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Preface to the Second Edition

This book was originally written by Ray Sinnott as Volume 6 of the “Chemical Engineering” series edited by Coulson and Richardson. It was intended to be a standalone design textbook for undergraduate design projects that would supplement the other volumes in the Coulson and Richardson series. In 2008 we published the first edition of Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design as an adaptation of Coulson and Richardson Volume 6 for the North American market. Some older sections of the book were updated and references to laws, codes, and standards were changed to an American rather than British basis; however, the general layout and philosophy of the book remained unaltered.

The first edition of this book was widely adopted and I received a great deal of valuable feedback from colleagues on both the strengths and weaknesses of the text in the context of a typical North American undergraduate curriculum. The experiences and frustrations of my students at Northwestern University and comments from coworkers at UOP also helped suggest areas where the book could be improved. The changes that have been made in this second edition are my attempt to make the book more valuable to students and industrial practitioners by incorporating new material to address obvious gaps, while eliminating some material that was dated or repetitive of foundation classes.

The main change that I have made is to rearrange the order in which material is presented to fit better with a typical two-course senior design sequence. The book is now divided into two parts. Part I: Process Design covers the topics that are typically taught in a lecture class. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact, and optimization. Part II: Plant Design contains chapters on equipment design and selection that can be used as supplements to a lecture course. These chapters contain step-by-step methods for designing most unit operations, together with many worked examples, and should become essential references for students when they begin working through their design projects or face design problems early in their industrial career.

The coverage of process flowsheet development has been significantly increased in this edition. The introductory chapters on material and energy balances have been deleted and replaced with chapters on flowsheet development and energy recovery, which lead into the discussion of process simulation. The treatment of process economics has also been increased, with new chapters on capital cost estimating and operating costs, as well as a longer discussion of economic analysis and sensitivity analysis. The section on optimization is now presented as a separate chapter at the end of Part I, as most instructors felt that it was more logical to present this topic after introducing economic analysis and the constraints that come from safety and environmental considerations.

Part II begins with an overview of common themes in equipment design. This is followed by the chapter on pressure vessel design, which underpins the design of most process vessels. The following chapters then proceed through reactors, separation processes, solids handling, heat exchange, and hydraulic equipment. My experience has been that students often struggle to make the connection from reaction engineering fundamentals to a realistic mechanical layout of a reactor, so a new chapter on reactor design has been added, with a focus on the practical aspects of reactor specification. The coverage of separation processes has been expanded to include adsorption, membrane separations, chromatography, and ion exchange. The treatment of solids-handling processes has also been increased and solids-handling operations have been grouped together in a new chapter.

Throughout the book I have attempted to increase the emphasis on batch processing, revamp designs, and design of biological processes, including fermentation and the separations commonly used in product recovery and purification from biochemical processes. Almost every chapter now contains examples of food, pharmaceutical, and biological processes and operations. Many graduating chemical engineers in the United States will find themselves working in established plants where they are more likely to work on revamp projects than new grassroots designs. A general discussion of revamp design is given in Part I and examples of rating calculations for revamps are presented throughout Part II.

Chemical engineers work in a very diverse set of industries and many of these industries have their own design conventions and specialized equipment. I have attempted to include examples and problems from a broad range of process industries, but where space or my lack of expertise in the subject has limited coverage of a particular topic, references to specialized texts are provided.

This book draws on Ray Sinnott’s and my experience of the industrial practice of process design, as well as our experience teaching design at the University of Wales Swansea, University of Manchester, and Northwestern University. Since the book is intended to be used in practice and not just as a textbook, our aim has been to describe the tools and methods that are most widely used in industrial process design. We have deliberately avoided describing idealized conceptual methods that have not yet gained wide currency in industry. The reader can find good descriptions of these methods in the research literature and in more academic textbooks.

Standards and codes of practice are an essential part of engineering and the relevant North American standards are cited. The codes and practices covered by these standards will be applicable to other countries. They will be covered by equivalent national standards in most developed countries, and in some cases the relevant British, European, or international standards have also been cited. Brief summaries of important U.S. and Canadian safety and environmental legislation have been given in the relevant chapters. The design engineer should always refer to the original source references of laws, standards, and codes of practice, as they are updated frequently.

Most industrial process design is carried out using commercial design software. Extensive reference has been made to commercial process and equipment design software throughout the book. Many of the commercial software vendors provide licenses of their software for educational purposes at nominal fees. I strongly believe that students should be introduced to commercial software at as early a stage in their education as possible. The use of academic design and costing software should be discouraged. Academic programs usually lack the quality control and support required by industry, and the student is unlikely to use such software after graduation. All computer-aided design tools must be used with some discretion and engineering judgment on the part of the designer. This judgment mainly comes with experience, but I have tried to provide helpful tips on how to best use computer tools.

Ray wrote in the preface to the first edition of his book: “The art and practice of design cannot be learned from books. The intuition and judgment necessary to apply theory to practice will come only from practical experience.” In modifying the book to this new edition I hope that I have made it easier for readers to begin acquiring that experience.

Gavin Towler




How to Use This Book

This book has been written primarily for students on undergraduate courses in chemical engineering and has particular relevance to their senior design projects. It should also be of interest to new graduates working in industry who find they need to broaden their knowledge of unit operations and design. Some of the earlier chapters of the book can also be used in introductory chemical engineering classes and by other disciplines in the chemical and process industries.


Part I: Process Design

Part I has been conceived as an introductory course in process design. The material can be covered in 20 to 30 lecture hours and presentation slides are available to qualified instructors in the supplementary material available at booksite.elsevier.com/towler. Chapter 1 is a general overview of process design and contains an introductory section on product design. Chapters 2 to 6 address the development of a process flowsheet from initial concept to the point where the designer is ready to begin estimating capital costs. Chapter 2 covers the selection of major unit operations and also addresses design for revamps and modification of conventional flowsheets. Chapter 3 introduces utility systems and discusses process energy recovery and heat integration. Chapter 4 provides an introduction to process simulation and shows the reader how to complete process material and energy balances. Chapter 5 covers those elements of process control that must be understood to complete a process flow diagram and identify where pumps and compressors are needed in the flowsheet. The selection of materials of construction can have a significant effect on plant costs, and this topic is addressed in Chapter 6. The elements of process economic analysis are introduced in Chapters 7 to 9. Capital cost estimation is covered in Chapter 7. Operating costs, revenues, and price forecasting are treated in Chapter 8. Chapter 9 concludes the economics section of the book with a brief introduction to corporate finance, a description of economic analysis methods, and a discussion on project selection criteria used in industry. Chapter 10 examines the role of safety considerations in design and introduces the methods used for process hazard analysis. Chapter 11 addresses site design and environmental impact. Part I concludes with a discussion of optimization methods in Chapter 12.




Part II: Plant Design

Part II contains a more detailed treatment of design methods for common unit operations. Chapter 13 provides an overview of equipment design and is also a guide to the following chapters. Chapter 14 discusses the design of pressure vessels, and provides the necessary background for the reader to be able to design reactors, separators, distillation columns, and other operations that must be designed under pressure vessel codes. Chapter 15 covers the design of mixers and reactors, with an emphasis on the practical mechanical layout of reactors. Chapters 16 and 17 address fluid phase separations. Multistage column separations (distillation, absorption, stripping, and extraction) are described in Chapter 17, while other separation processes, such as adsorption, membrane separation, decanting, crystallization, precipitation, ion exchange, and chromatography, are covered in Chapter 16. Chapter 18 examines the properties of granular materials and introduces the processes used for storing, conveying, mixing, separating, heating, drying, and altering the particle size distribution of solids. Chapter 19 covers all aspects of the design of heat-transfer equipment, including plate exchangers, air coolers, fired heaters, and direct heat transfer to vessels, as well as design of shell and tube heat exchangers, boilers, and condensers. Chapter 20 addresses the design of plant hydraulics and covers design and selection of pumps, compressors, piping systems, and control valves. The material in Part II can be used to provide supplementary lectures in a design class, or as a supplement to foundation courses in chemical engineering. The chapters have also been written to serve as a guide to selection and design, with extensive worked examples, so that students can dip into individual chapters as they face specific design problems when working on a senior year design project.




Supplementary Material

Many of the calculations described in the book can be performed using spreadsheets. Templates of spreadsheet calculations and equipment specification sheets are available in Microsoft Excel format online and can be downloaded from booksite.elsevier.com/Towler. An extensive set of design problems are included in the Appendices, which are also available at booksite.elsevier.com/Towler.

Additional supplementary material, including Microsoft PowerPoint presentations to support most of the chapters and a full solutions manual, are available only to instructors, by registering at the Instructor section on booksite.elsevier.com/Towler.
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Chapter 1

Introduction to Design

Key Learning Objectives

• How design projects are carried out and documented in industry, including the formats used for design reports

• Why engineers in industry use codes and standards in design

• Why it is necessary to build margins into a design

• Methods used by product design engineers to translate customer needs into product specifications




1.1 Introduction

This chapter is an introduction to the nature and methodology of the design process, and its application to the design of chemical products and manufacturing processes.




1.2 Nature of Design

This section is a general discussion of the design process. The subject of this book is chemical engineering design, but the methodology described in this section applies equally to other branches of engineering.

Chemical engineering has consistently been one of the highest paid engineering professions. There is a demand for chemical engineers in many sectors of industry, including the traditional process industries: chemicals, polymers, fuels, foods, pharmaceuticals, and paper, as well as other sectors such as electronic materials and devices, consumer products, mining and metals extraction, biomedical implants, and power generation.

The reason that companies in such a diverse range of industries value chemical engineers so highly is the following:

Starting from a vaguely defined problem statement such as a customer need or a set of experimental results, chemical engineers can develop an understanding of the important underlying physical science relevant to the problem and use this understanding to create a plan of action and set of detailed specifications, which, if implemented, will lead to a predicted financial outcome.

The creation of plans and specifications and the prediction of the financial outcome if the plans were implemented is the activity of chemical engineering design.

Design is a creative activity, and as such can be one of the most rewarding and satisfying activities undertaken by an engineer. The design does not exist at the start of the project. The designer begins with a specific objective or customer need in mind, and by developing and evaluating possible designs, arrives at the best way of achieving that objective; be it a better chair, a new bridge, or for the chemical engineer, a new chemical product or production process.

When considering possible ways of achieving the objective the designer will be constrained by many factors, which will narrow down the number of possible designs. There will rarely be just one possible solution to the problem, just one design. Several alternative ways of meeting the objective will normally be possible, even several best designs, depending on the nature of the constraints.

These constraints on the possible solutions to a problem in design arise in many ways. Some constraints will be fixed and invariable, such as those that arise from physical laws, government regulations, and engineering standards. Others will be less rigid, and can be relaxed by the designer as part of the general strategy for seeking the best design. The constraints that are outside the designer’s influence can be termed the external constraints. These set the outer boundary of possible designs, as shown in Figure 1.1. Within this boundary there will be a number of plausible designs bounded by the other constraints, the internal constraints, over which the designer has some control; such as choice of process, choice of process conditions, materials, and equipment.

[image: image]

Figure 1.1 Design constraints.

Economic considerations are obviously a major constraint on any engineering design: plants must make a profit. Process costing and economics are discussed in Chapters 7, 8, and 9.

Time will also be a constraint. The time available for completion of a design will usually limit the number of alternative designs that can be considered.

The stages in the development of a design, from the initial identification of the objective to the final design, are shown diagrammatically in Figure 1.2. Each stage is discussed in the following sections.

[image: image]

Figure 1.2 The design process.

Figure 1.2 shows design as an iterative procedure. As the design develops, the designer will become aware of more possibilities and more constraints, and will be constantly seeking new data and evaluating possible design solutions.


1.2.1 The Design Objective (The Need)

All design starts with a perceived need. In the design of a chemical product or process, the need is the public need for the product, creating a commercial opportunity, as foreseen by the sales and marketing organization. Within this overall objective the designer will recognize sub-objectives, the requirements of the various units that make up the overall process.

Before starting work, the designer should obtain as complete, and as unambiguous, a statement of the requirements as possible. If the requirement (need) arises from outside the design group, from a customer or from another department, then the designer will have to elucidate the real requirements through discussion. It is important to distinguish between the needs that are “must haves” and those that are “should haves”. The “should haves” are those parts of the initial specification that may be thought desirable, but that can be relaxed if necessary as the design develops. For example, a particular product specification may be considered desirable by the sales department, but may be difficult and costly to obtain, and some relaxation of the specification may be possible, producing a saleable but cheaper product. Whenever possible, the designer should always question the design requirements (the project and equipment specifications) and keep them under review as the design progresses. It is important for the design engineer to work closely with the sales or marketing department or with the customer directly, to have as clear as possible an understanding of the customer’s needs.

When writing specifications for others, such as for the mechanical design or purchase of a piece of equipment, the design engineer should be aware of the restrictions (constraints) that are being placed on other designers. A well-thought-out, comprehensive specification of the requirements for a piece of equipment defines the external constraints within which the other designers must work.




1.2.2 Setting the Design Basis

The most important step in starting a process design is translating the customer need into a design basis. The design basis is a more precise statement of the problem that is to be solved. It will normally include the production rate and purity specifications of the main product, together with information on constraints that will influence the design such as:


1. The system of units to be used.

2. The national, local, or company design codes that must be followed.

3. Details of raw materials that are available.

4. Information on potential sites where the plant might be located, including climate data, seismic conditions, and infrastructure availability. Site design is discussed in detail in Chapter 11.

5. Information on the conditions, availability, and price of utility services such as fuel gas, steam, cooling water, process air, process water, and electricity that will be needed to run the process.



The design basis must be clearly defined before design can begin. If the design is carried out for a client, then the design basis should be reviewed with the client at the start of the project. Most companies use standard forms or questionnaires to capture design basis information. An example template is given in Appendix G and can be downloaded in MS Excel format from the online material at booksite.Elsevier.com/Towler.




1.2.3 Generation of Possible Design Concepts

The creative part of the design process is the generation of possible solutions to the problem for analysis, evaluation, and selection. In this activity most designers largely rely on previous experience, their own and that of others. It is doubtful if any design is entirely novel. The antecedence of most designs can usually be easily traced. The first motor cars were clearly horse-drawn carriages without the horse; and the development of the design of the modern car can be traced step by step from these early prototypes. In the chemical industry, modern distillation processes have developed from the ancient stills used for rectification of spirits; and the packed columns used for gas absorption have developed from primitive, brushwood-packed towers. So, it is not often that a process designer is faced with the task of producing a design for a completely novel process or piece of equipment.

Experienced engineers usually prefer the tried and tested methods, rather than possibly more exciting but untried novel designs. The work that is required to develop new processes, and the cost, are usually underestimated. Commercialization of new technology is difficult and expensive and few companies are willing to make multimillion dollar investments in technology that is not well proven (a phenomenon known in industry as “me third” syndrome). Progress is made more surely in small steps; however, when innovation is wanted, previous experience, through prejudice, can inhibit the generation and acceptance of new ideas (known as “not invented here” syndrome).

The amount of work, and the way it is tackled, will depend on the degree of novelty in a design project. Development of new processes inevitably requires much more interaction with researchers and collection of data from laboratories and pilot plants.

Chemical engineering projects can be divided into three types, depending on the novelty involved:


1. Modifications, and additions, to existing plant; usually carried out by the plant design group. Projects of this type represent about half of all the design activity in industry.

2. New production capacity to meet growing sales demand, and the sale of established processes by contractors. Repetition of existing designs, with only minor design changes, including designs of vendor’s or competitor’s processes carried out to understand whether they have a compellingly better cost of production. Projects of this type account for about 45% of industrial design activity.

3. New processes, developed from laboratory research, through pilot plant, to a commercial process. Even here, most of the unit operations and process equipment will use established designs. This type of project accounts for less than 5% of design activity in industry.



The majority of process designs are based on designs that previously existed. The design engineer very rarely sits down with a blank sheet of paper to create a new design from scratch, an activity sometimes referred to as “process synthesis.” Even in industries such as pharmaceuticals, where research and new product development are critically important, the types of process used are often based on previous designs for similar products, so as to make use of well-understood equipment and smooth the process of obtaining regulatory approval for the new plant.

The first step in devising a new process design will be to sketch out a rough block diagram showing the main stages in the process and to list the primary function (objective) and the major constraints for each stage. Experience should then indicate what types of unit operations and equipment should be considered. The steps involved in determining the sequence of unit operations that constitutes a process flowsheet are described in Chapter 2.

The generation of ideas for possible solutions to a design problem cannot be separated from the selection stage of the design process; some ideas will be rejected as impractical as soon as they are conceived.




1.2.4 Fitness Testing

When design alternatives are suggested, they must be tested for fitness for purpose. In other words, the design engineer must determine how well each design concept meets the identified need. In the design of chemical plants it is usually prohibitively expensive to build several designs to find out which one works best. Instead, the design engineer builds a mathematical model of the process, usually in the form of computer simulations of the process, reactors, and other key equipment. In some cases, the performance model may include a pilot plant or other facility for predicting plant performance and collecting the necessary design data. In other cases, the design data can be collected from an existing full-scale facility or can be found in the chemical engineering literature.

The design engineer must assemble all of the information needed to model the process so as to predict its performance against the identified objectives. For process design this will include information on possible processes, equipment performance, and physical property data. Sources of process information are reviewed in Chapter 2.

Many design organizations will prepare a basic data manual, containing all the process “know-how” on which the design is to be based. Most organizations will have design manuals covering preferred methods and data for the more frequently-used design procedures. The national standards are also sources of design methods and data. They are also design constraints, as new plants must be designed in accordance with national standards and regulations. If the necessary design data or models do not exist then research and development work is needed to collect the data and build new models.

Once the data has been collected and a working model of the process has been established, the design engineer can begin to determine equipment sizes and costs. At this stage it will become obvious that some designs are uneconomical and they can be rejected without further analysis. It is important to make sure that all of the designs that are considered are fit for the service, i.e., meet the customer’s “must have” requirements. In most chemical engineering design problems this comes down to producing products that meet the required specifications. A design that does not meet the customer’s objective can usually be modified until it does so, but this always adds extra costs.




1.2.5 Economic Evaluation, Optimization, and Selection

Once the designer has identified a few candidate designs that meet the customer objective, the process of design selection can begin. The primary criterion for design selection is usually economic performance, although factors such as safety and environmental impact may also play a strong role. The economic evaluation usually entails analyzing the capital and operating costs of the process to determine the return on investment, as described in Chapters 7, 8, and 9.

The economic analysis of the product or process can also be used to optimize the design. Every design will have several possible variants that make economic sense under certain conditions. For example, the extent of process heat recovery is a trade-off between the cost of energy and the cost of heat exchangers (usually expressed as a cost of heat exchange area). In regions where energy costs are high, designs that use a lot of heat exchange surface to maximize recovery of waste heat for reuse in the process will be attractive. In regions where energy costs are low, it may be more economical to burn more fuel and reduce the capital cost of the plant. Techniques for energy recovery are described in Chapter 3. The mathematical techniques that have been developed to assist in the optimization of plant design and operation are discussed briefly in Chapter 12.

When all of the candidate designs have been optimized, the best design can be selected. Very often, the design engineer will find that several designs have very close economic performance, in which case the safest design or that which has the best commercial track record will be chosen. At the selection stage an experienced engineer will also look carefully at the candidate designs to make sure that they are safe, operable, and reliable, and to ensure that no significant costs have been overlooked.




1.2.6 Detailed Design and Equipment Selection

After the process or product concept has been selected, the project moves on to detailed design. Here the detailed specifications of equipment such as vessels, exchangers, pumps, and instruments are determined. The design engineer may work with other engineering disciplines, such as civil engineers for site preparation, mechanical engineers for design of vessels and structures, and electrical engineers for instrumentation and control.

Many companies engage specialist Engineering, Procurement, and Construction (EPC) companies, commonly known as contractors, at the detailed design stage. The EPC companies maintain large design staffs that can quickly and competently execute projects at relatively low cost.

During the detailed design stage there may still be some changes to the design and there will certainly be ongoing optimization as a better idea of the project cost structure is developed. The detailed design decisions tend to focus mainly on equipment selection though, rather than on changes to the flowsheet. For example, the design engineer may need to decide whether to use a U-tube or a floating-head exchanger, as discussed in Chapter 19, or whether to use trays or packing for a distillation column, as described in Chapter 17.




1.2.7 Procurement, Construction, and Operation

When the details of the design have been finalized, the equipment can be purchased and the plant can be built. Procurement and construction are usually carried out by an EPC firm unless the project is very small. Because they work on many different projects each year, the EPC firms are able to place bulk orders for items such as piping, wire, valves, etc., and can use their purchasing power to get discounts on most equipment. The EPC companies also have a great deal of experience in field construction, inspection, testing, and equipment installation. They can therefore normally contract to build a plant for a client cheaper (and usually also quicker) than the client could build it on their own.

Finally, once the plant is built and readied for start-up, it can begin operation. The design engineer will often then be called upon to help resolve any start-up issues and teething problems with the new plant.






1.3 The Organization of a Chemical Engineering Project

The design work required in the engineering of a chemical manufacturing process can be divided into two broad phases.

Phase 1: Process design, which covers the steps from the initial selection of the process to be used, through to the issuing of the process flowsheets; and includes the selection, specification, and chemical engineering design of equipment. In a typical organization, this phase is the responsibility of the process design group, and the work is mainly done by chemical engineers. The process design group may also be responsible for the preparation of the piping and instrumentation diagrams.

Phase 2: Plant design, including the detailed mechanical design of equipment, the structural, civil, and electrical design, and the specification and design of the ancillary services. These activities will be the responsibility of specialist design groups, having expertise in the whole range of engineering disciplines.



Other specialist groups will be responsible for cost estimation, and the purchase and procurement of equipment and materials.

The sequence of steps in the design, construction, and start-up of a typical chemical process plant is shown diagrammatically in Figure 1.3, and the organization of a typical project group is shown in Figure 1.4. Each step in the design process will not be as neatly separated from the others as is indicated in Figure 1.3, nor will the sequence of events be as clearly defined. There will be a constant interchange of information between the various design sections as the design develops, but it is clear that some steps in a design must be largely completed before others can be started.
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Figure 1.3 The structure of a chemical engineering project.

A project manager, often a chemical engineer by training, is usually responsible for the coordination of the project, as shown in Figure 1.4.
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Figure 1.4 Project organization.

As was stated in Section 1.2.1, the project design should start with a clear specification defining the product, capacity, raw materials, process, and site location. If the project is based on an established process and product, a full specification can be drawn up at the start of the project. For a new product, the specification will be developed from an economic evaluation of possible processes, based on laboratory research, pilot plant tests, and product market research. Techniques for new product design are discussed in Section 1.8.

Some of the larger chemical manufacturing companies have their own project design organizations and carry out the whole project design and engineering, and possibly construction, within their own organization. More usually, the design and construction, and possibly assistance with start-up, are subcontracted to one of the international Engineering, Procurement and Construction (EPC) firms.

The technical “know-how” for the process could come from the operating company or could be licensed from the contractor or a technology vendor. The operating company, technology provider, and contractor will work closely together throughout all stages of the project.

On many modern projects, the operating company may well be a joint venture between several companies. The project may be carried out between companies based in different parts of the world. Good teamwork, communications, and project management are therefore critically important in ensuring that the project is executed successfully.




1.4 Project Documentation

As shown in Figure 1.4 and described in Section 1.3, the design and engineering of a chemical process requires the cooperation of many specialist groups. Effective cooperation depends on effective communications, and all design organizations have formal procedures for handling project information and documentation. The project documentation will include:


1. General correspondence within the design group and with


government departments

equipment vendors

site personnel

the client



2. Calculation sheets


design calculations

cost estimates

material and energy balances



3. Drawings


flowsheets

piping and instrumentation diagrams

layout diagrams

plot/site plans

equipment details

piping diagrams (isometrics)

architectural drawings

design sketches



4. Specification sheets


the design basis

feed and product specifications

an equipment list

sheets for equipment, such as: heat exchangers, pumps, heaters, etc.



5. Health, safety, and environmental information


materials safety data sheets (MSDS forms)

HAZOP or HAZAN documentation (see Chapter 10)

emissions assessments and permits



6. Purchase orders


quotations

invoices





All documents are assigned a code number for easy cross-referencing, filing, and retrieval.


1.4.1 Design Documents


Calculation Sheets

The design engineer should develop the habit of setting out calculations so that they can be easily understood and checked by others. It is good practice to include on calculation sheets the basis of the calculations, and any assumptions and approximations made, in sufficient detail for the methods, as well as the arithmetic, to be checked. Design calculations are normally set out on standard sheets. The heading at the top of each sheet should include the project title and identification number, the revision number and date and, most importantly, the signature (or initials) of the person who checked the calculation. A template calculation sheet is given in Appendix G and can be downloaded in MS Excel format from the online material at booksite.elsevier.com/Towler.




Drawings

All project drawings are normally drawn on specially printed sheets, with the company name, project title and number, drawing title and identification number, and drafter’s name and person checking the drawing clearly set out in a box in the bottom right-hand corner. Provision should also be made for noting on the drawing all modifications to the initial issue.

Drawings should conform to accepted drawing conventions, preferably those laid down by the national standards. The symbols used for flowsheets and piping and instrument diagrams are discussed in Chapters 2 and 5. Computer Aided Design (CAD) methods are used to produce the drawings required for all the aspects of a project: flowsheets, piping and instrumentation, mechanical and civil work. While the released versions of drawings are usually drafted by a professional, the design engineer will often need to mark up changes to drawings or make minor modifications to flowsheets, so it is useful to have some proficiency with the drafting software.




Specification Sheets

Standard specification sheets are normally used to transmit the information required for the detailed design, or purchase, of equipment items, such as heat exchangers, pumps, columns, pressure vessels, etc.

As well as ensuring that the information is clearly and unambiguously presented, standard specification sheets serve as checklists to ensure that all the information required is included.

Examples of equipment specification sheets are given in MS Excel format in the online material at booksite.elsevier.com/Towler. These specification sheets are referenced and used in examples throughout the book. Standard worksheets are also often used for calculations that are commonly repeated in design.




Process Manuals

Process manuals are usually prepared by the process design group to describe the process and the basis of the design. Together with the flowsheets, they provide a complete technical description of the process.




Operating Manuals

Operating manuals give the detailed, step-by-step, instructions for operation of the process and equipment. They would normally be prepared by the operating company personnel, but may also be issued by a contractor or technology licensor as part of the technology transfer package for a less experienced client. The operating manuals are used for operator instruction and training, and for the preparation of the formal plant operating instructions.






1.4.2 Design Reports

Design reports are used as a means of organizing, recording, and communicating the information developed during a design project. The format of the report depends on the function of the design project. A techno-economic analysis of a new product or process might require a strong focus on marketing and commercial aspects of the project and less technical detail, whereas a basic engineering design package that is to be used to generate a ± 10% cost estimate will require substantial information on equipment designs but needs no financial analysis whatsoever.

When writing a design report, the design engineer should begin by thinking about the needs of the audience that will be using the report. Information is usually conveyed in the form of tables and charts as much as possible, with brief descriptions in the text when necessary. Most design reports are compiled from flow diagrams, specification sheets, and standard templates for economic analysis, so that the technical information that users require is easily accessible. The written portion of the report is usually very brief and is limited to an explanation of the key design features, assumptions, decisions, and recommendations. The following examples illustrate some of the different report formats that are commonly used in industry, while the final example discusses a suitable format for university design projects.

Example 1.1 Techno-Economic Analysis

This type of report is used to summarize a preliminary technical and economic analysis of a proposed new product or process technology. Such a report might be written by an engineer working in product or process development, or by a consulting company that has been asked to assess a new product or manufacturing route. This type of report is also often written as an assessment of a competitor’s technology, or in an effort to understand a supplier’s cost structure. The purpose of the report is to provide sufficient technical and economic analysis of the process to determine whether it is economically attractive and to understand the costs of production, often in comparison to a conventional alternative. In addition to describing the technology and determining the cost of production, the report should also review the attractiveness of the market and assess the risks inherent in practicing the technology. A sample contents list with guidance on each section is given in Table 1.1.

Table 1.1. Techno-Economic Analysis



	1. Executive summary (1–2 page summary of overall findings and recommendations including highlights of financial analysis)


	2. Technology description


	2.1. Process chemistry (describe the feeds, reaction mechanism, catalyst, reaction conditions, how important byproducts are formed)


	2.2. Process specification (brief description of the process including block flow diagram)


	3. Commercial analysis


	3.1. Product applications (major end use markets, competing products, legislative issues)


	3.2. Competitor assessment (market shares, competitor strengths, weaknesses, regional/geographic factors)


	3.3. Existing and planned capacity (how much and where, include plants that make feed or consume product if these have an impact on project viability—usually presented as a table)


	3.4. Market forecast (estimate growth rate, future price trends, regional variations in market)


	3.5. Project location criteria (discuss the criteria for locating a new plant, market issues, legislative factors, etc. [see Chapter 11])


	4. Economic analysis


	4.1. Pricing basis (forecasting method, price, and/or margin assumptions)


	4.2. Investment analysis (explain the basis for the capital cost estimate, e.g., factorial estimate based on equipment design, curve cost estimate, etc. [see Chapter 7])


	4.3. Cost of production analysis (breakdown of the cost of production of product, usually presented as a table showing variable and fixed cost components [see Chapter 8])


	4.4. Financial analysis (evaluation of project profitability, usually presented as standard tables [see Chapter 9])


	4.5. Sensitivity analysis (discuss the financial impact of varying key assumptions such as prices, plant capacity, investment cost, construction schedule [see Chapter 9])


	5. Risk analysis


	5.1. Process hazard analysis summary (summary of critical safety issues in the design, issues raised during process hazard analysis)


	5.2. Environmental impact assessment summary (summary of critical environmental issues)


	5.3. Commercial risk assessment (discuss business risks inherent in the investment)


	6. Appendices


	6.1. Process flow diagram


	6.2. Equipment list and capital cost summary








Example 1.2 Technical Proposal

A technical proposal document is intended to convey the information needed to make a technology selection. When a company has decided to build a new plant they will often invite several engineering or licensing firms to submit proposals for the plant design. Although the proposal does not contain a complete design, there must be sufficient technical information for the customer to be able to select between the proposed design and the competitor’s proposals. Often, the customer will specify the contents and section headings of the proposal to ensure that all proposals follow the same format. Since the customer has already completed their own market analysis, this information is not required. Similarly, the plant capacity and location have usually already been specified. Instead, the focus of the report is on conveying the unique features of the design, the basis for selecting these features, and the proof that these features have worked in actual practice. A sample contents list is given in Table 1.2.

Table 1.2. Technical Proposal



	1. Executive summary


	1.1. Proposed technology (brief description of the process including block flow diagram)


	1.2. Benefits and advantages (summarize key advantages relative to competing technologies)


	2. Proposal basis


	2.1. Processing objectives (restate the design problem)


	2.2. Feedstocks (describe available feedstocks, grades, quality issues)


	2.3. Product grades (give product specifications, usually as tables or reference to ASTM specifications)


	2.4. Processing options (describe technical alternatives evaluated)


	3. Proposed technology


	3.1. Process description (more detailed process description)


	3.2. Reactor selection (what reactor type is recommended, why it was selected, and how it was designed)


	3.3. Catalyst selection recommendations (what catalysts are recommended and why)


	3.4. Key equipment recommendations (describe any critical unit operations and explain what was selected and how it was designed, key specifications, etc.)


	3.5. Pilot plant and commercial experience (describe any work that proves that the proposed design will operate as described)


	4. Technical and economic assessment


	4.1. Estimated raw materials consumption (usually a table)


	4.2. Estimated utility consumption (usually a table giving breakdowns for each utility [see Chapter 3])


	4.3. Estimated manpower requirements (how many operators are needed per shift)


	4.4. Estimated cost of production (breakdown of the cost of production of product, usually presented as a table showing variable and fixed cost components [see Chapter 8])


	4.5. Estimated installed capital cost (breakdown by plant section of the plant capital cost estimate)


	5. Process flow diagrams


	6. Preliminary equipment specification sheets


	7. Typical plot plan








Example 1.3 Basic Engineering Design

A basic engineering design report (BEDR) is often used at the end of the process design phase to collect and review information before beginning the plant design phase and detailed design of equipment, piping, plot layout, etc. The purpose of the BEDR is to ensure that all the information necessary for detailed design has been assembled, reviewed, and approved, so as to minimize errors and rework during detailed design. The BEDR also serves as a reference document for the detailed design groups and provides them with stream flows, temperatures, pressures, and physical property information. One of the most important functions of a basic engineering design report is to document the decisions and assumptions made during the design and the comments and suggestions made during design review meetings. These are often documented as separate sections of the report so that other engineers who later join the project can understand the reasons why the design evolved to its current form. A sample contents list for a basic engineering design report is given in Table 1.3.

Table 1.3. Basic Engineering Design



	1. Process description and basis


	1.1. Project definition (customer, location, key feeds, and products)


	1.2. Process description (brief description of process flowsheet and chemistry, including block flow diagrams)


	1.3. Basis and scope of design (plant capacity, project scope, design basis table)


	2. Process flow diagrams


	3. Mass and energy balances


	3.1. Base case stream data (stream temperature and pressure, mass flow and molar flow of each component in all streams, stream mass and molar composition, and total stream mass and molar flow, usually given as tables)


	3.2. Modified cases stream data (same data for each variant design case, for example winter/summer cases, start of run/end of run, different product grades, etc.)


	3.3. Base case physical property data (physical properties required by detailed design groups, such as stream density, viscosity, thermal conductivity, etc.)


	4. Process simulation (description of how the process was simulated and any differences between the simulation model and process flow diagram that detailed design groups need to understand)


	5. Equipment list


	6. Equipment specifications


	6.1. Pressure vessels


	6.2. Heaters


	6.3. Heat exchangers


	6.3.1. Tubular


	6.3.2. Air cooled


	6.4. Fluid handling equipment


	6.4.1. Pumps


	6.4.2. Compressors


	6.5. Solid handling equipment


	6.6. Drivers


	6.6.1. Motors


	6.6.2. Turbines


	6.7. Unconventional or proprietary equipment


	6.8. Instrumentation


	6.9. Electrical specifications


	6.10. Piping


	6.11. Miscellaneous


	7. Materials of construction (what materials are to be used in each section of the plant and why they were selected, often presented as a table or as a marked up version of the process flow diagram)


	8. Preliminary hydraulics (pump-and-line calculations of pressure drop used as a basis for sizing pumps and compressors [see Chapter 20])


	9. Preliminary operating procedures (describe the procedures for plant start-up, shutdown, and emergency shutdown)


	10. Preliminary hazard analysis (description of major materials and process hazards of the design [see Chapter 10])


	11. Capital cost estimate (breakdown of capital cost, usually for each piece of equipment plus bulks and installation, usually given as a table or list)


	12. Heat integration and utilities estimate (overview of any pinch analysis or other energy optimization analysis, composite curves, table giving breakdown of utility consumption and costs [see Chapter 3])


	13. Design decisions and assumptions (description of the most significant assumptions and selection decisions made by the designers, including references to calculation sheets for alternatives that were evaluated and rejected)


	14. Design review documentation


	14.1. Meeting notes (notes taken during the design review meeting)


	14.2. Actions taken to resolve design review issues (description of what was done to follow up on issues raised during the design review)


	15. Appendices


	15.1. Calculation sheets (calculations to support equipment selection and sizing, numbered and referenced elsewhere in the report)


	15.2. Project correspondence (communications between the design team, marketing, vendors, external customers, regulatory agencies and any other parties whose input influenced the design)








Example 1.4 Undergraduate Design Project

Senior year design projects have a range of objectives, but these always include demonstrating proficiency in engineering design and economic evaluation. More technical information is needed than Example 1.1, while more commercial and marketing analysis is needed than Examples 1.2 and 1.3, so none of the report formats used in industry is ideal. A reasonable approach is to use the format of Example 1.1 and include the material listed in Example 1.3 as appendices. For shorter classes, or when there is insufficient time to develop all the information listed in Example 1.3, some of the sections of Table 1.3 can be omitted.








1.5 Codes and Standards

The need for standardization arose early in the evolution of the modern engineering industry; Whitworth introduced the first standard screw thread to give a measure of interchangeability between different manufacturers in 1841. Modern engineering standards cover a much wider function than the interchange of parts. In engineering practice they cover:


1. Materials, properties, and compositions.

2. Testing procedures for performance, compositions, and quality.

3. Preferred sizes; for example, tubes, plates, sections, etc.

4. Methods for design, inspection, and fabrication.

5. Codes of practice for plant operation and safety.



The terms standard and code are used interchangeably, though code should really be reserved for a code of practice covering for example, a recommended design or operating procedure, and standard for preferred sizes, compositions, etc.

All of the developed countries, and many of the developing countries, have national standards organizations, responsible for the issue and maintenance of standards for the manufacturing industries, and for the protection of consumers. In the United States, the government organization responsible for coordinating information on standards is the National Institute of Standards and Technology (NIST); standards are issued by federal, state, and various commercial organizations. The principal ones of interest to chemical engineers are those issued by the American National Standards Institute (ANSI), the American Petroleum Institute (API), the American Society for Testing Materials (ASTM), the American Society of Mechanical Engineers (ASME) (pressure vessels and pipes), the National Fire Protection Association (NFPA) (safety), the Tubular Exchanger Manufacturers Association (TEMA) (heat exchangers), and the International Society of Automation (ISA)(process control). Most Canadian provinces apply the same standards used in the United States. The preparation of the standards is largely the responsibility of committees of persons from the appropriate industry, the professional engineering institutions, and other interested organizations.

The International Organization for Standardization (ISO) coordinates the publication of international standards. The European countries used to each maintain their own national standards, but these are now being superseded by common European standards.

Lists of codes and standards and copies of the most current versions can be obtained from the national standards agencies or by subscription from commercial web sites such as IHS (www.ihs.com).

As well as the various national standards and codes, the larger design organizations will have their own (in-house) standards. Much of the detail in engineering design work is routine and repetitive, and it saves time and money, and ensures conformity between projects, if standard designs are used whenever practicable.

Equipment manufacturers also work to standards to produce standardized designs and size ranges for commonly used items, such as electric motors, pumps, heat exchangers, pipes, and pipe fittings. They will conform to national standards, where they exist, or to those issued by trade associations. It is clearly more economical to produce a limited range of standard sizes than to have to treat each order as a special job.

For the designer, the use of a standardized component size allows for the easy integration of a piece of equipment into the rest of the plant. For example, if a standard range of centrifugal pumps is specified the pump dimensions will be known, and this facilitates the design of the foundation plates and pipe connections and the selection of the drive motors: standard electric motors would be used.

For an operating company, the standardization of equipment designs and sizes increases interchangeability and reduces the stock of spares that must be held in maintenance stores.

Though there are clearly considerable advantages to be gained from the use of standards in design, there are also some disadvantages. Standards impose constraints on the designer. The nearest standard size will normally be selected on completing a design calculation (rounding-up) but this will not necessarily be the optimum size; though as the standard size will be cheaper than a special size, it will usually be the best choice from the point of view of initial capital cost. The design methods given in the codes and standards are, by their nature, historical, and do not necessarily incorporate the latest techniques.

The use of standards in design is illustrated in the discussion of pressure vessel design in Chapter 14 and the description of heat exchanger design in Chapter 19. Relevant design codes and standards are cited throughout the book.




1.6 Design Factors (Design Margins)

Design is an inexact art; errors and uncertainties arise from uncertainties in the design data available and in the approximations necessary in design calculations. Experienced designers include a degree of overdesign known as a design factor, design margin, or safety factor, to ensure that the design that is built meets product specifications and operates safely.

In mechanical and structural design, the design factors that are used to allow for uncertainties in material properties, design methods, fabrication, and operating loads are well established. For example, a factor of around 4 on the tensile strength, or about 2.5 on the 0.1% proof stress, is normally used in general structural design. The recommended design factors are set out in the codes and standards. The selection of design factors in mechanical engineering design is illustrated in the discussion of pressure vessel design in Chapter 14.

Design factors are also applied in process design to give some tolerance in the design. For example, the process stream average flows calculated from material balances are usually increased by a factor, typically 10%, to give some flexibility in process operation. This factor will set the maximum flows for equipment, instrumentation, and piping design. Where design factors are introduced to give some contingency in a process design, they should be agreed within the project organization, and clearly stated in the project documents (drawings, calculation sheets, and manuals). If this is not done, there is a danger that each of the specialist design groups will add its own “factor of safety,” resulting in gross and unnecessary overdesign. Companies often specify design factors in their design manuals.

When selecting the design factor, a balance has to be made between the desire to make sure the design is adequate and the need to design to tight margins to remain competitive. Greater uncertainty in the design methods and data requires the use of bigger design factors.




1.7 Systems of Units

Most of the examples and equations in this book use SI units; however, in practice the design methods, data, and standards that the designer will use are often only available in the traditional scientific and engineering units. Chemical engineering has always used a diversity of units, embracing the scientific CGS and MKS systems, and both the American and British engineering systems. Those engineers in older industries will also have had to deal with some bizarre traditional units, such as degrees Twaddle or degrees API for density and barrels for quantity. Although almost all of the engineering societies have stated support for the adoption of SI units, this is unlikely to happen worldwide for many years. Furthermore, much useful historic data will always be in the traditional units and the design engineer must know how to understand and convert this information. In a globalized economy, engineers are expected to use different systems of units even within the same company, particularly in the contracting sector where the choice of units is at the client’s discretion. Design engineers must therefore have a familiarity with SI, metric, and customary units, and a few of the examples and many of the exercises are presented in customary units.

It is usually the best practice to work through design calculations in the units in which the result is to be presented; but, if working in SI units is preferred, data can be converted to SI units, the calculation made, and the result converted to whatever units are required. Conversion factors to the SI system from most of the scientific and engineering units used in chemical engineering design are given in Appendix D, which is at the end of this book as well as in the online material at booksite.elsevier.com/Towler.

Some license has been taken in the use of the SI system in this volume. Temperatures are given in degrees Celsius (°C); degrees Kelvin are only used when absolute temperature is required in the calculation. Pressures are often given in bar (or atmospheres) rather than in Pascals (N/m2), as this gives a better feel for the magnitude of the pressures. In design calculations the bar can usually be taken as equivalent to an atmosphere, whatever definition is used for atmosphere. The abbreviations bara and barg are often used to denote bar absolute and bar gauge, analogous to psia and psig when the pressure is expressed in pound force per square inch. When bar is used on its own, without qualification, it is normally taken as absolute.

For stress, N/mm2 have been used, as these units are now generally accepted by engineers, and the use of a small unit of area helps to indicate that stress is the intensity of force at a point (as is also pressure). The corresponding traditional unit for stress is the ksi or thousand pounds force per square inch. For quantity, kmol are generally used in preference to mol, and for flow, kmol/h instead of mol/s, as this gives more sensibly sized figures, which are also closer to the more familiar lb/h.

For volume and volumetric flow, m3 and m3/h are used in preference to m3/s, which gives ridiculously small values in engineering calculations. Liters per second are used for small flow rates, as this is the preferred unit for pump specifications.

Plant capacities are usually stated on an annual mass flow basis in metric tons per year. Unfortunately, the literature contains a variety of abbreviations for metric tons per year, including tonnes/y, metric tons/y, MT/y (also kMTA[image: ent]=[image: ent]thousand metric tons per year), mtpy, and the correct term, t/y. The nonstandard abbreviations have occasionally been used, as it is important for design engineers to be familiar with all of these terms. The unit t denotes a metric ton of 1000[image: ent]kg. In this book the unit ton is generally used to describe a short ton or US ton of 2000 lb (907[image: ent]kg) rather than a long ton or UK ton of 2240 lb (1016 kg), although some examples use long tons. The long ton is closer to the metric ton. A thousand metric tons is usually denoted as a kiloton (kt); the correct SI unit gigagram (Gg) is very rarely used.

In the United States, the prefixes M and MM are often used to denote thousand and million, which can be confusing to anyone familiar with the SI use of M as an abbreviation for mega (×106). This practice has generally been avoided, except in the widely used units MMBtu (million British thermal units) and the common way of abbreviating $1 million as $1 MM.

Most prices have been given in U.S. dollars, denoted US$ or $, reflecting the fact that the data originated in the United States.

Where, for convenience, other than SI units have been used on figures or diagrams, the scales are also given in SI units, or the appropriate conversion factors are given in the text. Where equations are presented in customary units a metric equivalent is generally given.

Some approximate conversion factors to SI units are given in Table 1.4. These are worth committing to memory, to give some feel for the units for those more familiar with the traditional engineering units. The exact conversion factors are also shown in the table. A more comprehensive table of conversion factors is given in Appendix D.

Table 1.4. Approximate Conversions between Customary Units and SI Units

[image: Image]

Note:
1 US gallon = 0.84 imperial gallons (UK)
 1 barrel (oil) = 42 US gallons ≈ 0.16 m3 (exact 0.1590)
1 kWh = 3.6 MJ




1.8 Product Design

The design of new chemical products goes through the same stages described in Section 1.2 and illustrated in Figure 1.2. The successful introduction of a new product usually requires not only the design of the product itself, but also the design of the plant that will make the product. In the process industries the conception and development of new chemical products are often led by chemists, biologists, pharmacists, food scientists, or electrical or biomedical engineers; however, chemical engineers can be involved from the earliest stages and will certainly be engaged in designing the manufacturing process and developing the first estimates of the cost of production and capital investment required.

The launch of a new product always has high commercial risk. The new product must meet a customer need and outperform the existing alternatives. Customers may have multiple requirements of the product, and these requirements might not be stated in a way that is easy to relate to technical specifications. The company that introduces the product needs to build market share and command a high enough price to ensure that the investment in research, development, and new plant can be justified.

Most of the engineering work that is done in launching a new product goes into the design of the manufacturing process, but considerable care must be taken to ensure that the commercial risks have also been properly addressed. Consequently, in new product design much more attention is paid to the steps of understanding customer preferences, translating these needs into product specifications, and market testing to ensure fitness for service.

This section introduces some of the methods that are used for product development in the process industries, and that may be useful to chemical engineers engaged in new product design. Vast quantities of books on innovation and new product design have been published in the general engineering and business literature. Among the best are those by Cooper (2001), Ulrich and Eppinger (2008), and Cooper and Edgett (2009). Product design books aimed specifically at chemical engineers have been written by Cussler and Moggridge (2001) and Seider, Seader, Lewin, and Widagdo (2009).


1.8.1 New Chemical Products

Chemical engineers work in many industries and may be engaged in designing all kinds of products, but for the purposes of this chapter the discussion will be limited to new products that are based on the application of novel chemistry, biology, or materials science. These can be broadly categorized as new molecules, new formulations, new materials, and new equipment and devices.


New Molecules

The process industries produce and consume a surprisingly large number of distinct chemical species. Under the Toxic Substances Control Act of 1976 (TSCA) (15 U.S.C. 2601 et seq.), the U.S. Environmental Protection Agency (EPA) regulates the manufacture, import, and export of 83,000 chemicals. The European Chemicals Agency (ECHA) was established in 2006 under the European Regulation, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation, with the goal of registering all chemicals in use in Europe. At the time of writing, 143,000 chemicals have been submitted to ECHA for preregistration. The infinite possibilities of organic chemistry ensure that we will never run out of new molecular species to test for any given application.

New molecules are often commercialized in high-value applications such as specialty chemicals, additives, and active pharmaceutical ingredients (APIs). New molecules may also be needed when use of an existing chemical is restricted for safety or environmental reasons. For example, chlorinated hydrocarbons were phased out as refrigerants and propellants under the Montreal protocol after concern that they caused ozone depletion. The fluorocarbon compounds that initially replaced them are in turn likely to be replaced due to concerns about their high global-warming potential as greenhouse gases.

Various methods are used to identify new molecules for an application. Optimization of computer models based on molecular simulation or group contribution methods may provide insights into molecular structures that give desired properties. More often, chemists will look at variants on known molecules; for example, by addition, removal, or substitution of methyl-, ethyl-, phenyl- or other substituent groups. The chemists will also use their knowledge of synthesis routes to propose compounds that are easier to prepare in high yield using known chemical pathways and starting from available feeds. The same is true for biologically-derived compounds, where the biochemist or genetic engineer will attempt to isolate enzymes or strains that maximize the yield of the target molecule.




New Formulations

Almost all process industry products sold to the general public are formulations made from multiple chemicals. Examples range from pharmaceuticals, cosmetics, healthcare products, fragrances, foods, and beverages to paints, adhesives, fuels, and cleaning products. Every household contains a multitude of mixtures of products.

The prevalence of formulated products arises directly from the need to meet multiple customer requirements. You can wash your hands quite effectively using linear alkylbenzene sulfonate (a surfactant), but you probably prefer it to be blended into a gel that smells nice, has an attractive color, and provides some antibacterial action. The same surfactant would also be quite suitable for washing your car, clothes, dishes, carpets, hair, and toilet, but in each case specific user requirements lead to a different formulated product.

Formulated products are usually produced in blending plants. In some simple cases the feed compounds are just mixed together and sent to a packaging line. More commonly, the mixing and blending operations must be carefully designed to ensure (or prevent) emulsification and guarantee uniform product properties. Formulation plants are also often designed to produce a range of different products tailored to different market segments, in which case the plant must be designed to switch between products with minimal downtime and product wastage.

The blend composition of a formulated product is designed to meet the customer needs in a cost-effective manner that provides an adequate profit margin for the manufacturer. Where possible, manufacturers seek to substitute expensive components with cheaper materials that have the same effect; however, marketing and brand management can sometimes be used to justify using more expensive materials. For example, “natural” compounds derived from agricultural products can often be effectively marketed to replace cheaper synthetic alternatives.

Consumer products are highly regulated and carry high potential liability risks because of the large number of end users. These factors place additional constraints on the product designers. Extensive product safety testing must be carried out when new chemicals are introduced into consumer product formulations.




New Materials

Chemical engineers play a leading role in the manufacture of polymers, synthetic fibers, composite materials, papers, films, electronic materials, catalysts, and ceramics. The properties of these materials are often determined as much by the manufacturing process as by the chemical composition. For example, multiple grades of polyethylene can be produced, with very different properties, depending on the production route and distribution of molecular weight in the polymer.

New product development in the manufacturing industries is often based on materials substitution. Injection-molded or film-blown polymers are usually a cheaper substitute for metal, wood, or glass components that require more labor-intensive casting or machining. Many chemical engineers work on tailoring the properties of engineering materials such as polymers, resins, and composites to optimize the material to particular end applications.

The development of new materials applications requires close collaboration with the end user of the material. Most of the product specifications will be based on physical properties such as strength, elasticity, hardness, etc. and flow properties that affect ease of manufacture, but resistance to chemicals, solvents, oxidation, and corrosion can also be important factors.




New Equipment and Devices

Many sensors, medical devices, and power systems are based on chemical or biological processes. If a device requires sound understanding of kinetics and transport processes, chemical engineers will probably be involved in its design. Chemical engineers also play an important role in the design of new proprietary equipment for the processing industries, and are frequently involved in the design and customization of equipment such as dryers, crystallizers, membrane units, and other proprietary separation devices.

Device manufacture usually involves the assembly of multiple subcomponents and the production line methods that are used are very different from the methods used in the process industries. Evaluating the production costs of manufactured devices requires familiarity with industrial engineering methods and is beyond the scope of this book.






1.8.2 Understanding Customer Needs

The first step in new product development is to find out what customers want and are prepared to pay for. If the new product is not better than existing alternatives in some way, then it will be difficult to build market share and generate a return on the investment. If new features are added, they must be of value to the customer; otherwise the new product will not be differentiated from the existing alternatives. One of the roles of the marketing group in a company is to develop an understanding of customer requirements and willingness to spend, and use this understanding to guide new product development teams.

The level of market research that is needed depends on the nature of the product and the homogeneity of the customer base. In some cases, the customers may all have very similar needs. For example, when UOP developed a renewable jet fuel based on hydrotreated vegetable oils, it was clear that the product must meet all the standard ASTM specifications for jet fuels. More often, however, the customers fall into different groups, known as market segments, each with different requirements. The product development team must consider the needs of each segment and determine whether a product can be designed to meet the needs of several segments or whether it is necessary to develop customized products for each segment.

It is important to distinguish between proximate and ultimate customers when carrying out market research. Many chemical products are sold to other manufacturers (proximate customers) who then incorporate the chemical product into their own products to sell to end users (ultimate customers). Some product features may be very valuable to the proximate customer while having little value to the ultimate customer. Improving the processability, handling, storage, or safety properties of a product will make it easier and potentially cheaper to use, but may have little effect on its end use application. For example, a paint composition with a faster drying time may be very attractive to an automobile manufacturer, but will not be noticed by the customer who buys the car.

Many methods have been developed for market research. Interviews and customer conferences can be used when the number of customers is small or when a representative sample group can be assembled. When the customer base is large and diverse, manufacturers use surveys and focus groups. The questions that are posed in market research studies must be carefully formulated so as to not only discover customer preferences, but also identify latent needs that are not met by the existing products. Ulrich and Eppinger (2008) suggest the following generic questions that can be used in interviews or focus groups:


• When and why do you use this product?

• What do you like about the existing products?

• What do you dislike about the existing products?

• What issues do you consider when purchasing the product?

• What improvements would you make to the product?



In addition to finding customer needs, good market research studies also determine the relative importance of different needs and the willingness of the customer to pay for certain features. As the new product undergoes development it may be necessary to repeat the market research to validate the product concept and test how well it meets customer expectations.




1.8.3 Developing Product Specifications

The needs stated by customers in the marketing study are usually not expressed in terms of technical product specifications. The design team must translate these needs into measurable properties of the product and then set a target value or range for each property. Product specifications must reflect all of the following factors:


• Product safety and regulatory requirements

• Potential liability concerns

• Fitness for purpose

• Customer needs and preferences

• Marketing advantages

• Maximization of profit margin



When setting specifications, it is important to remember that a specification should tell you what the product does, but not how it does it. For example, a customer need for a beverage such as a milk shake is to have the right “mouth feel.” One way to accomplish this might be by setting a specification on viscosity. The design team could then modify the recipe to meet the viscosity specification in many different ways. It would not be as effective to set a specification on xantham gum concentration, as this presupposes the use of a particular thickener and overconstrains the design of the product.

Regulations and standards can be important sources of specifications. If a product is subject to regulation then all the regulated specifications must be met and new features can only be introduced if they do not require regulation or have obtained the necessary approval. Product safety, disposal, and environmental impact considerations can also lead to specifications that may not have been articulated by the customers. It is also important for the design team to consider potential product liability. The fact that a product is not currently regulated does not mean that it is safe, and if there are concerns about public health or safety then these should be raised and properly evaluated so that the company can assess the potential for future litigation.


Quality Function Deployment

A method that is widely used in translating customer needs into specifications is Quality Function Deployment or QFD (Hauser & Clausing, 1988). Several variations of the QFD method have been developed, but all are based on the concept of relating customer needs to product specifications and comparing the proposed product to the existing competitors.

A QFD analysis is set out as a table or matrix, and is usually carried out using a spreadsheet. Examples of simple QFD tables are given in Figures 1.5 and 1.6. The first column lists the customer needs identified by the market research study. Each customer need is assigned a priority or importance, P, which is usually an integer on a 1 to 10 scale, based on the customer feedback. In some versions of the method a measure or metric is assigned to each customer need; however, this is not always necessary. The design team then lists all the product specifications that they envision and enters each specification as a column in the table. The team assigns a score, s, to how strongly each specification impacts each customer need. A typical scoring scale might be 3[image: ent]=[image: ent]critical, 2[image: ent]=[image: ent]strong, 1[image: ent]=[image: ent]weak, and 0[image: ent]=[image: ent]no impact. The scores are multiplied by the corresponding customer priority and summed to give an overall relative importance of each specification, which is entered at the bottom of each column:

[image: image] (1.1)

where Pj[image: ent]=[image: ent]customer priority assigned to need j


sij[image: ent]=[image: ent]score for how well specification i meets need j



[image: image]

Figure 1.5 QFD table.

[image: image]

Figure 1.6 Completed QFD for toothpaste.

In some cases, additional columns are added to the right of the table for the existing competing products, as shown in Figure 1.5. Each existing product can be assigned a score, c, for how well it meets each customer need, using the same scoring scale used for the specifications. These scores can also be multiplied by the corresponding customer priority and summed to give an indication of the relative strength of the existing products.

The QFD exercise has several uses. It helps the design team identify which specifications correlate most strongly with each customer need, and hence focuses effort on the aspects of the product that customers value most. If none of the specifications has a high score against a particular need then it can highlight the need for new features or specifications. It can help identify strengths and weaknesses in competitor’s products and identify which specifications must be adjusted to give superior performance to the competition. Lastly, it can help identify specifications that have an impact on multiple customer needs and potentially lead to trade-offs between different customer desires.

A simplified example of a QFD analysis is given in Example 1.5. More information on details of the method is given in the book by Ulrich and Eppinger (2008) and the article by Hauser and Clausing (1988). The QFD method has become very widely used as part of the Six Sigma methodology; see Pyzdek and Keller (2009) for more on Six Sigma.

Example 1.5 QFD Analysis

Complete a QFD analysis to determine the important specifications for a toothpaste product.


Solution

One possible solution is shown in Figure 1.6. A market survey (with a very limited set of customers) identified the following customer needs for toothpaste: cleans teeth, removes plaque, whitens teeth, tastes fresh, freshens breath, squeezes out right, not gritty, strengthens teeth, and prevents gingivitis. These are entered in the first column, with the relative priorities listed in the second column.

Some possible product specifications are then listed as additional columns. These include: abrasive content, fluoride content, non-sugar sweetener, flavor content, viscosity modifier, solid thickener, antiseptic content, and bleach content. Note that these specifications do not specify the use of a particular bleach, sweetener, flavor, etc., so the designers might be able to meet several specifications using the same compound.

The scores are then entered for each specification. For example, the abrasive content is critical for “cleans teeth” and “removes plaque” (score 3 in both cases), but has no effect on “whitens teeth,” “tastes fresh,” or “freshens breath” (score 0). The abrasive content can have a strong effect on how the paste squeezes (score 2) and can have a critical impact on “not gritty” (score 3). Note that in this last case, the impact is negative and the customer desire for a particular mouth feel in the product is somewhat at odds with improving product performance.

The relative importance of the specification is then calculated as the priority weighted sum of the scores, using equation 1.1.

[image: image]

Scores are then assigned to how well every other specification meets each need until the table is completed.

Reviewing the completed table, we can see that all of the specifications have a critical impact on at least one of the customer needs, and some have an impact on several needs. The abrasive content clearly has a strong impact on product performance and also on “not gritty,” so one conclusion of the QFD study might be to focus on examining different abrasive materials or different particle size distributions of abrasive so as to attempt to strike a better balance between these conflicting needs.










1.8.4 Fitness Testing

As the design team develops potential product concepts they will need to test each concept to determine how well it meets the desired specifications. In the cases of new molecules and new materials, testing will usually consist of synthesizing the material and carrying out experiments to determine its properties. For new equipment and formulations, more extensive prototyping and customer validation of the benefits of the design may be needed.


Prototype Testing

Engineers build prototypes to address several different aspects of new product development:


• If new features are introduced in the design then it may be necessary to build a prototype to test these features and make sure that they work properly and safely.

• When a product is assembled from many components, it may be necessary to build a prototype to ensure that all the components work together properly when integrated as a system.

• The assembly of a prototype helps the designers understand the manufacturing process for the final product and can highlight features of the design that will make manufacturing easy or difficult. Prototyping is thus an important step in design for manufacture.

• In the design of formulated products, the manufacturer will often want to evaluate whether a component can be substituted with a cheaper material that has similar properties. It may be necessary to prepare alternative versions of the formulation with each component so that they can be tested side-by-side for properties and customer acceptance.

• A prototype can be used as a communication device to demonstrate features of a design. It can therefore be used to validate design features with potential customers or with management and hence confirm the marketing advantages of the new design.



Prototypes can take many forms, depending on the product type and stage of development. In the early stages of product development conceptual or computer models are widely used. Working models of subcomponents are usually easier to test than full products; however, a full physical working model or exact recipe must usually be created for final product testing. Note that the activity of prototyping is not restricted to equipment and devices; testing different formulations of shampoo or cookie dough accomplishes the same goals.

Before a prototype is built, the design team should have a clear idea of the purpose of the prototype and the testing or experiments for which it will be used. Engineers from the manufacturing plant should be engaged as part of the development team to ensure that manufacturability concerns are flushed out and addressed. Several iterations of prototyping may need to be planned before a final product design can be selected.




Safety and Efficacy Testing

One of the most rigorous new product testing processes is the procedure used for obtaining approval from the U.S. Food and Drug Administration (FDA) for new medicines. The evaluation process is designed to ensure both the safety and efficacy of new drugs. If a company believes it has developed a new molecule with a therapeutic application then it must go through the following steps:


• Preclinical trials: Initial testing on enzymes or cells in a laboratory, followed by animal tests usually on at least two species.

• Phase I Studies: Testing on a small number of healthy volunteers (often medical students!)

• Phase II Studies: Testing on patients who have the same disease or condition that is to be treated.

• Phase III Studies: Testing on a large number (hundreds or thousands) of patients who have randomly been assigned either the drug or a placebo.



The results of the clinical trials are reviewed by an independent FDA panel to determine if the benefits of treatment outweigh the risks posed by any observed side effects. The entire process typically takes over eight years and can cost more than $800 million (DiMasi, Hansen, & Grabowski, 2003; FDA, 2006). Even when the product is approved, the manufacturer must still submit to FDA inspections to ensure that quality control procedures are adequate and the production facility complies with FDA current good manufacturing practices (cGMP). Additional information on GMP requirements is given in the discussion of bioreactor quality control in Section 15.9.8.
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Nomenclature


			Dimensions in $MLTθ



	cij
	Score for how well competing product i meets customer need j
	—

	Pj
	Priority assigned by customer to need j
	—

	sij
	Score for how well specification i meets customer need j
	—






Problems

1.1. Develop project plans for the design and construction of the following processes. Use Figure 1.2 as a guide to the activities that must occur. Estimate the overall time required from launching the project to the start of operation.

a. A petrochemical process using established technology, to be built on an existing site.

b. A process for full scale manufacture of a new drug, based on a process currently undergoing pilot plant trials.

c. A novel process for converting cellulose waste to fuel products.

d. A spent nuclear fuel reprocessing facility.

e. A solvent recovery system for an electronics production facility.



1.2. You are the project manager of a team that has been asked to complete the design of a chemical plant up to the stage of design selection. You have three engineers available (plus yourself) and the work must be completed in ten weeks. Develop a project plan and schedule of tasks for each engineer. Be sure to allow sufficient time for equipment sizing, costing, and optimization. What intermediate deliverables would you specify to ensure that the project stays on track?

1.3. You are part of a product design team that has been asked to develop a low-calorie chocolate chip cookie dough.

a. Poll your classmates to determine customer requirements.

b. Carry out a QFD analysis to map the customer requirements into product specifications.






Chapter 2

Process Flowsheet Development

Key Learning Objectives

• How to read and draw a process flow diagram (PFD)

• When to design a batch process or a continuous process

• Factors to consider when adopting or improving commercially-proven technology

• How to develop a flowsheet for a revamp design

• How to synthesize a flowsheet for an entirely new process

• How to review a flowsheet and check for completeness and errors




2.1 Introduction

This chapter covers the preparation and presentation of the process flowsheet, also known as the process flow diagram (PFD). The flowsheet is the key document in process design. It shows the arrangement of the equipment selected to carry out the process; the stream connections; stream flow rates and compositions; and the operating conditions. It is a diagrammatic model of the process. Chemical engineers in industry are usually very proficient at reading process flow diagrams and use the PFD as the primary means of transmitting and recording process information.

The flowsheet is used by specialist design groups as the basis for their designs. These include piping, instrumentation, and equipment design and plant layout. It is also used by operating personnel for the preparation of operating manuals and operator training. During plant start-up and subsequent operation, the flowsheet forms a basis for comparison of operating performance with design. If the plant is later revamped to new specifications, the PFD of the original plant is the starting point for the revamp design.

Several types of process flow diagrams are used by chemical engineers, depending on the level of detail required. A simple block flow diagram can be used to give a rough idea of the overall process flow structure, and may be useful when giving a presentation. A full PFD should include all of the process vessels and equipment and show all the process and utility flow lines. A full heat and material balance of the process showing the composition, flow rate, and temperature of every stream is usually included in or with a PFD. The PFD also indicates the location of every control valve, as control valves play an important role in determining the pressure balance of the process and hence in sizing of pumps and compressors. A piping and instrumentation diagram (P&ID) is a more detailed version of the PFD that also includes information on ancillary instruments and valves, sampling and drain lines, start-up and shutdown systems, and pipe sizes and metallurgy. The P&ID is used in detailed design and safety analysis.

This chapter presents an overview of how to read and draw flowsheets and discusses how the unit operations of a process are selected to form the basic process flow structure. Chapter 3 discusses energy flows within a process and describes heat and power recovery methods that are used to make processes more energy-efficient. Chapter 4 covers the use of commercial process simulation tools to generate the heat and material balances for the flowsheet, and Chapter 5 introduces the elements of process control that must be understood to fill in the control systems on the PFD.




2.2 Flowsheet Presentation

As the process flowsheet is the definitive document on the process, the presentation must be clear, comprehensive, accurate, and complete. This section describes how to read and draw process flow diagrams.


2.2.1 Block Diagrams

A block diagram is the simplest form of flow diagram. Each block can represent a single piece of equipment or a complete stage in the process. Block diagrams are useful for showing simple processes. For complex processes, their use is limited to showing the overall process, broken down into its principal stages.

Block diagrams are useful for representing a process in a simplified form in reports, textbooks and presentations, but have limited use as engineering documents. The stream flow rates and compositions can be shown on the diagram adjacent to the stream lines, when only a small amount of information is to be shown, or tabulated separately.

Figure 2.1 shows a block flow diagram of a steam reforming process for making hydrogen from methane. The methane feed enters on the left and is mixed with steam and preheated in the convective section of a fired heater. The steam-methane mixture then passes through the reactor tubes in the radiant section of the heater where the steam reforming reaction takes place:

[image: image]

[image: image]

Figure 2.1 Block flow diagram of steam reforming process for hydrogen.

The products from the steam reformer are sent to a shift reactor. The shift reactor increases the amount of hydrogen in the product by allowing the water-gas-shift reaction to re-equilibrate at a lower temperature:

[image: image]

The shift reactor products are then further cooled and scrubbed in an absorber to remove carbon dioxide, before being sent to a pressure-swing adsorption process that separates hydrogen from carbon dioxide, unconverted methane, and water vapor.

Block diagrams are often drawn using simple graphics programs such as Microsoft Visio™ or PowerPoint™.




2.2.2 PFD Symbols

On the detailed flowsheets used for design and operation, the equipment is normally drawn in a stylized pictorial form. For tender documents or company brochures, actual scale drawings of the equipment are sometimes used, but it is more usual to use a simplified representation. There are several international standards for PFD symbols, but most companies use their own standard symbols, as the cost of converting all of their existing drawings would be excessive. ISO 10628 is the international standard for PFD drawing symbols. Most European countries have adopted ISO 10628 as their standard, but very few North American companies apply this standard and there is currently no U.S. standard for PFD symbols. The symbols given in British Standard, BS 1553 (1977) “Specification for graphical symbols for general engineering. Part 1: Piping systems and plant” are more typical of those in common use. The professional edition of Microsoft Visio™ contains a library of PFD icons that includes the ISO 10628 symbols as well as symbols commonly used in the United States and Canada. Examples of standard symbols are given in Appendix A, which is available in the online material at booksite.Elsevier.com/Towler.

Figure 2.2 shows symbols that are used for reactors, mixers, vessels, and tanks. Figure 2.3 shows symbols used for heat transfer equipment. Figure 2.4 provides symbols for fluid-handling equipment and Figure 2.5 gives symbols for solids-handling operations. Some general symbols that are used in combination with other symbols are shown in Figure 2.6. The symbols that are used for process instruments, valves, and controllers are given in the section on P&ID diagram symbols in Chapter 5. The operation and design of the different types of equipment illustrated in these figures are described in Part II of this book.
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Figure 2.2 PFD symbols for reactors, vessels, mixers, and tanks.
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Figure 2.3 PFD symbols for heat transfer equipment.
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Figure 2.4 PFD symbols for fluid-handling equipment.

[image: image]

Figure 2.5 PFD symbols for solids-handling equipment.

[image: image]

Figure 2.6 General PFD symbols used with other symbols.

Note that some types of equipment have generic symbols as well as symbols that describe a particular equipment type. If the wrong symbol is selected, this can cause confusion for other engineers who read the flowsheet. For example, Figure 2.2(i) shows an in-line mixer, which would be used downstream of a T-junction to ensure rapid mixing of two liquid streams. Figure 2.5(f) shows a solids mixer or blender that would be used to mix solids into a liquid. Figure 2.6(c) is the symbol for a propeller agitator that might be used in a mixing tank. All of these symbols could be referred to as a “mixer”, but the designer’s intention is obviously different in each case.




2.2.3 Presentation of Stream Flow Rates

The data on the flow rate of each individual component, on the total stream flow rate, and the percentage composition, can be shown on the flowsheet in various ways. The simplest method, suitable for simple processes with few pieces of equipment, is to tabulate the data in blocks alongside the process stream lines, as shown in Figure 2.7. Only a limited amount of information can be shown this way, and it is difficult to make neat alterations or to add additional data.

[image: image]

Figure 2.7 Flowsheet: polymer production.

A better method for the presentation of data on flowsheets is shown in Figures 2.8 and 2.9. In this method each stream line is numbered and the data are tabulated at the bottom of the sheet. Alterations and additions can be easily made. This is the method generally used by professional design offices. A typical commercial flowsheet is shown in Figure 2.10. Guide rules for the layout of this type of flowsheet presentation are given in Section 2.2.5.

[image: image]

Figure 2.8 Flowsheet: simplified nitric acid process.

[image: image]

Figure 2.9 Alternative presentation.

[image: image]

Figure 2.10 A typical flowsheet.




2.2.4 Information to be Included

The amount of information shown on a flowsheet will depend on the custom and practice of the particular design office. The list given below has therefore been divided into essential items and optional items. The essential items must always be shown; the optional items add to the usefulness of the flowsheet but are not always included.


Essential Information

1. Always show all process equipment, including feed and product storage and equipment used for transporting fluids and solids.

2. Always indicate the location of process control valves.

3. Stream composition, either


i. tabulate the flow rate of each individual component, kg/h, which is preferred, or

ii. give the stream composition as a weight fraction.



4. Total stream flow rate, kg/h.

5. Stream temperature, degrees Celsius preferred.

6. Nominal operating pressure (the required operating pressure).

7. Stream enthalpy, kJ/h.






Optional Information

1. Molar percentage composition and/or molar flow rates.

2. Physical property data, mean values for the stream, such as


i. density, kg/m3,

ii. viscosity, mN s/m2.



3. Stream name, a brief, one- or two-word description of the nature of the stream, for example “ACETONE COLUMN BOTTOMS,”








2.2.5 Layout

The sequence of the main equipment items shown symbolically on the flowsheet follows that of the proposed plant layout. Some license must be exercised in the placing of ancillary items, such as heat exchangers and pumps, or the layout will be too congested. The aim should be to show the flow of material from stage to stage as it will occur, and to give a general impression of the layout of the actual process plant.

The equipment should be drawn approximately to scale. Again, some license is allowed for the sake of clarity, but the principal equipment items such as reactors, vessels, and columns should be drawn roughly in the correct proportion. Ancillary items can be drawn out of proportion. For a complex process, with many process units, several sheets may be needed, and the continuation of the process streams from one sheet to another must be clearly shown. One method of indicating a line continuation is shown in Figure 2.8; those lines that are continued over to another drawing are indicated by a double concentric circle around the line number and the continuation sheet number is written below. An alternative method is to extend lines to the side of the page and then indicate the drawing sheet on which the line is continued.

The equipment should be well spaced out so that streams can be labeled without the drawing becoming cluttered. It is better to use several continuation sheets than to try to fit everything on one page.

The table of stream flows and other data can be placed above or below the equipment layout. Normal practice is to place it below. The components should be listed down the left-hand side of the table, as in Figures 2.8 and 2.9. For a long table, it is good practice to repeat the list at the right-hand side, so the components can be traced across from either side.

The stream line numbers should follow consecutively from left to right of the layout, as far as is practicable, so that when reading the flowsheet it is easy to locate a particular line and the associated column containing the data.

All the process stream lines shown on the flowsheet should be numbered and the data for the stream given. On a large flowsheet, the designers sometimes use different series of numbers for different plant sections; for example beginning the stream numbering at 100 for feed preparation, 200 for reaction, 300 for separation, and 400 for purification. This can be helpful in quickly tracing a stream to a section of the plant. There is always a temptation to leave out the data on a process stream if it is clearly just formed by the addition of two other streams, as at a junction, or if the composition is unchanged when flowing through a process unit, such as a heat exchanger; this temptation should be avoided. What may be clear to the process designer is not necessarily clear to the others who will use the flowsheet. Complete, unambiguous information on all streams should be given, even if this involves some repetition. The purpose of the flowsheet is to show the function of each process unit, even when the function has no discernible impact on the mass and energy balance.




2.2.6 Precision of Data

The total stream and individual component flows do not normally need to be shown to a high precision on the process flowsheet; three or four significant figures are all that is usually justified by the accuracy of the flowsheet calculations, and will typically be sufficient. The flows should, however, balance to within the precision shown. If a stream or component flow is so small that it is less than the precision used for the larger flows, it can be shown to a greater number of places, if its accuracy justifies this and the information is required. If the composition of a component is very low, but is specified as a process constraint, as, say, for an effluent stream or product quality specification, it can be shown in parts per million, ppm. Imprecise small flows are best shown as “TRACE”.

A trace quantity should not be shown as zero, or the space in the tabulation left blank, unless the process designer is sure that it has no significance. The process designer should be aware that if the space in the data table is left blank opposite a particular component, the quantity may be assumed to be zero by the specialist design groups who take their information from the flowsheet. Trace quantities can be important. Only a trace of an impurity is needed to poison a catalyst, and trace quantities can determine the selection of the materials of construction; see Chapter 6.




2.2.7 Basis of the Calculation

It is good practice to show on the flowsheet the basis used for the flowsheet calculations. This includes the operating hours per year, the reaction and physical yields, and the datum temperature used for energy balances. It is also helpful to include a list of the principal assumptions used in the calculations. This alerts the user to any limitations that may have to be placed on the flowsheet information.

If the amount of information that needs to be presented is excessive, it can be summarized in a separate document that is referenced on the flowsheet.

In some cases, mass and energy balances are prepared for multiple scenarios. These might include winter and summer operating conditions, start of catalyst life and end of catalyst life, manufacture of different products or product grades, etc. Usually these different scenarios are shown as several tables on the same flowsheet, but occasionally different flowsheets are drawn for each case.




2.2.8 Batch Processes

Flowsheets drawn up for batch processes normally show the quantities required to produce one batch. If a batch process forms part of an otherwise continuous process, it can be shown on the same flowsheet, providing a clear break is made when tabulating the data between the continuous and batch sections; i.e., the change from kg/h to kg/batch.

A continuous process may include batch makeup of minor reagents, such as the catalyst for a polymerization process. Batch flows into a continuous process are usually labeled “Normally no flow” and show the flow rates that will be obtained when the stream is flowing. It is these instantaneous flow rates that govern the equipment design, rather than the much lower time-averaged flow rates.




2.2.9 Utilities

To avoid cluttering up the flowsheet, it is not normal practice to show the utility (service) headers and lines on the process flowsheet. The utility connections required on each piece of equipment should be shown and labeled, for example, “CTW” for cooling tower water. The utility requirements for each piece of equipment should be tabulated on the flowsheet. Utility systems are described in more detail in Chapter 3.




2.2.10 Equipment Identification

Each piece of equipment shown on the flowsheet must be identified with a code number and name. The identification number (usually a letter and some digits) is normally that assigned to a particular piece of equipment as part of the general project control procedures, and is used to identify it in all the project documents.

If the flowsheet is not part of the documentation for a project, then a simple, but consistent, identification code should be devised. The easiest code is to use an initial letter to identify the type of equipment, followed by digits to identify the particular piece: for example, H—heat exchangers, C—columns, and R—reactors. Most companies have a standard convention that should be followed, but if there is no agreed standard then the key to the code should be shown on the flowsheet.




2.2.11 Flowsheet Drafting Programs

Most design offices use drafting software for the preparation of flowsheets and other process drawings. With drafting software, standard symbols representing the process equipment, instruments, and control systems are held in files, and these symbols are called up as required when drawing flowsheets and piping and instrumentation diagrams. Final flowsheet drawings are usually produced by professional drafters, who are experienced with the drafting software and conventions, rather than by the design engineer. The design engineer has to provide the required numbers, sketch the flowsheet, and review the final result.

Although most process simulation programs feature a graphical user interface (GUI) that creates a drawing that resembles a PFD, printouts of these drawings should not be used as actual process flow diagrams. The unit operations shown in the process simulation usually do not exactly match the unit operations of the process. The simulation may include dummy items that do not physically exist and may omit some equipment that is needed in the plant but is not part of the simulation.






2.3 The Anatomy of a Chemical Manufacturing Process

This section describes the basic components of chemical processes and discusses how designers select between batch and continuous processes. The effects of reactor yield and selectivity on flowsheet structure are examined and used to illustrate how flowsheets become complex when there are multiple feeds and products.


2.3.1 Components of a Chemical Process

The basic components of a typical chemical process are shown in Figure 2.11, in which each block represents a stage in the overall process for producing a product from the raw materials. Figure 2.11 represents a generalized process; not all the stages will be needed for any particular process and the complexity of each stage will depend on the nature of the process. Chemical engineering design is concerned with the selection and arrangement of the stages and the selection, specification, and design of the equipment required to perform the function of each stage.

[image: image]

Figure 2.11 Anatomy of a chemical process.


Stage 1. Raw Material Storage

Unless the raw materials (also called feed stocks or feeds) are supplied as intermediate products (intermediates) from a neighboring plant, some provision will have to be made to hold several days’, or weeks’, storage to smooth out fluctuations and interruptions in supply. Even when the materials come from an adjacent plant some provision is usually made to hold a few hours’, or even days’, inventory to decouple the processes. The storage required depends on the nature of the raw materials, the method of delivery, and what assurance can be placed on the continuity of supply. If materials are delivered by ship (tanker or bulk carrier) several weeks’ stocks may be necessary; whereas if they are received by road or rail, in smaller lots, less storage will be needed.




Stage 2. Feed Preparation

Some purification and preparation of the raw materials will usually be necessary before they are sufficiently pure, or in the right form, to be fed to the reaction stage. For example, acetylene generated by the carbide process contains arsenic and sulfur compounds, and other impurities, which must be removed by scrubbing with concentrated sulfuric acid (or other processes) before it is sufficiently pure for reaction with hydrochloric acid to produce dichloroethane. Feed contaminants that can poison process catalysts, enzymes, or microorganisms must be removed. Liquid feeds need to be vaporized before being fed to gas-phase reactors and solids may need crushing, grinding, and screening. Solid feeds may also need to be weighed and mixed into slurries or solutions so that they can be brought to process pressure and easily mixed with other components.

The feed preparation stage always includes means for getting the feeds out of storage and into the process. Liquids are usually pumped out of storage through control valves that regulate the feed flow rate. Gases and vapors may need compression if the storage is not pressurized. Solids are conveyed from storage using a variety of equipment, described in Chapter 18.

Biological processes require very careful feed preparation. The growth media and any other fluids that are fed to the cell culture must be sterile to prevent unwanted organisms from entering the process. Sterilization is usually accomplished by heating the feed to a high temperature and keeping it hot for long enough to kill unwanted organisms, then cooling the feed to the desired temperature for the reactor. The preparation of biological reactor feeds is discussed in more detail in Section 15.9.




Stage 3. Reaction

The reaction stage is the heart of a chemical manufacturing process. In the reactor the raw materials are brought together under conditions that promote the production of the desired product; almost invariably, some byproducts will also be formed, either through the reaction stoichiometry, by side-reactions, or from reactions of impurities present in the feed. Reactor design is discussed in Chapter 15.




Stage 4. Product Separation

After the reactor(s) the products and byproducts are separated from any unreacted material. If in sufficient quantity, the unreacted material will be recycled to the reaction stage or to the feed purification and preparation stage. The byproducts may also be separated from the products at this stage, and may undergo further processing for recovery or sale. In most chemical processes there are multiple reaction steps, each followed by one or more separation steps.




Stage 5. Purification

Before sale, the main product will often need purification to meet the product specifications. If produced in economic quantities, the byproducts may also be purified for sale. For byproducts, there will always be an economic trade-off between purifying the byproduct for sale or disposing of it as recycle or waste.




Stage 6. Product Storage

Some inventory of finished product must be held to match production with sales. Provision for product packaging and transport is also needed, depending on the nature of the product. Liquids are normally dispatched in drums and in bulk tankers (road, rail, and sea), solids in sacks, cartons, or bales.

The amount of stock that is held will depend on the nature of the product and the market.




Ancillary Processes

In addition to the main process stages shown in Figure 2.11, provision must be made for the supply of the utilities needed, such as process water, cooling water, compressed air, and steam. The design of utility systems is discussed in Chapter 3.






2.3.2 Continuous and Batch Processes

Continuous processes are designed to operate 24 hours a day, 7 days a week, throughout the year. Some down time will be allowed for maintenance and, in some processes, for catalyst regeneration. The plant attainment or operating rate is the percentage of the available hours in a year that the plant operates, and is usually between 90 and 95%.

[image: image] (2.1)

A typical design basis would assume 8000 operating hours per year.

Batch processes are designed to operate intermittently, with some, or all, of the process units being frequently shut down and started up. It is quite common for batch plants to use a combination of batch and continuous operations. For example, a batch reactor may be used to feed a continuous distillation column.

Continuous processes will usually be more economical for large scale production. Batch processes are used when some flexibility is wanted in production rate or product specifications. The advantages of batch processing are:


• Batch processing allows production of multiple different products or different product grades in the same equipment.

• In a batch plant, the integrity of a batch is preserved as it moves from operation to operation. This can be very useful for quality control purposes.

• The production rate of batch plants is very flexible, as there are no turndown issues when operating at low output.

• Batch plants are easier to clean and maintain in sterile operation.

• Batch processes are easier to scale up from chemist’s recipes.

• Batch plants have low capital for small production volumes. The same piece of equipment can often be used for several unit operations.



The drawbacks of batch processing are:


• The scale of production is limited.

• It is difficult to achieve economies of scale by going to high production rates.

• Batch-to-batch quality can vary, leading to high production of waste products or off-spec product.

• Recycle and heat recovery are harder, making batch plants less energy efficient and more likely to produce waste byproducts.

• Asset utilization is lower for batch plants as the plant almost inevitably is idle part of the time.

• Batch plants are more labor-intensive and so the fixed costs of production are much higher for batch plants on a $/unit mass of product basis.




Choice of Continuous versus Batch Production

Given the higher fixed costs and lower plant utilization of batch processes, batch processing usually only makes sense for products that have high value and are produced in small quantities. Batch plants are commonly used for:


• Food products

• Pharmaceutical products such as drugs, vaccines, and hormones

• Personal care products

• Blended products with multiple grades, such as paints, detergents, etc.

• Specialty chemicals



Even in these sectors, continuous production is favored if the process is well understood, the production volume is large, and the market is competitive.






2.3.3 Effect of Reactor Conversion and Yield on Flowsheet Structure

It is important to distinguish between conversion and yield. Conversion is related to reactants; yield to products.


Conversion

Conversion is a measure of the fraction of the reagent that reacts. To optimize reactor design and minimize byproduct formation, the conversion of a particular reagent is often less than 100%. If more than one reactant is used, the reagent on which the conversion is based must be specified.

Conversion is defined by the following expression:

[image: image] (2.2)

This definition gives the total conversion of the particular reagent to all products.

Example 2.1

In the manufacture of vinyl chloride (VC) by the pyrolysis of dichloroethane (DCE), the reactor conversion is limited to 55% to reduce carbon formation, which fouls the reactor tubes.

Calculate the quantity of DCE fed to the reactor to produce 5000 kg/h VC.


Solution

Basis: 5000 kg/h VC (the required quantity).

[image: image]

Molar weights: DCE 99, VC 62.5

[image: image]

From the stoichiometric equation, 1 kmol DCE produces 1 kmol VC. Let X be DCE feed in kmol/h:

[image: image]

In this example, the small loss of DCE to carbon and other products has been neglected. All the DCE reacted has been assumed to be converted to VC.








Selectivity

Selectivity is a measure of the efficiency of the reactor in converting reagent to the desired product. It is the fraction of the reacted material that was converted into the desired product. If no byproducts are formed, then the selectivity is 100%. If side reactions occur and byproducts are formed, then the selectivity decreases. Selectivity is always expressed as the selectivity of feed A for product B, and is defined by the equation

[image: image] (2.3)
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Selectivity is usually improved by operating the reactor at low conversion. At high conversion, the reactor has low concentrations of at least one reagent and high concentrations of products, so reactions that form byproducts are more likely to occur.

Reagents that are not converted in the reactor can be recovered and recycled. Reagents that become converted to byproducts usually cannot be recovered and the byproducts must be purified for sale or else disposed as waste (see Section 8.2.3). The optimum reactor conditions thus usually favor low reactor conversion to give high selectivity for the desired products when all of these costs are taken into account.




Yield

Yield is a measure of the performance of a reactor or plant. Several different definitions of yield are used, and it is important to state clearly the basis of any yield numbers. This is often not done when yields are quoted in the literature, and judgment must be used to decide what was intended.

The yield of product B from feed A is defined by

[image: image] (2.4)

For a reactor, the yield is the product of conversion and selectivity:

[image: image] (2.5)

With industrial reactors, it is necessary to distinguish between “reaction yield” (chemical yield), which includes only chemical losses to side products, and the overall “reactor yield”, which also includes physical losses, such as losses by evaporation into vent gas.

If the conversion is near 100% it may not be worth separating and recycling the unreacted material; the overall process yield would then include the loss of unreacted material. If the unreacted material is separated and recycled, the overall process yield taken over the reactor and separation step would include any physical losses from the separation step.

Plant yield is a measure of the overall performance of the plant and includes all chemical and physical losses.

Plant yield (applied to the complete plant or any stage)

[image: image] (2.6)

Where more than one reagent is used, or product produced, it is essential that the product and reagent to which the yield refers is clearly stated.

The plant yield of B from A is the product of the reactor selectivity of feed A for product B and the separation efficiency (recovery) of each separation step that handles product B or reagent A. As a useful check, the plant yield should be greater than the reactor yield if a separation and feed recycle scheme has been implemented. If the feed recovery and recycle system were 100% efficient, the plant yield would approach the reactor selectivity.

Example 2.2

In the production of ethanol by the hydrolysis of ethylene, diethyl ether is produced as a byproduct. A typical feed stream composition is 55% ethylene, 5% inerts, and 40% water. A typical product stream is 52.26% ethylene, 5.49% ethanol, 0.16% ether, 36.81% water, and 5.28% inerts. Calculate the selectivity of ethylene for ethanol and for ether.


Solution

[image: image]

Basis: 100 moles feed (easier calculation than using the product stream)

Note: the flow of inerts will be constant as they do not react, and it can thus be used to calculate the other flows from the compositions.

Feed stream



	ethylene
	55 mol

	inerts
	5 mol

	water
	40 mol




Product stream

[image: image]

As 1 mol of ethanol is produced per mol of ethylene the stoichiometric factor is 1.

[image: image]

The stoichiometric factor is 0.5, as 2 mol of ethylene produce 1 mol of ether.

Note that the conversion of ethylene, to all products, is given by

[image: image]

The selectivity based on water could also be calculated but is of no real interest as water is relatively inexpensive compared with ethylene. Water is clearly fed to the reactor in considerable excess.

The yield of ethanol based on ethylene is:

[image: image]






Example 2.3

In the chlorination of ethylene to produce dichloroethane (DCE), the conversion of ethylene is reported as 99.0%. If 94 mol of DCE are produced per 100 mol of ethylene reacted, calculate the selectivity and the overall yield based on ethylene. The unreacted ethylene is not recovered.


Solution

[image: image]

The stoichiometric factor is 1.

[image: image]

99 moles of ethylene are reacted for 100 moles fed, so

[image: image]

Note that we get the same answer by multiplying the selectivity (0.94) and conversion (0.99).

The principal byproduct of this process is trichloroethane.








Effect of Conversion, Selectivity, and Yield on Flowsheet Structure

Very few processes produce the desired product in stoichiometric yield with no byproducts and no equilibrium limitations.

If the desired reaction is limited by equilibrium between the feeds and products, the reaction will not proceed to 100% conversion in the reactor and it will be necessary to separate the product from unreacted feed components. It will usually be economically attractive to recover the unconverted feeds either to the reactor section or to the feed preparation section of the plant.

In most chemical processes the designer must also address the formation of byproducts through unwanted reactions, in which case the selectivity of the feed for the desired product is less than 100%. The presence of nonselective reactions can have a number of undesirable effects on process economics. The most important impact of byproduct formation is that byproducts represent a loss of potential product. Since feedstock costs are usually the main component of the overall cost of production, low selectivity can have a strong negative impact on process economics. The byproducts must be separated from the desired product, causing additional complexity and cost in the separation section. If the byproducts have value, they can be purified and sold, but this adds additional equipment to the process. If the byproducts are not worth recovering then in some cases they can be recycled within the process and converted back to feed or products. These recycles also add cost and complexity to the process. If the byproducts cannot be sold or recycled, they must be disposed of as waste streams. Additional processing steps may be needed to bring the waste stream to a safe condition for discharge or disposal.

Because of the high costs of dealing with byproducts, most processes are operated under conditions that maximize reactor selectivity. This often means operating at low conversion and accepting large recycles of feeds. Alternatively, a cheaper feed may be used in excess, so that a high conversion of the more expensive feed can be achieved at high selectivity, as discussed below.




Use of Excess Reagent

In industrial reactions the components are seldom fed to the reactor in exact stoichiometric proportions. A reagent may be supplied in excess to promote the desired reaction; to maximize the use of an expensive reagent; or to ensure complete reaction of a reagent, as in combustion.

The percentage excess reagent is defined by the following equation:

[image: image] (2.7)

It is necessary to state clearly to which reagent the excess refers.

Example 2.4

To ensure complete combustion, 20% excess air is supplied to a furnace burning natural gas. The gas composition (by volume) is methane 95%, ethane 5%.

Calculate the moles of air required per mole of fuel.


Solution

Basis: 100 mol gas, as the analysis is volume percentage.

[image: image]

Stoichiometric moles of O2 required = 95 × 2 + 5 × 3.5 = [image: image]

With 20% excess, moles of O2 required = 207.5 × 1.2 = 249

Moles of air (21% O2) = 249 × 100/21 = 1185.7

Air per mole of fuel = 1185.7/100 = [image: image]








Sources of Conversion, Selectivity, and Yield Data

If there is minimal byproduct formation, then the reactor costs (volume, catalyst, heating, etc.) can be traded off against the costs of separating and recycling unconverted reagents to determine the optimal reactor conversion. More frequently, the selectivity of the most expensive feeds for the desired product is less than 100%, and byproduct costs must also be taken into account. The reactor optimization then requires a relationship between reactor conversion and selectivity, not just for the main product, but for all the byproducts that are formed in sufficient quantity to have an impact on process costs.

In simple cases, when the number of byproducts is small, it may be possible to develop a mechanistic model of the reaction kinetics that predicts the rate of formation of the main product and byproducts. If such a model is fitted to experimental data over a suitably wide range of process conditions, then it can be used for process optimization. The development of reaction kinetics models is discussed in Section 15.3 and is described in most reaction engineering textbooks. See, for example, Levenspiel (1998), Froment & Bischoff (1990), and Fogler (2005).

In cases where the reaction quickly proceeds to equilibrium, the yields are easily estimated as the equilibrium yields. Under these circumstances, the only possibilities for process optimization are to change the temperature, pressure, or feed composition, so as to obtain a different equilibrium mixture. The calculation of reaction equilibrium is easily carried out using commercial process simulation programs, as described in Section 4.5.1.

When the number of components, or reactions, is too large, or the mechanism is too complex to deduce with statistical certainty, then response surface models can be used instead. Methods for the statistical design of experiments can be applied, reducing the amount of experimental data that must be collected to form a statistically meaningful correlation of selectivity and yield to the main process parameters. See Montgomery (2001) for a good introduction to the statistical design of experiments.

In the early stages of design, the design engineer will often have neither a response surface, nor a detailed mechanistic model of the reaction kinetics. Few companies are prepared to dedicate a laboratory or pilot plant and the necessary staff to collecting reaction kinetics data until management has been satisfied that the process under investigation is economically attractive. A design is thus needed before the necessary selectivity and yield data set has been collected. Under such circumstances, the design engineer must select the optimal reactor conditions from whatever data are available. This initial estimate of reactor yield may come from a few data points collected by a chemist or taken from a patent or research paper. The use of data from patents is discussed in Section 2.4.1.

For the purposes of completing a design, only a single estimate of reactor yield is needed. Additional yield data taken over a broader range of process conditions gives the designer greater ability to properly optimize the design. In process synthesis projects, one purpose of the design may be to set yield targets for a research team, as described in Section 2.6.1.






2.3.4 Recycles and Purges

Processes in which a flow stream is returned (recycled) to an earlier stage in the processing sequence are common. If the conversion of a valuable reagent in a reaction process is appreciably less than 100%, the unreacted material is usually separated and recycled.

Separation processes can also be a source of recycles. The return of reflux to the top of a distillation column is an example of a recycle process in which there is no reaction.

The presence of recycle streams makes the calculation of process material and energy balances more difficult. Without recycle, the material balances on a series of processing steps can be carried out sequentially, taking each unit in turn; the calculated flows out of one unit becoming the feeds to the next. If a recycle stream is present, then the point where the recycle is returned the flow will not be known as it will depend on downstream flows not yet calculated. Without knowing the recycle flow, the sequence of calculations cannot be continued to the point where the recycle flow can be determined.

Two approaches to the solution of recycle problems are possible:


1. The cut and try (“tear”) method. The recycle stream flows can be estimated and the calculations continued to the point where the recycle is calculated. The estimated flows are then compared with those calculated, and a better estimate is made. The procedure is continued until the difference between the estimated and the calculated flows is within an acceptable tolerance.

2. The formal, algebraic, method. The presence of recycle implies that some of the mass balance equations must be solved simultaneously. The equations are set up with the recycle flows as unknowns and solved using standard methods for the solution of simultaneous equations.



With simple problems that have only one or two recycle loops, the calculation can often be simplified by the careful selection of the basis of calculation and the system boundaries. This is illustrated in Example 2.5.

The solution of more complex material balance problems involving several recycle loops is discussed in Chapter 4.

Example 2.5

The block diagram in Figure 2.12 shows the main steps in the balanced process for the production of vinyl chloride from ethylene. Each block represents a reactor and several other processing units. The main reactions are:

[image: image]

Figure 2.12 Block flow diagram of balanced process for vinyl chloride.



Block A, Chlorination
[image: image]




Block B, Oxyhydrochlorination
[image: image]




Block C, Pyrolysis
[image: image]

The HCl from the pyrolysis step is recycled to the oxyhydrochlorination step. The flow of ethylene to the chlorination and oxyhydrochlorination reactors is adjusted so that the production of HCl is in balance with the requirement. The conversion in the pyrolysis reactor is limited to 55%, and the unreacted dichloroethane (DCE) is separated and recycled.

Using the yields given, and neglecting any other losses, calculate the flow of ethylene to each reactor and the flow of DCE to the pyrolysis reactor, for a production rate of 12,500 kg/h vinyl chloride (VC).






Solution

Molecular weights: vinyl chloride 62.5, DCE 99.0, HCl 36.5.

[image: image]

Draw a system boundary around each block, enclosing the separation section (block D) and the DCE recycle within the boundary of step C, as shown in Figure 2.12.

Let the flow of ethylene to block A be X and to block B be Y, and let the HCl recycle be Z.

Then the total moles of DCE produced = 0.98X + 0.95Y, allowing for the yields, and the moles of HCl produced in block C

[image: image] (a)

Consider the flows to and from block B. The yield of DCE based on HCl is 90%, so the moles of DCE produced

[image: image]

Note: the stoichiometric factor is 0.5 (2 mol HCl per mol DCE).

The yield of DCE based on ethylene is 95%, so

[image: image]

[image: image]

Substituting for Z into equation (a) gives

[image: image] (b)

Turning to block C, the total VC produced = 0.99 × total DCE, so

[image: image]

HCl recycle from equation (a):

[image: image]

Note: overall yield on ethylene [image: image]

The total flow of DCE from blocks A and B is [image: image], but this does not include the recycle. Since the conversion is 55%, if the recycle flow is R, then 202/(202[image: ent]+[image: ent]R) = 0.55, hence the total flow of DCE to the pyrolysis reactor is 202[image: ent]+[image: ent]R = 202/0.55 = [image: image].






Purge

It is usually necessary to bleed off a portion of a recycle stream to prevent the buildup of unwanted material. For example, if a reactor feed contains inert components or byproducts that are not separated from the recycle stream in the separation units, these inerts would accumulate in the recycle stream until the stream eventually consisted entirely of inerts. Some portion of the stream must be purged to keep the inert level within acceptable limits. A continuous purge would normally be used. Under steady-state conditions:

[image: image]

The concentration of any component in the purge stream is the same as that in the recycle stream at the point where the purge is taken off. So the required purge rate can be determined from the following relationship:

[image: image]


Example 2.6

In the production of ammonia from hydrogen and nitrogen the conversion, based on either raw material, is limited to 15%. The ammonia produced is condensed from the reactor (converter) product stream and the unreacted material is recycled. If the feed contains 0.2% argon (from the nitrogen separation process), calculate the purge rate required to hold the argon in the recycle stream below 5.0%. Percentages are by volume.


Solution

Basis: 100 moles feed (purge rate will be expressed as moles per 100 mol feed, as the production rate is not given).

Process diagram:

[image: image]

Volume percentages are taken as equivalent to mol%.

Argon entering system with feed = 100 × 0.2/100 = 0.2 mol.

Let purge rate per 100 mol feed be F.

Argon leaving system in purge = F × 5/100 = 0.05 F.

At the steady state, argon leaving = argon entering

[image: image]

Purge required: 4 mol per 100 mol feed.








Bypass

A flow stream may be divided and some part diverted (bypassed) around some units. This procedure is often used to control stream composition or temperature.

Material balance calculations on processes with bypass streams are similar to those involving recycle, except that the stream is fed forward instead of backward. This usually makes the calculations easier than with recycle.








2.4 Selection, Modification, and Improvement of Commercially-Proven Processes

Engineers in industry do not usually design a new process from scratch if a commercially-proven alternative is available. Companies usually seek to avoid the extra costs and risks inherent in technology commercialization. New molecules are usually made using adaptations of processes that have been shown to work for similar compounds. Even when a brand new process is contemplated, the design team will usually also prepare a conventional design for comparison.

The use of a proven basic flow scheme does not eliminate innovation from the design. Several alternative designs may already be in commercial practice, each optimized around different feeds, catalysts, or reactor concepts. The design team must evaluate the different designs and optimize each to the local design basis to select the best. The commercial processes may need modification to make the desired product or byproducts, or to process an unusual feed material. It may be possible to improve the existing technology by substitution of one or more unit operations, by use of better catalysts or enzymes, by deploying improved separation or reactor technology, or by using different solvents to reduce environmental impact. The scale of production may also cause changes to the flowsheet; for example, if a large new plant requires reactors or separation columns to be constructed in parallel trains.

This section discusses factors a design team should consider when developing a flowsheet based on a commercially-proven technology. The special case of developing a flowsheet for the revamp of an existing plant is treated in Section 2.5.


2.4.1 Sources of Information on Manufacturing Processes

This section gives a brief overview of sources of information on commercial processes that can be found in the open literature.

The chemical process industries are competitive, and the information that is published on commercial processes is restricted. The articles on particular processes published in the technical literature and in textbooks invariably give only a superficial account of the chemistry and unit operations used. They lack the detailed information on reaction kinetics, process conditions, equipment parameters, and physical properties that is needed for process design. The information that can be found in the general literature is, however, useful in the early stages of a project, when searching for possible process routes. It is often sufficient for a flowsheet of the process to be drawn up and a rough estimate of the capital and production costs made.

The most comprehensive collection of information on manufacturing processes is probably the Encyclopedia of Chemical Technology edited by Kirk & Othmer (2001, 2003), which covers the whole range of chemical and associated products. An abridged version of the Kirk-Othmer encyclopedia was published in paperback (Grayson, 1989), and was an excellent bargain, but is now out of print. The latest version of the Kirk-Othmer encyclopedia is available through the Wiley online library at http://onlinelibrary.wiley.com. Another encyclopedia covering manufacturing processes is that edited by McKetta (2001). Several books have also been published that give brief summaries of the production processes used for commercial chemicals and chemical products. The best known of these is probably Shreve’s book on the chemical process industries, now updated by Austin and Basta (1998). Comyns (1993) lists named chemical manufacturing processes, with references.

The extensive German reference work on industrial processes, Ullmann’s Encyclopedia of Industrial Technology, is now available in an English translation, Ullmann (2002).

Specialized texts have been published on some of the more important bulk industrial chemicals, such as that by Miller (1969) on ethylene and its derivatives; these are too numerous to list but should be available in the larger reference libraries and can be found by reference to the library catalog. Meyers (2003) gives a good introduction to the processes used in oil refining. Kohl & Nielsen (1997) provide an excellent overview of the processes used for gas treating and sulfur recovery.

Many of the references cited above are available in electronic format from Knovel. Most companies and universities have Knovel subscriptions. Access to Knovel is also available to members of professional societies such as the American Institute of Chemical Engineers (AIChE).

Books quickly become outdated, and many of the processes described are obsolete, or at best obsolescent. More up-to-date descriptions of the processes in current use can be found in the technical journals. The journal Hydrocarbon Processing publishes an annual review of petrochemical processes, which was entitled Petrochemical Developments and is now called Petrochemicals Notebook; this gives flow diagrams and brief process descriptions of new process developments.


Patents

Patents can be a useful source of information, but some care is needed in extracting information from them. To obtain a patent, an inventor is legally obliged to disclose the best mode of practice of the invention; failure to do so could render the patent invalid if it were contested. Most patents therefore include one or more examples illustrating how the invention is practiced and differentiating it from the prior art. The examples given in a patent often give an indication of the process conditions used, though they are frequently examples of laboratory preparations, rather than of the full-scale manufacturing process. Many process patents also include examples based on computer simulations, in which case the data should be viewed with suspicion. When using data from patents, it is important to carefully read the section that describes the experimental procedure to be sure that the experiments were run under appropriate conditions.

A patent gives its owner the right to sue anyone who practices the technology described in the patent claims without a license from the patent owner. Patent attorneys generally try to write patents to claim broad ranges of process conditions, so as to maximize the range of validity and make it hard for competitors to avoid the patent by making a slight change in temperature, pressure, or other process parameters. Very often, a patent will say something along the lines of “the reaction is carried out at a temperature in the range 50 to 500 °C, more preferably in the range 100 to 300 °C, and most preferably in the range 200 to 250 °C.” It is usually possible to use engineering judgment to determine the optimal conditions from such ranges. The best conditions will usually be at or near the upper or lower end of the narrowest defined range. The examples in the patent will often indicate the best operating point.

Patents can be downloaded for free from the web site of the U.S. patent office, www.uspto.gov. The USPTO web site also has limited search capability. The entire USPTO collection is also available at www.google.com/patents. Most large companies subscribe to more sophisticated patent search services such as Delphion (www.delphion.com), PatBase (www.patbase.com), or GetthePatent (www.getthepatent.com).

Several guides have been written to help engineers understand the use of patents for the protection of inventions, and as sources of information, such as those by Auger (1992) and Gordon & Cookfair (2000).




Consultants

Engineers in industry often hire specialist consulting firms to prepare analyses of commercial technology. Consultants can be used to provide an impartial assessment of a competitor’s or vendor’s process. Some consulting firms such as SRI and Nexant regularly publish assessments of the technology available for making different chemicals. These assessments are based on flowsheets and design models that the consultants have developed from information that they gathered from the literature and from direct contact with the technology suppliers.

Some caution is needed when working with consultants. The client must carry out due diligence to ensure that the consultant is truly impartial and does not bias their analysis. The client should also cross check the information provided by the consultant against recent patents and publications to ensure that the consultant is working from the latest information.




Vendors

Technology suppliers and contractors will sometimes make design information available to a client in the hope of securing a sale. If a project team requires information to make a technology selection, the technology vendors may be willing to supply edited PFDs (for example, with stream flows blanked out or with some information missing), reactor yields, or even designs from a similar plant at a smaller production scale. More detailed information is usually provided by vendors when bidding on a contract for a project that has a high likelihood of going forward.






2.4.2 Factors Considered in Process Selection

Once the design team has assembled information on the alternative commercial processes, they will usually need to carry out substantial customization and optimization of the designs before a selection can be made.

The information given in the open literature is usually restricted to block flow diagrams and (occasionally) reactor yields. The first step is usually to complete a full PFD and mass and energy balance of the process. These can be used for preliminary sizing and costing of the main process equipment to obtain an estimate of the required capital investment, as described in Chapter 7. The feed and product flow rates and energy consumption can be used to estimate the costs of production, as described in Chapter 8. The economic analysis methods introduced in Chapter 9 can then be applied to determine the overall project economics and choose which design gives the best overall economic performance according to the criteria established by the company.

If one process flowsheet has a particular cost advantage, this will usually become clear in the economic analysis. Factors such as feedstock or fixed cost advantages that can be very important in selecting between projects are usually less important when selecting between flowsheets within a given project. The selection between flowsheets is usually influenced more by process yields, energy consumption, and capital requirements, and hence is sensitive to catalyst, organism, or enzyme performance and process design and optimization.

In an industrial context, technology vendors or Engineering, Procurement, and Construction (EPC) contractors will often supply detailed PFDs and material and energy balances to a client when invited to bid on a project. Some diligence is always needed in checking the information in proposals and verifying performance claims against the actual performance of recent plants built by the vendor.

Although an economic analysis is always carried out, it is usually not the sole criterion for technology selection. Some other important factors are described below.


Freedom to Practice

Freedom to practice is a legal concept that arises from patent law. If a process, catalyst, enzyme, genetically modified organism, or chemical route is patented, it can only legally be used under license from the patent holder. If another company were to use the technology without a license, they would be infringing on the patent and the patent holder could sue to stop the use and demand damages.

Determination of freedom to practice usually requires the expert advice of patent attorneys. In rapidly evolving new fields it can be difficult to assess, as patent applications typically are not published until one to two years after they are filed, so a decision may be made to proceed with building a plant before the intellectual property space can be completely mapped. Another complication is that competing technology vendors may have overlapping patents or patents that appear to block features of each others’ designs.

All patents are only valid for a fixed term; in the United States at the time of writing this is twenty years from the date the patent was filed. When a patent has expired, anyone is free to practice the technology. Care must still be taken to check that the original technology developer has not made more recent improvements that are still under patent protection. Many conventional processes are no longer protected by patents and can be bought from EPC companies without paying a royalty or license fee.

When a customer licenses technology from a vendor, the vendor will usually indemnify the customer against patent infringement. This means the technology vendor asserts that they have ownership of the technology and freedom to practice and that they will help the customer fight any patent infringement suits brought by their competitors. Technology vendors sometimes minimize the potential for such lawsuits by forming cross-licensing agreements.




Safety and Environmental Performance

All commercially-practiced technologies should meet or exceed the minimum legally acceptable safety standards, but some older processes may no longer have acceptable environmental performance.

An economic analysis will usually not distinguish whether one process is safer or more environmentally acceptable than another. The methods described in Chapters 10 and 11 can be used to make an assessment of process safety and environmental impact.

When assessing commercial technology, visits to existing sites and reviews of their safety and operational performance can also be helpful.




Government and International Restrictions

Governments sometimes place restrictions on companies that can influence technology selection. It is fairly common for nationally owned companies in developing countries to be required to maximize use of indigenous technology, equipment, and parts, so as to stimulate the development of local engineering industries and reduce hard currency outflows. This may lead a company to develop its own version of an older technology rather than working with a technology vendor or major international company that can supply the latest technology.

International sanctions can also play an important role in process flowsheet selection. Sanctions can disqualify some companies from offering to supply technology and reduce the set of options available. Sanctions can also restrict the availability of feedstocks. During the 1970s and 1980s, South African companies developed many processes for making chemicals from coal in response to the international sanctions aimed at ending apartheid that restricted their ability to purchase crude oil.




Experience and Reliability

One of the critical factors in selecting a commercially-proven technology is the extent and diversity of operating experience that has been established. If a process has been widely adopted and proven in many locations by different operating companies then it is likely to be easy to apply in a new plant. A technology that has only been built once or twice may still experience “teething troubles” and be more difficult to implement.

As more operating experience is gained, the company also gains a better understanding of the reliability of the process. If a particular section of the flowsheet or piece of equipment is known to cause reliability problems, this may create a need to modify the equipment design or even make changes to the flowsheet.






2.4.3 Modification and Improvement of Established Processes

All designs evolve over time. Engineers make modifications to improve process economics, safety, reliability, and environmental impact. Most changes will be minor, such as addition of instrumentation or substitution of equipment; however, significant changes in the flowsheet are sometimes needed.

Modifications that are made to an existing commercial plant are known as revamp designs, and are addressed in Section 2.5. This section describes techniques for modifying an established process for use in a new plant.


Modifications to Improve Process Economics

Improvements in process economics usually come from reduced capital investment or improved cost of production. Designers seeking improvements in process economics usually start by completing a PFD of the existing design and determining the current estimated capital investment and cost of production (see Chapters 7, 8 and 9). The following tactics can then be applied:


• Improve reactor selectivity and process yield. Feedstock costs are usually more than 80% of the cost of production, so improving yields gives the biggest impact on process economics. Improved yields usually require the development of more selective catalysts, enzymes, or organisms, or a more effective reactor design, but sometimes a more efficient separation scheme or better purification of a feed or recycle will also improve yield.

• Improve process energy efficiency. Energy costs are usually next largest after feedstock costs for chemicals produced on a large scale. Energy costs can be reduced by improving process energy efficiency. Several different approaches to improving process energy use are described in Chapter 3.

• Improve process fixed costs. Fixed costs are usually second to feedstock costs in small-scale processes used for fine chemicals and pharmaceuticals manufacture. Fixed costs are described in Section 8.5. Fixed costs can be reduced by making the process more continuous and less labor-intensive, and by increasing the plant attainment of batch processes.

• Reduce capital investment. Design engineers look for pieces of equipment that can be combined or eliminated to reduce capital cost. In batch plants, this is often done by carrying out several steps in the same piece of equipment. For example, the feed can be charged to a reactor, heated in the reactor, reacted, cooled down, and the product crystallized before pumping out the product as a slurry and repeating the process.

• Reduce working capital. Working capital is described in Section 9.2.3. Working capital can be reduced by decreasing inventories of raw materials, work in progress, and consumables. Making a process more continuous or using fewer different solvents in a process both lead to a reduction in working capital.



It can be seen that some of the above suggestions contradict each other; for example, “make batch plants more continuous” but “carry out more operations in the same piece of equipment”. Lists of design guidelines (known as heuristic rules) often contain apparent contradictions. The designer must either choose which rule is most appropriate to the case under consideration using experience and judgment, or else carry out a full design and costing of both alternatives. Heuristic rules are discussed further in the context of process synthesis in Section 2.6.4.




Modifications to Improve Plant Safety

Plants can be made more inherently safe by reducing inventories of hazardous materials by making vessels and other plant equipment smaller; substituting less hazardous materials for feeds, solvents, and intermediates; eliminating explosive mixtures and exothermic reactions; eliminating use of operations that are open to the atmosphere; minimizing worker exposure to chemicals; and other methods discussed in Chapter 10.

Improvements in the safety of a design can be quantified using the methods for risk assessment described in Section 10.8.




Modifications to Improve Plant Reliability

When a plant has been in operation for a few years the operators will have a good idea of which plant sections or pieces of equipment lead to the most operational problems, require the most maintenance, and cause the most unplanned shutdowns.

Reliability problems are usually caused by equipment failures. The most common problems are usually experienced with solids-handling equipment, rotating equipment such as pumps and compressors, heat exchangers that are prone to fouling, and instruments and valves. Sometimes, specification of a more reliable piece of equipment can solve a process reliability problem. More often, a flowsheet change is needed, such as designing with two or more pieces of equipment in parallel so that the plant can continue to operate while one is taken offline for repair or cleaning. This approach is very commonly applied for pumps, which are relatively cheap and very prone to stalling in operation.

Corrosion, erosion, and plugging caused by corrosion products can be major contributors to poor reliability. Methods to address corrosion in design are described in Chapter 6.




Modifications to Improve Environmental Impact

Many conventional processes were first designed over forty years ago, when different environmental laws and standards applied. Existing plants may have been modified by the addition of end-of-pipe systems for reducing environmental impact; however, changes in the process flowsheet can sometimes achieve the same or better environmental performance at lower cost.

Modifications that are typically used to improve environmental impact include:


• Use of new catalysts, enzymes, or organisms that have better selectivity for the desired product and consequently lead to less waste formation.

• Optimization of reactor design to give better mixing or heat transfer and hence improve reactor selectivity and reduce byproduct formation.

• Elimination of solvents or other consumables that become degraded to waste products by the process.

• Elimination of materials that have high environmental impact, such as halogenated solvents, mercury, endocrine disruptors, and compounds that persist in the environment.

• Adoption of closed-loop recirculating gas systems instead of once-through gas flow, hence reducing volatile organic compound (VOC) emissions. For example, Figure 2.13(a) shows a once-through dryer, in which the drying gas is vented or sent to a flare, potentially leading to VOC emissions. Figure 2.13(b) shows an alternative design in which a blower is used to circulate the gas. The hot gas leaving the dryer is cooled to allow solvent to be condensed and recovered. There is much less potential for VOC emissions in the closed-loop design and the consumption of solvent is also reduced.

[image: image]

Figure 2.13 Dryer gas circulation designs.

• Substitution of chemicals with materials that have reduced environmental impact. For example, the cheapest way to neutralize waste sulfuric acid is to react it with lime (CaO) to form gypsum (CaSO4), which is inert and can be sent to landfill. Instead, if ammonia is used to neutralize the acid the product will be ammonium sulfate, which can be used as a fertilizer.



Methods for analyzing and reducing the environmental impact of a process are described in Chapter 11.








2.5 Revamps of Existing Plants

Flowsheet development for plant revamps is a specialized subject in its own right. Revamp design is rarely taught in universities, as revamp studies require access to an operating plant and the data it produces.

Revamps generally fall into two categories. Debottlenecking projects are carried out to increase the production rate of a plant while making the same product. Retrofit projects are carried out to change the design of a plant to handle different feeds; make different products; exploit better reactor, catalyst, or separation technology; or improve plant safety or environmental impact in response to new regulatory requirements.


2.5.1 Flowsheet Development in Revamp Projects

Figure 2.14 gives an overall work process for developing a revamp design flowsheet. One of the critical requirements of a revamp project is always to minimize project cost by maximizing reuse of existing equipment. The revamped flowsheet therefore always requires compromises between desired objectives and what can be obtained with the equipment available.

[image: image]

Figure 2.14 Steps in revamp design.

Many features of a revamped flowsheet will be different from the flowsheet of a corresponding new plant. For example, in a revamp it may make sense to add a second distillation column in parallel to an existing column rather than tearing down the existing column and building a new larger one. The use of two small columns in parallel would not be contemplated in a new design. The development of a revamped flowsheet thus requires a lot of information on the performance of existing equipment so that the equipment can be re-rated or modified for a role in the new flowsheet. When the existing equipment cannot be upgraded, the designer must find the cheapest method to add new capacity or augment the existing capacity.

Once the revamped flowsheet has been completed, the designers can assess the costs of the new components that must be added. The cost of revamping a plant should always be compared to the cost of building a new plant from scratch. The revamp will usually be a cheaper method for adding small increments of capacity, but for larger capacity increases a new unit will become more attractive.

The steps in developing a revamped process flowsheet are described in the following sections. Although there is a great deal of retrofit and revamp activity in the chemical industry, particularly in regions such as the United States and Europe where the industry has been long-established, the authors are not aware of any comprehensive reference works on the subject. The books by Briggs, Buck, & Smith (1997) and Douglas (1988) contain short sections on revamp design.




2.5.2 Major Equipment Debottlenecking

In a revamp design, the capacity of existing equipment determines whether additional equipment must be added in series or parallel, and hence plays a major role in determining the revamped design flowsheet.

Most major equipment is initially specified with a design factor or margin of 10% to 20%; see Section 1.6. This overdesign allows for errors in the design data and methods, but also creates some room for potential expansion of capacity. When a plant is considered for revamp, some of the equipment may still be operating below its full capacity.

The general procedure for equipment debottlenecking follows the steps shown in Figure 2.14. Once a mass and energy balance has been established for the existing plant, a simulation model of the equipment can be built. The model can then be tested under the proposed new process conditions to determine if the equipment is fit for the new service. For equipment that is difficult to model (for example, centrifuges, fired heaters, and dryers) a specialist or the original equipment vendor may need to be consulted. After establishing the maximum capacity that the equipment can attain while maintaining specifications, modifications to improve capacity can be considered. If it is not possible to satisfy the desired process duty with modifications to the existing equipment, then the cheapest means of adding capacity must be established. This may include complete replacement of the original equipment with reuse of the original equipment elsewhere in the process.

Some specific examples of techniques for equipment debottlenecking are given below. Revamp of heat transfer equipment is discussed in Section 2.5.3 and revamp of hydraulic and solids handling equipment is described in Section 2.5.4.


Reactor Debottlenecking

Reactors are designed with a specified residence time that has been determined to give a desired conversion. For reactors that use a fixed bed of catalyst this is usually expressed instead as a space velocity:

[image: image] (2.8)
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where τ = residence time,

SV = space velocity,

V = reactor volume,

Vcat = fixed bed catalyst volume, and

v = volumetric flow rate

Space velocity is usually given on an hourly basis and defined on the basis of gas phase flow (GHSV[image: ent]=[image: ent]gas hourly space velocity), liquid phase flow (LHSV[image: ent]=[image: ent]liquid hourly space velocity) or total mass flow (WHSV[image: ent]=[image: ent]weight hourly space velocity[image: ent]=[image: ent]kg/h feed per kg of catalyst inventory). Any consistent set of units can be used for residence time and space velocity.

Equations 2.8 and 2.9 clearly show that an increase in flow rate must lead to a proportional change in volume, residence time, or space velocity. Adding volume usually requires building additional reactors, so unless the reactors are very inexpensive, the revamp design will focus on ways to reduce residence time or increase space velocity, while trying to maintain the same conversion if possible, so as to minimize the impact on the separation and recycle sections of the plant.

An increase in space velocity or decrease in residence time can be obtained by increasing temperature, backing off on conversion, reducing the concentration of diluents, or using a more active catalyst, enzyme, or organism. Increasing temperature and reducing diluents or solvents (if any are present) will generally lead to worse selectivity and increased cost elsewhere in the process. Many fixed-bed catalytic processes are operated on a temperature cycle, where the reactor temperature is slowly increased over a one- to ten-year period to compensate for catalyst deactivation, and the catalyst is then replaced at the end of the cycle. In such cases, raising the temperature shortens the catalyst run length and requires more frequent plant shutdown. Reducing the reactor conversion also creates additional cost elsewhere in the process, as the amount of unreacted feed recycle is increased. Improving the catalyst performance is often the least expensive way to boost capacity, and the availability of new catalysts often sets the scope for revamp projects.

An additional problem with revamping fixed-bed catalytic reactors is the effect of reactor pressure drop. The pressure drop across a packed bed is proportional to the flow rate squared, so pressure drop increases rapidly as flow rate is increased. Approaches that can be taken to reduce reactor pressure drop include rearranging series reactors into parallel flow, Figure 2.15, and converting downflow reactors to radial flow, Figure 2.16. (A more detailed drawing of a radial flow reactor is given in Chapter 15; see Figure 15.29). With packed beds that are in upflow, care must be taken to avoid fluidizing the catalyst in the revamped design. If the upflow velocity is close to the minimum fluidization velocity then the reactor should be converted to downflow or replaced with a larger reactor. Sizing of packed bed reactors is discussed in more detail in Section 15.7.3.
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Figure 2.15 Series to parallel reactor revamp.
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Figure 2.16 Downflow to radial-flow reactor revamp.

When it is necessary to add reactor capacity, a technique that is widely used is to add a prereactor to the existing reactor sequence, as in Figure 2.17. Because a prereactor typically runs at low conversion, it can be operated under conditions that would not normally be good for selectivity; for example, at higher temperature or with less solvent or diluent. This makes the prereactor more volume-efficient than the existing reactor sequence, without compromising on overall selectivity.
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Figure 2.17 Reactor revamp using a prereactor.

When a detailed model of the reaction kinetics, including side reactions, is available, more complex reactor networks can be designed that give improved selectivity and yield of desired products. A revamp project can then add reactor capacity to bring the reactor section performance closer to that of the ideal reactor network. The design of reactors and reactor networks is discussed in more detail in Chapter 15.




Separation Column Debottlenecking

The capacity of separation columns is usually limited by column hydraulics; see Section 17.13. If the feed flow rate increases, the vapor rate in the column increases proportionately, and at some point the column will flood and become inoperable. Two approaches can be taken to obtain more capacity:


1. Increase the open area for vapor flow to delay the onset of flooding.

2. Increase the number of stages in the column by using high-efficiency trays or trays that allow a closer tray spacing, so that the reflux ratio, and hence vapor rate, can be reduced.



Both of these methods are used by separation tray and packing vendors, and there are many proprietary designs of high-efficiency, high-capacity trays and packing on the market. When revamping a column, the common practice is to contact the tray and packing vendors, who will then supply an estimate of how many trays must be replaced to achieve a desired capacity. It is often not necessary to re-tray the entire column. The detailed design of distillation columns is discussed in Chapter 17.

When it is necessary to add capacity to a distillation column and the use of high-capacity trays is not sufficient, a prefractionator scheme is sometimes used, as illustrated in Figure 2.18. The prefractionator makes a preliminary separation of the feed that reduces the reflux requirements of the main column. A revamped prefractionator is usually provided with its own reboiler and condenser to avoid increasing the load on the main column reboiler and condenser.
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Figure 2.18 Distillation column revamp using a prefractionator.

Another common tactic in debottlenecking separation sections is to reuse the existing distillation columns in a different application. If a plant has three or more columns then a revamp can be carried out by building one new column to replace the largest of the existing columns, revamping the largest old column to replace the second largest, etc. In this context, largest refers to the largest diameter, which governs vapor rate and capacity. If the columns do not have sufficient height for the new application, they can be re-trayed with high efficiency internals or combined in series. In some cases, particularly for relatively short low-pressure columns, it may even make sense to add height to a column by welding on a new top section.






2.5.3 Revamp of Heat Exchange Networks

The heat exchangers, heaters, and coolers of a plant will cause many of the bottlenecks to plant expansion. When a plant is revamped to a new purpose such as changed feed or products, the existing heat recovery system will no longer be optimal and may no longer make good sense. The common practice in major revamps is to complete the revamp design of the other major equipment first, then address the heaters, coolers, and exchangers subsequently, as shown in Figure 2.14.

The design of heat recovery systems and heat-exchanger networks is covered in Chapter 3. Chapter 19 addresses the detailed design of heat exchangers, heaters, and coolers. Revamp of a complex heat-exchange system should always be treated as a network problem rather than by revamping each item individually, as the lowest-cost solution will always be that obtained by optimizing the system as a whole.

The revamp of heat-exchanger networks has been the subject of much research, and very effective techniques and software for heat exchange network revamp have been developed. The network pinch method developed by Asante and Zhu (1997) is now the most widely used method in industry. This method has been automated (Zhu & Asante, 1999) and is used by most of the companies that offer heat integration consulting services. Smith (2005) gives a concise overview of the network pinch approach.

For simple processes, with only a few heaters and coolers, the tactics described in the following sections can be used.


Heat Exchangers

For a heat exchanger:
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and

[image: image] (2.11)

where Q = heat transferred per unit time, W,

U = the overall heat-transfer coefficient, W/m2K,

A = heat-transfer area, m2,

ΔTm = the mean temperature difference, the temperature driving force, °C

mi = the mass flow rate of stream i, kg/s

Cp,i = the specific heat capacity of stream i, J/kgK

ΔTi = the change in temperature of stream i for a stream that undergoes only sensible heat changes, °C.

Increasing the flow rate increases the required duty and therefore requires an increase in heat transfer coefficient, area, or effective temperature difference.

The correlations that are used to predict heat transfer coefficients for sensible heat transfer are usually proportional to Re0.8, where Re is the Reynolds number, which is proportional to flow rate. Hence, the process-side transfer coefficient increases almost in ratio to the increase in flow unless the exchanger is boiling or condensing the process stream. For heaters and coolers it may therefore be possible to reuse the exchanger in the same service if an increase in utility-side heat transfer coefficient or a change in utility temperature can make up the rest of the required duty. This is explored in Example 2.7.

One of the first and most important steps in revamping a heat exchange system is to benchmark the current system and estimate the heat transfer coefficients that are currently being obtained. If these are substantially lower than expected from the original design of the process, this may indicate fouling, plugging, or other problems that should be addressed during the revamp.

There are several proprietary methods for enhancing the performance of tubular exchangers. Tube inserts such as hiTRAN®, TURBOTAL®, and Spirelf® can be used to increase turbulence and tube-side heat transfer coefficient. Low-fin tubes can be used to increase shell-side effective area (Wolverine, 1984; see also Section 19.14). Reboiling and condensing coefficients can be increased by use of UOP High Flux™ or High Cond™ tubing.

Plate exchangers usually do not require enhancement methods. Gasketed plate exchangers are very easy to revamp, as more plates can simply be added to the exchanger; see Section 19.12. Welded plate exchangers are not amenable to use of inserts or to expansion by adding plates.




Heaters and Coolers

The techniques described for heat exchangers apply equally well to steam or oil heaters and water coolers. Decreasing cooling water return temperature (by increasing cooling water flow rate) or raising hot oil temperature are widely used methods in plant revamps.

Fired heaters are usually difficult to revamp and require the involvement of heater and burner specialists. If there is space in the heater, additional tubes can be added. Similarly, if there is space in the convective section then it can be used for preheat to off-load some of the furnace duty. In some cases, the addition of improved burners will allow more uniform heating and higher average tube-wall heat flux. Fired heater design is discussed in more detail in Section 19.17.

Air coolers (Section 19.16) are also difficult to revamp. The designer does not have the ability to specify a lower ambient temperature! Common air cooler revamps include:


• Adding additional banks of tubes and installing more powerful fans.

• Adding water-spray systems to increase cooling capacity on the hottest days.



Water-spray systems are effective, but can increase air-side fouling over time.

Example 2.7

Figure 2.19 shows a simple heat-exchange system. A feed stream is heated by heat exchange in a plate exchanger and then further heated in a steam heater before entering a fixed-bed reactor. The product from the reactor is cooled in the plate exchanger and then further cooled using cooling water. Exchanger specifications and current performance are given in the figure. Propose modifications to the system to allow a revamp to 50% higher capacity.
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Figure 2.19 Heat exchange system for Example 2.7.


Solution

Start with the plate heat exchanger, E101. A 50% increase in flow through the exchanger would give a (1.5)2 = 2.25 factor increase in exchanger pressure drop. If this was acceptable, then assuming that the heat transfer coefficient is proportional to Re0.8:
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Assuming the reactor operates at the same outlet temperature, we can make heat balances for the base case and revamp case.

Base case:
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where subscript f denotes feed and p denotes product.

Revamp case:
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and
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So
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hence
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So we only lose 1.4 degrees of heat exchange as long as the increase in pressure drop that results from the higher flow rate is acceptable.

Now look at the steam heater, E102. In the revamp case:
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The heat transfer coefficient is only increased on the process (cold) side:
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(overall heat transfer coefficient calculated using equation 19.2)

So for the exchanger to be feasible, we would need to raise the steam temperature to Ts, where
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So the heater remains viable if the steam temperature can be increased by 6.5 °C. This might be accomplished by raising the local pressure of the medium pressure steam system; for example, by making adjustments in the steam pressure regulator valve set points. If that was not possible, and if the heater was rated for a sufficiently high pressure, then high pressure steam could be considered instead of medium pressure steam.

Turning to the cooler, E103. In the revamp case:
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To meet this extra duty we need to increase the cooling water flow rate by a factor Fcw, which changes the cooling water outlet temperature to Tw, where
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and
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For the revamp case, the logarithmic mean temperature difference ΔTlm depends on Tw and the overall heat transfer coefficient will be
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These equations must be solved iteratively. This is easily done using a spreadsheet, giving
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The exchanger would be feasible if we could accept this increase in cooling water flow rate; however, such a large increase would give a very large increase in pressure drop. The pressure drop is proportional to flow rate squared and so would increase by a factor (1.89)2 = 3.57, which would probably not be acceptable.

An alternative approach for E103 is to see what the outlet temperature would be if cooling water flow was limited. Suppose the cooling water flow cannot be increased more than 20%, giving a 44% increase in pressure drop. If we allow the cold outlet temperature and hot outlet temperature to vary, the same spreadsheet model can be solved to give
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So in this case the designer would have to consider whether the product stream could be made 3.1 °C hotter, which depends on the downstream processing.

If this option was also unacceptable, the designer would have to consider adding an additional cooler. A simple approach would be to split the hot stream leaving E101 into two streams in ratio 2:1. The larger stream could still be sent to E103 and the smaller one could be sent to a parallel cooler of half the size of E103. This option would not push the operation of E103 much beyond the current operating mode.

In summary, one option that would allow a 50% increase in throughput would be:


• E101: No change, as long as a factor 2.25 increase in pressure drop is acceptable on hydraulic review.

• E102: Increase steam temperature to 186.5 °C, no capital modification needed.

• E103: Consider accepting a 3.1 °C warmer product. If this is unacceptable, add a new exchanger E104, half the size of E103, in parallel to E103 and split the hot stream leaving E101 in 2:1 ratio between E103 and E104.



Alternatively, if E101 is a gasketed plate heat exchanger (see Section 19.12.1), the designer could also consider adding more plates to increase the area available in E101. We can increase the plates in E101 until we achieve the same channel velocity and pressure drop as the base case, then solve the remaining problem for E102 and E103, or, alternatively, increase the plates in E101 until the existing E102 and E103 are able to satisfy all of the remaining heating and cooling load without modifications. This alternative solution is explored in Problem 2.11. The addition of plates to E101 would be more expensive than just altering a few temperatures, but would most likely be less costly than adding E104, and could even be cheaper than making the hydraulic modifications necessary to cope with a large increase in pressure drop.










2.5.4 Revamp of Plant Hydraulics

Any revamp project that leads to increases in plant throughput will have a significant effect on the plant hydraulic equipment. Since pressure drop is proportional to velocity (and hence flow rate) squared, a 40% increase in flow is sufficient to double the pressure drop. The introduction of parallel equipment in the flowsheet may also create a need for additional control valves to regulate flow in the desired ratios, which adds additional pressure drop to the plant. Adding equipment to modify the process also has an impact on the hydraulic design.

Much of the design effort in revamp projects goes into evaluating and redesigning the plant hydraulics. All of the pump-and-line calculations and control valve sizing calculations must be repeated for the revamped design case. It is usually not cost effective to replace the piping with new pipe of more optimal diameter, so usually the designers will accept a higher pressure drop in the pipes and process equipment and then redesign the pumps and control valves accordingly.

The design of pumps, compressors, piping systems, and control valves is discussed in more detail in Chapter 20. The sections below provide some specific guidelines relevant to revamp flowsheet development.


Compressors

Compressors are the largest and most expensive items in the plant hydraulic equipment. Compressor design is covered in more detail in Section 20.6. Because compressors are expensive to replace, experienced designers usually try to reuse the existing compressors in the new flowsheet.

The relationship between flow rate and pressure delivered depends on the type of compressor (see Figure 2.20), but the pressure delivered will usually decrease if the compressor operates at higher flow. The only exception to this rule is large reciprocating compressors, which are usually designed with a recycle from the product to the feed, known as a spill-back. If the spill-back flow is large enough, some increase in flow can be obtained by reducing the spill-back with no loss in delivered pressure.
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Figure 2.20 Pressure—Flow rate curves for different compressor types.

When two compressors are used in parallel, the total flow increases, but the delivered pressure cannot be greater than the lower pressure delivered by either compressor; see Figure 2.21. When two compressors are used in series, the pressure delivered increases, but the flow rate does not; see Figure 2.22.
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Figure 2.21 Compressors in parallel.
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Figure 2.22 Compressors in series.

In a revamp flowsheet design, the designer seeks to increase the pressure delivered to overcome the increased plant pressure drop, as well as an increase in flow rate. From Figures 2.21 and 2.22 it can be seen that the only way to increase both the pressure delivered and the flow rate while adding only one compressor is somewhat paradoxically to reduce the flow rate in the existing compressor so that it delivers a higher pressure, and then add a second machine in parallel, as shown in Figure 2.23. The extent to which the flow rate can be reduced depends on the type of compressor and current operating conditions. In this scenario, the revamped flowsheet would need to show two compressors in parallel. A revamp from one machine operating at 100% flow rate to two similar machines in parallel each at 70% flow rate would give an overall 40% increase in flow.
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Figure 2.23 Compressor revamp.

If it is not possible to meet the desired flow and pressure with the addition of only one new compressor, it will usually be preferable to replace the existing compressor rather than adding new compressors in series and parallel.

If a compressor cannot be reused in its current location in the revamped flowsheet, it should be evaluated for other process uses. Air compressors and blowers should also always be re-evaluated, and can be used to assist heaters, boilers, dryers, or even site instrument air systems if there are no suitable process uses.




Pumps

Pumps are relatively inexpensive compared to compressors, and will often be replaced entirely in a revamp. Pumps are discussed in more detail in Section 20.7.

The most commonly used pumps are centrifugal pumps. Centrifugal pumps exhibit pressure-flow behavior similar to that shown for centrifugal compressors in Figure 2.20. A typical pump curve is given in Figure 20.15. The same pump can deliver a set of different performance curves depending on the impeller diameter and motor speed. The designer can therefore sometimes obtain the required performance just by selecting new impellers for the existing pumps.




Control Valves

All control valves must always be rated to confirm that they are correctly sized for the revamped design case and will give the desired controllability, turndown, and ability to meet different operating scenarios. Control valve design and sizing are discussed in Section 20.11.

When parallel equipment is introduced into the revamped flowsheet, the design engineers must determine how the flow is to be split between the existing and new equipment. A simple T-junction or branch will often not be effective, as the rate of fouling or pressure-drop accumulation of the new and old equipment will not be the same, even if they have the same capacity and design, and flow would then preferentially go through one piece of equipment, leading to poor performance of both. The desired split ratio is rarely 1:1, and may need to be adjusted once the plant is put into operation. The most common approach is to put a new control valve on the branch that leads to the new equipment. The existing equipment is likely to be limited by pressure drop, so the new equipment can be designed with lower pressure drop to allow for the pressure drop associated with the control valve. A less costly, but less effective, alternative is to use a manual valve or even a restriction orifice in the bypass line, and make manual adjustments until the desired flow ratio is obtained.

Control valves that act discontinuously and handle low flow rates will sometimes be suitable for reuse in the revamped plant as long as the new actuation rate is acceptable. Control valves on main plant flows will usually need to be replaced, as will control valves on gas or vapor streams. The revamped flowsheet does not need to indicate which existing valves are reused and which are replaced, but should show all new control valves that are added.








2.6 Synthesis of Novel Flowsheets

The terms process synthesis and conceptual process design are used for the invention of completely new process flowsheets. As stated previously, very few entirely new designs are developed commercially because of the high financial risks inherent in using unproven technology. The primary goals of process synthesis are therefore to reduce commercialization risk and to maximize economic attractiveness so as to generate sufficient financial reward to balance the risk.

Process synthesis has been the subject of a great deal of academic and industrial research over the past forty years. Many problems that were previously solved using inspired guesswork can now be formally posed and optimized. The use of process simulation programs has also made it much easier to evaluate and optimize alternative flowsheets; see Chapter 4 for more on process simulation. Several prominent researchers in the field of process synthesis have written textbooks on process design that strongly emphasize process synthesis. These are listed in the bibliography at the end of this chapter. Several excellent books have been written on process synthesis in its own right (Rudd, Powers, & Siirola, 1973; Douglas, 1988; El-Halwagi, 2006), as well as on aspects of process synthesis such as distillation sequencing (Doherty & Malone, 2001), mass integration (El-Halwagi, 1997), and heat integration (Shenoy, 1995; Kemp, 2007). While it is beyond the scope of this book to cover all aspects of process synthesis, this section sets out an overall framework for flowsheet synthesis that addresses the key issues encountered in developing and commercializing new processes. The reader is encouraged to read the books listed above and in the bibliography for more insights into the subject.


2.6.1 Overall Procedure for Flowsheet Synthesis

Most efforts to systematize process synthesis begin by setting out a sequence or hierarchy of steps for the designer to follow. Design hierarchies recognize that some steps need to come before others and should guide the designer to eliminate unattractive options and focus effort on designs that are most likely to be successful.

The most intuitively obvious design hierarchy is the so-called onion diagram. Figure 2.24 shows a version of the onion diagram given by Smith (2005). The onion diagram represents a design starting with the reactors, adding separation and recycle systems, then proceeding to add heat recovery, utility systems, and environmental systems. Rudd et al. (1973) proposed a more theoretically abstract synthesis hierarchy that essentially follows the same steps, but included an additional step of integrating reaction, mixing, separation, or change of state tasks into unit processes or operations.
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Figure 2.24 Onion diagram (Smith, 2005).

Douglas (1988) set out a somewhat different approach, summarized in Table 2.1. Douglas emphasized early introduction of process economics to guide the elimination of weaker alternatives, with continuous refinement of the economic model as more detail is added to the flowsheet. This is a useful approach, as it can highlight deficiencies in the design at an early stage.

Table 2.1. Hierarchy of Process Synthesis Decisions (Douglas, 1988)



	
1. Batch vs. continuous

2. Input-output structure of the flowsheet

3. Recycle structure of the flowsheet

4. General structure of the separation system


a. Vapor recovery system

b. Liquid recovery system



5. Heat exchanger network







The reality of process development in industry is usually a lot less systematic than the idealized picture painted by academic researchers. In industrial practice, process development is more interdisciplinary, more iterative, and much less linear than the simple synthesis models suggest. The flowsheet synthesis step is usually part of a larger effort that involves chemists, biologists, and other engineers and includes laboratory and pilot plant experiments to determine reactor performance and establish yields and product recoveries. The engineers working on synthesis seldom have all the data that are needed to properly optimize the design, and often must guide the research members of the team to collect additional data under conditions that will be more favorable to process economics. Many industrial processes involve multiple reaction steps carried out in sequence with intermediate separation steps, and it may be difficult to assess the performance of later steps without good information on the nature and quantity of byproducts that are carried over from earlier steps in the sequence. The design team therefore needs to form a rough impression of the process flow diagram and economics using minimal information on process chemistry, so as to develop an understanding that can guide the efforts of the research team.

Figure 2.25 sets out an approach to flowsheet synthesis that sets flowsheet development in the context of working with a research team to establish yields and reactor performance. The Douglas hierarchy and onion diagram form substeps in this procedure, as described below.
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Figure 2.25 Procedure for process synthesis.


Step 1. Initial Economics

The very first step should be to collect prices for feeds and products and confirm that the cost of production will be attractive if a stoichiometric yield is obtained. If the cost of feed is more than the product value, then there is no hope of developing an economically attractive process and the work should be stopped unless the team has strong evidence that prices will change in the future. This step is particularly important when assessing nontraditional feeds; for example, when looking at processes for converting food-based renewable feeds into chemicals.




Step 2. Set Yield Targets

The research team needs to be set realistic targets that will lead to an attractive process. The term yield targets includes targets for byproduct selectivity as well as main product selectivity and conversion. Methods for setting and revising yield targets are given in Section 2.6.3. The researchers will generally need to carry out process development experiments to optimize reactor conditions and catalyst, enzyme, or organism performance to meet the yield targets.

On the first pass through the procedure, the designers may choose to just accept whatever yields and selectivities the research chemists or biologists have already established. When more information on process economics has been generated, the targets can be revised and improved.

If the yield targets are not met, the company must make a strategic decision on whether to continue or abandon the research. Research discoveries are often serendipitous and can be hard to plan. Companies often choose to allow a low level of research activity to continue over a long period of time once clear success criteria have been established.




Step 3. Preliminary Economic Assessment

The goal of a preliminary economic assessment is to arrive at a preliminary estimate of the cost of production once the yield targets have been met. The substeps in carrying out a preliminary economic assessment are illustrated in Figure 2.26. This procedure is similar to that of Douglas (1988), but it should be emphasized that less detail is put into the design and the goal is not to arrive at a PFD or even a detailed block flow diagram at this point.
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Figure 2.26 Preliminary economic assessment.

The components of cost of production and methods for calculating each component are discussed in detail in Chapter 8. For most processes, 80% or more of the cost of production will be feedstock cost less credits for any economically viable byproducts. The rest of the cost of production is chiefly made up of utility costs (mostly energy), fixed costs (mostly labor), and annualized payments to generate an expected return on the capital investment. The split between these depends on the type and scale of the process. Small-scale batch processes will have a higher proportion of fixed costs, while large-scale petrochemicals or solids-handling plants will have a higher proportion of utility costs. In a preliminary economic assessment, the designer seeks to make a quick estimate of these major components of cost, and hence determine whether the process will be able to make product at an attractive price.

The first step is to look at the yields and identify any significant byproducts. Byproducts can be formed by the reaction stoichiometry, by side reactions, or from extraneous components in the feeds. Byproducts must be refined and sold, treated as waste streams, or recycled to extinction in the process. A quick examination of the yields and prices of the byproducts is usually sufficient to establish which are suitable for recovery. The economic assessment of byproduct recovery is discussed in more detail in Section 8.2.3.

Once the designer has a notion of which byproducts are worth recovering and which byproducts must be recycled, a preliminary reaction-separation-recycle structure can be sketched. It is not important to have the best or optimal flowsheet at this point, and the design team may want to propose a few alternatives to see which is least costly. A process simulation model can then be built and used to generate a mass and energy balance and obtain rough sizing of the major process equipment. The preliminary simulation should include all recycles, reactors, and separation equipment and should capture all changes in temperature and pressure. It does not need to include a heat recovery design, and should use heaters and coolers instead of heat exchangers whenever there is a change in temperature. The use of commercial programs for process simulation is discussed in Chapter 4. The preliminary simulation model does not have to be built using a commercial simulation program, but it will usually be convenient to do so, so that the model can be extended as the flowsheet is subsequently refined.

The preliminary equipment sizes from the simulation model (or hand calculations) can be used to develop an initial estimate of the capital cost of building a plant. Estimation of capital costs is covered in Chapter 7. The capital cost is then annualized so that it can be added to the other costs of production. Annualization of capital costs is covered in Section 9.7. In a preliminary economic assessment the designers usually annualize capital costs by dividing by 3. The basis for this rule of thumb is set out in Section 9.7.2.

The process energy consumption and utility costs are difficult to assess without completing a process simulation and energy balance. Most processes have significant opportunity to reduce energy costs by heat recovery, so simply adding up all the heating and cooling duties would be a gross overestimate. Instead, a first estimate of energy consumption can be made by carrying out the targeting step of pinch analysis to get hot and cold utility targets. Pinch analysis and other heat recovery methods are described in Chapter 3. At this point in the design it is not necessary to design the heat recovery system, as the targets are adequate for the preliminary economic assessment.

The preliminary estimates of main product and byproduct production rates, feed and energy consumption, and capital cost can be used to make a preliminary estimate of the cost of production, as described in Chapter 8. If the cost of production appears attractive, the design team proceeds to the next step. If not, the economic assessment can be used to highlight the major components of cost that must be reduced to make the process economically interesting. Having identified the cost components that must be addressed, the design team can either look at alternative flowsheets that reduce these costs or else set more aggressive yield targets and go back to the research stage.




Step 4. Refine Process Structure

If the preliminary economic assessment indicates that the process is potentially economically attractive, then it is important to develop a complete PFD and make sure that no costs have been overlooked. The steps in completing a more rigorous design are shown in Figure 2.27. It can be seen that these follow roughly the same sequence as the onion diagram of Figure 2.24.
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Figure 2.27 Refining the process flowsheet.

The first step is to optimize the reaction-separation-recycle structure of the flowsheet and confirm the yields under the optimal conditions. The preferred conditions can be estimated by optimization of the preliminary simulation model and economic model. Additional experimental data may be needed if the optimal conditions are different from the conditions originally proposed. The reactor designs must be tested and yields confirmed in the presence of recycle streams, which may require construction of a pilot plant that can operate in recycle mode. The design of reactors is described in Chapter 15.

The design of the separation systems encompasses not only those separations associated with product recovery and recycles, but also feed purification, product purification, and byproduct recovery. The design of separation processes is covered in detail in Chapters 16, 17, and 18. In some cases, product purification or byproduct recovery will require additional reaction steps. For example, in the recovery of ethylene produced by steam cracking of light hydrocarbons, it is easier to hydrogenate byproduct acetylene than to separate it by distillation; see Figure 2.28.
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Figure 2.28 Ethylene recovery from steam cracking.

When the byproduct separation and recovery sections have been designed in more detail, the attractiveness of recovering the byproducts can be revisited. If the costs of producing the byproducts are excessive, the designer should revisit the reaction-separation-recycle structure or return to the preliminary economic analysis step.

When designing the reaction and separation steps, as much use as possible should be made of proven process subsections. If a particular reaction, separation, recovery, or purification step is already practiced commercially, then the same method will probably be least costly and will most likely have the least technical risk for the new design. Borrowing proven concepts from established technology is one of the most effective strategies for reducing commercialization risk. Some caution is needed when applying this strategy if the new case is not identical to the commercially-proven design, and the designer should take particular care to ensure that slight differences do not lead to potential safety or operability issues. The designer must also ensure that there are no active patents on the features that are borrowed so that there is freedom to practice them.

Once the major process equipment has been specified, the design team should have a good idea of the stream temperature and pressure requirements and the heat recovery system can be designed. Process heat recovery is described in Chapter 3 and heat transfer equipment is covered in Chapter 19.

The design of the plant hydraulics and control system are interlinked, as control valves introduce additional pressure drop into the process and can create a requirement for additional pumps. Once the major equipment, including heat exchangers, has been specified, a preliminary PFD can be drafted, which can be developed into a full PFD by adding the location of control valves, pumps, and compressors. The design of plant control systems and location of control valves is discussed in Chapter 5. The design of hydraulic equipment is covered in Chapter 20, and solids handling systems are described in Chapter 18. When all the equipment has been added to the PFD, the process simulation can be updated to produce mass and energy balances to complete the flowsheet. The PFD is then ready for review.




Step 5. PFD Review

Review of a process flow diagram is one of the most important steps in flowsheet development. A full PFD review is always carried out in design, regardless of whether the process is a revamp or new unit, or whether it uses novel or proven technology. This vital step is discussed in more detail in Section 2.7.




Step 6. Preliminary Process Hazard Analysis (PHA)

When a completed PFD and mass and energy balance are available, a preliminary process hazard analysis (PHA) can be carried out. A process hazard analysis will identify major hazards inherent in the process, and may indicate a need to alter some process conditions, substitute different equipment, or completely redesign sections of the process. If the preliminary PHA identifies major modifications to the PFD, the design team should go back to the relevant stage of the procedure and generate a safer alternative design. The role of safety in design is discussed in detail in Chapter 10.




Step 7. Revise Economic Assessment

The completed PFD and mass and energy balance allow the design team to make more accurate designs of the process equipment, and hence arrive at more accurate estimates of the capital cost and cost of production. If the process still appears to be attractive then it may be worth developing as an investment, and other methods of economic assessment will be used to determine a viable project for implementing the technology; see Chapter 9. The models that have been developed now have sufficient accuracy to enable more rigorous optimization and can be used as a starting point for detailed design of the plant and equipment. Optimization methods in process design are discussed in Chapter 12.

If the updated cost of production is no longer attractive, the added detail can be used to further define the major cost components and identify areas for process improvement. This will often involve reducing byproduct and recycle handling, and hence translate into setting tougher yield targets.






2.6.2 Economic Analysis in Process Synthesis

In process synthesis it is important to use economic analysis to inform decision making at every step. The procedure outlined in Figure 2.25 begins with a very rough economic analysis and then adds detail to this analysis as information is accumulated. Like an artist beginning with a rough pencil sketch and then filling in details and adding colors, the process design engineer needs to have an overall sense of the composition before getting into the details.

The procedure set out in Figure 2.25 has three economic checkpoints at steps 1, 3, and 7, corresponding to the initial, preliminary, and updated estimates of the cost of production. At these checkpoints the estimated cost of production should be compared to the product sales price that the marketing organization has forecasted. Usually, the criterion for success will be that the cost of production must be low enough to ensure an acceptable return on the capital deployed. Forecasting of prices and calculation of cost of production are covered in Chapter 8, and methods of economic analysis are described in Chapter 9. Although these three steps in the procedure are formal checks, experienced designers do not wait until the checkpoint to calculate process costs. As soon as information is developed, its impact on the cost of production should be determined. In general, costs accumulate as detail is added to the design, so the design team wants to be aware of large costs as early as possible so that they can start considering alternative design features.

Companies usually use other economic analysis methods such as net present value (NPV) and internal rate of return (IRR) instead of cost of production when assessing capital investment projects; however, very few companies launch a capital project without having already completed the process synthesis. At the synthesis stage, cost of production is the most useful economic measure, as it is very easily factored into components such as raw material costs, byproduct values, energy costs, etc. Understanding the components of cost of production can help the design team to focus on areas of high cost if the target cost of production is not achieved.




2.6.3 Use of Targets in Process Synthesis

Design engineers use targets as a means of setting bounds on design performance that can quickly eliminate unattractive options. Targets also help designers and researchers to focus their efforts on areas that will most effectively improve economic performance. Several different types of targets are used in the synthesis procedure set out in Figures 2.25, 2.26, and 2.27:


• The cost of production is compared to a price target set by the marketing organization at steps 1, 3, and 7.

• The design team sets yield and selectivity targets for the research team at step 2.

• Hot and cold utility targets calculated by pinch analysis are used for initial estimates of process energy consumption.

• The preliminary economic analysis sets targets for capital cost and the components of cost of production that the design team must confirm as they refine the process structure and fill in the PFD.



The basis for targets should always be clearly stated. Whenever possible, targets should be calculated from economic criteria, and the assumptions in the calculations should be made explicit. For example, a badly stated yield target would be

“Find me a catalyst that doesn’t make byproduct X.”

A better way of stating this target might be

“If reactor selectivity to byproduct X is < 0.5% of selectivity to main product we can eliminate a separation and purification section of the process, with expected 15% savings in capital cost and 20% savings in energy cost.”

Targets must not be unrealistically tough, or they will never be achieved and will not be taken seriously. Lenient yield targets are usually not as problematic, as they tend to lead to failure at the preliminary economic assessment stage and are then revised to something more realistic. Lenient targets for cost of production are very dangerous, as they allow the design to go forward, and much time and effort can be wasted before harsh economic reality kills the project. Good price forecasting and market analysis are critically important in setting cost of production targets. These topics are discussed in Chapter 8.

It is important to understand whether a target should be treated as a hard constraint or a soft constraint. Companies sometimes address this question by providing must have targets that are hard constraints and should have targets that are soft constraints. The design team can then reject designs that do not meet the hard constraints, but keep concepts that come close to the soft targets. Soft and hard targets are explored in Example 2.8.

Example 2.8

The marketing group is planning to launch a new product and has forecasted that the mean price for the product will be 5 $/kg, normally distributed with standard deviation 40 ¢/kg. The cost of the stoichiometric amount of feed required to make the product is 3 $/kg. Propose preliminary targets for cost of production and yields.


Solution

If the forecast is accurate and the mean product price is 5 $/kg, then there is a 50% probability the project will have economic success if the cost of production (including capital recovery) is 5 $/kg. Using the standard deviation given in the forecast, we can form the following table:



	Cost of Production (COP), $/kg
	Probability of Success



	3.80 (= 5 − (3 × 0.4))
	99.9%

	4.20 (= 5 − (2 × 0.4))
	97.7%

	4.60 (= 5 − (1 × 0.4))
	84%

	5.00
	50%

	5.40 (= 5 + (1 × 0.4))
	16%




We can note immediately that this process would pass the initial economic assessment even if we chose a target cost of production with 99.9% chance of success.

The probability of success that we require depends on how risk averse or aggressive the company is. A 98% chance of success might be too conservative and would give a high chance that the project would not meet the targets. A 50% chance of success would probably be too aggressive and would allow the project to go forward and spend money with low likelihood of financial success. As a compromise, management might set a must have target for COP of 4.60 $/kg, with a should have target of 4.40 $/kg. Note that we are not constrained to using integral multiples of the standard deviation in setting the targets; for example, a price target of 4.34 $/kg (= 5 − (1.65 × 0.4)) corresponds to 95% probability of success and would be equally easy to justify as a must have or should have target.

The COP target can now be translated into preliminary yield targets. In Section 2.6.1 it was stated that feed costs are typically at least 80% of COP. Using this rule of thumb, we can state

[image: image]

The yield targets obviously depend on the number of feeds, the relative costs of individual feeds and the number of reaction and product recovery steps. From equations 2.4 and 2.6 we know

[image: image]

so

[image: image]

So if the target COP is 4.60 $/kg

[image: image]

Note that this is the target yield over all the steps in the process. If we assume that we lose roughly 5% of the product during all the steps of product recovery and purification then

[image: image]

If we have two reaction steps and one feed is more expensive than the others then we could further decompose the yield target into targets for each step:

[image: image]

where Y1 and Y2 are yields of reaction steps 1 and 2. We could set equal targets for each step:

[image: image]

or we could use our knowledge of the process chemistry or biology to define a suitable allocation between the steps.

Note that the targets calculated are plant yields, not reactor yields. If costly unconverted feeds can be recycled, the plant yields translate into reactor selectivity targets, not reactor yield targets (see Section 2.3.3).

Note also that even in this simplistic example, the apparently very favorable economics quickly translated into rather tough targets for reactor performance.








2.6.4 Use of Heuristic Rules in Process Synthesis

Heuristic is an adjective, meaning “of, or pertaining to, or based on, experimentation, evaluation, or trial and error methods,” which pretty much sums up most engineering knowledge. The terms heuristic rules or design heuristics are commonly used to describe rules of thumb and design guidelines that have been developed based on experience. Experience is good, but it is rarely acquired instantly or bought cheaply. Design guidelines based on generalizations are only useful if the designer has sufficient experience to understand when to apply the guideline and when to make an exception.

There is often confusion about what constitutes a design heuristic. Consider the following statements, most of which have been made in this chapter:


1. “The heat of condensation of steam is about 2000 kJ/kg.”

2. “Pressure drop is usually proportional to velocity squared.”

3. “Feedstock costs are typically at least 80% of the total cost of production.”

4. “Capital costs can be annualized by dividing by 3.”

5. “When designing reaction and separation steps, use proven process subsections as much as possible.”



Statement 1 is a convenient data approximation. It is accurate within ± 10% for saturated steam over a temperature range from 100 °C to 240 °C, which covers most temperatures at which steam is used for process heating. Remembering this fact may save an engineer some time when carrying out hand calculations, but it does not provide any guidance for design.

Statement 2 is a convenient summary of several correlations for pressure drop. It may be very useful for making quick calculations in revamp designs, but again provides no guidance for design.

Statement 3 is a generalization that can be useful as a rough check on cost of production calculations. As illustrated in Example 2.8, it can also be used as a basis for setting initial targets in process synthesis. It is, however, rather too general to provide guidance in design.

Statement 4 is one way of annualizing capital costs. It would be equally valid to state “Capital costs can be annualized by dividing by 2” or “…by dividing by 5,” depending on the assumptions made. The basis for deriving these numbers is given in Section 9.7.2.

Statement 5 is clearly a design guideline based on a general desire to minimize the number of unproven concepts in the flowsheet.

Although all of these statements are useful as rules of thumb and can help make quick calculations to assess a design, only statement 5 actually provides guidance on how to design a process. It might be very useful for an engineer to recall approximate data and generalizations, and several compilations of such rules of thumb have been written (Chopey, 1984; Fisher, 1991; Branan, 2005), but these are only helpful in process design when making quick calculations in meetings.

Some design texts provide extensive lists of rules of thumb and selection guidelines. That approach is not adopted here, as heuristics easily lose their meaning when taken out of context. For example, one design text gives the rule for vessel design: “optimal length to diameter ratio = 3,” This is questionable even for horizontal and vertical flash drums (see Section 16.3), but is clearly nonsense when wrongly applied to reactors and distillation columns. Inexperienced engineers often have difficulty determining when to apply such heuristic rules, so in this text all shortcut calculations, convenient approximations, and design guidelines will be presented and explained under the relevant design topic.

The most important heuristic rule, which should always be followed, is

“Never use a heuristic rule unless you understand where it came from and how it was derived.”




2.6.5 Role of Optimization in Process Synthesis

Optimization methods are used in process synthesis to select the best flowsheet options, process conditions, and equipment sizes. The designer must be reasonably sure that design alternatives have been optimized before selecting between them. Optimization underpins all design decisions, and the subject is addressed in more detail in Chapter 12.

The problem that is often encountered when applying optimization methods in process synthesis is that insufficient data are available to properly formulate an optimization problem. For example, it would be good to optimize reactor performance as soon as possible, but the research team may not yet have collected data in the presence of recycle streams or at conditions close to the optimal reactor conditions. Under the circumstances, the designer must optimize the design with the data available and then revisit the optimization later when more data have been collected and the reaction kinetics model has been updated.

Most processes are too complex to formulate a single optimization problem that includes all possible structural flowsheet variations as well as all continuous process variables. Instead, different aspects of flowsheet synthesis are usually treated as separate optimization tasks. It is, however, important to have an overall optimization model that captures the major design trade-offs. The cost of production model developed in the preliminary economic assessment can serve as an initial model for optimization. The optimization of subproblems is discussed in Section 12.5.






2.7 PFD Review

The most important step in developing a process flowsheet is for the PFD to be rigorously reviewed. This is true regardless of whether the flowsheet is for an established design, a revamp, or a newly invented process. The purpose of a PFD review is to review the design decisions and assumptions and ensure that the flowsheet is complete and shows all the equipment needed to really operate the process.

A PFD review is usually attended by the design team and a few outside experts. These may include:


• Senior managers

• Technical experts on process design

• Technical experts on process chemistry, catalysis, or biology

• Equipment or plant design experts

• Process safety experts

• Metallurgists

• Plant operations staff

• Plant mechanical engineers

• Process control engineers



Some companies have rules and procedures governing who must be present at a PFD review, but the review can be effective with only a few people as long as they engage actively with the team.


2.7.1 PFD Review Procedure

A PFD review is usually carried out as a group exercise. A large printout of the PFD is typically taped or pinned to a wall so that the group can mark up corrections, notes, and other revisions as the review proceeds. The PFD is usually drawn well spaced out to leave room for additions, and may run to several sheets of drawings. One member of the group takes notes and documents any actions that are agreed or concerns that are raised. If the heat and material balances and stream conditions are not shown on the PFD, printouts are usually provided for the reviewers.

For complex processes, a PFD review may begin with a brief overview of the process chemistry and block flow diagram to establish the context for the reviewers. In some cases the design basis assumptions are also reviewed at the start.

The main part of a PFD review is a “walkthrough” of the process by the process design engineer. Starting with one feed stream, the designer follows the stream from storage through all the process operations that it encounters. At each process operation, the designer explains the purpose of the operation, the design criteria, and the resulting condition of the stream at the exit. For example, the feed section shown in Figure 2.29 would be described as follows:

Feed of 99% pure technical grade A leaves floating roof storage tank T101 through line 101 at ambient conditions. The governing ambient temperature for heater design is winter low temperature of −5 °C and for pump design is summer high temperature of 30 °C. Stream 101 is pumped by centrifugal pump 101 to a pressure of 10 bar gauge, forming stream 102. Pump 101 has a standby spare, shown. Flow of feed A is regulated by flow control valve FCV100, with design pressure drop 1.3 bar. Stream 103 exits FCV100 and is sent to steam heater E101. The purpose of heater E101 is to heat feed to the reaction temperature of 180 °C. High pressure steam at 240 °C is used as heat source. The steam rate is controlled by temperature controller TC101, which receives input from temperature indicator on the process stream leaving E101 in Stream 104. The steam has been placed tube side in E101 because the process stream is nonfouling and steam is at high pressure, so this is expected to lead to lowest cost design. A pressure drop allowance of 0.7 bar has been assigned to E101. Stream 104 leaves E101 at the desired reactor feed temperature of 180 °C and at reactor pressure 8 bar gauge, and enters reactor R1.

[image: image]

Figure 2.29 Feed to a reactor.

As the designer steps through the PFD, the review group asks questions to challenge the design assumptions and identify potential missing equipment. In the previous example, some relevant questions could have been:


• Is it necessary to pass the feed through a filter before FCV100 to remove any crud that accumulated in the tank or came in with the feed?

• Why use HP steam to heat all the way from ambient temperature? Couldn’t process heat recovery be used for at least part of the heating?

• Why not use LP steam to heat to 110 °C then HP steam to final temperature?

• Should FCV100 be a separate control loop? Shouldn’t it be in ratio to other reactor feeds?

• Did the team look at using a variable speed drive on the pump to regulate flow instead of a pump and control valve? This would give lower energy consumption.

• What was the basis for choosing 180 °C and 8 bar gauge as the reactor conditions?

• Does the feed need to enter the reactor at reactor conditions? Would a colder or hotter feed reduce the reactor cooling or heating duty?



Some additional typical PFD review questions are given in Table 2.2.

Table 2.2. Sample Questions That Can Be Asked in a PFD Review



	Process Section
	Questions



	Feed preparation
	How is (each) feed delivered?

		How is (each) feed stored?

		How much inventory of (each) feed is required?

		How is feed transferred from storage to the process?

		How is the rate of feed supply controlled?

		Is any feed pretreatment necessary before the feed is sent to the process?

		For solid feeds, is any feed size adjustment necessary?

		Is any heating or cooling needed before the feed is sent to the process?

	Reaction
	What are the reacting species?

		What side reactions occur?

		What are the reaction conditions and why were they chosen?

		How are the reaction conditions maintained or controlled?

		How are inventories of solids, liquid or vapor in the reactor controlled?

		What are the reactor design specifications (e.g. residence time, interfacial area)?

		What are the estimated reactor yield and selectivity?

		What reactor type was chosen and why was it selected?

		Is a catalyst used? If so, is the catalyst stable or does it require periodic regeneration?

		Is heat addition or removal necessary?

		Are there specific safety issues that should be considered?

		(Additional information on reactor design is given in Chapter 15, which may prompt more questions)

	Product Recovery
	What is the purpose of each separation?

		What are the process conditions (temperature, pressure, etc.)?

		What are the equipment specifications (recovery, purity, etc.)?

		Why was a particular separation selected?

		Is heat removal or addition necessary?

		Can heat addition or removal be accomplished by process-to-process heat transfer?

		How are inventories of vapor, liquid or solid controlled in each operation?

		How is the operation controlled to achieve the desired specifications?

		Are there specific safety issues that should be considered?

	Purification
	What are the final product specifications?

		What are the specifications for any byproducts?

		What are the specifications for any effluents discharged to the environment?

		What are the specifications for any recycle streams returned to the process?

		What are the specifications for any waste streams sent to disposal?

		How are final purity specifications on any stream leaving the process achieved?

		How is the process controlled to ensure that purity specifications can be achieved?




If the questions lead to modifications to the flowsheet that are immediately obvious and agreed by all the reviewers, then these are marked up as corrections. If further analysis is required before deciding on a modification, it is noted as a follow-up action for the team.

The same procedure is followed for every stream in the PFD. Since it is often necessary to jump from one drawing or section of the flowsheet to another and back again, it is a good idea to mark streams with a highlighter when they have been completed so that the group does not overlook any streams.

Sufficient time must be allowed to complete the PFD review to the satisfaction of all the reviewers. The amount of time needed depends on the complexity and novelty of the design and the familiarity of the reviewers with the technology. For complex designs, a full PFD review can take several days to complete.




2.7.2 PFD Review Documentation and Issue Resolution

The notes taken at a PFD review usually include a long list of items that require follow-up by the design team. It is a good idea to include these notes and a description of how any issues and concerns were resolved in the design documentation. The notes should be circulated to meeting attendees immediately after the PFD review meeting to ensure that all issues were correctly captured.

If a PFD review indicated a need for substantial modification of the flowsheet, the group should reconvene after the modifications have been made to review the modified PFD. In process synthesis projects, several rounds of PFD review may be necessary.






2.8 Overall Procedure for Flowsheet Development

Figure 2.30 shows an overall strategy for flowsheet selection and development. The chart in Figure 2.30 will generally lead to the selection of a commercially-proven process or a modification of such a process when one exists. This reflects the commercial reality that very few business leaders are willing to risk a large sum of money (and their career and reputation) on unproven technology unless the financial return is very good and no good alternatives are available. Although process synthesis is very enjoyable as a creative activity, the industrial practice of process design is usually more concerned with delivering designs that will work reliably and quickly make money to generate a return on investment. Successful companies are usually good at focusing the creativity of their employees on critical areas where innovation can provide a competitive advantage, without turning every project into an open-ended research problem.

[image: image]

Figure 2.30 Overall procedure for flowsheet development.
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Nomenclature


			Dimensions in MLT



	A
	Area for heat exchange
	L2

	Cp,f
	Specific heat capacity of feed
	L2 T−2 θ−1

	Cp,i
	Specific heat capacity of stream i
	L2 T−2 θ−1

	Cp,p
	Specific heat capacity of product
	L2 T−2 θ−1

	F
	Unknown flow, Example 2.6
	MT−1

	Fcw
	Flow rate of cooling water
	MT−1

	Ft
	Log mean temperature difference correction factor (see Chapter 19)
	—

	mf
	Mass flow rate of feed
	MT−1

	mi
	Mass flow rate of stream i
	MT−1

	mp
	Mass flow rate of product
	MT−1

	Q
	Rate of heat transfer
	ML2 T−3

	SV
	Space velocity
	T−1

	T1
	Unknown temperature, Example 2.7
	θ

	T2
	Unknown temperature, Example 2.7
	θ

	T3
	Unknown temperature, Example 2.7
	θ

	Ts
	Steam temperature
	θ

	Tw
	Cooling water outlet temperature
	θ

	ΔTi
	Change in temperature of stream i for a stream undergoing sensible heat changes
	θ

	ΔTlm
	Logarithmic mean temperature difference
	θ

	ΔTm
	Mean temperature difference for heat transfer
	θ

	U
	Overall heat transfer coefficient
	MT−3 θ−1

	V
	Reactor volume
	L3

	Vcat
	Catalyst fixed bed volume
	L3

	v
	Volumetric flow rate
	L3 T−1

	X
	Unknown flow, Examples 2.1, 2.5
	MT−1

	Y
	Unknown flow, Example 2.5
	MT−1

	Z
	Unknown flow, Example 2.5
	MT−1

	τ
	Residence time
	T






Problems

2.1. Cinnamic aldehyde (a fragrance compound) can be made by base-catalyzed aldol condensation reaction between benzaldehyde and acetaldehyde. The feeds are contacted with sodium hydroxide in a stirred tank reactor. The product is neutralized and washed with water to remove salts. The washed product is usually separated by batch distillation, in which unreacted feeds are recovered first, followed by product, and a polymeric waste is left as residue. The batch distillation product can be further purified by vacuum distillation. Sketch a block flow diagram of the process.

2.2. Cumene is made by alkylation of benzene with propylene over zeolitic catalyst. To maximize selectivity to desired products, several beds of catalyst are used inside the same reactor. A mixture of feed and recycle benzene enters the top of the reactor and the feed propylene is split so that a portion of the propylene is fed to each catalyst bed. A large excess of benzene is used, to minimize propylene oligomerization and ensure complete reaction of propylene. The reactor product is cooled and sent to a stabilizer column that removes any light hydrocarbons. The bottoms from this column is sent to a benzene column that recovers benzene overhead for recycle to the alkylation and transalkylation reactors. The bottoms from the benzene column is distilled to give cumene product and a heavy stream. The heavy stream is further distilled in a heavies column to give a mixture of dipropyl- and tripropyl-benzene overhead and a heavy waste stream as bottoms. The distillate from the heavies column is sent to a transalkylation reactor and reacted with excess benzene. The product from the transalkylation reactor is returned to the benzene column. Sketch a block flow diagram of the process.

2.3. Cyclosporin A is produced by fermentation using either Cylindrocarpon lucidum Booth or Tolypocladium inflatum Gams. The fermentation is carried out in batch reactors, which are filled with a feed medium, inoculated with the fungi, and aerated for a period of 13 days. The reactor product is milled and extracted with 90% methanol. The methanol is evaporated off to give an aqueous solution that is then extracted with ethylene chloride. The organic solution is evaporated to dryness and then the product is purified by chromatography in methanol over aluminum oxide or silica gel. Sketch a block flow diagram of the process.

2.4. The composition of a gas derived by the gasification of coal is, volume percentage: carbon dioxide 4, carbon monoxide 16, hydrogen 50, methane 15, ethane 3, benzene 2, balance nitrogen. If the gas is burnt in a furnace with 20% excess air, calculate


a. the amount of air required per 100 kmol of gas,

b. The amount of flue gas produced per 100 kmol of gas,

c. the composition of the flue gases, on a dry basis.



Assume complete combustion.

2.5. The off-gases from a gasoline stabilizer are fed to a steam reforming plant to produce hydrogen.

The composition of the off-gas, molar%, is: CH4 77.5, C2H6 9.5, C3H8 8.5, C4H10 4.5.

The gases entering the reformer are at a pressure of 2 bara and 35 °C and the feed rate is 2000 m3/h.

The reactions in the reformer are

[image: image]

The molar conversion of C2H2n+2 in reaction (1) is 96% and of CO in reaction (2) is 92%.

Calculate


a. the average molecular mass of the off-gas,

b. the mass of gas fed to the reformer, kg/h,

c. the mass of hydrogen produced, kg/h.



2.6. Allyl alcohol can be produced by the hydrolysis of allyl chloride. Together with the main product, allyl alcohol, diallyl ether is produced as a byproduct. The conversion of allyl chloride is typically 97% and the selectivity to alcohol is 90%, both on a molar basis. Assuming that there are no other significant side reactions, calculate masses of alcohol and ether produced, per 1000 kg of allyl chloride fed to the reactor.

2.7. Aniline is produced by the hydrogenation of nitrobenzene. A small amount of cyclo-hexylamine is produced as a byproduct. The reactions are:

[image: image]

Nitrobenzene is fed to the reactor as a vapor, with three times the stoichiometric quantity of hydrogen. The conversion of the nitrobenzene, to all products, is 96%, and the selectivity for aniline is 95%.

The unreacted hydrogen is separated from the reactor products and recycled to the reactor. A purge is taken from the recycle stream to maintain the inerts in the recycle stream below 5%. The fresh hydrogen feed is 99.5% pure, the remainder being inerts. All percentages are molar.

For a feed rate of 100 kmol/h of nitrobenzene, calculate


a. the fresh hydrogen feed,

b. the purge rate required,

c. the composition of the reactor outlet stream.



2.8. Guaifenesin (Guaiacol glyceryl ether, 3-(2-Methoxyphenoxy)-1,2-propanediol, C10H14O4) is an expectorant that is found in cough medicines such as Actifed™ and Robitussin™. U.S. 4,390,732 (to Degussa) describes a preparation of the active pharmaceutical ingredient (API) from guaiacol (2-methoxyphenol, C7H8O2) and glycidol (3-hydroxy propylene oxide, C3H6O2). When the reaction is catalyzed by NaOH, the reaction yield is 93.8%. The product is purified in a thin-film evaporator giving an overall plant yield of 87%.

a. Estimate the feed flow rates of glycidine and guaiacol that would be needed to produce 100 kg/day of the API.

b. Estimate how much product is lost in the thin-film evaporator.

c. How would you recover the product lost in the evaporator?



2.9. 11-[N-ethoxycarbonyl-4-piperidylidene]-8-chloro-6,11-dihydro-5H-benzo-[5,6]-cyclohepta-[1,2-b]-pyridine (C22H23ClN2O2) is a nonsedative antihistamine, known as Loratadine and marketed as Claritin™. The preparation of the active pharmaceutical ingredient (API) is described in U.S. 4,282,233 (to Schering). The patent describes reacting 16.2g of 11-[N-methyl-4-piperidylidene]-8-chloro-6,11-dihydro-5H-benzo-[5,6]-cyclohepta-[1,2-b]-pyridine (C20H21ClN2) in 200ml of benzene with 10.9g of ethylchloroformate (C3H5ClO2) for 18 hours. The mixture is cooled, poured into ice water, and separated into aqueous and organic phases. The organic layer is washed with water and evaporated to dryness. The residue is triturated (ground to a fine powder) with petroleum ether and recrystallized from isopropyl ether.

a. What is the reaction byproduct?

b. The reaction appears to be carried out under conditions that maximize both selectivity and conversion (long time at low temperature), as might be expected given the cost of the raw material. If the conversion is 99.9% and the selectivity for the desired ethoxycarbonyl substituted compound is 100%, how much excess ethylchloroformate remains at the end of the reaction?

c. What fraction of the ethylchloroformate feed is lost to waste products?

d. Assuming that the volumes of water and isopropyl ether used in the quenching, washing, and recrystallization steps are the same as the initial solvent volume, and that none of these materials are reused in the process, estimate the total mass of waste material produced per kg of the API.

e. If the recovery (plant yield) of the API from the washing and recrystallization steps is 92%, estimate the feed flow rates of 11-[N-methyl-4-piperidylidene]-8-chloro-6,11-dihydro-5H-benzo-[5,6]-cyclohepta-[1,2-b]-pyridine and ethylchloroformate required to produce a batch of 10[image: ent]kg of the API.

f. How much API could be produced per batch in a 3.8[image: ent]m3 (1000 US gal) reactor?

g. What would be the advantages and disadvantages of carrying out the other process steps in the same vessel?

h. Sketch a block flow diagram of the process.



2.10. Describe the main commercial process used to make each of the following compounds. Include a block flow diagram.

a. Phosphoric acid

b. Adipic acid

c. Polyethylene terephthalate

d. Insulin

e. Sorbitol



2.11. Example 2.7 introduced a heat exchange system revamp problem. If the plate heat exchanger E101 in Figure 2.19 is the gasketed-plate type, then the exchanger area can be increased by adding plates to the exchanger. How much additional area must be added to E101 to allow the system to operate at 50% above base case flow rate with no changes in temperature of steam or cooling water feed temperatures and no modification to exchangers E102 and E103?

2.12. Styrene is made by dehydrogenation of ethylbenzene, which is formed by alkylation of benzene with ethylene. Propose target yields for the alkylation and dehydrogenation steps if the forecasted prices per metric ton are styrene $800, ethylene $800, and benzene $500.

Note: Structures for the compounds in Problems 2.3, 2.8, and 2.9 can be found in the Merck Index, but are not required to solve the problems.




Chapter 3

Utilities and Energy Efficient Design

Key Learning Objectives

• How processes are heated and cooled

• The systems used for delivering steam, cooling water, and other site utilities

• Methods used for recovering process waste heat

• How to use the pinch design method to optimize process heat recovery

• How to design a heat-exchanger network

• How energy is managed in batch processes




3.1 Introduction

Very few chemical processes are carried out entirely at ambient temperature. Most require process streams to be heated or cooled to reach the desired operation temperature, to add or remove heats of reaction, mixing, adsorption, etc., to sterilize feed streams, or to cause vaporization or condensation. Gas and liquid streams are usually heated or cooled by indirect heat exchange with another fluid: either another process stream or a utility stream such as steam, hot oil, cooling water, or refrigerant. The design of heat exchange equipment for fluids is addressed in Chapter 19. Solids are usually heated and cooled by direct heat transfer, as described in Chapter 18. This chapter begins with a discussion of the different utilities that are used for heating, cooling, and supplying other needs such as power, water, and air to a process.

The consumption of energy is a significant cost in many processes. Energy costs can be reduced by recovering waste heat from hot process streams and by making use of the fuel value of waste streams. Section 3.4 discusses how to evaluate waste stream combustion as a source of process heat. Section 3.3 introduces other heat recovery approaches.

When it is economically attractive, heating and cooling are accomplished by heat recovery between process streams. The design of a network of heat exchangers for heat recovery can be a complex task if there are many hot and cold streams in a process. Pinch analysis, introduced in Section 3.5, is a systematic method for simplifying this problem.

The efficient use of energy in batch and cyclic processes is made more complicated by the sequential nature of process operations. Some approaches to energy efficient design of batch and cyclic processes are discussed in Section 3.6.




3.2 Utilities

The word “utilities” is used for the ancillary services needed in the operation of any production process. These services are normally supplied from a central site facility, and include:


1. Electricity

2. Fuel for fired heaters

3. Fluids for process heating


a. Steam

b. Hot oil or specialized heat transfer fluids



4. Fluids for process cooling


a. Cooling water

b. Chilled water

c. Refrigeration systems



5. Process water


a. Water for general use

b. Demineralized water



6. Compressed air

7. Inert-gas supplies (usually nitrogen)



Most plants are located on sites where the utilities are provided by the site infrastructure. The price charged for a utility is mainly determined by the operating cost of generating and transmitting the utility stream. Some companies also include a capital recovery charge in the utility cost, but if this is done then the offsite (OSBL) capital cost of projects must be reduced to avoid double counting and biasing the project capital-energy trade-off, leading to poor use of capital.

Some smaller plants purchase utilities “over the fence” from a supplier such as a larger site or a utility company, in which case the utility prices are set by contract and are typically pegged to the price of natural gas, fuel oil, or electricity.

The utility consumption of a process cannot be estimated accurately without completing the material and energy balances and carrying out a pinch analysis, as described in Section 3.5.6. The pinch analysis gives targets for process heat recovery and hence for the minimum requirements of hot and cold utilities. More detailed optimization then translates these targets into expected demands for fired heat, steam, electricity, cooling water, and refrigeration. In addition to the utilities required for heating and cooling, the process may also need process water and air for applications such as washing, stripping, and instrument air supply. Good overviews of methods for design and optimization of utility systems are given by Smith (2005) and Kemp (2007).


3.2.1 Electricity

The electricity demand of the process is mainly determined by the work required for pumping, compression, air coolers, and solids-handling operations, but also includes the power needed for instruments, lights, and other small users. The power required may be generated on site, but will more usually be purchased from the local supply company. Some plants generate their own electricity using a gas-turbine cogeneration plant with a heat recovery steam generator (waste-heat boiler) to raise steam (Figure 3.1). The overall thermal efficiency of such systems can be in the range 70% to 80%; compared with the 30% to 40% obtained from a conventional power station, where the heat in the exhaust steam is wasted in the condenser. The cogeneration plant can be sized to meet or exceed the plant electricity requirement, depending on whether the export of electricity is an attractive use of capital. This “make or buy” scenario gives chemical producers strong leverage when negotiating electric power contracts and they are usually able to purchase electricity at or close to wholesale prices. Wholesale electricity prices vary regionally (see www.eia.gov for details), but are typically about $0.06/kWh in North America at the time of writing.
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Figure 3.1 Gas-turbine-based cogeneration plant.

The voltage at which the supply is taken or generated will depend on the demand. In the United States, power is usually transmitted over long distances at 135, 220, 550, or 750 kV. Local substations step the power down to 35 to 69 kV for medium voltage transmission and then to 4 to 15 kV local distribution lines. Transformers at the plant are used to step down the power to the supply voltages used on site. Most motors and other process equipment run on 208 V three-phase power, while 120/240 V single-phase power is used for offices, labs, and control rooms.

On any site it is always worth considering driving large compressors and pumps with steam turbines instead of electric motors and using the exhaust steam for local process heating.

Electric power is rarely used for heating in large-scale chemical plants, although it is often used in smaller batch processes that handle nonflammable materials, such as biological processes. The main disadvantages of electrical heating for large-scale processes are:


• Heat from electricity is typically two to three times more expensive than heat from fuels, because of the thermodynamic inefficiency of power generation.

• Electric heating requires very high power draws that would substantially increase the electrical infrastructure costs of the site.

• Electric heating apparatus is expensive, requires high maintenance, and must comply with stringent safety requirements when used in areas where flammable materials may be present.

• Electric heaters are intrinsically less safe than steam systems. The maximum temperature that a steam heater can reach is the temperature of the steam. The maximum temperature of an electric heater is determined by the temperature controller (which could fail) or by burn-out of the heating element. Electric heaters therefore have a higher probability of overheating.



Electric heating is more likely to be attractive in small-scale batch or cyclic processes, particularly when the cost of heating is a small fraction of overall process costs and when the process calls for rapid on-off heating.

A detailed account of the factors to be considered when designing electrical distribution systems for chemical process plants, and the equipment used (transformers, switch gear, and cables), is given by Silverman (1964). Requirements for electrical equipment used in hazardous (classified) locations are given in the National Electrical Code (NFPA 70), as described in Section 10.3.5.




3.2.2 Fired Heat

Fired heaters are used for process heating duties above the highest temperatures that can be reached using high pressure steam, typically about 250 °C (482 °F). Process streams may be heated directly in the furnace tubes, or indirectly using a hot oil circuit or heat transfer fluid, as described in Section 3.2.4. The design of fired heaters is described in Section 19.17. The cost of fired heat can be calculated from the price of the fuel fired. Most fired process heaters use natural gas as fuel, as it is cleaner burning than fuel oil and therefore easier to fit NOx control systems and obtain permits. Natural gas also requires less maintenance of burners and fuel lines and natural gas burners can often co-fire process waste streams such as hydrogen, light organic compounds, or air saturated with organic compounds.

Natural gas and heating oil are traded as commodities and prices can be found at any online trading site or business news site (e.g., www.cnn.money.com). Historic prices for forecasting can be found in the Oil and Gas Journal or from the U.S. Energy Information Adminstration (www.eia.gov).

The fuel consumed in a fired heater can be estimated from the fired heater duty divided by the furnace efficiency. The furnace efficiency will typically be about 0.85 if both the radiant and convective sections are used (see Chapter 19) and about 0.6 if the process heating is in the radiant section only.

Example 3.1

Estimate the annual cost of providing heat to a process from a fired heater using natural gas as fuel if the process duty is 4 MW and the price of natural gas is $3.20/MMBtu (million Btu).


Solution

If we assume that the fired heater uses both the radiant and convective sections then we can start by assuming a heater efficiency of 0.85, so
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Assuming 8000 operating hours per year, the total annual fuel consumption would be
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Note that if we had decided to carry out all of the heating in the radiant section only, then the fuel required would have been 4/0.6[image: ent]=[image: ent]6.67 MW and the annual cost of heating would increase to $582,600 unless we could find some other process use for the heat available in the convective section of the heater.








3.2.3 Steam

Steam is the most widely-used heat source in most chemical plants. Steam has a number of advantages as a hot utility:


• The heat of condensation of steam is high, giving a high heat output per pound of utility at constant temperature (compared to other utilities such as hot oil and flue gas that release sensible heat over a broad temperature range).

• The temperature at which heat is released can be precisely controlled by controlling the pressure of the steam. This enables tight temperature control, which is important in many processes.

• Condensing steam has very high heat transfer coefficients, leading to cheaper heat exchangers.

• Steam is nontoxic, nonflammable, visible if it leaks externally, and inert to many (but not all) process fluids.



Most sites have a pipe network supplying steam at three or more pressure levels for different process uses. A typical steam system is illustrated in Figure 3.2. Boiler feed water at high pressure is preheated and fed to boilers where high pressure steam is raised and superheated above the dew point to allow for heat losses in the piping. Boiler feed water preheat can be accomplished using process waste heat or convective section heating in the boiler plant. High pressure (HP) steam is typically at about 40 bar, corresponding to a condensing temperature of 250 °C, but every site is different. Some of the HP steam is used for process heating at high temperatures. The remainder of the HP steam is expanded either through let-down valves or steam turbines known as back-pressure turbines to form medium pressure (MP) steam. The pressure of the MP steam mains varies widely from site to site, but is typically about 20 bar, corresponding to a condensing temperature of 212 °C. Medium pressure steam is used for intermediate temperature heating or expanded to form low pressure (LP) steam, typically at about 3 bar, condensing at 134 °C. Some of the LP steam may be used for process heating if there are low-temperature heat requirements. Low pressure (or MP or HP) steam can also be expanded in condensing turbines to generate shaft work for process drives or electricity production. A small amount of LP steam is used to strip dissolved noncondensable gases such as air from the condensate and make-up water. Low pressure steam is also often used as “live steam” in the process, for example, as stripping vapor or for cleaning, purging, or sterilizing equipment.
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Figure 3.2 Steam system.

When steam is condensed without coming into contact with process fluids, the hot condensate can be collected and returned to the boiler feed water system. Condensate can also sometimes be used as a low-temperature heat source if the process requires low-temperature heat.

The price of HP steam can be estimated from the cost of boiler feed water treatment, the price of fuel, and the boiler efficiency:

[image: image] (3.1)

where PHPS[image: ent]=[image: ent]price of high pressure steam ($/1000 lb, commonly written $/Mlb)

PF[image: ent]=[image: ent]price of fuel ($/MMBtu)

dHb[image: ent]=[image: ent]heating rate (MMBtu/Mlb steam)

ηB[image: ent]=[image: ent]boiler efficiency

PBFW[image: ent]=[image: ent]price or cost of boiler feed water ($/Mlb)

Package boilers typically have efficiencies similar to fired heaters, in the range 0.8 to 0.9.

The heating rate should include boiler feed water preheat, the latent heat of vaporization, and the superheat specified.

The steam for process heating is usually generated in water-tube boilers, using the most economical fuel available.

The cost of boiler feed water includes allowances for water make-up, chemical treatment, and degassing, and is typically about twice the cost of raw water; see Section 3.2.7. If no information on the price of water is available, then 0.50 $/1000 lb can be used as an initial estimate. If the steam is condensed and the condensate is returned to the boiler feed water (which will normally be the case), then the price of steam should include a credit for the condensate. The condensate credit will often be close enough to the boiler feed water cost that the two terms cancel each other out and can be neglected.

The prices of medium and low pressure steam are usually discounted from the high pressure steam price, to allow for the shaft work credit that can be gained by expanding the steam through a turbine, and also to encourage process heat recovery by raising steam at intermediate levels and using low-grade heat when possible. Several methods of discounting are used. The most rational of these is to calculate the shaft work generated by expanding the steam between levels and price this as equivalent to electricity (which could be generated by attaching the turbine to a dynamo or else would be needed to run a motor to replace the turbine if it is used as a driver). The value of the shaft work then sets the discount between steam at different levels. This is illustrated in the following example.

Example 3.2

A site has steam levels at 40 bar, 20 bar, and 6 bar. The price of fuel is $6/MMBtu and electricity costs $0.05/kWh. If the boiler efficiency is 0.8 and the steam turbine efficiency is 0.85, suggest prices for HP, MP, and LP steam.


Solution

The first step is to look up the steam conditions, enthalpies, and entropies in steam tables:
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The steam will be superheated above the saturation temperature to allow for heat losses in the pipe network. The following superheat temperatures were set to give an adequate margin above the saturation temperature for HP steam and also to give (roughly) the same specific entropy for each steam level. The actual superheat temperatures of MP and LP steam will be higher, due to the nonisentropic nature of the expansion.
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We can then calculate the difference in enthalpy between levels for isentropic expansion:



	Isentropic delta enthalpy (kJ/kg)
	189
	268




Multiplying by the turbine efficiency gives the nonisentropic enthalpy of expansion:



	Actual delta enthalpy (kJ/kg)
	161
	228




This can be converted to give the shaft work in customary units:



	Shaft work (kWh/Mlb)
	20.2
	28.7




Multiplying by the price of electricity converts this into a shaft work credit:



	Shaft work credit ($/Mlb)
	1.01
	1.44




The price of high pressure steam can be found from Equation 3.1, assuming that the boiler feed water cost is cancelled out by a condensate credit. The other prices can then be estimated by subtracting the shaft work credits.
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For quick estimates, this example can easily be coded into a spreadsheet and updated with the current prices of fuel and power. A sample steam costing spreadsheet is available in the online material at booksite.elsevier.com/Towler.








3.2.4 Hot Oil and Heat Transfer Fluids

Circulating systems of hot oil or specialized heat transfer fluids are often used as heat sources in situations where fired heat or steam are not suitable. Heat transfer fluids and mineral oils can be used over a temperature range from 50 °C to 400 °C. The upper temperature limit on use of hot oils is usually set by thermal decomposition of the oil, fouling, or coking of heat-exchange tubes. Some heat transfer fluids are designed to be vaporized and condensed in a similar manner to the steam system, though at lower pressures; however, vaporization of mineral oils is usually avoided, as less volatile components in the oil could accumulate and decompose, causing accelerated fouling.

The most common situation where a hot oil system is used is in plants that have many relatively small high-temperature heating requirements. Instead of building several small fired heaters, it can be more economical to supply heat to the process from circulating hot oil streams and build a single fired heater that heats the hot oil. Use of hot oil also reduces the risk of process streams being exposed to high tube-wall temperatures that might be experienced in a fired heater. Hot oil systems are often attractive when there is a high pressure differential between the process stream and HP steam and use of steam would entail using thicker tubes. Hot oil systems can sometimes be justified on safety grounds if the possibility of steam leakage into the process is very hazardous.

The most commonly used heat transfer fluids are mineral oils and Dowtherm A. Mineral oil systems usually require large flow rates of circulating liquid oil. When the oil is taken from a process stream, as is common in oil refining processes, then it is sometimes called a pump-around system. Dowtherm A is a mixture of 26.5 wt% diphenyl in diphenyl oxide. Dowtherm A is very thermally stable and is usually operated in a vaporization-condensation cycle similar to the steam system, although condensed liquid Dowtherm is sometimes used for intermediate temperature heating requirements. The design of Dowtherm systems and other proprietary heat transfer fluids are discussed in detail in Singh (1985) and Green and Perry (2007).

The cost of the initial charge of heat transfer fluid usually makes a negligible contribution to the overall cost of running a hot oil system. The main operating cost is the cost of providing heat to the hot oil in the fired heater or vaporizer. If a pumped liquid system is used then the pumping costs should also be evaluated. The costs of providing fired heat are discussed in Section 3.2.2. Hot oil heaters or vaporizers usually use both the radiant and convective sections of the heater and have heater efficiencies in the range 80% to 85%.




3.2.5 Cooling Water

When a process stream requires cooling at high temperature, various heat recovery techniques should be considered. These include transferring heat to a cooler process stream, raising steam, preheating boiler feed water, etc., as discussed in Section 3.3.

When heat must be rejected at lower temperatures, below about 120 °C (248 °F) (more strictly, below the pinch temperature), then a cold utility stream is needed. Cooling water is the most commonly used cold utility in the temperature range 120 °C to 40 °C, although air cooling is preferred in regions where water is expensive or the ambient humidity is too high for cooling water systems to operate effectively. The selection and design of air coolers are discussed in Section 19.16. If a process stream must be cooled to a temperature below 40 °C, cooling water or air cooling would be used down to a temperature in the range 40 °C to 50 °C, followed by chilled water or refrigeration down to the target temperature.

Natural and forced-draft cooling towers are generally used to provide the cooling water required on a site, unless water can be drawn from a convenient river or lake in sufficient quantity. Sea water, or brackish water, can be used at coastal sites and for offshore operations, but if used directly will require the use of more expensive materials of construction for heat exchangers (see Chapter 6). The minimum temperature that can be reached with cooling water depends on the local climate. Cooling towers work by evaporating part of the circulating water to ambient air, causing the remaining water to be chilled. If the ambient temperature and humidity are high, then a cooling water system will be less effective and air coolers or refrigeration would be used instead.

A schematic of a cooling water system is shown in Figure 3.3. Cooling water is pumped from the cooling tower to provide coolant for the various process cooling duties. Each process cooler is served in parallel and cooling water almost never flows to two coolers in series. The warmed water is returned to the cooling tower and cooled by partial evaporation. A purge stream known as a blowdown is removed upstream of the cooling tower, to prevent the accumulation of dissolved solids as water evaporates from the system. A make-up stream is added to compensate for evaporative losses, blowdown losses, and any other losses from the system. Small amounts of chemical additives are also usually fed into the cooling water to act as biocides and corrosion and fouling inhibitors.
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Figure 3.3 Schematic of cooling water system.

The cooling tower consists of a means of providing high surface area for heat and mass transfer between the warm water and ambient air, and a means of causing air to flow countercurrent to the water. The surface area for contact is usually provided by flowing the water over wooden slats or high-voidage packing. The cooled water is then collected at the bottom of the tower. In most modern cooling towers the air flow is induced by fans that are placed above the packed section of the tower. For very large cooling loads natural-draft cooling towers are used, in which a large hyperbolic chimney is placed above the packed section to induce air flow. Some older plants use spray ponds instead of cooling towers.

Cooling water systems can be designed using a psychrometric chart if the ambient conditions are known. A psychrometric chart is given in Figure 3.4. The cooling tower is usually designed so that it will operate effectively except under the hottest (or most humid) conditions that can be expected to occur no more than a few days each year.
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Figure 3.4 Psychrometric chart (adapted with permission from Balmer (2010)).

The ambient temperature and humidity can be plotted on the psychrometric chart, allowing the inlet air wet bulb temperature to be determined. This is the coldest temperature that the cooling water could theoretically reach; however, in practice most cooling towers operate with a temperature approach to the air wet bulb temperature of at least 2.8 °C (5 °F). Adding the approach temperature to the inlet air wet bulb temperature, we can then mark the outlet water condition on the saturation curve. For example, if the hottest ambient condition for design purposes is a dry bulb temperature of 35 °C (95 °F) with 80% humidity, then we can mark this point on the psychrometric chart (point A) and read the wet bulb temperature as roughly 32 °C (89.6 °F). Adding a 2.8 °C temperature approach would give a cold water temperature of about 35 °C (95 °F), which can then be marked on the saturation line (point B).

The inlet water condition, or cooling water return temperature, is found by optimizing the trade-off between water circulation costs and cooling tower cost. The difference between the cooling water supply (coldest) and return (hottest) temperatures is known as the range or cooling range of the cooling tower. As the cooling range is increased, the cost of the cooling tower is increased, but the water flow rate that must be circulated decreases, and hence the pumping cost decreases. Note that since most of the cooling is accomplished by evaporation of water rather than transfer of sensible heat to the air, the evaporative losses do not vary much with the cooling range. Most cooling towers are operated with a cooling range between 5 °F and 20 °F (2.8 °C to 11.1 °C). A typical initial design point would be to assume a cooling water return temperature about 10 °F (5.5 °C) hotter than the cold water temperature. In the example above, this would give a cooling water return temperature of 40.5 °C (105 °F), which can also be marked on the psychrometric chart (point C). The difference in air humidity across the cooling tower can now be read from the right-hand axis as the difference in moisture loadings between the inlet air (point A) and the outlet air (point C). The cooling tower design can then be completed by determining the cooling load of the water from an energy balance and hence determining the flow rate of air that is needed based on the change in air humidity between ambient air and the air exit condition. The exit air is assumed to have a dry bulb temperature equal to the cooling water return temperature, and the minimum air flow will be obtained when the air leaves saturated with moisture. Examples of the detailed design of cooling towers are given in Green and Perry (2007).

When carrying out the detailed design of a cooling tower it is important to check that the cooling system has sufficient capacity to meet the site cooling needs over a range of ambient conditions. In practice, multiple cooling water pumps are usually used so that a wide range of cooling water flow rates can be achieved. When new capacity is added to an existing site, the limit on the cooling system is usually the capacity of the cooling tower. If the cooling tower fans cannot be upgraded to meet the increased cooling duty, additional cooling towers must be added. In such cases, it is often cheaper to install air coolers for the new process rather than upgrading the cooling water system.

The cost of providing cooling water is mainly determined by the cost of electric power. Cooling water systems use power for pumping the cooling water through the system and for running fans (if installed) in the cooling towers. They also have costs for water make-up and chemical treatment. The power used in a typical recirculating cooling water system is usually between 1 and 2 kWh/1000 gal of circulating water. The costs of water make-up and chemical treatment usually add about $0.02/1000 gal.




3.2.6 Refrigeration

Refrigeration is needed for processes that require temperatures below those that can be economically obtained with cooling water, i.e., below about 40 °C. For temperatures down to around 10 °C, chilled water can be used. For lower temperatures, down to −30 °C, salt brines (NaCl and CaCl2) are sometimes used to distribute the “refrigeration” around the site from a central refrigeration machine. Large refrigeration duties are usually supplied by a standalone packaged refrigeration system.

Vapor compression refrigeration machines are normally used, as illustrated in Figure 3.5. The working fluid (refrigerant) is compressed as a vapor, and then cooled and condensed at high pressure, allowing heat rejection at high temperature in an exchanger known as a condenser. Heat is usually rejected to a coolant such as cooling water or ambient air. The liquid refrigerant is then expanded across a valve to a lower pressure, where it is vaporized in an exchanger known as an evaporator, taking up heat at low temperature. The vapor is then returned to the compressor, completing the cycle.
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Figure 3.5 Simple refrigeration cycle.

The working fluid for a refrigeration system must satisfy a broad range of requirements. It should have a boiling point that is colder than the temperature that must be reached in the process at a pressure that is above atmospheric pressure (to prevent leaks into the system). It should have a high latent heat of evaporation, to reduce refrigerant flow rate. The system should operate well below the critical temperature and pressure of the refrigerant, and the condenser pressure should not be too high or the cost will be excessive. The freezing temperature of the refrigerant must be well below the minimum operating temperature of the system. The refrigerant should also be nontoxic, nonflammable, and have minimal environmental impact.

A wide range of materials have been developed for use as refrigerants, most of which are halogenated hydrocarbons. In some situations ammonia, nitrogen, and carbon dioxide are used. Cryogenic gas separation processes usually use the process fluids as working fluid; for example, ethylene and propylene refrigeration cycles are used in ethylene plants.

Refrigeration systems use power to compress the refrigerant. The power can be estimated using the cooling duty and the refrigerator coefficient of performance (COP).

[image: image] (3.2)

The COP is a strong function of the temperature range over which the refrigeration cycle operates. For an ideal refrigeration cycle (a reverse Carnot cycle), the COP is

[image: image] (3.3)

where Te[image: ent]=[image: ent]evaporator absolute temperature (K)

Tc[image: ent]=[image: ent]condenser absolute temperature (K)

The COP of real refrigeration cycles is always less than the Carnot efficiency. It is usually about 0.6 times the Carnot efficiency for a simple refrigeration cycle, but can be as high as 0.9 times the Carnot efficiency if complex cycles are used. If the temperature range is too large then it may be more economical to use a cascaded refrigeration system, in which a low-temperature cycle rejects heat to a higher-temperature cycle that rejects heat to cooling water or ambient air. Good overviews of refrigeration cycle design are given by Dincer (2003), Stoecker (1998), and Trott and Welch (1999).

The operating cost of a refrigeration system can be determined from the power consumption and the price of power. Refrigeration systems are usually purchased as packaged modular plants and the capital cost can be estimated using commercial cost estimating software as described in Section 7.10. An approximate correlation for the capital cost of packaged refrigeration systems is also given in Table 7.2.

Example 3.3

Estimate the annual operating cost of providing refrigeration to a condenser with duty 1.2 MW operating at −5 °C. The refrigeration cycle rejects heat to cooling water that is available at 40 °C, and has an efficiency of 80% of the Carnot cycle efficiency. The plant operates for 8000 hours per year and electricity costs $0.06/kWh.


Solution

The refrigeration cycle needs to operate with an evaporator temperature below −5 °C, say at −10 °C or 263 K. The condenser must operate above 40 °C, say at 45 °C (318 K).

For this temperature range the Carnot cycle efficiency is

[image: image] (3.3)

If the cycle is 80% efficient then the actual coefficient of performance[image: ent]=[image: ent]4.78[image: ent]×[image: ent]0.8[image: ent]=[image: ent]3.83

The shaft work needed to supply 1.2 MW of cooling is given by
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The annual operating cost is then[image: ent]=[image: ent]313 kW[image: ent]×[image: ent]8000 h/y[image: ent]×[image: ent]0.06 $/kWh[image: ent]=[image: ent]150,000 $/y








3.2.7 Water

The water required for general purposes on a site will usually be taken from the local mains supply, unless a cheaper source of suitable quality water is available from a river, lake, or well. Raw water is brought in to make up for losses in the steam and cooling water systems and is also treated to generate demineralized and deionized water for process use. Water is also used for process cleaning operations and to supply fire hydrants.

The price of water varies strongly by location, depending on fresh water availability. Water prices are often set by local government bodies and often include a charge for waste water rejection. This charge is usually applied on the basis of the water consumed by the plant, regardless of whether that water is actually rejected as a liquid (as opposed to being lost as vapor or incorporated into a product by reaction). A very rough estimate of water costs can be made by assuming $2 per 1000 gal ($0.5 per metric ton).


Demineralized Water

Demineralized water, from which all the minerals have been removed by ion-exchange, is used where pure water is needed for process use, and as boiler feed water. Mixed and multiple-bed ion-exchange units are used; one resin converting the cations to hydrogen and the other removing the anions. Water with less than 1 part per million of dissolved solids can be produced. The design of ion exchange units is discussed in Section 16.5.5. Demineralized water typically costs about double the price of raw water, but this obviously varies strongly with the mineral content of the water and the disposal cost of blowdown from the demineralization system. A correlation for the cost of a water ion exchange plant is given in Table 7.2.






3.2.8 Compressed Air

Compressed air is needed for general use, for oxidation reactions, air strippers, aerobic fermentation processes, and for pneumatic control actuators that are used for plant control. Air is normally distributed at a mains pressure of 6 bar (100 psig), but large process air requirements are typically met with standalone air blowers or compressors. Rotary and reciprocating single-stage or two-stage compressors are used to supply utility and instrument air. Instrument air must be dry and clean (free from oil). Air is usually dried by passing it over a packed bed of molecular sieve adsorbent. For most applications, the adsorbent is periodically regenerated using a temperature-swing cycle. Temperature swing adsorption (TSA) is discussed in more detail in Section 16.2.1.

Air at 1 atmosphere pressure is freely available in most chemical plants. Compressed air can be priced based on the power needed for compression (see Section 20.6). Drying the air, for example for instrument air, typically adds about $0.005 per standard m3 ($0.14/1000 scf).


Cooling Air

Ambient air is used as a coolant in many process operations; for example, air cooled heat exchangers, cooling towers, solids coolers, and prilling towers. If the air flow is caused by natural draft then the cooling air is free, but the air velocity will generally be low, leading to high equipment cost. Fans or blowers are commonly used to ensure higher air velocities and reduce equipment costs. The cost of providing cooling air is then the cost of operating the fan, which can be determined from the fan power consumption. Cooling fans typically operate with very high flow rates and very low pressure drop, on the order of a few inches of water. The design of a cooling fan is illustrated in the discussion of air cooled heat exchangers in Section 19.16.






3.2.9 Nitrogen

Where a large quantity of inert gas is required for the inert blanketing of tanks and for purging (see Chapter 10) this will usually be supplied from a central facility. Nitrogen is normally used, and can be manufactured on site in an air liquefaction plant, or purchased as liquid in tankers.

Nitrogen and oxygen are usually purchased from one of the industrial gas companies via pipeline or a small dedicated “over-the-fence” plant. The price varies depending on local power costs, but is typically in the range $0.01 to $0.03 per lb for large facilities.






3.3 Energy Recovery

Process streams at high pressure or temperature contain energy that can be usefully recovered. Whether it is economical to recover the energy content of a particular stream depends on the value of the energy that can be usefully extracted and the cost of recovery. The value of the energy is related to the marginal cost of energy at the site. The cost of recovery will be the capital and operating cost of any additional equipment required. If the savings exceed the total annualized cost, including capital charges, then the energy recovery will usually be worthwhile. Maintenance costs should be included in the annualized cost (see Chapter 9).

Some processes, such as air separation, depend on efficient energy recovery for economic operation, and in all processes the efficient use of energy will reduce product cost.

When setting up process simulation models, the design engineer needs to pay careful attention to operations that have an impact on the energy balance and heat use within the process. Some common problems to watch out for include:


1. Avoid mixing streams at very different temperatures. This usually represents a loss of heat (or cooling) that could be better used in the process.

2. Avoid mixing streams at different pressures. The mixed stream will be at the lowest pressure of the feed streams. The higher pressure streams will undergo cooling as a result of adiabatic expansion. This may lead to increased heating or cooling requirements or lost potential to recover shaft work during the expansion.

3. Segment heat exchangers to avoid internal pinches. This is particularly necessary for exchangers where there is a phase change. When a liquid is heated, boiled, and superheated, the variation of stream temperature with enthalpy added looks like Figure 3.6. Liquid is heated to the boiling point (A–B), then the heat of vaporization is added (B–C) and the vapor is superheated (C–D). This is a different temperature-enthalpy profile than a straight line between the initial and final states (A–D). If the stream in Figure 3.6 were matched against a heat source that had a temperature profile like line E-F in Figure 3.7, then the exchanger would appear feasible based on the inlet and outlet temperatures, but would in fact be infeasible because of the cross-over of the temperature profiles at B. A simple way to avoid this problem is to break up the preheat, boiling, and superheat into three exchangers in the simulation model, even if they will be carried out in a single piece of equipment in the final design. The same problem also occurs with condensers that incorporate desuperheat and subcooling.

4. Check for heat of mixing. This is important whenever acids or bases are mixed with water. If the heat of mixing is large, two or more stages of mixing with intercoolers may be needed. If a large heat of mixing is expected, but is not predicted by the model, then check that the thermodynamic model includes heat of mixing effects.

5. Remember to allow for process inefficiency and design margins. For example, when sizing a fired heater, if process heating is carried out in the radiant section only, the heating duty calculated in the simulation is only 60% of the total furnace duty (see Sections 3.2.2 and 19.17). The operating duty will then be the process duty divided by 0.6. The design duty must be increased further by a suitable design factor, say 10%. The design duty of the fired heater is then 1.1/0.6[image: ent]=[image: ent]1.83 times the process duty calculated in the simulation.



[image: image]

Figure 3.6 Temperature-enthalpy profile for a stream that is vaporized and superheated.

[image: image]

Figure 3.7 Heat transfer to a stream that is vaporized and superheated.

Some of the techniques used for energy recovery in chemical process plants are described briefly in the following sections. The references cited give fuller details of each technique. Miller (1968) gives a comprehensive review of process energy systems, including heat exchange and power recovery from high-pressure fluid streams. Kenney (1984) reviews the application of thermodynamic principles to energy recovery in the process industries. Kemp (2007) gives a detailed description of pinch analysis and several other methods for heat recovery.


3.3.1 Heat Exchange

The most common energy-recovery technique is to use the heat in a high-temperature process stream to heat a colder stream. This saves part or all of the cost of heating the cold stream, as well as part or all of the cost of cooling the hot stream. Conventional shell and tube exchangers are normally used. The cost of the heat exchange surface may be increased relative to using a hot utility as heat source, due to the reduced temperature driving forces, or decreased, due to needing fewer exchangers. The cost of recovery will be reduced if the streams are located conveniently close within the plant.

The amount of energy that can be recovered depends on the temperature, flow, heat capacity, and temperature change possible, in each stream. A reasonable temperature driving force must be maintained to keep the exchanger area to a practical size. The most efficient exchanger will be the one in which the shell and tube flows are truly countercurrent. Multiple tube-pass exchangers are usually used for practical reasons. With multiple tube passes the flow is part countercurrent and part cocurrent and temperature crosses can occur, which reduce the efficiency of heat recovery (see Chapter 19). In cryogenic processes, where heat recovery is critical to process efficiency, brazed or welded plate exchangers are used to obtain true countercurrent performance and very low temperature approaches on the order of a few degrees Celsius are common.

The hot process streams leaving a reactor or a distillation column are frequently used to preheat the feed streams (“feed-effluent” or “feed-bottoms” exchangers).

In an industrial process there will be many hot and cold streams and there will be an optimum arrangement of the streams for energy recovery by heat exchange. The problem of synthesizing a network of heat exchangers has been the subject of much research and is covered in more detail in Section 3.5.




3.3.2 Waste-heat Boilers

If the process streams are at a sufficiently high temperature and there are no attractive options for process-to-process heat transfer, then the heat recovered can be used to generate steam.

Waste-heat boilers are often used to recover heat from furnace flue gases and the process gas streams from high-temperature reactors. The pressure, and superheat temperature, of the steam generated depend on the temperature of the hot stream and the approach temperature permissible at the boiler exit. As with any heat-transfer equipment, the area required increases as the mean temperature driving force (log mean ΔT) is reduced. The permissible exit temperature may also be limited by process considerations. If the gas stream contains water vapor and soluble corrosive gases, such as HCl or SO2, the exit gas temperature must be kept above the dew point.

Hinchley (1975) discusses the design and operation of waste-heat boilers for chemical plants. Both fire-tube and water-tube boilers are used. A typical arrangement of a water-tube boiler on a reformer furnace is shown in Figure 3.8 and a fire-tube boiler in Figure 3.9.

[image: image]

Figure 3.8 Reformed gas waste-heat boiler arrangement of vertical U-tube water-tube boiler. (Reprinted by permission of the Council of the Institution of Mechanical Engineers from the Proceedings of the Conference on Energy Recovery in the Process Industries, London, 1975.)

[image: image]

Figure 3.9 Reformed gas waste-heat boiler, principal features of typical natural circulation fire-tube boilers. (Reprinted by permission of the Council of the Institution of Mechanical Engineers from the Proceedings of the Conference on Energy Recovery in the Process Industries, London, 1975.)

The application of a waste-heat boiler to recover energy from the reactor exit streams in a nitric acid plant is shown in Figure 3.10. The selection and operation of waste-heat boilers for industrial furnaces is discussed by Dryden (1975).

[image: image]

Figure 3.10 Connections of a nitric acid plant, intermediate pressure type.




3.3.3 High-temperature Reactors

If a reaction is highly exothermic, cooling will be needed. If the reactor temperature is high enough, the heat removed can be used to generate steam. The lowest steam pressure normally used in the process industries is about 2.7 bar (25 psig), so any reactor with a temperature above 150 °C is a potential steam generator. Steam is preferentially generated at as high a pressure as possible, as high pressure steam is more valuable than low pressure steam (see Section 3.2.3). If the steam production exceeds the site steam requirements, some steam can be fed to condensing turbines to produce electricity to meet site power needs.

Three systems are used:


1. Figure 3.11(a). An arrangement similar to a conventional water-tube boiler. Steam is generated in cooling pipes within the reactor and separated in a steam drum.

2. Figure 3.11(b). Similar to the first arrangement but with the water kept at high pressure to prevent vaporization. The high-pressure water is flashed to steam at lower pressure in a flash drum. This system would give more responsive control of the reactor temperature.

3. Figure 3.11(c). In this system a heat-transfer fluid, such as Dowtherm A (see Section 3.2.4 and Singh (1985) for details of heat-transfer fluids), is used to avoid the need for high-pressure tubes. The steam is raised in an external boiler.



[image: image]

Figure 3.11 Steam generation.




3.3.4 High-pressure Process Streams

Where high-pressure gas or liquid process streams are throttled to lower pressures, energy can be recovered by carrying out the expansion in a suitable turbine.


Gas Streams

The economic operation of processes that involve the compression and expansion of large quantities of gases, such as ammonia synthesis, nitric acid production, and air separation, depends on the efficient recovery of the energy of compression. The energy recovered by expansion is often used to drive the compressors directly, as shown in Figure 3.10. If the gas contains condensable components, it may be advisable to consider heating the gas by heat exchange with a higher temperature process stream before expansion. The gas can then be expanded to a lower pressure without condensation and the power generated increased.

The process gases do not have to be at a particularly high pressure for expansion to be economical if the gas flow rate is high. For example, Luckenbach (1978) in U.S. patent 4,081,508 describes a process for recovering power from the off-gas from a fluid catalytic cracking process by expansion from about 2 to 3 bar (15 to 25 psig) down to just over atmospheric pressure (1.5 to 2 psig).

The energy recoverable from the expansion of a gas can be estimated by assuming polytropic expansion; see Section 20.6.3 and Example 20.4. The design of turboexpanders for the process industries is discussed by Bloch et al. (1982).




Liquid Streams

As liquids are essentially incompressible, less energy is stored in a compressed liquid than a gas; however, it is often worth considering power recovery from high-pressure liquid streams (>15 bar), as the equipment required is relatively simple and inexpensive. Centrifugal pumps are used as expanders and are often coupled directly to other pumps. The design, operation, and cost of energy recovery from high-pressure liquid streams is discussed by Jenett (1968), Chada (1984), and Buse (1981).






3.3.5 Heat Pumps

A heat pump is a device for raising low-grade heat to a temperature at which the heat can be used. It pumps the heat from a low temperature source to the higher temperature sink, using a small amount of energy relative to the heat energy recovered. A heat pump is essentially the same as a refrigeration cycle (Section 3.2.6 and Figure 3.5), but the objective is to deliver heat to the process in the condensation step of the cycle, as well as (or instead of) removing heat in the evaporation step.

Heat pumps are increasingly finding applications in the process industries. A typical application is the use of the low-grade heat from the condenser of a distillation column to provide heat for the reboiler; see Barnwell and Morris (1982) and Meili (1990). Heat pumps are also used with dryers; heat is abstracted from the exhaust air and used to preheat the incoming air.

Details of the thermodynamic cycles used for heat pumps can be found in most textbooks on engineering thermodynamics, and in Reay and MacMichael (1988). In the process industries, heat pumps operating on the mechanical vapor compression cycle are normally used. A vapor compression heat pump applied to a distillation column is shown in Figure 3.12(a). The working fluid, usually a commercial refrigerant, is fed to the reboiler as a vapor at high pressure and condenses, giving up heat to vaporize the process fluid. The liquid refrigerant from the reboiler is then expanded over a throttle valve and the resulting wet vapor is fed to the column condenser. In the condenser the wet refrigerant is dried, taking heat from the condensing process vapor. The refrigerant vapor is then compressed and recycled to the reboiler, completing the working cycle.

[image: image]

Figure 3.12 Distillation column with heat pump: (a) separate refrigerant circuit; (b) using column fluid as the refrigerant.

If the conditions are suitable, the process fluid can be used as the working fluid for the heat pump. This arrangement is shown in Figure 3.12(b). The hot process liquid at high pressure is expanded over the throttle valve and fed to the condenser, to provide cooling to condense the vapor from the column. The vapor from the condenser is compressed and returned to the base of the column. In an alternative arrangement, the process vapor is taken from the top of the column, compressed, and fed to the reboiler to provide heating.

The “efficiency” of a heat pump is measured by the heat pump coefficient of performance, COPh:

[image: image] (3.4)

The COPh depends principally on the working temperatures. Heat pumps are more efficient (higher COPh) when operated over a narrow temperature range. They are thus most often encountered on distillation columns that separate close-boiling compounds. Note that the COPh of a heat pump is not the same as the COP of a refrigeration cycle (Section 3.2.6).

The economics of the application of heat pumps in the process industries is discussed by Holland and Devotta (1986). Details of the application of heat pumps in a wide range of industries are given by Moser and Schnitzer (1985).






3.4 Waste Stream Combustion

Process waste products that contain significant quantities of combustible material can be used as low-grade fuels, for raising steam or direct process heating. Their use will only be economic if the intrinsic value of the fuel justifies the cost of special burners and other equipment needed to burn the waste. If the combustible content of the waste is too low to support combustion, the waste must be supplemented with higher calorific value primary fuels.


3.4.1 Reactor Off-gases

Reactor off-gases (vent gas) and recycle stream purges are often of high enough calorific value to be used as fuels. Vent gases will typically be saturated with organic compounds such as solvents and high volatility feed compounds. The calorific value of a gas can be calculated from the heats of combustion of its constituents; the method is illustrated in Example 3.4.

Other factors which, together with the calorific value, determine the economic value of an off-gas as a fuel are the quantity available and the continuity of supply. Waste gases are best used for steam raising, rather than for direct process heating, as this decouples the source from the use and gives greater flexibility.

Example 3.4 Calculation of Waste-Gas Calorific Value

The typical vent-gas analysis from the recycle stream in an oxyhydrochlorination process for the production of dichloroethane (DCE) (British patent BP 1,524,449) is given below, percentages on volume basis.

[image: image]

Estimate the vent-gas calorific value.


Solution

Component calorific values, from Perry and Chilton (1973):



	CO 67.6 kcal/mol
	= 283 kJ/mol

	C2H4 372.8
	= 1560.9

	C2H6 337.2
	= 1411.9




The value for DCE can be estimated from the heats of formation.

Combustion reaction:

[image: image]

The heats of formation [image: image] are given in Appendix C, which is available in the online material at booksite.Elsevier.com/Towler.


	CO2
	= −393.8 kJ/mol

	H2O
	= −242.0

	HCl
	= −92.4

	DCE
	= −130.0

	[image: image]
	= [image: image]

		= [2(−393.8)[image: ent]−[image: ent]242.0[image: ent]+[image: ent]2(−92.4)] − [−130.0]

		= −1084.4 kJ




Estimation of vent-gas calorific value, basis 100 mol.

[image: Image]

[image: image]

This calorific value is very low compared to 37 MJ/m3 (1000 Btu/ft3) for natural gas. The vent gas is barely worth recovery, but if the gas has to be burnt to avoid pollution it could be used in an incinerator such as that shown in Figure 3.13, giving a useful steam production to offset the cost of disposal.

[image: image]

Figure 3.13 Typical incinerator-heat recovery-scrubber system for vinyl-chloride-monomer process waste. (Courtesy of John Thurley Ltd.)








3.4.2 Liquid and Solid Wastes

Combustible liquid and solid waste can be disposed of by burning, which is usually preferred to dumping. Incorporating a steam boiler in the incinerator design will enable an otherwise unproductive, but necessary, operation to save energy. If the combustion products are corrosive, corrosion-resistant materials will be needed, and the flue gases must be scrubbed to reduce air pollution. An incinerator designed to handle chlorinated and other liquid and solid wastes is shown in Figure 3.13. This incinerator incorporates a steam boiler and a flue-gas scrubber. The disposal of chlorinated wastes is discussed by Santoleri (1973).

Dunn and Tomkins (1975) discuss the design and operation of incinerators for process wastes. They give particular attention to the need to comply with the current clean-air legislation, and the problem of corrosion and erosion of refractories and heat-exchange surfaces.






3.5 Heat-exchanger Networks

The design of a heat-exchanger network for a simple process with only one or two streams that need heating and cooling is usually straightforward. When there are multiple hot and cold streams, the design is more complex and there may be many possible heat exchange networks. The design engineer must determine the optimum extent of heat recovery, while ensuring that the design is flexible to changes in process conditions and can be started up and operated easily and safely.

In the 1980s, there was a great deal of research into design methods for heat-exchanger networks; see Gundersen and Naess (1988). One of the most widely applied methods that emerged was a set of techniques termed pinch technology, which was developed by Bodo Linnhoff and his collaborators at ICI, Union Carbide, and the University of Manchester. The term derives from the fact that in a plot of the system temperatures versus the heat transferred, a pinch usually occurs between the hot stream and cold stream curves, see Figure 3.19. It has been shown that the pinch represents a distinct thermodynamic break in the system and that, for minimum energy requirements, heat should not be transferred across the pinch, Linnhoff et al. (1982).

In this section the fundamental principles of the pinch technology method for energy integration will be outlined and illustrated with reference to a simple problem. The method and its applications are described fully in a guide published by the Institution of Chemical Engineers, Kemp (2007); see also Douglas (1988), Smith (2005), and El-Halwagi (2006).


3.5.1 Pinch Technology

The development and application of the method can be illustrated by considering the problem of recovering heat between four process streams: two hot streams that require cooling, and two cold streams that must be heated. The process data for the streams is set out in Table 3.1. Each stream starts from a source temperature Ts, and is to be heated or cooled to a target temperature Tt. The heat capacity flow rate of each stream is shown as CP. For streams where the specific heat capacity can be taken as constant, and there is no phase change, CP will be given by

[image: image] (3.5)

where m[image: ent]=[image: ent]mass flow-rate, kg/s

Cp[image: ent]=[image: ent]average specific heat capacity between Ts and Tt kJ kg−1°C−1

Table 3.1. Data for Heat Integration Problem

[image: Image]

The heat load shown in the table is the total heat required to heat, or cool, the stream from the source to the target temperature.

There is clearly scope for energy integration between these four streams. Two require heating and two cooling, and the stream temperatures are such that heat can be transferred from the hot to the cold streams. The task is to find the best arrangement of heat exchangers to achieve the target temperatures.


Simple Two-stream Problem

Before investigating the energy integration of the four streams shown in Table 3.1, the use of a temperature-enthalpy diagram will be illustrated for a simple problem involving only two streams. The general problem of heating and cooling two streams from source to target temperatures is shown in Figure 3.14. Some heat is exchanged between the streams in the heat exchanger. Additional heat, to raise the cold stream to the target temperature, is provided by the hot utility (usually steam) in the heater; and additional cooling, to bring the hot stream to its target temperature, is provided by the cold utility (usually cooling water) in the cooler.

[image: image]

Figure 3.14 Two-stream exchanger problem.

In Figure 3.15(a) the stream temperatures are plotted on the y-axis and the enthalpy change of each stream on the x-axis. This is known as a temperature-enthalpy (T-H) diagram. For heat to be exchanged, a minimum temperature difference must be maintained between the two streams. This is shown as ΔTmin on the diagram. The practical minimum temperature difference in a heat exchanger will usually be between 5 °C and 30 °C; see Chapter 19.

[image: image]

Figure 3.15 Temperature-enthalpy (T-H) diagram for two-stream example.

The slope of the lines in the T-H plot is proportional to 1/CP, since ΔH[image: ent]=[image: ent]CP[image: ent]×[image: ent]ΔT, so dT/dH[image: ent]= 1/CP. Streams with low heat capacity flow rate thus have steep slopes in the T-H plot and streams with high heat capacity flow rate have shallow slopes.

The heat transferred between the streams is given by the range of enthalpy over which the two curves overlap each other, and is shown on the diagram as ΔHex. The heat transferred from the hot utility, ΔHhot, is given by the part of the cold stream that is not overlapped by the hot stream. The heat transferred to the cold utility, ΔHcold, is similarly given by the part of the hot stream that is not overlapped by the cold stream. The heats can also be calculated as

[image: image]

Since we are only concerned with changes in enthalpy, we can treat the enthalpy axis as a relative scale and slide either the hot stream or the cold stream horizontally. As we do so, we change the minimum temperature difference between the streams, ΔTmin, and also the amount of heat exchanged and the amounts of hot and cold utilities required.

Figure 3.15(b) shows the same streams plotted with a lower value of ΔTmin. The amount of heat exchanged is increased and the utility requirements have been reduced. The temperature driving force for heat transfer has also been reduced, so the heat exchanger has both a larger duty and a smaller log-mean temperature difference. This leads to an increase in the heat transfer area required and in the capital cost of the exchanger. The capital cost increase is partially offset by capital cost savings in the heater and cooler, which both become smaller, as well as by savings in the costs of hot and cold utility. In general, there will be an optimum value of ΔTmin, as illustrated in Figure 3.16. This optimum is usually rather flat over the range 10 °C to 30 °C.
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Figure 3.16 The capital-energy trade-off in process heat recovery.

The maximum feasible heat recovery is reached at the point where the hot and cold curves touch each other on the T-H plot, as illustrated in Figure 3.17. At this point, the temperature driving force at one end of the heat exchanger is zero and an infinite heat exchange surface is required, so the design is not practical. The exchanger is said to be pinched at the end where the hot and cold curves meet. In Figure 3.17, the heat exchanger is pinched at the cold end.

[image: image]

Figure 3.17 Maximum feasible heat recovery for two-stream example.

It is not possible for the hot and cold streams to cross each other, as this would be a violation of the second law of thermodynamics and would give an infeasible design.




Four-stream Problem

In Figure 3.18(a) the hot streams given in Table 3.1 are shown plotted on a temperature-enthalpy diagram.

[image: image]

Figure 3.18 Hot stream temperature v. enthalpy: (a) separate hot streams; (b) composite hot stream.

As the diagram shows changes in the enthalpy of the streams, it does not matter where a particular curve is plotted on the enthalpy axis; as long as the curve runs between the correct temperatures. This means that where more than one stream appears in a temperature interval, the stream heat capacities can be added to form a composite curve, as shown in Figure 3.18(b).

In Figure 3.19, the composite curve for the hot streams and the composite curve for the cold streams are drawn with a minimum temperature difference, the displacement between the curves, of 10 °C. This implies that in any of the exchangers to be used in the network the temperature difference between the streams will not be less than 10 °C.

[image: image]

Figure 3.19 Hot and cold stream composite curves.

As for the two-stream problem, the overlap of the composite curves gives a target for heat recovery, and the displacements of the curves at the top and bottom of the diagram give the hot and cold utility requirements. These will be the minimum values needed to satisfy the target temperatures. This is valuable information. It gives the designer target values for the utilities to aim for when designing the exchanger network. Any design can be compared with the minimum utility requirements to check if further improvement is possible.

In most exchanger networks the minimum temperature difference will occur at only one point. This is termed the pinch. In the problem being considered, the pinch occurs at between 90 °C on the hot stream curve and 80 °C on the cold stream curve.

For multi-stream problems, the pinch will usually occur somewhere in the middle of the composite curves, as illustrated in Figure 3.19. The case when the pinch occurs at the end of one of the composite curves is termed a threshold problem and is discussed in Section 3.5.5.




Thermodynamic Significance of the Pinch

The pinch divides the system into two distinct thermodynamic regions. The region above the pinch can be considered a heat sink, with heat flowing into it from the hot utility, but no heat flow out of it. Below the pinch the converse is true. Heat flows out of the region to the cold utility. No heat flows across the pinch, as shown in Figure 3.20(a).

[image: image]

Figure 3.20 Pinch decomposition.

If a network is designed in which heat is transferred from any hot stream at a temperature above the pinch (including hot utilities) to any cold stream at a temperature below the pinch (including cold utilities), then heat is transferred across the pinch. If the amount of heat transferred across the pinch is ΔHxp, then in order to maintain energy balance the hot utility and cold utility must both be increased by ΔHxp, as shown in Figure 3.20(b). Cross-pinch heat transfer thus always leads to consumption of both hot and cold utilities that is greater than the minimum values that could be achieved.

The pinch decomposition is very useful in heat-exchanger network design, as it decomposes the problem into two smaller problems. It also indicates the region where heat transfer matches are most constrained, at or near the pinch. When multiple hot or cold utilities are used there may be other pinches, termed utility pinches, that cause further problem decomposition. Problem decomposition can be exploited in algorithms for automatic heat-exchanger network synthesis.






3.5.2 The Problem Table Method

The problem table is a numerical method for determining the pinch temperatures and the minimum utility requirements, introduced by Linnhoff and Flower (1978). It eliminates the sketching of composite curves, which can be useful if the problem is being solved manually. It is not widely used in industrial practice any more, due to the wide availability of computer tools for pinch analysis (see Section 3.5.7).

The procedure is as follows:


1. Convert the actual stream temperatures Tact into interval temperatures Tint by subtracting half the minimum temperature difference from the hot stream temperatures, and by adding half to the cold stream temperatures:
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The use of the interval temperature rather than the actual temperatures allows the minimum temperature difference to be taken into account. ΔTmin[image: ent]=[image: ent]10 °C for the problem being considered; see Table 3.2.

Table 3.2. Interval Temperatures for ΔTmin = 10 °C

[image: Image]

2. Note any duplicated interval temperatures. These are bracketed in Table 3.2.

3. Rank the interval temperatures in order of magnitude, showing the duplicated temperatures only once in the order; see Table 3.3.

Table 3.3. Ranked Order of Interval Temperatures



	Rank
	Interval ΔTn °C
	Streams in Interval



	175
		

	145
	30
	−1

	140
	5
	4 − (2 + 1)

	85
	55
	(3 + 4) − (1 + 2)

	55
	30
	3 − (1 + 2)

	25
	30
	3 − 2




Note: Duplicated temperatures are omitted. The interval ΔT and streams in the intervals are included as they are needed forTable 3.4.

4. Carry out a heat balance for the streams falling within each temperature interval.
For the nth interval:

[image: image]

where ΔHn[image: ent]=[image: ent]net heat required in the nth interval
ΣCPc[image: ent]=[image: ent]sum of the heat capacities of all the cold streams in the interval
ΣCPh[image: ent]=[image: ent]sum of the heat capacities of all the hot streams in the interval
ΔTn[image: ent]=[image: ent]interval temperature difference[image: ent]=[image: ent](Tn−1 − Tn)
See Table 3.4.

Table 3.4. Problem Table

[image: Image]

5. “Cascade” the heat surplus from one interval to the next down the column of interval temperatures; see Figure 3.21(a).
Cascading the heat from one interval to the next implies that the temperature difference is such that the heat can be transferred between the hot and cold streams. The presence of a negative value in the column indicates that the temperature gradient is in the wrong direction and that the exchange is not thermodynamically possible.
This difficulty can be overcome if heat is introduced into the top of the cascade:

[image: image]

Figure 3.21 Heat cascade.

6. Introduce just enough heat to the top of the cascade to eliminate all the negative values; see Figure 3.21(b).
Comparing the composite curve, Figure 3.19, with Figure 3.21(b) shows that the heat introduced to the cascade is the minimum hot utility requirement and the heat removed at the bottom is the minimum cold utility required. The pinch occurs in Figure 3.21(b) where the heat flow in the cascade is zero. This is as would be expected from the rule that for minimum utility requirements no heat flows across the pinch. In Figure 3.21(b) the pinch is at an interval temperature of 85 °C, corresponding to a cold stream temperature of 80 °C and a hot stream temperature of 90 °C, as was found using the composite curves.
It is not necessary to draw up a separate cascade diagram. This was done in Figure 3.21 to illustrate the principle. The cascaded values can be added to the problem table as two additional columns; see Example 3.5.




Summary

For maximum heat recovery and minimum use of utilities:


1. Do not transfer heat across the pinch.

2. Do not use hot utilities below the pinch.

3. Do not use cold utilities above the pinch.








3.5.3 Heat-exchanger Network Design


Grid Representation

It is convenient to represent a heat-exchanger network as a grid; see Figure 3.22. The process streams are drawn as horizontal lines, with the stream numbers shown in square boxes. Hot streams are drawn at the top of the grid, and flow from left to right. The cold streams are drawn at the bottom, and flow from right to left. The stream heat capacities CP are shown in a column at the end of the stream lines.

[image: image]

Figure 3.22 Grid representation.

Heat exchangers are drawn as two circles connected by a vertical line. The circles connect the two streams between which heat is being exchanged; that is, the streams that would flow through the actual exchanger. Heaters and coolers can be drawn as a single circle, connected to the appropriate utility. If multiple utilities are used then these can also be shown as streams. Exchanger duties are usually marked under the exchanger and temperatures are also sometimes indicated on the grid diagram.




Network Design for Maximum Energy Recovery

The analysis carried out in Figure 3.19 and Figure 3.21 has shown that the minimum utility requirements for the problem set out in Table 3.1 are 50 kW of the hot and 30 kW of the cold utility, and that the pinch occurs where the cold streams are at 80 °C and the hot streams are at 90 °C.

The grid representation of the streams is shown in Figure 3.23. The vertical dotted lines represent the pinch and separate the grid into the regions above and below the pinch. Note that the hot and cold streams are offset at the pinch, because of the difference in pinch temperature.

[image: image]

Figure 3.23 Grid for four-stream problem.

For maximum energy recovery (minimum utility consumption) the best performance is obtained if no cooling is used above the pinch. This means that the hot streams above the pinch should be brought to the pinch temperature solely by exchange with the cold streams. The network design is therefore started at the pinch, finding feasible matches between streams to fulfill this aim. In making a match adjacent to the pinch the heat capacity CP of the hot stream must be equal to or less than that of the cold stream. This is to ensure that the minimum temperature difference between the curves is maintained. The slope of a line on the temperature-enthalpy diagram is equal to the reciprocal of the heat capacity. So, above the pinch the lines will converge if CPh exceeds CPc and as the streams start with a separation at the pinch equal to ΔTmin, the minimum temperature condition would be violated. Every hot stream must be matched with a cold stream immediately above the pinch, otherwise it will not be able to reach the pinch temperature.

Below the pinch the procedure is the same; the aim being to bring the cold streams to the pinch temperature by exchange with the hot streams. For streams adjacent to the pinch the criterion for matching streams is that the heat capacity of the cold stream must be equal to or greater than the hot stream, to avoid breaking the minimum temperature difference condition. Every cold stream must be matched with a hot stream immediately below the pinch.




Network Design Above the Pinch

[image: image]


1. Applying this condition at the pinch, stream 1 can be matched with stream 4, but not with 3.
Matching streams 1 and 4 and transferring the full amount of heat required to bring stream 1 to the pinch temperature gives

[image: image]
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This will also satisfy the heat load required to bring stream 4 to its target temperature:

[image: image]

2. Stream 2 can be matched with stream 3, while satisfying the heat capacity restriction. Transferring the full amount to bring stream 2 to the pinch temperature:

[image: image]

3. The heat required to bring stream 3 to its target temperature, from the pinch temperature, is

[image: image]


So a heater will have to be included to provide the remaining heat load:

[image: image]



This checks with the value given by the problem table, Figure 3.21(b).
The proposed network design above the pinch is shown in Figure 3.24.

[image: image]

Figure 3.24 Network design above the pinch.






Network Design Below the Pinch

[image: image]


4. Stream 4 begins at the pinch temperature, Ts[image: ent]=[image: ent]80 °C, and so is not available for any matches below the pinch.

5. A match between streams 1 and 3 adjacent to the pinch will satisfy the heat capacity restriction but not one between streams 2 and 3. So 1 is matched with 3 transferring the full amount to bring stream 1 to its target temperature:

[image: image]

6. Stream 3 requires more heat to bring it to the pinch temperature; the amount needed is

[image: image]



This can be provided from stream 2, as the match is now away from the pinch.
The rise in temperature of stream 3 will be given by

[image: image]



So transferring 30 kW will raise the temperature from the source temperature to

[image: image]

and this gives a stream temperature difference on the outlet side of the exchanger of

[image: image]



So the minimum temperature difference condition, 10 °C, will not be violated by this match.

7. Stream 2 needs further cooling to bring it to its target temperature, so a cooler must be included; the cooling required is

[image: image]

which is the amount of the cold utility predicted by the problem table.
The proposed network for maximum energy recovery is shown in Figure 3.25.

[image: image]

Figure 3.25 Proposed heat exchanger network for ΔTmin = 10 °C.






Stream Splitting

If the heat capacities of streams are such that it is not possible to make a match at the pinch without violating the minimum temperature difference condition, then the heat capacity can be altered by splitting a stream. Dividing the stream will reduce the mass flow rates in each leg and hence the heat capacities. This is illustrated in Example 3.5.

Similarly, if there are not enough streams available to make all of the required matches at the pinch then streams with large CP can be split to increase the number of streams.

Guide rules for stream matching and splitting are given in the Institution of Chemical Engineers Guide, Kemp (2007) and by Smith (2005).




Summary

The guide rules for devising a network for maximum heat recovery are given below:


1. Divide the problem at the pinch.

2. Design away from the pinch.

3. Above the pinch match streams adjacent to the pinch, meeting the restriction

[image: image]

4. Below the pinch match streams adjacent to the pinch, meeting the restriction

[image: image]

5. If the stream matching criteria cannot be satisfied, split a stream.

6. Maximize the exchanger heat loads.

7. Supply external heating only above the pinch and external cooling only below the pinch.








3.5.4 Minimum Number of Exchangers

The network shown in Figure 3.25 was designed to give the maximum heat recovery, and will therefore give the minimum consumption, and cost, of the hot and cold utilities.

This will not necessarily be the optimum design for the network. The optimum design will be that which gives the lowest total annualized cost, taking into account the capital cost of the system, in addition to the utility and other operating costs. The number of exchangers in the network, and their size, will determine the capital cost.

In Figure 3.25 it is clear that there is scope for reducing the number of exchangers. The 30 kW exchanger between streams 2 and 3 can be deleted and the heat loads of the cooler and heater increased to bring streams 2 and 3 to their target temperatures. Heat would cross the pinch and the consumption of the utilities would be increased. Whether the revised network would be better, or more economic, depends on the relative cost of capital and utilities and the operability of each design. For any network, there will be an optimum design that gives the least annual cost: capital charges plus utility and other operating costs. The estimation of capital and operating costs are covered in Chapters 7 and 8.

To find the optimum design it is necessary to cost a number of alternative designs, seeking a compromise between the capital costs, determined by the number and size of the exchangers, and the utility costs, determined by the heat recovery achieved.

For simple networks Holmann (1971) has shown that the minimum number of exchangers is given by

[image: image] (3.6)

where Zmin[image: ent]=[image: ent]minimum number of exchangers needed, including heaters and coolers

N′[image: ent]=[image: ent]the number of streams, including the utilities

For complex networks a more general expression is needed to determine the minimum number of exchangers:

[image: image] (3.7)

where L′[image: ent]=[image: ent]the number of internal loops present in the network

S[image: ent]=[image: ent]the number of independent branches (subsets) that exist in the network

A loop exists where a closed path can be traced through the network. There is a loop in the network shown in Figure 3.25. The loop is shown in Figure 3.26. The presence of a loop indicates that there is scope for reducing the number of exchangers.

[image: image]

Figure 3.26 Loop in network.

For a full discussion of Equation 3.7 and its applications see Linnhoff, Mason, Wardle (1979), Smith (2005), or Kemp (2007).

In summary, to seek the optimum design for a network:


1. Start with the design for maximum heat recovery. The number of exchangers needed will be equal to or less than the number for maximum energy recovery.

2. Identify loops that cross the pinch. The design for maximum heat recovery will usually contain loops.

3. Starting with the loop with the least heat load, break the loops by adding or subtracting heat.

4. Check that the specified minimum temperature difference ΔTmin has not been violated. If the violation is significant, revise the design as necessary to restore ΔTmin. If the violation is small then it may not have much impact on the total annualized cost and can be ignored.

5. Estimate the capital and operating costs, and the total annual cost.

6. Repeat the loop breaking and network revision to find the lowest cost design.

7. Consider the safety, operability, and maintenance aspects of the proposed design.






3.5.5 Threshold Problems

Problems that show the characteristic of requiring only either a hot utility or a cold utility (but not both) over a range of minimum temperature differences, from zero up to a threshold value, are known as threshold problems. A threshold problem is illustrated in Figure 3.27.

[image: image]

Figure 3.27 Threshold problem.

To design the heat-exchanger network for a threshold problem, it is normal to start at the most constrained point. The problem can often be treated as one half of a problem exhibiting a pinch.

Threshold problems are often encountered in the process industries. A pinch can be introduced in such problems if multiple utilities are used, as in the recovery of heat to generate steam, or if the chosen value of ΔTmin is greater than the threshold value.

The procedures to follow in the design of threshold problems are discussed by Smith (2005) and Kemp (2007).




3.5.6 Determining Utility Consumption

Pinch analysis can be used to determine targets for process utility consumption. Initial targets for total hot and cold utility use can be calculated directly from the problem table algorithm or read from the composite curves. A more detailed breakdown of the utility needs can be determined from the initial heat-exchanger network.

The following guidelines should be followed when using the pinch method to determine utility consumption targets:


1. Do not use cold utilities above the pinch temperature. This means that no process stream should be cooled from a temperature above the pinch temperature using a cold utility.

2. Do not use hot utilities below the pinch. This means no process stream should be heated from a temperature below the pinch temperature using a hot utility.

3. On either side of the pinch, maximize use of the cheapest utility first. Above the pinch this means use LP steam wherever possible before considering MP steam, then HP steam, hot oil, etc. Below the pinch, maximize use of cooling water before considering refrigeration.

4. If the process pinch is at a high temperature, consider boiler feed water preheat and steam generation as potential cold utility streams.

5. If the process pinch is at a low temperature, consider steam condensate and spent cooling water as hot streams.

6. If the process requires cooling to a very low temperature, consider using cascaded refrigeration cycles to improve the overall COP.

7. If the process requires heating to a very high temperature and a fired heater is needed, consider using the convective section heat either for process heating or for steam generation. For process control reasons, it may be necessary to operate the heater with process heating in the radiant section only, but the convective section heat is still available for use. In strict pinch terms, this heat can be used at any temperature above the pinch temperature, but in practice convective section heat recovery is usually limited by the acid-gas dew point of the flue gas or other furnace design considerations (see Section 19.17).

8. If a process condition leads to the use of a more expensive utility, then consider process modifications that would make this unnecessary. For example, if a product must be cooled and sent to storage at 30 °C, the cooling cannot be carried out using cooling water and refrigeration must be used. The designer should question why 30 °C was specified for the storage. If it was because a vented tank was selected, then choosing a non-vented (floating roof) tank instead might allow the product to be sent to storage at 40 °C, in which case the refrigeration system could be eliminated.



Graphical methods and numerical approaches have been developed to assist in the optimal design of utility systems. For simple problems, these methods are not needed, as the heaters and coolers that have been identified in the heat-exchange network can be assigned to the appropriate utility stream using the simple rules above. When a stream requires heating or cooling over a broad temperature range, the designer should consider whether it is cheaper to break the duty into several exchangers, each served by the appropriate utility for a given temperature range, or whether it makes more economic sense to use a single exchanger, served by the hottest or coldest utility. The problem of placing multiple utilities is illustrated in Example 3.6.




3.5.7 Process Integration: Integration of Other Process Operations

The pinch technology method can give many other insights into process synthesis, beyond the design of heat-exchanger networks. The method can also be applied to the integration of other process units, such as separation columns, reactors, compressors and expanders, boilers, and heat pumps. The wider applications of pinch technology are discussed in the Institution of Chemical Engineers Guide, Kemp (2007) and by El-Halwagi (2006) and Smith (2005).

The techniques of process integration have been expanded for use in optimizing mass transfer operations, and have been applied in waste reduction, water conservation, and pollution control; see El-Halwagi (1997) and Dunn and El-Halwagi (2003).




3.5.8 Computer Tools for Heat-exchanger Network Design

Most pinch analysis in industry is carried out using commercial pinch analysis software. Programs such as Aspen HX-Net™ (Aspen Technology Inc.), SUPERTARGET™ (Linnhoff March Ltd.) and UniSim™ ExchangerNet™ (Honeywell International Inc.) allow the design engineer to plot composite curves, optimize ΔTmin, set targets for multiple utilities, and design the heat-exchanger network.

Most of these programs are able to automatically extract stream data from process simulation programs, although great care should be taken to check the extracted data. There are many possible pitfalls in data extraction; for example, not recognizing changes in the CP of a stream or partial vaporization or condensation of a stream, any of which could lead to a kink in the stream T-H profile. See Smith (2005) or Kemp (2007) for more information on data extraction.

The commercial pinch technology tools also usually include automatic heat-exchanger network synthesis features. The automatic synthesis methods are based on MINLP optimization of superstructures of possible exchanger options (see Chapter 12 for discussion of MINLP methods). These tools can be used to arrive at a candidate network, but the optimization must be properly constrained so that it does not introduce a large number of stream splits and add a lot of small exchangers. Experienced designers seldom use automatic heat-exchanger network synthesis methods, as it usually requires more effort to turn the resulting network into something practical than it would take to design a practical network manually. The NLP optimization capability of the software is widely used though, for fine tuning the network temperatures by exploitation of loops and stream split ratios.

Example 3.5

Determine the pinch temperatures and the minimum utility requirements for the streams set out in the table below, for a minimum temperature difference between the streams of 20 °C. Devise a heat-exchanger network to achieve the maximum energy recovery.

[image: Image]


Solution

The problem table to find the minimum utility requirements and the pinch temperature can be built in a spreadsheet. The calculations in each cell are repetitive and the formula can be copied from cell to cell using the cell copy commands. A spreadsheet template for the problem table algorithm is available in MS Excel format in the online material at booksite.Elsevier.com/Towler. The use of the spreadsheet is illustrated in Figure 3.28 and described below.

[image: image]

Figure 3.28 Problem table algorithm spreadsheet.

First calculate the interval temperatures, for ΔTmin[image: ent]=[image: ent]20 °C

[image: image]
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In the spreadsheet this can be done by using an IF function to determine whether the source temperature is lower than the target temperature, in which case the stream is a cold stream and should have ΔTmin/2 added.

Next rank the interval temperatures, ignoring any duplicated values. In the spreadsheet this is done using the LARGE function. Determine which streams occur in each interval. For a stream to be present in a given interval the largest stream interval temperature must be greater than the lower end of the interval range and the lowest stream interval temperature must also be greater than or equal to the lower end of the interval range. This can be calculated in the spreadsheet using IF, AND, and OR functions. Once the streams in each interval have been determined it is possible to calculate the combined stream heat capacities. These calculations are not strictly part of the problem table, so they have been hidden in the spreadsheet (in columns to the right of the table).

The sum of CP values for the cold streams minus that for the hot streams can then be multiplied by the interval ΔT to give the interval ΔH, and the interval ΔH values can be cascaded to give the overall heat flow. The amount of heat that must be put in to prevent the heat flow from becoming negative is the lowest value in the column, which can be found using the SMALL function. The final column then gives a cascade showing only positive values, with zero energy cascading at the pinch temperature.

In the last column 2900 kW of heat have been added to eliminate the negative values in the previous column; so the hot utility requirement is 2900 kW and the cold utility requirement, the bottom value in the column, is 600 kW.

The pinch occurs where the heat transferred is zero, that is at interval number 4, interval temperature 90 °C.

So at the pinch hot streams will be at
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and the cold streams will be at

[image: image]

Note that in the table both stream 1 and stream 4 had an interval temperature of 170 °C, which led to a duplicate line in the list of ranked interval temperatures. Strictly, this line could have been eliminated, but since it gave a zero value for the ΔT, it did not affect the calculation. The programming of the spreadsheet is a lot easier if duplicate temperatures are handled in this manner.

To design the network for maximum energy recovery, start at the pinch and match streams, following the rules on stream heat capacities for matches adjacent to the pinch. Where a match is made, transfer the maximum amount of heat.

The proposed network is shown in Figure 3.29.
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Figure 3.29 Proposed heat-exchanger network for Example 3.5.

The methodology followed in devising this network was:


Above Pinch

1. CPh ≤ CPc

2. We can match stream 1 or 2 with stream 3 but neither stream can match with stream 4. This creates a problem, since if we match stream 1 with 3 then stream 2 will not be able to make a match at the pinch. Likewise, if we match stream 2 with 3 then stream 1 will not be able to make a match at the pinch.

3. Check the heat available in bringing the hot streams to the pinch temperature.
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4. Check the heat required to bring the cold streams from the pinch temperature to their target temperatures.


[image: image]
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5. If we split stream 3 into two branches with CP of 40.0 and 20.0, then we can match the larger branch with stream 1 and transfer 3200 kW, which satisfies (ticks off) stream 1.

6. We now have two cold streams, both with CP of 20.0, and one hot stream (2) with CP of 30.0. We need to split stream 2 into two branches. As an initial guess these can both have CP of 15.0. We can then match one branch of stream 2 with the smaller branch of 4 and transfer 750 kW, and the other branch with stream 3, also for 750 kW, which then ticks off stream 2.

7. Include a heater on the larger branch of stream 3 to bring it to its target temperature:

[image: image]

8. Include a heater on the smaller branch of stream 3 to provide the balance of the heat required:

[image: image]

9. Include a heater on stream 4 to provide the balance of the heat required:

[image: image]



Check sum of heater duties[image: ent]=[image: ent]800[image: ent]+[image: ent]1250[image: ent]+[image: ent]850[image: ent]=[image: ent]2900 kW[image: ent]=[image: ent]hot utility target.




Below Pinch

10. CPh ≥ CPc

11. Note that stream 4 starts at the pinch temperature and so cannot provide any cooling below the pinch.

12. We cannot match stream 1 or 2 with stream 3 at the pinch.

13. Split stream 3 to reduce CP. An even split will allow both streams 1 and 2 to be matched with the split streams adjacent to the pinch, so try this initially.

14. Check the heat available from bringing the hot streams from the pinch temperature to their target temperatures:

[image: image]

[image: image]

15. Check the heat required to bring the cold streams from their source temperatures to the pinch temperature:

[image: image]

Stream 4 is at the pinch temperature

16. Note that stream 1 cannot be brought to its target temperature of 40 °C by full interchange with stream 3 as the source temperature of stream 3 is 30 °C, so ΔTmin would be violated. So transfer 1800 kW to one leg of the split stream 3.

17. Check temperature at exit of this exchanger:

[image: image]

18. Provide cooler on stream 1 to bring it to its target temperature; the cooling needed is

[image: image]

19. Transfer the full heat load from stream 2 to second leg of stream 3; this satisfies both streams.



Note that the heating and cooling loads, 2900 kW and 600 kW, respectively, match those predicted from the problem table.

Note also that in order to satisfy the pinch decomposition and the stream matching rules we ended up introducing a large number of stream splits. This is quite common in heat-exchanger network design. None of the three split fractions was optimized, so substantial savings as well as simplification of the network could be possible. For example, loops exist between the branches of stream 3 and stream 1 and between the branches of stream 3 and stream 2. With the current split ratios these loops cannot be eliminated, but with other ratios it might be possible to eliminate one or two exchangers.

The introduction of multiple stream splits is often cited as a drawback of the pinch method. Stream splits can be problematic in process operation. For example, when an oil or other multicomponent stream is heated and partially vaporized, then the stream is a two-phase mixture. It is difficult to control the splitting of such streams to give the required flow rate in each branch. Experienced designers usually constrain the network to avoid multiple stream splits whenever possible, even if this leads to designs that have higher than minimum utility consumption.








Example 3.6

Determine the mix of utilities to use for the process introduced in Example 3.5, if the following utility streams are available:

[image: Image]


Solution

From the solution to Example 3.5, we have the following heating and cooling duties that require utilities:


Cooler on stream 1, duty 600 kW, to cool stream 1 from 55 °C to 40 °C

Heater on large branch of stream 3, duty 800 kW, to heat from 160 °C to 180 °C

Heater on small branch of stream 3, duty 1250 kW, to heat from 117.5 °C to 180 °C

Heater on stream 4, duty 750 kW, to heat from 117.5 °C to 160 °C



It is obvious by inspection that if we are to maintain an approach temperature of 20 °C, then we will need to use MP steam and chilled water in at least some of the utility exchangers.

We can start by converting the utility costs into annual costs to provide a kW of heating or cooling, based on an assumed 8000 hours per year of operation.

For MP steam at 20 bar:
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Similarly for LP steam at 6 bar:
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For cooling water with a cooling range of 10 °C:

[image: image]

Heat capacity of water ≈ 4.2 kJ/kg°C, so:
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1000 gal of water[image: ent]=[image: ent]3785 liters and has mass roughly 3785 kg, so:
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[image: image]

For chilled water:

[image: image]

So, annual cost[image: ent]=[image: ent]28.8[image: ent]×[image: ent]4.50[image: ent]=[image: ent]$129.6/y.

It is clearly cheaper to use LP steam rather than MP steam and to use cooling water instead of chilled water whenever it is feasible to do so.

Beginning with the design below the pinch, if we are to maintain a minimum temperature difference of 20 °C, then we cannot use cooling water below 30[image: ent]+[image: ent]20[image: ent]=[image: ent]50 °C. The lowest utility cost design would therefore use cooling water to cool stream 1 from 55 °C to 50 °C (duty 200 kW). A second cooler would then be needed to cool stream 1 from 50 °C to 40°C using chilled water (duty 400 kW). The annual utility cost of this design would be 200(18.1)[image: ent]+[image: ent]400(129.6)[image: ent]=[image: ent]$55,460.

It might reasonably be argued that the utility savings from using the minimum cost of coolant do not justify the capital cost of an extra exchanger. Two possible alternatives can be considered. If all of the cooling is carried out using chilled water, then the minimum temperature difference constraint is not violated and a single cooler of duty 600 kW can be used. The annual utility cost would be 600(129.6)[image: ent]=[image: ent]$77,760. The use of chilled water gives larger log-mean temperature difference in the cooler, so the total surface area required in this design is less than the sum of the areas needed for the two exchangers proposed above. The incremental operating cost would have to be traded against the capital cost savings. Alternatively, if we jettison the 20 °C minimum temperature difference and allow a 10 °C minimum temperature difference in the cooler, then we can cool stream 1 using only cooling water in a single cooler of duty 600 kW. The annual utility cost would be 600(18.1)[image: ent]=[image: ent]$10,860. The savings in operating cost would have to be traded against the increased capital cost that would result from having a lower log-mean temperature difference for this exchanger.

Turning now to the design above the pinch, LP steam cannot be used for heating any stream that is above a temperature of 159 – 20[image: ent]=[image: ent]139 °C. The minimum utility cost design would therefore use the following heaters:


LP steam to heat stream 4 from 117.5 °C to 139 °C

LP steam to heat the small branch of stream 3 from 117.5 °C to 139 °C

MP steam to heat the small branch of stream 3 from 139 °C to 180 °C

MP steam to heat the large branch of stream 3 from 160 °C to 180 °C

MP steam to heat stream 4 from 139 °C to 160 °C



Again, although this design has the minimum utility cost, other designs may be more optimal when capital costs are also considered. For example, there is no reason why the two branches of stream 3 must be sent to separate MP steam heaters. These two heaters could be combined, even though that violates the rule of thumb about not mixing streams at different temperatures, as we are well away from the pinch and have already ensured maximum use of LP steam. This modification would reduce capital cost with no increase in operating cost, so would almost certainly be adopted. Another modification to consider would be to examine allowing a smaller minimum temperature difference for the heaters that use LP steam. This would increase LP steam use at the expense of more capital (reduced temperature difference in the exchangers) and so would require a trade-off between the additional capital and the energy cost savings.

Note that by introducing the lowest cost utilities into the design we went from needing three heaters and one cooler in Figure 3.29 to using two coolers and five heaters in the lowest utility cost design. The introduction of multiple utilities almost always leads to an increase in the number of heat exchangers needed in a design as well as the surface area requirements, and the energy cost savings must justify the resulting increase in capital cost.










3.6 Energy Management in Unsteady Processes

The energy recovery approaches described above have been for steady-state processes, where the rate of energy generation or consumption did not vary with time. Batch and cyclic processes present multiple challenges for energy management. The designer must not only consider the amount of heat that must be added to or removed from the process, but also the dynamics of heat transfer. Limitations on the rate of heat transfer often cause heating and cooling steps to become the rate-limiting steps in determining the overall cycle time. The sequential nature of batch operations can also reduce the possibilities for heat recovery by heat exchange, unless multiple batches are processed in parallel and sequenced such that heat can be transferred from one batch to the next.


3.6.1 Differential Energy Balances

If a batch process is considered, or if the rate of energy generation or removal varies with time, it is necessary to set up a differential energy balance. For batch processes, the total energy requirements can usually be estimated by taking a single batch as the time basis for the calculation; but the maximum rate of heat generation must also be estimated to size any heat-transfer equipment needed.

A generalized differential energy balance can be written as

[image: image] (3.8)

The energy in and energy out terms should include both heat transfer and convective heat flows, while the generation and consumption terms include heat of mixing, heat of reaction, etc. An unsteady state mass balance must usually be solved simultaneously with the differential energy balance.

Most batch processing operations are carried out in the liquid phase in stirred tanks. In the simplest case, heat is only added or removed when the vessel is full, and the convective heat flows can be neglected. If there is no heat of reaction or mixing, then Equation 3.8 simplifies to

[image: image] (3.9)
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where M = the mass contained in the vessel, kg

Cp[image: ent]=[image: ent]the specific heat capacity of the vessel contents, J/kg°C

T[image: ent]=[image: ent]temperature of the vessel contents, °C

t[image: ent]=[image: ent]time, s

U[image: ent]=[image: ent]the overall heat-transfer coefficient, W/m2°C

A[image: ent]=[image: ent]heat-transfer area, m2

ΔTm[image: ent]=[image: ent]the mean temperature difference, the temperature driving force, °C

The mean temperature difference for heat transfer, ΔTm, will generally be a function of the temperature of the vessel contents, T, as well as depending on the nature of the heating or cooling medium (isothermal or nonisothermal) and the type of heat transfer surface used. Batch tanks are usually heated or cooled using internal coils, jacketed vessels, or external heat exchangers. Heat transfer to vessels is discussed in more detail in Section 19.18.

In more complex cases, it is usually a good idea to set up a dynamic simulation model of the process. The use of dynamic simulation allows the designer to include additional heat source and sink terms such as losses to the environment. The designer can also use the dynamic model to investigate the interaction between the process, the heat transfer equipment, and the process control system, and hence to develop control algorithms that ensure rapid heating or cooling but do not cause excessive overshoot of the target temperature.

The application of differential energy balances to simple problems is illustrated in Examples 3.7 and 15.6.




3.6.2 Energy Recovery in Batch and Cyclic Processes

Most batch processes operate at relatively low temperatures, below 200 °C, where use of steam or hot oil will give high heat transfer rates for process heating. High heat transfer rates allow shorter heating times and enable use of internal coils and jacketed vessels, reducing the number of pieces of equipment in the plant. If the energy cost is a very small fraction of the total cost of production then recovering heat from the process may not be economically attractive, as the resulting increase in capital cost will not be justified.

Many batch processes need cooling to temperatures that require some degree of refrigeration. Fermentation processes are often operated at temperatures below 40 °C, where use of cooling water can be problematic and chilled water or other refrigerants are used instead. Food processes often require refrigeration or freezing of the product. Recovery of “cooling” from chilled streams is not possible when the product must be delivered in chilled form.

Three of the most commonly used methods for recovering heat in batch and cyclic processes are described below. Energy optimization in batch plants has been the subject of much research, and is discussed in more detail in the papers by Vaselenak, Grossman, and Westerberg (1986), Kemp and Deakin (1989), and Lee and Reklaitis (1995) and the books by Smith (2005), Kemp (2007), and Majozi (2010).


Semi-continuous Operation

The simplest approach to allow some degree of heat recovery in a batch process is to operate part of the plant in a continuous mode. The use of intermediate accumulation tanks can allow sections of the plant to be fed continuously or to accumulate product for batching into other operations.

Semi-continuous operation is often deployed for feed sterilizers and pasteurizers in food processing and fermentation plants. In a pasteurization operation, the feed must be heated to a target temperature, held at that temperature for long enough to kill unwanted species that may be present in the feed, and then cooled to the process temperature. The high temperature residence time is usually obtained by passing the process fluid through a steam-traced or well-insulated pipe coil. The initial heating of the feed can be accomplished by heat exchange with the hot fluid leaving the coil, allowing the use of a smaller steam heater to reach the target temperature, as shown in Figure 3.30. This design is common in food-processing plants, but care must be taken to ensure that there is no leakage across the heat exchanger, which could potentially lead to contamination of the “sterile” feed with components from the raw feed.
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Figure 3.30 Heat integration of feed sterilization system.

Another situation where semi-continuous operation is often adopted is in the separation section of a batch plant. Some energy-intensive separations such as distillation and crystallization are easier to control to high recovery and tight product specifications when operated in continuous mode. In these cases a surge tank can feed the continuous section of the plant and typical heat recovery schemes such as feed-bottoms heat exchange can be considered.

If a batch plant is designed so that batches are transferred from one vessel to another (as opposed to undergoing successive steps in the same vessel), then heat can be transferred between streams as they are pumped from one vessel to the next. During the pumping operation the flow is at a pseudo-steady state, and a heat exchanger between two streams behaves the same as a heat exchanger in a continuous plant. Figure 3.31 shows such an arrangement in which a hot stream flows from vessel R1 to vessel R2, while a cold stream flows from vessel R3 to vessel R4. The flowing streams exchange heat in a heat exchanger that is shown as being countercurrent, but could equally well be cross-flow or cocurrent if the temperatures were suitable. This arrangement is sometimes referred to as a “countercurrent” heat integration, although it should be stressed that the exchanger can be cocurrent or cross-flow.
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Figure 3.31 Stream-to-stream (“countercurrent”) heat integration of batch vessels.

When stream-to-stream heat transfer is used, a high degree of heat recovery can be obtained. The exchanger will perform well and maintain roughly constant stream outlet temperatures during the period when the vessels are being pumped out. When the liquid level in the vessels becomes too low for pump operation, the flow rates in the exchanger become too low for the exchanger to function effectively. If batch-to-batch contamination is not important and there are no safety hazards, product quality issues, or fouling concerns, then the exchanger can be isolated (“blocked in”) while the remaining tank contents are drained through bypass lines, and the exchanger is then ready to be reused when tanks R1 and R3 are again ready to be drained. In the case where batch-to-batch mixing is not desired, or where there are other reasons why the exchanger cannot be left full of process fluid, provision must be made to flush, drain, and clean the exchanger once the upstream tanks are empty.




Sequencing Multiple Batches

If a plant contains several batches that are undergoing different steps of a process at the same time, or if several different batch plants are grouped close to each other, then the batches can sometimes be sequenced so that heat can be transferred from one batch to another.

Suppose a batch process contains the steps of heating reagents, reacting them at a desired temperature and then cooling the products before sending them for further processing. If two reactors are used, a heat exchanger can be employed to exchange heat from the reactor that is being cooled to the reactor that is being heated. For example, in Figure 3.32, hot fluid from vessel R5 is pumped through an exchanger where it transfers heat to cold fluid that is pumped from vessel R6. The fluid from each vessel is returned to the vessel that it came from. The heat exchanger in Figure 3.31 is shown as being countercurrent, but cocurrent or cross-flow heat exchange could be used if the temperatures were appropriate.
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Figure 3.32 Tank-to-tank (“cocurrent”) heat integration of batch vessels.

The graph on the right of Figure 3.32 is a schematic of the temperature-time profile for both vessels. As time progresses, they become closer in temperature, and would eventually reach thermal equilibrium. In practice, it is usually not economical to run the exchanger for very long times, and heat transfer is stopped when an acceptable minimum temperature difference between the vessels is reached, shown as ΔTmin in the figure. Tank-to-tank heat transfer does not allow as efficient heat recovery as stream-to-stream, as the hottest temperatures in the hot tank are matched with the coldest temperatures in the cold tank, as they would be in a cocurrent heat exchanger, hence Vaselenak, et al. (1986) named this type of batch heat integration “cocurrent” heat integration. It should again be stressed that the heat exchanger is usually designed to be countercurrent or cross-flow.

An improvement on this scheme is to use stream-to-tank heat transfer, shown in Figure 3.33, in which a stream that is transferred from one vessel to another exchanges heat with a stream that is returned to the tank from which it originated. In Figure 3.33, hot fluid flows from R7 to R8 and transfers heat to a cold stream that is pumped from R9 and returned to R9. The graph on the right of Figure 3.33 is a schematic of the temperature behavior of R9, R8, and the location marked as A on the line entering R8. The temperature of the cold fluid in R9 increases over time as heat is transferred to it. The temperature at A is the temperature of the hot fluid at the exit of the heat exchanger. The heat exchanger will usually be designed to pinch at the cold end, since the recirculating flow from R9 can be much greater than the pump-out flow from R7. Consequently, the temperature at A will be equal to the temperature in R9 plus the temperature approach of the heat exchanger, and so the temperature at A has a profile offset above the R9 temperature profile. The temperature in R8 is the time-averaged integral of the temperature of the feed to the vessel, i.e., the time-averaged integral of the temperature at A. Although the fluid entering R8 becomes hotter with time, it is mixed with an accumulating volume of colder fluid, so the temperature in R8 does not increase so rapidly as the temperature in R9, and R8 can even be colder than R9 when the heat transfer is complete. This process is therefore intermediate in thermal efficiency between tank-to-tank heat transfer and stream-to-stream heat transfer. It is sometimes known as “cocurrent/countercurrent” heat integration. The derivation of the equations needed to accurately describe the temperature profiles for this arrangement is given by Vaselenak, et al. (1986).

[image: image]

Figure 3.33 Stream-to-tank (“cocurrent/countercurrent”) heat integration of batch vessels.

When tank-to-tank or tank-to-stream heat transfer is selected, care must be taken to ensure that the heat exchanger doesn’t cause problems when not in use. If the designer anticipates that there could be problems with fouling, corrosion, batch-to-batch contamination, product degradation, safety issues, or any other issue with leaving the exchanger filled, then the design must include means to drain, flush, and clean the exchanger between batches.

When considering the use of stream-to-stream, stream-to-tank, or tank-to-tank heat transfer in a batch process, the designer must ensure that the batch schedules allow both streams to be available at the same time and for a sufficient time to accomplish the desired heat recovery. When draining, flushing, and cleaning of the heat exchanger are necessary, these steps must also be taken into account. For a process that handles multiple batches simultaneously or a site with multiple batch plants, the resulting scheduling problem becomes too large to optimize by hand and numerical methods must be used. See Vaselenak, et al. (1986), Kemp and Deakin (1989), and Lee and Reklaitis (1995) for approaches to solving such problems.




Indirect Heat Recovery

An alternative method of heat recovery that can be used in batch processing is to recover heat indirectly through the utility system or using a heat storage system. Although less thermally efficient than process-to-process heat recovery, this method eliminates problems from sequencing of operations.

In indirect heat recovery, heat from a hot process stream is transferred to a utility stream, such as a reservoir of heat-transfer fluid. The heat-transfer fluid can then be used for heating elsewhere in the process. Indirect heat recovery can be used in any of the flow schemes described above, but in all cases the use of an intermediate stream will reduce the thermal efficiency and the amount of heat that can be recovered. Heat storage systems can only be used when there is a large enough temperature difference between the process heat source and process heat sink to allow for the thermal inefficiency of transfer of heat to the storage medium, cooling losses during storage, and transfer of heat to the process heat sink.

Example 3.7 Differential Energy Balance

In the batch preparation of an aqueous solution, the water is first heated to 80 °C in a jacketed, agitated vessel; 1000 Imp. gal. (4545 kg) is heated from 15 °C. If the jacket area is 300 ft2 (27.9 m2) and the overall heat-transfer coefficient can be taken as 50 Btu ft−2 h−1 °F−1 (285 W m−2 K−1), estimate the heating time. Steam is supplied at 25 psig (2.7 bar).


Solution

The rate of heat transfer from the jacket to the water will be given by Equation 3.10:

[image: image] (3.10)

Since steam is used as the heating medium, the hot side is isothermal and we can write

[image: image]

where Ts[image: ent]=[image: ent]the steam saturation temperature.

Integrating:

[image: image]

Batch heating time, tB:

[image: image]

For this example,
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In this example the heat capacity of the vessel and the heat losses have been neglected for simplicity. They would increase the heating time by 10 to 20 percent.
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Nomenclature


			Dimensions in $MLTθ



	A
	Area
	L2

	CP
	Stream heat capacity flow rate
	ML 2 T−2 θ−1

	CPc
	Stream heat capacity flow rate, cold stream
	ML
2

T−2 θ−1

	CPh
	Stream heat capacity flow rate, hot stream
	ML
2

T−2 θ−1

	Cp
	Specific heat at constant pressure
	L
2

T−2 θ−1

	ΣCPc
	Sum of heat capacity flow rates of cold streams
	ML
2

T−2 θ−1

	ΣCPh
	Sum of heat capacity flow rates of hot streams
	ML
2

T−2 θ−1

	COP
	Coefficient of performance for a refrigeration cycle
	—

	COPh
	Coefficient of performance for a heat pump
	—

	dHb
	Boiler heating rate
	L−2 T2

	H
	Enthalpy
	ML
2

T−2

	ΔH
	Change in enthalpy
	ML
2

T−2

	ΔHcold
	Heat transfer from cold utility
	ML
2

T−3

	ΔHex
	Heat transfer in exchanger
	ML
2

T−3

	ΔHhot
	Heat transfer from hot utility
	ML
2

T−3

	ΔHn
	Net heat required in nth interval
	ML
2

T−3

	ΔHxp
	Cross-pinch heat transfer
	ML
2

T−3

	−ΔH°c
	Standard heat of combustion
	L
2

T−2

	ΔH°f
	Standard enthalpy of formation
	L
2

T−2

	hg
	Specific enthalpy of steam
	L
2

T−2

	L′
	Number of internal loops in network
	—

	M
	Mass
	M

	m
	Mass flow-rate
	MT−1

	N
	Number of cold streams, heat-exchanger networks
	—

	N′
	Number of streams
	—

	PBFW
	Price of boiler feed water
	$M−1

	PF
	Price of fuel
	$M−1 L−2 T2

	PHPS
	Price of high pressure steam
	$M−1

	S
	Number of independent branches
	—

	sg
	Specific entropy
	L
2

T−2 θ−1

	T
	Temperature, absolute
	θ

	T1
	Initial temperature
	θ

	T2
	Final temperature
	θ

	Tact
	Actual stream temperature
	θ

	Tc
	Condenser temperature
	θ

	Te
	Evaporator temperature
	θ

	Tint
	Interval temperature
	θ

	Tn
	Temperature in nth interval
	θ

	Tpinch
	Pinch temperature
	θ

	Treturn
	Return temperature for utility
	θ

	Ts
	Source temperature
	θ

	Tsupply
	Supply temperature for utility
	θ

	Ts
	Steam saturation temperature
	θ

	Tt
	Target temperature
	θ

	ΔTm
	Mean temperature difference
	θ

	ΔTmin
	Minimum temperature difference (minimum approach) in heat exchanger
	θ

	ΔTn
	Interval temperature difference
	θ

	t
	Time
	T

	tB
	Batch heating time
	T

	U
	Overall heat transfer coefficient
	MT−3 θ−1

	Zmin
	Minimum number of heat exchangers in network
	—

	ηB
	Boiler efficiency
	—






Problems

3.1. A process heater uses Dowtherm A heat transfer fluid to provide 850 kW of heat. Estimate the annual operating cost of the heater if the Dowtherm evaporator is 80% efficient and the price of natural gas is $4.60/MMBtu. Assume 8000 operating hours per year.

3.2. A site steam system consists of HP steam at 40 bar, MP steam at 18 bar, and LP steam at 3 bar. If natural gas costs $3.50/MMBtu and electricity is worth $0.07/kWh, estimate the cost of steam at each level in $/metric ton.

3.3. Make a rough estimate of the cost of steam per ton, produced from a packaged boiler. 10,000 kg per hour of steam are required at 15 bar. Natural gas will be used as the fuel, calorific value 39 MJ/m3 (roughly 1 MMBtu/1000 scf). Take the boiler efficiency as 80%. No condensate will be returned to the boiler.

3.4. A crystallization process requires operation at −5° C. The refrigeration system can reject heat to cooling water that is available at 35° C. If a single refrigeration cycle has an efficiency of 60% of Carnot cycle performance then estimate the cost of providing 1[image: ent]kW of cooling to this process using a single-stage cycle and using a cascaded-two stage cycle (in which the colder cycle rejects heat to the warmer cycle). Electricity costs $0.07/kWh and the cost of cooling water can be neglected.

3.5. A gas produced as a by-product from the carbonization of coal has the following composition, mole %: carbon dioxide 4, carbon monoxide 15, hydrogen 50, methane 12, ethane 2, ethylene 4, benzene 2, balance nitrogen. Using the data given in Appendix C (available online at booksite.Elsevier.com/Towler), calculate the gross and net calorific values of the gas. Give your answer in MJ/m3, at standard temperature and pressure.

3.6. Determine the pinch temperature and the minimum utility requirements for the process set out below. Take the minimum approach temperature as 15 °C. Devise a heat-exchanger network to achieve maximum energy recovery.

[image: Image]

3.7. Determine the pinch temperature and the minimum utility requirements for the process set out below. Take the minimum approach temperature as 15 °C. Devise a heat-exchanger network to achieve maximum energy recovery.

[image: Image]

3.8. To produce a high purity product two distillation columns are operated in series. The overhead stream from the first column is the feed to the second column. The overhead from the second column is the purified product. Both columns are conventional distillation columns fitted with reboilers and total condensers. The bottom products are passed to other processing units, which do not form part of this problem. The feed to the first column passes through a preheater. The condensate from the second column is passed through a product cooler. The duty for each stream is summarized below:

[image: Image]

Find the minimum utility requirements for this process, for a minimum approach temperature of 10 °C.

Note: the stream heat capacity is given by dividing the exchanger duty by the temperature change.

3.9. At what value of the minimum approach temperature does the problem in Example 3.5 become a threshold problem? Design a heat-exchanger network for the resulting threshold problem. What insights does this give into the design proposed in Example 3.5?
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CeHe GHe  GHSCl CeHsCl CeHiCly CeHCl
liquid s liquid ~ gas liquid s
Heat of formation ar 298°K
(J/kmol) 49.0 2.9 75 461 —420 5.0
Hear capacity
(J/kmol K) 298K 136 82 152 92 103
350K 148 99 61 108 193 118
400K 163 113 7 121 28 131
450K 179 126 81 134 296 143
SO0K 200 137 92 145 366 155
Density (kg/m)
298K 872 1100
350K 815 1040 1230
400K 761 989 1170
450K 693 932 1100
SO0K 612 875 1020
Viscosity (Ns/m?)
298°K 0598 x 107 0750 % 107
350°K 0326 % 107 0.435 % 107 0697 % 107
400K 0,207 % 107 0.305 % 107 0476 x 107
450K 0.134 % 107 0.228 x 107 0335 %107
SO0K  0.095 x 107 0.158 % 107 0236 x 107
Surface tension (N/m)
208K 0.0280 0.0314
350K 0.0220 0.0276 0.0304
400K 0.0162 0.0232 0.0259
450K 0.0104 0.0177 0.0205
S00°K 0.0047 0.0115 0.0142
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4 1257 218 13.06
5 1964 139 8.36
6 2828 097 581
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8 5027 054 3
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100 mm 1000 ~4.00

75 mm 750 ~3.00

50 mm 500 ~2.00

25 mm 250 ~1.00

125 mm 12, 050

6.3 mm 63 -025

No. 4. 4mesh 475 0.187
No. s mesh 400 0157
No. 6 6 mesh 335 0132
No. 7 7 mesh 280 0.110
No. 8 8 mesh 236 00937
No. 10 9 mesh 200 00787
No. 12 10 mesh 170 00661
No. 14 12 mesh 140 00555
No. 16 14 mesh 118 00469
No. 18 16 mesh 100 00394
No. 20 20 mesh 085 00331
No. 25 24 mesh 071 00278
No. 30 28 mesh 060 00234
No. 35 32 mesh 0500 00197
No. 40 35 mesh 0425 00165
No. 45 42 mesh 0355 00139
No. 50 48 mesh 0300 00117
No. 60 60 mesh 0250 00098
No. 70 65 mesh 0212 00083
No. 80 80 mesh 0.180 00070
No. 100 100 mesh 0.150 00059
No. 120 115 mesh 0.125 00049
No. 140 150 mesh 0.106 00041
No. 200 200 mesh 0075 00029

No. 400 400 mesh 0038 00015
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Degree of Radiographic Examination
Joint Deseription Joint Category  Full Spot None

Double-welded butt joint or equivalent AB.CD 10 085 070
ngle-welded but joint with backing strip AB.CD 09 08 065
Single-wekled butt joint without backing strip AB.C NA NA 060
Double full fillet lap joint AB.C NA NA 055
ngle full fillet lap joint with plug welds B.C NA NA 050
Single full fillet lap joint without plug welds AB NA NA 045






OEBPS/images/T000146tabT0015.jpg
Maximum Allowable Stress at

Maximum A ]
Temperature °F (ksi = 1000 psi
Min Tensile  Min Yield Temperature i g D)
Material Grade  Swength ks)  Strength (ksi)  CF) w30 50 700
Catbon stcel A5 1 u 900 29 129 129 s
Gra
Killed carbon Steel Asts & 2 1000 v s
Greo
Lowalloy swel 1% Cr,  A387 & 30 1200 1 166 166 166
42 Mo, S G2
Suinless steel 13Cr 410 65 3 1200 186 178 1 162
Suinless seel 18Cr, 304 75 30 1500 00 150 129 17
§Ni
Suinless sl 18Cr, 347 75 30 1500 20 11 150 138
10N, Cb
Suinless steel 18Cr, 321 75 30 1500 200 165 143 130
10N, Ti
Suinless steel 16Cr, 316 75 30 1500 00 156 133 121

12 Ni. 2 Mo





OEBPS/images/F000146f14-03-9780080966595.jpg
| *-

Pressure 7, acts
on area a4

R

(e Horteortal seclion

Longitudinal stress o,
acts on area 71

Pressure P, acts
onarea DL

Hoopstress o,
actsonarea 2L

(b) Vertical section





OEBPS/images/F000146si7.gif





OEBPS/images/F000146si9.gif





OEBPS/images/F000146si8.gif





OEBPS/images/F000146si10.gif





OEBPS/images/F000195si67.gif
across methanol film = 1= x AT = 258 x 35
" 3740






OEBPS/images/F000195si66.gif
X33 107 % 36,762 x 5.1 = 2740 Wim*C






OEBPS/images/F000195si69.gif
1.0 20%107n

U, " 7740 T 3000
= T3 Wi C

+

e






OEBPS/images/F000195si68.gif





OEBPS/images/F000195si71.gif
2(Bxd3x 107 (ABIXI0) |, ) 995 x0.75°
16 >

7211 N/m® = 7.2kPa (1.1 psi)





OEBPS/images/F000195si70.gif
Jr=43 %107





OEBPS/images/F000195si73.gif





OEBPS/images/F000195si72.gif
Linear velocity = <= = 308 — 16

> 750





OEBPS/images/F000195si65.gif
Jh=33x107





OEBPS/images/F000122si9.gif
(1 =2w) = (1 — )

5






OEBPS/images/F000122f12-07-9780080966595.jpg
flx)






OEBPS/images/F000122si11.gif
) —flx, —h) 120

i)+ fla, — ) 1)





OEBPS/images/F000122si10.gif
s = 5 !
%





OEBPS/images/F000122f12-08-9780080966595.jpg
30

20

10

Giobal
minimum

~___Contour of =, with
value indicated

Local
minimum






OEBPS/images/F000122si12.gif





OEBPS/images/F000122f12-09-9780080966595.jpg
2

(@)

()





OEBPS/images/F000122si13.gif
x = ax,+(1—aj, €FR
Yo neFR O<a<l





OEBPS/images/F000122f12-11-9780080966595.jpg





OEBPS/images/F000122f12-10-9780080966595.jpg





OEBPS/images/F000195si74.gif
b =8 xax 107 (F04) (410

FEANTS
=272.019 Nim?
=272 kPa (39 psi} 0o hi






OEBPS/images/F000195si56.gif
=039
e x 10

iy X395 107 X 14,925 % 5.7 = 3812 Wim





OEBPS/images/F000195si55.gif
L _483x10°
4 16

02





OEBPS/images/F000195si58.gif





OEBPS/images/F000195si57.gif
Choose baftle spacing





OEBPS/images/F000195si60.gif
100000 _1
23600 D032

Mass velocity. G, =868 kgism?





OEBPS/images/F000195si59.gif
Cross-flow area 4, = 8945 178 107 = 0032 1’





OEBPS/images/F000195si62.gif
95+40
2

Mean shell-side temperature

Methanol density = 750 ke/m’*
Viscosity =0.34 mNs/m?

Heat capacity = 2 84 KIIkg'C
Thermal conductivity =0.19 W/m°C.






OEBPS/images/F000195si61.gif
Equivalent di

meter d, = 53 (25° = 0917 x 20
>0





OEBPS/images/F000122f12-12-9780080966595.jpg





OEBPS/images/F000122si15.gif
X+ Xy

S0+S85, =0





OEBPS/images/F000122si14.gif
X+

A <)





OEBPS/images/F000122si16.gif
B B

ifv =0 the feature does notexistin the optimal solutior






OEBPS/images/F000122f12-13-9780080966595.jpg





OEBPS/images/F000122f12-14-9780080966595.jpg
B~

Binary variable determines if
valve is open or closed
3

(@) ()





OEBPS/images/F000122si17.gif
choose only one of ioptions

Sysm chaose at most e of  options.

Svem chaose at least m of  options

=<0 i item & is selected, tem j must be sefected, but not viee versa
gl =My<0
=M1 =y} <0 cither 1) 0 or g2(x) <0

Mis a large scalar value





OEBPS/images/F000122si19.gif
Al

ual production = quantty produced per batch x batches per year

annual cost of production

Cost per unit of production =
ostper it of production = = duction rate





OEBPS/images/F000122si18.gif
Batches per year






OEBPS/images/F000195si64.gif
284x10°x 034 x 107"

EN
0.19






OEBPS/images/F000122si20.gif
Min.: Total annualized cost [TAC) = cost of heating + cost of cooling + annualized capital cost





OEBPS/images/F000195si63.gif
(RIS - pyare
034 x 10~






OEBPS/images/F000195si128.gif
Jy =36X 107"

365 107 x 5792 48,96 = 680 Wi





OEBPS/images/F000195si127.gif
Cross-sectional area per pass = %‘\ 14.83% 107

02337

001553

820 1,524 14.83x 107
o100

Tube velocity. 1

524mis
R

792





OEBPS/images/F000195si129.gif
Jp=55%x107"

AP, =4(8x5.5 107 25

) 20X L34 _ 66 029 N 0.66 b






OEBPS/images/F000195si120.gif
00076
001012

Shell-side velocity =075 mis





OEBPS/images/F000195si122.gif
) X 452X 107 X 17, 214 x 8,05 = 1505 Win





OEBPS/images/F000195si121.gif
Re .03

= B30X0ISXIASIXM0T _ 17 51y pp= 247X 10" x043x 107
043 10" 0132





OEBPS/images/F000195si124.gif
5000 (820x2.3)
) +29) S5

251820

ap =4(8x5x107(

=435+

3

= 138,810 N/m™. 1.4 bar





OEBPS/images/F000195si123.gif
19.05x107'In

| 1905 |
35
o7 +O) {45+ e

+0.0002






OEBPS/images/F000195si126.gif





OEBPS/images/F000195si125.gif
Dh=l‘)(15( Zi )”::Y\

017,

537 mn, (0,54 1m]





OEBPS/images/F000109si31.gif
13,160 w
T CK,P KK,

— ___13160x0.56x 3600
356.0 % 0.975x 2000 1.0x 1.0 | 2

As






OEBPS/images/F000109si30.gif





OEBPS/images/F000110f11-02-9780080966595.jpg
c2
=4
V3

=
F1

&
e

¢

Compressor house

B33

J T

Control room

[Road|

Process

equipment

Pumps
pipe alley
—






OEBPS/images/F000110f11-01-9780080966595.jpg
[Emergency

ARG i
Rall sidng R _ Fire station
Tank form
@) g
$7/] Pantarea Workshops
O Z 2 Stores
O Laboratory
—_————
r
)
g Canteen
panaren | 11S —
J uties Change house
Epansion

Roads






OEBPS/images/F000110si2.gif





OEBPS/images/F000110f11-03-9780080966595.jpg





OEBPS/images/F000122si2.gif
Optimize [Max. or Min. | 2= f{x}
Subject1o [3.1.] 2(x) <0
h(x)






OEBPS/images/F000122si1.gif





OEBPS/images/F000122f12-01-9780080966595.jpg
Max
st

The nequalty constraint
limits s o values on or

below this fne

o squalty constraint
imits us o valuos
onthisino.





OEBPS/images/F000122si3.gif
Max.
.

X+ 2
Nt
<3






OEBPS/images/F000195si117.gif
506 100 = 10, 116 ma’ =0.01012m





OEBPS/images/F000195si116.gif
6 i (about 20 inches )





OEBPS/images/F000195si119.gif
0.0076 mls

Volumetric Nowrate on shell-side






OEBPS/images/F000195si118.gif
d, = Soos 12381 0017 x19.05%)

13.52mm






OEBPS/images/F000195si111.gif
2x 107

dn

2% 107{4332)(48.96)






OEBPS/images/F000195si110.gif
3210

_205x10'x32x 107

014 Sdnse





OEBPS/images/F000195si113.gif





OEBPS/images/F000195si112.gif





OEBPS/images/F000195si115.gif
150 mm, (0.45 m)





OEBPS/images/F000195si114.gif





OEBPS/images/F000122si4.gif
n sa |wherea>2)
w2b whereh<3)
0

hlxyxa)





OEBPS/images/F000122f12-02-9780080966595.jpg
The feasie region
dolinod b the inequalts
has o sofutn for the

equaity consiaint






OEBPS/images/F000122si5.gif





OEBPS/images/F000122f12-04-9780080966595.jpg
- 1otal Cost

Energy Cos!

Cost

Captal Cost

ar,

Minimam approach
P i





OEBPS/images/F000122f12-03-9780080966595.jpg
‘reactor cost

There is a step change
in cost when a higher

Yohsatine





OEBPS/images/F000122si7.gif





OEBPS/images/F000122si6.gif





OEBPS/images/F000122f12-05-9780080966595.jpg





OEBPS/images/F000122si8.gif





OEBPS/images/F000122f12-06-9780080966595.jpg





OEBPS/images/F000195si106.gif
ax 1905 % 107 %






OEBPS/images/F000195si105.gif
4, = 15094100
T 0% 710

=70.861






OEBPS/images/F000195si108.gif
400

D, =19.05 (224" 2 428 mm (0,43 m)

.240.





OEBPS/images/F000195si107.gif
Tube cross-sectional area = 7 (14.83x 107

Tube-

¥

00001727 m

So area per pass = 120 00001727 =0.02073 m?
70.000 1 y

olumetri flow = L _g0s7m

Volunetsic flow = 29000 L 20,0237 s
0.0237

ide velocity. 1=

ocity, = S2orss

L4mis





OEBPS/images/F000195si109.gif





OEBPS/images/T000195tabT0075.jpg
Kerosene

temperature
heat

specif
thermal conductivi

density

viscosity

Inlet

200
271

0.130
690
0.

Mean

145
247
0.132
730
043

Outlet

9%
226

0135
770

0.80

Kiike°C

kgfm®

mN sm™2





OEBPS/images/F000195si102.gif
_ (00 -—90)
= oo—a0; ~2*





OEBPS/images/F000195si101.gif
AT, = 20— 78 - 190 40)
o =T
n o0 —a01

80.7°C






OEBPS/images/F000195si104.gif





OEBPS/images/F000195si103.gif
(7840}
T200=40)






OEBPS/images/F000195si97.gif
145%

AP, =4[$x3.5x 107 x 992.8x = 39,660

— J0KN/m





OEBPS/images/F000195si96.gif
A5 x 16X 107" x 9928
670 % 10—






OEBPS/images/F000195f19-31-9780080966595.jpg
otep 1
Specticaion — %
Define duty 2

Make eneray balance i needed Decide baffe spacing and
10 calulate unspecifed low estimate shellside heat
rates ortemperalures ranster coeficient
sepz | st |
Calcuate overal heat ransier
Collectphysicalproperties coefficient inclucing fouing
factors, U,
Step 3 1
Assume value of overal
coeffcent U,
Stop 4 )
Decide number of shell and Set Upa=Uncac
rigediniondibas nig Estimate tube-and shel

correction factor, £, and AT,,

e e

Determine heat transfer area
requited: 4,=0/Uy,u, AT,y

Step 6. | ——

Decide type, tube size, material
layout assign fluids to shel or
tube side

Step7. T

Calculate number of tubes.

Estimate cost of exchanger

1
Step 180 design be
optimized o reduce cost

Yes

Step 8. 1

Calculate shell diameter

Step 9 T

Estimate tube-side heat
transfer coefficient

PZ

Accept design






OEBPS/images/F000195si98.gif





OEBPS/images/F000195si100.gif
TO00 3 01 {1, — 40} = 15
1o X 2.01 [, —40) = 1509.4





OEBPS/images/F000195si99.gif
Duty

20.000
2600

X 247200 =90} = 1509.4 kW





OEBPS/images/emsp_8195.gif





OEBPS/images/thinsp_8201.gif





OEBPS/images/rect_9645.jpg





OEBPS/images/puncsp_8200.jpg





OEBPS/images/hamilt_8459.jpg





OEBPS/images/ll_8810.jpg





OEBPS/images/F000195si93.gif
2520
g

G, = 6251000887 = 7046 ks

x0.667x0.133)

1= T04.6/850 = 0.83 mis. looks reasonahle






OEBPS/images/F000195si92.gif
Tube patch, Smm






OEBPS/images/hairsp_8202.jpg





OEBPS/images/F000195si95.gif
20x 107 In{20/16)
11967 +0.0002 %‘S' +20/16{ /6982 +0.00025)

W,

00125

10,001

800 Wi






OEBPS/images/F000195si94.gif
Pr={228x10"x0.17x 107}
6107 X 58,930 x 3,117
223.4%0.1251(14.2 % 107






OEBPS/images/F000109f10-14-9780080966595.jpg
‘Secondary
)

Flow rate

Inital
isee

0% Of MAWP  +21% of MAWP.
Maximu relieving
Joucystpiiy ik vin

10%Of MAWP et pressur
Normal Maximum allowable  Maximum
MR ok  weddas ieskiine < Telsia ERSSRES’





OEBPS/images/F000109si24.gif
13.160w





OEBPS/images/F000109si23.gif





OEBPS/images/F000109f10-15-9780080966595.jpg





OEBPS/images/F000109si25.gif





OEBPS/images/F000109si26.gif
130y (20x10°7) 5
SRV Lix () * (%55 )X'

T RT T %8 314313






OEBPS/images/F000109f10-16-9780080966595.jpg
Relief valve

Flare header

Knockoul
drum

Water
seal pot

Liquids to oil
recovery or
oA

B






OEBPS/images/F000109si28.gif
21000 1 x84.2*"
150

= 4423 Ibvhe
056 kels





OEBPS/images/F000109si27.gif
DL, Dy _1zD’
volume = 2L 4 2
e (4 +ﬁ) 2
D= 112m

wetted area

(DL+D%)/2= 20D

8 = R4






OEBPS/images/F000109si29.gif





OEBPS/images/F000043u04-42-9780080966595.jpg





OEBPS/images/T000043tabT0020.jpg
AT ar av Ar ar av

Non-ring increments

—CH, 0.020 0227 0055 00 0.198 0036

—CH, 0.020 0227 0055 — 00 0.198 0036
0.012 0210 0051 =cH 0005 0.153 0036+
0.00 0210 0041 0005 0.153 0036+
0.018 0.198 0045 H 0 0 0
0.018 0.198 0045

Ring increments

—CH,— 0.013 0.184 00445 0011 0.154 0037
0.012 0.192 0046 0011 0.154 0036

—0.007¢  0.154% 0031% —c— 0011 0.154 0036

Halogen increments

—F 0.018 0.224 0018 —Br 0010 0504 0070+

—l 0.017 0.320 0.049 oy 0012 0.83% 0.095%





OEBPS/images/F000043si13.gif





OEBPS/images/T000043tabT0050.jpg
Total Contribution

Group No. of ar ar av
H—C—(ring) 10 o 154 037
=C—{ring) 0.022 0308 0072
—CHy— 1 002 0227 0055

0152 2075 0497





OEBPS/images/F000043si54.gif





OEBPS/images/F000043si53.gif
arpaciacns] yaiTa %85 anm,





OEBPS/images/F000043si15.gif





OEBPS/images/F000043si14.gif





OEBPS/images/F000043si17.gif





OEBPS/images/F000043si16.gif






OEBPS/images/F000043si18.gif





OEBPS/images/F000043si20.gif





OEBPS/images/F000043si19.gif





OEBPS/images/F000043si22.gif





OEBPS/images/F000043si21.gif





OEBPS/images/F000043si24.gif
¢





OEBPS/images/F000043si23.gif





OEBPS/images/F000043si26.gif
¢





OEBPS/images/F000043si25.gif





OEBPS/images/F000043si27.gif





OEBPS/images/F000031si76.gif
_ 4184545 107

395 %279

13080
130-15






OEBPS/images/F000031si75.gif
130°C





OEBPS/images/T000031tabT0100.jpg
Heat Capacity

Stream Number  Type KWPC Source Temp. °C Target Temp. °C
1 hot 135 180 80
2 hot 270 135 45
3 cold 535 60 100
n oy 215 15 120





OEBPS/images/F000031si77.gif





OEBPS/images/T000031tabT0110.jpg
™

Stream Type  Source Temp. ‘¢ Target Temp. °C Duty, kW

Feed preheater cold 20 50 900
First condenser hot 70 60 1350
Second condenser hot 65 55 1100
First reboiler cold 85 87 1400
Second reboiler cold 75 7 900

Product cooler Hot 55 25 30





OEBPS/images/T000031tabT0105.jpg
Heat Capacity

Stream Number  Type KWPC Source Temp. °C Target Temp. °C
1 hot 100 200 80
2 hot 200 155 50
3 hot 40.0 % 35
4 cold 30.0 60 100

cold 80 35 90





OEBPS/images/F000043f04-01-9780080966595.jpg
Equipment
sub-routines
rary and
specials

Thermodynamic

subroutines.

Convergence

promotion
sub-routines

Physical
property
data fles.

Costdata
fles

L ——. T p—






OEBPS/images/T000043tabT0010.jpg
Internet Address hitp//
Name Type Source www—

Aspen Plus steady-state Aspen Technology Inc. Aspentech.com
‘Ten Canal Park
Cambridge, MA
02141-2201, US:
CHEMCAD steady-state Chemstations Tnc. Chemstations.net
2001 Wilerest, Suite 305
Houston, TX 77042
Usa
DESIGN 1t steady-state Wi
PO, Box 1885
Houston,
TX 772511885, USA
HYSYS steady-state and dynamic  Aspen Technology Tnc. Aspentech.com
‘Ten Canal Park
Cambridge, MA
02141-2201, USA
PRO/Il and DYNSIM  steady-state and dynamic  SimSci-Esscor
5760 Fleet Street
Suite 100, Carlsbad,
CA 92009, USA
steady-state and dynamic  Honeywell Honeywellcom
300-250 York Street
London, Ontario
N6A 6K2. Canada

Sim Inc. Winsim.com

Simsei.com






OEBPS/images/T000043tabT0045.jpg
Contribution

3684
3040
37.68

No. of

1 = 36.84
1 30.40
1 = 3768






OEBPS/images/T000043tabT0015.jpg
Alkane

Olefin

Alkyne

In a ring

Oxygen

Value

3684

3040

2093

7.37

2470
2470

3517
53.00
53.00

7997

—OoH
—ONO,

Halogen
—C (first or second on a carbon)
—Cl (third or fourth on a carbon)

Nitrogen
.
—N=(in a ring)
—C=N
Sulphur
Hydrogen

He— (for fommic acid, formates, hydrogen
vanide, etc.)

Value

1137

44.80
11932

36.01

37.68
1675
36.01

43.96

3140
18.84

58.70

44.80
33.49

14.65





OEBPS/images/F000043si1.gif
Specific heat capacity $°C





OEBPS/images/F000201si110.gif
(% 1.27) maximum 200 kPa





OEBPS/images/F000201si111.gif
Heat exchanger, allow normal 70 kPa





OEBPS/images/F000043si3.gif





OEBPS/images/F000043si2.gif





OEBPS/images/F000043si5.gif
16.3982
3287.56
511

Antoine constants A
B
a






OEBPS/images/F000043si4.gif





OEBPS/images/F000043si7.gif
In P 2

T+C
np = 163082~ 328756 _ g 1y
SR
P= 342135 mmHg = 4.5 bar

43 008
I
473

560.1
[,,M]“‘
08317
8.32x 32876 x (47.

47375017

0831

=091

0911

35211k /kmol






OEBPS/images/F000043si6.gif
1
at the bp. P, =0.02124
tihebp P =26

832X 32876 (412.7)° x0.972
4127-75.01 1

Ly






OEBPS/images/F000043si9.gif
(0.34+2AP)





OEBPS/images/F000043si8.gif
Ts
05674 2AT—






OEBPS/images/F000043si10.gif
A4+ XAV






OEBPS/images/F000146si28.gif
143X 1.5x 107

= =122mm
2x89x1) - (12x1.43]

add corrosion allowance 12.2+2 = 14.2 mm

say 15 mm plate or 9/, inch plate






OEBPS/images/F000146si27.gif





OEBPS/images/F000146si30.gif
143x1.5x 107
TIx8Ix 1) — (0.2 1.43]

12,1 mm






OEBPS/images/F000146si29.gif
0.885 x 143x 1.5x 10
(89% 1 —(0.1%1.43)

214 mm






OEBPS/images/F000031si60.gif
Annual cost per KW = 138 107 x 2205 (Ib/kg | x 4.03 (/1000 1b /1000

123y





OEBPS/images/F000146f14-08-9780080966595.jpg
=

@

()

()





OEBPS/images/F000031si59.gif
3.8x 10 kely





OEBPS/images/F000146si31.gif
25x1.43

L7107 22X

107.7mm






OEBPS/images/F000031si62.gif
1 % 3600 x 8000/,

686 x 107 kely

wal flow rate of cooling water per kW





OEBPS/images/F000146si32.gif





OEBPS/images/F000031si61.gif
requires C






OEBPS/images/F000146f14-09-9780080966595.jpg





OEBPS/images/F000031si64.gif
which has annuoal cost 0.1 < I81.2






OEBPS/images/F000146si34.gif
v = D410t





OEBPS/images/F000031si63.gif
water flow rate = 686 x 10°/378:

81.2 thousand gallons per vear.





OEBPS/images/F000146si33.gif





OEBPS/images/F000031si66.gif
Encrgy i+ generation — consumption — accumulation





OEBPS/images/F000031si65.gif
I KW of cooling = 3600 x 8000

8.8 x 107 Kliy =28 8 Gy





OEBPS/images/F000031si68.gif
MC, ST = UAAT,
i





OEBPS/images/F000031si67.gif
Rate ol heat accumulation = rate ol heat transter into vessel





OEBPS/images/F000031f03-30-9780080966595.jpg
Steam
heater

Raw foed
Sterilized feed





OEBPS/images/F000031f03-32-9780080966595.jpg
RS

R6

ar,





OEBPS/images/F000031f03-31-9780080966595.jpg
4 |lo





OEBPS/images/F000031si69.gif





OEBPS/images/F000031f03-33-9780080966595.jpg
R7T

R8






OEBPS/images/F000031si71.gif





OEBPS/images/F000031si70.gif





OEBPS/images/F000031si73.gif
18 x 4545 % 107 JK™






OEBPS/images/F000031si72.gif





OEBPS/images/F000031si74.gif





OEBPS/images/F000146si12.gif





OEBPS/images/F000146si11.gif





OEBPS/images/F000146si14.gif





OEBPS/images/F000146si13.gif





OEBPS/images/F000146si16.gif
SSE—12P,





OEBPS/images/F000146si15.gif





OEBPS/images/F000146si18.gif
ISE—0.4P,





OEBPS/images/F000146si17.gif
FiD;

ISE+0.8P,






OEBPS/images/F000146f14-05-9780080966595.jpg
[Flange






OEBPS/images/F000146f14-04-9780080966595.jpg
>
(@ X
(®)
W T
] g c =
T D ‘ r
7 W
] !
] L
(c) (d) (e)






OEBPS/images/F000146si19.gif





OEBPS/images/F000146si21.gif
SSE—0.2P,





OEBPS/images/F000146si20.gif
ISE—0.4P,





OEBPS/images/F000031si50.gif
stream | AH =40.00 100 - 40|






OEBPS/images/F000146si22.gif
0883 PR,
SE—01P.






OEBPS/images/F000146f14-06-9780080966595.jpg





OEBPS/images/F000031si52.gif
stream 3 AH = 600080 = 30) = 3000 kW






OEBPS/images/F000146si24.gif
cos a(SE—0.6P;)





OEBPS/images/F000031si51.gif
stream 2 A

OLOCT00 =60 = 1200 kW





OEBPS/images/F000146si23.gif
Cos





OEBPS/images/F000031si54.gif
00 — 1800 = 600 KW






OEBPS/images/F000146si25.gif
4=11xl1.1





OEBPS/images/F000031si53.gif
Temp out=

S °C. satisluctory





OEBPS/images/F000146f14-07-9780080966595.jpg
14° max

@

Knuckle radius






OEBPS/images/F000031si55.gif
Heat of condensation | by interpolation in steam tables | = 1889 k)/kg





OEBPS/images/T000031tabT0090.jpg
Utility Stream
MP steam (20 bar)
LP steam (6 bar)

Cooling water
Chilled water

Tauppty (°C)
212
159
30
10

Treturn (°C)
212
159
40
20

Cost

$5.47/1000 I
$4.03/1000 b
$0.10/1000 gal
$4.50/G]





OEBPS/images/F000146si26.gif





OEBPS/images/F000031si57.gif
Annual cost per KW =152 10" x 2.205 (Ib/kg) x 5.47 ($/1000 1b /1000 = $183 /y





OEBPS/images/F000031si56.gif
5.2x 10" kely





OEBPS/images/F000031si58.gif
Heat of condensation | by interpolation in steam tables | = 2085 k)/kg





OEBPS/images/F000389appu02-52-9780080966595.jpg





OEBPS/images/F000389appu02-53-9780080966595.jpg





OEBPS/images/F000389appu02-50-9780080966595.jpg





OEBPS/images/F000389appu02-51-9780080966595.jpg





OEBPS/images/F000389appu02-54-9780080966595.jpg





OEBPS/images/F000389appu02-55-9780080966595.jpg





OEBPS/images/F000389appu02-56-9780080966595.jpg





OEBPS/images/F000389appu02-59-9780080966595.jpg





OEBPS/images/F000389appu02-60-9780080966595.jpg
i






OEBPS/images/F000389appu02-57-9780080966595.jpg





OEBPS/images/F000389appu02-58-9780080966595.jpg





OEBPS/images/F000389appu02-41-9780080966595.jpg





OEBPS/images/F000389appu02-42-9780080966595.jpg





OEBPS/images/F000389appu02-39-9780080966595.jpg





OEBPS/images/F000389appu02-40-9780080966595.jpg





OEBPS/images/F000389appu02-45-9780080966595.jpg





OEBPS/images/F000389appu02-43-9780080966595.jpg





OEBPS/images/F000389appu02-44-9780080966595.jpg





OEBPS/images/F000389appu02-48-9780080966595.jpg





OEBPS/images/F000389appu02-49-9780080966595.jpg





OEBPS/images/F000389appu02-46-9780080966595.jpg





OEBPS/images/F000389appu02-47-9780080966595.jpg





OEBPS/images/F000031si41.gif





OEBPS/images/F000031f03-29-9780080966595.jpg
CP

)
) e 100°c | 100°¢ o a0c @
‘ 600 kW
150°C, 100°C 60°C 30
800 kW' ‘
To'c o : w0
| (> 1800 kW, 5] e
1200 kW

Lalcl il L

850 KW 750 KW

2

(W)

5600

2700

9000

1600





OEBPS/images/F000031si42.gif





OEBPS/images/F000031si44.gif
stream 2 AH = 3000 150 = 100) = 1500 kW





OEBPS/images/F000171si210.gif
G
T, P





OEBPS/images/F000389appu02-30-9780080966595.jpg





OEBPS/images/F000031si43.gif
stream [ AH =40.0( 180 = 100) = 3200 kW





OEBPS/images/F000171si209.gif
R =0.08206 atm m"/kmol K or
0.08314 bar m7 kmol K.





OEBPS/images/F000389appu02-31-9780080966595.jpg
)






OEBPS/images/F000031si46.gif
stream 4 AH = 20.0({ 160 - 80|

600 KW





OEBPS/images/F000171si212.gif





OEBPS/images/F000389appu02-28-9780080966595.jpg





OEBPS/images/F000031si45.gif
stream 3 AH = 60.0{ 180 - 80|






OEBPS/images/F000171si211.gif





OEBPS/images/F000389appu02-29-9780080966595.jpg





OEBPS/images/F000031si48.gif
200100] =750 = 1250 kW






OEBPS/images/F000389appu02-34-9780080966595.jpg





OEBPS/images/F000031si47.gif





OEBPS/images/F000171si213.gif





OEBPS/images/F000389appu02-35-9780080966595.jpg





OEBPS/images/F000389appu02-32-9780080966595.jpg





OEBPS/images/F000031si49.gif
AW






OEBPS/images/F000389appu02-33-9780080966595.jpg





OEBPS/images/F000389appu02-37-9780080966595.jpg





OEBPS/images/F000389appu02-38-9780080966595.jpg





OEBPS/images/F000389appu02-36-9780080966595.jpg





OEBPS/images/F000389appu02-25-9780080966595.jpg
uuuuuu






OEBPS/images/F000171f17-52-9780080966595.jpg
e

in (mm)
80 112 (38
— @8)
1(25) L 12.12)
Lo —
L—T
Vo | —1
‘40
2
0o 10 2 % 40 5 6 70 8 9

D BN commiih:

100





OEBPS/images/F000389appu02-19-9780080966595.jpg





OEBPS/images/F000171f17-51-9780080966595.jpg
11
10
09
s
o7
‘ 06
05

04
o

20 40 60
Pérbaniaces foading —

80

100





OEBPS/images/F000389appu02-20-9780080966595.jpg





OEBPS/images/F000171si202.gif





OEBPS/images/F000389appu02-17-9780080966595.jpg





OEBPS/images/F000171f17-53-9780080966595.jpg
3

10"

107 5
10

10°

i* kalinds

10"

10°





OEBPS/images/F000389appu02-18-9780080966595.jpg





OEBPS/images/F000171f17-54-9780080966595.jpg
100

60
40

curves is pressure drop
terimetre of packed

20

10

06

04

K
02

@

01

006

004

002

001
001 002 004 00601 02 04 06 10 20 40 60 10
Fry—>

Py

B






OEBPS/images/F000389appu02-23-9780080966595.jpg





OEBPS/images/F000171si203.gif
K, at design pressure droj
K, al fooding

percentage floodin






OEBPS/images/F000389appu02-24-9780080966595.jpg





OEBPS/images/F000389appu02-21-9780080966595.jpg





OEBPS/images/F000389appu02-22-9780080966595.jpg





OEBPS/images/F000171si204.gif





OEBPS/images/F000171si206.gif





OEBPS/images/F000389appu02-26-9780080966595.jpg





OEBPS/images/F000171si205.gif
b (/’—’) —mum( )
s .






OEBPS/images/F000389appu02-27-9780080966595.jpg





OEBPS/images/F000171si208.gif





OEBPS/images/F000171si207.gif





OEBPS/images/F000031f03-24-9780080966595.jpg
(W)
180°C 90°c| 90°c 60°C, 30
150°C 90°C| 90°C 30°c, o
135°C I 80°C| 80°C B
1a0cS0RW 60KW a0 .

270 KW





OEBPS/images/F000031si29.gif
D090 =601 =90 KW






OEBPS/images/F000031si28.gif
52





OEBPS/images/F000031si31.gif





OEBPS/images/F000031si30.gif
AH=20i80-=20)-90






OEBPS/images/F000031si33.gif





OEBPS/images/F000031si32.gif





OEBPS/images/F000031f03-25-9780080966595.jpg
180°C s0:csocc ~ 60°C,
150°C 90°c|90°C o 30°C,
¢ P
135°C o “cl so-c 20°c
SOKW  60KW S0KW 30 KW
140°C
0O

cP
(KWI°C)

30

10

20

45

AH
(*W)

360

120

230

270





OEBPS/images/F000031si34.gif
AH_ = 1.0{90=30) 30KW






OEBPS/images/F000031si35.gif
5=





OEBPS/images/F000031si37.gif
Z

N






OEBPS/images/F000031si36.gif
52





OEBPS/images/F000031f03-26-9780080966595.jpg





OEBPS/images/F000389appu02-85-9780080966595.jpg
METALS

N b e |
LT TR Y il iet o | el
: H
aw |
|
T
s
Ia]2
HE P P
oz |1 - e e s ue
-l = = ol oo
B iF weid = de
Ia]2 D P
T2 PR
w5 wibe w g oan
i < 1o = ey
s|o M i oy
e |E]" ceen wape
ale ol efnl_o
b S————
oy |5 (2 i






OEBPS/images/F000031si38.gif
Z

N+






OEBPS/images/T000031tabT0080.jpg
Heat

Capacity
Stream Flow Rate,  Source Target Heat
Number Type KWPC Temp.°C Temp. °C Load, kW
1 hot 400 180 40 5600
2 hot 300 150 60 1800

3 cold 600 30 180 9000
4 cold 200 80 160 1600






OEBPS/images/F000389appu02-83-9780080966595.jpg
METALS






OEBPS/images/F000031f03-27-9780080966595.jpg
AT, ,=Threshold





OEBPS/images/F000389appu02-84-9780080966595.jpg
METALS

— PrrrT m.:}m it Bttt bt mm: T
= et o 1 [ Lot Tl
PR . uw L I
o |y o oees oo IIDDoeliI L
T 1 i il bt
HE R o
[losmccs oo omdommmnoanonl oo
1B |bbvwn w - P S S S T
T H bl it
Aluases b bas bassxs  buwasad se sahus vewss wanak asaun
N T YR LT
[s|csiied 2 o Polleiliiins UL D sleeillleln
wai ol B Bl dd IEE. R . TER






OEBPS/images/F000031si39.gif
hot streams T,






OEBPS/images/F000031f03-28-9780080966595.jpg
Prcgictinm.

Company Name Projct Number Shoot rort
Address REV_ | DAYE 6V _| Avs | Rev_| OWE [ v [ VD
PROBLEM TABLE ALGORITHI
Fom 0000CYY-22
T Wi tomperstors Spproseh
T 2e
7St
Tl parae (O] Tieat copacy Tow Tt
lsweam . Sourn Torget rte CP (1) )
T 70 % o =
2 190 5 W 2100
3 “© w0 ® 000
h % 0 = 1600
5 o
i o
7 o
1 o
3 Probiom 2
st el e, Tonal Sum CPe_sum Gy ) Cascade
w Teo) wwrcy o) ) o
T T g 20
2 w = ® 1200 1200 700
3 170 o ] o 1200 1700
3 0 ) “© 120 2000 500
i @ Fl 0 0 200 o
N % “ 10 00 2500 w00
g © 10 2 20 2100 20
H » 0 “ 00 200 0






OEBPS/images/T000031tabT0085.jpg
Actual Temp. °C

Source

180
150
30
30

Target

40
60
180
160

Interval Temp. °C

Source

170
140
40
90

Target

30

50
190
170





OEBPS/images/F000031si40.gif





OEBPS/images/F000031si18.gif
AH = CP xtemperature change |





OEBPS/images/F000389appu02-74-9780080966595.jpg





OEBPS/images/F000389appu02-75-9780080966595.jpg





OEBPS/images/F000031f03-17-9780080966595.jpg





OEBPS/images/F000389appu02-72-9780080966595.jpg
£






OEBPS/images/F000031f03-16-9780080966595.jpg
Total cost

Energy cos

Capital cost

Mlegioun  Minimum approach
ok mpignag





OEBPS/images/F000389appu02-73-9780080966595.jpg





OEBPS/images/F000031f03-19-9780080966595.jpg
— Temperature, °C ———»

200
180
160
140
120
100
8
60
40
20

100

Hot utility
50 kW

ATyy=10°C

200 300 400 500 600
Enthalpy, kW ——3





OEBPS/images/F000031f03-18-9780080966595.jpg
—Temperature, °C —>

200
180
160
140
120
100
80
60
40
20

o

Streams 1+2
CP=30+1.0=4.0

0 KWFC

100 200 300 400 500 600

0 100 200 300 400 500 600

Enthalpy, kW-
(b)





OEBPS/images/F000031si19.gif
hot streams 7,,, =

AT,

cold streams T = Ta + =5





OEBPS/images/F000031f03-20-9780080966595.jpg
(a) b)





OEBPS/images/F000031si20.gif
AH,

Y CP. =Y CP,) (AT,





OEBPS/images/F000389appu02-77-9780080966595.jpg





OEBPS/images/T000031tabT0015.jpg
Stream

Actual Temperature

180
150
20
80

60

30
135
140

Interval Temperature

140
(145)





OEBPS/images/F000389appu02-78-9780080966595.jpg





OEBPS/images/T000031tabT0025.jpg
Interval ECP, - XCPy*

Interval Temp. °C ARG KW/ C AH KW Deficit
1 30 -30 —90 s
2 5 05 25 a
3 55 25 1375 d
4 30 20 —60 s
5 30 10 30 d

‘“Note: The streams in each interval are given in Table 3.3.





OEBPS/images/F000389appu02-76-9780080966595.jpg





OEBPS/images/F000389appu02-81-9780080966595.jpg
Blobeeuww evuw  wuedh wueew busewus u%
aso|¥3 §= <1 = 4 S |
wimw (5|7 Fe o« o«x 37 i w3

& i A X ix o

' ' PR B

METALS

N e 5
Ll PP PP T e Nae i ke ww :
w18 SHIIE L il ALt L]
Wi w x wek wx « xax Y « 33
I ] biioni, S Bttt ol
OV 5 e men] wBxxx xn @ xamwswex wxox Ex o« 2
% 5 24 % 2 i1 &
@ g Pl § . 43 < 35 98 #1 5 &l §
] 354 EI O g 387 %4 3 ORR4E g i %
PR LR R R thisiedindi, i umﬂn.mw
MEHMTE T Po,pbe B0 o0uidquagg 230800208 19031 408!
nlaiGaid it i






OEBPS/images/F000389appu02-82-9780080966595.jpg
©eecheas wxoex waege

R T R g R,

METALS

P Y S SR |






OEBPS/images/F000389appu02-79-9780080966595.jpg





OEBPS/images/F000389appu02-80-9780080966595.jpg





OEBPS/images/F000031f03-22-9780080966595.jpg
Cooler
Hot
sream o 7]
cod
@ stream m
I P





OEBPS/images/F000389appu02-63-9780080966595.jpg





OEBPS/images/F000031f03-21-9780080966595.jpg
Interval

temp.
okw 50 kW
175°C
90 kW 90 kW
145°C 90 kW 140 kW
25K 25KW
140°C 875 KW 135.5 kW
1375 kW 1375 kW
85°C 50 kW 0.0 KW
-60 kW 60 kW
55°C 10K 60 kW
30 kW 30 kW
25°C —20kW. 30 kW
(@ (b)

From (b) pinch occurs at interval temperature 85°C.






OEBPS/images/F000389appu02-64-9780080966595.jpg
T






OEBPS/images/F000031si21.gif
s





OEBPS/images/F000389appu02-61-9780080966595.jpg






OEBPS/images/F000031f03-23-9780080966595.jpg
180°C 0| 90°c 60°C,
150°C s0°c| 90°C 30°C,
135°C 80°c| 80 ¢ 3
140°C 80°C!

P
(W)

30
10

20





OEBPS/images/F000389appu02-62-9780080966595.jpg





OEBPS/images/F000031si23.gif





OEBPS/images/F000031si22.gif
PIT, =T,





OEBPS/images/F000031si25.gif
OC150 =90 = 60KkW





OEBPS/images/F000389appu02-65-9780080966595.jpg





OEBPS/images/F000031si24.gif
SO140 =80






OEBPS/images/F000031si27.gif
110 =60 =50KW






OEBPS/images/F000389appu02-66-9780080966595.jpg





OEBPS/images/F000031si26.gif
AH






OEBPS/images/F000389appu02-67-9780080966595.jpg





OEBPS/images/F000389appu02-70-9780080966595.jpg





OEBPS/images/F000389appu02-71-9780080966595.jpg






OEBPS/images/F000389appu02-68-9780080966595.jpg





OEBPS/images/F000389appu02-69-9780080966595.jpg






OEBPS/images/F000171si163.gif
(0.594)
19610~ x3.54

0.8






OEBPS/images/F000171si161.gif
00038 +0.017x 117 +3.86 X 2.99 x 107" +0.18 x 107" x 50)°

96 107





OEBPS/images/F000171si164.gif
my
T

X0.019

0.000

=230





OEBPS/images/F000171si153.gif
2365k mTY






OEBPS/images/F000171si155.gif
— 21231077

. 299 10~
ST





OEBPS/images/F000171si154.gif
Average width over active surface =0.4220.594 =0.71'm





OEBPS/images/F000171si157.gif
006+0.73x 1077 x 50 = 0.24 x 107" x 2,365 x 50 +1.22x 2.99 x 1™

TR 107






OEBPS/images/F000171si156.gif
_ (0776 +4.57x 107" x50 - 0.24 X 2.365 + 105 x 2.99 x 107)
91710 )‘”
1333 x 174% 10

i =115





OEBPS/images/F000171si160.gif
A3 10" % 416 1077 T (0,21 x 2365 +0.15) % 3.54 = 3.00





OEBPS/images/F000171si159.gif
= 17.8x 107" x0.594
5 90% 10~






OEBPS/images/F000171si150.gif
D19 x 32
1933

Vapor volumetric flow rate.





OEBPS/images/F000171si149.gif





OEBPS/images/F000171si152.gif
1, = 02 = L17mfs





OEBPS/images/F000171si151.gif
0.099 x 20

o = 212X 107 m’)s

Liquid volumetric flow ratg






OEBPS/images/F000171si144.gif
I01.4x 107+ (14x 0. 118 x9.81 x944)

16.7°kPa





OEBPS/images/F000171si143.gif
= 283 _ amol s
Liquid =07 30522 =0.099 kol





OEBPS/images/F000171si146.gif
m', g, =0.3544 % 107 Nm

molar we 0.2 107 N/m

20, p; =932.7 kg /1






OEBPS/images/F000171si145.gif
say, 117 bar





OEBPS/images/F000171si148.gif
16 107" m* /s






OEBPS/images/F000171si147.gif
molar weight =32, p, = 1.233kg/m". g, =917 x 107" N





OEBPS/images/F000171si140.gif





OEBPS/images/F000171si139.gif
=14, solrom Figure 17,36, 4

00038, well below 0.1






OEBPS/images/F000195f19-37-9780080966595.jpg
FIONE MGG SSCHICRION Sneet

TobRe:
Custome Reforonce o
Address Proposai .
Plantocation Dato Rov.
Sorves ofunt e 124 Tom Ro._E700
e 50500 Tipe AES ool Commeciod 1 __poralel 1 series
SurTUni (Gross] 3 W shotsunt SutacoShol Gross) 6571 w
Performance of one unit
Fira aozation St Tobe side
Fltd name
Fild auanit, our T | 250000 O
Vapour
Tauia 25600 70000 o007 o007
Steam
Vater
Noncondensabie
Temparatre (WOu) [ 700 w0 W0 78
Donsiy g [ %00 7700 000 w00
Viscosty artpotes | 022 o5 s 239525
Molocular weight vapour
Molocular weight Noncondansaiis
Specitc hoat gk [ 277 7% 707 7%
Thermal condscivy Vi K | 075 (2K [3ES [AEs)
Latenthaat iy
Tnie pressure Bartabs) 55 55
Vetocty s (x] Tor
Pressur drop, oW Gae- bar 5 o 0% ooz
Fouling esistance (min) W o0 70653 00038 i 0 0]
Weatexchaged wE% ) [0 e T
Transto rae,service £ oy £ Clean 526 VimK
Construction of one shell Sketch (sundiainozze srintaton)
St side oo side
Desigsstpressure__berg)| 75| CEC|
Design omperature - 00 7750
o.passes por sho T
roslan slwance
Conmactions _Tn w7 w7
T —T w7 775
Raings iner
Tbeno.__35 oG5 mm T 27w Lengh %00 mm Pih 757 mm 30des
Tube type _piain Matersl___Garbon siel
Shat 50 ) o [ Shell cover Tineg ) Remov)
ChannelorBommet oo seal ‘Channorcovor
Tubeshoot sationary Carbon sce Tubeshoetiosing
Fioating hoad cover Tmpingement protscion
Bos-crons 7 Type _Segio segmerta WCW 750 Specngee T1S5 it o
Bafflesfong Seaitgs
Supporis-ubs. Ggend T
Bypass seararngemont Tube Tubssestfont
Expansion ot Tyoe
Vit nozzle #6890 Bundin oniance 4650 Bundleoxit 4575
Guskots __Shairsido Tube side
Fioating hesd
ot rouroments Tomcass R
Woighishell 2577 E=] Bunde 7510 [

Romarss






OEBPS/images/F000171f17-44-9780080966595.jpg
0690 m

Plate number

Plate inside dia.

Hole size
Hole pitch
Total holes
Active holes
Blanking srea

>0 mm

50 mm

0914m
5mm
125mma

1502

0914m

Tum-down
Plate material
Downcomer material
Plate spacing

Plate thickness.
Plate pressure drop.

— ’ 50 mm

70% of max rate
Mild steel

Mild steel

05m

5mm

120 mm liquid = 1.1 kPa





OEBPS/images/F000171si141.gif
Numberof holes =






OEBPS/images/F000171si142.gif
Vapor =0.7x 2

019 kmol /5





OEBPS/images/F000195si138.gif
7,999
R0

+59=86°C.

s





OEBPS/images/F000195si137.gif
t, — 1t =17,999





OEBPS/images/F000171si134.gif
195 mm

plate spacing + weir height], so plate spacing is acceptable





OEBPS/images/F000195f19-32-9780080966595.jpg
PR I N T EE—— =
o T3 Yo o B o T S B

DRG0 REKVNO X+ = T 0 FOLE

onsins  losssmia 5

et T T~ (3





OEBPS/images/F000195si139.gif
aiving (1) = (32107






OEBPS/images/F000171si136.gif
> 35, sahislactory





OEBPS/images/F000195f19-34-9780080966595.jpg
S i e % - h
Tt e 0% 1908

o o ot 10 oo o o
e e %0 % w T
f a0/ 50 00
EL rrmp—— G o2
IO Voot ke T T8

e mum S e

[k e -

i

= Hr. .
oo e vouUas ™™ GJ e e e e R off

s T [ e






OEBPS/images/F000171si135.gif
0.067 x0.195 x 944

S0 475

i





OEBPS/images/F000195f19-33-9780080966595.jpg
A Eanigla SEXETRE 10N - Eugla 2N £ RIS ENORN 4

T £ Yo o B Qs b st
[Dc08R RKF@xX=-TEDFOTE

= ) o T
 Fy T s
0 Exchunom Goomety e SwaamOuaSouce | Swean Conpention

& Core Gt
- Py
F foressete
B |

= Pty
B s
8 oot

o0 T s

o8 sl

by

B

b ey

|- o

o =y
=l ot B
o [imssow o
B ks e
s [0 o
sty i (1110 o

185

[ cioerioon
R —

o~ B ez





OEBPS/images/F000171si138.gif





OEBPS/images/F000195f19-36-9780080966595.jpg
sso00umn
%0, o P
(@] |
i
|
I
i
i
|
| |
‘ “_ L
i I
; i
@ T T
870 ! 2290 J
s TR
. G [T T
b« poa o -
. @) o e s
Y g S [enetio s soro0e 19150
L. 8 i
NG el ... LT TR
Views on anow A Temperature C_| 300 178
= £ 1
Weight Bundeoyier | Kg | 1318 2612|3864
i i 124
oot Lol i = [T
e i






OEBPS/images/F000171si137.gif
1= s =147
St mys





OEBPS/images/F000195f19-35-9780080966595.jpg
7140 overall

5640

”

a060 !

Puling length

0

Inetchannel  Shell
Views on arrow A

Allmeasurements are in mm
Warnings
— Tris setting plan is approximate orly.
for accurate seting plan use a
full mechanicaldesign package.

WPs raing
T [met—frssroos e-visso
T2 fouter 337008 [E- 11550
St [Sholl s [a.507006 E- 11590
52 ShellOu (1557006 [E-1530
Design Shei_| Tue
Prossusbarg_| 74|89
Tanperatre € | 500 | 178
Passes -

Woigh Bundeoia kg 1121 | 23r1 [3w01
Exampie 123
10 tonaororz0 | AES

387.6240





OEBPS/images/F000171si129.gif
p, = 125% 107
YY)

3.2 mmliguid





OEBPS/images/F000195si135.gif
596 140 = 6881 mm, 0.167 m’

0076

Q0076 _ 4 456 oy
QU078 — 0455 ms.





OEBPS/images/F000171si128.gif
= 3.1 mm liquid





OEBPS/images/F000195si134.gif
19.05 % 10”1

1 19.05 1
0.00035 + +0.0002
(&3 +00%%) 13 e
=302 WiarC
Q
U, required = ——o—. A, =360x0,2992
U requined = T A= 360X0.299
15094 10

97 Win

0 U, required =
- fe N07.7x71)





OEBPS/images/F000171si131.gif
66— 20"~ 1,61 mm





OEBPS/images/F000171si130.gif
hy=334+(504+25)+13

18 mm liguid





OEBPS/images/F000171si133.gif
f,=|504+25)+ 118+ 2=195mm






OEBPS/images/F000171si132.gif
say 2mm





OEBPS/images/F000195si131.gif
i, = 76
= 001103

=0.638 mis





OEBPS/images/F000195si130.gif
5965 100= 11,915 mar, 0.01192





OEBPS/images/F000195si371.gif
T30x0.638x13.52x10 *
04310~






OEBPS/images/F000195si370.gif
1, 48 belore






OEBPS/images/F000171si125.gif
inimum vapormte _ 07X 0.219 _ 5 g s
A, 0042 -

Actual minimum vapor velocity





OEBPS/images/F000195si373.gif
jr=48x 1077






OEBPS/images/F000171si124.gif
30.6 — 0.90( ),
=147 ms

06931

e






OEBPS/images/F000195si372.gif





OEBPS/images/F000171si127.gif
i, max] =






OEBPS/images/F000195si133.gif
(730x0.638°

< 20,510 N/, 1.2 bar

(L E






OEBPS/images/F000171si126.gif
0.7 x0.719
0.0295

New actual minimum vapor velocity 7.1 ms






OEBPS/images/F000195si132.gif
i

‘“7‘2))4“ 107 X 14,644 X (8.05]






OEBPS/images/F000195si136.gif
The inside arca of the tubes =7 x 14.83 x 107" x 5% 360 =83.86 m’

Heat flux = OFA = 1509.4 x 10°/83.86 = 17. 999 Win






OEBPS/images/F000389appu02-14-9780080966595.jpg





OEBPS/images/F000389appu02-15-9780080966595.jpg





OEBPS/images/F000171f17-49-9780080966595.jpg
28

2

2

2

20

18

16

2

10

08

078

o7

068
06

058
05

04
03

02
041

2 5 10 20 50 100 200 1000
vl





OEBPS/images/F000389appu02-08-9780080966595.jpg





OEBPS/images/F000171si194.gif





OEBPS/images/F000389appu02-09-9780080966595.jpg





OEBPS/images/F000171si196.gif





OEBPS/images/F000389appu02-06-9780080966595.jpg





OEBPS/images/F000171si195.gif





OEBPS/images/F000389appu02-07-9780080966595.jpg





OEBPS/images/T000171tabT0020.jpg
System

Absorption
Hydrocarbons
NHy-AirH,0
Air-water
Acetone-water

Distillation
Pentane-propane.
IPA-water
Methanol-water

Acetone-water

Formic acid-water

Acetone-water

MEK-toluene

Pressure
KPa

6000
101
101
101

101
101
101
101
101
101
101
101
101
101
101
101
101

Column
dia, m

09

06

0.46
0.46
0.41
020
0.46
036
091
038
038
107
038
038
038

type

Pall
Berl
Berl
Pall

Pall
Int.
Pall
Int.
Pall
Int.
Pall
Pall
Int.
Int.
Pall
Int.
Berl

Packing

size, mm

50
50
50
50

HTU m

050
050

075
0.2

055
050
029

027
031

HETP m

085

075

046
050

046
037
046
045
045
045
122
035
023
031

Pall = Pall rings. Berl = Berl saddles, Int.

INTALOX® saddles.





OEBPS/images/F000389appu02-12-9780080966595.jpg





OEBPS/images/F000171f17-50-9780080966595.jpg
Equiliorium line: weak
chemical interaction

Equilirium line: strong
chemical interaction

/ Operating line, slope L/G





OEBPS/images/F000389appu02-13-9780080966595.jpg





OEBPS/images/F000389appu02-10-9780080966595.jpg





OEBPS/images/F000171si197.gif





OEBPS/images/F000389appu02-11-9780080966595.jpg





OEBPS/images/F000171si199.gif





OEBPS/images/F000171si198.gif





OEBPS/images/F000389appu02-16-9780080966595.jpg





OEBPS/images/F000171si201.gif
H, =0.305 ¢, Scl, 'Ky






OEBPS/images/F000171si200.gif
o) ()

=001y i56"





OEBPS/images/F000389appu02-05-9780080966595.jpg





OEBPS/images/F000389appu02-03-9780080966595.jpg





OEBPS/images/F000389appu02-04-9780080966595.jpg





OEBPS/images/F000171si184.gif
H, N,





OEBPS/images/F000201si122.gif





OEBPS/images/F000171si183.gif
Lye: Ny





OEBPS/images/F000201si123.gif
210






OEBPS/images/F000171si186.gif





OEBPS/images/F000171si185.gif
G
KeaP






OEBPS/images/F000201si121.gif
select single-stage centrifugal (Figure 20.3)





OEBPS/images/F000171si188.gif





OEBPS/images/F000389appu02-01-9780080966595.jpg





OEBPS/images/F000171si187.gif





OEBPS/images/F000389appu02-02-9780080966595.jpg





OEBPS/images/F000171si190.gif
Hyy, = W, H,
i





OEBPS/images/T000201tabT0095.jpg
Flow rate, m'/h
Head, m of liquid

00
320

182
34

273
308

36.3
200

454
265





OEBPS/images/F000171si189.gif





OEBPS/images/T000262tabT0010.jpg
An asterisk (*) denotes an exact relationship

Length

Time

Area

Volume

Mass

*Lin
BEs

*1yd

1 mile

#1 A (angstrom)
*1 min

“1h

*1 day

1 year

#in?

S

yd

1 acre

1 mile?

Tin®

e

yd

1UK gal

1US gal

1 short (US) ton
1oz

#1lb

1ewt

254 mm
03048 m
09144 m
16093 km
1070 m
605

36 ks
864 ks
315 Ms
645.16 m
0092903 m?
083613 m?
40469 m?
2590 k'
16387 em®
002832 m*
076453 m*
4546.1 em®
37854 cm®
907.18 ke
28352 ¢
045359237 ke
50.8023 ke






OEBPS/images/F000171si191.gif
Ho =H, +

"G





OEBPS/images/F000171si193.gif





OEBPS/images/F000171si192.gif





OEBPS/images/F000201si119.gif
13% 107 %3600 = 7.7m'/h






OEBPS/images/F000171si181.gif





OEBPS/images/F000201si120.gif
difterental head, maximum, 38 m





OEBPS/images/F000201si118.gif
63dm





OEBPS/images/F000201u20-01-9780080966595.jpg
s

[ ——
ppeitimass
e y e
= oy s p—
i te B b
3 i inis
Be i 2l B S & s
i, e b B LR
- fssmoc. s
s o Ne—
e S

J—

e

i — 77
fragig oty

EEARH

[——






OEBPS/images/F000171si177.gif
T Uy bt v B3 [

o =007(191.6§
=0.836(84%)





OEBPS/images/F000201si112.gif
(% 1.27) maximum 100 kPa





OEBPS/images/F000171si176.gif
2x10°

0% 107 x 0.887 x 932.7
03544 x0.053






OEBPS/images/F000201si113.gif
Onfice. allow normal 15 KPa





OEBPS/images/F000171f17-46-9780080966595.jpg
Metal

(@)

Ceramic

Metal

)

@)






OEBPS/images/F000171f17-45-9780080966595.jpg
Gas.

Gas.
out

Liquid in
Distributor

Hold-dowr

plate

Packed bed

Packing
support

Liquid
out





OEBPS/images/F000171f17-47-9780080966595.jpg





OEBPS/images/F000201si116.gif
hends, 6x 30 x80x 107" = 14,

14.4m





OEBPS/images/T000171tabT0015.jpg
Raschig rings ceramic

Metal (density for carbon steel)

Pall rings metal
ensity for carbon steel)

s (density for polypropykene)

INTALOX® saddles ceramic

in
050
10
15
20
3.0
05
10
15
20
3.0
0.625
10
125
20
35
0.625
10
15
20
35
05
10
15
20
30

Size

Bulk Density

(kgfr’)
881
673
689
651
s61

1201
6
785
593
400
593
481
385
353
273
112

88
76

68

737
673
625
609
577

Surface
()
368
190
128
95
69
a7
207
141
102
72
341
210
128
102
66
341
207
128
102
85
480
253
194
108

Packing Factor
Fymt

2100

5
310
210
120
980
375
270
190
105
230
160
92
52
320
170
130
82

52

300
170
130

79





OEBPS/images/F000201si117.gif
valves, 3x 18 x 80 x 1077

dm





OEBPS/images/F000171si180.gif





OEBPS/images/F000201si114.gif
(% 1.2°) maximum 22 kPa





OEBPS/images/F000171si179.gif





OEBPS/images/F000201si115.gif
A+55+20+5+054+14+65+2=445m






OEBPS/images/F000171f17-48-9780080966595.jpg
‘Solute concentration in gas

Top

- ve)
>

&

—Base

Ty —





OEBPS/images/F000171si182.gif





OEBPS/images/F000171si174.gif
91.6

00602 )
> 10~ < 0.887






OEBPS/images/F000171si173.gif
e, = superficial vapor velocity = 0.493/0.55¢






OEBPS/images/F000171si166.gif
Y X Epy=2.300.43=0.989





OEBPS/images/F000171si165.gif





OEBPS/images/F000171si168.gif





OEBPS/images/F000171si167.gif
E . =043x]1.62

697





OEBPS/images/F000171si170.gif
233 ke m’. p,

9,17 x 107" N’






OEBPS/images/F000171si169.gif
o

32T ke/m'. y,

3544 % 107 Nm ™ s, Dy =D,

16x 107 m* /s, e=602x 107 N/m





OEBPS/images/F000171si172.gif
FA(fracuonal arca) = A, /A, =0.0295/0.556






OEBPS/images/F000171si171.gif





OEBPS/images/F000171si175.gif
91

( 03544 % 107" )
9327416 10"






OEBPS/images/F000195f19-05-9780080966595.jpg





OEBPS/images/F000201si22.gif
=1

! for compression






OEBPS/images/F000195f19-04-9780080966595.jpg





OEBPS/images/F000201si21.gif





OEBPS/images/F000195f19-07-9780080966595.jpg





OEBPS/images/F000201si24.gif
i wokregued
actual work obtained

for expansion £, =
P S o olytropic work





OEBPS/images/F000195f19-06-9780080966595.jpg
9 (19 (D) (19





OEBPS/images/F000201si23.gif
lr-VE,
m = < for expansion





OEBPS/images/F000195f19-09-9780080966595.jpg
Front end statonary

head types shelltypes Rear ond head types.
T s
iE Fixed tbesheet
One pass shell ke A" stationary head
T

Channel and removable cover

FE

Two pass shell it longitucinal
baffle

ied besheet
ik "B" stationary head

Fixed besheet
ke “N" tationary head

Removabis

=L

oy

‘Channel integral wih ubesheet
‘and removable cover

=1

TﬂL
|

Channel inegral wih tubesheat
and removable cover

‘Special high pressure closure

i
Ousido packed foatng hoad
fiE
Doubl spit fow
T
I I
T Oidad fou
T
b . Pull rough oating head
; =
I BE
Kotte type reboler )
Utbo bundie
. H
I
Cross fow Externally sealed foating

Tubdabiont






OEBPS/images/F000195f19-08-9780080966595.jpg





OEBPS/images/F000195f19-10-9780080966595.jpg
Fimnouer





OEBPS/images/T000195tabT0020.jpg
Outside Diameter (mm)

17
17
17
17

Wall Thickness (mm)

34
34
34
14





OEBPS/images/F000201si16.gif
Actual work done on gas =2

YT





OEBPS/images/F000201si15.gif
R
H:
Isentropic work

200 calfinol (isentropic path)
200~ 4500
= 1700 cal/mol






OEBPS/images/F000146si94.gif





OEBPS/images/F000201si18.gif





OEBPS/images/F000201si17.gif





OEBPS/images/F000146f14-22-9780080966595.jpg
(©

(a)





OEBPS/images/F000195f19-03-9780080966595.jpg
zv'w L/
1T





OEBPS/images/F000201si20.gif
Encrgy required

Power

(moles per hour] X [specific enthalpy change]

10,800 2000 10°

125 10 calih
125 10" x 4187 Jih

523 10" 1h
5.23% 10"
3600






OEBPS/images/F000146si95.gif





OEBPS/images/F000195f19-02-9780080966595.jpg
Rods

i

Tube plate






OEBPS/images/F000201si19.gif
Molecular weight ol methane = 16





OEBPS/images/F000146f14-23-9780080966595.jpg
(a)

)

(d)






OEBPS/images/T000146tabT0025.jpg
Min.

Design Minimum
Seating Gasket
Gasket Stress Width
Gasket Material Factor m  y(Nfmm?®)  Sketches (mm)
Rubber without fabric or a high percentage of asbesios
fiber; hardness:
below 75° IRH 050 0 10
75 IRH or higher 100 14 P
Asbestos with a suitable 3.2 mim thick 200 1.0
binder for the operating { 16 i hiok 575 255 < 10
conditions 0.8 mm thick 350 a8
Rubber with cotton fabric insertion 125 238 pdo 10
3-ply 225 152 Q
Rubber with asbestos fabric
inerion, with or wibout . 27 250 w0 &P

wire rinforcement - - s &
Vegetable fiber 175 76 o 10

piral-wound metal, Carbon 250 200
asbestos filled { Stainless or monel 300 31.0 W 10
Comugated metal, asbestos  Soft aluminum 250 200
inserted Soft copper or brass. 275 255
or Tron or soft steel 300 310 Yiiveng 10
Comugated metal jacketed  Monel or 4 1o 6% 325 379
asbestos filled chrome
Stainess steels 350
Soft aluminum 275
Soft copper or brass 300
Corrugated metal Tron or soft steel 325 10
Monel or 4 to 6% 350
chrome
Stainess steels
Soft aluminum
Soft copper or brass
Flat metal jacketed asbestos  Tron or soft steel
filled Monel 10
410 6% chrome.

Stainless steels

oft aluminum

S covier ot b





OEBPS/images/F000146f14-25-9780080966595.jpg





OEBPS/images/F000146f14-24-9780080966595.jpg
[¢——— Boltload

Gasket reaction —{ Pressure force on inside of flange
Pressure force |
sl tEnos






OEBPS/images/F000146f14-26-9780080966595.jpg
5
12
) 1+
o
Tameter

Nominalpipe Outside diameter Thickness of  Diameter of b, beginning of  Lengh through
nge dass _size olfange. 0 fange.y, X chamior, A hub. Y Bore. 5
150 100 425 00 104 132 212 105
200 600 089 308 23 20 207
300 900 088 531 450 20 40
500 1100 04 756 563 34 o7
500 1350 105 959 863 3. 7%
1200 1900 119 13 1275 sa 1200
2000 20 vy 12 2400 s Tes
a0 100 480 082 212 132 23 105
200 650 o8t an 23 20 207
400 1000 119 575 450 FERT
500 1250 13 512 563 3w o7
800 1500 15 1025 863 i 7
1200 2050 Tos 17 1275 506 1200
2000 %00 260 22 2600 656 Tes

‘Note: TBS = To be specified by purchaser.





OEBPS/images/F000146si96.gif
po = 2+ —
TnT 03]





OEBPS/images/T000146tabT0030.jpg
Working Pressure by Flange Class (psig)

Temperature (F) 150 300 400 600 900 1500 2500

~2010 100 285 740 985 1480 220 3705 6170
200 260 680 905 1360 2035 3395 5635
300 230 655 870 1310 1965 3270 5450
400 200 635 845 1265 1900 3170 5280
500 170 605 805 1205 1810 3015 5025
600 140 570 755 135 1705 2840 4730
700 110 530 710 1060 1590 425
300 30 410 550 g 1235 3430






OEBPS/images/F000183si62.gif
d, G\ dy
h= 01255 (T) for 035< 3 <06





OEBPS/images/F000201f20-07-9780080966595.jpg
Actual patr

Isentopic ;
path Y w0k

H,=4500

—— Enthaipy ——»

—— Entropy ——





OEBPS/images/F000183si61.gif
ks (GY" dy
p= 0813k e (GOYT g
= 0813 5 (;A for 1 <033





OEBPS/images/F000201si13.gif





OEBPS/images/F000183si64.gif





OEBPS/images/F000201f20-09-9780080966595.jpg
10

Toiekio aion

60

Y.

35

30

25

20

15

Comomsssit ralilc





OEBPS/images/F000183si63.gif





OEBPS/images/F000201f20-08-9780080966595.jpg
8

Efmciency, By, %

70

s

Centrfugal

1.0

10 100
Volumetric flow rate (suction condilions). mia






OEBPS/images/T000183tabT0100.jpg
Particle size, ym

Percentage by weight less than

20
100

40
70

0
40

20
20

10





OEBPS/images/F000183si65.gif





OEBPS/images/F000201si14.gif





OEBPS/images/F000195si2.gif
(57
FRC7

3k,






OEBPS/images/F000195si1.gif
AT






OEBPS/images/F000201f20-06fg-9780080966595.jpg
Valve closed —

Flow —

Valve fully open

(@)






OEBPS/images/F000146f14-28-9780080966595.jpg
((((((





OEBPS/images/F000201si10.gif
constant





OEBPS/images/F000146f14-27-9780080966595.jpg





OEBPS/images/F000201si9.gif





OEBPS/images/F000146f14-30-9780080966595.jpg
€23y, where Cis required
length of taper and y is
the offset between the
adjacent surfaces of
abutting sections

‘Taper either inside
NOTE: Length of req or outside
taper, ¢, may include the
width of the weld

Weld

a) W alloossstehallbanitosc Bioh s 1B





OEBPS/images/F000183si60.gif
— 303 % 10° kWhiton

V000085






OEBPS/images/F000201si12.gif





OEBPS/images/F000146f14-29-9780080966595.jpg





OEBPS/images/F000201si11.gif





OEBPS/images/F000043f04-28-9780080966595.jpg
[

Overal Patormance——

Poiformance
Dy AR
Dz Heal Laskc 000501 L7
Plois Hoal Loss 0000=01 K/
Tables ua 282005 K/Ch
Min Approsch s659C |
= LMD B4sC
ErorMsg
Detaled Peromance:
A Cuvaio Eior OO000W/Ch
Hot Prch Temp 285C
ColdPrch Tenp A00000¢C
F 0

s |

Deson | g | ottt Performence | Dy ] UnGimSTE |

Delets L

Fi Conecbon Facior I Low.

B I~ lonared






OEBPS/images/F000146f14-31-9780080966595.jpg
(@)]

‘ssens jenusbue] o

©





OEBPS/images/F000043f04-27-9780080966595.jpg
T =l
Do Do Gttt £ Lot e
DcEs Toak

HHE #HOAP SR

»

w0
cRv-i0g






OEBPS/images/F000146si97.gif





OEBPS/images/F000043f04-30-9780080966595.jpg
5 Tube side
400.0 1{—5- shell side.

500 ©

00 10000000 20000000 3000000.0 4000000.0 5000000.0 6000000.0

Heat flow (kJ/h)






OEBPS/images/F000146f14-33-9780080966595.jpg
intetocking
fedacking Inner cylinder





OEBPS/images/F000043f04-29-9780080966595.jpg
o Tube sde e
4000 {5 sheiside

o N D =

00 1000000.0 20000000 3000000.0 4000000.0 5000000.0 6000000.0
Heat flow (kJ/h)






OEBPS/images/F000146f14-32-9780080966595.jpg





OEBPS/images/T000043tabT0040.jpg
Design Case
Exchanger

Duty (MW)
UA (WIK)

F

Al

Al

A )

Total area (m%)

Original
(Single Shell)
E100

144
78,300
02
56.9
184
392
392

E100

053
6310
093
569
836
2

Modified (Multiple Shell)

E101

0.57
4780
0.82
1397
187
2

68

E102

033
540
093
1343
1384
13






OEBPS/images/F000158f15-01-9780080966595.jpg
- Cotetroqred e PR
T B
R
3. Determine materials of construction
v
N
T o G
s e
S
e
.
HN
6. Estimate reactor performance o

e e —

7. Repeat steps 210 6 1o optimize the design

'

8. Prepare scale drawings for detailed design

Experimen

Exporimen

Experiment

Experiment





OEBPS/images/F000043f04-31-9780080966595.jpg
HHL HR oAl

W00

R0






OEBPS/images/F000146si98.gif
= T 2
10






OEBPS/images/F000043f04-33-9780080966595.jpg
102

o =

ot

Fuel A Compressar
Compressor






OEBPS/images/F000043f04-32-9780080966595.jpg
Rt

a0
o0
st ) ot )
o
(@ ()

m.,....m
4

Ll oxpeppatspes gt s

st o )

(e)





OEBPS/images/F000043f04-35-9780080966595.jpg
¢ ADJ1

-Soling Parametere

Parameters
Parameters I Simultaneous Solution
Opions
Hethod Secart
Tolerance. 1.0000C

S00.00kg/h
| —ocr

‘Sim A Manager

I™ Optimizer Controled

Cornections _ Parameters [ Montor |_User Variables |

Delete. I~ lonored






OEBPS/images/F000043f04-34-9780080966595.jpg
¢ ADJ-1 [-[ofx]

Connections Aduane [O11
Connections Adhsted Ve
Notes Dbt i1

Vaiatle: Mass Fion

R —

ObectBOT  Seava

Variatle: Tompeatue.

e
 UserSuped ‘Spectied TaigetVaie
e Obiect | |
C SpreaShesiCel Dbect

25520000 F

" Commectons [ Paoneree. | Mok | Uservistis
e s

Dete I lgroed






OEBPS/images/F000195f19-01-9780080966595.jpg
A

& ‘aqueous vapours

7

e N

Botig aganes 5

[ — g

Pactine g

Heavy organics N\ ol 3

Mol st N\ 8

ois \[‘/ 3

Air and gas e E

high pressure. z
Rosidve S

1500 2000 2500 3000 3500 4000 4s00

ikl SN = Thermal fluid  E——
A\ e PT TR 1D .
ot clhea\ S~ Gomsse Soam bandsing

seawater anster ) oarants

Codliog lowerwater ‘Seivios fluid coslficient, Wi e ——





OEBPS/images/F000201si7.gif
Avelocity head

= 1.98/(2x9.8) = 0.20 mol liquid.

Head loss = 0.20x 14.7 94m

294 %998 x 9.8 = 28.754 Nim*
.

s pressure

Friction loss in pipe. AP, = §x0,0032

“Total pressure






OEBPS/images/F000201si6.gif
1
049110

LI
go5 = 198 ms

Fluid velocity. 1

3600
Reynolds number, Re = (998 x 1.98x 25 x 1071/0.99 10

10.900 = 5 % 10°






OEBPS/images/F000201si8.gif
3 =
x0.0032 gy LY

= 277,247 Nfm






OEBPS/images/F000201si999.gif
735%25%107

8.4m





OEBPS/images/F000201f20-06cde-9780080966595.jpg





OEBPS/images/F000201f20-06ab-9780080966595.jpg
(®)






OEBPS/images/F000201si3.gif
relative roughness. e

absolute roughness/mpe mside duiameter





OEBPS/images/F000201si2.gif





OEBPS/images/F000146si77.gif
D
TD 41ty






OEBPS/images/F000201si5.gif
0.491 % 107w’

Cross-sectional arcaof pipe. gus x 107"





OEBPS/images/F000201si4.gif
AP, = 4c,(ua,a%





OEBPS/images/F000146si79.gif
o lcompressive) <0.125 £y () in ),





OEBPS/images/F000146si78.gif
7 lLer






OEBPS/images/F000146si80.gif
Approxiimate weight = (7 x2°x50) 1000 x 9.51
= 1540951 N

1541 KN





OEBPS/images/F000146f14-19-9780080966595.jpg
Gusset

(©)

(b)

(a)





OEBPS/images/F000146si82.gif
541 +842 = 2383 kKN






OEBPS/images/F000146si81.gif
Weight ol vessel, trom Example 14.2 = 842 kKN





OEBPS/images/F000146si84.gif
Bending moment a base of skirt = 2793 23
< 3010 LNm





OEBPS/images/F000146si83.gif
Trom Example 14.2 = 279 KN/m





OEBPS/images/F000146si85.gif
g, = —4x3919x10°x 107
T R 20004 18) 2000 % 18

68.7 N/mm®





OEBPS/images/F000201f20-02-9780080966595.jpg
Comprassors.

Positive displacement Dynamic
Reciprocating Rnlvxry Cenl-,iuga\ Axial flow
One. Tho Ofie Muti ofe  muti
rolor oo stage stage stage  stage
—— —— () — (fan)
Siding  Liguid  Rootes Screw Blower Compressor
vane fing

il
& o i WL






OEBPS/images/F000201f20-01-9780080966595.jpg
Uischarge pressure, bar

w
10
108 T
102
Reciprocain
oy (Centrifugal
10!
Aial
fow [ > _]
100
101 102 100 00 105

Flow rate. m3/h at inlet conditions

106





OEBPS/images/F000201f20-03-9780080966595.jpg
‘Jolal head, m

109

102

10

[Reciprocating|
“High speed
Multistage /' single-stage
or
“multi
Single-stage —1
1750 rpm
Single-stage
3500 rpm
10 102 109 10t 109

Flow rate. mh





OEBPS/images/T000201tabT0010.jpg
Type of Compressor

Displacement

1
2
3
‘

s

Reciprocating

Sliding vane
Liquid ring
Rootes
Serew

Dynamic

6.
7
8
9.

10. Axial-flow blower

Centrifugal fan
Turbo blower
Turbo compressor
Axialflow fan

Normal
‘Maximum
Speed (rpm)

300
300
200
250
10,000

1000
3000
10,000
1000
3000

Normal Maximum Pressure

. (Differential) (bar)
Normal Maximum

Capacity (m*/h) Single Stage Multiple Stage
85,000 35 5000
3400 35 8
2550 07 17
4250 035 17
12,750 35 1
170,000 02
8500 035 17
136,000 35 100
170,000 035 20

170.000 35 10





OEBPS/images/F000201si1.gif
AP, = $f(Lid)

i





OEBPS/images/F000201f20-04-9780080966595.jpg
Head, bar (Nm“/10°)

1000
160

20

15

10

le.am

Scrow
Ram
Double diaptragm
LY Siing vane
Screw
Roleny Rotary lobe

gear | Progressive
\ cavity (mono) \ \
I TR P

o 20 120 160 200 240 280 320 360 400 440 480
Flexible impeller
Diaphragm

Elowiinse dh





OEBPS/images/F000201f20-05-9780080966595.jpg
quation 20.1,

ar,

3,

3 (1)

ress.

Crilcal

ififiiEE

i

i

v

R

R T T

Reynolds mumber e %2






OEBPS/images/T000195tabT0110.jpg
viscosity: temperature 20 B “ A o
mN m-2s 068 055 044 036 033 030





OEBPS/images/F000146si87.gif
842 107

STy = 7 N

5, (operating)






OEBPS/images/F000195si360.gif
In(P]

934 = 1978/ T +246): Pbar. T°C





OEBPS/images/F000146si86.gif
2383 10°
000+ 18] 18

209 N fm






OEBPS/images/T000195tabT0115.jpg
temperat b o n 0 2 00 10 120
pressure bar 50 64 81 100 125 153 185 201





OEBPS/images/F000146si89.gif
Maximum a, (ten





OEBPS/images/F000146si88.gif
Maximum &, (compressive) = 68.7 + 209 = 89.6 N/ mn





OEBPS/images/F000146si91.gif
1.3 <(1L85 x 89 sin W)





OEBPS/images/F000146si90.gif
. (lensile ) < 8 £ sind





OEBPS/images/F000146si93.gif
5, (compressive) < 0.125 £y (

) sing

) sin90

505 < 0125 200000 (18
806 <« 225

2000,





OEBPS/images/F000146si92.gif





OEBPS/images/F000146f14-21-9780080966595.jpg
Fillt welds
all ound

& 3;'33:\\

]

151,

i
i
i
i
i
i
|
T
7
1

i
N ——
I
[P ) -
=
(@
N i
o A
/‘( T
e L






OEBPS/images/F000146f14-20-9780080966595.jpg
Bending

moment
Backing

plate

P





OEBPS/images/F000195si20.gif
Nu= 186 (Repr)"





OEBPS/images/F000195si19.gif





OEBPS/images/F000195si22.gif





OEBPS/images/F000195si21.gif
o= S (ﬁ -
“,





OEBPS/images/F000195si14.gif





OEBPS/images/F000195si13.gif





OEBPS/images/F000195si16.gif





OEBPS/images/F000195si15.gif
4 xcross-sectional area for flow
wetted perit

d,

; for whes
eter






OEBPS/images/F000195si18.gif
00225 exp(—0.0225(In Pr)7 |





OEBPS/images/F000195si17.gif





OEBPS/images/F000146si63.gif
Mean diameter, i + 2014475 x 107

18 m

cluding insulation






OEBPS/images/F000146si65.gif
3487.500 Nin





OEBPS/images/F000146si64.gif
Loading |per hincar meter )W = 1280 x 2,18 = 2790 N/m





OEBPS/images/F000146si67.gif
1x2x10°
o= IX2XI0T 556 N fam
T i






OEBPS/images/F000146si66.gif
10x2x10°

Ax 18

27.8 N/mm






OEBPS/images/F000146si69.gif
20004+ 2% 18 = 2036 mm
L= (203602000 = 581 % 10"
=






OEBPS/images/F000146si68.gif
842 10
FDy+iie 2200+ 18)18

= 7.4 N/mm’{compressive)






OEBPS/images/F000146si71.gif





OEBPS/images/F000146si70.gif
3A87.500 x 10° 18

2000 )
SEIx107 \ 2






OEBPS/images/F000146si72.gif
(55.6 —(—40.71) = 96.5 N/mn





OEBPS/images/F000195f19-19-9780080966595.jpg
Vo






OEBPS/images/F000195si12.gif
[R+ 1= I+ 1]

(R=1jn =
R+ 1+ R+






OEBPS/images/F000195f19-21-9780080966595.jpg
2
e\\g
s

AR

sy

F,08|

l
[

FRIIER A






OEBPS/images/F000195f19-20-9780080966595.jpg





OEBPS/images/F000195f19-22-9780080966595.jpg
[R=0.
— ==
1]
\\ oa\ ||
nn 10 L—T"|
L —]
5 —
\\ s
-
—
L—T |
ol 4.0
| 5.
-
:






OEBPS/images/F000195si8.gif





OEBPS/images/F000195si9.gif





OEBPS/images/F000195f19-18-9780080966595.jpg
7i r
ST | \.w\
n §

g0 ‘5.
5 g
§ g
[
i Fo Tabes
]
ot anstared
Heat vanstored i
7 2
1 = L S
7 7,
(@) (b)
Ty Ty

[Bin—
.

"

Heat ransferred
()





OEBPS/images/F000195si11.gif





OEBPS/images/F000195si10.gif





OEBPS/images/F000146f14-14-9780080966595.jpg
Saddles

o

My Mz
Bending moment haarim





OEBPS/images/F000146si73.gif





OEBPS/images/F000146f14-16-9780080966595.jpg
(@)






OEBPS/images/F000146f14-15-9780080966595.jpg
I

Shel

Strap
kit

Bearing plate

Foundation —|






OEBPS/images/F000146f14-17b-9780080966595.jpg
=

el






OEBPS/images/F000146f14-17a-9780080966595.jpg
i Jij

"
E ——E
oy

g

(i3






OEBPS/images/F000146si74.gif
a.llensile] =6,






OEBPS/images/F000146f14-18-9780080966595.jpg
(©

©

(@)





OEBPS/images/F000146si76.gif
TD, 1) e D,





OEBPS/images/F000146si75.gif
a,|compressive) = a, +a,,





OEBPS/images/F000195si6.gif





OEBPS/images/F000195si366.gif





OEBPS/images/F000195f19-15-9780080966595.jpg
Thrust

Hardened Sotlar
rollers /
] (3
/ Drive
Tube Tapered Tube
gy foranid





OEBPS/images/F000195si7.gif





OEBPS/images/F000195f19-17-9780080966595.jpg
— Tube-sheet

mpingement

=t="X plate
NI
Farsd nozde

(@)

)

Shel





OEBPS/images/F000195f19-16-9780080966595.jpg
/////IW//





OEBPS/images/F000195si363.gif





OEBPS/images/F000195si362.gif





OEBPS/images/F000195si365.gif





OEBPS/images/F000195si364.gif





OEBPS/images/F000146si44.gif
(=)





OEBPS/images/F000146si46.gif





OEBPS/images/F000146si45.gif





OEBPS/images/F000146si48.gif
Comp, DyelH 408D, ) tx 107"





OEBPS/images/F000146si47.gif





OEBPS/images/F000146si50.gif
M,

H‘E
=





OEBPS/images/F000146si49.gif
240C,D, H +08D )t





OEBPS/images/F000146si51.gif





OEBPS/images/F000146f14-11-9780080966595.jpg
weiberp uawow Guipueg

3

(RRRRNNRARRRRAN

WIN M ‘DeO| UM





OEBPS/images/F000146f14-12-9780080966595.jpg
s





OEBPS/images/F000195si4.gif





OEBPS/images/F000195si3.gif





OEBPS/images/F000195si5.gif
Tues in center row





OEBPS/images/T000195tabT0025.jpg
No. Passes

No. Passes

Triangular Pitch, p, = 125d,
1 2 a

0319
2142

Square Piteh, p, = 1.25d,
1 2 4

0215 0156 0158
2207 01 2263

6

00743
2499

6

00402
2617

8

00365
2675

8

00331
2643





OEBPS/images/F000195f19-14-9780080966595.jpg





OEBPS/images/F000195f19-13-9780080966595.jpg
500000

=
—=
(@
o0

009000

500000\ [ 688388
=5 [(00000000)
= 63338333
833588

(@





OEBPS/images/F000195si361.gif





OEBPS/images/F000195f19-11-9780080966595.jpg
o

Four passes.

570

Two passes






OEBPS/images/F000195f19-12-9780080966595.jpg
‘diameter-bundie diameter, mm.

100
b= lPul- hrough fioating head]
80,
L]
iy
o L1
[ Spiltring floating head
L —T
50,
40
‘Outside packed head
10—
Fixed and U-tube
0
02 04 05 08 10 Az

Binidi dacriblier: a5





OEBPS/images/T000195tabT0050.jpg
Carbon Steel

Nominal Shell Dia, mm  Pipe Plate Alloy Steel
150 7.1 — 32
200-300 93 — 32
330-580 95 7.9 32
610-740 - 7.9 48
760-990 — 95 64
1010-1520 - 11 64
1550-2030 — 127 79

2050-2540 . 127 95





OEBPS/images/F000146si53.gif





OEBPS/images/F000146si52.gif





OEBPS/images/F000146si55.gif





OEBPS/images/F000146si54.gif





OEBPS/images/F000146f14-13-9780080966595.jpg





OEBPS/images/F000146si56.gif





OEBPS/images/F000146si58.gif





OEBPS/images/F000146si57.gif
(10=11x1.1 =99 bar, say ) bar





OEBPS/images/F000146si60.gif
Take

R
D= 2414107 = 2014 m
H =50m
=14 mm
W= 240X 115X 2014 (S0+0.8 x2.014)14

= 401643 N
7 KN






OEBPS/images/F000146si59.gif
1x2x10°

Al g,
Oxi3x)—(12x1] i






OEBPS/images/F000195si316.gif
25.4x107 In (35

x
MM7+ 2x55 5000
L,

+
T T






OEBPS/images/F000195si315.gif
Nu =0.023Re"™" P
=0.023(73.1 x 10']"¥(5.1)"
=306.5

Hence. f;=306.5x (0.19/122,1 x 107






OEBPS/images/F000195si318.gif
(95 -34) —{40-34)
T
n

ATim =2m7°C






OEBPS/images/F000195si317.gif





OEBPS/images/F000195si320.gif





OEBPS/images/F000195si319.gif
AT, =09x237=113"C





OEBPS/images/T000067tabT0015.jpg
Tensile 0.1% Proof  Modulus of

Strength Stress Elastcity Hardness  Specific
(N/mm?) (Nfmm?) (kN/mm?) Brinell Gravity
Mild steel 430 20 210 100-200 79
Low alloy steel 420-660 230-460 210 130-200 79
Cast iron 140-170 — 140 150-250 72
Stainless steel >540 200 210 160 80
(18Cr, 8Ni)
Nickel (>99% Ni) 500 130 210 80-150 89
Monel 650 170 170 120250 88
Copper (deoxidized) 200 60 10 30-100 89
Brass (Admiralty) 400-600 130 s 100-200 86
Aluminum (>99%) 80-150 - 70 30 27
Dural 400 150 70 100 27
Lead 30 — 1s 5 13

500 350 110 150 45





OEBPS/images/F000067si2.gif
NO .





OEBPS/images/F000067si1.gif





OEBPS/images/T000067tabT0030.jpg
Type or Max Allowable Stress  Relative Cost

Metal Grade Price ($/1b) (ksi = 1000 psi) Rating
Carbon steel A28s 0.37 129 1
Austenitic stinless steel 304 1156 20 20
316 1 20 30
Copper 10400 383 67 28
Aluminum alloy AO3S60 10789 86 15
Nickel 99%Ni 9861 10 392
Incoloy NO8S00 3733 20 67
Monel NO4400 776 187 164

Saanin e R50250 335 10 68






OEBPS/images/F000067si3.gif
NH





OEBPS/images/T000067tabT0035.jpg
Specification
No.

AISI No.
304

316

316L

309

310

€ Max

0.08

0.03

012

0.08

0.08

0.03

020

025

Si Max

100

100

100

100

10

MnMax  Range

2.00

2.00

2.00

2.00

2.00

20

Composition %
cr Ni
Range
175 80
200 1o
15 80
200 120
170 9.0
200 120
170 9.0
200 130
160 100
180 140
160 100
180 140
220 120
240 150
240 190
26.0 20

Mo

20
3.0
20
3.0






OEBPS/images/F000067si4.gif





OEBPS/images/F00002Xsi3.gif
hours operated

Sen X100

Atiinment %





OEBPS/images/T000067tabT0060.jpg
304 S04L 3zl
1.0 1 11

1oL 310
13 16






OEBPS/images/F00002Xf02-11-9780080966595.jpg
Recycle of unreacted.

material

By-products .

¥ [

Raw
il o Rt | S ] putiton [ srae
storage proga: P B 2

Blioe1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6






OEBPS/images/T000067tabT0040.jpg
Temperature °F

Maximum allowable
stress (1000 psi)

Carbon steel (A28 plate)

Stainless steel (304L plate)

100
129

16.7

129

16.7

500

14.7





OEBPS/images/F00002Xf02-10-9780080966595.jpg
S mn = AETY, G0N M ameiad EHSOMTIL OLSN |
EREmpREEnORNENNOEERNConEEpEEECRREEE

TTITL] [

STe T [afelullals]






OEBPS/images/F00002Xf02-09-9780080966595.jpg
n le + Mitrio per_cent s omm | oate s
C & R Construction Inc. D i pen s g bxa e
Citont 1 o chentonts 8150 e by v ws | senzgien
waser
& Stean

" 0

H

£

H Q
R ——

“ = i e ey —






OEBPS/images/T000067tabT0045.jpg
Material
PVC

Polyethylene (low
density)
Polypropylene
PTFE

GRP polyester
GRP epoxy

Tensile Strength
(Nmm?)

21

100
250

Elastic Modulus
N/mn?)

02

Density (kg/nr*)
1400
900

900
2100
1500
1800

Relative Cost

10

15
30.0
3.0
5.0





OEBPS/images/F00002Xf02-08-9780080966595.jpg
To Talgem
sheet no 9317/ Waksk:
1 ZB a
A
Fiter
=
Compressor, Absorber
2 @@_ 5 =1
Ammonia
3
From
sheet no 9315 Vaporiser Readior @
(Oxidiser) Nixer
G
uct
Flows kg prssurs nomina
T I ) s D]
Sroam Ao Anmaa Fiesd Oudsw Oodsr O WAB. memnm TR Wk Assorer Pt G 8 R Consuctan oo
oot "oos g e we Cwea oo owet o T M T e e "
W, w0 0 = = WM = = = = = — =~ — | s
o, =z o w2 M2 07 @ET) Wz e o7 ems s e T | nceony
v - 9908 o447 SoAAT B6GBS S0G6D mes  Tme  1MA1  W017 00T — T Tace | ClnBOPchencas
N O LT RN Wi ms = 2 'me 9% T T | O a6,
NS, B R T Y e
wo, = - - - = S T e - DT C o mee
4o C 0 vmw = C wew wes ms  wer  —  ms  ms s wwo mueo
Tom 70 7910190217 114726 720008 1720008 70009 11401 10007 VS8 9T 0004 1169 400 47006
T R T l ] D
e R R R A R T T P [






OEBPS/images/F00002Xf02-07-9780080966595.jpg
AN 500
Water 3500 @

Total 3000/ w25

DM water

From a0c [5)
storagés - To dryer
cw
60°C
Bond| © ! g
e
Total 108 cv';(er 25300 mk?f '23;30 Ige mer 448
From Polymer 450 Poymer 27 | [ yese [ Equipmentkey
catalyst salls 5 sals - 5 R Polymer reactor
e Tan 8] [Tow 732 4 Watr nastr
i o)






OEBPS/images/F00002Xf02-06-9780080966595.jpg
m®><>L;%)\

(2) Motor () Fan (c)Agitator  (d) Spray device

! —

(e) Vent () Drain Q) Flanged foint





OEBPS/images/F000195si322.gif
BxT762x 107 %67

1.9 0






OEBPS/images/F000195si321.gif
434 x10°
Pixol 3






OEBPS/images/F000195si324.gif





OEBPS/images/F000195si323.gif
x91.9%x 150
0.7






OEBPS/images/F00002Xsi6.gif
kol /h VC produced






OEBPS/images/F00002Xsi5.gif
Reactuon:

H,Cl, —

SH Cl+ HCI





OEBPS/images/F00002Xsi4.gif
AT e s

Conversion
amountsupplied

{amountin feed stream) = (amountin productsireas
= Tamount in focd stream)






OEBPS/images/F000195f19-65-9780080966595.jpg
Finned 1

tubes Air
Hot
ot Fan
fuid in > e —
- S
ot
fuid out +— NN
Air
Ar
Gear M| Motor
h I 1
(@
Section-support
ot 1 frein
fid in Air " Tube supports
gt
Hot
fid out +— S
Support
Wir
Motor
L L

(b)





OEBPS/images/F000195si307.gif
(0,104 Re™ ™ pgtt





OEBPS/images/F000195si306.gif
28 Re"opet





OEBPS/images/F000195si309.gif





OEBPS/images/F000195si308.gif
From Equation 19.61:Nu ~ 34.8, jt, ~ 37.2 Win
From Equation 19.62: Nu ~ 25.2. Ji; ~ 27.0 Win






OEBPS/images/F000079si1.gif





OEBPS/images/F000079f07-01-9780080966595.jpg
~Accumulated cost

Influence of design decisions

ko
q

8} Acoumulslicn of Goats

o om A G
%mw’awo“’%%f‘f%&%”

op 200

S ki i el akeliine





OEBPS/images/T000079tabT0010.jpg
ABS Resin (1
Acetic Aci

by Cativa process
by Low Water Methanol Carbonylation

Acetic Aci

Acrolein by propylene oxidation with B¥Mo catalyst

Adipic acid from phenol

Alkylation (sulfuric acid effluent refrigeration process)

Alkylation (HF process)
Allyl chloride by propylene chlorination
Alpha olefins (full range process)
Alpha olefins (full range process)
Benzene by Sulfolane extraction
Benzene by toluene hydrodealkylation
Benzene reduction by Bensat™ process
Biodiesel (FAME) from vegetable oil
bis-HET by Eastman Glycolysis

BTX Aromatics by
BTX Aromatics by CCR Platforming™ process
Butadiene by extractive distllation

elar™ process,

Butadiene by Oxo-D plus extractive distillation
Butene-1 by Alphabutol ethylene dimerization
Butene-1 by BP Process

Caprolactam from nitration-grade toluene.
Carbon monoxide by steam methane reforming
Catlytic Condensation for Gasoline Production
Catlytic reforming by CCR Platforming process
Coking by Flexicoking including Fluid Coking
Coking by Selective Yield Delayed Coking
Copolymer polypropylene by INNOVENE

Rubber) by emulsion polymerization

Licensor

Generic
BP

Celanese

Generic

Generie
Stratco/DuPont
vop

Generie

Chevron Phillips
Shell

UOP/Shell
Generie

uop

Generic

Eastman

BPAUOP

vop

UOPBASF
Texas Petrochem.
Axens

BP

SNIA BPD Sp.A.
Generic

vop

uop
ExxonMobil
Foster Wheele/UOP.
BP

Units

MMibly
MMibly
MMibly
MMibly
MMibly
bpd

bpd
MMibly
MMibly
MMibly
MMgally
MMgally
bpd
MMibly
MMibly
tpy

tpy
MMibly
MMibly
tpy

tpy

tpy
MMsely
bpd

bpd

bpd

bpd
MMibly

Capacity

Suwer
50
500
500
30
300
4,000
5,000
80
400
400
50
50
8,000
100
50
200,000
200,000
100
100
5,000
20,000
40,000
2,000
10,000
15,000
15,000
15,000
300

Sunper

300
2000
2000

150
1000
20,000
12000
250
1200
1000
200
200
15000
500
200
800,000
800,000
500
500
30,000
80,000

120000

6000
30000
60000
40000
60000
900

a

12146
3474
2772
6809
3533
0.160
0153
7581

240
8.146
7793
7.002
00275
2747
0500
0044
0015
5514

11314
00251
0.169
0321
0363
0222
0179
0343
0.109
3430

06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
0.68
06





OEBPS/images/F000079si2.gif





OEBPS/images/F000079si4.gif
0 2 60.000:






OEBPS/images/F000079si3.gif
asy!






OEBPS/images/F000079si6.gif
Plant cost

K (gross prolit - Lxes)





OEBPS/images/F000079si5.gif
0<60000: € = 380,000





OEBPS/images/F00002Xsi2.gif
CO+H.0O=C0O, + H-






OEBPS/images/F000079si8.gif
Total cost of production (TCOP) = 2 xraw matenals cost






OEBPS/images/F00002Xf02-01-9780080966595.jpg
Fumace Shift €O,
wactr  Co0er reactor Cooler Compressor romotal  PSAunit

PSA Hydrogen
= €O,

Methane v %‘






OEBPS/images/F000079si7.gif
Gross profit = product value - (1.2 X raw matenals costs)





OEBPS/images/F00002Xsi1.gif
CH,+H.0O<=C0O+ 3H.






OEBPS/images/F000018si2.gif
Relative importance lor abrasive content

BI3)+931+5(2)
T4 1041






OEBPS/images/F000018f01-06-9780080966595.jpg
waiuoo yeag

28

Waloo ondasuy

61

JoU¥oMD PIOS

33

J0Upow AUSOISIA

21

BIU00 J0Aely

39

18UBIBBMS JEBNS-UON

18

WaIu0o puonty

24

1WaI00 anseIqy

79

fwoud

Customer needs

Cleans teeth

Removes plague

‘Whitens teeth

Tastes fresh

Freshens breath

Squeezes out right

Not gitty

Strengthens teeth

Prevents gingvitis

Relative Importance






OEBPS/images/F000018f01-05-9780080966595.jpg
slslslslele BB 8 8|8

IR AR AR AR AR RE RE AR AR AR

AR IR AERE AR AR SR AR AR AR

— HEIEIRIR IR AR AR AR AR AR AR

Rolative importance






OEBPS/images/F000195si311.gif





OEBPS/images/F000195si310.gif
1,11

o 600





OEBPS/images/F000195si313.gif
Fan power (hp)






OEBPS/images/F000195si312.gif





OEBPS/images/F00002Xf02-05-9780080966595.jpg
J o

(2) Storage bin or
hopper

k=

(9 Solids mixer,
slurrying tank

@

() Bal mill

() Fiter
(basic symbol)

=]

(q) Belt dryer
(conveyor dryer)

(p) Prill tower or
‘spray dryer

(b) Belt conveyor

(g) Kneader, extruder

b [/

(¢) Screw conveyor (@) Elevator (e) Cyclone

(%) Ribbon blender ) Crusher ) Hammer mil
o lalu b

(m) Drum fiter (n) Centrifuge “’L""‘m‘;"j’

B mem) LY

. () Granulator or
(1) Tray dryer (s)Rotarydryer b e o merator





OEBPS/images/F00002Xf02-04-9780080966595.jpg
g¢ T e 5

(a) Centrifugal (b) Reciprocating pumps  (c) Positive displacement (d) Gear pump
pumps or compressors pump orfan
(&) Axil or centifugal 0 Turbine (o) Ejector

ity





OEBPS/images/F000195si314.gif
pud; _ TS0 X 15X 221X 070 _ 53y oy
" 034x 10~






OEBPS/images/F00002Xf02-03-9780080966595.jpg
® 06

(a) Heat exchangers

(basic symbois)

=

() Tube bundie or
stabein reboler

(Imm

() Plate heat
il dings

&

() Fired hoater with process

(c)Fired heater with heat (4) Shell and tube.

§ = =

s

() Eloctric heater

duty in radiant section recovery in convective section ‘exchangers. Ao
&) e (=)}
) Finned ube () Utube () Heatg o cooing
(@) Ketie reboller ‘exchanger exchanger coil
[ sommm—

JGRES

(m) Cooling tower





OEBPS/images/F00002Xf02-02-9780080966595.jpg
2B
J o K&
o &
(a) Drum or vertical {b) Horizontal (c) Packed column, (d) Trayed (e) Autoclave,
P Vo s e reacor i oo
OTubuer @) Sopeninetbuar () Theepase () nine
reactor reactor or coil decanter ‘mixer (i) Sparger
(K) Open tank () Covered tank (m) Floating-roof (n) Fixed-roof (o) Liquefied gas

tank

e ‘sioraos sohiens





OEBPS/images/F00002Xsi25.gif





OEBPS/images/F00002Xsi24.gif





OEBPS/images/F000055f05-06-9780080966595.jpg
[ Field mounted shared display device with limited access to adjustments
5 e ispiay devios withcpsrator access o adustments

ALY Shared display dovicowith sftvaro larms (s measure varible
B Programmatle ogic controle acoessile t operator

5] it moisited ronsininabis gk oitoller





OEBPS/images/T000055tabT0010.jpg
Initiating or Measured
Variable

Analysis (composition)
Flow rate

Flow ratio

Power

Level

Pressure, vacuum
Pressure differential
Quantity

Radiation

Temperature
Temperature differential
Weight

First Letter

Indicating
Only
Al
I
¥
n

il
Pl
PDI
Q
RI
b
oI
Wi

Recording

ARC
FRC
FFRC
RC
LRC
PRC
PDRC
QRC
RRC
TRC
TDRC
WRC

Controllers
Indicating
AlC
HC
IC
nc
L
PIC
PDIC
Qic
RIC
e
TDIC
WIC

Blind
AC
FC
FFC

LC

PDC

RC

TC

TDC
we

Transmitters

AT

PDT
Qr
RT
TT
TDT
WT

Final Control
Element
AV

BV

FEV

W

Lv

PV

PDV
Qz

RZ

v

™DV
wZ





OEBPS/images/F000055f05-07-9780080966595.jpg
— 2 g

Restriction orfice  Pressure relief  Hand control valve  Gate valve or
or safety valve isolation valve

N

Selfcontained  Stop check (non-
backpressure return) valve
‘Teculnior





OEBPS/images/F000055f05-08-9780080966595.jpg
PAH [RIC
PAL






OEBPS/images/F000055si1.gif
indicating
RC = recorder controller





OEBPS/images/F00002Xf02-12-9780080966595.jpg
A

Recycle DCE

Recycle HCI

Chlorination —‘
= |
|_. Pyrolysis eparaton| |
5 |
Onyhycro-
avfnaton

Ve





OEBPS/images/F000055f05-10-9780080966595.jpg
(@






OEBPS/images/F00002Xsi22b.gif
11.86mol






OEBPS/images/F000055f05-09-9780080966595.jpg





OEBPS/images/F00002Xsi22a.gif
207.5






OEBPS/images/F000055f05-12-9780080966595.jpg
Process

ot or cold
utiity

(@

(©

ey

TO VARIABLE
SPEED MOTOR
CONTROL CIRCUIT

(@)

[y .






OEBPS/images/F00002Xsi22.gif
ons: CH; + 20, - €O, +2H,0
C.H, +3.50, = 2CO. + 3H.0





OEBPS/images/F000055f05-11-9780080966595.jpg





OEBPS/images/F00002Xsi21.gif
Quantty supplied — stoichiometric
iometric quantity

Percent excess *100






OEBPS/images/F00002Xsi20.gif





OEBPS/images/F000055f05-13-9780080966595.jpg
Trap

O





OEBPS/images/F00002Xsi19.gif
‘moles DCE produced

X100
‘moles ethylene reacted x 1

= %

= {100 = 94%

moles DCE produced
‘moles ethylens fed x 1

Overall yield (including physical losses





OEBPS/images/F00002Xsi18.gif





OEBPS/images/F00002Xsi23.gif
C 4, + Ol = CLOT. yeld on ethy lene 985





OEBPS/images/F00002Xsi17.gif
Reaction yield =






OEBPS/images/F000055f05-15-9780080966595.jpg
QD
(S
Codant

Distlate

Feed





OEBPS/images/F000055f05-14-9780080966595.jpg
"





OEBPS/images/F000055f05-17-9780080966595.jpg





OEBPS/images/F000055f05-16-9780080966595.jpg





OEBPS/images/F000055f05-19-9780080966595.jpg
PIC

To vent
system

A Fic

I
1'F
Coolant






OEBPS/images/F000055f05-18-9780080966595.jpg
Intermittent Trap

charge





OEBPS/images/F00002Xsi14.gif
2220 x5 = 49.49 mol

ethylene = 2252
cthanol = 349 55 = 5,20 mol
528

ether = &40 5 = 0,15 mol
528

Amountof ethylene reacted = 55.0-49.49 = 5.51 mol

3 5.20
ctivity of ethylene for ethanol = — 220 5 100 = 94.4%
Kot S51x10






OEBPS/images/F000055f05-21-9780080966595.jpg





OEBPS/images/F00002Xsi13.gif





OEBPS/images/F000055f05-20-9780080966595.jpg
(a) (b)





OEBPS/images/F00002Xsi12.gif
‘moles of product produced
L supplicd (o the process X stoichiometnc factor






OEBPS/images/T000067tabT0010.jpg
Cold Hot

Machining Working  Working
Mild steel s s s
Low alloy steel s D s
Cast iron s u u
Stainless steel s s s
(ICr, 8Ni)

Nickel s

Monel s

Copper

(deoxidized)

Brass s D s
Aluminum s s s
Dural s s s
Lead s -
Titanium s s u

Casting

D

D
s
D

u

Welding

Swvew

Anncaling
Temp. °C
750
750

1050

1150
1100
800

700
550
350

S—Saisfuctory, D—Difficul, special techniques needed.
I Unsatisfactory.






OEBPS/images/F00002Xsi11.gif
AT A T S S SR
moles A consumed moles B formed

“moles A supplied - moles A consumed x stoichiometric factor






OEBPS/images/F000055f05-22-9780080966595.jpg





OEBPS/images/F00002Xsi10.gif
Yield = ST
moles of A supplied x stoichiometric factor





OEBPS/images/F00002Xsi9.gif
Storchometne factor

moles of B produced per mole ol A reacted in the reaction storchiometne equation





OEBPS/images/F00002Xsi8.gif
R

moles of B that could have been formed if all A reacted (0 give B
moles of B formed

T oF A comeumod x storchiometrie factor

Selectivity






OEBPS/images/F00002Xsi7.gif
X100
X

Percent conversion = 5

x =30 1455kmol/h
S






OEBPS/images/F00002Xsi16.gif
X100






OEBPS/images/F00002Xsi15.gif
015

TS X0

Selectivity of ethylene for ether =






OEBPS/images/F000195si353.gif
;= 1606 Wim™C





OEBPS/images/F000195si352.gif
i X 109 x 107
<10+

023(ST705}"*(7.99)"*






OEBPS/images/F000195si355.gif





OEBPS/images/F000195si354.gif
L)
L) g

ap =i ()0

6 10 0.60:
20 107909 LU

AP=8x32x107
T 2

= 1003 Njm®





OEBPS/images/F000195si357.gif
Nu=0.74Re" “(7





OEBPS/images/F000195si356.gif





OEBPS/images/F000195si359.gif
LIS S ((23 (UR |

U 1606 16 1564

[ = 530 Wi





OEBPS/images/F000195si358.gif
7417650 (530)" "

564 Wi





OEBPS/images/F00002Xf02-17-9780080966595.jpg
Feed B

Existing reactors






OEBPS/images/F00002Xf02-16-9780080966595.jpg
N

T

18 Baaé ciles (b) Revariped case





OEBPS/images/F00002Xf02-15-9780080966595.jpg
- e

T T

(8] Bais cass: 5} REvaRbed otse:






OEBPS/images/F00002Xsi40.gif





OEBPS/images/F000043f04-45-9780080966595.jpg
Gs oA

HHE HROAD B






OEBPS/images/F000043f04-47-9780080966595.jpg
Column: T-100

Fluid Pkg Basis-1 / Peng Robinson =1 |

Design. I Erecks ot TAGRR . TEOY ¥ PO TP
o | ipusiony | vewiitganes |
-
Manitor TR T TN VAT Gl
P TO0m | 000 oo Press
i
e e —
ey I
Naes
oo
esieivas T CamiVas
e rEn o
Chitse s e i
elixhie oy T

T T T ignonin] 213

Vou | | AdtSpec | | ioupAcive || Updutainacvs|| (i Spuce | DomasckFssdamP

" Desion | Foonotr ] 52 O ] R ] Viodhoot ] Petamarce | Fowheet | Rescton ] Svencs ]

Oseto | Cobamricrnm. | Fun | Eot | S 7 Updse Outes T oot






OEBPS/images/F000195si351.gif
(0.023 R pe*






OEBPS/images/F000043f04-46-9780080966595.jpg
Column: T-100 / COL1 Fluid Pkg: Bas

= Cokam Name [T100 SubFlowsheel Tag [CO1 Congerser
been b
Connections |
e, Condenser Energy Sieam
fac = = DetaP
Spece 0 |[po0%Fs | Oshd Liid Dutlet
Specs Surmay N =
Subccoing
Noles B T —
s Qptona Sde Digws
T S T T Do
T2 Ma [ <esn>s |
! ! | Rebeier Eneray Shiear
F , R
Stage Nusberng <
DiokuE) Boltoms Liguad Outet

& TopDonn € Botom Up. | = ESL spmmen
Edt Trays, -

™ Design | Paranetors ] 5ids Ops ] Ralig | Warksheet ] Pefiamance ] Flowshest ] Reactons ] Dynamos ]
Deete | _CobmnEmionment. | Bun | Recet | IUnGoneiged 7 Update Outlets [ lonored






OEBPS/images/F000195si350.gif
22000 1

3600 999

999x0.602 % 109 x 10~
113610

R
Sx 10

Velocity through channel, u= =0.602 mis

Re 705






OEBPS/images/F000043f04-49-9780080966595.jpg





OEBPS/images/F00002Xsi39.gif





OEBPS/images/F000043f04-48-9780080966595.jpg
Cobann 1100 / COL1 Flad Phay Baaia1 / Pen

o Optipl Chacks:

B Irgus Summay.

Vi Ikl E s

Coup Fiow

Moritor coit
o0 00000

Specs L0 0000 0 ko
Spocs Sumay =
5 I T I THsrs

itcocka I T Camonents>
Noes |

& G C S
e Taga Ty e

430 Porameters

s Prod e

[Conp Fow:

oo |
e
TaTtgmer | (O

1066 ko | —rommvors———orr——

Von | [Poises | s | Dpaokive] | Gisies | DogsesolFectmP |

™ owion | Pametos | 5ia U ] R | Wotahoot ] Pefomrce | Powhost ] Fescors ] Doreics ]

Dol calun e

Fin

Reel

SR [~ Upcote Outets [~ lancted






OEBPS/images/F00002Xf02-14-9780080966595.jpg
Benchmark Confirm “as is’ Complete “as is'| List current

oxisting dosign PFD fowsheet operating scenarios

Deterring
revamp scope
I

2 3 ¥ '3 3
ncrease produciion Improve HSAE = & =

rate by X% performance Chanwsfeedl [Ehengé pradich on

[ I I T
PR
Wiodity approprite section of
PFD 1o revamped case

Determine major Perform rating |_, | Consider equipment | _,{Gonsider altenate || Consider adding
cquipment bottienecks || calcuations_| |~ enhancements | | use of equipment | | paralil equipment
I
3
Redesign plant | _,[ Design new heat | _,[Betermino scope] _,[ Consider HX | [ Gonsider where now heaters, | _y
heat integraton [~ exchange network [ | for HX re-use | | enhancoment | | exchangers and coolers are needed
J
2
Redesign pant hydrauiics 8] | Re-rate pumps Determine scope for | _, [Besign now hydrauic|
Solds handiing [and control valves| ] re-use or modification ‘componens
3
Creato flowsnest for Tostrovamped Costrow Estmato offsto]__, [ Compare 1o costof
‘reinpid piocess || asig v Scenarios| components by ‘Duiiding naw plant






OEBPS/images/F000043si45.gif
Adjust vanable x to value v bymampulating vanable






OEBPS/images/F00002Xf02-13-9780080966595.jpg
To vent or flare Air or

Hoater "1 9%
Process

flow

(a) Rotary dryer with once-
i i s

(b) Rotary dryer vith gas
R RN Rl molibeE TReI.





OEBPS/images/F000043si44.gif





OEBPS/images/F00002Xsi38.gif





OEBPS/images/F000043si47.gif





OEBPS/images/F00002Xu02-01-9780080966595.jpg
f—> Purge 5% argon
Recycle uge-S% o

Feed

02% Reactor () ::‘!"d

argon Conderiser






OEBPS/images/F000043si46.gif





OEBPS/images/F00002Xsi37.gif
[Feed stream flow rate; X [Feed stream inert concentration)
(Purae stream [low rate] x [Specified {desired] recycle inert concentration






OEBPS/images/F00002Xsi36.gif
Loss ol mert in the purge = Rate ol

cd ol merts into the system






OEBPS/images/F000043si48.gif





OEBPS/images/F000195si342.gif





OEBPS/images/F000195si341.gif





OEBPS/images/F000195si344.gif
Nu=0.54Re"* e “(7





OEBPS/images/F000195si343.gif





OEBPS/images/F000195si346.gif
Nu=0.64Re" et (}l)





OEBPS/images/F000195si345.gif
Nu=0.74Re" pett (}l)





OEBPS/images/F000195si348.gif
Nu=0.87Re" pe 1t (}l)





OEBPS/images/F000195si347.gif





OEBPS/images/F00002Xsi35a.gif
367.3 kmol/h






OEBPS/images/F00002Xsi35.gif
202 kmol /b





OEBPS/images/F00002Xsi34.gif





OEBPS/images/F000043si50.gif
CICHy ), +CH,OH — |CH, | ~C-O-CH,





OEBPS/images/F000043si49.gif
@b
ik

}





OEBPS/images/T000043tabT0070.jpg
N2
45

715

17

CHy

03





OEBPS/images/F000195f19-70-9780080966595.jpg





OEBPS/images/F000043si51.gif
Cl, — 2ZHCI





OEBPS/images/F00002Xsi33.gif
Z={0.98x113.8+0.95x95.310.995






OEBPS/images/F000055f05-01-9780080966595.jpg
il Thseaiy Globe Diaptvagi





OEBPS/images/F00002Xsi32.gif
0.99(0.98X +0.95Y )

0 kmol /h

Substituting for ¥ from equation (b) gives X = 113.8 kmol/h

and Y= 08371138 =

5.3 kmol fh






OEBPS/images/F000043si52.gif
CH,CI

H.CHOH - CH,CH.CH,CO +






OEBPS/images/F00002Xsi31.gif
= (098X +0.951)0.995 X 5

%0.95
¥ = 0 837%





OEBPS/images/F000055f05-03-9780080966595.jpg
TSI PPy VL CARNGE0N B JRaws:

—p——rF—— Undefined signal

—#——#—  Pneumatic signal

Electric signal

Electric binary (on-off) signal

—0——0— Intemal system link (software or data link)

A i S R A R T T iR ki e





OEBPS/images/F00002Xsi30.gif





OEBPS/images/F000055f05-02-9780080966595.jpg
Diaphragm or

I il L Solenoid Digital Rotary motor





OEBPS/images/F00002Xsi29.gif





OEBPS/images/F000055f05-05-9780080966595.jpg
7 T

Panel mounted in Panel mounted in Dual functior
primary location ausilary location instrument
fiocel Dehel)






OEBPS/images/F00002Xsi28.gif





OEBPS/images/F000055f05-04-9780080966595.jpg
Sl ok ke

Fails open Fails closed Fails locked in Failure mode
currsnt cosRion Hiddisaiiilie





OEBPS/images/F00002Xsi27.gif
(098X +0.95Y)0.99:





OEBPS/images/F00002Xsi26.gif
12500

VC per hour = 1223

= 200kmol/h





OEBPS/images/F000195si349.gif
Hydraulic mean diameter. d,

4 (75200)

DXL _ 9
2075+ 200) i





OEBPS/images/F000195si336.gif
x205.7x 150

= 1102kW
07






OEBPS/images/F000195si335.gif
434 x10° 2
XN 617 6
B30 &






OEBPS/images/F000195f19-66-9780080966595.jpg
Convection.

bank
Radiant
col
Radiant
tubes. Radiant,
tubes.

Bumes Bumers

(a) ©





OEBPS/images/F000195si337.gif
SR W






OEBPS/images/F000195si338.gif
g, =aT





OEBPS/images/F000195f19-67-9780080966595.jpg
Stack

= R
| roctooertenge
for tube coil
removal
Iniet
Inlet i
'P Outet Convetior
f (optional s
s = ’E‘"D\m = outtet
susponsion| =55 d::rwﬁ,uﬂ — "&I_f
Yoke |walls
[} [ Radiant
W = e
| door
g ﬁ’j gty 48 Yl
postioning | |
quides Burner

Buddicn Ak





OEBPS/images/F000195si340.gif





OEBPS/images/F000195si339.gif
Q- =clad ) FIT, - T





OEBPS/images/F00002Xf02-22-9780080966595.jpg





OEBPS/images/F00002Xf02-21-9780080966595.jpg





OEBPS/images/F00002Xf02-20-9780080966595.jpg
Pressure

Al
— Centriugal
Reciprocating|

Flow






OEBPS/images/T000158tabT0010.jpg
ing Parameter

Residence time

pace velocity (also
GHSV = gas hourly space
velocity, LHSV =liquid
hourly space velocity)

Weight or mass space
(WHSV = weight
hourly space velocity)

Number of transfer units

Definition

reactor volume.
Volumetric fow r

volumetsic flow rate
Teactor [or more ofen catalys ) volume

_ _massflowrate
hass of cawly S,

See Section 17.14.2. The defin
always a path integral of the inverse of
concentration or parial pressure driving
force. Different definitions can be used for
vapor or liquid phase.

on is

Units

Time

Time™ (usually by

convention hr™)

Time™ (usuall
convention hr™')

Dimensionless.

Comments

Most widely-used reactor sizing parameter.
Mainly used for homogencously-catalyzed
reactions. Note that for liquid-phase reactions
reactor volume refers to volume occupied by
liquid, not total reactor volume. Volumetric flow
rate should be calculated under average reactor
conditions, which can be difficult for
compressible gases if there s a sign
change in temperature along the reactor.

ant

Usually used for reactors that employ solid
catalysts. Volume usually refers 10 volume
occupied by packed bed of catalyst, regardless
of whether catalyst bed is expanded under
process conditions. Volumetric flow rate
should be calculated under average reactor
conditions as above.

Usually used for reactors that employ solid
catalysts. Use of WHSV avoids complications
of allowing for changes in volumetric flow
rate along reactor and variations in catalyst
bed loading density between small laboratory
reactors and full-scale reactors,

Used for reactors where mass transfer between
vapor and liquid phases is the rate-controlling
step. See Section 17.14.2 for design of mass
transfer contacting devices and Section 1.8
for more on multiphase reactors. Must be used
with the appropriate definition of height of a
transfer unit, which always includes the molar
flow rate of one of the phases.






OEBPS/images/F00002Xsi57.gif





OEBPS/images/F00002Xsi56.gif
T, = 13.5°C





OEBPS/images/F000158f15-02-9780080966595.jpg
Distribution

H
E
Concentration

Residence time
(a) Residence time distribution

Length along reactor

(b) Concentration profile
o remciiier Sontl SorFonnois





OEBPS/images/F00002Xsi55.gif
v

200%(1.5)

1

00% [ F.






OEBPS/images/F000158si4.gif





OEBPS/images/F000043f04-36-9780080966595.jpg
Dy

Curen:Celt

[ 08 Voo |

3 5 T
Shoior a0 | 1
i conpresion | 150301004 kW |
o Conprsdon Teaskw |
e 06

1l

Fusliate
Heat ale

e S i

W

Effciens

m]
I
i
i

Conectons ] Parsmelers ] Fomues _ Spreadsheet [ Cauiaton Orcer ] User Variatles | Notes ]

Delete |

FunciinHep. |

Spreadsheet Or.._|

I lonored






OEBPS/images/F000158f15-03-9780080966595.jpg
Distribution

Concentration

3
Residence time Length along reactor
(a) Residence time distribution (b) Concentration profile





OEBPS/images/F000158si5.gif





OEBPS/images/F000043f04-37-9780080966595.jpg
RPN S

Foed A < 1P

Reactor

Reoycle
of B





OEBPS/images/F000158f15-04-9780080966595.jpg
Ideal reactors Real reactors
—_— =
Tubular Serpentine tubular  Fixed-bed reactor Tubular exchanger
e T— reactor reactor or coil reactor

Plug-flow reactor

AR |

Fired heater reactor Radial-flow reactor_Transport (riser)
fuidized-bed reactor

iy

Well-mixed reactor

oo O O

Stimed-tank reactors  Sparged-tank  Liftube reactor _ Bubbling-bed
reactor fuidized-bed reactor





OEBPS/images/F000043si33.gif
rate (KW = molar flow [molthr] x AH", |k} mol )/36(0





OEBPS/images/F000158si7.gif
M.

-M,

=NV





OEBPS/images/F000043si34.gif





OEBPS/images/F000158si9.gif
=56.68 KJ per mol NO,





OEBPS/images/F00002Xsi54.gif
R x 10 = UAFAT,,





OEBPS/images/F000043f04-38-9780080966595.jpg
Hterate 1o convergence

s N

[ estmate | Upsate

s — O [ T

Feod A > O &
& ] Recycle
o8

Reactor 0

Lights.






OEBPS/images/F000158si8.gif
—56.68k)





OEBPS/images/F00002Xsi53.gif
L X 20 107 x (T, = 25)





OEBPS/images/F000043si36.gif





OEBPS/images/F00002Xsi52.gif
Qs = LS X 10F x (61.4 —40) = 321 kW





OEBPS/images/F000043si35.gif





OEBPS/images/F000158si10.gif





OEBPS/images/F00002Xsi51.gif
621 10

186.5 ¢





OEBPS/images/F000043si38.gif
N =gx,+(1=g)flx)





OEBPS/images/F00002Xsi50.gif
)" = 691.6 Win'K

New cold-side coefficient = 500 (1
(120007

New overall heat transfer coefficient 7 = 13 W/mlK

+(691.6)





OEBPS/images/F000043si37.gif
) = S






OEBPS/images/F000195f19-69-9780080966595.jpg
i

©

|

@

Clearance:

®)

()





OEBPS/images/F000043si39.gif
moles B remaining per mole product = ————_MOE DI _|
Stoichiomelric moles B per mole product

—1
T ——





OEBPS/images/F000195f19-68-9780080966595.jpg
L)





OEBPS/images/F000195si325.gif
AKX SV |

T 00 * 311 21 1% *

40 W/ C






OEBPS/images/F000195si327.gif
8xT6.2x 107 x 150 =205.7

iroughly 1I8mx 12m)






OEBPS/images/F000195si326.gif
4.34x10°

X g e
30 Tx 1 15%1

air-side temperature change





OEBPS/images/F000195si329.gif





OEBPS/images/F000195si328.gif
4.34x10°

B PERe
S143xix115%1

sir-side temperature change =





OEBPS/images/F000195si331.gif
) — 140 -3
265)=H0=3) o1






OEBPS/images/F000195si330.gif





OEBPS/images/F00002Xsi49.gif
15x 10 x (160 -118.6)






OEBPS/images/F00002Xsi48.gif
I =T18.6°C
14°C






OEBPS/images/F00002Xsi47.gif
1.5x 10" % (T, —40)

484 x 114 % (140 =T,





OEBPS/images/F00002Xsi46.gif
O

484 x 114 x(140-T,)





OEBPS/images/F00002Xsi45.gif
Qi

Sy G (T, —40)
T = 180—

1.5m, €, 1140 =T






OEBPS/images/F000043si40.gif





OEBPS/images/F000043f04-39-9780080966595.jpg
Feeds —2
Feed A ﬂ

Reactor






OEBPS/images/F000043si42.gif
Full =y






OEBPS/images/F000043si41.gif
Fryll =vy) =G+ Fal(l —vgl





OEBPS/images/F00002Xsi44.gif
Qi = 800X 10" = m, €, 120 - 40]

.

i, € 140 = 60






OEBPS/images/F000043si43.gif
10.000bpd

10,000x 641 [kg/m') x 0.1596 [m'/bbl 1124

5 697 metric tonc/h






OEBPS/images/F00002Xsi43.gif
a0 18"

New heat transler coefTi






OEBPS/images/F000043f04-40-9780080966595.jpg
Make-up
gas. Purge

Feed —

Reactor
Bk





OEBPS/images/F00002Xf02-19-9780080966595.jpg
E101 E102 R101 E103
sT : )
ul
Feed
n
ow

r
Exchanger €101 €102 E103
Type Plate s&T saT
Duty (kW) 800 400 200
Hot side 7'in (°C) 140 180 60
Hot side T out (‘C) 0 180 40
Cold side T'in (C) 0 120 2
Cold side T out (‘C) 120 160 35
F, factor 1 1 092
Hot side heat transfer coeffcient (Win?K) 700 2000 700
Cold side heat transfer coefficient (WinK) 700 500 700
‘Overal heat transfer coefficient (WIn?K) 350 400 350
Area (m?) 114 275 37
a1y, 20 364 196






OEBPS/images/F000043f04-42-9780080966595.jpg
Components
Component Mole Fraction
Connections LightKey in Bottoms 2 Mpertans 02000
Parameters HeavyKey in Distlate nHerane | 00250
UserVaiebles
Pressues — —
Notes.
Condenser Pressure 300.000KPa |
Aeboiler Pressure 300,000 kPa
Reflux Ratios
‘ External Rellx Ratio 4310
Minimur Reflus Ratio

" Design [[Rating ] Watksheet ] Perfomance | Dynamics ]

D | I | i






OEBPS/images/F00002Xsi42.gif
()= mC AT,





OEBPS/images/F000043f04-41-9780080966595.jpg
HY DA DS B

sep 0 e






OEBPS/images/F00002Xsi41.gif





OEBPS/images/F000043f04-44-9780080966595.jpg
RCY-

Worksheet

Conditions

Propetties

Composiion

Name 303 3020
[Vapour 0000 00000
Temperalure [C] 1052 052]
Pressure [KPa] 1300 1300 L
Molar Flow [kamole/h] 2187 7188
Mass Flow [ka/h] 1.885e+004

Std Ideal Liq Vol Flow [ma/h]
Molar Enthalpy [ki/kgmole]

Molar Eniropy [kJ/kgmole-C]
[HeatFiow

4.034e+007

4.036e+007

|
£
i

Connections | Parameters  Worksheet [ Monitor | User Variables

Delete

Continue

Becycle Assistart_ |

I lgnored






OEBPS/images/F00002Xf02-18-9780080966595.jpg
Prefractionator
column

Original
ERven

Distillate

Bottoms





OEBPS/images/F000043f04-43-9780080966595.jpg
100

Performance | [ 1%
Wi Normber of Trags 77500 |
[Bctust Nunber of Treys 0347 |
Optinal Feed Stage 2565 |||
Temperatures-
Condenser [C] E7
Reboler [C] 1044

[ Reboler Duty [kiZh]

6363425527 |

S =1 S

"= Desion | Raling | Warkshest _ Performance [ Dynamics ]

Deete | IO ™ fgnored






OEBPS/images/F000195si333.gif





OEBPS/images/F000195si332.gif





OEBPS/images/F000195si334.gif
1_1L,._1
v, =600 A T

31 Wi






OEBPS/page-template.xpgt
 

   

   
	 
    

     
	 
    

     
	 
	 
    

     
	 
    

     
	 
	 
    

     
         
             
             
             
             
             
        
    

  

   
     
  





OEBPS/images/F000171si121.gif
182
933 % 0 605,

Minitoun . 9.7 mm liquid





OEBPS/images/F000201f20-17-9780080966595.jpg
Liquid head, m

0.0

250

15|

0.

50

00,

Flow-rate. m3h

I pump carve
—
—
Endbrey
| &
&
0
7
/ef =
System h
curve. \
6 % @ @ % w7






OEBPS/images/F000171si120.gif
Maximum/,. 25.0mm liguid





OEBPS/images/F000201si63.gif
e T
Dillerence inpressure, AP = (17— LOI3)10° = 0.7 10° N/
ashead of liquid = (0.7 = 10°/(900x9.8) = 7.9m

Total static head = 1.54+7.9

Am





OEBPS/images/F000171si123.gif





OEBPS/images/F000201si61.gif
1286 79 = 71,703 N

AP, = §x0.00225






OEBPS/images/F000171si122.gif
Almmmumrate v, + 11,






OEBPS/images/F000201si62.gif
Tx 10 JLI03 _ 685x10°

VPSH = 308 10 128608 T 125608

5.5+ 10—5.7 544 = 5.4






OEBPS/images/F000201si66.gif
Friction factor lrom Figure 2005, f = 0.0027





OEBPS/images/F000201si64.gif
Sl sl = SIHRT T S

Volumetric flow rate = 1x5.03% 107 x 3600 = 18.1m’/h
900 180 107!

L 3x10t
T 36x 10

Reynolds number =






OEBPS/images/F000201si65.gif
A6/

Relative roughness 006






OEBPS/images/T000201tabT0060.jpg
Flow Rate m"/h Static Head m Dynamic Head m  Total Head m

9.4 20 14
72 9.4 43 140
362 9.4 68 162
453 9.4 107 201

10 543 94 152 246





OEBPS/images/F000201f20-18-9780080966595.jpg





OEBPS/images/F000201si67.gif
Length including miscellancous losses = 100+ (600 x 80 x 107"}






OEBPS/images/F000201si68.gif
(148)
(80107

= 17.982/(900x9.8)
44203 =11 dm

Pressure drop, APy = 8 x0.0027

03 mliquid

Total head






OEBPS/images/F000171si110.gif
pase 1 =9.3 % 107






OEBPS/images/F000201si54.gif





OEBPS/images/F000171si109.gif





OEBPS/images/F000201si55.gif





OEBPS/images/F000171si112.gif
base i,

A3x0.85 =292 m/s

1op i, = 1.77 x0.85 = 1.50m/s





OEBPS/images/F000201si52.gif
O +600x 225 % 107" = 1035 m






OEBPS/images/F000171si111.gif
api =93 107





OEBPS/images/F000201si53.gif
AP, = $X0.0019% (&
35107






OEBPS/images/F000201f20-15-9780080966595.jpg
2950 rpm

IR
IS

60

50

40

30

10

-
g
£
&Y T —]
e N
N
s

Phoisvabe: i





OEBPS/images/F000171si113.gif
97.5x18.4
0,693 x 3600
top= ST5x56.1

307 % 3600

base =0719mfs

T3 mys





OEBPS/images/F000201f20-16-9780080966595.jpg
Head, m

200/

150

100
80
70
60/
50
40

30/

20

10

Each area corresponds
10 the performance
characteristics of one
pump over a range of
impeller sizes

3

L1
45

6 8 10
Fhicisita Mol

o
el





OEBPS/images/F000201si56.gif
9.8(=30) +{=5x 103)/874 - (78.221)/874 - W =0

W= —389.2 ) kg






OEBPS/images/F000201si57.gif
Power = [389.2 X 55.56/0.

= 30981 W, say 31 KW.






OEBPS/images/F000171si115.gif
base 280

op S56m





OEBPS/images/F000171si114.gif
Py
292
0134
150

246m’

base

489

top





OEBPS/images/F00002Xf02-26-9780080966595.jpg
Yield targets met?

Y

Determine byproducts

Byproduct values [

Determine recycies.

inary reaction-
separation-recycle
structure

Preliminary simulation

Preliminary equipment
sizing

Mass and energy Preliminary capital cost
balance estimate
Pinch analysis Preliminary utiities Praiminary cost of

production






OEBPS/images/F000171si117.gif
BIXIBA _ 5 29 0 107 m/s

Maximum volumetric liquid rate = 20528





OEBPS/images/F000201si59.gif
Miscellancous losses = 1000 x 50x 107" = S0 mol pipe.

Relative roughness, efd = 0.046/50 = 0.001

= 196x 107 m?

L
3600 1.96 % 107

1286
286X 176 50X 10~
0364 % 10—+

Pipe cross-sectional area §¢ 50 10~

Velocity, u

Reynolds number. 31x10°





OEBPS/images/F00002Xf02-25-9780080966595.jpg
4. Refine process
structure (Figure 2.27)

Start

1. Inital
economics 5. Complete and review
attractive? PFD

Continue.

6. Preliminary process

research

hazard analysis (PHA)

N

7. Revise economic.

Yield targets met ? Give up?

assessment
Y
3. Preliminary
Preliminary cost Updated cost of
‘economic assessment

ik of production production
Cost of production™, Y. N_Cost of production

atractive? atractive?

N v

Revise yield Review largest Optimize and go to

targets cost components. detailed design






OEBPS/images/F000171si116.gif
top






OEBPS/images/F000201si60.gif
Friction factor from Figure 2005, f






OEBPS/images/F00002Xf02-24-9780080966595.jpg
Reactor

Separaiion and
recycle system

Heat recovery
system

Heating and cooling
utities

Water and effluent
treatment





OEBPS/images/F000171si119.gif
Minimurm liquid rate, at 70% wmdown = 0.7 x 2.6

B2Kg/s





OEBPS/images/F00002Xf02-23-9780080966595.jpg
Pressure.

(a) Base case

A

\\Ope«anng
point

(b) Revamped case

A

—\;\ +

=
.y

A+B

N

Flow





OEBPS/images/F000171si118.gif
Maximun liuid rate

2600

B0kg/s





OEBPS/images/F000201si58.gif
VPSH o = Plpg+H—-Pipg—Pipg






OEBPS/images/F000201f20-14-9780080966595.jpg
&

wew Aeded

125

B eig

2

i~

7

T B

50

45

20 30 0 50 60 70 8
[P

10





OEBPS/images/F000171si99.gif





OEBPS/images/F000201si45.gif





OEBPS/images/F000171si98.gif





OEBPS/images/F000201si46.gif
gAZ+APIp—APlp—W =1





OEBPS/images/F000171si101.gif





OEBPS/images/F000201f20-12-9780080966595.jpg
o Discharge

T

mpeller

2
Casing






OEBPS/images/F000171si100.gif
hy < 310+ h, )





OEBPS/images/F000201si44.gif





OEBPS/images/F000171si103.gif
Column pressure drop = 100X 1077 x 1000 x 9.81x 17 = 16, 677 Pa

1014 10*Pa
=1014x10°+ 16,677
= 118,077 Pa= LIS bar

Top pressure, 1atm (14.7 Ib/in

Estimated bottom pressus






OEBPS/images/F000201si48.gif
Power = (Wxm) x 1004; . forapump





OEBPS/images/F000171si102.gif
10
Number of real stages = 2+ = 17
ages = S





OEBPS/images/F000201si49.gif
Power = =€ x 100





OEBPS/images/F000201f20-13-9780080966595.jpg
Vessel 2

Vessel 1






OEBPS/images/F000201si47.gif
The head required [rom the pump = AP, /og — APlpg — A:






OEBPS/images/F000171si104.gif
693kg/m’, p; =944 kg/m"

P

Molecular weight = 18.4, surface tension = 58.9x 107 N/m






OEBPS/images/F000171si106.gif





OEBPS/images/F000201si50.gif
Power delivered

Woxm) =y,





OEBPS/images/F000171si105.gif
T48kg/m"

Molecular w 6.1, surlace tension = 22.7x 10~ N/m






OEBPS/images/F000201si51.gif
Cross-sectional area of pipe guzs x 1077y 0398 o’
locity = 000X 1011
Minimam fuid velocity = 1000230 x b oL = 16w
Reynolds number = (8743 1.6 225 x 10~)0.62 107

SIx10°

07 48






OEBPS/images/F000171si108.gif
TIx 107

0 107





OEBPS/images/F000171si107.gif





OEBPS/images/F000201si42.gif
=9 2 3
337 %573 = 19wk

2% 10133 % 10° % 139 x

Isentrapic work don

14 ((’ §495°
Ta—1\ {033

338,844 Jikg = 339 K)/ke





OEBPS/images/F000201si43.gif
YRS LS kikR

1000
13053600

Power required = 404 0.2 = 8O kW

Mass llow rate:

0.2kes





OEBPS/images/F000171si90.gif





OEBPS/images/F000201si36.gif





OEBPS/images/F000171si89.gif
AP, =981 x 107 ,p,





OEBPS/images/F000201si37.gif





OEBPS/images/F000171si91.gif





OEBPS/images/F000201si34.gif
S 3
xit gas volumetric flow rate =~ =3
Exit gas volumetric flow rate = 5 x 22,45 —_ 2= 43l






OEBPS/images/F000171f17-42-9780080966595.jpg
Orifice coefficient, Co.

0.9

Jr
090 PR
P
12
7
085 rd
10
0.80
08
075
06
02
070
05 0 5 10 15

Percent perforated area, A,/A,x 100






OEBPS/images/F000201si35.gif





OEBPS/images/F000171si93.gif
Y

ho=h,+h, +h





OEBPS/images/F000201si40.gif
(P % P}






OEBPS/images/F000171si92.gif





OEBPS/images/F000201si41.gif
= /(10133 10° x 8 0133 x 10°) = 2.8495





OEBPS/images/F000201si38.gif





OEBPS/images/F000171f17-43-9780080966595.jpg





OEBPS/images/F000201si39.gif
aznaz?
—-1x673x8 314x 2T )15 _
1271

}

=6718kI/ kmol
Acualwork = polytropicworkx ,
=6718x0.75= 5039k /kmol

10,410

Poweroutput = work / kmolxkmol/s = 5039x
3600

=14,571k] /5 = 14.6 MW





OEBPS/images/F000171si95.gif





OEBPS/images/F000171si94.gif
hy=1h,+h, )+h +h,





OEBPS/images/F000201f20-11-9780080966595.jpg
Surge line
i 1085 e

- e

[Percent of design head

G

E) & % o
Bl R e L i





OEBPS/images/F000171si97.gif





OEBPS/images/F000171si96.gif





OEBPS/images/F000043f04-18-9780080966595.jpg
101

Design

Connections.
Parameters
User Variables
Notes

~Components
Component Mok Fraction
Light Key in Bottoms Toluene. 0.0033
Heayy Key in Distilate: E-Benzene 0.0050
Pressures:
[Condenser Pressute 230000 kPa
[Reboder Pressure 330000 kPa
‘Reflux Ratios
[Exteinal Refle Aatio 2450
[Mirinum Refhas Ratio 2130

" Design [[Raing | Wakiheel ] Perfomence ] Dynaics
Do | O [ lowed





OEBPS/images/F000043si32.gif





OEBPS/images/F000043f04-20-9780080966595.jpg
=l
o T
DsEs Caalk=c © 6l






OEBPS/images/F000201si101.gif
33.95 Ny

AP, = $0.0025 %
g 77





OEBPS/images/F000043f04-19-9780080966595.jpg
i 1101

Performance

6376
Actus erofTays 38600
Optimal Feed Stage 18445

[Temperatures

Condenser [C] 2]
[Reboler [C] 1838
Flows
Feciily Vapour [Kgmole/h] 83403
[Reciiy Liquid [kgmole/h] 2260706
Stipping Vapou [kgmale/h] 3183443
Stipping Liquid kgmole/h] 4562502
Condenser Duty [ki/h] 7396237 159
Reboder Duty [ki/h] 700383654 209

"= Design ] Rating | Workshest _ Performance | Dynamics

Ocete | IO T o






OEBPS/images/F000043f04-22-9780080966595.jpg
1 / Peng-Robinson - {olx]

Vow gt | /00 TrogRonges

ca
View Tagle.
C Single Towet
I~ Live Updates:
© Fon/To
ssay Queves TBP Envelope:

CETTIEEM v G View Giaph
Densiy Assay. View Tabk.

= Desion | Parameters ] 5id2 0ps | Raing | Warkshest _ Pertormance | Flowsheet ] Reasions | Dynemcs ]

Dekte | CougnEnvioomen. | Aun | fese | ENCARSGSMNN [ Updste Oulkis [ lonoed






OEBPS/images/F000201si99.gif
fluid velocity 45l

AT 10





OEBPS/images/F000043f04-21-9780080966595.jpg
i Column: T-100 7 COL1_Fluid Pko: Basi

7 Peng-Robinson

Design | Optonal Checks = hie g, TP T Pt T
= sy | Viewidesnees. | = .
& Temp =
Monitor lter T Step. Equiibium__|_Heal J Spec | o} d
Specs A= T ooonsor ] |||CAPress i
i 0000100000241 | Flows s
‘Specs Summery L o e o o
Stbcooing =) b
Notes
SpechedVaue | CrertVale | Vit Eror | Actve] Evtail Curent |
Foti Ao (iES
Distlete flate emptyy | | 17| |
FellaRae <enp | [ |
| [etmsP = <emotp | | |
|Comp Recovery | = 5
Comp Recovery -2 0000t | 12
L L | I

View..

| _Acdspec. | GioupAcve | Updoe actve| Dider Specs | Degtees ofFreedom [l

" Design [ Paanciers | Side Ops | Raig ] Watksheet ] Pefomance ] Flonshest ] Aeacions ] Dynarics ]

Dekte | _ColumEmionment. | Run

IS 7 Upcatc Oulets [ lgnored

| Bt






OEBPS/images/F000201si100.gif
ORI — gy isaiy
09x 10~






OEBPS/images/F000043f04-24-9780080966595.jpg
Potormance | | SeckReis

e P TS

ke T Ren ‘
Tt I
P

oc aes 2]
e Lo
R —
ot s e
(Cramey/sumotie Tae
st e 2]

e

Do Potormance 5
Dot | I (72>





OEBPS/images/F000043f04-23-9780080966595.jpg
Tr

ng-1

Design Secion Nane

Stai Tiay

ErdTiay
Inteinsls

Mode
Nunibes ofFlov Paths

Section Dismele [n]
Tray For Propertes

Trey Specing (]
Trey Thickness ]

[MaxFloodng[%] |
Packng Corelation
HETP ]
[Pcking Type. <empts
A
Sieve Trap Flooding Method Section Property Modz.

[immcn =]

[Fist Ty mecion 3]






OEBPS/images/F000043f04-26-9780080966595.jpg
(@)

b)





OEBPS/images/F000043f04-25-9780080966595.jpg
sus Cank o oloo 4

HAE WA OAP @R

I —— _l0]x]|
Comtin
™™ gt ot

[ —

I Coomio ok i it

e T oo Ve | e

[ v






OEBPS/images/F000201si104.gif
bend. 1 x 30x80x 107" =24m





OEBPS/images/F000201si105.gif
valve, I x 18x80x 107" = 1.4m





OEBPS/images/F000201si102.gif
Friction loss = 0.0339 % 1.2° = 0.0489 kPa/m





OEBPS/images/F000201si103.gif
Am






OEBPS/images/F000201si108.gif
1306(045%1.2)° _ g py
3% 10"

atmaximum design velacity =





OEBPS/images/F000201si109.gif
Control valve pressure drop, allow normal 140 kPa





OEBPS/images/F000201si106.gif
total





OEBPS/images/F000201si107.gif
= (see Section 20.4]





OEBPS/images/F000201si91.gif
S550m™ ™
s st

2510200 mm. dj. optimum
25010600 mm. d;. optimum = 0.46°






OEBPS/images/F000201si92.gif
d.. optimum = (1664 % (10" 10007 "
= 177mm





OEBPS/images/F000201si89.gif
=071
0.88

e i,






OEBPS/images/F000201si90.gif
2510200 mm. dj. optimum = 0.664 " p™" "
25010600 mm. d,. optimum = 0.534 1,






OEBPS/images/F000201si94.gif
22 = 772 keim’

St
173

e «conditions = 352
Density at operating conditions = 33 x
7000)"“ it

TN x 7.72

3284mm

Optimumdametee = 0.465( 1000






OEBPS/images/F000201si95.gif
4, 2000
T 3600 0013 10— x 333 10—

71X 10 wrbulent






OEBPS/images/F000201si93.gif
A X — S0
aud  ax 1 1x107 %154 % 10~






OEBPS/images/F000201si97.gif
0.664x2.78" x 13067
287






OEBPS/images/F000201si98.gif
cross-sectional area = {779 107°)7 = 4.77x 107






OEBPS/images/F000201f20-21-9780080966595.jpg
75m

ot

Preliminary layout
not o scale.





OEBPS/images/F000201si96.gif
R = R

10
mass flow = 1% = 78
nss W= 2600 £
et flow = 278 = o
volumetrielow = 278 =213 107wt
volumetrie flow _ 213 10 e
arcaof pipe = Yolumetricflow _ 213X 107 _ 5 135 195 g2
0TI = T oty 1 xmm

diameter of pipe

[(213%107x 2] = 0052m = 5200m

\





OEBPS/images/F000043f04-03-9780080966595.jpg
A 5O A P O [romscirsm 2]

2

GBR-100






OEBPS/images/F000201si80.gif
O 285m0l






OEBPS/images/F000043f04-02-9780080966595.jpg
Use BW-R
or LKP

Polar o
hydrogen

Use UNIFAC to

estimat
interaction
parameters

experimental
| dat

Use sour
water system|

Use
electrolyte

Use NRTL
or UNIQUAC|

or UNIQUAC

Select model that
gives best fitto

data





OEBPS/images/F000201si81.gif
AP\ pm
ap™
Tooon =,






OEBPS/images/F000043f04-05-9780080966595.jpg
A L
i £ St P T Vion Vo

o n i

HE Hi DA @l

< e e T e T
e






OEBPS/images/F000201si78.gif
Power = volumetne How rate X pressure drop





OEBPS/images/F000043f04-04-9780080966595.jpg
‘SPRDSHT-1






OEBPS/images/F000201si79.gif
o

A4Re ™"





OEBPS/images/F000043f04-07-9780080966595.jpg
———

|

=220 propane
—— cyclopentane
—- cyclopentene
—e- ipentane
o= nepentane
—— denes.

—— acetylenes
- pentenes

= methyl butenes

00
'400.00 500.00 600.00 700.00 800.00 900.00 1000.00

Temparaturs (°C)





OEBPS/images/F000043f04-06-9780080966595.jpg





OEBPS/images/F000043si29.gif
CH;+ %0 —=CO+2H, AH°,, = =7.1 x 10" kl/kgmol






OEBPS/images/F000201si82.gif
221 25 107
n






OEBPS/images/F000043si28.gif
CH;+H.0= CO+3H, AH".,

1x 1P KIikgmol





OEBPS/images/F000043f04-08-9780080966595.jpg





OEBPS/images/F000201si83.gif
d... optimum

(¢

B+ Fla+h)





OEBPS/images/F000043si30.gif
CO+H-0—=CO-+H: AH",,, = —4.2x 10" klkemol






OEBPS/images/F000201si84.gif
Lo 8 inches, $/ft = 17.4(d;ininches)” ™

1010 24 inches, S/ = 1.03 (d. ininches]"”

il





OEBPS/images/F000201si87.gif
2510 200 mm, $/m = 22004,
25010 600 mm. $/m = 47004,






OEBPS/images/F000201si88.gif
d;. optimum = (0.830m" " gt~





OEBPS/images/F000201si85.gif
o8 inches. $/(t = 24.5 (d; ininches )™
1010 24 inches. $/t = 2.74 (d, in inches)"”






OEBPS/images/F000201si86.gif
2510200 mm, $/m = 8804,

350 0 600 mm. $im = 19004,






OEBPS/images/F000043f04-09-9780080966595.jpg
31| ] «fm

asout
QSHFT
waC
Wie
Blocks
Rescins
Comvergence
Flmthesing Ogtins
Model Anapi Todke
£ Confuaaion
Resuts Sunmay
Bun Stahs
B Sueans
O Convergares

BRRRRERRRRERERRRE
8

BROBROIBs o o665565 008609

Moteral | Hest | | Wok |

=1 sileal wf

Oiley: [NEOO ] Fomst [ =] SueanTate

g K
Y

T [z [ [

e AT 64775 0438

o e[ o[ TS| 1% |
:

o e R

02 73678

= L L RS

}oke Flow TOTAL Brmal/re

i v






OEBPS/images/F000043f04-11-9780080966595.jpg
< T8 St Pt e M

e

osasitantSololele a s I

Composition vs. Tray Position from Top

. el

o
wipspmte [ L LT 1

o L

o |l

Mole Fraction






OEBPS/images/F000201si69.gif





OEBPS/images/F000043f04-10-9780080966595.jpg
el

EE

T

Mole Fraction

0800,

o700,

oodfS

050!

0400:

e L

[ Tofene L
 dorzens U
==

=

s Lsrg_






OEBPS/images/F000201si70.gif
P
SSE+Pr






OEBPS/images/F000043f04-13-9780080966595.jpg
o G e ot

P

DsEs Taa

e

Composmon vs. Tray Position from Top

L.A— ‘Befaena (Uit ‘ ‘
e i N N | |
EA | I
s ‘
P g I
3 ol &
= om:
- e
omort | L
oo






OEBPS/images/F000201f20-19-9780080966595.jpg
'L ankbm:fiag:





OEBPS/images/F000043f04-12-9780080966595.jpg
Loyt

DxE6 o

als Clo wllojea

0800

Composition vs. Tray Position from Top

o pefeens (]

0700 |- Tosne e
- erzane ()
05600- e L
e
§ osm. Tolusae inbottoms
B N
£ om0
: Ll
. =
0200 & 4
10080014
o e
c @ wm T
=]






OEBPS/images/F000201f20-20-9780080966595.jpg
Seal

il s il

B






OEBPS/images/F000043f04-15-9780080966595.jpg
T €8 i Tt T i i

Csue Conkelroea T

Composition vs. Tray Position from Top

e o
oo T Npbsca
[ St
o o
o

(-‘}
.
4

Mole Fraction

020

020

1008001

N






OEBPS/images/F000043f04-14-9780080966595.jpg
o700:

8.

050,

0400;

0300,

Mole Fraction

020:

1000201

000!
<

T

(3 )






OEBPS/images/F000043f04-17-9780080966595.jpg
T-101






OEBPS/images/F000201si71.gif
Schedule number






OEBPS/images/F000043f04-16-9780080966595.jpg





OEBPS/images/F000201si72.gif
Ischeduleno.) X oy _ 40 11700

= 20X 11700 _ 464 1byin
1000 1000






OEBPS/images/F000043si31.gif
Ethylbenzene in disullate






OEBPS/images/F000201si73.gif
(Mow-rate in gpm|'™

diameter in inches






OEBPS/images/F000201si76.gif
Installed cost = Bd"( 1 + F)





OEBPS/images/F000201si77.gif
Co=Bd"(1+F)la+bh)





OEBPS/images/F000201si74.gif
d.. optimum = 3.2(mip)






OEBPS/images/F000201si75.gif





OEBPS/images/F000171si64.gif
larea of holes or risers)

fractional area = -0 DN
{total column cross-sectional area)






OEBPS/images/F000171si63.gif
E. S¢ R






OEBPS/images/F000171f17-21-9780080966595.jpg
Eme

g§ T 1T
3 (VLN =0
32 )
06 02
05
05
04
o I
[
o3 L~
20
02
50
L7
01
o 02 03 040506 0810 20 30 40 50

N





OEBPS/images/F000171si65.gif





OEBPS/images/F000195si48.gif
Mean water temperatu

Tube cross seetional arca

Tubes per puss = 238 = 459

Total flow area =459 % 201 x 10~

89 5
Water mass velo = T49kglom?
fermass Ve = o3 wh
Density water =995 ke/m’

Water linear velocity = 222 =0.75 mis

905





OEBPS/images/F000195si47.gif





OEBPS/images/F000171f17-20-9780080966595.jpg
n

10

10°

10

100

10!

102

10°





OEBPS/images/F000195si50.gif





OEBPS/images/F000171si57.gif
1=325log (g a,)





OEBPS/images/F000195si49.gif
_ 42000135 +0.02x 33)0.75"%
e

by 852 Wi C





OEBPS/images/F000171si60.gif
ntel LAl LA B E L ]
=0.03mNs
0x0.13=0.26

au,





OEBPS/images/F000195si52.gif
ey - SRR ROR M o
" 0.8 x 10—





OEBPS/images/F000171si58.gif





OEBPS/images/F000195si51.gif
Viscosity of water = 0.8 mNs/m*

Thermal conductivity = 0.59 W/meC





OEBPS/images/F000171si62.gif





OEBPS/images/F000195si54.gif





OEBPS/images/F000171si61.gif
Y






OEBPS/images/F000195si53.gif
42 x 10" x 0.8 x 107"
059






OEBPS/images/F000171si55.gif
LT A LT
“number of real stage






OEBPS/images/F000171si54.gif





OEBPS/images/F000195si44.gif





OEBPS/images/T000171tabT0010.jpg
System

Water-methanol
Water-ethanol
Water.

opropanol
Water-acetone

Water-acetic acid
Water-anmonia
Water-carbon dioxide
Toluene-propanol
Toluene-ethylene dichloride
Toluene-methylethylketone
Toluene-cyclohexane
Toluene-methyleyclohexane
Toluene-octane,

Heptane-cyclohexane

Propane-butane
Isobutane-n-butane
Benzene-toluene
Benzene-methanol
Benzene-propanol
Ethylbenzene-styrene

Column
Dia., m

10
02

015
046
03

008
046
005
015

Pressure
KPa, abs

7
101
165
165

2070

690

Efficiency %

Eny

80
90

80
75
9%
80

65

70

100
110

Eyy = Murphree plate efficiency.
E. = Overall column efficiency.






OEBPS/images/F000171si56.gif





OEBPS/images/F000171f17-19-9780080966595.jpg
o

%

80

70

60

40

30

20

10

0
10

10





OEBPS/images/F000195si37.gif





OEBPS/images/F000195si36.gif





OEBPS/images/T000171tabT0080.jpg
3 4 2 o
157 119 107 104 101






OEBPS/images/F000195si39.gif





OEBPS/images/F000195si38.gif
B I R S

100.000
Heatload = 25200

X 28495 — 0] =4340kW
Heat capacity water =4.2KI/kg’C

Cooling water flow =

A, =&






OEBPS/images/F000171si51.gif
—0.206 log |23 (02 (0018
=001 5 G5) ()
=0.206102(0.65)

&) 091
N

x(
(!





OEBPS/images/F000195si41.gif





OEBPS/images/F000171si50.gif
Xk = == =0.018
55

L,
Yank = 35 =0.022





OEBPS/images/F000195si40.gif





OEBPS/images/F000171si53.gif
1-091,
76, say6






OEBPS/images/F000195si43.gif
4340107
26 % 600






OEBPS/images/F000171si52.gif





OEBPS/images/F000195si42.gif
U =600WimC





OEBPS/images/9780080966601_FC.jpg
CHEMICAL
ENGINEERING

DESIGN

Principles, Practice and Economics
of Plant and Process Design

Gavin Towler Ray Sinnott

Eoy LY
e .
| o
B
o .- - &
e (o, Ls
>4 X WIEAY
PR e B
L It
» " L
o
ST,
»* ofhis s/ ey
1
I 4
boam w o\l

Second Editon

I|w





OEBPS/images/F000146si36.gif
a3 (0L=D])





OEBPS/images/F000146si35.gif





OEBPS/images/F000146si37.gif





OEBPS/images/F000195si46.gif
Bundle diameter D, =





OEBPS/images/F000146f14-10-9780080966595.jpg





OEBPS/images/F000195si45.gif
L=4383m

Arcaof onetube =4.83x 20 x 10~x =0.303 m

278
Number of whes= 215 =918
B A





OEBPS/images/F000146si39.gif





OEBPS/images/F000146si38.gif
(w32 (D = DY)





OEBPS/images/F000146si41.gif





OEBPS/images/F000146si40.gif





OEBPS/images/F000146si43.gif
(F) — 04





OEBPS/images/F000146si42.gif
(7 =)





OEBPS/images/F000195si34.gif





OEBPS/images/F000195si33.gif
PR =078






OEBPS/images/F000195f19-26-9780080966595.jpg





OEBPS/images/F000195f19-25-9780080966595.jpg
+ Cross flow

R






OEBPS/images/F000195f19-28-9780080966595.jpg
o






OEBPS/images/F000195f19-27-9780080966595.jpg
I

I

I






OEBPS/images/F000195f19-30-9780080966595.jpg
- Y Jsquinu spjoufey

0 o 0 o o 0
sesrose ¢ 2 “isrose e 2 eerese e oz eerese e oz Twessesee e Tu
] b
: B
THH — | s
4 — S S " -
1 === S K
; s i
; = i
] H
£: Y
S A "
se— / ™
sz E
3
4 i 3
. Opuey. e 2
: woa1od 1> ol M-
: s 8§
; S
: H
] f o
to
. g
.
i
H
H
™

S Tar s & et e Tt o st i





OEBPS/images/F000195f19-29-9780080966595.jpg
S 00 V. S

90} 0L S0 0L 201 0L
Geersswc o Fmiesrc o eteswc ¢ ‘Memssye o Cwaesye o %
o
.
.
N
4
H
i ¢
o Foo
svd
I3
52 .
St
1 pue €
o s oy N
4
H
. i
o o
A
S5
& .
L
o
N
4
H
3 ¢
o f o

O ey ¢z 185195 % © 7 16888 % & 2  168l08 s & z  166.8S > ¢ =z 1

o1} J8ISUBH 18O






OEBPS/images/F000195si32.gif





OEBPS/images/F000195si31.gif





OEBPS/images/F000195si35.gif
Gd, _ udep

P






OEBPS/images/F000195si29.gif
2x 0.5+ 2% 1O+ 1.5=4.5 velocity heads

25 per pass






OEBPS/images/F000195f19-24-9780080966595.jpg
& %4 Jsquinu spjoudsy

o o o o o o
S99 v ¢ @ sosssw e @ wessesv ¢ @ wesrese ¢ @ wewsesye 2 b
o

—

Lor

e e e e e e e et

10108} UL





OEBPS/images/F000195si30.gif





OEBPS/images/F000195si23.gif





OEBPS/images/F000195si24.gif





OEBPS/images/F000195f19-23-9780080966595.jpg
‘Reat transfer factor, j;

10
§
H =t :
4 a
b
2 2401
102 500
10
2 3450789 2 3456789 2 3456789 2 3456789 2 3456789

10" 10? 10° 104 10°
Raiioils ieaiar e






OEBPS/images/F000195si26.gif
42000135 +0.02¢ )
i





OEBPS/images/F000195si25.gif





OEBPS/images/F000195si28.gif
AP= 8, (Ldjp’





OEBPS/images/F000195si27.gif





OEBPS/images/F000201si33.gif
A 5atm,






OEBPS/images/F000201si32.gif
4409 x 5000
3600

Power = H124KW, say 6.1 MW





OEBPS/images/F000201f20-10-9780080966595.jpg
Nt
3 TT T TTT T 1171 i2]
Reduced temperatur, 7, I"1s
e . 16
2 20
3
4
3
3
===
10 —
= =1
N 08 =
5 070 =
g 075
£ 0o —
2 1,155 > T~
g 09
S 04 . or
g o5
8 =
% T3
10 A 08 08
L
02 Reduced temperatur 0. -
ST 10208
i I i
Low pressure range. 7,
- | 11I]] ]
LX) 0z 03 04 06 08 10 2 3 4 6 78910 0 25

Redusad prsestra. .






OEBPS/images/F000171si84.gif
_ K- 090(25.4—d, )|
o TP}






OEBPS/images/F000201si26.gif





OEBPS/images/F000171si83.gif
u, (actual velocity based on net area)

ercentage floodin
percentage floo =, (Trom equation 17.49)






OEBPS/images/F000201si27.gif
391

1
" Taxom

S

288(12)" = a2k
4424288

T

2x3246

’






OEBPS/images/F000171si85.gif
o m[

A
s

L





OEBPS/images/F000171f17-37-9780080966595.jpg
3
[ 30
[ 29

28

27
[

20

a0

60 EJ
(h +h ), mm —e

100

120





OEBPS/images/F000201si25.gif





OEBPS/images/F000171si86.gif





OEBPS/images/F000201si30.gif
Wpolyropc =098 X288 x8314x 0t () )

= 3209 kfkmol






OEBPS/images/F000171f17-38-9780080966595.jpg





OEBPS/images/F000201si31.gif
polytopie work _ 3219
Actual work required = PEXORCROR 3209 4409 kikmol
tual work require E omn 1o






OEBPS/images/F000171f17-39-9780080966595.jpg
15

)

ueased ‘0oL x(*vi'Y)

T

08

(X2

06

D





OEBPS/images/F000201si28.gif





OEBPS/images/F000171si87.gif





OEBPS/images/F000201si29.gif
= T-0391

=164





OEBPS/images/F000171f17-40-9780080966595.jpg
10
110
90 6¢C
70
50

[

o4
03
o

o1






OEBPS/images/F000171f17-41-9780080966595.jpg
AnAp

020

015
010
~—
005
20 25 30 35 g

ld,





OEBPS/images/F000171si88.gif





OEBPS/images/F000171si82.gif





OEBPS/images/F000171f17-29-9780080966595.jpg
Downcomer and weir
Calming area

Major beam

Major beam
clamp, welded.
to tower wall

Major beart

Minor beam
support clamp
Peripheral ring clamps
Minor beam

support clamp

Subsupport plate ring
used with angle ring Subsupport
ancs HnG





OEBPS/images/F000171f17-28-9780080966595.jpg
(@ ©)

SRE=





OEBPS/images/F000171f17-31-9780080966595.jpg
@

®

(©

(@)

(@)






OEBPS/images/F000171f17-30-9780080966595.jpg
Packaged Downcomers.

for installation |

Hexagonal
| 1 spacer bars
Spacer Top spacer

Screwed male/female

Stack of
8 plates

bar ends

Base spigot
St fun /0





OEBPS/images/F000171f17-33-9780080966595.jpg
Vapor rate ———p

Area of
satsfactory

limitation

Liquid rate ——p






OEBPS/images/F000171f17-32-9780080966595.jpg
(@)

(b)





OEBPS/images/F000171f17-34-9780080966595.jpg
e

I

e spacing, m

1= by,
= g
=1
— 030
k2 -0.25.
075 £ N
102
0.01 01 1 &

i e





OEBPS/images/F000171si81.gif





OEBPS/images/F000171f17-36-9780080966595.jpg
[ Percent flood

9

oo~o ® v ©

10°

R ]

10

- WSWIBNUS EUORIEI]

102

10°

10

102





OEBPS/images/F000171f17-35-9780080966595.jpg
Liquid flow rate, m*/s

5x102

5x10°

Double pass.

Cross flow

(single pass)

102

Reverse flow

10

20 30 405060

D.m






OEBPS/images/F000171f17-26-9780080966595.jpg





OEBPS/images/F000171f17-25-9780080966595.jpg
&





OEBPS/images/F000171si76.gif
SrossTiquid ow





OEBPS/images/F000171si75.gif
Ly

T—w





OEBPS/images/F000171si78.gif





OEBPS/images/F000171si77.gif
01716 +027 - 0.047)

==

—p,
.





OEBPS/images/F000171si80.gif
Vv,





OEBPS/images/F000171si79.gif
s





OEBPS/images/F000171f17-24-9780080966595.jpg





OEBPS/images/F000171f17-23-9780080966595.jpg
Downcomer
apron

Plate above
Plate below.

TR

A i
winoual!

Froth





OEBPS/images/F000171f17-27-9780080966595.jpg
iy,

1
W

Ao






OEBPS/images/F000171si74.gif
0.0038 + 0,017, 4 3.86L, +0.18 x 107, )





OEBPS/images/F000171si73.gif





OEBPS/images/F000171f17-22-9780080966595.jpg
30

Pe=co

1000

0
2

700
500

300
200

100

14

10

3 Eoe
‘ 5
2 10 3
7 ‘
7 s ;
£
1 A L+
2 =
y v
. : z T
Ve —_—ntE, —
e v,
(a) (b)





OEBPS/images/F000171si66.gif
{0.776 +4.57x 107" h, —0.24F, + 105L,|






OEBPS/images/F000171si68.gif





OEBPS/images/F000171si67.gif
N, = 2101072867 )r

g T





OEBPS/images/F000171si70.gif





OEBPS/images/F000171si69.gif
A3 10D, T021F, #0015,






OEBPS/images/F000171si72.gif
0064073 1077 h, —0.24x 107 F h, +1.221,





OEBPS/images/F000171si71.gif
Z =0042+ 019 % 107", —0.014F, +2.5L,





