

 [image: Cover]

 Table of Contents
Cover image
Front Matter
Copyright
Dedication
About the Authors
About the Technical Editor
Contributors
Foreword
Preface
Chapter 1. Introduction
Chapter 2. Infrastructure as a Service
Chapter 3. Platform as a Service
Chapter 4. Software as a Service
Chapter 5. Paradigms for Developing Cloud Applications
Chapter 6. Addressing the Cloud Challenges
Chapter 7. Designing Cloud Security
Chapter 8. Managing the Cloud
Chapter 9. Related Technologies
Chapter 10. Future Trends and Research Directions

		Index

Front Matter
Moving to the Cloud
Moving to the Cloud
Developing Apps in the New World of Cloud Computing
Dinkar Sitaram
Geetha Manjunath
Technical Editor
David R. Deily
[image: B9781597497251000111/elsevier_logo.jpg is missing] AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
[image: B9781597497251000111/syngress_logo.jpg is missing]
Syngress is an imprint of Elsevier

Copyright

Acquiring Editor: Chris Katsaropoulos

Development Editor: Heather Scherer

Project Manager: A. B. McGee

Designer: Alisa Andreola

Syngress is an imprint of Elsevier

 225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.
Credits for the screenshot images throughout the book are as follows:
Screenshots from Amazon.com, Cloudwatch © Amazon.com, Inc.; Screenshots of Nimsoft © CA Technologies; Screenshots of Gomez © Compuware Corp.; Screenshots from Facebook.com © Facebook, Inc.; Screenshots of Google App Engine, Google Docs © Google, Inc.; Screenshots of HP CloudSystem, Cells-as-a-Service, OpenCirrus © Hewlett-Packard Company; Screenshots of Windows Azure © Microsoft Corporation; Screenshots of Gluster © Red Hat, Inc.; Screenshots from Force.com, Salesforce.com © Salesforce.com, Inc.; Screenshots of Netcharts © Visual Mining, Inc.; Screenshots of Yahoo! Pipes, YQL © Yahoo! Inc.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.
This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

NoticesKnowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Sitaram, Dinkar.
Moving to the cloud: developing apps in the new world of cloud computing / Dinkar Sitaram and Geetha Manjunath; David R. Deily, technical editor.
p. cm.
Includes bibliographical references.
ISBN 978-1-59749-725-1 (pbk.)
1. Cloud computing. 2. Internet programming. 3. Application programs–Development. I. Manjunath, Geetha. II. Title.
QA76.585.S58 2011
004.6782–dc23
2011042034
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Syngress publications visit our website at www.syngress.com

Typeset by: diacriTech, Chennai, India
Printed in the United States of America
11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

	[image: B9781597497251000123/fx1.jpg is missing]

Dedication
To Swarna, Tejas, and Tanvi for their encouragement and support.
—
Dinkar
To my dear husband Manjunath, wonderful kids Abhiram and Anagha and my loving parents.
—
Geetha

About the Authors

	[image: B9781597497251000147/bio-01-9781597497251.jpg is missing]

Dr. Dinkar Sitaram is a Chief Technologist at Hewlett Packard, Systems Technology and Software Division, in Bangalore, India. He is one of the key individuals responsible for driving file systems and storage strategy, including cloud storage. Dr. Sitaram is also responsible for University Relations, and Innovation activities at HP. His R&D efforts have resulted in over a dozen granted US patents. He is co-author of
Multimedia Servers: Applications, Environments and Design. Morgan Kaufmann, 2000. Dr. Sitaram received his Ph. D from the University of Wisconsin-Madison and his B. Tech from IIT Kharagpur. He joined as a research staff member in IBM's Research Division at the IBM T. J. Watson Research Center. At IBM, Dr. Sitaram received an IBM Outstanding Innovation Award (an IBM Corporate Award) as well as IBM Research Division Award and several IBM Invention Achievement Awards for his patents and research. He also received outstanding paper awards for his work, and served on the editorial board of the Journal of High-Speed Networking.
Subsequently, he returned to India as Director of the Technology Group at Novell Corp. Bangalore. The group developed many innovative products in addition to filing for many patents and standards proposals. Dr. Sitaram received Novell's Employee of the Year award. Before joining HP, Dr. Sitaram was CTO at Andiamo Systems India (a storage networking startup later acquired by Cisco), responsible for architecture and technical direction of an advanced storage management solution.

	[image: B9781597497251000147/bio-02-9781597497251.jpg is missing]

Geetha Manjunath is a Senior Research Scientist and Master Technologist at Hewlett Packard Research Labs in India. She has been with HP since 1997 working on research issues in multiple systems technologies. During these years, she has developed many innovative solutions and published many papers in the area of Embedded Systems, Java Virtual Machine, Mobility, Grid Computing, Storage Virtualization and Semantic Web. She is currently leading a research project on cloud services for simplifying web access for emerging markets. As a part of this research, she conceptualized the notion of Tasklets and lead the development of a cloud-based solution called SiteOnMobile that enables consumers to access web tasks on low-end phones via SMS and Voice. The solution was awarded the NASCOM Innovation Award 2009 and has been given a status of “HP Legend”. It was also the winner of Technology Review India's 2010 Grand Challenges for Technologists (2010 TRGC) in the healthcare category.
Before joining HP, she was a senior technical member at Centre for Development of Advanced Computing (C-DAC), Bangalore for 7 years – where was a core member of PARAS system software team for a PARAM supercomputer and she lead a research team to develop parallel compilers for distributed memory machines.
She is a gold medalist from Indian Institute of Science where she did her Masters in Computer Science in 1991 and pursuing Ph. D at the time of this writing. She was awarded the TR Shammanna Best Student award from Bangalore University in the Bachelors degree for topping across all branches of Engineering. She holds four US patents with many more pending grant.

About the Technical Editor
David R. Deily (CISSP, MCSE, SIX SIGMA) has more than 13 years of experience in the management and IT consulting industry. He has designed and implemented innovative approaches to solving complex business problems with the alignment of both performance management and technology for increased IT effectiveness.
He currently provides IT consulting and management services to both midsize and Fortune 500 companies. His core competencies include delivering advanced infrastructure consulting services centered on application/network performance, security, infrastructure roadmap designs, virtualization / cloud, and support solutions that drive efficiency, competitiveness, and business continuity. David consults with clients in industries that include travel/leisure, banking/finance, retail, law and state and local governments.
Mr. Deily has held leadership roles within corporate IT and management consulting services organizations. He is currently a Senior Consultant at DATACORP in Miami, FL. He would like to thank his wife Evora and daughter Drissa for their continued support.

Contributors

	[image: B9781597497251000196/ctr-01-9781597497251.jpg is missing]

Badrinath Ramamurthy is a senior technologist at Hewlett Packard, Bangalore. India. He has been with HP since 2003 and has worked in the areas of High Performance Computing, Semantic Web and Infrastructure Management. He currently works on HP's Cloud Services.
During 1994–2003 he served on the faculty of the CSE Department at the Indian Institute of Technology, Kharagpur. He spent the year 2002–2003 as a visiting researcher at IRISA, France.
Badrinath obtained a Ph.D. in computer science from Rensselaer Polytechnic Institute, NY, in 1994. He has over 30 refereed published research works in his areas of interest. He has served as the General Co-Chair for the International Conference on High-Performance Computing (HiPC) for the years 2006, 2007 and 2008.
In this book, Dr. Badrinath has contributed the section titled “Cells as a Service” in Chapter 2.

	[image: B9781597497251000196/ctr-02-9781597497251.jpg is missing]

Dejan Milojicic is a senior researcher and director of Open Cirrus Cloud Computing testbed at Hewlett Packard Labs. He has worked in the areas of operating systems and distributed systems for more than 25 years. Dr. Milojicic has published over 100 papers. He is an ACM distinguished engineer, IEEE Fellow and member of USENIX. He received B.Sc. and M.Sc. degrees from University of Belgrade and a Ph.D. from University of Kaiserslautern. Prior to HP Labs, he worked at Institute “Mihajlo Pupin”, and at OSF Research Institute.
In this book, Dr. Dejan has contributed the section titled “OpenCirrus” in Chapter 10.

	[image: B9781597497251000196/ctr-03-9781597497251.jpg is missing]

Devaraj Das is a co-founder of Hortonworks Inc, USA. Devaraj is an Apache Hadoop committer and member of the Apache Hadoop Project Management Committee. Prior to co-founding Hortonworks, Devaraj was critical in making Apache Hadoop a success at Yahoo! by designing, implementing, leading and managing large and complex core Apache Hadoop and Hadoop-related projects on Yahoo!'s production clusters. Devaraj also worked as an engineer at HP in Bangalore earlier in his career. He has a Master's degree from the Indian Institute of Science in Bangalore, India, and a B.E. degree from Birla Institute of Technology and Science in Pilani, India.
In this book, Devaraj has shared his knowledge on advanced topics in Apache Hadoop, specially in section titled “Multi-tenancy and security” of Chapter 6 and “Data Flow in MapReduce” in Chapter 3.

	[image: B9781597497251000196/ctr-04-9781597497251.jpg is missing]

Dibyendu Das is currently a Principal Member of Technical Staff in AMD India working on Open64 optimizing compilers. In previous avatars he has worked extensively on optimizing compilers for PA-RISC and IA-64 processors while at HP, performance/power analyses for Power-7 multi-cores at IBM and VLIW compilers for Motorola. Dibyendu is an acknowledged expert in the areas of optimizing compilers, parallel languages, parallel and distributed processing and computer architecture.
Dibyendu has a Ph.D. in computer science from IIT Kharagpur and an M.E. and B.E. in computer science from IISc and Jadavpur University, respectively. He is an active quizzer and quiz enthusiast and is involved with the Karnataka Quiz Association.
In this book, Dr. Dibyendu has contributed the section titled “IBM SmartCloud: pureXML” in Chapter 3.

	[image: B9781597497251000196/ctr-05-9781597497251.jpg is missing]

Gopal R Srinivasa is a Sr. Research SDE with Microsoft Research India. Before joining Microsoft, he worked for Hewlett-Packard, Nokia Siemens Networks, and CyberGuard Corporation. Along with cloud computing, his interests include software analytics and building large software systems. Gopal has a Masters’ degree in computer science from North Carolina State University.
In this book, Gopal has shared his expert knowledge on Microsoft Azure in Chapter 3 as well as the section titled “Managing PaaS” in Chapter 8.

	[image: B9781597497251000196/ctr-06-9781597497251.jpg is missing]

Nigel Cook is an HP distinguished technologist and technical director for the HP CloudSystem program. He has worked in areas of data center automation and distributed management systems for over 20 years, spanning environments as diverse as embedded systems for power utility control, telecom systems, and enterprise data center environments. At HP he created the BladeSystem Matrix Operating environment, and prior to that he served as chief architect on the Adaptive Enterprise and Utility Data Center programs. Prior to HP, he established and ran the US engineering operations of a software R+D development company specializing in telecom distributed systems. He received a BEng from University of Queensland, and is currently pursuing an MSc degree from University of Colorado, Boulder in the area of cloud computing based bioinformatics.
In this book, Nigel has contributed the section “HP CloudSystem Matrix” in Chapter 2, as well as to the Chapter 8 on “Managing the Cloud”.

	[image: B9781597497251000196/ctr-07-9781597497251.jpg is missing]

Prakash S Raghavendra has been a faculty member at the IT Department of NITK, Surathkal from February 2009. He received his doctorate from the Computer Science and Automation Department (IISc, Bangalore) in 1998, after graduating from IIT Madras in 1994.
Earlier, Dr. Prakash worked in the Kernel, Java and Compilers Lab in Hewlett-Packard ISO in Bangalore from 1998 to 2007. Dr. Prakash has also worked for Adobe Systems, Bangalore from 2007 to 2009 in the area of flex profilers.
Dr. Prakash's current research interests include programming for heterogeneous computing, Web usage mining and rich Internet apps. Dr. Prakash has been honored with the ‘Intel Parallelism Content Award’ in 2011 and the ‘IBM Faculty Award’ for the year 2010.
In this book, Dr. Prakash has contributed about Adobe RIA in the section titled “Rich Internet Applications” in Chapter 5.

	[image: B9781597497251000196/ctr-08-9781597497251.jpg is missing]

Praphul Chandra is a Research Scientist at HP Labs India. He works on the simplifying web access and interaction project. His primary area of interest is complex networks in the context of social networks and information networks like the Web. At HP Labs, he also works on exploring new embedded systems architecture for emerging markets.
He is the author of two books –
Bulletproof Wireless Security and
Wi-Fi Telephony: Challenges and Solutions for Voice over WLANs. He joined HP Labs in April 2006. Prior to joining HP he was a senior design engineer at Texas Instruments (USA) where he worked on Voice over IP with specific focus on wireless local area networks. He holds an M.S. in electrical engineering from Columbia University, NY, a PG Diploma in public policy from University of London and a B.Tech. in electronics and communication engineering from Institute of Technology, BHU. His other interest areas are evolution and economics.
In this book, Praphul has shared his expert knowledge on Social networking in the section titled “Social Computing Services” in Chapter 4.

	[image: B9781597497251000196/ctr-09-9781597497251.jpg is missing]

Vanish Talwar is a principal research scientist at HP Labs, Palo Alto, researching management systems for next generation data centers. His research interests include distributed systems, operating systems, and computer networks, with a focus on management technologies. He received his Ph.D. degree in computer science from the University of Illinois at Urbana-Champaign (UIUC). Dr. Talwar is a recipient of the David J Kuck Best Masters Thesis award from the Dept. of Computer Science, UIUC, and has numerous patents and papers, including a book on utility computing.
In this book, Dr. Vanish has contributed to the Chapter 8 titled “Managing the Cloud” and sections on “DMTF” and “OpenCirrus” in Chapter 10.

Foreword
Prith Banerjee
Senior Vice President of Research and Director of HP Labs, Hewlett-Packard Company

Information is the most valuable resource in the 21st century. Whether for a consumer looking for a restaurant in San Francisco, a small business woman checking textile prices in Bangalore, or a financial services executive in London studying stock market trends, information
at the moment of decision is key in providing the insights that afford the best outcome.
We now are sitting at a critical juncture of two of the most significant trends in the information technology industry – the convergence of cloud computing and mobile personal information devices into the Mobility/Cloud Ecosystem that delivers next-generation personalized experiences using a scalable and secure information infrastructure. This ecosystem will be able to store, process, and analyze massive amounts of information around structured, unstructured and semi-structured data. All this data will be accessed and analyzed at the speed of business.
In the past few years, the information technology industry began describing a future where everything is delivered as a service via the cloud, from computing resources to personal interactions. The future mobile internet will be 10 times the size of the desktop internet, connecting more than 10 billion “devices” from smartphones to wireless home appliances. Information access will then be as ubiquitous as electricity. Research advancements that the IT industry is making today will allow us to drive economies of scale into this next phase of computing to create a world where increasing numbers of people will be able to participate in and benefit from the information economy.
This book provides an excellent overview of all the transformations that are taking place in the IT industry around Cloud computing, and that, in turn, are transforming society. The book provides an overview of the key concepts of cloud computing, analyzes how cloud computing is different from traditional computing and how it enables new applications while providing highly scalable versions of traditional applications. It also describes the forces driving cloud computing, describes a well-known taxonomy of cloud architectures, and discusses at a high level the technological challenges inherent in cloud computing.
The book covers key areas of the different models of cloud computing: infrastructure as a service, platform as a service and software as a service. It then talks about paradigms for developing cloud applications. It finally talks about cloud-related technologies such as security, cloud management and virtualization.
HP Labs as the central research organization for Hewlett Packard has carried out research in many aspects of cloud computing in the past decade. The authors of the book are researchers in HP Labs India, and have contributed to many years of research on these topics. They have been able to provide their own personal research insight into the contents of the book and their vision of where this technology is headed.
I wish the readers of the book the best of luck in their journey to cloud computing!

Preface
First of all, thanks very much for choosing this book. We hope that you will like reading it and learn something new during the process. We believe the depth and breadth of the topics covered in the book will cater to a vast technical audience. Technologists who have a very strong technical background in distributed computing will probably like the real-life case studies of cloud platforms that enable them to get a quick overview of current platforms without actually registering for trials and experimenting with the examples. Developers who are very good in programming traditional systems will probably like the simple and complex examples of multiple cloud platforms that enable them to get started on programming to the cloud. It will also give them a good overview of the fundamental concepts needed to program a distributed system such as the cloud and learn new techniques to enable them to write efficient, scalable cloud services. We believe even research students will find the book useful to identify some open problems that are yet to be solved and help the evolution of cloud technologies to address all the current gaps.
Having worked on different aspects of systems technology particularly related to distributed computing for a number of years, we both were often discussing the benefits of cloud computing and what realignment in technology and mindset that the cloud required. In one such discussion, it dawned on us that a book based on real case studies of cloud platforms can be very valuable to technologists and developers, especially if we can cover the underlying technologies and concepts. We felt that many of the books available on cloud computing seemed to have a one-dimensional view of cloud computing. Some books equate cloud computing to just a specific cloud platform, say Amazon or Azure. Other books discuss cloud computing as if it is simply a new way of managing traditional data centers in a more cost-effective manner. There is also no dearth of books that hype the benefits of cloud computing in the ideal world.
In fact, the different perspectives about cloud computing that exist today remind us of the well-known story of the six blind men and the elephant. The blind man who caught hold of the elephant's tail insisted that the elephant is like a rope, while another who touched the elephant's tusks said that the elephant is like a spear, and so on. It definitely seemed to us that there is a need for a book that ties together the different aspects of cloud computing, both at the depth as well as breadth. However, we knew that covering all topics related to cloud in a single book, or even covering all popular cloud platforms as case studies, was not really feasible. We decided to cover at least three to four diverse case studies in each aspect of cloud computing and get into the technical depth in each of those case studies.
The second motivation for writing this book is to provide sufficiently deep knowledge to programmers and developers who will create the next generation of cloud applications. Many existing books focus entirely upon writing programs, without analyzing the key concepts or alternative implementations. It is our belief that in order to efficiently design programs it is necessary to have a good understanding of the technology involved, so that intelligent trade-offs can be made. It is also important to design appropriate algorithms and choose the right cloud platform so that the solution to the given problem is scalable and efficient to execute on the cloud. For example, many cloud platforms today offer automatic scaling. However, in order to use this feature effectively, a high-level understanding of how the platform handles scaling is required. It is also important to select the right algorithm for special cloud platforms so that the solution to the given problem can be solved in the most efficient way for the use case and cloud platform (such as Hadoop MapReduce).
The challenge for us has been how to cover all the facets of cloud computing (provide a holistic view of the elephant) without writing a book that itself is as large as an elephant. To achieve this, we have adopted the following strategy. First, for each cloud platform, we provide a broad overview of the platform. This is followed by detailed discussion of some specific aspect of the platform. This high-level overview, together with a detailed study of a particular aspect of the platform, will give readers a deep insight into the basic concepts and features underlying the platform. For example, in the section on Salesforce.com, we start with a high-level overview of the features, followed by detailed discussion of using the call center features, programming under Salesforce.com, and important performance trade-offs for writing programs. Further sections cover the platform architecture that enables Salesforce.com, and some of the important underlying implementation details. The technology topics are also discussed in depth. For example, MapReduce is first introduced in Chapter 3 with an overview of the concept and usage from a programming perspective. In later sections, a detailed look at the new programming paradigm that MapReduce enables along with fundamentals of functional programming, data parallelism and even theoretical formulation of the MapReduce problem are introduced. Many examples of how one can redesign an algorithm to suit the MapReduce platform are given. Finally, the internal architecture of the MapReduce platform, with details of how the performance, security and other challenges of cloud computing are handled in the platform, is described.
In summary, this book provides an in-depth introduction to the various cloud platforms and technologies today. In addition to describing the developer tools, platforms and APIs for cloud applications, it emphasizes and compares the concepts and technologies behind the platforms, and provides complex examples of their usage as invited content from experts in cloud platforms. This book prepares developers and IT professionals to become experts in cloud technologies, move their computing solutions to the cloud and also explore potential future research topics. It may be kindly noted that the APIs and functionality described in this book are as per the versions available at the time of the writing of this book. Readers are requested to refer to the latest product documentation for accurate information. Finally, since this area is evolving rapidly, we plan to continuously review the latest cloud computing technologies and platforms on our companion website http://www.movingtocloudbook.com.
Structure of the Book
Chapter 1 of the book is the introduction and provides a high-level overview of cloud computing. We start with the evolution of cloud computing from Web 1.0 to Web 2.0, and discuss its evolution in the future. Next, we discuss various cloud computing models (IaaS, PaaS, and SaaS) and the cloud deployment models (public, private, community and hybrid) together with the pros and cons of each model. Finally, the economics of cloud computing and possible cost savings are described.
Chapter 2, Chapter 3 and Chapter 4 describe the three cloud service models (Iaas, PaaS, and SaaS) in detail – from a developer and technologist stand point. The platform models are explained using popular cloud platforms as case studies (for example, Amazon for IaaS and Windows Azure for PaaS) through sample programs, as well as an overview of the underlying technology. While describing program development, the book tries to follow a standard pattern. First, a simple
Hello World program that allows users to get started is described. This is followed by a more complex example that illustrates commonly used features of the major APIs of the platform. The complex example also introduces the concepts underlying the platform (for example, MapReduce in Hadoop). These chapters will provide programmers interested in developing cloud applications a good understanding of the features and differences between the various existing cloud platforms. In addition, professionals who are interested in the technology behind cloud computing will understand key platform features that are needed to motivate a discussion of the technology and evaluate the suitability of a platform for their specific use case.
Chapter 2 describes three important IaaS platforms – Amazon, HP CloudSystem Matrix, and a research prototype called Cells-as-a-Service. The first section of the chapter describes the Amazon storage services – S3, SimpleDB, and Relational Database Service with GUI and programming examples. The chapter also describes how to upload large files and multi-part uploads. The next section describes Amazon's EC2 cloud service. This contains descriptions of how to administer and use these services through the Web GUI, and also a code example of how to set up a document portal in EC2 using a running example called Pustak Portal (details of which are described towards the end of this Preface). Methods are presented for automatically scaling up and down the service using both Amazon Beanstalk as well as custom code (when Beanstalk is not suitable). The next sections of the chapter describe HP CloudSystem Matrix, and Cells-as-a-Service, a research prototype developed by HP Labs. Here again, after describing the basic features of the offering, the section describes how to set up the document portal in our running example (Pustak Portal). Methods for autoscaling up or autoscaling down the portal are described.
Chapter 3 describes some important PaaS cloud platforms – Windows Azure, Google AppEngine, Apache Hadoop, IBM PureXML, and mashups. The Windows Azure section first describes a simple “Hello World” program that illustrates the basic concepts of Web and Worker roles, and shows how to test and deploy programs under Azure. Subsequently, the architecture of the Azure platform, together with its programming model, storage services such as SQL Azure, as well as other services such as security are described. These are illustrated with the running example of implementing Pustak Portal. In the Google App Engine section, the process of developing and deploying programs is described, together with use of the Google App Engine storage services and memory caching. Next IBM PureXML, which is a cloud service that exposes both a relational as well as XML database interface, is discussed. Examples of how to store data for a portal such as Pustak Portal are described. The next section describes Apache Hadoop, including examples of MapReduce programs, and how Hadoop Distributed File System can be used to provide scalable storage. The final section describes mashups, a technology which allows easy development of applications that merge information from multiple web sites. Yahoo! Pipes in particular is described with an example that includes the use of Yahoo! Query Language, an SQL-like language for mashups.
Chapter 4 describes Salesforce.com, social computing, and Google Docs. These are example services under the Software-as-a-Service (SaaS) model. As can be seen, SaaS embraces a very wide diversity of applications, and the three popular applications selected above are intended to be representative. Salesforce.com is an example of an enterprise SaaS application. As described previously, the Salesforce.com section contains a detailed description of functionality for support representatives. Subsequently the section presents a high-level architecture and functionality of Force.com, the platform upon which Salesforce.com is built. The architecture is illustrated by describing how to write programs to extend the Salesforce.com functionality for the requirements of sales and marketing employees of a publisher like Pustak Portal. The next section describes Social Computing, a development that we argue is central to cloud computing. After defining social computing, and social networks, the section describes the features of Facebook. The description includes how enterprises are using Facebook for marketing. It also describes the various social computing APIs that Facebook provides, such as the Open Graph API, that allow developers to develop enterprise applications that leverage the social networking information in Facebook. Equivalent functions in Picasa, Twitter, and the Open Social Platform, are also described, together with privacy and security issues. The last section is on Google Docs, a typical consumer application that also has programming APIs. Subsequently, an example of how to develop a portal like Pustak Portal that uses Google Docs as a backend for storage of books is described.
Chapter 5 is meant to specifically aid application developers. It describes the novel design and programming paradigms that an application developer should be aware of in order to create new cloud components/applications. The first section on scaling storage describes database sharding and other partitioning techniques, as well as NoSQL stores such as HBase, Cassandra, and MongoDB. The second section takes a deeper look at the novel MapReduce paradigm, including some theoretical background and solutions to most common sub-problems. The final section discusses client-side aspects of the cloud applications, which are complementary to server-side techniques, and which also allow creation of compelling rich client applications.
Chapter 6, Chapter 7, Chapter 8 and Chapter 9 provide an in-depth description of the technology behind cloud computing and ways to address the key technical challenges. Chapter 6 describes the overall technology behind cloud computing platforms, detailing multiple alternative approaches to provide compute and storage scalability, availability and multi-tenancy. It aims at enabling developers and professionals to understand the technology behind the different platform features and enable effective use of the APIs. The compute scalability section describes how this is achieved in platforms such as OpenNebula and Eucalyptus. In the storage scalability section, the CAP theorem and weak consistency in distributed systems, together with how these are overcome in HBase, Cassandra and MongoDB, are discussed. The section on multi-tenancy describes the general technology and describes the implementation of Salesforce.com. Chapter 7 of the book focuses on security, which, as has been noted earlier, is one of the key concerns for the deployment of cloud computing. This is an abridged version of
Securing the Cloud published by Syngress. Chapter 8 describes manageability issues unique to the cloud because of the scale and degree of automation found in clouds. Chapter 9 focuses on data center technologies important in cloud computing, such as virtualization.
Cloud computing is an evolution of several related technologies aiming at large scale computing. Chapter 9 of the book is aimed at providing a good understanding of such technologies, e.g., virtualization, MapReduce architecture, etc. The chapter gives an overview of those technologies, particularly relating cloud computing to distributed computing and grid computing. It also describes some common techniques used for data center optimization in general.
Finally, Chapter 10 describes the future outlook of cloud computing, detailing important standardization efforts and available benchmarks. First, emerging cloud standards from DMTF, NIST, IEEE, OGF and other standards bodies are discussed, followed by a look at some popular cloud benchmarks such as CloudStone, YCSB, CloudCMP and so on. The second part of this chapter lays out some future trends and opportunities. Being a developer centric book, the future outlook cloud applications being developed by end users without any programming is narrated with a research project from HP Labs around the concept of Tasklets. Another research project from HP Labs, OpenCirrus, which addresses the energy and sustainability aspects of Cloud Computing and also provides a research testbed for any future research to be done, is elaborated. Finally, the chapter lists some of the open research issues that are yet to be addressed in cloud computing, hoping to motivate researchers to further move the state of the art of cloud technologies.
A Running Example: Pustak Portal
Pustak Portal is actually a
common running example that is used by many sections of the book. We believe use of such a running example will enable the reader to compare and contrast the functionality provided by different platforms and assess their suitability. The functionality of Pustak Portal has been chosen so that it can be used to highlight different APIs, and simple as well as advanced features of a cloud platform.
Pustak Portal is somewhat like a combination of Google Docs, Flickr and Snapfish labs. Consumers can use the document services hosted by this portal to store and restore their selected documents, perform various image-processing functions provided by the portal (like document cleanup, image conversion, template extraction, and so on). The portal provider (owner of Pustak), on the other hand, uses the IaaS and PaaS features of the cloud platforms to scale to the huge number of users manipulating their documents on the cloud. The document manipulation services are compute and storage hungry. The portal provider is also interested in monitoring the usage of the portal and ensuring maximum availability and scalability of the portal. Different client views of the document services portal will be provided using client-side technologies.

Acknowledgments
This book would not have been possible without the help of a large number of people. We would like to thank the developmental book editor Heather Scherer, project manager Anne McGee and the technical editor David Deily, for their many helpful comments and suggestions which greatly improved the quality of the book. We are grateful to editor, Denise Penrose, for her immense help on structuring the book.
Many sections of this book have been contributed by experts in their respective fields. Thanks to our friends, Badrinath Ramamurthy, Dejan Milojicic, Devaraj Das, Dibyendu Das, Gopal R. Srinivasa, Nigel Cook, Prakash S. Raghavendra, Praphul Chandra and Vanish Talwar for their expert contribution which has made the book more authentic and useful to a larger audience. We would like to thank Hitesh Bosamiya and Thara S for their code examples on Google Docs, Google AppEngine and Salesforce.com. We are thankful to Sharat Visweswara from Amazon Inc. for his insights into Amazon Web Services and Satish Kumar Mopur for his inputs on storage virtualization. We are grateful to M. Chelliah from Yahoo!, M. Kishore Kumar, and Mohan Parthasarathy from HP for their valuable inputs to the content of the book. We are indebted to Dan Osecky, Suresh Shyamsundar, Sunil Subbakrishna, and Shylaja Suresh for their help in reviewing various sections of the book. We thank our HP management Prith Banerjee, Sudhir Dixit, and Subramanya Mudigere for their encouragement and support in enabling us to complete this endeavor. Finally, our heartfelt thanks to our families for their patience and support for enduring our long nights out and time away from them.

Chapter 1. Introduction
Information in This Chapter
•Where Are We Today?

•The Future Evolution

•What Is Cloud Computing?

•Cloud Deployment Models

•Business Drivers for Cloud Computing

•Introduction to Cloud Technologies

Cloud computing is one of the major transformations that is taking place in the computer industry, and that, in turn, is transforming society. This chapter provides an overview of the key concepts of cloud computing, analyzes how cloud computing is different from traditional computing and how it enables new applications while providing highly scalable versions of traditional applications. It also describes the forces driving cloud computing, describes a well-known taxonomy of cloud architectures, and discusses at a high level the technological challenges inherent in cloud computing.
Keywords
IaaS, PaaS, SaaS, public cloud, private cloud, scalability, multi-tenancy, availability

Introduction
Cloud Computing is one of the major technologies predicted to revolutionize the future of computing. The model of delivering IT as a service has several advantages. It enables current businesses to dynamically adapt their computing infrastructure to meet the rapidly changing requirements of the environment. Perhaps more importantly, it greatly reduces the complexities of IT management, enabling more pervasive use of IT. Further, it is an attractive option for small and medium enterprises to reduce upfront investments, enabling them to use sophisticated business intelligence applications that only large enterprises could previously afford. Cloud-hosted services also offer interesting reuse opportunities and design challenges for application developers and platform providers. Cloud computing has, therefore, created considerable excitement among technologists in general.
This chapter provides a general overview of Cloud Computing, and the technological and business factors that have given rise to its evolution. It takes a bird's-eye view of the sweeping changes that cloud computing is bringing about. Is cloud computing merely a cost-saving measure for enterprise IT? Are sites like Facebook the tip of the iceberg in terms of a fundamental change in the way of doing business? If so, does enterprise IT have to respond to this change, or take the risk of being left behind? By surveying the cloud computing landscape at a high level, it will be easy to see how the various components of cloud technology fit together. It will also be possible to put the technology in the context of the business drivers of cloud computing.

Where are We Today?
Computing today is poised at a major point of inflection, similar to those in earlier technological revolutions. A classic example of an earlier inflection is the anecdote that is described in
The Big Switch: Rewiring the World, from Edison to Google[1]. In a small town in New York called Troy, an entrepreneur named Henry Burden set up a factory to manufacture horseshoes. Troy was strategically located at the junction of the Hudson River and the Erie Canal. Due to its location, horseshoes manufactured at Troy could be shipped all over the United States. By making horseshoes in a factory near water, Mr. Burden was able to transform an industry that was dominated by local craftsmen across the US. However, the key technology that allowed him to carry out this transformation had nothing to do with horses. It was the waterwheel he built in order to generate electricity. Sixty feet tall, and weighing 250 tons, it generated the electricity needed to power his horseshoe factory.
Burden stood at the mid-point of a transformation that has been called the Second Industrial Revolution, made possible by the invention of electric power. The origins of this revolution can be traced to the invention of the first battery by the Italian physicist Alessandro Volta in 1800 at the University of Pavia. The revolution continued through 1882 with the operation of the first steam-powered electric power station at Holborn Viaduct in London and eventually to the first half of the twentieth century, when electricity became ubiquitous and available through a socket in the wall. Henry Burden was one of the many figures who drove this transformation by his usage of electric power, creating demand for electricity that eventually led to electricity being transformed from an obscure scientific curiosity to something that is omnipresent and taken for granted in modern life. Perhaps Mr. Burden could not have grasped the magnitude of changes that plentiful electric power would bring about.
By analogy, we may be poised at the midpoint of another transformation – now around computing power – at the point where computing power has freed itself from the confines of industrial enterprises and research institutions, but just before cheap and massive computing resources are ubiquitous. In order to grasp the opportunities offered by cloud computing, it is important to ask which direction are we moving in, and what a future in which massive computing resources are as freely available as electricity may look like.

AWAKE! for Morning in the Bowl of Night
Has flung the Stone that puts the Stars to Flight:
…
The Bird of Time has but a little way
To fly – and Lo! the Bird is on the Wing.
The Rubaiyat of Omar Khayyam, Translated into English in 1859, by Edward FitzGerald

Evolution of the Web
To see the evolution of computing in the future, it is useful to look at the history. The first wave of Internet-based computing, sometimes called Web 1.0, arrived in the 1990s. In the typical interaction between a user and a web site, the web site would display some information, and the user could click on the hyperlinks to get additional information. Information flow was thus strictly one-way, from institutions that maintained web sites to users. Therefore, the model of Web 1.0 was that of a gigantic library, with Google and other search engines being the library catalog. However, even with this modest change, enterprises (and enterprise IT) had to respond by putting up their own web sites and publishing content that projected the image of the enterprise effectively on the Web (Figure 1.1). Not doing so would have been analogous to not advertising when competitors were advertising heavily.
	[image: B9781597497251000019/f01-01-9781597497251.jpg is missing]

	Figure 1.1 Web 1.0: Information access.

Web 2.0 and Social Networking
The second wave of Internet computing developed in the early 2000s, when applications that allowed users to upload information to the Web became popular. This seemingly small change has been sufficient to bring about a new class of applications due to the rapid growth of user-generated content, social networking and other associated algorithms that exploited crowd knowledge. This new generation Internet usage is called the Web 2.0 [2] and is depicted in Figure 1.2. If Web 1.0 looked like a massive library, Web 2.0, with social networking, is more like a virtual world which in many ways looks like a replica of the physical world (Figure 1.2). Here users are not just login ids, but virtual identities (or personas) with not only a lot of information about themselves (photographs, interest profile, the items they search for on the Web), but also their friends and other users they are linked to as in a social world. Furthermore, the Web is now not read-only; users are able to write back to the Web with their reviews, tags, ratings, annotations and even create their own blogs. Again, businesses and business IT have to respond to this new environment not only by leveraging the new technology for cost-effectiveness but also by using the new features it makes possible.

	[image: B9781597497251000019/f01-02-9781597497251.jpg is missing]
	Figure 1.2.
	Web 2.0: Digital reality: social networking.

As of this writing, Facebook has a membership of 750 million people, and that makes 10% of the people in the world [3]! Apart from the ability to keep in touch with friends, Facebook has been a catalyst for the formation of virtual communities. A very visible example of this was the role Facebook played in catalyzing the 2011 Egyptian revolution. A key moment in the revolution was the January 25
th protest in Cairo's Tahrir Square, which was organized using Facebook. This led to the leader of the revolution publicly thanking Facebook [4] and [5] for the role it played in enabling the revolution. Another effective example of the use of social networking was the election campaign of US president Obama, who built a network of 2 million supporters on MySpace, 6.5 million supporters on Facebook, and 1.7 million supporters on Twitter [6].
Social networking technology has the potential to make major changes in the way businesses relate to customers. A simple example is the “
Like” button that Facebook introduced on web pages. By pressing this button for a product, a Facebook member can indicate their preference for the advertised product. This fact is immediately made known to the friends of the member, and put up on the Facebook page of the user as well as his friends. This has a tremendous impact on the buying behavior, as it is a recommendation of a product by a trusted friend! Also, by visiting “
facebook/insights”, it is possible to analyze the demographics of the Facebook members who clicked the button. This can directly show the profile of the users using the said product! Essentially, since user identities and relationships are online, they can now be leveraged in various ways by businesses as well.

Information Explosion
Giving users the ability to upload content to the Web has led to an explosion of information. Studies have consistently shown that the amount of digital information in the world is doubling every 18 months [7]. Much information that would earlier have been stored in physical form (e.g., photographs) is uploaded to the Web for instantaneous sharing. In fact, in many cases, the first reports of important news are video clips taken by bystanders with mobile phones and uploaded to the Web. The importance of this information has led to growing attempts at Internet censorship by governments that fear that unrestricted access to information could spark civil unrest and lead to the overthrow of the governments [8] and [9]. Business can mine this subjective information, for example, by sentiment analysis, to throw some insights into the overall opinion of the public towards a specific topic.
Further, entirely new kinds of applications may be possible through combining the information on the Web. Text mining of public information was used by Unilever to analyze patents filed by a competitor and deduce that the competitor was attempting to discover a pesticide for use against a pest found only in Brazil [10]. IBM was similarly able to analyze news abstracts and detect that a competitor was showing strong interest in the outsourcing business [10].
Another example is the food safety recall process implemented by HP together with GS1 Canada, a supply chain organization [11]. By tracing the lifecycle of a food product from its manufacture to its purchase, the food safety recall process is able to advise individual consumers that the product they have purchased is not safe, and that stores will refund the amount spent on purchase. This is an example of how businesses can reach out to individual consumers whom they do not interact with directly.

Mobile Web
Another major change the world has seen recently is the rapid growth in the number of mobile devices. Reports say that mobile broadband users have already surpassed fixed broadband users [12]. Due to mobile Internet access, information on the Web is accessible from anywhere, anytime, and on any device, making the Web a part of daily life. For example, many users routinely use Google maps to find directions when in an unknown location. Such content on the Web also enables one to develop location-based services, and augmented-reality applications. For example, for a traveler, a mobile application that senses the direction the user is facing, and displays information about the monument in front of him, is very compelling. Current mobile devices are computationally powerful and provide rich user experiences using touch, accelerometer, and other sensors available on the device as well. Use of a cloud-hosted app store is becoming almost a defacto feature of every mobile device or platform. Google Android Market, Nokia Ovi Store, Blackberry App World, Apple App Store are examples of the same. Mobile vendors are also providing cloud services (such as iCloud and SkyDrive) to host app data by which application developers can enable a seamless application experience on multiple personal devices of the user.

The Future Evolution
Extrapolation of the trends mentioned previously could lead to ideas about the possible future evolution of the Web, aka the Cloud. The Cloud will continue to be a huge information source, with the amount of information growing ever more comprehensive. There is also going to be greater storage of personal data and profiles, together with more immersive interactions that bring the digital world closer to the real world. Mobility that makes the Web available everywhere is only going to intensify. Cloud platforms have already made it possible to harness large amounts of computing power to analyze large amounts of data. Therefore, the world is going to see more and more sophisticated applications that can analyze the data stored in the cloud in smarter ways. These new applications will be accessible on multiple heterogeneous devices, including mobile devices. The simple universal client application, the web browser, will also become more intelligent and provide a rich interactive user experience despite network latencies.
A new wave of applications that provide value to consumer and businesses alike are already evolving. Analytics and business intelligence are becoming more widespread to enable businesses to better understand their customers and personalize their interactions. A recent report states that by use of face recognition software to analyze photos, one can discover the name, birthday, and other personal information about people from Facebook [13]. This technology can be used, for example by grocery stores, to make special birthday offers to people. A study by the Cheshire Constabulary estimated that a typical Londoner is photographed by CCTV cameras on the average of 68 times per day [14]. There are huge amounts of customer data that can be analyzed to derive great insights into the buying behavior, buying pattern and even methods to counteract competitors. Businesses can use the location of people, together with personal information, to better serve customers, as certain mobile devices keep detailed logs of the location of their users [15]. Due to all these reasons and more, the next generation Web, Web 3.0, has been humorously called
Cyberspace looks at You, as illustrated in Figure 1.3.
	[image: B9781597497251000019/f01-03-9781597497251.jpg is missing]

	Figure 1.3 Web 3.0: Cyberspace looks at You.

The previous discussion shows that privacy issues will become important to address going forward. Steve Rambam has described how, using just the email address and name of a volunteer, he was able to track 500 pages of data about the volunteer in 4 hours [16]. The data collected included the places the volunteer had lived, the cars he had driven, and he even was able to discover that somebody had been illegally using the volunteer's Social Security number for the last twenty years! In
Google CEO Schmidt: No Anonymity Is the Future of Web[17], a senior executive at Google predicted that governments were opposed to anonymity, and therefore Web privacy is impossible. However, there are also some who believe privacy concerns are exaggerated [18] and the benefits from making personal information available far outweigh the risks.
An additional way businesses can leverage cloud computing is through the
wisdom of crowds for better decision making. Researchers [19] have shown that by aggregating the beliefs of individual members, crowds could make better decisions than any individual member. The Hollywood Stock Exchange (HSX) is an online game that is a good example of crowd wisdom. HSX participants are allowed to spend up to 2 million dollars buying and selling stock in upcoming movies [20]. The final value in the Hollywood Stock Exchange is a very good predictor of the opening revenue of the movie, and the change in value of its stock a good indication of the revenue in subsequent weeks.
Finally, as noted earlier, the digital universe today is a replica of the physical universe. In the future, more realistic and immersive 3-D user interfaces could lead to a complete change in the way users interact with computers and with each other.
All these applications suggest that computing needs to be looked at as a much higher level abstraction. Application developers should not be burdened by the mundane tasks of ensuring that a specific server is up and running. They should not be bothered about whether the disk currently allotted to them is going to overflow. They should not be worrying about which operating system (OS) their application should support or how to actually package and distribute the application to their consumer. The focus should be on solving the much bigger problems. The compute infrastructure, platform, libraries and application deployment should all be automated and abstracted. This is where Cloud Computing plays a major role.

What is Cloud Computing?
Cloud computing is basically delivering computing at the Internet scale. Compute, storage, networking infrastructure as well as development and deployment platforms are made available on-demand within minutes. Sophisticated futuristic applications such as those described in the earlier sections are made possible by the abstracted, auto-scaling compute platform provided by cloud computing. A formal definition follows.
The US
National Institute of Standards (
NIST) has come up with a list of widely accepted definitions of cloud computing terminologies and documented it in the NIST technical draft [21]. As per NIST, cloud computing is described as follows:
Cloud computing is a model for enabling
ubiquitous, convenient,
on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider interaction.

To further clarify the definition, NIST specifies the following five essential characteristics that a cloud computing infrastructure must have.
On demand self-service: The compute, storage or platform resources needed by the user of a cloud platform are self-provisioned or auto-provisioned with minimal configuration. As detailed in Chapter 2, it is possible to log on to Amazon Elastic Compute Cloud (a popular cloud platform) and obtain resources, such as virtual servers or virtual storage, within minutes. To do this, it is simply necessary to register with Amazon to get a user account. No interaction with Amazon's service staff is needed either for obtaining an account or for obtaining virtual resources. This is in contrast to traditional in-house IT systems and processes, which typically require interaction with an IT administrator, a long approval workflow and usually result in a long time interval to provision any new resource.
Broad network access: Ubiquitous access to cloud applications from desktops, laptops to mobile devices is critical to the success of a Cloud platform. When computing moves to the cloud, the client applications can be very light weight, to the extent of just being a web browser that sends an HTTP request and receives the result. This will in turn make the client devices heavily dependent upon the cloud for their normal functioning. Thus, connectivity is a critical requirement for effective use of a Cloud Application. For example, cloud services like Amazon, Google, and Yahoo! are available world-wide via the Internet. They are also accessible by a wide variety of devices, such as mobile phones, iPads, and PCs.
Resource pooling: Cloud services can support millions of concurrent users; for example, Skype supports 27 million concurrent users [22], while Facebook supported 7 million simultaneous users in 2009 [23]. Clearly, it is impossible to support this number of users if each user needs dedicated hardware. Therefore, cloud services need to share resources between users and clients in order to reduce costs.
Rapid elasticity: A cloud platform should be able to rapidly increase or decrease computing resources as needed. In a cloud platform called Amazon EC2, it is possible to specify a minimum number as well as a maximum number of virtual servers to be allocated. The actual number will vary depending upon the load. Further, the time taken to provision a new server is very small, on the order of minutes. This also increases the speed with which a new infrastructure can be deployed.
Measured service: One of the compelling business use cases for cloud computing is the ability to “pay as you go,” where the consumer pays only for the resources that are actually used by his applications. Commercial cloud services, like Salesforce.com, measure resource usage by customers, and charge proportionally to the resource usage.

Cloud Deployment Models
In addition to proposing a definition of cloud computing, NIST has defined four deployment models for clouds, namely Private Cloud, Public Cloud, Community Cloud and Hybrid Cloud. A
Private cloud is a cloud computing infrastructure that is built for a single enterprise. It is the next step in the evolution of a corporate data center of today where the infrastructure is shared within the enterprise.
Community cloud is a cloud infrastructure shared by a community of multiple organizations that generally have a common purpose. An example of a community cloud is OpenCirrus, which is a cloud computing research testbed intended to be used by universities and research institutions.
Public cloud is a cloud infrastructure owned by a
cloud service provider that provides cloud services to the public for commercial purposes.
Hybrid clouds are mixtures of these different deployments. For example, an enterprise may rent storage in a public cloud for handling peak demand. The combination of the enterprise's private cloud and the rented storage then is a hybrid cloud.
Private vs. Public Clouds
Enterprise IT centers may either choose to use a private cloud deployment or move their data and processing to a public cloud deployment. It is worth noting that there are some significant differences between the two. First, the private cloud model utilizes the in-house infrastructure to host the different cloud services. The cloud user here typically owns the infrastructure. The infrastructure for the public cloud on the other hand, is owned by the cloud vendor. The cloud user pays the cloud vendor for using the infrastructure. On the positive side, the public cloud is much more amenable to provide elasticity and scaling-on-demand since the resources are shared among multiple users. Any over-provisioned resources in the public cloud are well utilized as they can now be shared among multiple users.
Additionally, a public cloud deployment introduces a
third party in any legal proceedings of the enterprise. Consider the scenario where the enterprise has decided to utilize a public cloud with a fictitious company called NewCloud. In case of any litigation, emails and other electronic documents may be needed as evidence, and the relevant court will send orders to the cloud service provider (e.g., NewCloud) to produce the necessary emails and documents. Thus, use of NewCloud's services would mean that NewCloud becomes part of any lawsuit involving data stored in NewCloud. This issue is discussed in more detail in Chapter 7, titled
Designing Cloud Security.
Another consideration is the network bandwidth constraints and cost. In case the decision is made to move some of the IT infrastructure to a public cloud [24], disruptions in the network connectivity between the client and the cloud service will affect the availability of cloud-hosted applications. On a low bandwidth network, the user experience for an interactive application may also get affected. Further, implications on the cost of network usage also need to be considered.
There are additional factors that the cloud user need to use to select between a public or private cloud. A simplified example may make it intuitively clear that the amount of time over which the storage is to be deployed is an important factor. Suppose it is desired to buy 10TB of disk storage, and it is possible either to buy a new storage box for a private cloud, or obtain it through a cloud service provided by NewCloud. Suppose the lifetime of the storage is 5 years, and 10TB of storage costs $X. Clearly NewCloud would have to charge (in a simplified pricing model) at least $X/5 per year for this storage in order to recover their cost. In practice, NewCloud would have to charge more, in order to make a profit, and to cover idle periods when this storage is not rented out to anybody. Thus, if the storage is to be used only temporarily for 1 year, it may be cost-effective to rent the storage from NewCloud, as the business would then only have to pay on the order of $X/5. On the other hand, if the storage is intended to be used for a longer term, then it may be more cost-effective to buy the storage and use it as a private cloud. Thus, it can be seen that one of the factors dictating the use of a private cloud or a public cloud for storage is how long the storage is intended to be used.
Of course, cost may not be the only consideration in evaluating public and private clouds. Some public clouds providing application services, such as Salesforce.com (a popular CRM cloud service) offer unique features that customers would consider in comparison to competing non-cloud applications. Other public clouds offer infrastructure services and enable an enterprise to entirely outsource the IT infrastructure, and to offload complexities of capacity planning, procurement, and management of data centers as detailed in the next section. In general, since private and public clouds have different characteristics, different deployment models and even different business drivers, the best solution for an enterprise may be a hybrid of the two.
A detailed comparison and economic model of using public cloud versus private cloud for database workloads is presented by Tak et al. [25]. The authors consider the intensity of the workload (small, medium, or large workloads),
burstiness, as well as the growth rate of the workload in their evaluation. The choice may also depend upon the costs. So, they consider a large number of cost factors, including reasonable estimates for hardware cost, software cost, salaries, taxes, and electricity. The key finding is that private clouds are cost-effective for medium to large workloads, and public clouds are suitable for small workloads. Other findings are that vertical hybrid models (where parts of the application are in a private cloud and part in a public cloud) tend to be expensive due to the high cost of data transfer. However, horizontal hybrid models, where the entire application is replicated in the public cloud and usage of the private cloud is for normal workloads, while the public cloud is used for demand peaks, can be cost-effective.
An illustrative example of the kind of analysis that needs to be done in order to decide between a private and public cloud deployment is shown in Table 1.1. The numbers in the table are intended to be hypothetical and illustrative. Before deciding on whether a public or private cloud is preferable in a particular instance, it is necessary to work out a financial analysis similar to the one in Table 1.1. The table compares the estimated costs for deployment of an application in both a private and public cloud. The comparison is the total cost over a 3-year time horizon, which is assumed to be the time span of interest. In the table, the software licensing costs are assumed to increase due to increasing load. Public cloud service costs are assumed to rise for the same reason. While cost of the infrastructure is one metric that can be used to decide between private and public cloud, there are other business drivers that may impact the decision.
Table 1.1 Hypothetical Cost of Public vs. Private Cloud

	(in USD)	Private Cloud	Public Cloud
	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3
	Hardware	70,000	40,000	20,000			
	Setup Costs	30,000			5,000		
	Software (Licensing)	200,000	400,000	700,000			
	Labor costs	200,000	200,000	200,000			
	Service costs				300,000	600,000	1,000,000
	WAN costs				15,000	30,000	56,000
	Cost for year	500,000	640,000	920,000	320,000	630,000	1,056,000
	Total	2,060,000	2,006,000

Business Drivers for Cloud Computing
Unlike in a traditional IT purchase model, if using a cloud platform, a business does not need a very high upfront capital investment in hardware. It is also difficult in general to estimate the full capacity of the hardware at the beginning of a project, so people end up over-provisioning IT and buying more than what is needed at the beginning. This again is not necessary in a cloud model, due to the on-demand scaling that it enables. The enterprise can start with a small capacity hardware from the cloud vendor and expand based on how business progresses. Another disadvantage of owning a complex infrastructure is the maintenance needed. From a business perspective, Cloud provides high availability and eliminates need for an IT house in every company, which requires highly skilled administrators.
A number of business surveys have been carried out to evaluate the benefits of Cloud Computing. For example, the North Bridge survey [26] reveals that the majority of businesses are still experimenting with the cloud (40%). However, a significant minority does consider it ready even for mission critical applications (13%). Cloud computing is considered to have a number of positive aspects. In the short term scalability, cost, agility, and innovation are considered to be the major drivers.
Agility and
innovation refer to the ability of enterprise IT departments to respond quickly to requests for new services. Currently, IT departments have come to be regarded as too slow by users (due to the complexity of enterprise software). Cloud computing, by increasing manageability, increases the speed at which applications can be deployed, either on public clouds, or in private clouds implemented by IT departments for the enterprise. Additionally, it also reduces management complexity.
Scalability, which refers to the ease with which the size of the IT infrastructure can be increased to accommodate increased workload, is another major factor. Finally, cloud computing (private or public clouds) have the potential to reduce IT costs due to automated management.
Well, what are the downsides of using the public clouds? Three major factors were quoted by respondents as being inhibiting factors. The first is
security. Verification of the security of data arises as a concern in public clouds, since the data is not being stored by the enterprise. Cloud service providers have attempted to address this problem by acquiring third-party certification.
Compliance is another issue, and refers to the question of whether the cloud security provider is complying with the security rules relating to data storage. An example is health-related data, which requires the appointment of a compliance administrator who will be accountable for the security of the data. Cloud service providers have attempted to address these issues through certification as well. These issues are discussed in Chapter 7. The third major inhibitor cited by businesses was
interoperability and vendor lock-in. This refers to the fact that once a particular public cloud has been chosen, it would not be easy to migrate away, since the software and operating procedures would all have been tailored for that particular cloud. This could give the cloud service provider undue leverage in negotiations with the business. From a financial point of view, “pay per use” spending on IT infrastructure can perhaps be considered as an expense or liability that will be difficult to reduce, since reduction could impact operations. Hence, standardization of cloud service APIs becomes important and current efforts towards the same are detailed in Chapter 10.

Introduction to Cloud Technologies
This section gives an overview of some technology aspects of cloud computing that are detailed in the rest of the book. One of the best ways of learning about cloud technologies is by understanding the three cloud service models or service types for any cloud platform. These are Infrastructure as a Service (
IaaS), Platform as a Service (
PaaS), and Software as a Service (
SaaS) which are described next.
The three cloud service types defined by NIST, IaaS, PaaS and SaaS, focus on a specific layer in a computer's runtime stack – the hardware, the system software (or platform) and the application, respectively.
Figure 1.4 illustrates the three cloud service models and their relationships. At the lowest layer is the hardware infrastructure on which the cloud system is built. The cloud platform that enables this infrastructure to be delivered as a service is the IaaS architecture. In the IaaS service model, the physical hardware (servers, disks, and networks) is abstracted into virtual servers and virtual storage. These virtual resources can be allocated on demand by the cloud users, and configured into virtual systems on which any desired software can be installed. As a result, this architecture has the greatest flexibility, but also the least application automation from the user's viewpoint. Above this is the PaaS abstraction, which provides a platform built on top of the abstracted hardware that can be used by developers to create cloud applications. A user who logs in to a cloud service that offers PaaS will have commands available that will allow them to allocate middleware servers (e.g., a database of a certain size), configure and load data into the middleware, and develop an application that runs on top of the middleware. Above this is the SaaS abstraction, which provides the complete application (or solution) as a service, enabling consumers to use the cloud without worrying about all the complexities of hardware, OS or even application installation. For example, a user logging in to an SaaS service would be able to use an email service without being aware of the middleware and servers on which this email service is built. Therefore, as shown in the figure, this architecture has the least flexibility and most automation for the user.
	[image: B9781597497251000019/f01-04-9781597497251.jpg is missing]

	Figure 1.4 Cloud service models.

While the features offered by the three, service types may be different, there is a common set of technological challenges that all cloud architectures face. These include computation scaling, storage scaling, multi-tenancy, availability, and security. It may be noted that in the previous discussion, the three different service models have been shown as clearly layered upon each other. This is frequently the case; for example, the Salesforce.com CRM SaaS is built upon the Force.com PaaS. However, theoretically, this need not be true. It is possible to provide a SaaS model using an over-provisioned data center, for example.
Infrastructure as a Service
The IaaS model is about providing compute and storage resources as a service. According to NIST [21], IaaS is defined as follows:
The capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications, and possibly limited control of select networking components (e.g., host firewalls).

The user of IaaS has single ownership of the hardware infrastructure allotted to him (may be a virtual machine) and can use it as if it is his own machine on a remote network and he has control over the operating system and software on it. IaaS is illustrated in Figure 1.5. The IaaS provider has control over the actual hardware and the cloud user can request allocation of virtual resources, which are then allocated by the IaaS provider on the hardware (generally without any manual intervention). The cloud user can manage the virtual resources as desired, including installing any desired OS, software and applications. Therefore IaaS is well suited for users who want complete control over the software stack that they run; for example, the user may be using heterogeneous software platforms from different vendors, and they may not like to switch to a PaaS platform where only selected middleware is available. Well-known IaaS platforms include Amazon EC2, Rackspace, and Rightscale. Additionally, traditional vendors such as HP, IBM and Microsoft offer solutions that can be used to build private IaaS.
	[image: B9781597497251000019/f01-05-9781597497251.jpg is missing]

	Figure 1.5 Infrastructure as a Service.

Platform as a Service
The PaaS model is to provide a system stack or platform for application deployment as a service. NIST defines PaaS as follows:
The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, or storage, but has control over the deployed applications and possibly application hosting environment configurations.

Figure 1.6 shows a PaaS model diagramatically. The hardware, as well as any mapping of hardware to virtual resources, such as virtual servers, is controlled by the PaaS provider. Additionally, the PaaS provider supports selected middleware, such as a database, web application server, etc. shown in the figure. The cloud user can configure and build on top of this middleware, such as define a new database table in a database. The PaaS provider maps this new table onto their cloud infrastructure. Subsequently, the cloud user can manage the database as needed, and develop applications on top of this database. PaaS platforms are well suited to those cloud users who find that the middleware they are using matches the middleware provided by one of the PaaS vendors. This enables them to focus on the application. Windows Azure, Google App Engine, and Hadoop are some well-known PaaS platforms. As in the case of IaaS, traditional vendors such as HP, IBM and Microsoft offer solutions that can be used to build private PaaS.
	[image: B9781597497251000019/f01-06-9781597497251.jpg is missing]

	Figure 1.6 Platform as a Service.

Software as a Service
SaaS is about providing the complete application as a service. SaaS has been defined by NIST as follows:
The capability provided to the consumer is to use the provider's applications running on a cloud infrastructure. The applications are accessible from various client devices through a thin client interface such as a web browser (e.g., web-based email). The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.

Any application that can be accessed using a web browser can be considered as SaaS. These points are illustrated in Figure 1.7. The SaaS provider controls all the layers apart from the application. Users who log in to the SaaS service can both use the application as well as configure the application for their use. For example, users can use Salesforce.com to store their customer data. They can also configure the application, for example, requesting additional space for storage or adding additional fields to the customer data that is already being used. When configuration settings are changed, the SaaS infrastructure performs any management tasks needed (such as allocation of additional storage) to support the changed configuration. SaaS platforms are targeted towards users who want to use the application without any software installation (in fact, the motto of Salesforce.com, one of the prominent SaaS vendors, is “No Software”). However, for advanced usage, some small amount of programming or scripting may be necessary to customize the application for usage by the business (for example, adding additional fields to customer data). In fact, SaaS platforms like Salesforce.com allow many of these customizations to be performed without programming, but by specifying business rules that are simple enough for non-programmers to implement. Prominent SaaS applications include Salesforce.com for CRM, Google Docs for document sharing, and web email systems like Gmail, Hotmail, and Yahoo! Mail. IT vendors such as HP and IBM also sell systems that can be configured to set up SaaS in a private cloud; SAP, for example, can be used as an SaaS offering inside an enterprise.
	[image: B9781597497251000019/f01-07-9781597497251.jpg is missing]

	Figure 1.7 SaaS cloud model.

Technology Challenges
The technology challenges for cloud computing arise from the fact that the scale of cloud computing is much, much larger than that of traditional computing environments – as it will be shared by many users, many applications and in fact many enterprises! These challenges, therefore, impact all the three cloud service models described earlier. The rest of the book highlights the methods used by different cloud systems to overcome these challenges.
Figure 1.8 shows the traffic to the five most popular web sites. The continuously dropping curve is the fraction of all Web requests that went to that web site while the V-shaped curve is the response time of the web site. It can be seen that the top web site – Facebook.com – accounts for about 7.5% of all Web traffic. In spite of the high traffic, the response time – close to 2 seconds – is still better than average. To support such high transaction rates with good response time, it must be possible to scale both compute and storage resources very rapidly.
Scalability of both compute power and storage is therefore a major challenge for all three cloud models. High scalability requires large-scale sharing of resources between users. As stated earlier, Facebook supports 7 million concurrent users. New techniques for
multi-tenancy, or fine-grained sharing of resources, are needed for supporting such large numbers of users. Security is a natural concern in such environments as well.
	[image: B9781597497251000019/f01-08-9781597497251.jpg is missing]

	Figure 1.8 Traffic statistics for popular web sites.
Data Source: Alexa.com [27]

Additionally, in such large-scale environments, hardware failures and software bugs can be expected to occur relatively frequently. The problem is complicated by the fact that failures can trigger other failures, leading to an avalanche of failures that can lead to significant outages. Such a failure avalanche occurred once in 2011 in Amazon's data center [28], [29] and [30]. A networking failure triggered a re-mirroring (making a replica or mirror) of data. However, the re-mirroring traffic interfered with normal storage traffic, causing the system to believe that additional mirrors had failed. This in turn triggered further re-mirroring traffic, which interfered with additional normal storage traffic, triggering still more re-mirroring (see Figure 1.9), bringing down the whole system.
Availability is therefore one of the major challenges affecting clouds. Chapter 6 gives some approaches that can be used to address these challenges, but of course more research yet needs to be done to solve the issues completely.
	[image: B9781597497251000019/f01-09-9781597497251.jpg is missing]

	Figure 1.9 An exampleshowingavalancheoffailures.

Summary
This chapter has focused on many concepts that will be important in the rest of the book. First, the NIST definition of cloud computing and the three cloud computing models defined by NIST (Infrastructure as a Service or IaaS, Platform as a Service or PaaS, Software as a Service or SaaS) have been described. Next, the four major cloud deployment models – private cloud, public cloud, community cloud, and hybrid cloud, were surveyed and described. This was followed by an analysis of the economics of cloud computing and the business drivers. It was pointed out that in order to quantify the benefits of cloud computing, detailed financial analysis is needed. Finally, the chapter discussed the major technological challenges faced in cloud computing – scalability of both computing and storage, multi-tenancy, and availability. In the rest of the book, while discussing technology, the focus will be on how different cloud solutions address these challenges, thereby allowing readers to compare and contrast the different solutions on a technological level.
Go ahead – enjoy the technology chapters now and demystify the cloud!

References
[1]
Nicholas Carr, W W. The Big Switch: Rewiring the world, from edison to google. Norton & Company, 2009. ISBN-13: 978-0393333947.
[2]
O’Reilly T, What is web 2.0? Design patterns and business models for the next generation of software, September 2005. http://oreilly.com/web2/archive/what-is-web-20.html 2005 [accessed 08.10.11].
[3]
Facebook Now Has 750 Million Users. http://techcrunch.com/2011/06/23/facebook-750-million-users/ [accessed 08.10.11].
[4]
Egypt's Facebook Revolution: Wael Ghonim Thanks The Social Network. http://www.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael-ghonim_n_822078.html [accessed 08.10.11].
[5]
Egyptians protesting Tahrir Square Cairo. http://www.youtube.com/watch?v=S8aXWT3fPyY [accessed 25.01.11].
[6]
How Obama used social networking tools to win, INSEAD. http://knowledge.insead.edu/contents/HowObamausedsocialnetworkingtowin090709.cfm; [accessed 10.07.09].
[7]
The Diverse and Exploding Digital Universe, IDC. http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf; 2008 [accessed 08.10.11].
[8]
Internet Enemies, by Reporters sans Frontiers. http://www.rsf.org/IMG/pdf/Internet_enemies_2009_2_.pdf; [accessed 12.03.09].
[9]
Google sees growing struggle over web censorship. http://www.reuters.com/article/2011/06/27/us-google-censorship-idUSTRE75Q4DT20110627 [accessed 08.10.11].
[10]
Zanasi A. text mining and its applications to intelligence, CRM and knowledge management. WIT Press; 30 2007, p. 203.
[11]
Gardner D. Cloud computing uniquely enables product and food recall processes across supply chains. http://www.zdnet.com/blog/gardner/cloud-computing-uniquely-enables-product-and-food-recall-processes-across-supply-chains/3163; [accessed 25.08.09].
[12]
Mobile broadband subscribers overtake fixed broadband, Infonetics Research. http://www.infonetics.com/pr/2011/Fixed-and-Mobile-Subscribers-Market-Highlights.asp [accessed 08.10.11].
[13]
Software that spills info by looking at your photo, Bangalore Mirror, 3 August 2011, p. 13.
[14]
Gerrard G, Thompson R. Two million cameras in the UK, Cheshire Constabulary, CCTV Image, Vol. 42. http://www.securitynewsdesk.com/wp-content/uploads/2011/03/CCTV-Image-42-How-many-cameras-are-there-in-the-UK.pdf [accessed 08.10.11].
[15]
J. R. Raphael, Apple vs. Android location tracking: Time for some truth, Computerworld. http://blogs.computerworld.com/18190/apple_android_location_tracking; [accessed 25.04.11].
[16]
Rambam S. Privacy Is Dead - Get Over It, 8th www.ToorCon.org Information Security Conference, September 30, 2006, San Diego, California. http://video.google.com/videoplay?docid=-383709537384528624 [accessed 08.10.11].
[17]
Ms Smith, Google CEO Schmidt: No Anonymity Is The Future Of Web, Network World. http://www.networkworld.com/community/blog/google-ceo-schmidt-no-anonymity-future-web; 2010 [accessed 08.10.11].
[18]
Pogue D. Don't worry about who's watching. Scientific American. http://www.scientificamerican.com/article.cfm?id=dont-worry-about-whos-watching; [accessed 01.01.11].
[19]
Suroweiki J, The Wisdom of Crowds, Anchor, 16 August 2005.
[20]
What is HSX Anyway?http://www.hsx.com/help/ [accessed 08.10.11].
[21]
The NIST Definition of Cloud Computing (Draft), Peter Mell, Timothy Grance, NIST. http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf [accessed 08.10.11].
[22]
Skype hits new record of 27 million simultaneous users in wake of iOS video chat release, Vlad Savov, Engadget. http://www.engadget.com/2011/01/11/skype-hits-new-record-of-27-million-simultaneous-users-in-wake-o/ [accessed 08.10.11].
[23]
Erlang at Facebook, Eugene Letuchy. http://www.erlang-factory.com/upload/presentations/31/EugeneLetuchy-ErlangatFacebook.pdf; [accessed 30.04.09].
[24]
Cloud storage will fail without WAN Acceleration, so FedEx to the rescue? Larry Chaffin, 6 December 2010, Networking World. http://www.networkworld.com/community/blog/cloud-storage-will-fail-without-wan-accelerat [accessed 06.12.11].
[25]
Tak BC, Urgaonkar B, Sivasubramaniam A. To Move or Not to Move: The Economics of Cloud Computing. The Pennsylvania State University, Hot Cloud’11: 3
rd Usenix Workshop on Hot Topics in Cloud Computing, June 2011, Portland, Oregon, http://www.usenix.org/event/hotcloud11/tech/final_files/Tak.pdf [accessed 08.10.11].
[26]
2011 Future of Cloud Computing Survey Results, Michael Skok, North Bridge Venture Partners. http://futureofcloudcomputing.drupalgardens.com/media-gallery/detail/91/286; [accessed 22.06.11].
[27]
Alexa, The Web Information Company. http://alexa.com [accessed 08.10.11].
[28]
Major Amazon Outage Ripples Across Web, April 21st, 2011 : Rich Miller, Data Center Knowledge. http://www.datacenterknowledge.com/archives/2011/04/21/major-amazon-outage-ripples-across-web/ [accessed 08.10.11].
[29]
Kusnetzky D, Analyzing the Amazon Outage with Kosten Metreweli of Zeus, May 16, 2011, http://www.zdnet.com/blog/virtualization/analyzing-the-amazon-outage-with-kosten-metreweli-of-zeus/3069 [accessed 16.05.11].
[30]
Phil Wainewright, Seven lessons to learn from Amazon's outage. http://www.zdnet.com/blog/saas/seven-lessons-to-learn-from-amazons-outage/1296; [accessed 24.04.11].

Chapter 2. Infrastructure as a Service
Information in This Chapter
•Storage as a Service: Amazon Storage Services

•Compute as a Service: Amazon Elastic Compute Cloud (EC2)

•HP CloudSystem Matrix

•Cells-as-a-Service

This chapter describes an important cloud service model called “Infrastructure as a Service” type (IaaS), that enables computing and storage resources to be delivered as a service. The chapter takes popular cloud platforms as case studies, describes their key features and programming APIs with examples. To provide an insight into the trade-offs that the developer can make to effectively use the system, the chapter also contains a high level description of the technology behind the platforms. A more detailed internal systems view of the technology challenges and possible approaches to solve them are detailed in Chapter 6.
Keywords
IaaS, Infrastructure as a Service, Compute as a Service, Storage as a Service, Amazon EC2, SimpleDB, Amazon S3, CloudSystem Matrix, Cells-as-a-Service

Introduction
This chapter describes an important cloud service model called “Infrastructure as a Service” (IaaS), which enables computing and storage resources to be delivered as a service. This is the first of the three cloud computing service models described in the previous chapter. The other two models are studied in subsequent chapters. Under the IaaS cloud computing model, cloud service providers make computing and storage resources (such as servers and storage) available as a service. This offers maximum flexibility for users to work with the cloud infrastructure, wherein exactly how the virtual computing and storage resources are used is left to the cloud user. For example, users will be able to load any operating system and other software they need and execute most of the existing enterprise services without many changes. However, the burden of maintaining the installed operating system and any middleware continues to fall on the user/customer. Ensuring the availability of the application is also the user's job since IaaS vendors only provide virtual hardware resources.
The subsequent sections describe some popular IaaS platforms for storage as a service and then compute as a service. First, the section
Storage as a Service (sometimes abbreviated as
StaaS) takes a detailed look at key Amazon Storage Services: (a)
Amazon Simple Storage Service (
S3), which provides a highly reliable and highly available object store over HTTP; (b)
Amazon SimpleDB, a key-value store; and (c)
Amazon Relational Database Service (
RDS), which provides a MySQL instance in the cloud. The second part of the chapter describes compute aspects of IaaS – i.e., enabling virtual computing over Cloud. Customers of these services will typically reserve a virtual computer of a certain capacity, and load software that is needed. There could also be features that allow these virtual computers to be networked together, and also for the capacity of the virtual computing to be increased or decreased according to demand. Three diverse instances of
Compute as a Service are described in this chapter, namely
Amazon Elastic Compute Cloud (
EC2), which is Amazon's IaaS offering, followed by HP's flagship product called CloudSystem Matrix and finally
Cells as a Service, an HP Labs research prototype that offers some advanced features.

Storage as a Service: Amazon Storage Services
Data is the lifeblood of an enterprise. Enterprises have varied requirements for data, including structured data in relational databases that power an e-commerce business, or documents that capture unstructured data about business processes, plans and visions. Enterprises may also need to store objects on behalf of their customers, like an online photo album or a collaborative document editing platform. Further, some of the data may be confidential and must be protected, while others data should be easily shareable. In all cases, business critical data should be secure and available on demand in the face of hardware and software failures, network partitions and inevitable user errors.

NoteAmazon Storage Services

• Simple Storage Service (S3): An object store

• SimpleDB: A Key-value store

• Relational Database Service (RDS): MySQL instance

Amazon Simple Storage Service (S3)
Amazon Web Services (
AWS), from Amazon.com, has a suite of cloud service products that have become very popular and are almost looked up to as a de facto standard for delivering IaaS. Figure 2.1 shows a screen shot of AWS depicting its different IaaS products in multiple tabs (S3, EC2, CloudWatch). This chapter covers a good amount of detail of S3, SimpleDB, EBS, RDS, and EC2 and Chapter 8 describes CloudWatch.
	[image: B9781597497251000020/f02-01-9781597497251.jpg is missing]

	Figure 2.1 AWS console.

Amazon S3 is a highly reliable, highly available, scalable and fast storage in the cloud for storing and retrieving large amounts of data just through simple web services. This section gives some preliminary details of the platform first and then, takes a simple example of using S3, followed by a detailed description of S3 features [1]. More advanced uses of S3 are described in a later section on Amazon EC2, with an example of how S3 APIs can be used by developers together with other Amazon compute services (such as EC2) to form a complete IaaS solution. First, a look at how one can use S3 as a simple cloud storage to upload files.
Accessing S3
There are three ways of using S3. Most common operations can be performed via the AWS console, the GUI interface to AWS (shown in Figure 2.1) that can be accessed via http://aws.amazon.com/console. For use of S3 within applications, Amazon provides a REST-ful API with familiar HTTP operations such as GET, PUT, DELETE, and HEAD. Also, there are libraries and SDKs for various languages that abstract these operations.

NoteS3 Access Methods

• AWS Console

• Amazon's RESTful API

• SDKs for Ruby and other languages

Additionally, since S3 is a storage service, several
S3 browsers exist that allow users to explore their S3 account as if it were a directory (or a folder). There are also file system implementations that let users treat their S3 account as just another directory on their local disk. Several command line utilities [2] and [3] that can be used in batch scripts also exist, and are described towards the end of this section.

Getting Started with S3
Let's start with a simple personal use-case. Consider a user having a directory full of personal photos that they want to store in the cloud for backup. Here's how this could be approached:

1. Sign up for S3 at http://aws.amazon.com/s3/. While signing up, obtain the
AWS Access Key and the
AWS Secret Key. These are similar to userid and password that is used to authenticate all transactions with Amazon Web Services (not just S3).

2. Sign in to the
AWS Management Console for S3 (see Figure 2.1) at https://console.aws.amazon.com/s3/home.

3. Create a
bucket (see Figure 2.2) giving a name and geographical location where it can be stored. In S3 all files (called
objects) are stored in a bucket, which represents a collection of related objects. Buckets and objects are described later in the section
Organizing Data in S3: Buckets, Objects and Keys.

4. Click the
Upload button (see Figure 2.3) and follow the instructions to upload files.

5. The photos or other files are now safely backed up to S3 and available for sharing with a URL if the right permissions are provided.

	[image: B9781597497251000020/f02-02-9781597497251.jpg is missing]

	Figure 2.2 Creating a bucket.

	[image: B9781597497251000020/f02-03-9781597497251.jpg is missing]

	Figure 2.3 Uploading objects.

From a developer perspective, this can also be accomplished programmatically, in case there is a need to include this functionality in a program.

Organizing Data In S3: Buckets, Objects and Keys
Files are called
objects in S3. Objects are referred to with keys – basically an optional directory path name followed by the name of the object. Objects in S3 are replicated across multiple geographic locations to make it resilient to several types of failures (however, consistency across replicas is not guaranteed). If object versioning is enabled, recovery from inadvertent deletions and modifications is possible. S3 objects can be up to 5 Terabytes in size and there are no limits on the number of objects that can be stored. All objects in S3 must be stored in a
bucket. Buckets provide a way to keep related objects in one place and separate them from others. There can be up to 100 buckets per account and an unlimited number of objects in a bucket.
Each object has a key, which can be used as the path to the resource in an HTTP URL. For example, if the bucket is named
johndoe and the key to an object is
resume.doc, then its HTTP URL is http://s3.amazonaws.com/johndoe/resume.doc or alternatively, http://johndoe.s3.amazonaws.com/resume.doc By convention, slash-separated keys are used to establish a directory-like naming scheme for convenient browsing in S3 explorers such as the AWS Console, S3Fox, etc. For example, one can have URLs such as http://johndoe.s3.amazon.aws.com/project1/file1.c, http://johndoe.s3.amazon.aws.com/project1/file2.c and http://johndoe.s3.amazon.aws.com/project2/file1.c. However, these are files with keys (names)
project1/file1.c, and so on, and S3 is not really a hierarchical file system. Note that the bucket namespace is shared; i.e., it is not possible to create a bucket with a name that has already been used by another S3 user.
Note that entering the above URLs into a browser will not work as expected; not only are these values fictional, even if real values were substituted for the bucket and key, the result would be an “HTTP 403 Forbidden” error. This is because the URL lacks authentication parameters; S3 objects are private by default and requests should carry authentication parameters that prove the requester has rights to access the object, unless the object has “Public” permissions. Typically the client library, SDK or application will use the AWS Access Key and AWS Secret Key described later to compute a signature that identifies the requester, and append this signature to the S3 request. For example, the S3
Getting Started Guide is stored in the
awsdocs bucket at the
S3/latest/s3-gsg.pdf key with anonymous read permissions; hence it is available to everyone at http://s3.amazonaws.com/awsdocs/S3/latest/s3-gsg.pdf.

S3 Administration
In any enterprise, data is always coupled to policies that determine the location of the data and its availability, as well as who can and cannot access it. For security and compliance with local regulations, it is necessary to be able to audit and log actions and be able to undo inadvertent user actions. S3 provides facilities for all of these, described as follows:
Security: Users can ensure the security of their S3 data by two methods. First, S3 offers
access control to objects. Users can set permissions that allow others to access their objects. This is accomplished via the AWS Management Console. A right-click on an object brings up the object actions menu (see Figure 2.4). Granting anonymous read access to objects makes them readable by anyone; this is useful, for example, for static content on a web site. This is accomplished by selecting the
Make Public option on the object menu. It is also possible to narrow read or write access to specific AWS accounts. This is accomplished by selecting the
Properties option that brings up another menu (not shown) that allows users to enter the email ids of users to be allowed access. It is also possible to allow others to put objects in a bucket in a similar way. A common use for this is to provide clients with a way to submit documents for modification, which are then written to a different bucket (or different keys in the same bucket) where the client has permissions to pick up the modified document.
	[image: B9781597497251000020/f02-04-9781597497251.jpg is missing]

	Figure 2.4 Amazon S3: Performing actions on objects.

The other method that helps secure S3 data is to collect audit logs. S3 allows users to turn on
logging for a bucket, in which case it stores complete access logs for the bucket in a different bucket (or, if desired, the same bucket). This allows users to see which AWS account accessed the objects, the time of access, the IP address from which the accesses took place and the operations that were performed. Logging can be enabled from the AWS Management Console (Figure 2.5). Logging can also be enabled at the time of bucket creation.
	[image: B9781597497251000020/f02-05-9781597497251.jpg is missing]

	Figure 2.5 Amazon S3 bucket logging.

Data protection: S3 offers two features to prevent data loss [1]. By default, S3 replicates data across multiple storage devices, and is designed to survive two replica failures. It is also possible to request
Reduced Redundancy Storage(
RRS) for non-critical data. RRS data is replicated twice, and is designed to survive one replica failure. It is important to note that Amazon does not guarantee consistency among the replicas; e.g., if there are three replicas of the data, an application reading a replica which has a delayed update could read an older version of the data. The technical challenges of ensuring consistency, approaches to solve it and trade-offs to be made are discussed in detail in the
Data Storage section of Chapter 5.
Versioning: If versioning is enabled on a bucket, then S3 automatically stores the full history of all objects in the bucket from that time onwards. The object can be restored to a prior version, and even deletes can be undone. This guarantees that data is never inadvertently lost.
Regions: For performance, legal and other reasons, it may be desirable to have S3 data running in specific geographic locations. This can be accomplished at the bucket level by selecting the region that the bucket is stored in during its creation. The region corresponds to a large geographic area, such as the USA (California) or Europe. The current list of regions can be found on the S3 web site [1].

Large Objects and Multi-part Uploads
The object size limit for S3 is 5 terabytes, which is more than is required to store an uncompressed 1080p HD movie. In the instance that this is not sufficient, the object can be stored in smaller chunks with the splitting and re-composition being managed in the application, using the data.
Although Amazon S3 has high aggregate bandwidth available, uploading large objects will still take some time. Additionally, if an upload fails, the entire object needs to be uploaded again. Multi-part upload solves both problems elegantly. S3 provides APIs that allow the developer to write a program that splits a large object into several parts and uploads each part independently [4]. These uploads can be parallelized for greater speed to maximize the network utilization. If a part fails to upload, only that part needs to be re-tried. S3 supported up to 10,000 parts per object as of writing of this book.

Amazon Simple DB
Unlike Amazon S3 that provides a file level operations,
SimpleDB (
SDB) provides a simple data store interface in the form of a key-value store. It allows storage and retrieval of a set of attributes based on a key. Use of key-value stores is an alternative to relational databases that use SQL-based queries. It is a type of NoSQL data store. A detailed comparison of key-value stores with relational databases, is found in the section
Scaling Storage in Chapter 6. The next section provides a short overview of SDB.
Data Organization and Access
Data in SDB is organized into domains. Each item in a domain has a unique key that must be provided during creation. Each item can have up to 256 attributes, which are name-value pairs. In terms of the relational model, for each row, the primary key translates to the item name and the column names and values for that row translate to the attribute name-value pairs. For example, if it is necessary to store information regarding an employee, it is possible to store the attributes of the employee (e.g., the employee name) indexed by an appropriate key, such as an employee id. Unlike an RDBMS, attributes in SDB can have multiple values – e.g., if in a retail product database, the list of
keywords for each item in the product catalog can be stored as a single value corresponding to the attribute
keywords; doing this with an RDBMS would be more complex. More in-depth technical details of NoSQL data stores can be found in Chapter 5.
SDB provides a query language that is analogous to SQL, although there are methods to fetch a single item. Queries take advantage of the fact that SDB automatically indexes all attributes. A more detailed description of SDB and the use of its API is described with an example in a later section on Amazon EC2.

SDB Availability and Administration
SDB has a number of features to increase availability and reliability. Data stored in SDB is automatically replicated across different geographies for high availability. It also automatically adds compute resources in proportion to the request rate and automatically indexes all fields in the dataset for efficient access. SDB is schema-less; i.e., fields can be added to the dataset as the need arises. This and other advantages of NoSQL to provide a scalable store are discussed in Chapter 5,
Paradigms for Developing Cloud Applications.

Amazon Relational Database Service
Amazon Relational Database Service (
RDS) provides a traditional database abstraction in the cloud, specifically a MySQL instance in the cloud. An RDS instance can be created using the RDS tab in the AWS Management Console (see Figure 2.6).
	[image: B9781597497251000020/f02-06-9781597497251.jpg is missing]

	Figure 2.6 AWS console: relational database service.

AWS performs many of the administrative tasks associated with maintaining a database for the user. The database is backed up at configurable intervals, which can be as frequent as 5 minutes. The backup data are retained for a configurable period of time which can be up to 8 days. Amazon also provides the capability to snapshot the database as needed. All of these administrative tasks can be performed through the AWS console (as in Figure 2.6). Alternatively, it is possible to develop a custom tool which will perform the tasks through the Amazon RDS APIs.

Compute as a Service: Amazon Elastic Compute Cloud (EC2)
The other important type of IaaS is Compute as a Service, where computing resources are offered as a service. Of course, for a useful compute as a service offering, it should be possible to associate storage with the computing service (so that the results of the computation can be made persistent). Virtual networking is needed as well, so that it is possible to communicate with the computing instance. All these together make up Infrastructure as a Service.
Amazon's Elastic Compute Cloud (EC2), one of the popular Compute as a Service offerings, is the topic of this section. The first part of this section provides an overview of Amazon EC2. This is then followed by a simple example that shows how EC2 can be used to set up a simple web server. Next, a more complex example that shows how EC2 can be used with Amazon's StaaS offerings to build a portal whereby customers can share books is presented. Finally, an example that illustrates advanced features of EC2 is shown.
Overview of Amazon EC2
Amazon EC2 allows enterprises to define a virtual server, with virtual storage and virtual networking. As the computational needs of an enterprise can vary greatly, some applications may be compute-intensive, and other applications may stress storage. Certain enterprise applications may need certain software environments and other applications may need computational clusters to run efficiently. Networking requirements may also vary greatly. This diversity in the compute hardware, with automatic maintenance and ability to handle the scale, makes EC2 a unique platform.
Accessing EC2 Using AWS Console
As with S3, EC2 can be accessed via the Amazon Web Services console at http://aws.amazon.com/console. Figure 2.7 shows the EC2 Console Dashboard, which can be used to create an
instance (a compute resource), check status of user's instances and even terminate an instance. Clicking on the “Launch Instance” button takes the user to the screen shown in Figure 2.8, where a set of supported operating system images (called
Amazon Machine Images,
AMI) are shown to choose from. More on types of AMI and how one should choose the right one are described in later sections in this chapter. Once the image is chosen, the EC2 instance wizard pops up (Figure 2.9) to help the user set further options for the instance, such as the specific OS kernel version to use, whether to enable monitoring (using the CloudWatch tool described in Chapter 8) and so on. Next, the user has to create at least one key-value pair that is needed to securely connect to the instance. Follow the instructions to create a key-pair and save the file (say
my_keypair.pem) in a safe place. The user can reuse an already created key-pair in case the user has many instances (it is analogous to using the same username-password to access many machines). Next, the security groups for the instance can be set to ensure the required network ports are open or blocked for the instance. For example, choosing the “web server” configuration will enable port 80 (the default HTTP port). More advanced firewall rules can be set as well. The final screen before launching the instance is shown in Figure 2.10. Launching the instance gives a public DNS name that the user can use to login remotely and use as if the cloud server was on the same network as the client machine.
	[image: B9781597497251000020/f02-07-9781597497251.jpg is missing]

	Figure 2.7 AWS EC2 console.

	[image: B9781597497251000020/f02-08-9781597497251.jpg is missing]

	Figure 2.8 Creating an EC2 instance using the AWS console.

	[image: B9781597497251000020/f02-09-9781597497251.jpg is missing]

	Figure 2.9 The EC2 instance wizard.

	[image: B9781597497251000020/f02-10-9781597497251.jpg is missing]

	Figure 2.10 Parameters that can be enabled for a simple EC2 instance.

For example, to start using the machine from a Linux client, the user gives the following command from the directory where the key-pair file was saved. After a few confirmation screens, the user is logged into the machine to use any Linux command. For root access the user needs to use the
sudo command.
ssh -i my_keypair.pem ec2-67-202-62-112.compute-1.amazonaws.com
For Windows, the user needs to open the
my_keypair.pem file and use the “Get Windows Password” button on the AWS Instance page. The console returns the administrator password that can be used to connect to the instance using a Remote Desktop application (usually available at
Start-> All Programs -> Accessories -> Remote Desktop Connection).
A description of how to use the AWS EC2 Console to request the computational, storage and networking resources needed to set up and launch a web server is described in the
Simple EC2 example: Setting up a Web Server section of this chapter.

Accessing EC2 Using Command Line Tools
Amazon also provides a command line interface to EC2 that uses the EC2 API to implement specialized operations that cannot be performed with the AWS console. The following briefly describes how to install and set up the command line utilities. More details are found in
Amazon Elastic Compute Cloud User Guide[5]. The details of the command line tools are found in
Amazon Elastic Compute Cloud Command Line Reference[6].

NoteInstalling EC2 command line tools

• Download tools

• Set environment variables (e.g., location of JRE)

• Set security environment (e.g., get certificate)

• Set region

Download tools: The EC2 command line utilities can be downloaded from
Amazon EC2 API Tools[7] as a Zip file. They are written in Java, and hence will run on Linux, Unix, and Windows if the appropriate JRE is available. In order to use them simply unpack the file, and then set appropriate environment variables, depending upon the operating system being used. These environment variables can also be set as parameters to the command.
Set environment variables: The first command sets the environment variable that specifies the directory in which the Java runtime resides.
PATHNAME should be the full pathname of the directory where the java.exe file can be found. The second command specifies the directory where the EC2 tools reside;
TOOLS_PATHNAME should be set to the full pathname of the directory named
ec2-api-tools-A.B-nnn into which the tools were unzipped (A, B and nnn are some digits that differ based on the version used). The third command sets the executable path to include the directory where the EC2 command utilities are present.
For Linux:
$export JAVA_HOME=PATHNAME
$export EC2_TOOLS=TOOLS_PATHNAME
$export PATH=$PATH:$EC2_HOME/bin
For Windows:
C:\>SET JAVA_HOME=PATHNAME
C:\>SET EC2_TOOLS=TOOLS_PATHNAME
C:\>SET PATH=%PATH%,%EC2_HOME%\bin
Set up security environment: The next step is to set up the environment so that the EC2 command line utilities can authenticate to AWS during each interaction. To do this, it is necessary to download an X.509 certificate and private key that authenticates HTTP requests to Amazon. The X.509 certificate can be generated by clicking on the “Account” link shown in Figure 2.7, clicking on the “Security Credentials” link that is displayed, and following the given instructions to create a new certificate. The certificate files should be downloaded to a
.ec2 directory in the home directory on Linux/Unix, and
C:\ec2 on Windows, without changing their names. The following commands are to be executed to set up the environment; both Linux and Windows commands are given. Here,
f1.pem is the certificate file downloaded from EC2.
$export EC2-CERT=~/.ec2/f1.pem
or
C:\> set EC2-CERT=~/.ec2/f1.pem
Set region: It is necessary to next set the
region that the EC2 command tools interact with – i.e., the location in which the EC2 virtual machines would be created. AWS regions are described in a subsequent section titled
S3 Administration. In brief, each region represents an AWS data center, and AWS pricing varies by region. The command
ec2-describe-regions can be issued at this point to test the installation of the EC2 command tools and list the available regions.
The default region used is the US-East region “us-east-1” with service endpoint URL http://ec2.us-east-1.amazonaws.com, but can be set to any specific end point using the following command, where
ENDPOINT_URL is formed from the region name as illustrated for the “us-east-1”.
$export EC2-URL=https://<ENDPOINT_URL>
Or
C:\> set EC2-URL =https://<ENDPOINT_URL>
A later section explains how developers can use the EC2 and S3 APIs to set up a web application in order to implement a simple publishing portal such as the Pustak Portal (running example used in this book). Before that one needs to understand more about what a computation resource is and the parameters that one can configure for each such resource, described in the next section.

EC2 Computational Resources
This section gives a brief overview of the computational resources available on EC2 first, followed by the storage and network resources, more details of which are available at
EC2 Introduction[8].
Computing resources: The computing resources available on EC2, referred to as EC2 instances, consist of combinations of computing power, together with other resources such as memory. Amazon measures the computing power of an EC2 instance in terms of EC2 Compute Units [9]. An
EC2 Compute Unit (
CU) is a standard measure of computing power in the same way that bytes are a standard measure of storage. One EC2 CU provides the same amount of computing power as a 1.0–1.2 GHz Opteron or Xeon processor in 2007. Thus, if a developer requests a computing resource of 1 EC2 CU, and the resource is allocated on a 2.4 GHz processor, they may get 50% of the CPU. This allows developers to request standard amounts of CPU power regardless of the physical hardware.
The EC2 instances that Amazon recommends for most applications belong to the
Standard Instance family [8]. The characteristics of this family are shown in Table 2.1,
EC2 Standard Instance Types. A developer can request a computing resource of one of the instance types shown in the table (e.g., a Small computing instance, which would have the characteristics shown). Figure 2.8 showed how one can do this using the AWS console. Selection of local storage is discussed later in the section titled
EC2 Storage Resources.
Table 2.1 EC2 Standard Instance Types

	Instance Type	Compute Capacity	Memory	Local Storage	Platform
	Small	1 virtual core of 1 CU	1.7GB	160GB	32-bit
	Large	2 virtual cores, 2 CU each	7.5GB	850GB	64-bit
	Extra Large	4 virtual cores, 2 CU each	15GB	1690GB	64-bit

Other instance families available in Amazon at the time of writing this book include the High-Memory Instance family, suitable for databases and other memory-hungry applications; the High-CPU Instance family for compute-intensive applications; the Cluster-Compute Instance family for High-Performance Compute (HiPC) applications, and the Cluster GPU Instance family which include Graphic Processing Units (GPUs) for HiPC applications that need GPUs [8].
Software: Amazon makes available certain standard combinations of operating system and application software in the form of
Amazon Machine Images (AMIs). The required AMI has to be specified when requesting the EC2 instance, as seen earlier. The AMI running on an EC2 instance is also called the
root AMI.
Operating systems available in AMIs include various flavors of Linux, such as Red Hat Enterprise Linux and SuSE, the Windows server, and Solaris. Software available includes databases such as IBM DB2, Oracle and Microsoft SQL Server. A wide variety of other application software and middleware, such as Hadoop, Apache, and Ruby on Rails, are also available [8].
There are two ways of using additional software not available in standard AMIs. It is possible to request a standard AMI, and then install the additional software needed. This AMI can then be saved as one of the available AMIs in Amazon. The other method is to import a VMware image as an AMI using the
ec2-import-instance and
ec2-import-disk-image commands. For more details of how to do this, the reader is referred to [9].
Regions and Availability Zones: EC2 offers regions, which are the same as the S3 regions described in the section
S3 Administration. Within a region, there are multiple availability zones, where each availability zone corresponds to a virtual data center that is isolated (for failure purposes) from other availability zones. Thus, an enterprise that wishes to have its EC2 computing instances in Europe could select the “Europe” region when creating EC2 instances. By creating two instances in different availability zones, the enterprise could have a highly available configuration that is tolerant to failures in any one availability zone.
Load Balancing and Scaling: EC2 provides the
Elastic Load Balancer, which is a service that balances the load across multiple servers. Details of its usage are in the section
EC2 Example: Article Sharing in Pustak Portal. The default load balancing policy is to treat all requests as being independent. However, it is also possible to have timer-based and application controlled sessions, whereby successive requests from the same client are routed to the same server based upon time or application direction [10]. The load balancer also scales the number of servers up or down depending upon the load. This can also be used as a failover policy, since failure of a server is detected by the Elastic Load Balancer. Subsequently, if the load on the remaining server is too high, the Elastic Load Balancer could start a new server instance.
Once the compute resources are identified, one needs to set any storage resources needed. The next section describes more on the same.

NoteEC2 Storage Resources

• Amazon S3: Highly available object store

• Elastic Block Service: permanent block storage

• Instance Storage: transient block storage

EC2 Storage Resources
As stated earlier, computing resources can be used along with associated storage and network resources in order to be useful. S3, which is the file storage offered by Amazon, has already been described in the
Amazon Storage Services section. Use of the S3 files is similar to accessing an HTTP server (a web file system). However, many times an application performs multiple disk IOs and for performance and other reasons one needs to have a control on the storage configuration as well. This section describes how one can configure resources that appear to be physical disks to the EC2 server, called
block storage resources. There are two types of block storage resources: Elastic Block Service, and instance storage, described next.
Elastic Block Service (EBS): In the same way that S3 provides file storage services, EBS provides a block storage service for EC2. It is possible to request an EBS disk volume of a particular size and attach this volume to one or multiple EC2 instances using the instance ID returned during the time the volume is created. Unlike the local storage assigned during the creation of an EC2 instance, the EBS volume has an existence independent of any EC2 instance, which is critical to have persistence of data, as detailed later.
Instance Storage: Every EC2 instance has local storage that can be configured as a part of the compute resource (Figure 2.8) and this is referred to as
instance storage. Table 2.2 shows the default partitioning of instance storage associated with each EC2 instance for standard instance types. This instance storage is ephemeral (unlike EBS storage); i.e., it exists only as long as the EC2 instance exists, and cannot be attached to any other EC2 instance. Furthermore, if the EC2 instance is terminated, the instance storage ceases to exist. To overcome this limitation of local storage, developers can use either EBS or S3 for persistent storage and sharing.
Table 2.2 Partitioning of Local Storage in Standard EC2 Instance Types

		Small	Large	Extra Large
	Linux	/dev/sda1: root file system

/dev/sda2: /mnt

/dev/sda3: /swap	/dev/sda1: root file system

/dev/sdb: /mnt/

dev/sdc

/dev/sdd

/dev/sde	/dev/sda1: root file system

/dev/sdb: /mnt

/dev/sdc

/dev/sdd

/dev/sde
	Windows	/dev/sda1: C:

xvdb	/dev/sda1: C:

xvdb

xvdc

xvdd

xvde	/dev/sda1: C:

xvdb

xvdc

xvdd

xvde

The instance AMI, configuration files and any other persistent files can be stored in S3 and during operation, a snapshot of the data can be periodically taken and sent to S3. If data needs to be shared, this can be accomplished via files stored in S3. An EBS storage can also be attached to an instance as desired. A detailed example of how one does this is described later in the context of Pustak Portal.
Table 2.3 summarizes some of the main differences and similarities between the two types of storage.
Table 2.3 Comparison of Instance Storage and EBS Storage

		Instance Storage	EBS storage
	Creation	Created by default when an EC2 instance is created	Created independently of EC2 instances.
	Sharing	Can be attached only to EC2 instance with which it is created.	Can be shared between EC2 instances.
	Attachment	Attached by default to S3-backed instances; can be attached to EBS-backed instances	Not attached by default to any instance.
	Persistence	Not persistent; vanishes if EC2 instance is terminated	Persistent even if EC2 instance is terminated.
	S3 snapshot	Can be snapshotted to S3	Can be snapshotted to S3

S3-backed instances vs. EBS-backed instances: EC2 compute and storage resources behave slightly differently depending upon whether the root AMI for the EC2 instance is stored in Amazon S3 or in Amazon Elastic Block Service (EBS). These instances are referred to as
S3-backed instances and
EBS-backed instances, respectively. In an S3-backed instance, the root AMI is stored in S3, which is file storage. Therefore, it must be copied to the root device in the EC2 instance before the EC2 instance can be booted. However, since instance storage is not persistent, any modifications made to the AMI of an S3-backed instance (such as patching the OS or installing additional software) will not be persistent beyond the lifetime of the instance. Furthermore, while instance storage is attached by default to an S3-backed instance (as shown in Table 2.2), instance storage is not attached by default to EBS-backed instances.

EC2 Networking Resources
In addition to compute and storage resources, network resources are also needed by applications. For networking between EC2 instances, EC2 offers both a public address as well as a private address [5]. It also offers DNS services for managing DNS names associated with these IP addressees. Access to these IP addresses is controlled by policies. The Virtual Private Cloud can be used to provide secure communication between an Intranet and the EC2 network. One can also create a complete logical sub network and expose it to public (a DMZ) with its own firewall rules. Another interesting feature of EC2 is the Elastic IP addresses which are independent of any instance, and this feature can be used to support failover of servers. These advanced features and how these can be used to set up a network are described in this section, after understanding the key terminologies next.

NoteEC2 Networking

• Private and public IP addresses per instance

• Elastic IP addresses not associated with any instance

• Route 53 DNS that allows simple URLs (e..g. www.mywebsite.com)

• Security groups for networking security policies

Instance addresses: Each EC2 instance has two IP addresses associated with it – the
public IP address and the
private IP address. The private IP address and DNS name can be resolved only within the EC2 cloud. For communication between EC2 instances, the internal IP addresses are most efficient, for the messages then pass entirely within the Amazon network. The public IP address and DNS name can be used for communication outside the Amazon cloud.
Elastic IP addresses: These IP addresses are independent of any instance, but are associated with a particular Amazon EC2 account and can be dynamically assigned to any instance (in which case, the public IP address is de-assigned). Therefore, they are useful for implementing failover. Upon failure of one EC2 instance, the Elastic IP address can be dynamically assigned to another EC2 instance. Unlike instance IP addresses, Elastic IP addresses are not automatically allocated; they have to be generated when needed.
Route 53: Enterprises may desire to publish a URL of the form http://www.myenterprise.com for EC2 instances. This is not possible by default, since the EC2 instances are inside the
amazon.com domain. Route 53 is a DNS server that can be used to associate an Elastic IP address or public IP address with a name of the form www.myenterprise.com.
Security Groups: For networking security, it is common to define network security policies that restrict the ports through which any machine can be accessed, or the IP addresses that can access a server. The same can be achieved for EC2 instances using security groups, briefly mentioned earlier. Each security group is a collection of network security policies. Different security groups should be created for different server types; for example, the web server security group could specify that port 80 may be opened for incoming connections. The default security group when creating an EC2 instance allows the instance to connect to any outside IP address but disallows incoming connections.
Virtual Private Cloud: Enterprises that desire more control over their networking configuration can use
Virtual Private Cloud (
VPC). Examples of the advanced networking features offered by VPC include:

i. the ability to allocate both public and private IP addresses to instances from any address range

ii. the ability to divide the addresses into subnets and control the routing between subnets

iii. the ability to connect the EC2 network with an Intranet using a VPN tunnel. Details of VPC are beyond the scope of this book and can be found in
Amazon Virtual Private Cloud[11].

Simple EC2 Example: Setting up a Web Server
Now, all the terminologies and concepts learned in the previous two sections will be used in a simple example of creating a web server. The web server will be created as an EBS-backed instance, to avoid the necessity of having to periodically back up the storage to S3.
The process is broken down into four steps:

i. Selecting the AMI for the instance

ii. Creating the EC2 instance and installing the web server

iii. Creating an EBS volume for data, such as HTML files and so on

iv. Setting up networking and access rules.

It is assumed that the data needed for the web server (HTML files, scripts, executables, and so on) are available, and have been uploaded to EC2. Furthermore, to illustrate how to install custom software on a standard AMI, it is assumed that the web server needed also has to be uploaded to EC2 and then installed (in reality, a web server instance may be available as an image as well).
Selecting the AMI
Instructions to create a new EC2 instance using the AWS console were described earlier. The user may recall that one step during this process is selecting an AMI (discussed around Figure 2.8). More details of this phase to perform advanced functionality are described next.
Using the dropdown menus to select “Amazon Images” and “Amazon Linux” brings up a list of Linux images supplied by Amazon, as shown in Figure 2.11. Here, the root device column indicates whether the root device for the image is EBS or not. Some of the important parameters of the AMI are in the “Description” tag in the lower half of the figure. It can be seen that the image is a 64-bit Amazon Linux image with the root device
/dev/sda1 in EBS. The value
true in the “Block Devices” field is the
DeleteUponTerminate flag and indicates that the device is not persistent; i.e., it will vanish if the EC2 instance terminates. Clicking the “Launch” button brings up the launch wizard, which goes through a number of steps (such as selecting the size of the machine, and possibly creating a new key pair) before launching the EC2 instance. However, at the time of this writing, there is no way to create an EC2 instance with a persistent root device through the AWS Console. Therefore, the next section describes how to launch the EC2 instance using the command line.
	[image: B9781597497251000020/f02-11-9781597497251.jpg is missing]

	Figure 2.11 Selecting an AMI.

Creating the Example EC2 Instance
Two other important steps done during the creation of an instance are (i) generate a key pair that provides access to the EC2 servers that are created and (ii) create a security group that will be associated with the instance and specify the networking access rules. In our example, since the instance created will not have the required software (web server) installed on it by default, the security group created will initially be an empty security group that disallows any incoming network access. Subsequently, the security group will be modified to allow HTTP access.
The key pair is generated from the EC2 console (see Figure 2.11) by clicking on the “Key Pair” link, following the instructions and downloading the resulting files (called
f2.pem in this example). In the earlier section, there was a necessity to execute the remote shell command from the directory where the key-pair (
.pem) file was stored. The following script shows how to set an environment variable named
EC2-PRIVATE-KEY so as to make the downloaded key the default key-pair for EC2 instances.
For Linux:
$ export EC2-PRIVATE-KEY=~/.ec2/f2.pem
$ ec2addgrp "Web Server" –d "Security Group for Web Servers"
$ ec2run ami-74f0061d –b dev/sda1=::false –k f2.pem –g “Web Server”
For Windows:
C:\> set EC2-PRIVATE-KEY =C:\.ec2\f2.pem
C:\> ec2addgrp "Web Server" –d "Security Group for Web Servers"
C:\> ec2run ami-74f0061d –b "xvda=::false" –k f2.pem –g "Web Server"
In the above example, the
ec2addgrp command (short for
ec2-create-group) creates a security group called “Web Server” and disallows all external access. As stated earlier, this rule will later be modified to allow HTTP access. Next, the
ec2run command (short form for
ec2-run-instances command) is used to start the instance with a persistent EBS root volume. The first parameter is the AMI id of the AMI selected in Figure 2.11. The value
false in the
–b flag (which controls the behavior of the root volume) indicates that the
DeleteUponTerminate flag for this volume is to be set to
false. This implies that the volume will not be deleted even if the EC2 instance terminates. The
–k and
–g parameters specify the keypair that can be used to communicate with the instance and the security group for the instances, respectively. The number of instances to be launched defaults to 1. A range can be explicitly specified using the
–instance-count parameter. More details of all the command line options for EC2 are available at
Amazon Elastic Compute Cloud Command Line Reference[6].
The DNS name for the newly created instance is available from AWS console. Alternatively, the
ec2-describe-instances command (
ec2din is the short form) can be also used to get the public DNS name of the instance. Subsequently, ssh, PuTTY or Remote Desktop Connection can be used to login to the instance and download the software to be installed (via yum, for example). After installing the additional software, the image can be saved on EBS as an AMI using the
ec2-create-instance command. The parameter
instanceId is the instance id of the EC2 instance, and the command returns the AMI Id of the newly created EBS AMI. These steps are shown in the following script:
For Linux :
$ ec2din
$ ssh –i
f2.pem instance-id
$ ec2-create-instance –n "Web Server AMI"
instanceId
For Windows:
C:\>ec2-describe-instances
C:\putty
C:\>ec2-create-instance –n "Web Server AMI"
instanceId

Attaching an EBS Volume
Since the HTML pages to be served from the web portal need to be persistent, it is required to create an EBS volume for holding the HTML pages that are to be served by the web server. EBS volumes can be created from the EC2 console (see Figure 2.11) by clicking on the “Volumes” link. This brings up a listing of all EBS volumes currently owned by the user. Clicking the “Create Volume” button brings up the screen shown in Figure 2.12, where the size of the needed volume can be specified before being created.
	[image: B9781597497251000020/f02-12-9781597497251.jpg is missing]

	Figure 2.12 Creating an EBS volume.

The new volume that has been created is shown on the “Volumes” screen with a status of available (see masked content on Figure 2.13). Clicking on the “Attach Volume” button brings up the “Attach Volume” screen (Figure 2.13), which has drop-down menus for the EC2 instance to be used, as well as the device name (
xvdf to
xvdp for Windows,
/dev/sdf to
/dev/sdp for Linux). After making the appropriate selections, clicking the “Attach” button will virtually attach the volume to the selected instance. At this stage, an EC2 instance has been created, the web server has been installed and a separate persistent store on EBS has been attached.
	[image: B9781597497251000020/f02-13-9781597497251.jpg is missing]

	Figure 2.13 Attaching an EBS volume to an EC2 instance.

Allowing External Access to the Web Server
Since the web server is now ready for operation, external access to it can now be enabled. Clicking on the “Security Groups” link at the left of the EC2 console brings up a list of all security groups available. Figure 2.14 shows the available security groups, which consist of the newly created group “Web Server” and two default groups. By clicking on the “Inbound” tab, it is possible to input rules that specify the type of traffic allowed. Figure 2.14 shows how to add a new rule that allows traffic on port 80 from all IP addresses (specified by the 0 IP address). A specific IP address can also be typed in to allow a specific IP address to be allowed. Clicking the “Add Rule” button adds this particular rule. After all rules are added, clicking the “Apply Rule Changes” button activates the newly added rules. By permitting external access to the web server, it is effectively in a DMZ (which is a region in an Intranet where external access is allowed) [12] and [13]. Similarly, by disallowing external access from outside to other servers, they are effectively kept out of the DMZ.
This completes the deployment of a simple web server on EC2 and EBS. The next section makes this example much more complex allowing Web 2.0 style usage and applies it to the Pustak Portal case study.

Using EC2 for Pustak Portal
The following section describes a more complex case of deploying the running example of Pustak Portal (a simple book publishing portal detailed in the Preface). The Portal is enhanced to allow authors to upload and share book chapters or short articles in various formats with readers, who have to be registered with the portal. This kind of functionality is similar to portals of online newspapers and magazines. For this, it is necessary to store the documents, together with metadata such as the file type, and an access control list of readers who have been given access permission. Since a particular article may become very popular due to its topical nature, the load on the portal could vary greatly, and it is necessary that the number of servers scale up and down with usage. This motivates the use of Amazon EC2.
	[image: B9781597497251000020/f02-14-9781597497251.jpg is missing]

	Figure 2.14 Modifying a security group.

The high-level architecture of the enhanced Pustak Portal is shown in Figure 2.15. The articles are stored in S3, while the associated metadata, such as article properties, the list of users the document is shared with, etc., are stored in Simple DB. The portal web site runs on EC2 and automatically scales up and down with usage. Example code for this will be written in Ruby [14].
	[image: B9781597497251000020/f02-15-9781597497251.jpg is missing]

	Figure 2.15 Article sharing portal architecture.

NoteS3 APIs illustrated

• Read object

• Write object

• Delete object

Document Store for the Article Portal
RightScale has developed some Ruby Gems (packages) for AWS. First, these open source gems are imported using the
require statement.
require 's3/right_s3'
Next, initialize the S3 client with authentication credentials so that it is possible to access S3 using RightScale AWS API [15]. Recall from the
Getting Started section of the S3 section that authentication keys are generated when creating an Amazon account.
def initialize(aws_access_key_id, aws_secret_key)
@s3 = RightAws::S3.new(aws_access_key_id, aws_secret_key);
@bucket = @s3.bucket('document_portal_store', true)
end
Assume that each author has their own bucket. In that case, they can upload their articles using a unique identifier that they assign to the article.
def save(doc_id, doc_contents)
@bucket.put(doc_id, doc_contents)
end
Similarly, the opening of existing objects is done as follows:
def open(doc_id)
@bucket.get(doc_id).data
end
When an article is no longer relevant, the authors can delete it as follows:
def delete(doc_id)
@bucket.get(doc_id).delete
end

Storing the Article Metadata

NoteSimpleDB APIs illustrated

• Connect to database

• Read data

• Write data

• Search database

Assume that the following metadata has to be stored for each article: the name of the article, author, and a list of readers. This information can be stored in Simple DB as key value pairs. Recall that SimpleDB allows one to store attributes associated with a key. The first step is to initialize a SimpleDB client.
require 's3/right_sdb_interface'
class DocumentMetadata
def initialize(aws_access_key_id, aws_secret_key)
@domain = 'document_portal_metadata'
@sdb = RightAws::SdbInterface.new(aws_access_key_id, aws_secret_key)
@sdb.create_domain(@domain)
end
To store the metadata for a new article, it is necessary to create an entry for this article and write the corresponding attributes to Simple DB. Since Pustak Portal created a bucket for each author, and the article names are unique within the bucket, the combination of the author name and bucket will be unique and can be used as the key to store and retrieve data, and is the variable doc_id. Note that SDB values are always arrays, so name and author have to be converted to an array.
def create(doc_id, doc_name, author, readers, writers)
attributes = {
:name => [doc_name],
:owner => [owner],
:readers => readers,
:writers => writers,
}
@sdb.put_attributes(@domain, doc_id, attributes)
end
The metadata can be retrieved as follows:
def get(doc_id)
result = @sdb.get_attributes(@domain, doc_id)
return result.has_key?(:attributes) ? result[:attributes] : {}
end
The following procedures can be used to grant or revoke access for readers:
def grant_access(doc_id, access_type, user)
attr_name = access_type == :read_only ? :readers : :writers
attributes = { attr_name => [user] }
@sdb.put_attribute(@domain, doc_id, attributes)
end
def revoke_access(doc_id, access_type, user)
attr_name = access_type == :read_only ? :readers : :writers
attributes = { attr_name => [user] }
@sdb.delete_attribute(@domain, doc_id, attributes)
end
It may also be necessary to find the articles that a user has access to. These could be articles that were created by the user (owned) or those that other users have granted him access to. We can use SimpleDB's Query feature as follows:
def documents(user)
docs = { :owned => [], :read_only => [], :write => [] }
query = "['owner'='#{user}'] union ['readers'='#{user}'] union ['writers'='#{user}']"
@sdb.query(@domain, query) do |result|
result[:items].each do |doc_id, attributes|
access_type = nil
if attributes["owner"].include?(user) then
access_type = :owned
elsif attributes["readers"].include?(user) then
access_type = :read_only
end
docs[access_type] << { doc_id => attributes } if access_type
true # tell @sdb.query to keep going
end
end
return docs
end
This basic data model can be used to write the views and controllers for a Ruby-on-Rails web application that is part of Pustak Portal and allows authors to upload, and share documents with readers. AWS also provides SDKs for Java, .NET, PHP and also mobile platforms like Android and iOS, so the Pustak Portal application can be developed in other languages as well as for mobile platforms.

EC2 Example: Auto-Scaling the Pustak Portal
The starting point for an AWS-based auto-scaling web site is the bundle for the web application that captures all the dependencies for the application. For example, the portal needs a web application and a Web Application Archive (WAR) if the application is written in Java. Similarly, the Ruby gems if the program is written in Ruby. Using an application bundle, one can enable auto-scaling in two ways:

i. Using AWS Beanstalk

ii. Application-based auto-scaling.

Both approaches are discussed in the following section.
Auto-Scaling using AWS Beanstalk
AWS Beanstalk[16] is a part of EC2 that provides auto-scaling. Beanstalk automates the auto-scaling deployment process. The application developer just provides the application WAR, configures the load balancer, sets auto-scaling parameters and Tomcat/Java parameters and also an email address for notifications. All of this can be done at the AWS Console. When Beanstalk finishes deploying, it creates a fully functioning, auto-scaling, load-balanced web site at http://<app-name>.elasticbeanstalk.com.
Figure 2.16 shows the Beanstalk console for the sample application provided by Amazon. The application is running in the default environment, which consists of Linux and Tomcat (this is actually the AMI described earlier in the chapter). Buttons for launching a new environment (AMI) or importing a new application in to AWS are shown in the top right of the screen. Graphs showing the performance statistics of the application are also shown in the figure.
	[image: B9781597497251000020/f02-16-9781597497251.jpg is missing]

	Figure 2.16 Amazon web services console for beanstalk.

At the time of this writing, AWS Beanstalk only supported WAR deployments, so it was not suitable for the Pustak Portal application described earlier in Ruby. The next section describes how one can auto-scale such (non Beanstalk) application solutions on EC2, for a general case.

Application-controlled Auto-Scaling
If the application deployment cannot be auto-scaled using Beanstalk, then it is necessary for the developer to develop the auto-scaling infrastructure. This can be done in three steps as follows.

1.
Select an AMI: As stated earlier, an AMI consists of the combination of the OS and software needed by the application. A large number of AMIs, including AMIs provided by software vendors such as IBM and Oracle, are available at
Amazon Machine Images (AMIs)[17]. If no suitable AMIs are available, it is necessary to create a custom AMI. This process is described in the section “Creating a Custom AMI.” Make a note of the AMI Id.

2.
Set up an Elastic Load balancer: From the EC2 Section of the AWS Console (see Figure 2.16), select “Load Balancers”
->“Create Load Balancer” and fill out the values requested. It is possible to start without any instances initially; they will be started when auto-scaling is enabled. Make a note of the new load balancer name.

3.
Set up Auto-scaling: This is done in the command line that follows (since it is not currently available from the AWS console). The
as-create-launch-config command creates a launch configuration using the AMI ID obtained earlier and an EC2 instance (
m1.small in this case). The
as-create-auto-scaling command creates a group of instances that will scale from 1 to a maximum of 10, covered by the load balancer created earlier. Upon execution, the minimum specified number of instances will be created automatically.

Auto-scaling is controlled by an auto-scaling policy. An auto-scaling policy specifies the conditions under which the number of instances is to be scaled up or down. The policy is specified by the
as-put-scaling-policy command. The following code snippet states that the number of instances should be increased by 1, with a 300-second wait time between consecutive runs to allow instances to launch. Running this will return a policy ID, which must be noted. A scale-down policy similar to the scale-up policy can also be specified.
The conditions under which the scale-up policy is to be executed are specified by the
mon-put-metric-alarm command. This is a CloudWatch CPU alarm set to execute the policy when CPU utilization exceeds 75%. More details about CloudWatch, the EC2 monitoring tool, are described in Chapter 8. Finally, the script needed to do all of the steps is as follows.
$ as-create-launch-config DocPortalLaunchConfig -image-id <image ID> - instance-type m1.small
$as-create-auto-scaling-group DocPortalGroup -launch-configuration DocPortalLaunchConfig -availability-zones us-east-1a -min-size 1 -max-size 10 -load-balancers <loadbalancer name>
$ as-put-scaling-policy DocPortalScaleUp -auto-scaling-group MyAutoScalingGroup -adjustment=1 -type ChangeInCapacity -cooldown 300
$ mon-put-metric-alarm DocPortalCPUAlarm -comparison-operator GreaterThanThreshold -evaluation-periods 1 -metric-name CPUUtilization - namespace "AWS/EC2" -period 600 -statistic Average -threshold 75 -alarm-actions <policy ID> -dimensions "AutoScalingGroupName=DocPortalGroup"

NoteHP CloudSystem Automation Suite

• CloudSystem Matrix: A product that enables IaaS as a private cloud solution as well as basic application deployment and monitoring.

• CloudSystem Enterprise: A product that enables IaaS as a private or hybrid cloud solution; supports a single services view, heterogeneous infrastructure, bursting and bridging to a public cloud if desired, and advanced life cycle management.

• CloudSystem Service Provider: A product that enables public or hosted private cloud; meant for service providers to provide SaaS; includes aggregation and management of those services.

HP CloudSystem Matrix1
1Contributed by Mr. Nigel Cook, Hewlett-Packard Laboratories, USA
While Amazon EC2 is an example of public IaaS cloud,
HP CloudSystem Matrix is an important IaaS offering from HP for Enterprises to build private or hybrid clouds. CloudSystem Matrix is part of the
CloudSystem Automation Suite of products, which includes three IaaS products, namely, CloudSystem Matrix, CloudSystem Enterprise and CloudSystem Service Provider. CloudSystem Matrix, as mentioned earlier, is a is private cloud IaaS offering. It allows customers to perform basic infrastructure and application provisioning and management very rapidly.
CloudSystem Enterprise includes Matrix and advanced IaaS features, such as the ability to manage hybrid clouds, with support for cloud-bursting (described in Chapter 6) and the ability to allocate resources from a public cloud to supplement private cloud resources during a peak period. Therefore, CloudSystem Enterprise can draw upon resources both from public clouds (such as Amazon) as well as private resources belonging to the enterprise to create an optimal hybrid service.
CloudSystem Service Provider is targeted at service providers and provides the infrastructure needed to build a PaaS or SaaS service that can be offered to customers. This section describes the key technology of all three products, the CloudSystem Matrix software. Built on market leading HP BladeSystem, the Matrix Operating Environment, and Cloud Service Automation for Matrix, CloudSystem Matrix offers a self-service infrastructure portal for auto-provisioning and built-in lifecycle management to optimize infrastructure, monitor applications and ensure uptime for cloud and traditional IT. In this section, the basic features of CloudSystem Matrix are described first, following which there is a description of how a portal such as Pustak Portal can be set up using the Web GUI interface. CloudSystem Matrix also offers APIs which allow the infrastructure to be managed programmatically; these APIs are illustrated with an example in Chapter 8,
Managing the Cloud.
Since Amazon EC2 has been described in detail, the description in this section will be limited to key features of CloudSystem Matrix and internal implementation details, rather than the user view of IaaS as was done for EC2. This will enable the reader to appreciate the features that one can expect in a generic IaaS platform and also give a sense of the potential architecture and implementation of Amazon EC2 or similar systems.
Basic Platform Features
CloudSystem Matrix [18] is an HP product that combines server, network, storage and management components in an integrated offering. The inbuilt management provides a web-based graphical user interface, as well as an exposed web service API that provides infrastructure as a service (IaaS) capabilities. The fundamental elements of the CloudSystem Matrix IaaS interfaces are:

1. Service Catalog

2. Consumer Portal (self-service interface)

3. One or more shared resource pools

4. Service template design and authoring tools

5. Administrator Portal containing tools for group, resource capacity, usage and maintenance management.

In combination, these elements allow infrastructure to be easily consumed and administered. A typical example is the case of a consumer who wants to create and administer a service. The consumer can browse the
Service Catalog, which lists the available infrastructure offerings. The catalog entries serve as a blueprint template for new service creation by the consumer. To create a new service, the consumer uses the
Consumer Portal, which is a
self-service interface, to select the desired catalog entry and nominate the desired shared resource pool to be used as a source of capacity for the new service.
Self-service means, as the name implies, that a cloud user who wishes to set up a service can set it up without interacting with a cloud administrator. Recall from Chapter 1 that self-service is defined by NIST as one of the fundamental characteristics of a cloud service. The shared resource pool consists of a collection of similar resources, such as storage LUNs, and virtual machines. Subsequently, the consumer uses the Consumer Portal to perform on-going management operations over the lifetime of the service. This could be simple activities including re-boot or console access to their environment, or more advanced activities such as adjusting the resources assigned to the service – expanding to meeting demand growth, as well as quiescing resources for savings during low utilization periods.
Entries in the Service Catalog need to be authored, tested and published with tools to support the process. This is done via the
Service Template Designer Portal and the
Workflow Designer Portal. The administrator of the environment uses the
Administrator Portal to manage the groups of consumers, setting policies associated with their catalog access, and resource pool consumption. Administrator tools also need to support capacity planning associated both with demand growth as well as the impacts of maintenance schedules.
CloudSystem Matrix treats all resources in a uniform manner; i.e., as objects with
attributes that are grouped into
resource pools. For servers, the virtual servers can have attributes such as the speed of the CPU, the OS available, and the cost. Similar virtual servers can be grouped into resource pools of servers. Similarly, virtual storage devices can also have attributes such as their speed, RAID configuration, and cost per byte and can also be grouped into resource pools. Network configuration allows specification of various policies such as the IP address assignment policy (Static, DHCP, or Auto-allocation). During service instantiation, resources are allocated from the appropriate pools based upon user specification.

Implementing the Pustak Portal Infrastructure
CloudSystem Matrix can be used for several IaaS usecases [19]. A portal like Pustak Portal can be implemented using the CloudSystem Matrix service catalog templates and self-service interfaces previously described. CloudSystem Matrix service templates are typically authored with a built-in graphic designer and then published into the catalog in an XML format. It is also possible to create the XML representations using other tools and import the templates using the CloudSystem Matrix APIs.
Template Design for Pustak Portal
As stated earlier, service template design is the first step in service setup using CloudSystem Matrix. Subsequently, the template can be used to instantiate the service [20]. The template design for the Pustak Portal is shown in Figure 2.17. The design uses a combination of virtual machines and physical servers to realize the service in order to leverage the flexibility conferred by virtualization. This is illustrated in Chapter 8Managing the Cloud where scaling the service up or down is considered.
	[image: B9781597497251000020/f02-17-9781597497251.jpg is missing]

	Figure 2.17 CloudSystem Matrix service template example.

The service is realized in a conventional three tier application. In the example template, the web tier is connected to the Internet and contains six ESX host VMs running a Linux operating system realized as a set of linked clones. These VMs share a file system used as a cache for frequently used web data. The web tier connects to a private service internal network that is used for communication between the web tier servers and the application and database servers. The App Server tier contains four HyperV VMs running windows, while the database tier contains two physical servers also running Windows. The physical server database cluster shares a 300GB Fibre Channel disk.

Resource Configuration
After template definition, it is necessary to configure the resources (server, storage, network) used in the service template. These attributes are set in the Service Template Designer Portal. As an example for a virtual server configuration (see Figure 2.18), it is possible to set:
• Cost Per Server used for charge back

• Initial and Maximum number of servers in the tier

• Option to deploy servers as linked clones

• Number of CPUs per VM

• VM Memory size

• Server recovery automation choice

	[image: B9781597497251000020/f02-18-9781597497251.jpg is missing]

	Figure 2.18 CloudSystem Matrix server configuration example.

For the configuration of the physical servers there is an additional configuration parameter regarding processor architecture and minimum clock speed. The software tab in the designer allows configuration of software to be deployed to the virtual or physical server.
Similarly for disk configuration, Figure 2.19 shows an example of a Fibre Channel disk, with the following configuration parameters:
• Disk size

• Cost Per GB used for charge back

• Storage type

• RAID level

• Path redundancy

• Cluster sharing

• Storage service tags

	[image: B9781597497251000020/f02-19-9781597497251.jpg is missing]

	Figure 2.19 CloudSystem Matrix storage configuration example.

Storage service tags are used to specify the needs for storage security, backup, retention and availability requirements.
Network configuration allows the service network requirements to be specified including requirements regarding:
• Public or private

• Shared or exclusive use

• IPV4 or IPV6

• Hostname pattern

• Path redundancy

• IP address assignment policy (Static, DHCP or Auto-allocation)

For example, specifying a private, exclusive-use network would provide the servers a network isolated from other servers in the environment.

Pustak Portal Instantiation and Management
Once the Pustak Portal templates have been created, the self-service interface of CloudSystem Matrix can be used by consumers to perform various
lifecycle operations on the cloud service. Lifecycle operations are major management operations, such as creation, destruction, and addition and removal of resources. More specific details of lifecycle operations as per DMTF reference architecture can be found in Chapter 10. Consumer lifecycle operations are available either from a browser-based console or via the published web service APIs. The browser-based console provides a convenient way for the consumer to view and access their services, browse the template catalog and create new services and delete existing ones, view the status and progress of the infrastructure requests they have initiated, examine their resource pool utilization, and view their resource consumption calendar.
The lifecycle operations include the ability to adjust the resources associated with a particular service. Referring back to Figure 2.18 as an example, the number of servers in the web tier was initially specified to be 6 servers, with 12 as maximum number of servers in the tier. From the self-service portal the consumer has the ability to request additional servers to be added, up to the maximum of 12 servers. The consumer also has the ability to quiesce and reactivate servers in a tier. For example, in a tier that has 6 provisioned servers, the consumer can request 3 servers be quiesced, which will cause those servers to be shut down and the associated server resource released. However, a quiesced server disk image and IP address allocation is retained, so that the subsequent re-activate operations can occur quickly, without requiring a server software re-provisioning operation.
In order to maintain service levels and contain costs, the owner can dynamically scale the resources in the environment to make sure that the service has just enough server and storage resources to meet the current demand, without the need to be pre-allocated and have a lot of idle resources. The service scaling can be performed depending on the number of concurrent users accessing the system. As stated previously, this can be done manually via the Consumer Portal. In Chapter 8,
Managing the Cloud, there is a detailed description of how this can be accomplished automatically using the CloudSystem Matrix APIs.

Cells-as-a-Service2
2Contributed by Dr. Badrinath Ramamurthy, Hewlett-Packard, India.
This section describes a novel IaaS technology called
Cells-as-a-Service, which is a research prototype from Hewlett-Packard Laboratories. The Cells-as-a-Service prototype (simply referred to as
Cells for short) was built to support multi-tenanted services for complex services. In any complex realistic service, there are various components such as a ticketing service, billing service, logging service, etc. that may be required to be hosted on an infrastructure service. A unique feature of the Cells prototype is its ability to define templates for such complex systems and enable easy deployment. Cells has been evolving, and currently supports many of the properties mentioned previously. As before, this section first introduces some simple concepts defined by the platform, explains the usage through a simple example and then describes the advanced features of the platform with Pustak Portal.

Introduction to Cells-as-a-Service
In order to understand what the Cells-as-a-Service platform enables, one needs to look at a cloud service from a different perspective. In any complex realistic service, there are various stakeholders and components, which are distinguished to clarify the exposition:
•
Cell is an abstraction for a set of virtual machines interconnected to deliver a service.

• A
Service Template (
ST) is a template describing the infrastructure (including both software and hardware) that is required to realize a service. Since it is a template, various parameters, such as the number of servers needed, may not be specified.

•
A Service User (SU) is the consumer of a service

•
Service Provider (SP): The person who acquires the resources to host the service, and then configures and runs the service is a Service Provider (SP).

•
Compute Service Provider (CSP): The entity from which the service provider acquires the resources by supplying the Service Template is called the Compute Service Provider (CSP).

A
Cell Specification (
CS) specifies the structure of a particular cell that implements a service. If a particular type of service is instantiated multiple times, it is useful to have an ST that describes the service, and then derive a CS from it as needed. In some cases, the SU and the SP are the same, as in the case of an individual renting some machines for running a computation. The Amazon EC2 and the CaaS prototype are examples of CSPs.

Example: Setting Up a Web Portal
To make the ideas from the previous section more concrete, consider a simplified situation where Cells is used to set up a web service for accessing HTML documents available on the node.
The Cells Portal is the primary entry point for a user. The first thing that the user (likely to be an SP) does is to request for a sign-on. Once the user fills out the requisite details and signs into his account he sees all the resources he has permissions to access. Among these resources are the Cells that the user has created.
For an example, let us assume he is a new customer and has no cells to his name. To start with, the user first creates a (empty) cell, and then populates it. The process of creation of a cell makes an
initial controller service, specific to the cell, available to him. He can now interact with the cell controller to populate the cell. If the user already has a file containing the specification of a cell (more on that in a moment), he can use an option to simply submit the specification to the cell. Alternately, the specification may be graphically created using a drag and drop user interface to create the elements, their connectivity and specify the element properties.
The cell specification contains the details of all the (virtual) resources used by the cell. For instance, consider creating a cell with two nodes – one is a web server and the other runs a backend database for the web server. One way to specify this is to say that one wants two VMs – a WebVM and a DBVM on a private network (see Figure 2.20). Both have local disks. The WebVM has an additional interface to connect to the external world; and the DBVM has an additional large disk to store the data in the database. Figure 2.20 shows a schematic of this configuration.
	[image: B9781597497251000020/f02-20-9781597497251.jpg is missing]

	Figure 2.20 An example cell.

Assume for simplicity that the two VMs' specialized OS images are provided as two different images already available to the user, just as a specification, and also that the IaaS console or portal provides a tool to author such a specification graphically (Figure 2.21). The user then just submits the specification, causing the service to deploy the required resources and
power on the cell.
	[image: B9781597497251000020/f02-21-9781597497251.jpg is missing]

	Figure 2.21 An example interface to the cell.

On the IaaS portal, the user will now see the cell being populated with elements specified in the specification and also virtual machines popping up to life along with the disks and the network elements. In a few seconds, the nodes are up and the user can now log in to the node that has the external facing network interface. By simply clicking on that node the user can see the externally resolvable name and routable IP address (see Figure 2.21).
The user can also log into the WebVM server and DBVM (via WebVM) and do any customizations on the server, as needed. The configured services become ready to use for the SUs as an application service end-point on the WebVM.
The power of template-based service deployment that Cells provides can be seen by contrasting this to the multiple configurations and scripts that are necessary in a typical IaaS system. These template specifications can also be shared and therefore are easy to replicate.
Cell Specification for the Example
As previously stated, the user submits a template specification to realize they require cell contents or infrastructure deployment. This section describes a sample specification to understand the platform better. The starting point is a skeleton of the specification for the cell schematically shown earlier in Figure 2.20.
In this example, the specification has an all-encompassing <cell> element that contains two network elements (XML node
network), a storage volume (XML node
volume) and a virtual machine (XML node
vm). These three are the common basic resources in a cell. The
network element specifies the name of the network and optionally one can specify what the subnet id should be. This subnet id is a resource and is only visible within the cell. Another cell can use the same subnet id but that will represent a different subnet, limited to that cell. In this example the two networks have subnet ids 2 and 15, representing the two networks on which the NICs of the node will sit.
For
volume, there is a name associated with the volume and a URL describing the image location. The local volume
webVol is initialized with the contents of the image specified by the resource
urn: sup: vol-0-1-27. Independently, one should expect that the specified resource has already been made available to the controller with this resource name. Perhaps this is a volume either created by the same user or by someone else but made visible to this user. In the example this is the volume containing the OS and any other configuration data that will be the image on which the WebVM will run.
<?xml version="1.0" ?>
<cell>
– <network def="
ext">
<subnet>
15</subnet>
</network>
– <network def="
net2">
<subnet>
2</subnet>
</network>
– <volume def="
webOSVol">
<imageUrl>
urn:sup:vol-0-1-27</imageUrl>
<size>
256</size>
</volume>
– <vm def="
webVM">
<vbd def="
vbd0">
<volUrl>
sup:/webOSVol</volUrl>
</vbd>
<vif def="
vif0">
<netUrl>
sup:/ext</netUrl>
<external>
true</external>
</vif>
<vif def="
vif1">
<netUrl>
sup:/net2</netUrl>
</vif>
</vm>
...
</cell>...
The last item in this skeleton is a virtual machine. This VM is for the WebVM of the example. The
VM specification simply mentions that the VM's block device should be connected to the volume
webVol, mentioned earlier, and that the two interface NICs
vif0 and
vif1 should be connected appropriately to the network elements mentioned earlier. Further, the specification on the interface qualifies the interface
vif0 to be externally routable.
Clearly, this only specifies part of the whole specification for the cell shown in Figure 2.20. The DBVM and its two volumes (for the OS and the database) would also need to be specified. The NIC on the DBVM would also connect to net2, allowing the two VMs to communicate. With the addition of these elements, the specification would be complete.
Note that only a few attributes, such as size of volumes and the external connectivity attribute for a network interface, have been shown. There are many more attributes that may be specified, such as the trailing part of the IP address of the individual interfaces, called the
host part. The specification may also contain elaborate rules that describe which VMs in which cells may connect over the network. There are also rules that govern disk image sharing.

Multi-tenancy: Supporting Multiple Authors to Host Books
The previous section showed how a simple cell is created. This section contains a more elaborate example. This example also shows how a cell may be flexed-up by invocations from applications running in VMs within a cell.
Assume that Pustak Portal (a
service provider or
SP) is creating a service to give authors the ability to create portals for their books and provide a search service for anyone who wishes to search for terms in the author's portal. Thus the author's portal would contain the books written by the author. In addition, it must also contain an index which can be searched. The example describes how construction of this complex system would be automated using Cells.
Figure 2.22 illustrates the structure of the kind of cell that is needed. Assume that the service provider starts with a specification for a cell with two VMs. One is the
Controller Service VM (
CVM) that hosts the main service which is the interface to prospective authors; the second, the
Search Engine VM (
SVM) which hosts the service that has indexed content of author books and provides users a search service over the books' contents. This specification looks very much like the specification for the simple cell in the earlier example, but has one main difference – both VMs are in external facing as well as internal facing subnets. Thus, each of the VMs has two NICs. See Figure 2.22a.
	[image: B9781597497251000020/f02-22-9781597497251.jpg is missing]

	Figure 2.22 Author web site cell. Structure of the cell to support websites for each author.

The author acquires a web site by making a web request to the CVM via its portal. For the application in the CVM to make a request to the controller so that the request is honored, the application needs to hold an appropriate certificate – this is the certificate provided by Cells to the SP when creating the SP user. The result is that an
Author VM (
AVM) gets created on the backend and returns an
Author URL (
AURL) by which he can access his web site (which is inside the AVM). Among other information, the negotiation between the CVM portal and the author to create an author web site includes creating certificates to authenticate the author to the portal in the AVM. This is at the application level and is handled entirely by the logic of the application in the CVM. Any method may be used by the CVM service to establish identity with the service in the AVM. Figure 2.22(b) shows the cell after two AVMs have been added.
Now the author uses the AURL to do anything that the service allows. Among them will be the ability to upload the book content. Another feature will be the ability to contact the SVM and post a request to it to index its contents for any end user search. Also note that every author gets a new AVM – a nice complex use case that requires multi-tenancy at the infrastructure level that this platform handles very well. So, the cells architecture is not just an IaaS but enables customized cloud services to be built over it.
Note that all the logic to accept requests for a web portal from an author allows the author the facility to edit his web portal; the logic to access and index the books and other such features are logic embedded in the corresponding web services, which are already part of the OS image that those corresponding AVMs are created from.
The initial specification submitted to create the cell contains the CVM and AVM specifications along with the required subnets and volumes that are sketched in Figure 2.22(a). At some point in the web application logic of the CVM, a decision is taken to create an AVM. At this point it, the CVM, dynamically submits a specification to create an AVM from the corresponding image. The Cells architecture provides a way of updating a cell specification by submitting a specification change or a
delta to the controller. The
delta is a specification that specifies what has changed. This specification is shown in the following code segment.
<?xml version="1.0" ?>
<delta>
– <set>
<path>
volAVM02a </path>
<spec>
<volume>
<imageUrl>
urn:sup:vol-0-1-30</imageUrl>
<size>
250</size>
</volume>
<spec>
</set>
– <set>
<path>
volAVM02b </path>
<spec>
<volume>
<imageUrl>
urn:sup:vol-0-1-35</imageUrl>
<size>
1000</size>
</volume>
</spec>
</set>
– <set>
<path>
vmAVM02</path>
<set>
<vm>
<vbd def="
vbd0">
<volUrl>
sup:/volAVM02a</volUrl>
</vbd>
<vbd def="
vbd2">
<volUrl>
sup:/volAVM02b</volUrl>
</vbd>
<vif def="
vif0">
<netUrl>
sup:/net2</netUrl>
</vif>
<vif def="
vif1">
<netUrl>
sup:/net15</netUrl>
<external>
true</external>
</vif>
</vm>
</set>
</delta>
In this specification, a new VM has been added that has two disks (
volAVM02a and
volAVM02b). One volume will be used for the OS and the web service and the other to host the book and all other content for the portal. The AVM, like the CVM and SVM, has NICs on both the predefined internal and external subnets (
net2 and
net15).
Isolation of Multiple Tenants
One can optimize the solution by enhancing the cell design (implementation of the backend) in several ways too. One option is to ensure that each AVM is not a new VM in the existing cell, but is a separate cell on its own. Rules can also be added to allow only communication between the SVM and the corresponding AVM. The advantage of this model is that since each VM is in a separate cell, if one AVM is compromised and becomes a rogue VM for some reason, it cannot affect the other AVMs by creating spurious traffic on any of the attached subnets. Then one can even give full root access to the VM itself to the author and let him enhance it in any further way he wishes. In this scenario, probably he will host a bunch of different applications unconstrained by what the default AVM provides.

Load Balancing the Author Web Site
Another interesting enhancement to the cell could be to allow load balancing. Consider the case where it is necessary to balance the load coming into an AVM. Among other things, load-balancing requires triggering the submission of a
delta specification to the controller service to add an AVM, just as in the case of adding a new author VM. This design is explained in greater detail next.
Assume that the WebVM in Figure 2.20 is overloaded, perhaps because of all the processing it has to do. One of the advantages of using an IaaS is that the infrastructure may be dynamically flexed to meet performance requirements. To do this one may modify the infrastructure to look as described in Figure 2.23.
	[image: B9781597497251000020/f02-23-9781597497251.jpg is missing]

	Figure 2.23 A load-balancing configuration.

Here the load is arriving into the system at the node
LBVM that is a load-balancer. The load-balancer then forwards the request to one of two WebVMs as shown in the figure. The reverse proxy facility as provided in, for example, the Apache web server supports this. In a simple case, the load-balancer does a round robin forwarding of requests. Further, when the load at all servers reaches a point that the SLA drops, the logic may submit a request to the underlying cell to bring up a new node running a WebVM to forward the requests to. In order to do this the LB needs to submit a delta request to add a server. One can write out the delta specification by looking at the delta specification in the previous section.
Note that application level logic is needed to reconfigure the LB so that it recognizes that the new node is a valid target for forwarded traffic. It is possible to use a similar delta to specify the removal of a WebVM in case the load is low enough that it can be handled by one fewer WebVM. In that case, the delta for deleting the identified node and its volume is shown here:
<delta>
<set>
<path> WebVM2 </path>
<spec> </spec>
</set>
<set>
<path> WebOSVol2 </path>
<spec> </spec>
</set>
</delta>
Another popular way to flex scale-out the web service is to add a WebVM and then use infrastructure using DNS-based load balancing. Details of how the DNS server responds to requests and balances loads is beyond the scope of this description and can be found in
DNS Name Server Load Balancing[21].
In some cases it is the data service that is the bottle neck and not the web server. One way to address this is to have data that is distributed across nodes, as in the case of a distributed hash table or a distributed column store. In this case, there is no separate DB server. The LB makes a decision on where to forward the request depending on the data being requested. When a node is created by flexing up, the LB additionally needs to redistribute data so that the new node is also used. Consistent hashing techniques may be used to minimize the amount of data movement.
With that design, infrastructure service provides the core ability to flex the infrastructure. If this is coupled with the right application logic to restart application instances and allows some configuration and possibly data movement to actually distribute the load, then it makes a highly scalable Pustak Portal built almost as a platform to enable authors to host their book web sites.
In summary, the Cells technology and research lays a strong emphasis on simplicity of interface and modularity of design to build a reliable, scalable implementation of Infrastructure as a Service. Note the interesting fact that all the operations on the cell can be done just by posting appropriate specifications to modify the resources within a cell. The whole process is simply specification driven. While this section focused on providing a user perspective of the Cells prototype, the reader may wish to look at associated HP Labs Technical Reports [22], [23] and [24] to get an idea of some internal workings of the networking and storage aspects.

Summary
As detailed in this chapter, the IaaS cloud computing model offers virtual computing resources (servers, storage and networking) as a service. The advantage of this model is the flexibility it offers in allowing customers to create any desired computing environment by installing software of their choice. The disadvantage of this model compared to PaaS and SaaS models is that the burden of upgrading (in general, managing) the software falls upon the user. Since the IaaS model offers virtual computing resources that mimic a physical data center, the techniques used to upgrade software in a traditional data center can be used.
The IaaS services discussed in this chapter have two major functionalities: service creation, and service management. Important functions in service management include load balancing, failover, and monitoring and metering. Service creation in Amazon EC2 can be done using the AWS console for simple use cases. For more complex configurations involving S3 and EBS, one can use programming or scripting methods to set up the infrastructure needed. Service creation in HP CloudSystem Matrix is a two-step process. First, the service can be defined via the Service Catalog, Service Template Designer Portal and the Workflow Designer Portal These definitions are then saved in XML format in the Service Catalog, where they can be used for instantiating the service. The next step after service definition in CloudSystem Matrix is service instantiation. Similar to Amazon EC2, the Consumer Portal can be used by a naïve user to select an existing service template (say, 3-tier architecture) and instantiate it using resources from a resource pool. This console-based usage can be used to build or replicate complex infrastructures and is not just limited to simple templates.
In Amazon EC2, service definition is accomplished through the AMI definition, which includes specification of the software and hardware needed for the server. EC2 offers a wide variety of standardized computing environments (e.g., Windows, Linux, Solaris, Ruby on Rails), as well as a number of popular software packages (e.g., Hadoop, Apache, and DB2). This software environment can be customized, either by installing additional software on the EC2 virtual systems, or by importing a virtualized VMWare server image from the customer's servers as a custom AMI. The AMI also specifies additional EBS virtual disks needed. Following this, the AMI can be instantiated on servers of pre-specified size (e.g., small). After the AMI is instantiated, the software on the AMI can be configured (if needed) manually or using scripts.
In addition to the AMI, EC2 also allows storage (via S3 files, SimpleDB – a key-value store, or RDB – a relational database) to be associated with EC2 instances. Networking allows the creation of two types of addresses: private addresses for communication with EC2, and public IP addresses for external communication. Additionally, hybrid clouds can be created using EC2's Virtual Private Clouds, which creates a VPN that encompasses resources from an enterprise data center as well as EC2.
Since Amazon EC2 is a public cloud, it supports the notion of regions, which are specific geographic locations from which the needed computing resources can be drawn. This is for the purpose of performance or satisfying legal requirements. In CloudSystem Matrix as well it is possible to partition the resource pool into geographic regions, and specify allocation from specific regions.
Service management is the other important factor in IaaS offerings. Load balancing and failover is an important feature of service management. In EC2, load balancing and scaling can be accomplished by Elastic Beanstalk [16] and the Elastic Load Balancing service, which will distribute incoming requests over multiple servers. The load balancers also support the notion of a session, which may be application-defined. Load balancing and scaling in CloudSystem Matrix is accomplished through APIs, as described later in Chapter 8, titled
Managing the Cloud.
Finally, the Cells architecture is a very interesting piece of research, which enables very easy creation of complex infrastructure – using just a simple XML specification that can be authored on a graphical user interface as well. This approach enables one to create a complex infrastructure and share and replicate the same as another instance. The example also described how one can even use the platform to host multi-tenanted service providers using the Pustak portal. This is a promising research in the right direction of enabling simplified deployment and management of cloud infrastructure.
Storage as a Service acts as an important complementary functionality by providing highly available and reliable persistent storage. Multiple services from Amazon Web Services were studied, and those provided diverse interfaces – block device interface (EBS), database interface(RDS), key-value stores (SimpleDB) or simple file system (S3) interface. These and other storage platform services are studied in the section describing storage aspects of PaaS in Chapter 3. Additional background concepts to enable efficient use of cloud storage are available in Chapter 5 and Chapter 6.
IaaS models allow virtual resources in the cloud to be provisioned for enterprise applications. These can, if desired, be an extension of the enterprise data center leading to a hybrid cloud model. The IaaS model, therefore, is suitable for enterprises that consider the cloud to be a natural extension of their data centers. More in-depth discussion on how one can use the IaaS platforms to address the scalability, availability and other technical challenges of the cloud can be found in Chapter 6.

References
[1]
Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/s3 [accessed 16.10.11].
[2]
s3cmd: command line S3 client, http://s3tools.org/s3cmd [accessed 10.11].
[3]
Standalone Windows .EXE command line utility for Amazon S3 & EC2, http://s3.codeplex.com/ [accessed 10.11].
[4]
API Support for Multipart Upload, http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?uploadobjusingmpu.html [accessed 01.11].
[5]
Amazon Elastic Compute Cloud User Guide, http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/ [accessed 10.11].
[6]
Amazon Elastic Compute Cloud Command Line Reference, http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference/ [accessed 01.11].
[7]
Amazon EC2 API Tools, http://aws.amazon.com/developertools/351?_encoding=UTF8&jiveRedirect=1 [accessed 10.11].
[8]
EC2 Introduction, http://aws.amazon.com/ec2/ [accessed 10.11].
[9]
EC2 FAQs, http://aws.amazon.com/ec2/faqs/ [accessed 10.11].
[10]
Elastic Load Balancing, http://aws.amazon.com/elasticloadbalancing/ [accessed 10.11].
[11]
Amazon Virtual Private Cloud, http://aws.amazon.com/vpc/ [accessed 10.11].
[12]
AWS Security Best Practices, http://awsmedia.s3.amazonaws.com/pdf/AWS_Security_Whitepaper.pdf; 2011 [accessed 10.11].
[13]
Fernandes R. Creating DMZ configurations on Amazon EC2, http://tripoverit.blogspot.com/2011/03/creating-dmz-configurations-on-amazon.html [accessed 10.11].
[14]
Ruby Programming Language, http://www.ruby-lang.org/en/ [accessed 10.11].
[15]
http://docs.amazonwebservices.com/AmazonS3/latest/API/ [accessed 10.11].
[16]
AWS Elastic Beanstalk, http://aws.amazon.com/elasticbeanstalk [accessed 10.11].
[17]
Amazon Machine Images (AMIs): Amazon Web Services,
Amazon Web Services, http://aws.amazon.com/amis [accessed 10.11].
[18]
HP CloudSystem Matrix, http://www.hp.com/go/matrix [accessed 10.11].
[19]
Server and Infrastructure Software - UseCases, http://www.hp.com/go/matrixdemos [accessed 10.11].
[20]
HP Cloud Maps, http://www.hp.com/go/cloudmaps [accessed 10.11].
[21]
DNS Name Server Load Balancing, http://www.tcpipguide.com/free/t_DNSNameServerLoadBalancing.htm [accessed 10.11].
[22]
Cabuk S, Dalton CI, Edwards A, Fischer A. A Comparative Study on Secure Network Virtualization, HP Laboratories Technical Report, HPL-2008-57, May 21, 2008.
[23]
Edwards A, Fischer A, Lain A. Diverter: a new approach to networking within virtualized infrastructures. In: Proceedings of the first ACM workshop on research on enterprise networking, WREN '09, 2009. p. 103–10.
[24]
Coles, A; Edwards, A,
Rapid Node Reallocation Between Virtual Clusters for Data Intensive Utility Computing.
IEEE International Conference on Cluster Computing. (
2006) .

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/B9781597497251000032/f03-23-9781597497251.jpg
I
i

OEBPS/B9781597497251000093/f09-03-9781597497251.jpg

OEBPS/B9781597497251000032/f03-28-9781597497251.jpg
books,

bookiD

lbook detail)

OEBPS/B9781597497251000020/f02-15-9781597497251.jpg

OEBPS/B978159749725100010X/f10-10-9781597497251.jpg
Wb site modeD

Cleaning and User “Acton TaskLot
tomplatization, Jparameterization, wl\mzmwn) generator

e

TaskLet

OEBPS/B978159749725100010X/f10-15-9781597497251.jpg

OEBPS/B9781597497251000019/f01-07-9781597497251.jpg
SaasS
@ Usage and
? rarasaty U o resouross
Saa provider gpplicationt email maraged by
5 Controlled by
Sant praviier

Hardware, virtualization, OS, middleware

OEBPS/B9781597497251000032/f03-19-9781597497251.jpg
\ rrp

OEBPS/B9781597497251000068/f06-01-9781597497251.jpg
Upstream
servers

J f\
iy
> 9 2 Cloud-hosted scale-

@r

out application

Client oo dous-
applications. hosted

w %’eque;s

OEBPS/B9781597497251000044/f04-13-9781597497251.jpg
Back-end of the|
application

Authentication
request

OAuth server
Inter-application
‘communication

Frontend
oftne
spplcaton
~ Shares secret

Resource owner

o Al

OEBPS/B9781597497251000019/f01-02-9781597497251.jpg

OEBPS/B9781597497251000032/f03-37-9781597497251.jpg
DATA TABLES (1112)

Hide Conmunty Tabes hars g2
@ Fiter Tables

» noaa &
> npr

nytarticle. search

nyt bestsellers

nyt bestsellers history
nyt bestsellers search
nyt movies.critics
nytmovies picks

nyt movies reviews
nytnewswire

nyt people activties
nyt people followers
nytpsople folowing
nyt people.newsteed

OEBPS/B9781597497251000093/f09-12-9781597497251.jpg
Host 2

Host 3.

OEBPS/B9781597497251000068/f06-16-9781597497251.jpg

OEBPS/B9781597497251000196/ctr-09-9781597497251.jpg

OEBPS/B9781597497251000032/f03-05-9781597497251.jpg
8 o o0

Ele £ Yew Favotes Toos Heo
Fotes | @ Homeage - B - - mer s~

My ASP.NET APPLICATION.

Wtcome 10 Azuset
ENTER YOUR NAME AND cuick suBwr,

o S

HELLO, GOPAL T SERVER T 1: 04/08/2010 118:54 AM

@ et | otected oge:Oft- G R -

OEBPS/B9781597497251000020/f02-10-9781597497251.jpg
Request Instances Wizard ot

L ———
Mame: g3sic 32.5¢ Ao L A 2011021 Bnts
oecpton: st Bk 21101, 85 o, 55 e i

Namber o staces: +
nstona Type: e (11 -
Tenancy: oo
Kerml 0 U3 et Stotdonn sehavir: 515
AN DS ID: U et
[RT——— ety ror
Securiy Grom(s): 5570017 et rvenst

OEBPS/B9781597497251000081/f08-04-9781597497251.jpg

OEBPS/B9781597497251000032/f03-32-9781597497251.jpg
ag modules here

OEBPS/B9781597497251000068/f06-11-9781597497251.jpg
Data table 1

Tenant 1d

Carlicense | Repair

Cost

1
2
2
1
3
2

Metadata table 1

Tenantld | Data
el Best garage

2 Friendly garage
8 Honest garage

OEBPS/B9781597497251000056/f05-08-9781597497251.jpg

OEBPS/B9781597497251000056/f05-11-9781597497251.jpg

OEBPS/B978159749725100010X/f10-05-9781597497251.jpg
Resources

n
Proprietary.
AP

OEBPS/B9781597497251000068/si1.gif

OEBPS/B9781597497251000020/f02-05-9781597497251.jpg

OEBPS/B9781597497251000196/ctr-03-9781597497251.jpg

OEBPS/B9781597497251000068/f06-02-9781597497251.jpg
Cloud service

Scheduler

Virtual infrastructure manager

vustnen | somze W eorc J s

T .

Local nfrastructure

OEBPS/B9781597497251000056/f05-07-9781597497251.jpg

OEBPS/B9781597497251000044/f04-08-9781597497251.jpg

OEBPS/B9781597497251000032/f03-38-9781597497251.jpg
Enter Your Query: Trvinthe console
SELECT * FROM nyt bestsellers WHERE =
lstname=Hardcover Ficton AND spikey= *
©Results only O Diagnostics and results
[EnvURL: store://datatables.org/alitableswitl

OEBPS/B9781597497251000068/f06-10-9781597497251.jpg
Best garage

Carlicense | Service Cost
Friendly garage
Carlicense | service Cost
Honest garage
Carlicense | Service Cost

OEBPS/B9781597497251000196/ctr-04-9781597497251.jpg

OEBPS/B9781597497251000032/f03-04-9781597497251.jpg

OEBPS/B978159749725100010X/f10-06-9781597497251.jpg

OEBPS/B9781597497251000056/f05-12-9781597497251.jpg
e L T -
O~ O WEOG Pt © 2-5 6-UARNO B

e) e s s

OEBPS/B9781597497251000093/f09-04-9781597497251.jpg
VMCALL
(or) exception
Hypervisor Guest

SO onl.

OEBPS/B9781597497251000032/f03-18-9781597497251.jpg
e [5(])
ml.m [k T T T

M
=
=

OEBPS/B9781597497251000044/f04-09-9781597497251.jpg

OEBPS/B978159749725100010X/f10-11-9781597497251.jpg
Register

Share
Adapt|
Search ._>

(a) TaskLet repository (b) TaskLet execution environment

OEBPS/B9781597497251000020/f02-06-9781597497251.jpg

OEBPS/B9781597497251000147/bio-01-9781597497251.jpg
L)

OEBPS/B9781597497251000032/f03-24-9781597497251.jpg

OEBPS/B9781597497251000019/f01-08-9781597497251.jpg
‘owy ssuodsey

05

§ o e -

= % page views
—+— Response time.

‘smain abed Jusoseg

“,

ES
STOTTINNS

OEBPS/B9781597497251000044/f04-14-9781597497251.jpg
questfor Permissior

| ot

Send me email

=

Access posts in my News Feed

Don't Allow

OEBPS/B9781597497251000020/f02-16-9781597497251.jpg

OEBPS/B9781597497251000032/f03-15-9781597497251.jpg
pplications,

Enterprise Network Other Enterprise
(Account owner) Networks

OEBPS/B9781597497251000093/f09-07-9781597497251.jpg

OEBPS/B978159749725100010X/f10-02-9781597497251.jpg
Access Dataservices Application
modify ACLs specific

|

Query
URIs

OEBPS/B9781597497251000032/f03-27-9781597497251.jpg
XML db interface

Relational db interface

JC

1C

DB2 Engine

OEBPS/B9781597497251000032/f03-10-9781597497251.jpg

OEBPS/B9781597497251000056/f05-09-9781597497251.jpg

OEBPS/B9781597497251000020/f02-04-9781597497251.jpg
Erey

b s ottt ©)
omme

Pree—

OEBPS/B9781597497251000020/f02-19-9781597497251.jpg
navausiOsksize (390 ouw ®ce

Costper G Eurotlontn 010

— Dikis ootave
Redundant SAN pahs to gk

ks shared across servers

. T .

OEBPS/B978159749725100010X/f10-14-9781597497251.jpg
|

o e
T

i)
=
i
e

OEBPS/B9781597497251000032/f03-01-9781597497251.jpg

OEBPS/B9781597497251000056/f05-10-9781597497251.jpg
"Adobe flxiiash buider Q roene

Flex
compier

OEBPS/B9781597497251000020/f02-14-9781597497251.jpg

OEBPS/B9781597497251000068/f06-05-9781597497251.jpg

OEBPS/B9781597497251000020/f02-18-9781597497251.jpg
Specty st o servers i s 1o

OEBPS/B9781597497251000068/f06-07-9781597497251.jpg
Replcation scenario Distributed scenario
Total_Bought replicated on C8D| {ransactions: C, Total_Bough: D]
8 - <
g 5
: @ : @ E
Client 1 Client 1

-

|_g _g

Client 2 Client 2

OEBPS/B9781597497251000123/fx1.jpg
Working together to grow
libraries in developing countries

wwwelsevier.com | wwwbookaid.org | wwwsabre.org

ELSEVIER POOKAID Sabre Foundation

OEBPS/B9781597497251000111/syngress_logo.jpg
SYNGRESS

OEBPS/B9781597497251000044/f04-12-9781597497251.jpg
(16.76, -2.997) (16.786, -2.997)

(16.76, -3.018) (16.786, -3.018)

OEBPS/B9781597497251000044/f04-11-9781597497251.jpg
Followers,

Notiied
when
Ace
Tweets eets

OEBPS/B9781597497251000032/f03-12-9781597497251.jpg
&S Windows'Azure!

K e subsciption fr the cloud compting book | SimpleAzureSence

o &

ol e

OEBPS/B9781597497251000093/f09-09-9781597497251.jpg
| rooscebions [oo | e

e

OEBPS/B9781597497251000068/f06-06-9781597497251.jpg
Client 1
@ Clier Bought
o Clent 2 Toar I_Bought

AP systom
a Clent 1: Total_Bough
3 Glent 2 Toa Bougn-55.500

Client 2

OEBPS/B9781597497251000032/f03-29-9781597497251.jpg
SOAP. SOAP

getAuthor() Frank McCourt

Daas$ Client

OEBPS/B9781597497251000068/f06-08-9781597497251.jpg
HBase cluster

Key value Client

Regions

Key

Value
Region 1
Region 2
Region 3

|
i

| III

HL
FiRegion
server
e stors Master dluster
HRegion servers|
fiRogion) (FRegion) (FiRegion
server) (_senver) | server
. Skree Stave cluster

HBase cluster replication

OEBPS/B9781597497251000032/f03-40-9781597497251.jpg
© emitresults.
O sesnrests o oo st §

Foreach tam. ininputieed

Enter Your Query:
etk

©Resutsany O Disgnostesandesus
EnyURL: stor dastaies crgttaiosn

©emit [all_¥] resutts
O ssign (319 routs o fomoopal

OEBPS/B9781597497251000032/f03-14-9781597497251.jpg
b S—]

OEBPS/B9781597497251000020/f02-02-9781597497251.jpg
[—

OEBPS/B9781597497251000020/f02-17-9781597497251.jpg

OEBPS/B9781597497251000032/f03-13-9781597497251.jpg

OEBPS/B9781597497251000020/f02-01-9781597497251.jpg
8 AWS Management Comole » Amazon $3 -

0 sclct one ofyourbucets o the et
o oo avjects i .

ety

OEBPS/B9781597497251000044/f04-10-9781597497251.jpg

OEBPS/B978159749725100010X/f10-01-9781597497251.jpg
K

B @ mEen @l il

iSCSI,FC, POSIX.NFS, Proprietary ~ SNIACDMI SNIA COMI
FCOE CIFS, WebDAV.

Data storage cloud

Storage
Management
Clent

s cout
< om

Cloud data.
management

OEBPS/B9781597497251000093/f09-08-9781597497251.jpg
LT

(Coss1) [Coss2]

oss n

Direct Attached

Storage

osT

OEBPS/B978159749725100010X/si1.gif
) = K(11i)*

OEBPS/B978159749725100010X/si2.gif

OEBPS/B9781597497251000032/f03-07-9781597497251.jpg
£ Windows Azure i esmm

OEBPS/B9781597497251000032/f03-02-9781597497251.jpg
NET Framevork oles:

loud SeniceSolution:

) Visual Basic g e

) Visuat ASPNET Web Role
ASP.NET Web Role =3 erRole

Appicatonvith o Web ver intefoce
ASP.NET MVC 2 Web Role
‘Applcaton vitha Web user inteface ui
WCE Service Web Role

Web Role for WCF Services

Worker Role

Background procesing aplication

G Web Role
Web Role tht hsts 8 astCGl Applcaton

OEBPS/B9781597497251000196/ctr-01-9781597497251.jpg
)

OEBPS/B9781597497251000020/f02-03-9781597497251.jpg

OEBPS/B9781597497251000056/f05-05-9781597497251.jpg

OEBPS/B9781597497251000044/f04-06-9781597497251.jpg

OEBPS/B9781597497251000068/f06-04-9781597497251.jpg
Open nebula

Web servers

Nginx proxy
web server

OEBPS/B9781597497251000093/f09-15-9781597497251.jpg
Secury

Globus toolkit version 5 (GT5)

Gsic
(Data management)
GSl-Open
SSH
Execution Libraries
management
MyProsy Common

runtime:

OEBPS/B9781597497251000044/f04-01-9781597497251.jpg
rosEichage ops.
ewsors

OEBPS/B9781597497251000196/ctr-06-9781597497251.jpg

OEBPS/B9781597497251000019/f01-09-9781597497251.jpg

OEBPS/B9781597497251000032/f03-16-9781597497251.jpg
Windows Azure

Compute | | g

Fabric controller

OEBPS/B9781597497251000093/f09-06-9781597497251.jpg
Vimkemel: scheduling, storage, networking

()
C)

OEBPS/B9781597497251000032/f03-26-9781597497251.jpg
Model

Book entity

—X

Data store

OEBPS/B978159749725100010X/f10-08-9781597497251.jpg
Application Database,
server

OEBPS/cover/978-1-59749-725-1.jpg
MovING TO
THE GCLouD

Developing Apps in the New World of Cloud Computing

Dinkar Sitaram
Geetha Manjunath

OEBPS/B9781597497251000020/f02-08-9781597497251.jpg
P R

s i

51‘!22’;&. e —

oSSR

o B ::,-,:m; T

OEBPS/B9781597497251000068/f06-09-9781597497251.jpg
Secondary Secondary
MongoDB replica set

Client

OEBPS/B9781597497251000093/f09-01-9781597497251.jpg
Original HW
Platform

OEBPS/B9781597497251000032/f03-11-9781597497251.jpg
()

3 Sluion CCBSimpleCioudser ~
. 2 ~eSimpleCoudservice
suid =
Rebuita HeloAzeWebRole
R HelloAzuevoneriol
S niceConfiguationcse =
riceDefntioncsdel
Prject Dependencies. oRzurewesRole
Project Bl Ore. feete
New Wb Role Pojec iy
op.0ata

New WorkerRole Project..

OEBPS/B978159749725100010X/f10-03-9781597497251.jpg
Cloud service developer

Cloud service consumer

Functional interfaces

Request | | SLA

Security
manager|

Contracts.

Service

manager| || Service templates

Offerings|

Cloud service provider

Provider
interface

OEBPS/B9781597497251000093/f09-05-9781597497251.jpg
Guest physical

Guest virtual page x

page p

1)

Page tables Extended page
tables

OEBPS/B9781597497251000081/f08-06-9781597497251.jpg
Cloud management environment

Cloud aware server templates

Customer
librar

Automation engine

Mul

loud engine

Ty

Cloud infrastructure

OEBPS/B978159749725100010X/f10-13-9781597497251.jpg
Services
maraiioces

HEe g
e g
= T
P = Eg
T !
e i -
= g =
[Prysical machine Wms
p—)
o

OEBPS/B9781597497251000044/f04-16-9781597497251.jpg
Click to add title

Click to add subtitle

OEBPS/B9781597497251000032/f03-17-9781597497251.jpg
Desktop

MSFT datacenters.

OEBPS/B978159749725100010X/f10-04-9781597497251.jpg
Template Offering
> Create service > Create service
template offering

> Update service > Update service
template offering

> Delete service =BT
template fering

End of Service

> Terminate service. = LT
contract Cloud Service > Admi
> Terminate service. Lifecycle

> Update contract

Runtime Maint Provision Service
Monitor service. > Provisior
resources resources

> Event noliication > Deploy service

> Contract reporting template

> Contract biling > Change resource
capacity

OEBPS/B9781597497251000020/f02-13-9781597497251.jpg

OEBPS/B9781597497251000032/f03-25-9781597497251.jpg

OEBPS/B9781597497251000020/f02-12-9781597497251.jpg
Create Volume i

si

Availability Zone: [yseasifa

‘Snapshot:

~No Snapshat

(]

OEBPS/B9781597497251000081/f08-07-9781597497251.jpg

OEBPS/B9781597497251000196/ctr-02-9781597497251.jpg

OEBPS/B9781597497251000147/bio-02-9781597497251.jpg

OEBPS/B978159749725100010X/f10-12-9781597497251.jpg

OEBPS/B9781597497251000068/f06-03-9781597497251.jpg
APls.
Components

OCA (JavaRuby) __(Scheduler)
D

XML RPC

Comtianin =

TNINMIVIAGH APTS

Drivers
TMINMVMIAuth Drivers

g1ois) | |

OEBPS/B9781597497251000093/f09-10-9781597497251.jpg
Fusa s el

Gig ethernet

Cluster

Bricks

OEBPS/B9781597497251000068/f06-18-9781597497251.jpg
Job
scheduler

Appiication Appiication
Application Application
firaries ibraries
Librato OS Librato OS
abstraction abstraction
os | os

WANILAN

OEBPS/B9781597497251000056/f05-06-9781597497251.jpg
Row A CF1:Q1=V1 CF1:03=V6 T
RowA CF1:Q1=V2 2
RowB. CF2:02-V3 T3
Row C CF2:02-V4 T4
RowD CF1:Q1=V5 T5

OEBPS/B9781597497251000044/f04-15-9781597497251.jpg
L Il

OEBPS/B9781597497251000032/f03-03-9781597497251.jpg
LSimpleCloudar
Fic it Vew Pt D Dga oo Window Hie.

-G 4890 b Aoy |
T 10 Tansiion | £ Pblte |Crete Publsh stings < 5

e Titiemone age” onpage G FasteragerilesSite sater utohentirepe s
Pty

adercontent” runata"server” ContentPlacetolder

E
i
g
H
H

s
| Lerospicontencs

OEBPS/B9781597497251000032/f03-30-9781597497251.jpg

OEBPS/B9781597497251000032/f03-39-9781597497251.jpg
ninputtees

Drop module/pipe from toolbox here

D0 user iputs. operators o deprecated modkes)

Oemitresuts
L —

OEBPS/B9781597497251000032/f03-31-9781597497251.jpg

OEBPS/B9781597497251000032/f03-36-9781597497251.jpg

OEBPS/B978159749725100007X/f07-01-9781597497251.jpg
Access (o control
network

Database

OEBPS/B9781597497251000093/f09-11-9781597497251.jpg
Host 3.

/0 frame processing
at wire speed using
ASICs; low latency

“Control pah
and volume

VSM

management:

Intelligent switches
in /0 path: DPMs

Control 10:
Inquiry/ TURY...

OEBPS/B9781597497251000019/f01-03-9781597497251.jpg
HHE
g

;.Z@ em

OEBPS/B978159749725100010X/f10-07-9781597497251.jpg
YCSB client

Workload
generator

Statistics.

Database.
plugins.

Client threads

Storage

OEBPS/B9781597497251000068/f06-17-9781597497251.jpg

OEBPS/B9781597497251000032/f03-06-9781597497251.jpg

OEBPS/B9781597497251000093/f09-02-9781597497251.jpg
Original HW
platform

OEBPS/B9781597497251000020/f02-11-9781597497251.jpg
=

OEBPS/B9781597497251000056/f05-13-9781597497251.jpg
sV lex Buider TWbasicYidesPlayeribin debugVhasicy

OEBPS/B9781597497251000081/f08-03-9781597497251.jpg
Cloudwatch Monioring Detais

CPU Utlization (percent)[Avrage %]

T Range: st 24vus] serod e 9] 2 e

OEBPS/B9781597497251000020/f02-07-9781597497251.jpg

OEBPS/B9781597497251000068/f06-12-9781597497251.jpg
1 [Carlicense

Service

Cost Customt

Custom2

Metadata table

E=m \TM. ame

\Cumm name \Cusm‘ type

_

OEBPS/B9781597497251000020/f02-20-9781597497251.jpg

OEBPS/B9781597497251000020/f02-09-9781597497251.jpg
et 10:
Jra—
Gustent
o

o5

st o i o or e

[E[seepe—

[S —

OEBPS/B9781597497251000032/f03-22-9781597497251.jpg
horn subramoni@gmail.com | L Aciuct | e | S0

:E%
it
i

Bt
oy

s
oy
ey
D
ey
o
[
e
[—
ey
et s
rp—
e
oy
P
oy
e
[y

[T
preasmrer
T —

OEBPS/B9781597497251000044/f04-07-9781597497251.jpg

OEBPS/B9781597497251000081/f08-05-9781597497251.jpg
Salesforce.com Performance

PREEEEY

B2 << Awapess com
= Trnsacton spesd
Stcomtankasies 2] Pt

OEBPS/B9781597497251000056/f05-04-9781597497251.jpg
Select Select
partiion partion
7 Range table 7
or st
Hash Lookup
(Cust_id) (Cust_id)

g e | T Trsstener | Seere || [r7astomo] 4rres
viaoznz |11 | [soseoaoa [Sries w0 [Stios || [oosatzna [s1195
T T
0202102 [51395 soatzarz [51595

i Eo—
o 8 S 8
8 8 8 8

Hash partitioning

OEBPS/B9781597497251000093/f09-16-9781597497251.jpg

OEBPS/B9781597497251000019/f01-06-9781597497251.jpg
Avpl\camms - f::'lml\ed by
" | Ee) s
Paas provider JBOSS dus\er rsaer:aqsd by

Con) mww Hardware, virtualization layers

OEBPS/B9781597497251000019/f01-01-9781597497251.jpg

OEBPS/B9781597497251000044/f04-02-9781597497251.jpg

OEBPS/B9781597497251000044/f04-17-9781597497251.jpg
R e e

[—————
=

OEBPS/B9781597497251000196/ctr-05-9781597497251.jpg
hw

OEBPS/B9781597497251000081/f08-01-9781597497251.jpg
QL2

Service template|
designer

L5
B

o

Gonsumer portal

Enterprise

portals
Service catalog Chargeback &
biling
Alocation & scheduling Esves
management
“Application
Service lfecycle management ntogration
cmDB.
Maintenance & operations management
Ticketing
Resource pool management Y]
Operations.
& | management
Storage
Vitual | Physical | Network | Storage | Software) | integration
machine | server | resource |resource Hoployment|| ™ Notwork
managor | manager | manager |manager | manager || | imegration

h»

‘Admin poral

n ,f’ Linux, "“"“““ .

OEBPS/B9781597497251000196/ctr-08-9781597497251.jpg

OEBPS/B9781597497251000056/f05-03-9781597497251.jpg
Master

Slave

Slave

OEBPS/B9781597497251000068/f06-15-9781597497251.jpg
Metadata (Name, re
Ihomelddifoo, 3,
Momelddidocs, 4, ..

DataNodes

Rack 1 Rack 2

OEBPS/B9781597497251000111/elsevier_logo.jpg

OEBPS/B9781597497251000020/f02-21-9781597497251.jpg
s - Customer Portal - Mozilla Firefox

OEBPS/B9781597497251000032/f03-21-9781597497251.jpg

OEBPS/B9781597497251000032/f03-09-9781597497251.jpg
Erm
ey

(S
= oy
ES/imemiannuany, mome

[
RO s TGO [y

OEBPS/B9781597497251000032/f03-20-9781597497251.jpg
A

Incoming

\rsqusrm

Worker

Role

W vorer
Role

\
Role

OEBPS/B9781597497251000019/f01-05-9781597497251.jpg
08, software and applications b
by user
S

ol

) Alocatio B (== &) (E resources

= e

1aas proviser | (=3 [F] managed by
user

) Controlled by
1aa$ provider

OEBPS/B9781597497251000044/f04-03-9781597497251.jpg

OEBPS/B9781597497251000032/f03-33-9781597497251.jpg
e e)

OEBPS/B9781597497251000093/f09-13-9781597497251.jpg
Virtual
organization

ovgnmznuon
Vo3

g

OEBPS/B9781597497251000032/f03-08-9781597497251.jpg
£ Windows Azure er ssEm

OEBPS/B9781597497251000044/f04-05-9781597497251.jpg
appexchange;

s Osemens

645,996 s i coris

Run your desk in the cloud
Boostelpdesk produciviy
et =)

Free

cs | LAPPS

OEBPS/B9781597497251000196/ctr-07-9781597497251.jpg

OEBPS/B9781597497251000068/f06-14-9781597497251.jpg
dess
530 [omm
[T
s

o e
£ T
1

Tomsr
Iz Tsmsr

[z

OEBPS/B9781597497251000056/f05-02-9781597497251.jpg
Session management

Application servers

E8889

Database,

. PEEE

Database

D090 T

Database ‘ —

DEE G (998

eCommerce Data warehouse

OEBPS/B978159749725100010X/f10-09-9781597497251.jpg
aring,

s
Registration q‘dﬁpla(mn

—

Capiig Ui daied
b aracion patems.

TaskLotcreaton

TaskLet Invocation TaskLet execution

OEBPS/B9781597497251000020/f02-22-9781597497251.jpg

OEBPS/B9781597497251000020/f02-23-9781597497251.jpg
H

OEBPS/B9781597497251000019/f01-04-9781597497251.jpg

OEBPS/B9781597497251000032/f03-35-9781597497251.jpg
(Porme %) toms vt maten _any. ot o obomins
ORuies

Dbugger: Pipe Output (24 Hems)

OEBPS/B9781597497251000032/f03-34-9781597497251.jpg

OEBPS/B9781597497251000056/f05-01-9781597497251.jpg

OEBPS/B9781597497251000044/f04-04-9781597497251.jpg
AppExchange

——

=

Web services APl

OEBPS/B9781597497251000068/f06-13-9781597497251.jpg
Data table 1

Tenant1a Cost [Name-value pair rec
1 275
B
2
1
g
2
Data table 2 (name-value pais)
[Name-value pair rec Value
N Ed 55
Metadata table 1 Metadata table 2
Name 14 Tenantld__|Data
s Sevice raing 1 Best garage
‘Service manager 2 Friondly garage.
B Honest garage

OEBPS/B9781597497251000056/si3.gif

OEBPS/B9781597497251000056/si4.gif
idf, ~log—12L__
|G edy|

OEBPS/B9781597497251000056/si1.gif
g agpa My ($Ev)

OEBPS/B9781597497251000081/f08-02-9781597497251.jpg
8 oo es | wsaca s | s s 3 Sromcn | ran | G

P — 1< rmsosmms > 31

bsace MWD SecntyOuups Twe suus Montong -
o §res2e02e amidaddassd detaut mismal @ moning. W enabied. ‘
U § s amdseny st emever misnet @ oty oo

Grapns e for 2 nstances tht have monkoring ensbled. Time Range: [Lasthowr 1) & ko

M Network In (6755 M Network out (555

OEBPS/B9781597497251000093/f09-14-9781597497251.jpg
Application layer

Collective layer

Proocols:
Resource services GRAM, GAaF TP,
GRIP, GRS, GIlS
S 1P, NS,
CEMCEIGAAD Grid securty infasicture
Ingividual computer, Condor poos, l
Fabric layer Systoms. archves, motadata catalogs,
pscendglaichny

OEBPS/B9781597497251000056/si2.gif
U R, KBV,)

