technology [36]. Digital technology soon took over and the mid- to late-1970s saw the first serious hints of commercial three-dimensional digital computer animation. Tom DeFanti developed the GRASS at Ohio State University (1976), a derivative of which was used in the computer graphics sequences of the first Star Wars film (1977). In addition to Star Wars, films such as Future World (1976), Alien (1979), and Looker12 (1981) began to incorporate simple computer animation as examples of advanced technology. This was an exciting time for those in the research labs wondering if computer animation would ever see the light of day. One of the earliest companies to use three-dimensional computer animation was the Mathematical Application Group Inc. (MAGI), which used a ray-casting algorithm to provide scientific visualizations. MAGI also adapted its technique to produce early commercials for television.



1.5.2 The middle years (the 1980s)

The 1980s saw a more serious move by entrepreneurs into commercial animation. Computer hardware advanced significantly with the introduction of the VAX computer in the 1970s and the IBM PC at the beginning of the 1980s. Hardware z-buffers were produced by companies such as Raster Tech and Ikonas, Silicon Graphics was formed, and flight simulators based on digital technology were taking off because of efforts by the Evans and Sutherland Corporation. These hardware developments were making the promise of cost-effective computer animation to venture capitalists. At the same time, graphics software was getting more sophisticated: Turner Whitted introduced anti-aliased ray tracing (The Compleat Angler, 1980), Loren Carpenter produced a flyby of fractal terrain (Vol Libre, 1980), and Nelson Max produced several films about molecules as well as one of the first films animating waves (Carla’s Island, 1981). Companies such as Alias, Wavefront, and TDI were starting to produce sophisticated software tools making advanced rendering and animation available off-the-shelf for the first time.

Animation houses specializing in three-dimensional computer animation started to appear. Television commercials, initially in the form of flying logos, provided a profitable area where companies could hone their skills. Demo reels appeared at SIGGRAPH produced by the first wave of computer graphics companies such as Information International Inc. (III, or triple-I), Digital Effects, MAGI, Robert Abel and Associates, and Real Time Design (ZGRASS).

The first four companies combined to produce the digital imagery in Disney’s TRON (1982), which was a landmark movie for its (relatively) extensive use of a computer-generated environment in which graphical objects were animated. Previously, the predominant use of computer graphics in movies had been to show a monitor (or simulated projection) of something that was supposed to be a computer graphics display (Futureworld, 1976; Star Wars, 1977; Alien, 1979; Looker, 1981). Still, in TRON, the computer-generated imagery was not meant to simulate reality; the action takes place inside a computer, so a computer-generated look was consistent with the story line.

At the same time that computer graphics were starting to find their way into the movies it was becoming a more popular tool for generating television commercials. As a result, more computer graphics companies surfaced, including Digital Pictures, Image West, Cranston-Csuri Productions, Pacific Data Images, Lucasfilm, Marks and Marks, Digital Productions, and Omnibus Computer Graphics.

Most early use of synthetic imagery in movies was incorporated with the intent that it would appear as if computer generated. The other use of computer animation during this period was to “do animation.” That is, the animations were meant not to fool the eye into thinking that what was being seen was real but rather to replace the look and feel of two-dimensional conventional animation with that of three-dimensional computer animation. Of special note are the award-winning animations produced by Lucasfilm and, later, by Pixar:


 The Adventures of Andre and Wally B. (1984)—first computer animation demonstrating motion blur

 Luxo Jr. (1986)—nominated for an Academy Award

 Red’s Dream (1987)

 Tin Toy (1988)—first computer animation to win an Academy Award

 Knick Knack (1989)

 Geri’s Game (1997)—Academy Award winner



These early animations paved the way for three-dimensional computer animation to be accepted as an art form. They were among the first fully computer-generated three-dimensional animations to be taken seriously as animations, irrespective of the technique involved. Another early piece of three-dimensional animation, which integrated computer graphics with conventional animation, was Technological Threat (1988, Kroyer Films). This was one of three films nominated for an Academy Award as an animated short in 1989; Tin Toy came out the victor.

One of the early uses of computer graphics in film was to model and animate spacecraft. Working in (virtual) outer space with spacecraft has the advantages of simple illumination models, a relatively bare environment, and relatively simple animation of rigid bodies. In addition, spacecraft are usually modeled by relatively simple geometry—as is the surrounding environment (planets)—when in flight. The Last Starfighter (1984, Digital Productions) used computer animation instead of building models for special effects; the computer used, the Cray X-MP, even appeared in the movie credits. The action takes place in space as well as on planets; computer graphics were used for the scenes in space, and physical models were used for the scenes on a planet. Approximately twenty minutes of computer graphics was used in the movie. While it is not hard to tell when the movie switches between graphical and physical models, this was the first time graphics were used as an extensive part of a live-action film in which the graphics were supposed to look realistic (i.e., special effects).



1.5.3 Animation comes of age (the mid-1980s and beyond)

As modeling, rendering, and animation became more sophisticated and the hardware became faster and inexpensive, quality computer graphics began to spread to the Internet, television commercials, computer games, and stand-alone game units. In film, computer graphics help to bring alien creatures to life. Synthetic alien creatures, while they should appear to be real, do not have to match specific audience expectations. Young Sherlock Holmes (1986, ILM) was the first to place a synthetic character in a live-action feature film. An articulated stained glass window comes to life and is made part of the live action. The light sources and movements of the camera in the live action had to be mimicked in the synthetic environment, and images from the live action were made to refract through the synthetic stained glass. In The Abyss (1989, ILM), computer graphics are used to create an alien creature that appears to be made from water. Other notable films in which synthetic alien creatures are used are Terminator II (1991, ILM), Casper (1995, ILM), Species (1995, Boss Film Studios), and Men in Black (1997, ILM).

A significant advance in the use of computer graphics for the movies came about because of the revolution in cheap digital technology, which allowed film sequences to be stored digitally. Once the film is stored digitally, it is in a form suitable for digital special effects processing, digital compositing, and the addition of synthetic elements. For example, computer graphics can be used to remove the mechanical supports of a prop or to introduce digital explosions or laser blasts. For the most part, this resides in the two-dimensional realm, thus it is not the focus of this book. However, with the advent of digital techniques for two-dimensional compositing, sequences are more routinely available in digital representations, making them amenable to a variety of digital postprocessing techniques. The first digital blue screen matte extraction was in Willow (1988, ILM). The first digital wire removal was in Howard the Duck (1986, ILM). In True Lies (1994, Digital Domain), digital techniques inserted atmospheric distortion to show engine heat. In Forrest Gump (1994, ILM), computer graphics inserted a ping-pong ball in a sequence showing an extremely fast action game, inserted a new character into old film footage, and enabled the illusion of a double amputee as played by a completely able actor. In Babe (1995, Rhythm & Hues), computer graphics were used to move the mouths of animals and fill in the background uncovered by the movement. In Interview with a Vampire (1994, Digital Domain), computer graphics were used to curl the hair of a woman during her transformation into a vampire. In this case, some of the effect was created using three-dimensional graphics, which were then integrated into the scene by two-dimensional techniques. More recently, The Matrix series (The Matrix, 1999; The Matrix Reloaded, 2003; The Matrix Revolutions, 2003, Groucho II Film Partnership) popularized the use of a digital visual effect used to show characters dodging bullets—slow motion was digitally enhanced to show unfilmable events such as a flying bullets.

A popular graphical technique for special effects is the use of particle systems. One of the earliest examples is in Star Trek II: The Wrath of Khan (1982, Lucasfilm), in which a wall of fire sweeps over the surface of a planet. Although by today’s standards the wall of fire is not very convincing, it was an important step in the use of computer graphics in movies. Particle systems are also used in Lawnmower Man (1992, Angel Studios, Xaos), in which a character disintegrates into a swirl of small spheres. The modeling of a comet’s tail in the opening sequence of the television series Star Trek: Deep Space Nine (1993, Paramount Television) is a more recent example of a particle system. In a much more ambitious and effective application, Twister (1996, ILM) uses particle systems to simulate a tornado.

More challenging is the use of computer graphics to create realistic models of creatures with which the audience is intimately familiar. Jurassic Park (1993, ILM) is the first example of a movie that completely integrates computer graphics characters (dinosaurs) of which the audience has fairly specific expectations. Of course, there is still some leeway here, because the audience does not have precise knowledge of how dinosaurs look. Jumanji (1995, ILM) takes on the ultimate task of modeling creatures for which the audience has precise expectations: various jungle animals. Most of the action is fast and blurry, so the audience does not have time to dwell on the synthetic creatures visually, but the result is very effective. To a lesser extent, Batman Returns (1995, PDI) does the same thing by providing “stunt doubles” of Batman in a few scenes. The scenes are quick and the stunt double is viewed from a distance, but it was the first example of a full computer graphics stunt double in a movie. More recently, the Spider Man movies (2002-present, Sony) make extensive use of synthetic stunt doubles. Use of synthetic stunt doubles in film is now commonplace.

Computer graphics show much potential for managing the complexity in crowd scenes. PDI used computer graphics to create large crowds in the Bud Bowl commercials of the mid 1980s. In feature films, some of the well-known crowd scenes occur in the wildebeest scene in Lion King (1994, Disney), the alien charge in Starship Troopers (1997, Tippet Studio), synthetic figures populating the deck of the ship in Titanic (1998, ILM), and various crowds in the Star Wars films (1977–2005, Lucasfilm) and The Lord of the Rings trilogy (2001–2003, New Line Cinema).

A holy grail of computer animation is to produce a synthetic human characters indistinguishable from a real person. Early examples of animations using “synthetic actors” are Tony de Peltrie (1985, P. Bergeron), Rendez-vous à Montréal (1988, D. Thalmann), Sextone for President (1989, Kleiser-Walziac Construction Company), and Don’t Touch Me (1989, Kleiser-Walziac Construction Company). However, it is obvious to viewers that these animations are computer generated. Recent advances in illumination models and texturing have produced human figures that are much more realistic and have been incorporated into otherwise live-action films.

Synthetic actors have progressed from being distantly viewed stunt doubles and passengers on a boat to assuming central roles in various movies: the dragon in Dragonheart (1996, Tippett Studio, ILM); the Jello-like main character in Flubber (1997, ILM); the aliens in Mars Attacks (1996, ILM); and the ghosts in Casper (1995, ILM). The first fully articulated humanoid synthetic actor integral to a movie was the character Jar-Jar Binks in Star Wars: Episode I (1999, ILM). More recently, Gollum in the Lord of the Rings: The Return of the King (2004, New Line Cinema13) and Dobby in the Harry Potter series (2001–2011, Warner Bros.) display actor-like visual qualities as well as the personality of a live actor not previously demonstrated in computer-generated characters.

However, a revolution is brewing in the realistic digital representation of human actors. At this point, we are not quite to the place where a digital human is indistinguishable from a live actor, but that time is drawing nearer. An early attempt at such realism was undertaken by Final Fantasy: The Spirits Within (2001, Chris Lee Productions), which incorporated full body and facial animation of human figures. The hair animation was particularly convincing; however, the facial animation was stiff and unexpressive. Several films effectively manipulated the appearance of facial features as a special effect including The Curious Case of Benjamin Button (2008, Paramount Pictures) and Alice in Wonderland (2010, Walt Disney Pictures). Avatar (2009, 20th Century Fox) with full body/face motion captures animated human-like creatures by mapping the performance of actors to the synthetic creatures. However, the most ambitious attempt at a synthetic actor is in the film TRON: Legacy (2010, Walt Disney Pictures), which animates a computer graphics version of a young Jeff Bridges. In this case, the audience (at least those of us old enough to remember what Jeff Bridges looked like when he was young) have a specific expectation of what a young Jeff Bridges should look like. The representation is effective for the most part; however, the film editing prevents the audience from closely inspecting the young Jeff Bridges and even so, there is an unreal eeriness about the figure. But this shows that synthetic actors are on their way to a theater near you. Advances in hair, clothes, and skin have paved the way, but facial animation has still not been totally conquered.

Of course, one use of computer animation is simply to “do animation”; computer graphics are used to produce animated pieces that are essentially three-dimensional cartoons that would otherwise be done by more traditional means. The animation does not attempt to fool the viewer into thinking anything is real; it is meant simply to entertain. The film Hunger falls into this category, as do the Lucasfilm/Pixar animations. Toy Story is the first full-length, fully computer-generated three-dimensional animated feature film. Other feature-length three-dimensional cartoons soon emerged, such as Antz (1998, PDI), A Bug’s Life (1998, Pixar), Toy Story 2 (1999, Pixar), Shrek (2001, PDI), and Shrek 2 (2004, PDI). In 2002, Shrek won the first-ever Academy Award for Best Animated Feature.

Many animations of this type have been made for television. In an episode of The Simpsons (1995, PDI), Homer steps into a synthetic world and turns into a three-dimensional computer-generated character. There have been popular television commercials involving computer animation—too many to mention at this point. Many Saturday morning cartoons are now produced using three-dimensional computer animation. Because many images are generated to produce an animation, the rendering used in computer-animated weekly cartoons tends to be computationally efficient.

An example of rendering at the other extreme is Bunny (1999, Blue Sky Productions), which received an Academy Award for animated short. Bunny uses high-quality rendering in its imagery, including ray tracing and radiosity, as does Ice Age (2002, Blue Sky Productions). The Incredibles (2004, Disney/Pixar), which garnered another Academy Award for Pixar, included hair animation, subsurface scattering for illuminating skin, cloth animation, and skin-deforming muscle models. Polar Express (2004, Warner Bros.) advanced the use of motion capture technology to capture full body and face motion in animating this children’s story.

Computer animation is now well-established as a (some would say “the”) principal medium for doing animation. Indeed, at one time, both Jurassic Park and Shrek 2 were on the top ten list of all time worldwide box office grossing movies [4].

Three-dimensional computer graphics are also playing an increasing role in the production of conventional hand-drawn animation. Computer animation has been used to model three-dimensional elements in hand-drawn environments. The previously mentioned Technological Threat (1988) is an early animation that combined computer-animated characters with hand-drawn characters to produce an entertaining commentary on the use of technology. Three-dimensional environments were constructed for conventionally animated figures in Beauty and the Beast (1991, Disney) and Tarzan (1999, Disney); three-dimensional synthetic objects, such as the chariots, were animated in conventionally drawn environments in Prince of Egypt (1998, DreamWorks). Because photorealism is not the objective, the rendering in such animation is done to blend with the relatively simple rendering of hand-drawn animation.

Lastly, morphing, even though it is a two-dimensional animation technique, should be mentioned because of its use in some films and its high impact in television commercials. This is essentially a two-dimensional procedure that warps control points (or feature lines) of one image into the control points (feature lines) of another image while the images themselves are blended. In Star Trek IV: The Voyage Home (1986, ILM), one of the first commercial morphs occurred in the back-in-time dream sequence. In Willow (1988, ILM), a series of morphs changes one animal into another. This technique is also used very effectively in Terminator II (1991, ILM). In the early 1990s, PDI promoted the use of morphing in various productions. Michael Jackson’s music video Black and White, in which people’s faces morph into other faces, did much to popularize the technique. In a Plymouth Voyager commercial (1991, PDI) the previous year’s car bodies and interiors morph into the new models, and in an Exxon commercial (1992, PDI) a car changes into a tiger. Morphing remains a useful and popular technique.




1.6 Summary

Computer graphics and computer animation have created a revolution in visual effects and animation production. Advances are still being made, and new digital techniques are finding a receptive audience. Yet there is more potential to be realized as players in the entertainment industry demand their own special look and each company tries to establish a competitive edge in the imagery it produces.

Computer animation has come a long way since the days of Ivan Sutherland and the University of Utah. Viewed in the context of the historical development of animation, the use of digital technology is indeed both a big and an important step. With the advent of low-cost computing and desktop video, animation is now within reach of more people than ever. It remains to be seen how the limits of the technology will be pushed as new and interesting ways to create moving images are explored. Of particular importance is the evolution of human figure modeling, rendering, and animation. This technology is on the verge of making a significant impact on both special effects and animated films as synthetic figures become more indistinguishable from real people. In addition to human figure animation, more sophisticated mathematical formulations for modeling cloth, water, clouds, and fire are generating more complex and interesting animations. As these and other advanced techniques are refined in the research labs, they filter down into off-the-shelf software. This software is then available to the highly talented digital artists who create the dazzling visuals that continually astound and amaze us in movie theaters and on the internet.
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1 SIGGRAPH is the Association for Computing Machinery’s (ACM) special interest group on computer graphics. The ACM is the main professional group for computer scientists.

2 More accurately, the format for broadcast television system, established by the NTSC, specifies a frame rate of 29.97 fps [29].

3 An interlaced display is one in which a frame is divided into two fields. Each field consists of odd or even numbered scanlines. The odd and even fields are displayed in alternate scans of the display device [8].

4 A more restricted definition of animation, also found in the literature, requires the use of a sequence of stills to create the visual impression of motion. The restricted definition does not admit techniques such as animatronics or shadow puppets under the rubric animation.

5 Cel is short for celluloid, which was the original material used in making the translucent layers. Currently, cels are made from acetate.

6 Live-action film tends to use a five-level hierarchy: film, sequence, scene, shot, and frame [9]. Here, the terminology, which is often used in feature-length computer animation, is presented.

7 Articulated figures are models consisting of rigid segments usually connected together in a tree-like structure; the connections are revolute or prismatic joints, allowing a segment to rotate or translate relative to the segment to which it is connected.

8 To simplify the discussion and make it more relevant to the capabilities of the personal computer, the discussion here focuses on video editing, although much of it is directly applicable to digital film editing, except that film standards require much higher resolution and therefore more expensive equipment.

9 It is interesting to note that the whole process from recording to projection can now be done digitally.

10 640 pixels/scanline × 480 scanlines/frame × 3 bytes/pixel × 30 fps = 27,630,000 bytes/sec.

11 27,630,000 bytes/sec × 3600 sec/hour = 99,468,000,000 bytes/hour.

12 The film Looker is interesting as an early commentary on the potential use of digital actors in the entertainment industry.

13 For brevity, only the first production company itemized on the Internet Movie Database Web site (www.imdb.com) is given when more than one production company is listed.





Chapter 2
Technical Background

This chapter serves as a prelude to the computer animation techniques presented in the remaining chapters. It is divided into two sections. The first serves as a quick review of the basics of the computer graphics display pipeline and discusses potential sources of error when dealing with graphical data. It is assumed that the reader has already been exposed to transformation matrices, homogeneous coordinates, and the display pipeline, including the perspective projection; this section concisely reviews these topics. The second section covers various orientation representations that are important for the discussion of orientation interpolation in Chapter 3.3.

2.1 Spaces and transformations

Much of computer graphics and computer animation involves transforming data (e.g., [2] [7]). Object data are transformed from a defining space into a world space in order to build a synthetic environment. Object data are transformed as a function of time in order to produce animation. Finally, object data are transformed in order to view the object on a screen. The workhorse transformational representation of graphics is the 4 × 4 transformation matrix, which can be used to represent combinations of three-dimensional rotations, translations, and scales as well as perspective projection.

A coordinate space can be defined by using a left- or a right-handed coordinate system (see Figure 2.1a,b). Left-handed coordinate systems have the x-, y-, and z-coordinate axes aligned as the thumb, index finger, and middle finger of the left hand are arranged when held at right angles to each other in a natural pose: extending the thumb out to the side of the hand, extending the index finger coplanar with the palm, and extending the middle finger perpendicular to the palm. The right-handed coordinate system is organized similarly with respect to the right hand. These configurations are inherently different; there is no series of pure rotations that transforms a left-handed configuration of axes into a right-handed configuration. Which configuration to use is a matter of convention. It makes no difference as long as everyone knows and understands the implications. Another arbitrary convention is the axis to use as the up vector. Some application areas assume that the y-axis is “up.” Other applications assume that the z-axis is “up.” As with handedness, it makes no difference as long as everyone is aware of the assumption being made. In this book, the y-axis is considered “up.”


[image: image][image: image]

Figure 2.1 (a) Left-handed and (b) right-handed coordinate systems.



This section first reviews the transformational spaces through which object data pass as they are massaged into a form suitable for display. Then, the use of homogeneous representations of points and the 4 × 4 transformation matrix representation of three-dimensional rotations, translation, and scale are reviewed. Next come discussions of representing arbitrary position and orientation by a series of matrices, representing compound transformations in a matrix, and extracting a series of basic transformations from a compound matrix. The display pipeline is then described in terms of the transformation matrices used to affect it; the discussion is focused on transforming a point in space. In the case of transforming vectors, the computation is slightly different (see Appendix B.3.2 for details). This section concludes with a discussion of error considerations, including orthonormalization of a rigid transformation matrix. Unless stated otherwise, space is assumed to be three-dimensional and right-handed.

2.1.1 The display pipeline

The display pipeline refers to the transformation of object data from its original defining space through a series of intermediate spaces until its final mapping onto the screen. The object data are transformed into different spaces in order to efficiently compute illumination, clip the data to the view volume, and perform the perspective transformation. This section reviews these spaces, their properties, the transformations that map data from one space to the next, and the parameters used to specify the transformations. The names used for these spaces vary from text to text, so they will be reviewed here to establish a consistent naming convention for the rest of the book. While an important process that eliminates lines and parts of lines that are not within the viewable space, clipping is not relevant to motion control and therefore is not covered.

The space in which an object is originally defined is referred to as object space. The data in object space are usually centered at the origin and often are created to lie within some limited standard range such as − 1 to + 1. The object, as defined by its data points (which are also referred to as its vertices), is transformed, usually by a series of rotations, translations, and scales, into world space, the space in which objects are assembled to create the environment to be viewed. Object space and world space are commonly right-handed spaces.

World space is also the space in which light sources and the observer are placed. For purposes of this discussion, observer position is used synonymously and interchangeably with camera position and eye position. The observer parameters include its position and its orientation. The orientation is fully specified by the view direction and the up vector. There are various ways to specify these orientation vectors. Sometimes the view direction is specified by giving a center of interest (COI), in which case the view direction is the vector from the observer or eye position (EYE) to the center of interest. The eye position is also known as the look-from point, and the COI is also known as the look-to point. The default orientation of “straight up” is defined as the observer’s up vector being perpendicular to the view direction and in the plane defined by the view direction and the global y-axis. A rotation away from this up direction will effect a tilt of the observer’s head.

In order to efficiently project the data onto a view plane, the data must be defined relative to the camera, in a camera-centric coordinate system (u, v, w); the v-axis is the observer’s y-axis, or up vector, and the w-axis is the observer’s z-axis, or view vector. The u-axis completes the local coordinate system of the observer. For this discussion, a left-handed coordinate system for the camera is assumed. These vectors can be computed in the right-handed world space by first taking the cross-product of the view direction vector and the y-axis, forming the u-vector, and then taking the cross-product of the u-vector and the view direction vector to form v (Eq. 2.1).

[image: image] (2.1)

After computing these vectors, they should be normalized in order to form a unit coordinate system at the eye position. A world space data point can be defined in this coordinate system by, for example, taking the dot product of the vector from the eye to the data point with each of the three coordinate system vectors.

Head-tilt information can be provided in one of two ways. It can be given by specifying an angle deviation from the straight-up direction. In this case, a head-tilt rotation matrix can be formed and incorporated in the world-to-eye-space transformation or can be applied directly to the observer’s default u-vector and v-vector.

Alternatively, head-tilt information can be given by specifying an up-direction vector. The user-supplied up-direction vector is typically not required to be perpendicular to the view direction as that would require too much work on the part of the user. Instead, the vector supplied by the user, together with the view direction vector, defines the plane in which the up vector lies. The difference between the user-supplied up-direction vector and the up vector is that the up vector by definition is perpendicular to the view direction vector. The computation of the perpendicular up vector, v, is the same as that outlined in Equation 2.1, with the user-supplied up direction vector, UP, replacing the y-axis (Eq. 2.2).

[image: image] (2.2)

Care must be taken when using a default up vector. Defined as perpendicular to the view vector and in the plane of the view vector and global y-axis, it is undefined for straight-up and straight-down views. These situations must be dealt with as special cases or simply avoided. In addition to the undefined cases, some observer motions can result in unanticipated effects. For example, the default head-up orientation means that if the observer has a fixed center of interest and the observer’s position arcs directly, or almost so, over the center of interest, then just before and just after being directly overhead, the observer’s up vector will instantaneously rotate by up to 180 degrees (see Figure 2.2).


[image: image]

Figure 2.2 The up vector flips as the observer’s position passes straight over the center of interest.



In addition to the observer’s position and orientation, the field of view (fov) has to be specified to fully define a viewable volume of world space. This includes an angle of view (or the equally useful half angle of view), near clipping distance, and far clipping distance (sometimes the terms hither and yon are used instead of near and far). The fov information is used to set up the perspective projection.

The visible area of world space is formed by the observer position and orientation, angle of view, near clipping distance, and far clipping distance (Figure 2.3). The angle of view defines the angle made between the upper and lower clipping planes, symmetric around the view direction. If this angle is different than the angle between the left and right side clipping planes, then the two angles are identified as the vertical angle of view and the horizontal angle of view. The far clipping distance sets the distance beyond which data are not viewed. This is used, for example, to avoid processing arbitrarily complex data that is too far away to have much, if any, impact on the final image. The near clipping distance similarly sets the distance before which data are not viewed. This is primarily used to avoid division by zero in the perspective projection. These define the view frustum, the six-sided volume of world space containing data that need to be considered for display.


[image: image]

Figure 2.3 Object-space to world-space transformation and the view frustum in world space.



The view specification discussed above is somewhat simplified. Other view specifications use an additional vector to indicate the orientation of the projection plane, allow an arbitrary viewport to be specified on the plane of projection that is not symmetrical about the view direction to allow for off-center projections, and allow for a parallel projection. The reader should refer to standard graphics texts such as the one by Foley et al. [2] for an in-depth discussion of such view specifications.

In preparation for the perspective transformation, the data points defining the objects are usually transformed from world space to eye space. In eye space, the observer is positioned along the z-axis with the line of sight made to coincide with the z-axis. This allows the depth of a point, and therefore perspective scaling, to be dependent only on the point’s z-coordinate. The exact position of the observer along the z-axis and whether the eye space coordinate system is left- or right-handed vary from text to text. For this discussion, the observer is positioned at the origin looking down the positive z-axis in left-handed space. In eye space as in world space, lines of sight emanate from the observer position and diverge as they expand into the visible view frustum, whose shape is often referred to as a truncated pyramid.

The perspective transformation transforms the objects’ data points from eye space to image space. The perspective transformation can be considered as taking the observer back to negative infinity in z and, in doing so, makes the lines of sight parallel to each other and to the (eye space) z-axis. The pyramid-shaped view frustum becomes a rectangular solid, or cuboid, whose opposite sides are parallel. Thus, points that are farther away from the observer in eye space have their x- and y-coordinates scaled down more than points that are closer to the observer. This is sometimes referred to as perspective foreshortening. This is accomplished by dividing a point’s x- and y-coordinates by the point’s z-coordinate. Visible extents in image space are usually standardized into the − 1 to + 1 range in x and y and from 0 to 1 in z (although in some texts, visible z is mapped into the−1 to + 1 range). Image space points are then scaled and translated (and possibly rotated) into screen space by mapping the visible ranges in x and y (− 1 to + 1) into ranges that coincide with the viewing area defined in the coordinate system of the window or screen; the z-coordinates can be left alone. The resulting series of spaces is shown in Figure 2.4.


[image: image]

Figure 2.4 Display pipeline showing transformation between spaces.



Ray casting (ray tracing without generating secondary rays) differs from the above sequence of transformations in that the act of tracing rays from the observer’s position out into world space implicitly accomplishes the perspective transformation. If the rays are constructed in world space based on pixel coordinates of a virtual frame buffer positioned in front of the observer, then the progression through spaces for ray casting reduces to the transformations shown in Figure 2.5. Alternatively, data can be transformed to eye space and, through a virtual frame buffer, the rays can be formed in eye space.


[image: image]

Figure 2.5 Transformation through spaces using ray casting.



In any case, animation is typically produced by one or more of the following: modifying the position and orientation of objects in world space over time, modifying the shape of objects over time, modifying display attributes of objects over time, transforming the observer position and orientation in world space over time, or some combination of these transformations.



2.1.2 Homogeneous coordinates and the transformation matrix

Computer graphics often uses a homogeneous representation of a point in space. This means that a three-dimensional point is represented by a four-element vector.1 The coordinates of the represented point are determined by dividing the fourth component into the first three (Eq. 2.3).

[image: image] (2.3)

Typically, when transforming a point in world space, the fourth component will be one. This means a point in space has a very simple homogeneous representation (Eq. 2.4).


[image: image] (2.4)

The basic transformations of rotate, translate, and scale can be kept in 4 × 4 transformation matrices. The 4 × 4 matrix is the smallest matrix that can represent all of the basic transformations. Because it is a square matrix, it has the potential for having a computable inverse, which is important for texture mapping and illumination calculations. In the case of rotation, translation, and nonzero scale transformations, the matrix always has a computable inverse. It can be multiplied with other transformation matrices to produce compound transformations while still maintaining 4 × 4-ness. The 4 × 4 identity matrix has zeros everywhere except along its diagonal; the diagonal elements all equal one (Eq. 2.5).


[image: image] (2.5)

Typically in the literature, a point is represented as a 4 × 1 column matrix (also known as a column vector) and is transformed by multiplying by a 4 × 4 matrix on the left (also known as premultiplying the column vector by the matrix), as shown in Equation 2.5 in the case of the identity matrix. However, some texts use a 1 × 4 matrix (also known as a row vector) to represent a point and transform it by multiplying it by a matrix on its right (the matrix postmultiplies the row vector). For example, postmultiplying a point by the identity transformation would appear as in Equation 2.6.


[image: image] (2.6)

Because the conventions are equivalent, it is immaterial which is used as long as consistency is maintained. The 4 × 4 transformation matrix used in one of the notations is the transpose of the 4 × 4 transformation matrix used in the other notation.



2.1.3 Concatenating transformations: multiplying transformation matrices

One of the main advantages of representing basic transformations as square matrices is that they can be multiplied together, which concatenates the transformations and produces a compound transformation. This enables a series of transformations, Mi, to be premultiplied so that a single compound transformation matrix, M, can be applied to a point P (see Eq. 2.7). This is especially useful (i.e., computationally efficient) when applying the same series of transformations to a multitude of points. Note that matrix multiplication is associative ((AB)C = A(BC)) but not commutative (AB ≠ BA).

[image: image] (2.7)

When using the convention of postmultiplying a point represented by a row vector by the same series of transformations used when premultiplying a column vector, the matrices will appear in reverse order in addition to being the transposition of the matrices used in the premultiplication. Equation 2.8 shows the same computation as Equation 2.7, except in Equation 2.8, a row vector is postmultiplied by the transformation matrices. The matrices in Equation 2.8 are the same as those in Equation 2.7 but are now transposed and in reverse order. The transformed point is the same in both equations, with the exception that it appears as a column vector in Equation 2.7 and as a row vector in Equation 2.8. In the remainder of this book, such equations will be in the form shown in Equation 2.7.


[image: image] (2.8)



2.1.4 Basic transformations

For now, only the basic transformations rotate, translate, and scale (uniform scale as well as nonuniform scale) will be considered. These transformations, and any combination of these, are affine transformations [4]. It should be noted that the transformation matrices are the same whether the space is left- or right-handed. The perspective transformation is discussed later. Restricting discussion to the basic transformations allows the fourth element of each point vector to be assigned the value one and the last row of the transformation matrix to be assigned the value [0 0 0 1] (Eq. 2.9).

[image: image] (2.9)

The x, y, and z translation values of the transformation are the first three values of the fourth column (d, h, and m in Eq. 2.9). The upper left 3 × 3 submatrix represents rotation and scaling. Setting the upper left 3 × 3 submatrix to an identity transformation and specifying only translation produces Equation 2.10.

[image: image] (2.10)

A transformation consisting of only uniform scale is represented by the identity matrix with a scale factor, S, replacing the first three elements along the diagonal (a, f, and k in Eq. 2.9). Nonuniform scale allows for independent scale factors to be applied to the x-, y-, and z-coordinates of a point and is formed by placing Sx, Sy, and Sz along the diagonal as shown in Equation 2.11.

[image: image] (2.11)

Uniform scale can also be represented by setting the lowest rightmost value to 1/S, as in Equation 2.12. In the homogeneous representation, the coordinates of the point represented are determined by dividing the first three elements of the vector by the fourth, thus scaling up the values by the scale factor S. This technique invalidates the assumption that the only time the lowest rightmost element is not one is during perspective and therefore should be used with care or avoided altogether.

[image: image] (2.12)

Values to represent rotation are set in the upper left 3 × 3 submatrix (a, b, c, e, f, g, i, j, and k of Eq. 2.9). Rotation matrices around the x-, y-, and z-axis are shown in Equations 2.13–2.15, respectively. In a right-handed coordinate system, a positive angle of rotation produces a counterclockwise rotation as viewed from the positive end of the axis looking toward the origin (the right-hand rule). In a left-handed (right-handed) coordinate system, a positive angle of rotation produces a clockwise (counterclockwise) rotation as viewed from the positive end of an axis. This can be remembered by noting that when pointing the thumb of the left (right) hand in the direction of the positive axis, the fingers wrap clockwise (counterclockwise) around the closed hand when viewed from the end of the thumb.

[image: image] (2.13)
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Combinations of rotations and translations are usually referred to as rigid transformations because distance is preserved and the spatial extent of the object does not change; only its position and orientation in space are changed. Similarity transformations also allow uniform scale in addition to rotation and translation. These transformations preserve the object’s intrinsic properties2 (e.g., dihedral angles3) and relative distances but not absolute distances. Nonuniform scale, however, is usually not considered a similarity transformation because object properties such as dihedral angles are changed. A shear transformation is a combination of rotation and nonuniform scale and creates columns (rows) that might not be orthogonal to each other. Any combination of rotations, translations, and (uniform or nonuniform) scales still retains the last row of three zeros followed by a one. Notice that any affine transformation can be represented by a multiplicative 3 × 3 matrix (representing rotations, scales, and shears) followed by an additive three-element vector (translation).



2.1.5 Representing an arbitrary orientation

Rigid transformations (consisting of only rotations and translations) are very useful for moving objects around a scene without disturbing their geometry. These rigid transformations can be represented by a (possibly compound) rotation followed by a translation. The rotation transformation represents the object’s orientation relative to its definition in object space. This section considers a particular way to represent an object’s orientation.

Fixed-angle representation

One way to represent an orientation is as a series of rotations around the principal axes (the fixed-angle representation). When illustrating the relationship between orientation and a fixed order of rotations around the principal axes, consider the problem of determining the transformations that would produce a given geometric configuration. For example, consider that an aircraft is originally defined at the origin of a right-handed coordinate system with its nose pointed down the z-axis and its up vector in the positive y-axis direction (i.e., its object space representation). Now, imagine that the objective is to position the aircraft in world space so that its center is at (20, − 10, 35), its nose is oriented toward the point (23, − 14, 40), and its up vector is pointed in the general direction of the y-axis (or, mathematically, so that its up vector lies in the plane defined by the aircraft’s center, the point the plane is oriented toward, and the global y-axis) (see Figure 2.6).


[image: image]

Figure 2.6 Desired position and orientation.



The task is to determine the series of transformations that takes the aircraft from its original object space definition to its desired position and orientation in world space. This series of transformations will be one or more rotations about the principal axes followed by a translation of (20, − 10, 35). The rotations will transform the aircraft to an orientation so that, with its center at the origin, its nose is oriented toward (23−20, − 14 + 10, 40−35) = (3, − 4, 5); this will be referred to as the aircraft’s desired orientation vector.

In general, any such orientation can be effected by a rotation about the z-axis to tilt the object, followed by a rotation about the x-axis to tip the nose up or down, followed by a rotation about the y-axis to swing the plane around to point to the correct direction. This sequence is not unique; others could be constructed as well.

In this particular example, there is no tilt necessary because the desired up vector is already in the plane of the y-axis and orientation vector. We need to determine the x-axis rotation that will dip the nose down the right amount and the y-axis rotation that will swing it around the right amount. We do this by looking at the transformations needed to take the plane’s initial orientation in object space aligned with the z-axis to its desired orientation.

The transformation that takes the aircraft to its desired orientation can be formed by determining the sines and cosines necessary for the x-axis and y-axis rotation matrices. Note that the length of the orientation vector is [image: image]. In first considering the x-axis rotation, initially position the orientation vector along the z-axis so that its endpoint is at (0, 0, [image: image]). The x-axis rotation must rotate the endpoint of the orientation vector so that it is − 4 in y. By the Pythagorean Rule, the z-coordinate of the endpoint would then be [image: image] after the rotation. The sines and cosines can be read from the triangle formed by the rotated orientation vector, the vertical line segment that extends from the end of the orientation vector up to intersect the x-z plane, and the line segment from that intersection point to the origin (Figure 2.7). Observing that a positive x-axis rotation will rotate the orientation vector down in y, we have sinψ = 4/[image: image] and cosψ = [image: image]. The x-axis rotation matrix looks like this:

[image: image] (2.16)
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Figure 2.7 Projection of desired orientation vector onto y-z plane.



After the pitch rotation has been applied, a y-axis rotation is required to spin the aircraft around (yaw) to its desired orientation. The sine and cosine of the y-axis rotation can be determined by looking at the projection of the desired orientation vector in the x-z plane. This projection is (3, 0, 5). Thus, a positive y-axis rotation with sinφ = [image: image] and cosφ = [image: image] is required (Figure 2.8). The y-axis rotation matrix looks like this:

[image: image] (2.17)

The final transformation of a point P would be P′ = Ry Rx P.


[image: image]

Figure 2.8 Projection of desired orientation vector onto x-z plane.



An alternative way to represent a transformation to a desired orientation is to construct what is known as the matrix of direction cosines. Consider transforming a copy of the global coordinate system so that it coincides with a desired orientation defined by a unit coordinate system (see Figure 2.9). To construct this matrix, note that the transformation matrix, M, should do the following: map a unit x-axis vector into the X-axis of the desired orientation, map a unit y-axis vector into the Y-axis of the desired orientation, and map a unit z-axis vector into the Z-axis of the desired orientation (see Eq. 2.18). These three mappings can be assembled into one matrix expression that defines the matrix M (Eq. 2.19).

[image: image] (2.18)

[image: image] (2.19)
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Figure 2.9 Global coordinate system and unit coordinate system to be transformed.



Since a unit x-vector (y-vector, z-vector) multiplied by a transformation matrix will replicate the values in the first (second, third) column of the transformation matrix, the columns of the transformation matrix can be filled with the coordinates of the desired transformed coordinate system. Thus, the first column of the transformation matrix becomes the desired X-axis as described by its x-, y-, and z-coordinates in the global space, call it u; the second column becomes the desired Y-axis, call it v; and the third column becomes the desired Z-axis, call it w (Eq. 2.20). The name matrix of direction cosines is derived from the fact that the coordinates of a desired axis in terms of the global coordinate system are the cosines of the angles made by the desired axis with each of the global axes.

In the example of transforming the aircraft, the desired Z-axis is the desired orientation vector, w = [3, − 4, 5]. With the assumption that there is no longitudinal rotation (roll), the desired X-axis can be formed by taking the cross-product of the original y-axis and the desired Z-axis, u = [5, 0, − 3]. The desired Y-axis can then be formed by taking the cross-product of the desired Z-axis and the desired X-axis, v = [12, 34, 20]. Each of these is normalized by dividing by its length to form unit vectors. This results in the matrix of Equation 2.20, which is the same matrix formed by multiplying the x-rotation matrix, Rx of Equation 2.16, by the y-rotation matrix, Ry of Equation 2.17.

[image: image] (2.20)




2.1.6 Extracting transformations from a matrix

For a compound transformation matrix that represents a series of rotations and translations, a set of individual transformations can be extracted from the matrix, which, when multiplied together, produce the original compound transformation matrix. Notice that the series of transformations to produce a compound transformation is not unique, so there is no guarantee that the series of transformations so extracted will be exactly the ones that produced the compound transformation (unless something is known about the process that produced the compound matrix).

An arbitrary rigid transformation can easily be formed by up to three rotations about the principal axes (or one compound rotation represented by the direction cosine matrix) followed by a translation.

The last row of a 4 × 4 transformation matrix, if the matrix does not include a perspective transformation, will have zero in the first three entries and one as the fourth entry (ignoring the use of that element to represent uniform scale). As shown in Equation 2.21, the first three elements of the last column of the matrix, A14, A24, and A34, represent a translation. The upper left 3 × 3 submatrix of the original 4 × 4 matrix can be viewed as the definition of the transformed unit coordinate system. It can be decomposed into three rotations around principal axes by arbitrarily choosing an ordered sequence of three axes (such as x followed by y followed by z). By using the projection of the transformed unit coordinate system to determine the sines and cosines, the appropriate rotation matrices can be formed in much the same way that transformations were determined in Section 2.1.5.

[image: image] (2.21)

If the compound transformation matrix includes a uniform scale factor, the rows of the 3 × 3 submatrix will form orthogonal vectors of uniform length. The length will be the scale factor, which, when followed by the rotations and translations, forms the decomposition of the compound transformation. If the rows of the 3 × 3 submatrix form orthogonal vectors of unequal length, then their lengths represent nonuniform scale factors that precede any rotations.



2.1.7 Description of transformations in the display pipeline

Now that the basic transformations have been discussed in some detail, the previously described transformations of the display pipeline can be explained in terms of concatenating these basic transformations. It should be noted that the descriptions of eye space and the corresponding perspective transformation are not unique. They vary among the introductory graphics texts depending on where the observer is placed along the z-axis to define eye space, whether the eye space coordinate system is left- or right-handed, exactly what information is required from the user in describing the perspective transformation, and the range of visible z-values in image space. While functionally equivalent, the various approaches produce transformation matrices that differ in the values of the individual elements.

Object space to world space transformation

In a simple implementation, the transformation of an object from its object space into world space is a series of rotations, translations, and scales (i.e., an affine transformation) that are specified by the user (by explicit numeric input or by some interactive technique) to place a transformed copy of the object data into a world space data structure. In some systems, the user is required to specify this transformation in terms of a predefined order of basic transformations such as scale, rotation around the x-axis, rotation around the y-axis, rotation around the z-axis, and translation. In other systems, the user may be able to specify an arbitrarily ordered sequence of basic transformations. In either case, the series of transformations can be compounded into a single object space to world space transformation matrix.

The object space to world space transformation is usually the transformation that is modified over time to produce motion. In more complex animation systems, this transformation may include manipulations of arbitrary complexity not suitable for representation in a matrix, such as nonlinear shape deformations.



World space to eye space transformation

In preparation for the perspective transformation, a rigid transformation is performed on all of the object data in world space. The transformation is designed so that, in eye space, the observer is positioned at the origin, the view vector aligns with the positive z-axis in left-handed space, and the up vector aligns with the positive y-axis. The transformation is formed as a series of basic transformations.

First, the data is translated so that the observer is moved to the origin. Then, the observer’s coordinate system (view vector, up vector, and the third vector required to complete a left-handed coordinate system) is transformed by up to three rotations so as to align the view vector with the global negative z-axis and the up vector with the global y-axis. Finally, the z-axis is flipped by negating the z-coordinate. All of the individual transformations can be represented by 4 × 4 transformation matrices, which are multiplied together to produce a single compound world space to eye space transformation matrix. This transformation prepares the data for the perspective transformation by putting it in a form in which the perspective divide is simply dividing by the point’s z-coordinate.



Perspective matrix multiply

The perspective matrix multiplication is the first part of the perspective transformation. The fundamental computation performed by the perspective transformation is that of dividing the x- and y-coordinates by their z-coordinate and normalizing the visible range in x and y to [− 1, + 1]. This is accomplished by using a homogeneous representation of a point and, as a result of the perspective matrix multiplication, producing a representation in which the fourth element is Zetan φ. Ze is the point’s z-coordinate in eye space and φ is the half angle of view in the vertical or horizontal direction (assuming a square viewport for now and, therefore, the vertical and horizontal angles are equal). The z-coordinate is transformed so that planarity is preserved and the visible range in z is mapped into [0, + 1]. (These ranges are arbitrary and can be set to anything by appropriately forming the perspective matrix. For example, sometimes the visible range in z is set to [− 1, + 1].) In addition, the aspect ratio of the viewport can be used in the matrix to modify the horizontal or vertical half angle of view so that no distortion results in the viewed data.



Perspective divide

Each point produced by the perspective matrix multiplication has a nonunitary fourth component that represents the perspective divide by z. Dividing each point by its fourth component completes the perspective transformation. This is considered a separate step from the perspective matrix multiply because a commonly used clipping procedure operates on the homogeneous representation of points produced by the perspective matrix multiplication but before perspective divide.

Clipping, the process of removing data that are outside the view frustum, can be implemented in a variety of ways. It is computationally simpler if clipping is performed after the world space to eye space transformation. It is important to perform clipping in z using the near clipping distance before perspective divide to prevent divide by zero and to avoid projecting objects behind the observer onto the picture plane. However, the details of clipping are not relevant to the discussion here. Interested readers should refer to one of the standard computer graphics texts (e.g., [2]) for the details of clipping procedures.



Image to screen space mapping

The result of the perspective transformation (the perspective matrix multiply followed by perspective divide) maps visible elements into the range of minus one to plus one ([− 1, + 1]) in x and y. This range is now mapped into the user-specified viewing area of the screen-based pixel coordinate system. This is a simple linear transformation represented by a scale and a translation and thus can be easily represented in a 4 × 4 transformation matrix.




2.1.8 Error considerations

Accumulated round-off error

Once the object space to world space transformation matrix has been formed for an object, the object is transformed into world space by simply multiplying all of the object’s object space points by the transformation matrix. When an object’s position and orientation are animated, its points will be repeatedly transformed over time—as a function of time. One way to do this is to repeatedly modify the object’s world space points. However, incremental transformation of world space points can lead to the accumulation of round-off errors. For this reason, it is almost always better to modify the transformation from object to world space and reapply the transformation to the object space points rather than to repeatedly transform the world space coordinates. To further transform an object that already has a transformation matrix associated with it, one simply has to form a transformation matrix and premultiply it by the existing transformation matrix to produce a new one. However, round-off errors can also accumulate when one repeatedly modifies a transformation matrix. The best way is to build the transformation matrix anew each time it is to be applied.

An affine transformation matrix can be viewed as a 3 × 3 rotation/scale submatrix followed by a translation. Most of the error accumulation occurs because of the operations resulting from multiplying the x-, y-, and z-coordinates of the point by the 3 × 3 submatrix. Therefore, the following round-off error example will focus on the errors that accumulate as a result of rotations.

Consider the case of the moon orbiting the earth. For the sake of simplicity, the assumption is that the center of the earth is at the origin and, initially, the moon data are defined with the moon’s center at the origin. The moon data are first transformed to an initial position relative to the earth, for example (r, 0, 0) (see Figure 2.10). There are three approaches that could be taken to animate the rotation of the moon around the earth, and these will be used to illustrate various effects of round-off error.


[image: image]

Figure 2.10 Translation of moon to its initial position on the x-axis.



The first approach is, for each frame of the animation, to apply a delta z-axis transformation matrix to the moon’s points, in which each delta represents the angle it moves in one frame time (see Figure 2.11). Round-off errors will accumulate in the world space object points. Points that began as coplanar will no longer be coplanar. This can have undesirable effects, especially in display algorithms that linearly interpolate values to render a surface.


[image: image]

Figure 2.11 Rotation by applying incremental rotation matrices to points.



The second approach is, for each frame, to incrementally modify the transformation matrix that takes the object space points into the world space positions. In the example of the moon, the transformation matrix is initialized with the x-axis translation matrix. For each frame, a delta z-axis transformation matrix multiplies the current transformation matrix and then that resultant matrix is applied to the moon’s object space points (see Figure 2.12). Round-off error will accumulate in the transformation matrix. Over time, the matrix will deviate from representing a rigid transformation. Shearing effects will begin to creep into the transformation and angles will cease to be preserved. While a square may begin to look like something other than a square, coplanarity will be preserved (because any matrix multiplication is, by definition, a linear transformation that preserves planarity), so that rendering results will not be compromised.


[image: image]

Figure 2.12 Rotation by incrementally updating the rotation matrix.



The third approach is to add the delta value to an accumulating angle variable and then build the z-axis rotation matrix from that angle parameter. This would then be multiplied with the x-axis translation matrix, and the resultant matrix would be applied to the original moon points in object space (see Figure 2.13). In this case, any round-off error will accumulate in the angle variable so that, over time, it may begin to deviate from what is desired. This may have unwanted effects when one tries to coordinate motions, but the transformation matrix, which is built anew every frame, will not accumulate any errors itself. The transformation will always represent a valid rigid transformation with both planarity and angles being preserved.


[image: image]

Figure 2.13 Rotation by forming the rotation matrix anew for each frame.




Orthonormalization

The rows of a matrix that represent a rigid transformation are perpendicular to each other and are of unit length (orthonormal). The same can be said of the matrix columns. If values in a rigid transformation matrix have accumulated errors, then the rows cease to be orthonormal and the matrix ceases to represent a rigid transformation; it will have the effect of introducing shear into the transformation. However, if it is known that the matrix is supposed to represent a rigid transformation, it can be massaged back into a rigid transformation matrix.

A rigid transformation matrix has an upper 3 × 3 submatrix with specific properties: the rows (columns) are unit vectors orthogonal to each other. A simple procedure to reformulate the transformation matrix to represent a rigid transformation is to take the first row (column) and normalize it. Take the second row (column), compute the cross-product of this row (column) and the first row (column), normalize it, and place it in the third row (column). Take the cross-product of the third row (column) and the first row (column) and put it in the second row (column) (see Figure 2.14). Notice that this does not necessarily produce the correct transformation; it merely forces the matrix to represent a rigid transformation. The error has just been shifted around so that the columns of the matrix are orthonormal and the error may be less noticeable.


[image: image]

Figure 2.14 Orthonormalization of a set of three vectors.



If the transformation might contain a uniform scale, then take the length of one of the rows, or the average length of the three rows, and, instead of normalizing the vectors by the steps described above, make them equal to this length. If the transformation might include nonuniform scale, then the difference between shear and error accumulation cannot be determined unless something more is known about the transformations represented. For example, if it is known that nonuniform scale was applied before any rotation (i.e., no shear), then Gram-Schmidt Orthonormalization [6] can be performed, without the normalization step, to force orthogonality among the vectors. Gram-Schmidt processes the vectors in any order. To process a vector, project it onto each previously processed vector. Subtract the projections from the vector currently being processed, then process the next vector. When all vectors have been processed, they are orthogonal to each other.



Considerations of scale

When constructing a large database (e.g., flight simulator), there may be such variations in the magnitude of various measures as to create precision problems. For example, you may require detail on the order of a fraction of an inch may be required for some objects, while the entire database may span thousands of miles. The scale of values would range from to 10- 1 inches to 5000 miles·5280 feet/mile·12 inches/foot = 3.168·108 inches. This exceeds the precision of 32-bit single-precision representations. Using double-precision will help eliminate the problem. However, using double-precision representations may also increase storage space requirements and decrease the speed of the computations. Alternatively, subdividing the database into local data, such as airports in the example of a flight simulator, and switching between these localized databases might provide an acceptable solution.






2.2 Orientation representation

A common issue that arises in computer animation is deciding the best way to represent the position and orientation of an object in space and how to interpolate the represented transformations over time to produce motion. A typical scenario is one in which the user specifies an object in two transformed states and the computer is used to interpolate intermediate states, thus producing animated key-frame motion. Another scenario is when an object is to undergo two or more successive transformations and it would be efficient to concatenate these transformations into a single representation before applying it to a multitude of object vertices. This section discusses possible orientation representations and identifies strengths and weaknesses; the next chapter addresses the best way to interpolate orientations using these representations. In this discussion, it is assumed that the final transformation applied to the object is a result of rotations and translations only, so that there is no scaling involved, nonuniform or otherwise; that is, the transformations considered are rigid body.

The first obvious choice for representing the orientation and position of an object is by a 4 × 4 transformation matrix. For example, a user may specify a series of rotations and translations to apply to an object. This series of transformations is compiled into 4 × 4 matrices and is multiplied together to produce a compound 4 × 4 transformation matrix. In such a matrix, the upper left 3 × 3 submatrix represents a rotation to apply to the object, while the first three elements of the fourth column represent the translation (assuming points are represented by column vectors that are premultiplied by the transformation matrix). No matter how the 4 × 4 transformation matrix was formed (no matter in what order the transformations were given by the user, such as “rotate about x, translate, rotate about x, rotate about y, translate, rotate about y”), the final 4 × 4 transformation matrix produced by multiplying all of the individual transformation matrices in the specified order will result in a matrix that specifies the final position of the object by a 3 × 3 rotation matrix followed by a translation. The conclusion is that the rotation can be interpolated independently from the translation. (For now, consider that the interpolations are linear, although higher order interpolations are possible; see Appendix B.5.)

Consider two such transformations that the user has specified as key states with the intention of generating intermediate transformations by interpolation. While it should be obvious that interpolating the translations is straightforward, it is not at all clear how to go about interpolating the rotations. In fact, it is the objective of this discussion to show that interpolation of orientations is not nearly as straightforward as interpolation of translation. A property of 3 × 3 rotation matrices is that the rows and columns are orthonormal (unit length and perpendicular to each other). Simple linear interpolation between the nine pairs of numbers that make up the two 3 × 3 rotation matrices to be interpolated will not produce intermediate 3 × 3 matrices that are orthonormal and are therefore not rigid body rotations. It should be easy to see that interpolating from a rotation of + 90 degrees about the y-axis to a rotation of − 90 degrees about the y-axis results in intermediate transformations that are nonsense (Figure 2.15).


[image: image]

Figure 2.15 Direct interpolation of transformation matrix values can result in nonsense—transformations.



So, direct interpolation of transformation matrices is not acceptable. There are alternative representations that are more useful than transformation matrices in performing such interpolations including fixed angle, Euler angle, axis–angle, quaternions, and exponential maps.

2.2.1 Fixed-angle representation

A fixed-angle representation4 really refers to “angles used to rotate about fixed axes.” A fixed order of three rotations is implied, such as x-y-z. This means that orientation is given by a set of three ordered parameters that represent three ordered rotations about fixed axes: first around x, then around y, and then around z. There are many possible orderings of the rotations, and, in fact, it is not necessary to use all three coordinate axes. For example, x-y-x is a feasible set of rotations. The only orderings that do not make sense are those in which an axis immediately follows itself, such as in x-x-y. In any case, the main point is that the orientation of an object is given by three angles, such as (10, 45, 90). In this example, the orientation represented is obtained by rotating the object first about the x-axis by 10 degrees, then about the y-axis by 45 degrees, and then about the z-axis by 90 degrees. In Figure 2.16, the aircraft is shown in its initial orientation and in the orientation represented by the values of (10, 45, 90).


[image: image]

Figure 2.16 Fixed-angle representation.



The following notation will be used to represent such a sequence of rotations: Rz(90)Ry(45)Rx(10) (in this text, transformations are implemented by premultiplying column vectors by transformation matrices; thus, the rotation matrices appear in right to left order).

From this orientation, changing the x-axis rotation value, which is applied first to the data points, will make the aircraft’s nose dip more or less in the y-z plane. Changing the y-axis rotation will change the amount the aircraft, which has been rotated around the x-axis, rotates out of the y-z plane. Changing the z-axis rotation value, the rotation applied last, will change how much the twice-rotated aircraft will rotate about the z-axis.

The problem with using this scheme is that two of the axes of rotation can effectively line up on top of each other when an object can rotate freely in space (or around a 3 degree of freedom5 joint). Consider an object in an orientation represented by (0, 90, 0), as shown in Figure 2.17. Examine the effect a slight change in the first and third parametric values has on the object in that orientation. A slight change of the third parameter will rotate the object slightly about the global z-axis because that is the rotation applied last to the data points. However, note that the effect of a slight change of the first parameter, which rotates the original data points around the x-axis, will also have the effect of rotating the transformed object slightly about the z-axis (Figure 2.18). This results because the 90-degree y-axis rotation has essentially made the first axis of rotation align with the third axis of rotation. The effect is called gimbal lock. From the orientation (0, 90, 0), the object can no longer be rotated about the global x-axis by a small change in its orientation representation. Actually, the representation that will perform an incremental rotation about the x-axis from the (0, 90, 0) orientation is (90, 90 + ε, 90), which is not very intuitive.


[image: image]

Figure 2.17 Fixed-angle representation of (0, 90, 0).




[image: image]

Figure 2.18 Effect of slightly altering values of fixed-angle representation (0, 90, 0).



The cause of this problem can often make interpolation between key positions problematic. Consider the key orientations (0, 90, 0) and (90, 45, 90), as shown in Figure 2.19. The second orientation is a 45-degree x-axis rotation from the first position. However, as discussed above, the object can no longer directly rotate about the x-axis from the first key orientation because of the 90-degree y-axis rotation. Direct interpolation of the key orientation representations would produce (45, 67.5, 45) as the halfway orientation, which is very different from the (90, 22.5, 90) orientation that is desired (because that is the representation of the orientation that is intuitively halfway between the two given orientations). The result is that the object will swing out of the y-z plane during the interpolation, which is not the behavior one would expect.


[image: image]

Figure 2.19 Example orientations to interpolate.



In its favor, the fixed-angle representation is compact, fairly intuitive, and easy to work with because the implied operations correspond to what we know how to do mathematically—rotate data around the global axes. However, it is often not the most desirable representation to use because of the gimbal lock problem.



2.2.2 Euler angle representation

In a Euler angle representation, the axes of rotation are the axes of the local coordinate system that rotate with the object, as opposed to the fixed global axes. A typical example of using Euler angles is found in the roll, pitch, and yaw of an aircraft (Figure 2.20).


[image: image]

Figure 2.20 Euler angle representation.



As with the fixed-angle representation, the Euler angle representation can use any of various orderings of three axes of rotation as its representation scheme. Consider a Euler angle representation that uses an x-y-z ordering and is specified as (α, β, γ). The x-axis rotation, represented by the transformation matrix Rx(α), is followed by the y-axis rotation, represented by the transformation matrix Ry(β), around the y-axis of the local, rotated coordinate system. Using a prime symbol to represent rotation about a rotated frame and remembering that points are represented as column vectors and are premultiplied by transformation matrices, one achieves a result of [image: image]. Using global axis rotation matrices to implement the transformations, the y-axis rotation around the rotated frame can be effected by Rx(α)Ry(β)Rx(− α). Thus, the result after the first two rotations is shown in Equation 2.22.

[image: image] (2.22)

The third rotation, Rz(γ), is around the now twice-rotated frame. This rotation can be effected by undoing the previous rotations with Rx(− α) followed by Ry(− β), then rotating around the global z-axis by Rz(γ), and then reapplying the previous rotations. Putting all three rotations together, and using a double prime to denote rotation about a twice-rotated frame, results in Equation 2.23.

[image: image] (2.23)

Thus, this system of Euler angles is precisely equivalent to the fixed-angle system in reverse order. This is true for any system of Euler angles. For example, z-y-x Euler angles are equivalent to x-y-z fixed angles. Therefore, the Euler angle representation has exactly the same advantages and disadvantages (i.e., gimbal lock) as those of the fixed-angle representation.



2.2.3 Angle and axis representation

In the mid-1700s, Leonhard Euler showed that one orientation can be derived from another by a single rotation about an axis. This is known as the Euler Rotation Theorem [1]. Thus, any orientation can be represented by three numbers: two for the axis, such as longitude and latitude, and one for the angle (Figure 2.21). The axis can also be represented (somewhat inefficiently) by a three-dimensional vector. This can be a useful representation. Interpolation between representations (A1, θ1) and (A2, θ2), where A is the axis of rotation and θ is the angle, can be implemented by interpolating the axes of rotation and the angles separately (Figure 2.22). An intermediate axis can be determined by rotating one axis partway toward the other. The axis for this rotation is formed by taking the cross product of two axes, A1 and A2. The angle between the two axes is determined by taking the inverse cosine of the dot product of normalized versions of the axes. An interpolant, k, can then be used to form an intermediate axis and angle pair. Note that the axis–angle representation does not lend itself to easily concatenating a series of rotations. However, the information contained in this representation can be put in a form in which these operations are easily implemented: quaternions.


[image: image]

Figure 2.21 Euler’s rotation theorem implies that for any two orientations of an object, one can be produced from the other by a single rotation about an arbitrary axis.




[image: image]

Figure 2.22 Interpolating axis-angle representations of (A1, θ1) and (A2, θ2) by k to get (Ak, θk), where ‘Rotate(a,b,c)’ rotates ‘c’ around ‘a’ by ‘b’ degrees.




2.2.4 Quaternion representation

As discussed earlier, the representations covered so far have drawbacks when interpolating intermediate orientations when an object or joint has three degrees of rotational freedom. A better approach is to use quaternions to represent orientation [5]. A quaternion is a four-tuple of real numbers, [s, x, y, z], or, equivalently, [s, v], consisting of a scalar, s, and a three-dimensional vector, v.

The quaternion is an alternative to the axis and angle representation in that it contains the same information in a different, but mathematically convenient, form. Importantly, it is in a form that can be interpolated as well as used in concatenating a series of rotations into a single representation. The axis and angle information of a quaternion can be viewed as an orientation of an object relative to its initial object space definition, or it can be considered as the representation of a rotation to apply to an object definition. In the former view, being able to interpolate between represented orientations is important in generating key-frame animation. In the latter view, concatenating a series of rotations into a simple representation is a common and useful operation to perform to apply a single, compound transformation to an object definition.

Basic quaternion math

Before interpolation can be explained, some basic quaternion math must be understood. In the equations that follow, a bullet operator represents dot product, and “×” denotes cross-product. Quaternion addition is simply the four-tuple addition of quaternion representations, [s1, v1] + [s2, v2] = [s1 + s2, v1 + v2]. Quaternion multiplication is defined as Equation 2.24. Notice that quaternion multiplication is associative, (q1 q2)q3 = q1(q2 q3), but is not commutative, q1 q2 ≠ q2 q1.

[image: image] (2.24)

A point in space, v, or, equivalently, the vector from the origin to the point, is represented as [0, v]. It is easy to see that quaternion multiplication of two orthogonal vectors (v1 • v2 = 0) computes the cross-product of those vectors (Eq. 2.25).

[image: image] (2.25)

The quaternion [1, (0, 0, 0)] is the multiplicative identity; that is,


[image: image] (2.26)

The inverse of a quaternion, [s, v]− 1, is obtained by negating its vector part and dividing both parts by the magnitude squared (the sum of the squares of the four components), as shown in Equation 2.27.


[image: image] (2.27)

Multiplication of a quaternion, q, by its inverse, q− 1, results in the multiplicative identity [1, (0, 0, 0)]. A unit-length quaternion (also referred to here as a unit quaternion), [image: image], is created by dividing each of the four components by the square root of the sum of the squares of those components (Eq. 2.28).

[image: image] (2.28)



Representing rotations using quaternions

A rotation is represented in a quaternion form by encoding axis–angle information. Equation 2.29 shows a unit quaternion representation of a rotation of an angle, u, about a unit axis of rotation (x, y, z).

[image: image] (2.29)

Notice that rotating some angle around an axis is the same as rotating the negative angle around the negated axis. In quaternions, this is manifested by the fact that a quaternion, q = [s, v], and its negation, − q = [− s, − v], represent the same rotation. The two negatives in this case cancel each other out and produce the same rotation. In Equation 2.30, the quaternion q represents a rotation of u about a unit axis of rotation (x, y, z), i.e.,

[image: image] (2.30)

Negating q results in a negative rotation around the negative of the axis of rotation, which is the same rotation represented by q (Eq. 2.30).



Rotating vectors using quaternions

To rotate a vector, v, using quaternion math, represent the vector as [0, v] and represent the rotation by a quaternion, q. The vector is rotated according to Equation 2.31.

[image: image] (2.31)

A series of rotations can be concatenated into a single representation by quaternion multiplication. Consider a rotation represented by a quaternion, p, followed by a rotation represented by a quaternion, q, on a vector, v (Eq. 2.32).

[image: image] (2.32)

The inverse of a quaternion represents rotation about the same axis by the same amount but in the reverse direction. Equation 2.33 shows that rotating a vector by a quaternion, q, followed by rotating the result by the inverse of that same quaternion produces the original vector.

[image: image] (2.33)

Also, notice that in performing rotation, qvq− 1, all effects of magnitude are divided out due to the multiplication by the inverse of the quaternion. Thus, any scalar multiple of a quaternion represents the same rotation as the corresponding unit quaternion (similar to how the homogeneous representation of points is scale invariant).

A concise list of quaternion arithmetic and conversions to and from other representations can be found in Appendix B.3.4.




2.2.5 Exponential map representation

Exponential maps, similar to quaternions, represent an orientation as an axis of rotation and an associated angle of rotation as a single vector [3]. The direction of the vector is the axis of rotation and the magnitude is the amount of rotation. In addition, a zero rotation is assigned to the zero vector, making the representation continuous at the origin. Notice that an exponential map uses three parameters instead of the quaternion’s four. The main advantage is that it has well-formed derivatives. These are important, for example, when dealing with angular velocity.

This representation does have some drawbacks. Similar to Euler angles, it has singularities. However, in practice, these can be avoided. Also, it is difficult to concatenate rotations using exponential maps and is best done by converting to rotation matrices.




2.3 Summary

Linear transformations represented by 4 × 4 matrices are a fundamental operation in computer graphics and animation. Understanding their use, how to manipulate them, and how to control round-off error is an important first step in mastering graphics and animation techniques.

There are several orientation representations to choose from. The most robust representation of orientation is quaternions, but fixed angle, Euler angle, and axis–angle are more intuitive and easier to implement. Fixed angles and Euler angles suffer from gimbal lock and axis–angle is not easy to composite, but they are useful in some situations. Exponential maps also do not concatenate well but offer some advantages when working with derivatives of orientation. Appendix B.3.4 contains useful conversions between quaternions and other representations.
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1 Note the potential source of confusion in the use of the term vector to mean (1) a direction in space or (2) a 1 × n or n × 1 matrix. The context in which vector is used should make its meaning clear.

2 An object’s intrinsic properties are those that are measured irrespective of an external coordinate system.

3 The dihedral angle is the interior angle between adjacent polygons measured at the common edge.

4 Terms referring to rotational representations are not used consistently in the literature. This book follows the usage found in Robotics [1], where fixed angle refers to rotation about the fixed (global) axes and Euler angle refers to rotation about the rotating (local) axes.

5 The degrees of freedom that an object possesses is the number of independent variables that have to be specified to completely locate that object (and all of its parts).
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/

//%¥ structure

typedef struct xy_struct (
float x.y;

yry_td;

//FEATURE.
// line in imagel: pl,p2;
// line in image2: ql,q2
// weights used in mapping: a,b,p
// length of line in image2
typedef struct feature_struct (
xy_td pl,p2,q1,a2;
float a,b,p;
float plength,qlength;
yeature_td;

//FEATURE LIST
typedef struct featureList_struct (
int num;
feature_td *features;
)featurerist_td;

/10~
//00CMORRH
/10
void morph(featureList_td *featureList)
¢

Float a,b,p,plength, qlengt!
xy_td pl,p2,ql,a2;

Xy_td VP, W, v, ¥q, v, q%;
int  ii,3j,indexI,indexD;
float idisp,jdisp;

£loat t,s,vx,vy;

£loat weight;

char background(31;

background[0] = background[1] = background(2] = 120;

for (int i=0; i<HEIGHT: iv+) {
for (int j 3+ (
weight

idsp = 3 1
for (int k=0; k<featureList->num; ke+) (

/1 get info about kth feature line

a = featureList->features(k].a;
featureList->features (k] .b;
b = featureList->features(k] .p;
Pl = featureList->features(k].pl;
featureList->eatures (k] .p2;
featureList->features [kl .ql;
featureList->features [kl .q2;
plength = featureList->features (k] .plength;
Rewth = PoRtibariat -Peltiracti]. dlonath:
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// get local feature coordinate system in imagel
Vp.x = p2.x-pl.x;

vp.y = P2.y-Pl.y;

wp.X = vp.y;

wp.y = -vp.x;

/1 compute local coordinates of pixel (i,3)

v.x = j-ql.x;

vy = i-ql.y;

8= (v.x*vp.x + v.y*vp.y) /plength

€ = (v.x*wp.y - v.y*wp.x) /plength

// map the pixel to the source image
33 = (int)(@l.x + s*v1.x + trup.x);

1i = (int)(gl.y + s*vi.y + trup.y);
// compute distance of pixel (Iii,jj) from line segment qlg2
1€ (s<0.0) (

vox = 33 - q2.x:

viy = i1 - w2.ys

= sart(v.xv.x ¢ vytvLy);
)

else t = fabs(t*qlength);

t = pow(pow(qlength,p)/(ast,b);

jdisp + = (33-3)¢;
idisp + = (ii-i)ee;
weight +

3
jdisp /= weight;
idisp /= weight;
ii = (int) (ividisp);
33 = (int) (3+jdisp)
indexI = (WIDTH*i+j)*3;

if ((1i<0) || (ii>=HEIGHT) || (33<0) )t
image2 [indexD] = background[0];
image2 [indexp+1] = background(1];
image2 [indexD+2] = background(2];

)

else (

indexs = (WIDTHYii+33)*3;
imagel[indexI] = imagellindexs];
imagel [indexI+1] = imagel[indexS+1];
imagel [indexI+2] = imagel[indexs+2];
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Yuntil (dene
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17 (pntsiil.y > maxy) { maxy = pntsiil.y; maxyi =1
if (pnts[il.z < minz) { minz = pnts[il.z; minzi = i
if (pnts[il.z > maxz) { maxz = pnts[il.z; maxzi = i:
’

R
)
)

/* step two: find maximally separated points from the 3 pairs: use
to initialize sphere */

/* find maximally separated points by comparing the distance squared
between points */

dx = pnts[minxil.x - pts(maxxil.x:

dy = pntsiminxil.y - pntsCmaxxil.y

dz = pntsiminxil.z - pntsmaxxil.z:

diam2x = dwdx + dy*dy + dz*dz;

dx = pnts[minyil.x - pntsmaxyil.x

dy = pnts[minyil.y - ptsmaxyil.y:

dz = pntsiminyil.z - pntsmaxyil.z:

dianzy = dx*dx + dy*dy + dz*dz;

dx = pnts[minzil.x - pts(maxzil.x;

dy = pnts[minzil.y - pntsmaxzil.y:

dz = pnts[minzil.z - pnts(maxzil.z:

dianzz = dxxdx + dy*dy + dzrdz;

diam2 = diam2x; pli = minxi; p2i = maxxi;

if (diam2y>dian2) ( diam2 - diam2y; pli-minyi: p2i-maxy

if (diam2z>dian2) ( diam2 - diam2z; pli-minzi: p2i-maxz

/* center of initial sphere is average of two points */

cntrx = (pnts[plil.xrpnts(p2il.x)/2:

cntry = (pnts[plil.y+pnts(p2il.y)/2;

cntrz = (pnts[plil.z+pnts(p2il.2)/2;

/* calculate radius and radius squared of initial sphere - from
diameter squared*/

rad2 = diam2/4;

rad = sqrt(rad2);

printf("maxinally separated pair: (%f,%f,%f):(%f,2f,%F) %f\n",
pntsplil.x,pnts[plil.y.pntsiplil.z,
pnts(p2il.x.pnts[p2il.y.pnts(p2il.z,diam2);

printf("initial center: (¥f.%f.%f)\n".cntrx,cntry.cntrz);

printf(*initial diamz: %f\n",dian2);

printf(*initial radius, radius2 = %f,%f\n",rad,rad2);

/* third step: now step through the set of points and adjust
bounding  sphere as necessary */

for (=0 i<n; 1+4) {
dx = pntsfil.x - entrx:
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“* Bounding Sphere Computation

“

void boundingSphere(xyz_td *pnts.int n. xyz_td *cntr, float *radius)
t

int i,minxi,maxxi,minyi,maxyi,minzi,maxzi,pli,p2i
float  minx,maxx,miny.maxy.minz,maxz;

float  diame,diamex,dian2y.diamez,rad.rad2:

float  dx,dy.dz;

float cntrx,cntry,cntrz;

float delta;

float  dist.dist;

float  newrad,newrad2:

float  mewcntrx,newcntry,newcntrz:

/* step one: find mininal and maximal points in each of 3
principal  directions */
minxi = 0: minx = pnts[0].x; maxxi = 0; maxx = pnts[0).x:
minyi = 0: miny = pnts[0].y: maxyi = 0: maxy = pnts[0].
minzi = 0 minz = pnts[0].2; maxzi = 0; maxz = pnts(01.z;
for (i=1; i<n; i+ (
if (pnts[il.x < minx) { minx = pnts[il.
if (pnts[i1.x > maxx) ( maxx = pnts[il.x: maxxi =
Ff (pntsCil.y < miny) { miny = pntsCil.y: minyi = 3
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gy = patsiil.y = cntry;
dz = pnts[il.z - cntrz;

distz = dx*dx + dy*dy + dz*dz;  /* distance squared of old
center to pnt */
if (dist2 > rad2) { /* need to update sphere if this

point is outside old radius*/

dist = sqrt(dist2):

/* new radius is average of current radius and distance from
center to pnt */

newrad = (rad + dist)/2;

newrad = newrad*newrad;

printf(*new radius = 3f\n",newrad):

delta = dist - newrad: /* distance from old center to new

center */

/* delta/dist and rad/dist are weights of pnt and old center to
compute new center */

newcntrx = (newrad*cntrx+delta*pnts[i1.x)/dist:

newcntry = (newrad*cntry+delta*pnts(i].y)/dist;

newcntrz = (newrad*cntrz+del ta*pnts(il.2)/dist;

/* test to see if new radius and center contain the point */

/* this test should only fail by an epsilon due to numeric
imprecision */

dx = pntsil.x - newentrx;

dy = pnts(il.y - newentry;

dz = pnts(il.z - newentrz;

dist2 = dx*dx + dy*dy + dz*dz:

if (dist2 > newrad2) {
printf("ERROR by %1f\n",((double)(dist2))-newrad2);
printf(" center - radius: (%f,%f,%f) - %f\n",cntrx,cntry,

cntrz,rad);

Printf(" New center - radius: (%f,%f,%f) - %f\n",
newcntrx,newcntry,newcntrz,newrad);

¥

cntrx = newcntrx;
cntry = newcntry;
cntrz = newentrz;
rad = newrad:
rad2 = rad*rad:
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/™ Convexiull.c
* This code uses a brute force algorithm to construct the
* and does not handle more than three coplanar points

*

#include "Vector.h”

typedef struct conHullTri_struct (
it pil3L:
int  matched[3:
xyz_td normal;
struct conHullTri_struct *next;
} conHullTri_td;

conHul1Tri_td *chtlist;

/* - —

convex hull

/* CONVEX HULL */

S

int ConvexHull(xyz_td *pntList,int num,int **triangleList,int *numTriangles)

3
int i
int pli.p2i.p3i.pi
xyz_td  yaxis:
xyz_td  v.n.nn.nnn.vl,ve:
float  t.tl.t2:

int count;

conHul1Tri_td *chtPtr,*chtPtrTail,*chtPtriew,*chtPtr
int done;

int *trilist;

int dummy .notError:
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nn = crosskProduct(vl,v);
normalizeVector (&nn)
if (nn.y < 0) ( nn.X = -nn.x; nn.y = -An.y: an.z = -n.z; )
if (an.y>n.y) €
p3i=i;
nX = ANLXG MLy = ANy n.z = on.z:

)

)
)

/* compute outward-pointing normal vector in right-hand space for
Cclockwise triangle */

/* recalculate the normal vector */

v = formVector(pntList[plil,pntList[p2il);

v2 = formVector(pntList[p2i],pntList[p3il);

n = crossProduct(v2,vl):

normalizeVector (4n)

it (n.y<0) {
N.X = SRLX: Ny = CLyi Rz = en.zi
pi = pliz pli = p2i: p2i = pi:

}

/* make a convex hull entry */
count = 1
chtPtr = (conHul1Tri_td *)malloc(sizeof (conHullTri_td)):
if (chtPtr — NULL) {

printf("unsuccessful memory allocation 1\n"):

scanf("3d", &dummy) ;

return 1;
}
chtPtr->pi[0] = pli:
chtPtr->pi[l] = p2i
chtPtr->pi[2] = p3i;
chtPtr->matched[0] = FALSE:
chtPtr->matched[1] = FALSE:
chtPtr->matched[2] = FALSE:
chtPtr->normal =

/* initialize the convex hull triangle list with the triangle */
chtlist = chtPtr:

chtPtr->next = NULL;
chtPtrTail = chtPt,
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yaxis.z = 0

yaxis.x = 0; yaxis.y =

/* find the highest point */
pLi = 0: t = pntlist[0].y:
for (i=1: i<num; i++) {
if (pntListlil.y > t) { pli=i:

pntListlil.ys)
)

/* find point that makes minimum angle with horizontal plane */
p2i = (pli==0) ? 1:0;
v = formVector(pntList[plil,pntList(p2il);
normalizeVector (&v);
t= vy
if (£50.0) {

printf(" ERROR - found higher point\n");

scanf("%d", &dummy) ;

return 1;

)
for (i=p2i+l; i<num; i++)
i (-pli)
v = formVector(pntList[plil,pntlist[i1):
normalizevector(&v):
t= vy
P (81> 6 (p2i = it = tl:)

/% find point that makes triangle with mininum angle with horizonta’
plane through edge */
V1 = formVector(pntList[plil.pntlList[p2il):

if ((p1i1=0) && (p2i1=0)) p3i=0;
else if ((plil=1) && (p2i!=1)) p3i
else p3i=2;
v2 = formVector(pntList[p2i],pntlistli1):
n = crossProduct(v2,v1);
normalizeVector (&n);
if (ny <0) (

nX = onXiomLy = onLyion.z = on.z;

)
for (i=p3i+l; i<num; 1+4+) {
(i 1=p11)a&(11=p2i)) {
v = formVector(pntList[p2il.pntList[i1):
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/% check and make sure all vertices are ‘underneath” the imitial
triangle */
for (i=0; i<num; i++) (
i ((11=chtPtr->pi[0]) &&
(f1=chtPtr->pill]) &&
Cit=chtPtr->pif2]) ) (
v = formVector(pntList[chtPtr->pi[01],pntList[i1);
t = dotProduct(v,n);
i (£0.0) (
/% ERROR - point above initial triangle */
printf("ERROR - found a point above initial triangle (%d\n",i);
return 1:

y

/* now loop through the convex hull triangle 1ist and process
unmatched edges */

done = FALSE;

chtPtr = chtlist;

while (chtPtri=NULL) (

7% Yook for first unmatched edge */

if ((1(chtPtr->matched[01)) ||
(1(chtPtr->matched(11)) ||
(1(chtPtr->matched[21)) ) (

/* set it now as matched, and record 3 points with unmatched as
first two */

if (1(chtPtr->matched(01) (
pli=chtPtr->pi[0]; p2i-chtPtr->pill
chtPtr->matched[0] = TRUE:

p3i=chtPtr->pil2];

il

else if (1(chtPtr->matched(11)) {

pli=chtPtr->pi[1]; p2i=chtPtr->pi[2]; p3i=chtPtr->pi[0];
chtPtr->matched(1] = TRUE;

)

else if (!(chtPtr->matched(2])) (
pli=chtPtr->pi[2]: p2i=chtPtr->pi[0]: p3i=chtPtr->pi[1];
chtPtr->matched[2] = TRUE:

)

/* get info of triangle of unmatched edge */
[T T S ——
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1Tor U1=0; 1<num; 134) L
i ((i1-p2i) &&
Git=pli) &&
Gl=pi) ) (
v = formVector(pntListplil.pntListliD):
t = dotProduct(v,nn);
if (£0.0) (
/* ERROR - point above new triangle */
printf("ERROR - found a point above new triangle  (%d)\n",i).
return 1;

3

/* search for p2i-pi or pi-pil already in database - error  condition */
ChtPtrA = chtlist: notError = TRUE:

while ((chtPtrAl=NULL)&&nOtError) (
i£((chtPtrA->pil0]—pl1)&&(chtPtrA->pil1]—pi)) notError =  FALSE:
else if((chtPtrA->pil1]—pli)&&(chtPtrA->pil2]==pi)) notError = FALSE:
else if((chtPtrA->pil2]==pli)&k(chtPtrA->pil0]==pi)) notError = FALSE:

else if((chtPtrA->pi[0]==pi)&&(chtPtrA->pi[1]==p2i)) notError = FALSE:
else if((chtPtrA->pi[11==pi)&&(chtPtrA->pi[2]==p2i)) notError = FALSE;
else 1f((chtPtrA->pi[2]==pi)&&(chtPtrA->pi[0]=—=p2i)) notError = FALSE;

else chtPtrA = chtPtrA->next;

/* end while */

if (InotError) (

printf("ERROR - duplicating edge  (2d.%d.%d)\n",pli,p2i.pi):
return 1;

il

/* add pli, p2i, pi */
count+;
chtPtriiew = (conHullTri_td *)malloc(sizeof(conHullTri_td)):
if (chtPtrNew — NULL) (
printf(* unsuccessful memory allocation 2\n"):

return 1;

3

chtPtrTail->next = chtPtriew:
chtPtriew->pi[0] = p2i;
chtPtriew->pif1] = pli;

chtPtrNew->pi[2] = pi:
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R.y = chiftr-onormal.y;
n.z = chtPtr->normal.z
vi=formVector(pntList[p2iJ.pntList[plil):

/% find new vertex which, with unmatched edge, makes  triangle */
/* whose normal is closest to normal of triangle of unmatched
edge */
pi = -1:
for (i=0; i<num; i++) (
i (Ci1=pli)a&(i 1=p2i)aa(it=p3i)) (
v=formVector(pntList[plil.pntList[i1);
/* test to see if point is above triangle */
t1 = dotProduct(v,n);
if (£1>0) (
/% ERROR - point above initial triangle */
Printf("ERROR - found a point above initial triangle  (%d)\n".1):
return 1;
}
/* compute normal of proposed new triangle */
nn = crossProduct(v,vl);
normalizeVector(&nn);
/* test for concave corner */
nnn = crossProduct(n,nn);
t2 = dotProduct(nnn,vl);
if (£2€0.0) (
printf("ERROR - concave corner found\n"):
return 1;
3
/% compute angle made by faces (=angle made by normals) — */
t1 = dotProduct(n,nn);
/% printf(" %d: dot product of normals: ¥f\n",i,t1); */
/% printf(" normal for comparison: %f f  %f\n".n.x.n.y.n.z); */
/% printf(" normal: 2f %f %F\n".nn.x,an.y.nn.z); */
/* save smallest angle (largest cosine) */
if (pim=-1) {pi=i; t=t

il
]

/* check and make sure all vertices are ‘underneath’ this  triangle */
v=formVector (pntList[plil,pntListpil);

nn = crossProduct(v,vi);

normalizeVector(dnn):
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vchtPtrNew->matchedl2] = TRUE;
}
else (
chtPtrA = chtPtrA->next;
)
} /% end while */

) /% end endif */
else [
chtPtr = chtPtr->next;
1
)
trilist = (int *)malloc(sizeof (int)*count*3);
chtPtr = chtlist:
for (i=0; i<count; i++) {
i (chtPtr==NULL) {
printf("ERROR: count %d doesn’t match data structure\n”,count):
return 1;
)
trilist[3*i] = chtPtr->pi[0];
£riList[3*i+1] = chtPtr->pi[l
triList[3*i+2] = chtPtr->pi[2
chtPtr=chtPtr->next;
3
*nunTriangles = count;
*trianglelist = trilist:
return 0;
)
void printCHTIist(conHullTri_td *chtPtr)
(
printf("CHT Tist\n");
while (chtPtri=NULL) (
printf("2d:%d:%d ; %d:%d:%d : ¥F,%F,%F\
chtPtr->pi[0],chtPtr->pi[1],chtPtr->pi2],
chtPtr->matched[0],chtPtr->matched(1],chtPtr->matched(2],
chtPtr->normal.x,chtPtr->normal.y,chtPtr->normal.z);
chtPtr = chtPtr->next;
)
)
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chtPtrNew->matched(0] = TRUE:
chtPtriew->matched(1] = FALSE:
chtPtriew->matched[2] = FALS|
chtPtriew->normal.x = nn.x;
chtPtriew->normal.y = nn.y;
chtPtriew->normal.z = nn.z;
chtPtriew->next = NULL:

chtPtrTail = chtPtriew:

/* search for p2i-pi or pi-pli already in database in reverse

chtPtrA = chtlist;
while (chtPtrAl=NULL) (

order */

if (1chtPtrA->matched[01&&(chtPtrA- >pi[0]==pi)&&(chtPtrA->

Pil1I=pLiN) (
chtPtrA->matched[0] = TRUE:
chtPtriew->matched(1] = TRUE:

)

else if (IchtPtrA->matched[114&(chtPtraA-

(chtPtrA->pi[21=—=pli)) (
chtPtrA->matched[1] = TRUE:
chtPtriew->matched(1] = TRUE:

)

else if (IchtPtrA->matched[214&(chtPtrA-

(chtPErA->pi[0J==p11)) (
chtPtrA->matched[2] = TRUE:
chtPtriiew->matched(1] = TRUE:

)

else if (IchtPtrA->matched[01a&(chtPtrA-
(chtPtrA->pi[11==pi)) (
chtPtrA->matched[0] = TRUE:
chtPtriiew->matched[2] = TRU
)

else if (IchtPtrA->matched[118&(chtPtrA-
(chtPtrA->pi[21==pi)) (
chtPtrA->matched[1] = TRUE:
chtPtriiew->matched2] = TRUE:

)

else if (IchtPtrA->matched[2]4&(chtPtrA-
(chtPtrA->pi[01—pi)) (
chtPtrA->matched[2] = TRUE:

> pilll==pi)a&

> pil2l==pi)a&

> pil01--p2i)&&

> pil11==p2i)ad

>pi[2]==p2i)ak
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/™ vector.c 7/

typedef  struct xyz_struct {
float  x.y.z:

xyz_td:

/* compute the cross product of two vectors */
xyz_td crossProduct(xyz_td vi.xyz_td v2)
t

xyz_td

Pox = VLy*2.z - V1.2¥v2.y:

Py = VIZAV2.X - VI.x*v2.2:

Pz = VLX*2.y - VL.y*V2.x;

return
)

S —

/* compute the dot product of two vectors */
float dotProduct(xyz td vl.xyz td v2)
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RO
AL4103] = CL11[01*BLOI[§1+ CLi1[1I*BL1ILi1+
CLi1021*BL21L31+ CLIIE31*BI31L4]:

)

p—

/* matrix-vector multiplication */
[N =M x Vo

void Matrix4 x 4VectordMult (float **M,float *V,float *N)
t

N[OJ = MLOJ[OJ*V[OJ+MLOIL11*V[1]+M[0I[2]*V[2I+M0][3]*V 3];
N[1] = ML1JC0J*V[OJ+M{1IC1I*V1+M[1][2]*V2I+H1][3]#V 3];
N[2] = M[21[01*V[OJ+M[2][11*VI11+M[2][2]*V[2I+M2][31*V 3]:
N[3] = M[31[01*VLOJ+ML3IL11*V1I+MI3][2]*VI2I+MI31[31#VI3]:

)

*

/* vector-matrix multiplication */

[N =V x MR/

void VectordMatrix4 x 4Mult (float *V,float **M,float *N)
e

N[O] = MLOJ[OI*V[OJ+M[1][0I*V[1]+M[2][0]*V[21+M3][01*V3];
N[1J = MLOI[1I*VIOJ+ML1IC1I*V1+MI2][11*VI2I+MI3][11#VI3];
N[2] = M[OJ[2]*V[OJ+M{1][21*V[1]+M[2] [2]*V21+HI3] [2]*V 3];
N[3] = MLOJ[3]*V[OJ+M{1][31*V1]+M[2][3]*V2I+H3][3]*V 3]:
il
* = = 2

/* compute the inverse of a matrix */
void Computelnversed x 4(float **M,float **Minv)
§

int rowswaps[4];
int val:

float  bl4

int i.3:
float**A;

A = (float **)malloc(sizeof(float *)*4);
for ( $¢q: ) (

*

*/
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return v1.x*v2.
]

=V1.y*v2.y+vl.z#v2.z;

/e — -.
/* normalize a vector */
void normalizeVector(xyz_td *v)
(
float len;

Ten = SQArE(V->x*V->X + VOYRVdY + v-dZAV-2);
voox /= Ten;
vy /= len:
v->z /= Ten;

]

-
/* form the vector from the first point to the second */
xyz_td formVector(xyz_td pl, xyz_td p2)
(

xyz_td  p:

p.x = p2.x-pl.x:
Py = p2.y-ply:
p.z = p2.z-pl.z:
return p;

)

/e = - —
/* compute the length of a vector */
float Tength(xyz_td v)
(
PRLUTN SQPL(V. XAV XN YRV .YV 28V, 2)
)

Matrix Routines
/* Matrix.c */

o
/* Matrix multiplication */
/Y CxB=AR
void Matrix4xaMatrixMult (float **C,float **B,float **A)
(

int d.i:

*/

*/

*

*
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AL1] = (Roat *)malloc(sizeof(fioat)*4);
)
for (i=0; i<d; i++) (
for (j=0; j<d: j+) (
ALIIL3] = M1

3
Ludecomp(A,4, rowswaps, &val);

for (i=0; i<d; i++) {
for (§=0; j<4; j++) bL] = (i==j) ? 1:
LUsubstitute(A,4,rowswaps,b):
for (§=0; j<4; J++) Minv[§I0i] = bLj1:
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* inputs: A — matrix holding the L and U matrix values as a result
of  Ludecomp

*  n - dinension of A

“  Rowswaps — vector holding a record of the row swaps
perforned in Ludecomp

“ b - vector of right-hand values as in Ax = b

“/

void LUsubstitute(float **A,int n,int *rowswaps,float *b)
t

int i,4.ib;

float sum;

int m;

7% row swap version */
ib = -1;
for (i=0; i<n; i++) {
m = rowswaps[il;
sum = b[m]:
b{m] = b[i1:
if (b 1= -1) (
for (j=ib; j<is j++) sum = sum-ALi1L51*b[§];
)
else (
if (sum 1= 0.0) ib =
3
bLil = sum;
)

for (i=n-1; i>=0; i--) (
sum = b[il;
for (j=i+l; j<n; j++) sum = sum - A[i][3I*b[§]:
L4 = sum/ALiIiT:
il
return;
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/% do the rows down to the dlagonal = these don't need a
division 50 N0 swap */

for (i=0; i<j; i+ {
sum = A[i1[§]
for (k=0; k<i; ki+) sum = sum - ALTITKI*ACKIL3]:
ALIIL§T = sum;

)
/* do the rows from the diagonal down */
vt = 0.0;

ipvt = -

for (i=j; i<n; i++) {

sum = A[i][5]
for (k=0; k<ji k++) sum = sum - ALiIIKI*ACKIL3]:
ALIIL3] = sum;
/* calculate the scaled value for pivoting consideration */
temp = rowscale[i]*fabs(sun):
if (temp >= pvt) (ipvt = i; pvt = temp:)

/% if a better pivot value is found, interchange the rows */
i 1= dpve) (
for (k=0; k< ki+) (
temp = ALipvt][k];
ALipvt][k] = ALJICKI:
ALJICK] = temp;
)
*val = -(*val); /* keep track of even/odd number
interchanges */
rowscale[ipvt] = rowscale[j]: /* and record which
was  swapped */

)
rowswaps[i] = ipvt:

if (A[IL3] == 0.0) A[GIL3] = epsilor

/% to guard against
divisions by zero */
/% now the row is ready for division */
for (i=j+l: i<n; i++) ALII5] = ALIICIV/ALSICS T
il
return 1;
)

p— &

/% LUsubstitute

*/
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/*LU Decomposition
* with partial implicit pivoting

* partial means that the pivoting only happens by row

* implicit means that the pivots are scaled by the maximum value in the row
“/

= */
/*Ludecomp
“ inputs: A matrix of coefficients
“ n - dinension of A
* outputs: A matrix replaced with L and U diagonal matrices
(diagonal  values of L = 1)
“  Rowswaps — vector to keep track of row swaps
“  Val - indicator of odd/even nunber of row swaps
</
int LUdecomp(float **A,int n.int *rowswaps.int *val)
(
float epsilon,*rowscale, temp;
float sum:
float pvt;
int ipvt:
int ..
rowscale = (float*)malloc(sizeof (float)*n);

epsilon = 0.00000000001; /* small value to avoid division by zero */

*val = /* even/odd indicator (valence) */

/% initialize the rowswap vector to indicate no swaps */
for (i=0; i<n: i++) rowswaps[il = i;

/% for each row, find largest (in absolute value sense) element and
record in rowscale */
for (i=0; i<n; i++) (
temp = fabs(AL11[01);
for (§=1; j<n: j++)
if (fabs(ALi1[31) > temp) temp = fabs(A[i1[31):
if (temp == 0) return(-1); /* got a row of all zeros — can’t deal
with that */
rowscale(i] = 1/temp; /* later we need to divide by largest
element */
)

/* Toop through the columns of A (and U) */
for (i=0: i<n: j++) (
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func.coeff (4]

/

9*{curve->ax*curve->ax + curve-day*curve->ay);

func.coeff[3] = 12+ (curve->ax+curve->bx + curve->ay*curve->by);

func.coeff[2] = (6% (curve->axtcurve->cx + curve->aytcurve->cy) +
4+ (curve->bx+curve->bx + curve->bycurve->by) )

func.coeff[1] = 4+ (curve->bx*curve->cx + curve->by*curve->cy)

func.coeff[0] = CUrve->C*CUIVe->CK + CUFVe->CYlCUIVe->CY)

full_interval.ua = va; full_interval.ub = ub;

temp = integrate_func (sfunc, &full_interval)

printf("\nInitial guess = S1f; $1F:E1£", temp,ua,ub);

full_interval.length = temp;

total_length = subdivide(sfull_interval, &func,0.0, tolerance) ;

print("\n total length = 31E\R", total_length);

suspIVIDE

"total_length! is the length of the curve up to, but not including,
the 'full interval'

if the difference between the interval and the sum of its halves is
less than 'tolerance, ' stop the recursive subdivision

* *func’ is a polynomial function
/

double subdivide(interval_td *full_interval, polynomial_td *func, double
total_length, double tolerance)

interval_td left_interval, right_interval;
double 1eft_length, right_length;

double midu;

double subdivide();

double integrate_func();

double temp;

void add_table_entry();

midy = (full_interval->ul+full_interval->u2)/2;
left_interval.ua = full interval->ua; left_interval.ub = midu;
right_interval.ua = midu; right_interval.ub = full_interval->ub;
left_length = integrate_func(func, & left_interval)
right_length = integrate_func(func, & right_interval);
temp = fabs(full_interval->length - (left_length+right_length));
if (temp > tolerance) {
left_interval.length = left length;
right_interval.length = right_length;
total length = subdivide(sleft_interval, func, total length, tolerance/2.0);
total_length = subdivide (sright_interval, func, total_length, tolerance/2.0);
return (total_length);
)
else {
total length = total length + left_length;
add_table_entry (midu, total_length);
total_length = total length + right_length;
add_table_entry (full_interval->ub, total_length) ;
return (total_length);
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/*
* ADD TABLE ENTRY

* In an actual implementation, this code would create and add an
. entry to a linked list.

* The code below simply prints out the values.

.

void add_table_entry(double u, double length)

i

/* add entry of (u, length) */
printf("\ntable entry: u: 61f, lengt!

#1£%,u, Length) ;

/e
* INTEGRATE FUNCTION

* use Gaussian quadrature to integrate square root of given function
. in the given interval

“

double integrate_func(polynomial_td *func,interval td *interval)

i

double x(5]
.9739065285)
double w(5] =
(.2955242247, .2692667193, .2190863625, . 1494513491, . 0666713443} ;
double length, midu, ax, diff;
int i
double evaluate_polynomial();
double ua, ub;
va = interval->ua;
ub = interval->ub;
midu = (uatub)/2.0;
Qff = (ub-ua)/2.0;
length = 0.0;
for (i=0; i<S; it4)
ax = Aiffex(i];
length += w(i]*(sart (evaluate polynomial(func,midutdx)) +
saxt (evaluate_polynomial (func, midu-dx)));

(.1488743389, .4333953941, . 6794095682, . 8650633666,

)
length *= diff;
return (length);

/e
* EVALUATE POLYNOMIAL

* evaluate a polynomial using the Horner scheme

./

double evaluate_polynomial(polynomial _td *poly, double u)
(

int 4

double value;

value = 0.0;

for (i=poly->degree; i<=0; i--) {
value = value*uspoly->coeff(il;

)
return value:
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double ease(float t, float ki, float k2)
(
double f,5;
£= K1%2/PT + k2 - K1 + (1.0 - k2)*2/PI;
L€(e < K1) S = KL*(2/PT)* (sin((t/K1)*P1/2 - PI/2)+1)
else if (t <k2) s = (2*KI/PL 4t - K1);
else s = 2°KL/PT + K2 - K1 + ((1-k2)*(2/PD)) *
sin(((t - k2)/(1.0 - k2))*P1/2);

return (s/f);
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/*
* STRUCTURES
V]

// the structure to hold entries of the table consisting of
/7 parameter value (u) and estimated length (length)
typedef struct table_entry structure (

double u, length;
) table_entry_td;

// the structure to hold an interval of the curve, defined by
/7 starting and ending parameter values and the estimated
// length (to be filled in by the adaptive integration
/7 procedure)
typedef struct interval structure (
double va, ub;
double length;
) interval_td;

// coetticients for a 2D cubic curve
typedef struct cubic_curve structure (
double ax,bx, cx, d
double ay, by, cy, dy;
} cubic_curve_td;

// polynomial function structure; a quadric function is generated
// from a cubic curve during the arclength computation
typedef struct polynomial structure (
double *coeff;
int degree;
) polynomial_tds

/e
* ADRPTIVE INTEGRATION

* this is the high-level call used whenever a curve’s length is to be computed
“/

void adaptive_integration(cubic_curve_td *curve, double ua, double ub,double
tolerance)

double subdivide();
polynomial_td func;
interval_td full_interval;
double total_length;
double integrate_func();
double temp;

func.degree = 4;
func.coeff = (double *)malloc(sizeof (double)*5);
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/* GAUSS-LEGENDRE */

fdefine EPSILON 0.00000000001
/* calculate the weights and abscissas of the Gauss-Legendre n-point form */
void gaussWeights(float a, float b, float *x, float *w, int n)
0

int i..m;

float p1,p2.p3.p;

float z,21;

float xave,xdiff;

m = (n41)/2;
xave = (b+a)/2;
Xdiff = (b-2)/2;
for (= 0; idm; i+4) {
2 = Cos(PI*((i+1)-0.25)/(n+0.5)):
do (
Pl - 1.0;
p2 = 0.
for (§=0; <ns ) {
3 = p2:
2 - pl:
Pl = ((ZH(3+1) - 1.0)*2%p2-3*p3)/(G+1):
)
PP = n*(z¥pl-p2)/(z%2-1);
21 =2
2 = 21-p1/pp:
} while (fabs(z-z1) > EPSILON);
X[11 = xave - xdiff*z;
X[n-1-11 = Xave + xdiff+z;
WEH] = 2.0%xdiF£/((1.0-2%2)*pp*pp
wIn-1-11 = wil:
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[* -
INTEGRATE FUNCTION
use gaussian quadrature to integrate square root of given function in
the given interval /.
double integrate_func(polynomial_td *funcinterval_td *interval)
(
double x(5}=(1488743389,4333953941, 6794095682, 8650633666,9739065285;
double wISI=(2966242247,269267193,2190863625, 1494513491,0666713443)
double length, midu, d, diff;
inti;
double evaluate_polynomial();
double utu2;

= (220,

w2-u1)/20;
length =00;
for (1=0; 1<5; 1440

i
length += wil*(sqrt(evaluate._polynomial(func.midu+dx) +
sart(evaluate_polynomialifuncmidu-dx);

)

length *= diff;

retur (length;






OEBPS/images/F099895appa-13-9780124158429.jpg





OEBPS/images/F099883appb-57-9780124158429.jpg
i Lt






OEBPS/images/F099895appa-12-9780124158429.jpg





OEBPS/images/F099883si162.png
Vit = Yu + AF (Xos Vo)





OEBPS/images/F099895appa-15-9780124158429.jpg





OEBPS/images/F099883si164.png
2vYn

ko= Bf (%, + hy yu + ka)

ko ke ks ky
Yatl =yn+g+?+§+€+0(”5)





OEBPS/images/F099895appa-14-9780124158429.jpg
make a copy

\:\mn i

<=
./mm itdark

position it on -

the ground plane

-






OEBPS/images/F099883si163.png
h h
Pt = Y f’(xn E»)’n"’if((xm)’n))





OEBPS/images/F099895appa-17-9780124158429.jpg





OEBPS/images/F099895appa-16-9780124158429.jpg





OEBPS/images/F099883si128.png





OEBPS/images/F099883si130.png





OEBPS/images/F099883si129.png





OEBPS/images/F099883si132.png





OEBPS/images/F099883si131.png
av
mE— mg — 6mRny





OEBPS/images/F099883si134.png





OEBPS/images/F099883si133.png





OEBPS/images/F099883si136.png





OEBPS/images/F099883si135.png





OEBPS/images/F099883si137.png
20h





OEBPS/images/F099883si139.png





OEBPS/images/F099883si138.png
K =%mv2 = mgh





OEBPS/images/F099883si141.png
LWV + TV <+ L oL == LY, = constant





OEBPS/images/F099883si140.png
a
E((m,vl + vy 4 L mvy)) =0





OEBPS/images/F099883si143.png





OEBPS/images/F099883si142.png





OEBPS/images/F099883si145.png





OEBPS/images/F099883si144.png





OEBPS/images/F099883si147.png





OEBPS/images/F099883si146.png





OEBPS/images/F099883si119.png





OEBPS/images/F099883si118.png





OEBPS/images/F099883si121.png





OEBPS/images/F099883si120.png
@ == G g 8mis? = 326/s” = g
Mobject (radivseam )






OEBPS/images/F099883si123.png





OEBPS/images/F099883si122.png
a=FMy

a = ((-GM,)/r*)R
(=v*/nR

= (~GM,/r)R






OEBPS/images/F099883si125.png





OEBPS/images/F099883si124.png





OEBPS/images/F099883si127.png
f






OEBPS/images/F099883si126.png





