

[image: cover-image]

The ASCII Character Set

Computers store characters by using a numeric code. The ASCII code (American Standard Code for Information Interchange) is the most commonly used code in the United States. C lets you represent most single characters directly by including the character in single quotation marks, such as ’A’ for the A character. You can also represent a single character by using the octal or hex code preceded by a backslash; for example, ’\012’ and ’\0xa’ both represent the linefeed (LF) character. Such escape sequences can also be part of a string, as in "Hello,\012my dear". When used as a prefix in the following table, the ^ character denotes using the Ctrl key.

[image: image]

[image: image]

[image: image]

C
Primer Plus

Fifth Edition

Stephen Prata

[image: image]

800 East 96th Street, Indianapolis, Indiana 46240 USA

C Primer Plus

Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32696-5

Library of Congress Catalog Card Number: 2004095068

Printed in the United States of America

Ninth Printing: November 2004

07 06 05 4 3

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

ASSOCIATE PUBLISHER
Michael Stephens

ACQUISITIONS EDITOR
Loretta Yates

MANAGING EDITOR
Charlotte Clapp

DEVELOPMENT EDITOR
Songlin Qiu

PROJECT EDITOR
George E. Nedeff

COPY EDITOR
Bart Reed

INDEXER
Chris Barrick

PROOFREADER
Paula Lowell

TECHNICAL EDITOR
Greg Perry

PUBLISHING COORDINATOR
Cindy Teeters

MULTIMEDIA DEVELOPER
Dan Scherf

BOOK DESIGNER
Gary Adair

PAGE LAYOUT
Bronkella Publishing

CONTENTS AT A GLANCE

PREFACE

CHAPTER 1 Getting Ready

CHAPTER 2 Introducing C

CHAPTER 3 Data and C

CHAPTER 4 Character Strings and Formatted Input/Output

CHAPTER 5 Operators, Expressions, and Statements

CHAPTER 6 C Control Statements: Looping

CHAPTER 7 C Control Statements: Branching and Jumps

CHAPTER 8 Character Input/Output and Input Validation

CHAPTER 9 Functions

CHAPTER 10 Arrays and Pointers

CHAPTER 11 Character Strings and String Functions

CHAPTER 12 Storage Classes, Linkage, and Memory Management

CHAPTER 13 File Input/Output

CHAPTER 14 Structures and Other Data Forms

CHAPTER 15 Bit Fiddling

CHAPTER 16 The C Preprocessor and the C Library

CHAPTER 17 Advanced Data Representation

APPENDIXES

APPENDIX A Answers to the Review Questions

APPENDIX B Reference Section

INDEX

TABLE OF CONTENTS

CHAPTER 1 Getting Ready

Whence C?

Why C?

Design Features

Efficiency

Portability

Power and Flexibility

Programmer Oriented

Shortcomings

Whither C?

What Computers Do

High-level Computer Languages and Compilers

Using C: Seven Steps

Step 1: Define the Program Objectives

Step 2: Design the Program

Step 3: Write the Code

Step 4: Compile

Step 5: Run the Program

Step 6: Test and Debug the Program

Step 7: Maintain and Modify the Program

Commentary

Programming Mechanics

Object Code Files, Executable Files, and Libraries

Unix System

Linux System

Integrated Development Environments (Windows)

DOS Compilers for the IBM PC

C on the Macintosh

Language Standards

The First ANSI/ISO C Standard

The C99 Standard

How This Book Is Organized

Conventions Used in This Book

Typeface

Program Output

Special Elements

Summary

Review Questions

Programming Exercise

CHAPTER 2 Introducing C

A Simple Example of C

The Example Explained

Pass 1: Quick Synopsis

Pass 2: Program Details

The Structure of a Simple Program

Tips on Making Your Programs Readable

Taking Another Step in Using C

Documentation

Multiple Declarations

Multiplication

Printing Multiple Values

While You’re at It—Multiple Functions

Introducing Debugging

Syntax Errors

Semantic Errors

Program State

Keywords and Reserved Identifiers

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 3 Data and C

A Sample Program

What’s New in This Program?

Data Variables and Constants

Data: Data-Type Keywords

Integer Versus Floating-Point Types

The Integer

The Floating-Point Number

Basic C Data Types

The int Type

Other Integer Types

Using Characters: Type char

The _Bool Type

Portable Types: inttypes. h

Types float, double, and long double

Complex and Imaginary Types

Beyond the Basic Types

Type Sizes

Using Data Types

Arguments and Pitfalls

One More Example: Escape Sequences

What Happens When the Program Runs

Flushing the Output

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 4 Character Strings and Formatted Input/Output

Introductory Program

Character Strings: An Introduction

Type char Arrays and the Null Character

Using Strings

The strlen () Function

Constants and the C Preprocessor

The const Modifier

Manifest Constants on the Job

Exploring and Exploiting printf () and scanf ()

The printf () Function

Using printf ()

Conversion Specification Modifiers for printf ()

What Does a Conversion Specification Convert?

Using scanf ()

The * Modifier with printf () and scanf ()

Usage Tips for printf ()

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 5 Operators, Expressions, and Statements

Introducing Loops

Fundamental Operators

Assignment Operator: =

Addition Operator: +

Subtraction Operator: -

Sign Operators: - and +

Multiplication Operator: *

Division Operator: /

Operator Precedence

Precedence and the Order of Evaluation

Some Additional Operators

The sizeof Operator and the size_t Type

Modulus Operator: %

Increment and Decrement Operators: ++ and - -

Decrementing: - -

Precedence

Don’t Be Too Clever

Expressions and Statements

Expressions

Statements

Compound Statements (Blocks)

Type Conversions

The Cast Operator

Function with Arguments

A Sample Program

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 6 C Control Statements: Looping

Revisiting the while Loop

Program Comments

C-Style Reading Loop

The while Statement

Terminating a while Loop

When a Loop Terminates

while: An Entry-Condition Loop

Syntax Points

Which Is Bigger: Using Relational Operators and Expressions

What Is Truth?

What Else Is True?

Troubles with Truth

The New _Bool Type

Precedence of Relational Operators

Indefinite Loops and Counting Loops

The for Loop

Using for for Flexibility

More Assignment Operators: +=,-=,*=,/=,%=

The Comma Operator

Zeno Meets the for Loop

An Exit-Condition Loop: do while

Which Loop?

Nested Loops

Program Discussion

A Nested Variation

Introducing Arrays

Using a for Loop with an Array

A Loop Example Using a Function Return Value

Program Discussion

Using Functions with Return Values

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 7 C Control Statements: Branching and Jumps

The if Statement

Adding else to the if Statement

Another Example: Introducing getchar() and putchar()

The ctype.h Family of Character Functions

Multiple Choice else if

Pairing else with if

More Nested if s

Let’s Get Logical

Alternate Spellings: The iso646.h Header File

Precedence

Order of Evaluation

Ranges

A Word-Count Program

The Conditional Operator: ?:

Loop Aids: continue and break

The continue Statement

The break Statement

Multiple Choice: switch and break 253

Using the switch Statement

Reading Only the First Character of a Line

Multiple Labels

switch and if else

The goto Statement

Avoiding goto

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 8 Character Input/Output and Input Validation

Single-Character I/O: getchar() and putchar()

Buffers

Terminating Keyboard Input

Files, Streams, and Keyboard Input

The End of File

Redirection and Files

Unix, Linux, and DOS Redirection

Creating a Friendlier User Interface

Working with Buffered Input

Mixing Numeric and Character Input

Input Validation

Analyzing the Program

The Input Stream and Numbers

Menu Browsing

Tasks

Toward a Smoother Execution

Mixing Character and Numeric Input

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 9 Functions

Reviewing Functions

Creating and Using a Simple Function

Analyzing the Program

Function Arguments

Defining a Function with an Argument: Formal Parameters

Prototyping a Function with Arguments

Calling a Function with an Argument: Actual Arguments

The Black-Box Viewpoint

Returning a Value from a Function with return

Function Types

ANSI C Function Prototyping

The Problem

The ANSI Solution

No Arguments and Unspecified Arguments

Hooray for Prototypes

Recursion

Recursion Revealed

Recursion Fundamentals

Tail Recursion

Recursion and Reversal

Recursion Pros and Cons

Compiling Programs with Two or More Source Code Files

Unix

Linux

DOS Command-Line Compilers

Windows and Macintosh Compilers

Using Header Files

Finding Addresses: The & Operator

Altering Variables in the Calling Function

Pointers: A First Look

The Indirection Operator: *

Declaring Pointers

Using Pointers to Communicate Between Functions

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 10 Arrays and Pointers

Arrays

Initialization

Designated Initializers (C99)

Assigning Array Values

Array Bounds

Specifying an Array Size

Multidimensional Arrays

Initializing a Two-Dimensional Array

More Dimensions

Pointers and Arrays

Functions, Arrays, and Pointers

Using Pointer Parameters

Comment: Pointers and Arrays

Pointer Operations

Protecting Array Contents

Using const with Formal Parameters

More About const

Pointers and Multidimensional Arrays

Pointers to Multidimensional Arrays

Pointer Compatibility

Functions and Multidimensional Arrays

Variable-Length Arrays (VLAs)

Compound Literals

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 11 Character Strings and String Functions

Representing Strings and String I/O

Defining Strings Within a Program

Pointers and Strings

String Input

Creating Space

The gets () Function

The f gets () Function

The scanf () Function

String Output

The puts () Function

The f puts () Function

The printf () Function

The Do-It-Yourself Option

String Functions

The strlen () Function

The strcat() Function

The strncat () Function

The strcmp() Function

The strncmp() Variation

The strcpy() and strncpy() Functions

The sprintf () Function

Other String Functions

A String Example: Sorting Strings

Sorting Pointers Instead of Strings

The Selection Sort Algorithm

The ctype. h Character Functions and Strings

Command-Line Arguments

Command-Line Arguments in Integrated Environments

Command-Line Arguments with the Macintosh

String-to-Number Conversions

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 12 Storage Classes, Linkage, and Memory Management

Storage Classes

Scope

Linkage

Storage Duration

Automatic Variables

Register Variables

Static Variables with Block Scope

Static Variables with External Linkage

Static Variables with Internal Linkage

Multiple Files

Storage-Class Specifiers

Storage Classes and Functions

Which Storage Class?

A Random-Number Function and a Static Variable

Roll ‘Em

Allocated Memory: malloc () and free ()

The Importance of free ()

The calloc () Function

Dynamic Memory Allocation and Variable-Length Arrays

Storage Classes and Dynamic Memory Allocation

ANSI C Type Qualifiers

The const Type Qualifier

The volatile Type Qualifier

The restrict Type Qualifier

New Places for Old Keywords

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 13 File Input/Output

Communicating with Files

What Is a File?

The Text View and the Binary View

Levels of I/O

Standard Files

Standard I/O

Checking for Command-Line Arguments

The f open () Function

The getc () and putc () Functions

End-of-File

The f close () Function

Pointers to the Standard Files

A Simple-Minded File-Condensing Program

File I/O: f printf (), f scanf (), f gets (), and f puts ()

The f printf () and f scanf () Functions

The f gets () and f puts () Functions

Commentary: gets () and f gets ()

Adventures in Random Access: f seek() and ftell()

Howfseek() and ftell() Work

Binary Versus Text Mode

Portability

The f getpos () and f setpos () Functions

Behind the Scenes with Standard I/O

Other Standard I/O Functions

The int ungetc(int c, FILE *fp) Function

The int fflush () Function

The int setvbuf () Function

Binary I/O: f read () and fwrite ()

The size_t fwrite() Function

The size_t f read () Function

The int feof(FILE *fp) and int ferror(FILE *fp) Functions

An f read () and fwrite () Example

Random Access with Binary I/O

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 14 Structures and Other Data Forms

Sample Problem: Creating an Inventory of Books

Setting Up the Structure Declaration

Defining a Structure Variable

Initializing a Structure

Gaining Access to Structure Members

Designated Initializers for Structures

Arrays of Structures

Declaring an Array of Structures

Identifying Members of an Array of Structures

Program Discussion

Nested Structures

Pointers to Structures

Declaring and Initializing a Structure Pointer

Member Access by Pointer

Telling Functions About Structures

Passing Structure Members

Using the Structure Address

Passing a Structure as an Argument

More on Structure Features

Structures or Pointer to Structures?

Character Arrays or Character Pointers in a Structure

Structure, Pointers, and malloc()

Compound Literals and Structures (C99)

Flexible Array Members (C99)

Functions Using an Array of Structures

Saving the Structure Contents in a File

A Structure-Saving Example

Program Points

Structures: What Next?

Unions: A Quick Look

Enumerated Types

enum Constants

Default Values

Assigned Values

enum Usage

Shared Namespaces

typedef: A Quick Look

Fancy Declarations

Functions and Pointers

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 15 Bit Fiddling

Binary Numbers, Bits, and Bytes

Binary Integers

Signed Integers

Binary Floating Point

Other Number Bases

Octal

Hexadecimal

C’s Bitwise Operators

Bitwise Logical Operators

Usage: Masks

Usage: Turning Bits On

Usage: Turning Bits Off

Usage: Toggling Bits

Usage: Checking the Value of a Bit

Bitwise Shift Operators

Programming Example

Another Example

Bit Fields

Bit-Field Example

Bit Fields and Bitwise Operators

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 16 The C Preprocessor and the C Library

First Steps in Translating a Program

Manifest Constants: #def ine

Tokens

Redefining Constants

Using Arguments with #define

Creating Strings from Macro Arguments: The # Operator

Preprocessor Glue: The ## Operator

Variadic Macros: . . . and VA_ARGS640

Macro or Function?

File Inclusion: #include 642

Header Files: An Example

Uses for Header Files

Other Directives

The #undef Directive

Being Defined—The C Preprocessor Perspective

Conditional Compilation

Predefined Macros

#line and #error

#pragma

Inline Functions

The C Library

Gaining Access to the C Library

Using the Library Descriptions

The Math Library

The General Utilities Library

The exit () and atexit () Functions

The qsort () Function

The Assert Library

memcpy() and memmove() from the string. h Library

Variable Arguments: stdarg. h

Key Concepts

Summary

Review Questions

Programming Exercises

CHAPTER 17 Advanced Data Representation

Exploring Data Representation

Beyond the Array to the Linked List

Using a Linked List

Afterthoughts

Abstract Data Types (ADTs)

Getting Abstract

Building an Interface

Using the Interface

Implementing the Interface

Getting Queued with an ADT

Defining the Queue Abstract Data Type

Defining an Interface

Implementing the Interface Data Representation

Testing the Queue

Simulating with a Queue

The Linked List Versus the Array

Binary Search Trees

A Binary Tree ADT

The Binary Search Tree Interface

The Binary Tree Implementation

Trying the Tree

Tree Thoughts

Other Directions

Key Concepts

Summary

Review Questions

Programming Exercises

APPENDIX A Answers to the Review Quesions

Answers to Review Questions for Chapter 1

Answers to Review Questions for Chapter 2

Answers to Review Questions for Chapter 3

Answers to Review Questions for Chapter 4

Answers to Review Questions for Chapter 5

Answers to Review Questions for Chapter 6

Answers to Review Questions for Chapter 7

Answers to Review Questions for Chapter 8

Answers to Review Questions for Chapter 9

Answers to Review Questions for Chapter 10

Answers to Review Questions for Chapter 11

Answers to Review Questions for Chapter 12

Answers to Review Questions for Chapter 13

Answers to Review Questions for Chapter 14

Answers to Review Questions for Chapter 15

Answers to Review Questions for Chapter 16

Answers to Review Questions for Chapter 17

APPENDIX B Reference Section

Section I: Additional Reading

Magazine

Online Resources

C Language Books

Programming Books

Reference Books

C++ Books

Section II: C Operators

Arithmetic Operators

Relational Operators

Assignment Operators

Logical Operators

The Conditional Operator

Pointer-Related Operators

Sign Operators

Structure and Union Operators

Bitwise Operators

Miscellaneous Operators

Section III: Basic Types and Storage Classes

Summary: The Basic Data Types

Summary: How to Declare a Simple Variable

Summary: Qualifiers

Section IV: Expressions, Statements, and Program Flow

Summary: Expressions and Statements

Summary: The while Statement

Summary: The for Statement

Summary: The do while Statement

Summary: Using if Statements for Making Choices

Summary: Multiple Choice with switch

Summary: Program Jumps

Section V: The Standard ANSI C Library with C99 Additions

Diagnostics: assert. h

Complex Numbers: complex. h (C99)

Character Handling: ctype. h

Error Reporting: errno.h

Floating-Point Environment: fenv.h (C99)

Format Conversion of Integer Types: inttypes. h (C99)

Localization: locale. h

Math Library: math. h

Non-LocalJumps: setjmp.h

Signal Handling: signal.h

Variable Arguments: stdarg. h

Boolean Support: stdbool.h (C99)

Common Definitions: stddef .h

Integer Types: stdint. h

Standard I/O Library: stdio. h

General Utilities: stdlib.h

String Handling: string. h

Type-Generic Math: tgmath. h (C99)

Date and Time: time. h

Extended Multibyte and Wide-Character Utilities: wchar. h (C99)

Wide Character Classification and Mapping Utilities: wctype. h (C99) . . .868

Section VI: Extended Integer Types

Exact-Width Types

Minimum-Width Types

Fastest Minimum-Width Types

Maximum-Width Types

Integers That Can Hold Pointer Values

Extended Integer Constants

Section VII: Expanded Character Support

Trigraph Sequences

Digraphs

Alternative Spellings: iso646. h

Multibyte Characters

Universal Character Names (UCNs)

Wide Characters

Wide Characters and Multibyte Characters

Section VIII: C99 Numeric Computational Enhancements

The IEC Floating-Point Standard

The f env. h Header File

The STDC FP_CONTRACT Pragma

Additions to the math. h Library

Support for Complex Numbers

Section IX: Differences Between C and C++

Function Prototypes

char Constants

The const Modifier

Structures and Unions

Enumerations

Pointer-to-void

Boolean Types

Alternative Spellings

Wide-Character Support

Complex Types

Inline Functions

C99 Features Not Found in C++

PREFACE

C was a relatively little-known language when the first edition of C Primer Plus was written in 1984. Since then, the language has boomed, and many people have learned C with the help of this book. In fact, over 500,000 people have purchased C Primer Plus throughout its various editions.

As the language has grown from the early informal K&R standard through the 1990 ISO/ANSI standard to the 1999 ISO/ANSI standard, so has this book matured through this, the fifth edition. As with all the editions, my aim has been to create an introduction to C that is instructive, clear, and helpful.

Approach and Goals

My goal is for this book to serve as a friendly, easy-to-use, self-study guide. To accomplish that objective, C Primer Plus employs the following strategies:

• Programming concepts are explained, along with details of the C language; the book does not assume that you are a professional programmer.

• Many short, easily typed examples illustrate just one or two concepts at a time, because learning by doing is one of the most effective ways to master new information.

• Figures and illustrations clarify concepts that are difficult to grasp in words alone.

• Highlight boxes summarize the main features of C for easy reference and review.

• Review questions and programming exercises at the end of each chapter allow you to test and improve your understanding of C.

To gain the greatest benefit, you should take as active a role as possible in studying the topics in this book. Don’t just read the examples, enter them into your system, and try them. C is a very portable language, but you may find differences between how a program works on your system and how it works on ours. Experiment—change part of a program to see what the effect is. Modify a program to do something slightly different. Ignore the occasional warnings and see what happens when you do the wrong thing. Try the questions and exercises. The more you do yourself, the more you will learn and remember.

I hope that you’ll find this newest edition an enjoyable and effective introduction to the C language.

ABOUT THE AUTHOR

Stephen Prata teaches astronomy, physics, and programming at the College of Marin in Kentfield, California. He received his B.S. from the California Institute of Technology and his Ph.D. from the University of California, Berkeley. His association with computers began with the computer modeling of star clusters. Stephen has authored or coauthored over a dozen books, including C++ Primer Plus and Unix Primer Plus.

DEDICATION

With love to Vicky and Bill Prata, who, for more than 69 years, have been showing how rewarding a marriage can be. —SP

ACKNOWLEDGMENTS

I wish to thank Loretta Yates of Sams Publishing for getting this project underway and Songlin Qiu of Sams Publishing for seeing it through. Also, thank you Ron Liechty of Metrowerks and Greg Comeau of Comeau Computing for your help with new C99 features and your noteworthy commitment to customer service.

WE WANT TO HEAR FROM YOU!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email or write me directly to let me know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have a User Services group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book’s title and author as well as your name, email address, and phone number. I will carefully review your comments and share them with the author and editors who worked on the book.

	Email:

	feedback@samspublishing.com

	Mail:

	Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web site at www.samspublishing.com. Type the ISBN (9780132713603) or the title of a book in the Search field to find the page you’re looking for.

CHAPTER 1

GETTING READY

You will learn about the following in this chapter:

• C’s history and features

• The steps needed to write programs

• A bit about compilers and linkers

• C standards

Welcome to the world of C—a vigorous, professional programming language popular with amateur and commercial programmers alike. This chapter prepares you for learning and using this powerful and popular language, and it introduces you to the kinds of environments in which you will most likely develop your C-legs.

First, we look at C’s origin and examine some of its features, both strengths and drawbacks. Then we look at the origins of programming and examine some general principles for programming. Finally, we discuss how to run C programs on some common systems.

Whence C?

Dennis Ritchie of Bell Labs created C in 1972 as he and Ken Thompson worked on designing the Unix operating system. C didn’t spring full-grown from Ritchie’s head, however. It came from Thompson’s B language, which came from… but that’s another story. The important point is that C was created as a tool for working programmers, so its chief goal is to be a useful language.

Most languages aim to be useful, but they often have other concerns. The main goal for Pascal, for instance, was to provide a sound basis for teaching good programming principles. BASIC, on the other hand, was developed to resemble English so that it could be learned easily by students unfamiliar with computers. These are important goals, but they are not always compatible with pragmatic, workaday usefulness. C’s development as a language designed for programmers, however, has made it one of the modern-day languages of choice.

Why C?

During the past three decades, C has become one of the most important and popular programming languages. It has grown because people try it and like it. In the past decade, many have moved from C to the more ambitious C++ language, but C is still an important language in its own right, as well a migration path to C++. As you learn C, you will recognize its many virtues (see Figure 1.1). Let’s preview a few of them now.

Figure 1.1.
The virtues of C.

[image: The virtues of C.]

Design Features

C is a modern language incorporating the control features found desirable by the theory and practice of computer science. Its design makes it natural for top-down planning, structured programming, and modular design. The result is a more reliable, understandable program.

Efficiency

C is an efficient language. Its design takes advantage of the capabilities of current computers. C programs tend to be compact and to run quickly. In fact, C exhibits some of the fine control usually associated with an assembly language. (An assembly language is a mnemonic representation of the set of internal instructions used by a particular central processing unit design; different CPU families have different assembly languages.) If you choose, you can fine-tune your programs for maximum speed or most efficient use of memory.

Portability

C is a portable language, which means that C programs written on one system can be run on other systems with little or no modification. If modifications are necessary, they can often be made by simply changing a few entries in a header file accompanying the main program. Most languages are meant to be portable, but anyone who has converted an IBM PC BASIC program to Apple BASIC (and they are close cousins) or has tried to run an IBM mainframe FORTRAN program on a Unix system knows that porting is troublesome at best. C is a leader in portability. C compilers (programs that convert your C code into the instructions a computer uses internally) are available for about 40 systems, running from 8-bit microprocessors to Cray supercomputers. Note, however, that the portions of a program written specifically to access particular hardware devices, such as a display monitor, or special features of an operating system, such as Windows XP or OS X, typically are not portable.

Because of C’s close ties with Unix, Unix systems typically come with a C compiler as part of the packages. Linux installations also usually include a C compiler. Several C compilers are available for personal computers, including PCs running various versions of Windows, and Macintoshes. So whether you are using a home computer, a professional workstation, or a mainframe, the chances are good that you can get a C compiler for your particular system.

Power and Flexibility

C is powerful and flexible (two favorite words in computer literature). For example, most of the powerful, flexible Unix operating system is written in C. Many compilers and interpreters for other languages—such as FORTRAN, Perl, Python, Pascal, LISP, Logo, and BASIC—have been written in C. As a result, when you use FORTRAN on a Unix machine, ultimately a C program has done the work of producing the final executable program. C programs have been used for solving physics and engineering problems and even for animating special effects for movies such as Gladiator.

Programmer Oriented

C is oriented to fulfill the needs of programmers. It gives you access to hardware, and it enables you to manipulate individual bits in memory. It has a rich selection of operators that allows you to express yourself succinctly. C is less strict than, say, Pascal in limiting what you can do. This flexibility is both an advantage and a danger. The advantage is that many tasks, such as converting forms of data, are much simpler in C. The danger is that with C, you can make mistakes that are impossible in some languages. C gives you more freedom, but it also puts more responsibility on you.

Also, most C implementations have a large library of useful C functions. These functions deal with many needs that a programmer commonly faces.

Shortcomings

C does have some faults. Often, as with people, faults and virtues are opposite sides of the same feature. For example, we’ve mentioned that C’s freedom of expression also requires added responsibility. C’s use of pointers (something you can look forward to learning about in this book), in particular, means that you can make programming errors that are very difficult to trace. As one computer preliterate once commented, the price of liberty is eternal vigilance.

C’s conciseness combined with its wealth of operators make it possible to prepare code that is extremely difficult to follow. You aren’t compelled to write obscure code, but the opportunity is there. After all, what other language has a yearly Obfuscated Code contest?

There are more virtues and, undoubtedly, a few more faults. Rather than delve further into the matter, let’s move on to a new topic.

Whither C?

By the early 1980s, C was already a dominant language in the minicomputer world of Unix systems. Since then, it has spread to personal computers (microcomputers) and to mainframes (the big guys). See Figure 1.2. Many software houses use C as the preferred language for producing word processing programs, spreadsheets, compilers, and other products. These companies know that C produces compact and efficient programs. More important, they know that these programs will be easy to modify and easy to adapt to new models of computers.

Figure 1.2.
Where C is used.

[image: Where C is used.]

What’s good for companies and C veterans is good for other users, too. More and more computer users have turned to C to secure its advantages for themselves. You don’t have to be a computer professional to use C.

In the 1990s, many software houses began turning to the C++ language for large programming projects. C++ grafts object-oriented programming tools to the C language. (Object-oriented programming is a philosophy that attempts to mold the language to fit a problem instead of molding the problem to fit the language.) C++ is nearly a superset of C, meaning that any C program is, or nearly is, a valid C++ program, too. By learning C, you also learn much of C++.

Despite the popularity of newer languages, such as C++ and Java, C remains a core skill in the software business, typically ranking in the top 10 of desired skills. In particular, C has become popular for programming embedded systems. That is, it’s used to program the increasingly common microprocessors found in automobiles, cameras, DVD players, and other modern conveniences. Also, C has been making inroads in FORTRAN’s long dominance of scientific programming. Finally, as befits a language created to develop an operating system, it plays a strong role in the development of Linux. Thus, the first decade of the twenty-first century finds C still going strong.

In short, C is one of the most important programming languages and will continue to be so. If you want a job writing software, one of the first questions you should be able to answer yes to is “Oh say, can you C?”

What Computers Do

Now that you are about to learn how to program in C, you probably should know a little about how computers work. This knowledge will help you understand the connection between writing a program in C and what eventually takes place when you run that program.

Modern computers have several components. The central processing unit, or CPU, does most of the computing work. The random access memory, or RAM, serves as a workspace to hold programs and files. The permanent memory, typically a hard disk, remembers those programs and files, even if the computer is turned off. And various peripherals—such as the keyboard, mouse, and monitor—provide for communication between the computer and you. The CPU processes your programs, so let’s concentrate on its role.

The life of a CPU, at least in this simplistic account, is quite simple. It fetches an instruction from memory and executes it. It fetches the next instruction from memory and executes it, and so on. (A gigahertz CPU can do this about a billion times a second, so the CPU can lead its boring life at a tremendous pace.) The CPU has its own small workspace, consisting of several registers, each of which can hold a number. One register holds the memory address of the next instruction, and the CPU uses this information to fetch the next instruction. After it fetches an instruction, the CPU stores the instruction in another register and updates the first register to the address of the next instruction. The CPU has a limited repertoire of instructions (known as the instruction set) that it understands. Also, these instructions are rather specific; many of them ask the computer to move a number from one location to another—for example, from a memory location to a register.

A couple interesting points go along with this account. First, everything stored in a computer is stored as a number. Numbers are stored as numbers. Characters, such as the alphabetical characters you use in a text document, are stored as numbers; each character has a numeric code. The instructions that a computer loads into its registers are stored as numbers; each instruction in the instruction set has a numeric code. Second, computer programs ultimately have to be expressed in this numeric instruction code, or what is called machine language.

One consequence of how computers work is that if you want a computer to do something, you have to feed a particular list of instructions (a program) telling it exactly what to do and how to do it. You have to create the program in a language that the computer understands directly (machine language). This is a detailed, tedious, exacting task. Something as simple as adding two numbers together would have to be broken down into several steps, perhaps something like the following:

	Copy the number in memory location 2000 to register 1.

	Copy the number in memory location 2004 to register 2.

	Add the contents of register 2 to the contents of register 1, leaving the answer in register 1.

	Copy the contents of register 1 to memory location 2008.

And you would have to represent each of these instructions with a numeric code!

If writing a program in this manner sounds like something you’d like to do, you’ll be sad to learn that the golden age of machine-language programming is long past. But if you prefer something a little more enjoyable, open your heart to high-level programming languages.

High-level Computer Languages and Compilers

High-level programming languages, such as C, simplify your programming life in several ways. First, you don’t have to express your instructions in a numeric code. Second, the instructions you use are much closer to how you might think about a problem than they are to the detailed approach a computer uses. Rather than worry about the precise steps a particular CPU would have to take to accomplish a particular task, you can express your desires on a more abstract level. To add two numbers, for example, you might write the following:

total = mine + yours;

Seeing code like this, you have a good idea what it does; looking at the machine-language equivalent of several instructions expressed in numeric code is much less enlightening.

Unfortunately, the opposite is true for a computer; to it, the high-level instruction is incomprehensible gibberish. This is where compilers enter the picture. The compiler is a program that translates the high-level language program into the detailed set of machine language instructions the computer requires. You do the high-level thinking; the compiler takes care of the tedious details.

The compiler approach has another benefit. In general, each computer design has its own unique machine language. So a program written in the machine language for, say, an Intel Pentium CPU means nothing to a Motorola PowerPC CPU. But you can match a compiler to a particular machine language. Therefore, with the right compiler or set of compilers, you can convert the same high-level language program to a variety of different machine-language programs. You solve a programming problem once, and then you let your compilers translate the solution to a variety of machine languages.

In short, high-level languages, such as C, Java, and Pascal, describe actions in a more abstract form and aren’t tied to a particular CPU or instruction set. Also, high-level languages are easier to learn and much easier to program in than are machine languages.

Using C: Seven Steps

C, as you’ve seen, is a compiled language. If you are accustomed to using a compiled language, such as Pascal or FORTRAN, you will be familiar with the basic steps in putting together a C program. However, if your background is in an interpreted language, such as BASIC, or in a graphical interface–oriented language, such as Visual Basic, or if you have no background at all, you need to learn how to compile. We’ll look at that process soon, and you’ll see that it is straightforward and sensible. First, to give you an overview of programming, let’s break down the act of writing a C program into seven steps (see Figure 1.3). Note that this is an idealization. In practice, particularly for larger projects, you would go back and forth, using what you learned at a later step to refine an earlier step.

Figure 1.3.
The seven steps of programming.

[image: The seven steps of]

Step 1: Define the Program Objectives

Naturally enough, you should start with a clear idea of what you want the program to do. Think in terms of the information your program needs, the feats of calculation and manipulation the program needs to do, and the information the program should report back to you. At this level of planning, you should be thinking in general terms, not in terms of some specific computer language.

Step 2: Design the Program

After you have a conceptual picture of what your program ought to do, you should decide how the program will go about it. What should the user interface be like? How should the program be organized? Who will the target user be? How much time do you have to complete the program?

You also need to decide how to represent the data in the program and, possibly, in auxiliary files, as well as which methods to use to process the data. When you first learn programming in C, the choices will be simple, but as you deal with more complex situations, you’ll find that these decisions require more thought. Choosing a good way to represent the information can often make designing the program and processing the data much easier.

Again, you should be thinking in general terms, not about specific code, but some of your decisions may be based on general characteristics of the language. For example, a C programmer has more options in data representation than, say, a Pascal programmer.

Step 3: Write the Code

Now that you have a clear design for your program, you can begin to implement it by writing the code. That is, you translate your program design into the C language. Here is where you really have to put your knowledge of C to work. You can sketch your ideas on paper, but eventually you have to get your code into the computer. The mechanics of this process depend on your programming environment. We’ll present the details for some common environments soon. In general, you use a text editor to create what is called a source code file. This file contains the C rendition of your program design. Listing 1.1 shows an example of C source code.

Listing 1.1. Example of C Source Code

#include <stdio.h>
int main(void)
{
 int dogs;

 printf("How many dogs do you have?\n");
 scanf("%d", &dogs);
 printf("So you have %d dog(s)!\n", dogs);

 return 0;
}

As part of this step, you should document your work. The simplest way is to use C’s comment facility to incorporate explanations into your source code. Chapter 2, “Introducing C,” will explain more about using comments in your code.

Step 4: Compile

The next step is to compile the source code. Again, the details depend on your programming environment, and we’ll look at some common environments shortly. For now, let’s start with a more conceptual view of what happens.

Recall that the compiler is a program whose job is to convert source code into executable code. Executable code is code in the native language, or machine language, of your computer. This language consists of detailed instructions expressed in a numeric code. As you read earlier, different computers have different machine languages, and a C compiler translates C into a particular machine language. C compilers also incorporate code from C libraries into the final program; the libraries contain a fund of standard routines, such as printf() and scanf(), for your use. (More accurately, a program called a linker brings in the library routines, but the compiler runs the linker for you on most systems.) The end result is an executable file containing code that the computer understands and that you can run.

The compiler also checks that your program is valid C. If the compiler finds errors, it reports them to you and doesn’t produce an executable file. Understanding a particular compiler’s complaints is another skill you will pick up.

Step 5: Run the Program

Traditionally, the executable file is a program you can run. To run the program in many common environments, including MS-DOS, Unix, Linux consoles, just type the name of the executable file. Other environments, such as VMS on a VAX, might require a run command or some other mechanism. Integrated development environments (IDEs), such as those provided for Windows and Macintosh environments, allow you to edit and execute your C program from within the IDE by selecting choices from a menu or by pressing special keys. The resulting program also can be run directly from the operating system by clicking or double-clicking the filename or icon.

Step 6: Test and Debug the Program

The fact that your program runs is a good sign, but it’s possible that it could run incorrectly. Consequently, you should check to see that your program does what it is supposed to do. You’ll find that some of your programs have mistakes—bugs, in computer jargon. Debugging is the process of finding and fixing program errors. Making mistakes is a natural part of learning. It seems inherent to programming, so when you combine learning and programming, you had best prepare yourself to be reminded often of your fallibility. As you become a more powerful and subtle programmer, your errors, too, will become more powerful and subtle.

You have many opportunities to err. You can make a basic design error. You can implement good ideas incorrectly. You can overlook unexpected input that messes up your program. You can use C incorrectly. You can make typing errors. You can put parentheses in the wrong place, and so on. You’ll find your own items to add to this list.

Fortunately, the situation isn’t hopeless, although there might be times when you think it is. The compiler catches many kinds of errors, and there are things you can do to help yourself track down the ones that the compiler doesn’t catch. This book will give you debugging advice as you go along.

Step 7: Maintain and Modify the Program

When you create a program for yourself or for someone else, that program could see extensive use. If it does, you’ll probably find reasons to make changes in it. Perhaps there is a minor bug that shows up only when someone enters a name beginning with Zz, or you might think of a better way to do something in the program. You could add a clever new feature. You might adapt the program so that it runs on a different computer system. All these tasks are greatly simplified if you document the program clearly and if you follow sound design practices.

Commentary

Programming is not usually as linear as the process just described. Sometimes you have to go back and forth between steps. For instance, when you are writing code, you might find that your plan was impractical. You may see a better way of doing things or, after you see how a program runs, you might feel motivated to change the design. Documenting your work helps you move back and forth between levels.

Most learners tend to neglect steps 1 and 2 (defining program objectives and designing the program) and go directly to step 3 (writing the program). The first programs you write are simple enough that you can visualize the whole process in your head. If you make a mistake, it’s easy to find. As your programs grow longer and more complex, mental visualizations begin to fail, and errors get harder to find. Eventually, those who neglect the planning steps are condemned to hours of lost time, confusion, and frustration as they produce ugly, dysfunctional, and abstruse programs. The larger and more complex the job is, the more planning it requires.

The moral here is that you should develop the habit of planning before coding. Use the ancient but honorable pen-and-pencil technology to jot down the objectives of your program and to outline the design. If you do so, you eventually will reap substantial dividends in time saved and satisfaction gained.

Programming Mechanics

The exact steps you must follow to produce a program depend on your computer environment. Because C is portable, it’s available in many environments, including Unix, Linux, MS-DOS (yes, some people still use it), Windows, and Macintosh OS. There’s not enough space in this book to cover all environments, particularly because particular products evolve, die, and are replaced.

First, however, let’s look at some aspects shared by many C environments, including the five we just mentioned. You don’t really need to know what follows to run a C program, but it is good background. It can also help you understand why you have to go through some particular steps to get a C program.

When you write a program in the C language, you store what you write in a text file called a source code file. Most C systems, including the ones we mentioned, require that the name of the file end in .c (for example, wordcount.c and budget.c). The part of the name before the period is called the basename, and the part after the period is called the extension. Therefore, budget is a basename and c is the extension. The combination budget.c is the filename. The name should also satisfy the requirements of the particular computer operating system. For example, MS-DOS is an operating systems for IBM PCs and clones. It requires that the basename be no more than eight characters long, so the wordcount.c filename mentioned earlier would not be a valid DOS filename. Some Unix systems place a 14-character limit on the whole name, including the extension; other Unix systems allow longer names, up to 255 characters. Linux, Windows, and the Macintosh OS also allow long names.

So that we’ll have something concrete to refer to, let’s assume we have a source file called concrete.c containing the C source code in Listing 1.2.

Listing 1.2. The concrete.c Program

#include <stdio.h>
int main(void)
{
 printf("Concrete contains gravel and cement.\n");

 return 0;
}

Don’t worry about the details of the source code file shown in Listing 1.2; you’ll learn about them in Chapter 2.

Object Code Files, Executable Files, and Libraries

The basic strategy in C programming is to use programs that convert your source code file to an executable file, which is a file containing ready-to-run machine language code. C implementations do this in two steps: compiling and linking. The compiler converts your source code to an intermediate code, and the linker combines this with other code to produce the executable file. C uses this two-part approach to facilitate the modularization of programs. You can compile individual modules separately and then use the linker to combine the compiled modules later. That way, if you need to change one module, you don’t have to recompile the other ones. Also, the linker combines your program with precompiled library code.

There are several choices for the form of the intermediate files. The most prevalent choice, and the one taken by the implementations described here, is to convert the source code to machine language code, placing the result in an object code file, or object file for short. (This assumes that your source code consists of a single file.) Although the object file contains machine language code, it is not ready to run. The object file contains the translation of your source code, but it is not yet a complete program.

The first element missing from the object code file is something called startup code, which is code that acts as an interface between your program and the operating system. For example, you can run an IBM PC compatible under DOS or under Linux. The hardware is the same in either case, so the same object code would work with both, but you would need different startup code for DOS than you would for Linux because these systems handle programs differently from one another.

The second missing element is the code for library routines. Nearly all C programs make use of routines (called functions) that are part of the standard C library. For example, concrete.c uses the function printf(). The object code file does not contain the code for this function; it merely contains instructions saying to use the printf() function. The actual code is stored in another file, called a library. A library file contains object code for many functions.

The role of the linker is to bring together these three elements—your object code, the standard startup code for your system, and the library code—and put them together into a single file, the executable file. For library code, the linker extracts only the code needed for the functions you use from the library (see Figure 1.4).

Figure 1.4.
Compiler and linker.

[image: Compiler and linker.]

In short, an object file and an executable file both consist of machine language instructions. However, the object file contains the machine language translation only for the code you used, but the executable file also has machine code for the library routines you use and for the startup code.

On some systems, you must run the compile and link programs separately. On other systems, the compiler starts the linker automatically, so you have to give only the compile command.

Now let’s look at some specific systems.

Unix System

Because C’s popularity began on Unix systems, we will start there.

Editing on a Unix System

Unix C does not have its own editor. Instead, you use one of the general-purpose Unix editors, such as emacs, jove, vi, or an X Window System text editor.

Your two main responsibilities are typing the program correctly and choosing a name for the file that will store the program. As discussed, the name should end with .c. Note that Unix distinguishes between uppercase and lowercase. Therefore, budget.c, BUDGET.c, and Budget.c are three distinct and valid names for C source files, but BUDGET.C is not a valid name because it uses an uppercase C instead of a lowercase c.

Using the vi editor, we prepared the following program and stored it in a file called inform.c.

#include <stdio.h>
int main(void)
{
 printf("A .c is used to end a C program filename.\n");

 return 0;
}

This text is the source code, and inform.c is the source file. The important point here is that the source file is the beginning of a process, not the end.

Compiling on a Unix System

Our program, although undeniably brilliant, is still gibberish to a computer. A computer doesn’t understand things such as #include and printf. (At this point, you probably don’t either, but you will soon learn, whereas the computer won’t.) As we discussed earlier, we need the help of a compiler to translate our code (source code) to the computer’s code (machine code). The result of these efforts will be the executable file, which contains all the machine code that the computer needs to get the job done.

The Unix C compiler is called cc. To compile the inform.c program, you need to type the following:

cc inform.c

After a few seconds, the Unix prompt will return, telling you that the deed is done. You might get warnings and error messages if you failed to write the program properly, but let’s assume you did everything right. (If the compiler complains about the word void, your system has not yet updated to an ANSI C compiler. We’ll talk more about standards soon. Meanwhile, just delete the word void from the example.) If you use the ls command to list your files, you will find that there is a new file called a.out (see Figure 1.5). This is the executable file containing the translation (or compilation) of the program. To run it, just type

a.out

Figure 1.5.
Preparing a C program using Unix.

[image: Preparing a C program using Unix.]

and wisdom pours forth:

A .c is used to end a C program filename.

If you want to keep the executable file (a.out), you should rename it. Otherwise, the file is replaced by a new a.out the next time you compile a program.

What about the object code? The cc compiler creates an object code file having the same basename as the source code, but with an .o extension. In our example, the object code file is called inform.o, but you won’t find it, because the linker removes it once the executable program has been completed. However, if the original program used more than one source code file, the object code files would be saved. When we discuss multiple-file programs later in the text, you will see that this is a fine idea.

Linux System

Linux is a popular open-source, Unix-like operating system that runs on a variety of platforms, including IBM compatibles and Macintoshes. Preparing C programs on Linux is much the same as for Unix systems, except that you would use the public domain C compiler, called gcc, that’s provided by GNU. The compile command would look like this:

gcc inform.c

Note that installing gcc may be optional when installing Linux, so you (or someone) might have to install gcc if it wasn’t installed earlier. Typically, the installation makes cc an alias for gcc, so you can use cc in the command line instead of gcc if you like.

You can obtain further information about gcc, including information about new releases, at http://www.gnu.org/software/gcc/gcc.html.

Integrated Development Environments (Windows)

C compilers are not part of the standard Windows package, so you may need to obtain and install a C compiler. Quite a few vendors, including Microsoft, Borland, Metrowerks, and Digital Mars, offer Windows-based integrated development environments, or IDEs. (These days, most are combined C and C++ compilers.) All have fast, integrated environments for putting together C programs. The key point is that each of these programs has a built-in editor you can use to write a C program. Each provides menus that enable you to name and save your source code file, as well as menus that allow you to compile and run your program without leaving the IDE. Each dumps you back into the editor if the compiler finds any errors, and each identifies the offending lines and matches them to the appropriate error messages.

The Windows IDEs can be a little intimidating at first because they offer a variety of targets—that is, a variety of environments in which the program will be used. For example, they might give you a choice of 16-bit Windows programs, 32-bit Windows programs, dynamic link library files (DLLs), and so on. Many of the targets involve bringing in support for the Windows graphical interface. To manage these (and other) choices, you typically create a project to which you then add the names of the source code files you’ll be using. The precise steps depend on the product you use. Typically, you first use the File menu or Project menu to create a project. What’s important is choosing the correct form of project. The examples in this book are generic examples designed to run in a simple command-line environment. The various Windows IDEs provide one or more choices to match this undemanding assumption. Microsoft Visual C 7.1, for example, offers the Win32 Console Application option. For Metrowerks CodeWarrior 9.0, choose Win32 C Stationery and then select C Console App or the WinSIOUX C App (the latter has a nicer user interface). For other systems, look for an option using terms such as DOS EXE, Console, or Character Mode executable. These modes will run your executable program in a console-like window. After you have the correct project type, use the IDE menu to open a new source code file. For most products, you can do this by using the File menu. You may have to take additional steps to add the source file to the project.

Because the Windows IDEs typically handle both C and C++, you need to indicate that you want a C program. With some products, such as Metrowerks CodeWarrior, you use the project type to indicate that you want to use C. With other products, such as Microsoft Visual C++, you use the .c file extension to indicate that you want to use C rather than C++. However, most C programs also work as C++ programs. Reference Section IX, “Differences Between C and C++,” compares C and C++.

One problem you might encounter is that the window showing the program execution vanishes when the program terminates. If that is the case for you, you can make the program pause until you press the Enter key. To do that, add the following line to the end of the program, just before the return statement:

getchar();

This line reads a keystroke, so the program will pause until you press the Enter key. Sometimes, depending on how the program functions, there might already be a keystroke waiting. In that case, you’ll have to use getchar() twice:

getchar();
getchar();

For example, if the last thing the program did was ask you to enter your weight, you would have typed your weight and then pressed the Enter key to enter the data. The program would read the weight, the first getchar() would read the Enter key, and the second getchar() would cause the program to pause until you press Enter again. If this doesn’t make a lot of sense to you now, it will after you learn more about C input.

Although the various IDEs have many broad principles in common, the details vary from product to product and, within a product line, from version to version. You’ll have to do some experimenting to learn how your compiler works. You might even have to read the manual or try an online tutorial.

DOS Compilers for the IBM PC

For many, running DOS on a PC is out of fashion these days, but it is still an option for those with limited computer resources and a modest budget and for those who prefer a simpler operating system without the bells, whistles, and distractions of a windowing environment. Many Windows IDEs additionally provide command-line tools, allowing you to program in the DOS command-line environment. The Comeau C/C++ compiler that is available on many systems, including several Unix and Linux variants, has a command-line DOS version. Also, there are freeware and shareware C compilers that work under DOS. For example, there is a DOS-based version of the GNU gcc compiler.

Source code files should be text files, not word processor files. (Word processor files contain a lot of additional information about fonts and formatting.) You should use a text editor, such as Windows Notepad, or the EDIT program that comes with some versions of DOS. You can use a word processor, if you use the Save As feature to save the file in text mode. The file should have a .c extension. Some word processors automatically add a .txt extension to text files. If this happens to you, you need to change the filename, replacing txt with c.

C compilers for the PC typically, but not always, produce intermediate object code files having an .obj extension. Unlike Unix compilers, C compilers typically don’t remove these files when done. Some compilers produce assembly language files with .asm extensions or use some special format of their own.

Some compilers run the linker automatically after compiling; others might require that you run the linker manually. Linking results in the executable file, which appends the .EXE extension to the original source code basename. For example, compiling and linking a source code file called concrete.c produces a file called concrete.exe. Some compilers provide an option to create an executable named concrete.com instead. In either case, you can run the program by typing the basename at the command line:

C>concrete

C on the Macintosh

The best known Macintosh C/C++ compiler is the Metrowerks CodeWarrior compiler. (The Windows and Macintosh versions of CodeWarrior have very similar interfaces.) It provides a project-based IDE similar to what you would find in a Windows compiler. Start by choosing New Project from the File menu. You’ll be given a choice of project types. For recent CodeWarrior versions, use the Std C Console choice. (Different releases of Code Warrior take different navigation routes to this choice.) You might also have to choose between a 68KB version (for the Motorola 680×0 series of processors), a PPC version (for the PowerPC processors), or a Carbon version (for OS X).

The new project has a small source code file as part of the initial project. You can try compiling and running that program to see whether you have your system set up properly.

Language Standards

Currently, many C implementations are available. Ideally, when you write a C program, it should work the same on any implementation, providing it doesn’t use machine-specific programming. For this to be true in practice, different implementations need to conform to a recognized standard.

At first, there was no official standard for C. Instead, the first edition of The C Programming Language by Brian Kernighan and Dennis Ritchie (1978) became the accepted standard, usually referred to as K&R C or classic C. In particular, the “C Reference Manual” in that book’s appendix acted as the guide to C implementations. Compilers, for example, would claim to offer a full K&R implementation. However, although this appendix defined the C language, it did not define the C library. More than most languages, C depends on its library, so there is need for a library standard, too. In the absence of any official standard, the library supplied with the Unix implementation became a de facto standard.

The First ANSI/ISO C Standard

As C evolved and became more widely used on a greater variety of systems, the C community realized it needed a more comprehensive, up-to-date, and rigorous standard. To meet this need, the American National Standards Institute (ANSI) established a committee (X3J11) in 1983 to develop a new standard, which was adopted formally in 1989. This new standard (ANSI C) defines both the language and a standard C library. The International Organization for Standardization adopted a C standard (ISO C) in 1990. ISO C and ANSI C are essentially the same standard. The final version of the ANSI/ISO standard is often referred to as C89 (because that’s when ANSI approval came) or C90 (because that’s when ISO approval came). Also, because the ANSI version came out first, people often used the term ANSI C.

The committee had several guiding principles. Perhaps the most interesting was this: Keep the spirit of C. The committee listed the following ideas as expressing part of that spirit:

	Trust the programmer.

	Don’t prevent the programmer from doing what needs to be done.

	Keep the language small and simple.

	Provide only one way to do an operation.

	Make it fast, even if it is not guaranteed to be portable.

By the last point, the committee meant that an implementation should define a particular operation in terms of what works best for the target computer instead of trying to impose an abstract, uniform definition. You’ll encounter examples of this philosophy as you learn the language.

The C99 Standard

In 1994, work began on revising the standard, an effort that resulted in the C99 standard. A joint ANSI/ISO committee, known then as the C9X committee, endorsed the original principles of the C90 standard, including keeping the language small and simple. The committee’s intent was not to add new features to the language except as needed to meet the new goals. One of these main goals was to support international programming by, for example, providing ways to deal with international character sets. A second goal was to “codify existing practice to address evident deficiencies.” Thus, when meeting the need of moving C to 64-bit processors, the committee based the additions to the standard on the experiences of those who dealt with this problem in real life. A third goal was to improve the suitability of C for doing critical numeric calculations for scientific and engineering projects.

These three points—internationalization, correction of deficiencies, and improvement of computational usefulness—were the main change-oriented goals. The remaining plans for change were more conservative in nature—for example, minimizing incompatibilities with C90 and with C++ and keeping the language conceptually simple. In the committee’s words, “…the committee is content to let C++ be the big and ambitious language.”

The upshot is that C99 changes preserve the essential nature of C, and C remains a lean, clean, efficient language. This book points out many of the C99 changes. Because most compilers at this time don’t fully implement all the C99 changes, you may find that some of them are not available on your system. Or you may find that some C99 features are available only if you alter the compiler settings.

[image: Note]

Note

This book will use the terms ISO/ANSI C to mean features common to both standards and C99 to refer to new features. Occasionally, it will refer to C90 (for example, when discussing when a feature was first added to C).

How This Book Is Organized

There are many ways to organize information. One of the most direct approaches is to present everything about topic A, everything about topic B, and so on. This is particularly useful for a reference so you can find all the information about a given topic in one place. But usually it’s not the best sequence for learning a subject. For instance, if you began learning English by first learning all the nouns, your ability to express ideas would be severely limited. Sure, you could point to objects and shout their names, but you’d be much better equipped to express yourself if you learned just a few nouns, verbs, adjectives, and so on, along with a few rules about how those parts relate to one another.

To provide you with a more balanced intake of information, this book uses a spiral approach of introducing several topics in earlier chapters and returning later to discuss them more fully. For example, understanding functions is essential to understanding C. Consequently, several of the early chapters include some discussion of functions so that when you reach the full discussion in Chapter 9, “Functions,” you’ll already have achieved some ease about using functions. Similarly, early chapters preview strings and loops so that you can begin using these useful tools in your programs before learning about them in detail.

Conventions Used in This Book

We are almost ready to begin studying the C language itself. This section covers some of the conventions we use in presenting material.

Typeface

For text representing programs and computer input and output, we use a type font that resembles what you might see on a screen or on printed output. We have already used it a few times. In case it slipped your notice, the font looks like the following:

#include <stdio.h>
int main(void)
{
 printf("Concrete contains gravel and cement.\n");

 return 0;
}

The same monospace type is for code-related terms used in the text, such as main(), and for filenames, such as stdio.h. The book uses italicized monospace for placeholder terms for which you are expected to substitute specific terms, as in the following model of a declaration:

type_name variable_name;

Here, for instance, you might replace type_name with int and variable_name with zebra_count.

Program Output

Output from the computer is printed in the same format, with the exception that user input is shown in boldface type. For instance, the following is program output from an example in Chapter 14, “Structures and Other Data Forms”:

Please enter the book title.
Press [enter] at the start of a line to stop.

My Life as a Budgie
Now enter the author.

Mack Zackles

The lines printed in normal computer font are program output, and the boldface line is user input.

There are many ways you and a computer can communicate with each other. However, we will assume that you type in commands by using a keyboard and that you read the response on a screen.

Special Keystrokes

Usually, you send a line of instructions by pressing a key labeled Enter, c/r, Return, or some variation of these. We refer to this key in the text as the Enter key. Normally, the book takes it for granted that you press the Enter key at the end of each line of input. However, to clarify particular points, a few examples explicitly show the Enter key, using the symbol [enter] to represent it. The brackets mean that you press a single key rather than type the word enter.

We also refer to control characters, such as Ctrl+D. This notation means to press the D key while you are pressing the key labeled Ctrl (or perhaps Control).

Systems Used in Preparing This Book

Some aspects of C, such as the amount of space used to store a number, depend on the system. When we give examples and refer to “our system,” we speak of a Pentium PC running under Windows XP Professional and using Metrowerks CodeWarrior Development Studio 9.2, Microsoft Visual C++ 7.1 (the version that comes with Microsoft Visual Studio .NET 2003), or gcc 3.3.3. At the time of this writing, C99 support is incomplete, and none of these compilers support all the C99 features. But, between them, these compilers cover much of the new standard. Most of the examples have also been tested using Metrowerks CodeWarrior Development Studio 9.2 on a Macintosh G4.

The book occasionally refers to running programs on a Unix system, too. The one used is Berkeley’s BSD 4.3 version of Unix running on a VAX 11/750 computer. Also, several programs were tested on a Pentium PC running Linux and using gcc 3.3.1 and Comeau 4.3.3.

The sample code; for the complete programs described in this book is available on the Sams website, at www.samspublishing.com. Enter this book’s ISBN (without the hyphens) in the Search box and click Search. When the book’s title is displayed, click the title to go to a page where you can download the code. You also can find solutions to selected programming exercises at this site.

Your System—What You Need

You need to have a C compiler or access to one. C runs on an enormous variety of computer systems, so you have many choices. Do make sure that you use a C compiler designed for your particular system. Some of the examples in this book require support for the new C99 standard, but most of the examples will work with a C90 compiler. If the compiler you use is pre-ANSI/ISO, you will have to make adjustments, probably often enough to encourage you to seek something newer.

Most compiler vendors offer special pricing to students and educators, so if you fall into that category, check the vendor websites.

Special Elements

The book includes several special elements that highlight particular points: Sidebars, Tips, Cautions, and Notes. The following illustrates their appearances and uses:

[image: Sidebar]

Sidebar

A sidebar provides a deeper discussion or additional background to help illuminate a topic.

[image: Tip]

Tip

Tips present short, helpful guides to particular programming situations.

[image: Caution]

Caution

A caution alerts you to potential pitfalls.

[image: Note]

Note

The notes provide a catchall category for comments that don’t fall into one of the other categories.

Summary

C is a powerful, concise programming language. It is popular because it offers useful programming tools and good control over hardware and because C programs are easier than most to transport from one system to another.

C is a compiled language. C compilers and linkers are programs that convert C language source code into executable code.

Programming in C can be taxing, difficult, and frustrating, but it can also be intriguing, exciting, and satisfying. We hope you find it as enjoyable and fascinating as we do.

Review Questions

You’ll find answers to the review questions in Appendix A, “Answers to Review Questions.”

	1.

	
What does portability mean in the context of programming?

	2.

	
Explain the difference between a source code file, object code file, and executable file.

	3.

	
What are the seven major steps in programming?

	4.

	
What does a compiler do?

	5.

	
What does a linker do?

Programming Exercise

We don’t expect you to write C code yet, so this exercise concentrates on the earlier stages of the programming process.

	1.

	
You have just been employed by MacroMuscle, Inc. (Software for Hard Bodies). The company is entering the European market and wants a program that converts inches to centimeters (1 inch = 2.54 cm). The company wants the program set up so that it prompts the user to enter an inch value. Your assignment is to define the program objectives and to design the program (steps 1 and 2 of the programming process).

CHAPTER 2

INTRODUCING C

You will learn about the following in this chapter:

• Operator:

=

• Functions:

main(), printf()

• Putting together a simple C program

• Creating integer-valued variables, assigning them values, and displaying those values onscreen

• The newline character

• How to include comments in your programs, create programs containing more than one function, and find program errors

• What keywords are

What does a C program look like? If you skim through this book, you’ll see many examples. Quite likely, you’ll find that C looks a little peculiar, sprinkled with symbols such as {, cp->tort, and *ptr++. As you read through this book, however, you will find that the appearance of these and other characteristic C symbols grows less strange, more familiar, and perhaps even welcome! In this chapter, we begin by presenting a simple sample program and explaining what it does. At the same time, we highlight some of C’s basic features.

A Simple Example of C

Let’s take a look at a simple C program. This program, shown in Listing 2.1, serves to point out some of the basic features of programming in C. Before you read the upcoming line-by-line explanation of the program, read through Listing 2.1 to see whether you can figure out for yourself what it will do.

Listing 2.1. The first.c Program

#include <stdio.h>
int main(void) /* a simple program */
{
 int num; /* define a variable called num */
 num = 1; /* assign a value to num */

 printf("I am a simple "); /* use the printf() function */
 printf("computer.\n");
 printf("My favorite number is %d because it is first.\n",num);

 return 0;
}

If you think this program will print something on your screen, you’re right! Exactly what will be printed might not be apparent, so run the program and see the results. First, use your favorite editor (or your compiler’s favorite editor) to create a file containing the text from Listing 2.1. Give the file a name that ends in .c and that satisfies your local system’s name requirements. You can use first.c, for example. Now compile and run the program. (Check Chapter 1, “Getting Ready,” for some general guidelines to this process.) If all went well, the output should look like the following:

I am a simple computer.
My favorite number is 1 because it is first.

All in all, this result is not too surprising, but what happened to the \ns and the %d in the program? And some of the lines in the program do look strange. It’s time for an explanation.

The Example Explained

We’ll take two passes through the program’s source code. The first pass (“Pass 1: Quick Synopsis”) highlights the meaning of each line to help you get a general feel for what’s going on. The second pass (“Pass 2: Program Details”) explores specific implications and details to help you gain a deeper understanding.

Figure 2.1 summarizes the parts of a C program; it includes more elements than our first example uses.

Figure 2.1.
Anatomy of a C program.

[image: Anatomy of a C program.]

Pass 1: Quick Synopsis

This section presents each line from the program followed by a short description; the next section (Pass 2) explores the topics raised here more fully.

#include <stdio.h> ←include another file

This line tells the compiler to include the information found in the file stdio.h, which is a standard part of all C compiler packages; this file provides support for keyboard input and for displaying output.

int main(void) ←a function name

C programs consist of one or more functions, the basic modules of a C program. This program consists of one function called main. The parentheses identify main() as a function name. The int indicates that the main() function returns an integer, and the void indicates that main() doesn’t take any arguments. These are matters we’ll go into later. Right now, just accept both int and void as part of the standard ISO/ANSI C way for defining main(). (If you have a pre-ISO/ANSI C compiler, omit void; you may want to get something more recent to avoid incompatibilities.)

/* a simple program */ ←a comment

The symbols /* and */ enclose comments, remarks that help clarify a program. They are intended for the reader only and are ignored by the compiler.

{ ←beginning of the body of the function

This opening brace marks the start of the statements that make up the function. The function definition is ended with a closing brace (}).

int num; ←a declaration statement

This statement announces that you are using a variable called num and that num will be an int (integer) type.

num = 1; ←an assignment statement

The statement num = 1; assigns the value 1 to the variable called num.

printf("I am a simple "); ←a function call statement

The first statement using printf() displays the phrase I am a simple on your screen, leaving the cursor on the same line. Here printf() is part of the standard C library. It’s termed a function, and using a function in the program is termed calling a function.

printf("computer.\n"); ←another function call statement

The next call to the printf() function tacks on computer to the end of the last phrase printed. The \n is code telling the computer to start a new line—that is, to move the cursor to the beginning of the next line.

printf("My favorite number is %d because it is first.\n", num);

The last use of printf() prints the value of num (which is 1) embedded in the phrase in quotes. The %d instructs the computer where and in what form to print the value of num.

return 0; ←a return statement

A C function can furnish, or return, a number to the agency that used it. For the present, just regard this line as part of the ISO/ANSI C requirement for a properly written main() function.

} ←the end

As promised, the program ends with a closing brace.

Pass 2: Program Details

Now that you have an overview of Listing 2.1, we’ll take a closer look. Once again, we’ll examine the individual lines from the program, this time using each line of code as a starting point for going deeper into the details behind the code and as a basis for developing a more general perspective of C programming features.

#include Directives and Header Files

#include <stdio.h>

This is the line that begins the program. The effect of #include <stdio.h> is the same as if you had typed the entire contents of the stdio.h file into your file at the point where the #include line appears. In effect, it’s a cut-and-paste operation. include files provide a convenient way to share information that is common to many programs.

The #include statement is an example of a C preprocessor directive. In general, C compilers perform some preparatory work on source code before compiling; this is termed preprocessing.

The stdio.h file is supplied as part of all C compiler packages. It contains information about input and output functions, such as printf(), for the compiler to use. The name stands for standard input/output header. C people call a collection of information that goes at the top of a file a header, and C implementations typically come with several header files.

For the most part, header files contain information used by the compiler to build the final executable program. For example, they may define constants or indicate the names of functions and how they should be used. But the actual code for a function is in a library file of precompiled code, not in a header file. The linker component of the compiler takes care of finding the library code you need. In short, header files help guide the compiler in putting your program together correctly.

ISO/ANSI C has standardized which header files must be supplied. Some programs need to include stdio.h, and some don’t. The documentation for a particular C implementation should include a description of the functions in the C library. These function descriptions identify which header files are needed. For example, the description for printf() says to use stdio.h. Omitting the proper header file might not affect a particular program, but it is best not to rely on that. Each time this book uses library functions, it will use the include files specified by the ISO/ANSI standard for those functions.

[image: Why Input and Output Are Not Built In]

Why Input and Output Are Not Built In

Perhaps you are wondering why something as basic as input and output information isn’t included automatically. One answer is that not all programs use this I/O (input/output) package, and part of the C philosophy is to avoid carrying unnecessary weight. This principle of economic use of resources makes C popular for embedded programming—for example, writing code for a chip that controls an automotive fuel system. Incidentally, the #include line is not even a C language statement! The # symbol in column 1 identifies the line as one to be handled by the C preprocessor before the compiler takes over. You will encounter more examples of preprocessor instructions later, and Chapter 16, “The C Preprocessor and the C Library,” discusses this topic more fully.

The main() Function

int main(void)

This next line from the program proclaims a function by the name of main. True, main is a rather plain name, but it is the only choice available. A C program (with some exceptions we won’t worry about) always begins execution with the function called main(). You are free to choose names for other functions you use, but main() must be there to start things. What about the parentheses? They identify main() as a function. You will learn more about functions soon. For now, just remember that functions are the basic modules of a C program.

The int is the main() function’s return type. That means that the kind of value main() can return is an integer. Return where? To the operating system—we’ll come back to this question in Chapter 6, “C Control Statements: Looping.”

The parentheses following a function name generally enclose information being passed along to the function. For this simple example, nothing is being passed along, so the parentheses contain the word void. (Chapter 11, “Character Strings and String Functions,” introduces a second format that allows information to be passed to main() from the operating system.)

If you browse through ancient C code, you’ll often see programs starting off with the following format:

main()

The C90 standard grudgingly tolerated this form, but the C99 standard doesn’t. So even if your current compiler lets you do this, don’t.

The following is another form you may see:

void main()

Some compilers allow this, but none of the standards have ever listed it as an option. Therefore, compilers don’t have to accept this form, and several don’t. Again, stick to the standard form, and you won’t run into problems if you move a program from one compiler to another.

Comments

/* a simple program */

The parts of the program enclosed in the /* */ symbols are comments. Using comments makes it easier for someone (including yourself) to understand your program. One nice feature of C comments is that they can be placed anywhere, even on the same line as the material they explain. A longer comment can be placed on its own line or even spread over more than one line. Everything between the opening /* and the closing */ is ignored by the compiler. The following are some valid and invalid comment forms:

/* This is a C comment. */
/* This comment is spread over
 two lines. */
/*
 You can do this, too.
*/
/* But this is invalid because there is no end marker.

C99 adds a second style of comments, one popularized by C++ and Java. The new style uses the symbols // to create comments that are confined to a single line:

// Here is a comment confined to one line.
int rigue; // Such comments can go here, too.

Because the end of the line marks the end of the comment, this style needs comment markers just at the beginning of the comment.

The newer form is a response to a potential problem with the old form. Suppose you have the following code:

/*
I hope this works.
*/
x = 100;
y = 200;
/* Now for something else. */

Next, suppose you decide to remove the fourth line and accidentally delete the third line (the */), too. The code then becomes

/*
I hope this works.
y = 200;
/* Now for something else. */

Now the compiler pairs the /* in the first line with the */ in the fourth line, making all four lines into one comment, including the line that was supposed to be part of the code. Because the // form doesn’t extend over more than one line, it can’t lead to this “disappearing code” problem.

Some compilers may not support this C99 feature; others may require changing a compiler setting to enable C99 features.

This book, operating on the theory that needless consistency can be boring, uses both kinds of comments.

Braces, Bodies, and Blocks

{
...
}

In Listing 2.1, braces delimited the main() function. In general, all C functions use braces to mark the beginning as well as the end of the body of a function. Their presence is mandatory, so don’t leave them out. Only braces ({ }) work for this purpose, not parentheses (()) and not brackets ([]).

Braces can also be used to gather statements within a function into a unit or block. If you are familiar with Pascal, ADA, Modula-2, or Algol, you will recognize the braces as being similar to begin and end in those languages.

Declarations

int num;

This line from the program is termed a declaration statement. The declaration statement is one of C’s most important features. This particular example declares two things. First, somewhere in the function, you have a variable called num. Second, the int proclaims num as an integer—that is, a number without a decimal point or fractional part. (int is an example of a data type.) The compiler uses this information to arrange for suitable storage space in memory for the num variable. The semicolon at the end of the line identifies the line as a C statement or instruction. The semicolon is part of the statement, not just a separator between statements as it is in Pascal.

The word int is a C keyword identifying one of the basic C data types. Keywords are the words used to express a language, and you can’t usurp them for other purposes. For instance, you can’t use int as the name of a function or a variable. These keyword restrictions don’t apply outside the language, however, so it is okay to name a cat or favorite child int. (Local custom or law may void this option in some locales.)

The word num in this example is an identifier—that is, a name you select for a variable, a function, or some other entity. So the declaration connects a particular identifier with a particular location in computer memory, and it also establishes the type of information, or data type, to be stored at that location.

In C, all variables must be declared before they are used. This means that you have to provide lists of all the variables you use in a program and that you have to show which data type each variable is. Declaring variables is considered a good programming technique, and, in C, it is mandatory.

Traditionally, C has required that variables be declared at the beginning of a block with no other kind of statement allowed to come before any of the declarations. That is, the body of main() might look like the following:

int main() // traditional rules
{
 int doors;
 int dogs;
 doors = 5;
 dogs = 3;
 // other statements
}

C99, following the practice of C++, now lets you place declarations about anywhere in a block. However, you still must declare a variable before its first use. So if your compiler supports this feature, your code can look like the following:

int main() // C99 rules
{
// some statements
 int doors;
 doors = 5; // first use of doors

// more statements
 int dogs;
 dogs = 3; // first use of dogs
 // other statements
}

For greater compatibility with older systems, this book will stick to the original convention. (Some newer compilers support C99 features only if you turn them on.)

At this point, you probably have three questions. First, what are data types? Second, what choices do you have in selecting a name? Third, why do you have to declare variables at all? Let’s look at some answers.

Data Types

C deals with several kinds (or types) of data: integers, characters, and floating point, for example. Declaring a variable to be an integer or a character type makes it possible for the computer to store, fetch, and interpret the data properly. You’ll investigate the variety of available types in the next chapter.

Name Choice

You should use meaningful names for variables (such as sheep_count instead of x3 if your program counts sheep.). If the name doesn’t suffice, use comments to explain what the variables represent. Documenting a program in this manner is one of the basic techniques of good programming.

The number of characters you can use varies among implementations. The C99 standard calls for up to 63 characters, except for external identifiers (see Chapter 12, “Storage Classes, Linkage, and Memory Management”), for which only 31 characters need to be recognized. This is a substantial increase from the C90 requirement of 31 characters and six characters, respectively, and older C compilers often stopped at eight characters max. Actually, you can use more than the maximum number of characters, but the compiler won’t pay attention to the extra characters. Therefore, on a system with an eight-character limit, shakespeare and shakespencil would be considered the same name because they have the same first eight characters. (If you want an example based on the 63-character limit, you’ll have to concoct it yourself.)

The characters at your disposal are lowercase letters, uppercase letters, digits, and the underscore (_). The first character must be a letter or an underscore. The following are some examples:

[image: image]

Operating systems and the C library often use identifiers with one or two initial underscore characters, such as in _kcab, so it is better to avoid that usage yourself. The standard labels beginning with one or two underscore characters, such as library identifiers, are reserved. This means that although it is not a syntax error to use them, it could lead to name conflicts.

C names are case sensitive, meaning an uppercase letter is considered distinct from the corresponding lowercase letter. Therefore, stars is different from Stars and STARS.

To make C more international, C99 makes an extensive set of characters available for use by the Universal Character Names (or UCN) mechanism. Reference Section VII, “Expanded Character Support,” in Appendix B discusses this addition.

Four Good Reasons to Declare Variables

Some older languages, such as the original forms of FORTRAN and BASIC, allow you to use variables without declaring them. So why can’t you take this easy-going approach in C? Here are some reasons:

• Putting all the variables in one place makes it easier for a reader to grasp what the program is about. This is particularly true if you give your variables meaningful names (such as taxrate instead of r). If the name doesn’t suffice, use comments to explain what the variables represent. Documenting a program in this manner is one of the basic techniques of good programming.

• Thinking about which variables to declare encourages you to do some planning before plunging into writing a program. What information does the program need to get started? What exactly do I want the program to produce as output? What is the best way to represent the data?

• Declaring variables helps prevent one of programming’s more subtle and hard-to-find bugs—that of the misspelled variable name. For example, suppose that in some language that lacks declarations, you made the statement

RADIUS1 = 20.4;

and that elsewhere in the program you mistyped

CIRCUM = 6.28 * RADIUSl;

You unwittingly replaced the numeral 1 with the letter l. That other language would create a new variable called RADIUSl and use whatever value it had (perhaps zero, perhaps garbage). CIRCUM would be given the wrong value, and you might have a heck of a time trying to find out why. This can’t happen in C (unless you were silly enough to declare two such similar variable names) because the compiler will complain when the undeclared RADIUSl shows up.

• Your C program will not compile if you don’t declare your variables. If the preceding reasons fail to move you, you should give this one serious thought.

Given that you need to declare your variables, where do they go? As mentioned before, C prior to C99 required that the declarations go at the beginning of a block. A good reason for following this practice is that grouping the declarations together makes it easier to see what the program is doing. Of course, there’s also a good reason to spread your declarations around, as C99 now allows. The idea is to declare variables just before you’re ready to give them a value. That makes it harder to forget to give them a value. As a practical matter, many compilers don’t yet support the C99 rule.

Assignment

num = 1;

The next program line is an assignment statement, one of the basic operations in C. This particular example means “assign the value 1 to the variable num.” The earlier int num; line set aside space in computer memory for the variable num, and the assignment line stores a value in that location. You can assign num a different value later, if you want; that is why num is termed a variable. Note that the assignment statement assigns a value from the right side to the left side. Also, the statement is completed with a semicolon, as shown in Figure 2.2.

Figure 2.2.
The assignment statement is one of the basic C operations.

[image: The assignment statement is one of the basic C operations.]

The printf() Function

printf("I am a simple ");
printf("computer.\n");
printf("My favorite number is %d because it is first.\n", num);

These lines all use a standard C function called printf(). The parentheses signify that printf is a function name. The material enclosed in the parentheses is information passed from the main() function to the printf() function. For example, the first line passes the phrase I am a simple to the printf() function. Such information is called the argument or, more fully, the actual argument of a function (see Figure 2.3). What does the function printf() do with this argument? It looks at whatever lies between the double quotation marks and prints that text onscreen.

Figure 2.3. The printf() function with an argument.

[image: The printf() function with an argument.]

This first printf() line is an example of how you call or invoke a function in C. You need type only the name of the function, placing the desired argument(s) within the parentheses. When the program reaches this line, control is turned over to the named function (printf() in this case). When the function is finished with whatever it does, control is returned to the original (the calling) function—main(), in this example.

What about this next printf() line? It has the characters \n included in the quotes, and they didn’t get printed! What’s going on? The \n symbol means to start a new line. The \n combination (typed as two characters) represents a single character called the newline character. To printf(), it means “start a new line at the far-left margin.” In other words, printing the newline character performs the same function as pressing the Enter key of a typical keyboard. Why not just use the Enter key when typing the printf() argument? Because that would be interpreted as an immediate command to your editor, not as an instruction to be stored in your source code. In other words, when you press the Enter key, the editor quits the current line on which you are working and starts a new one. The newline character, however, affects how the output of the program is displayed.

The newline character is an example of an escape sequence. An escape sequence is used to represent difficult-or impossible-to-type characters. Other examples are \t for Tab and \b for Backspace. In each case, the escape sequence begins with the backslash character, \. We’ll return to this subject in Chapter 3, “Data and C.”

Well, that explains why the three printf() statements produced only two lines: The first print instruction didn’t have a newline character in it, but the second and third did.

The final printf() line brings up another oddity: What happened to the %d when the line was printed? As you will recall, the output for this line was

My favorite number is 1 because it is first.

Aha! The digit 1 was substituted for the symbol group %d when the line was printed, and 1 was the value of the variable num. The %d is a placeholder to show where the value of num is to be printed. This line is similar to the following BASIC statement:

PRINT "My favorite number is "; num; " because it is first."

The C version does a little more than this, actually. The % alerts the program that a variable is to be printed at that location, and the d tells it to print the variable as a decimal (base 10) integer. The printf() function allows several choices for the format of printed variables, including hexadecimal (base 16) integers and numbers with decimal points. Indeed, the f in printf() is a reminder that this is a formatting print function. Each type of data has its own specifier; as the book introduces new types, it will also introduce the appropriate specifiers.

Return Statement

return 0;

This return statement is the final statement of the program. The int in int main(void) means that the main() function is supposed to return an integer. The C standard requires that main() behave that way. C functions that return values do so with a return statement, which consists of the keyword return, followed by the returned value, followed by a semicolon. If you leave out the return statement for main(), most compilers will chide you for the omission, but will still compile the program. At this point, you can regard the return statement in main() as something required for logical consistency, but it has a practical use with some operating systems, including DOS and Unix. Chapter 11 will deal further with this topic.

The Structure of a Simple Program

Now that you’ve seen a specific example, you are ready for a few general rules about C programs. A program consists of a collection of one or more functions, one of which must be called main(). The description of a function consists of a header and a body. The header contains preprocessor statements, such as #include, and the function name. You can recognize a function name by the parentheses, which may be empty. The body is enclosed by braces ({}) and consists of a series of statements, each terminated by a semicolon (see Figure 2.4). The example in this chapter had a declaration statement, announcing the name and type of variable being used. Then it had an assignment statement giving the variable a value. Next, there were three print statements, each calling the printf() function. The print statements are examples of function call statements. Finally, main() ends with a return statement.

Figure 2.4.
A function has a header and a body.

[image: A function has a header and a body.]

In short, a simple standard C program should use the following format:

#include <stdio.h>
int main(void)
{
 statements
 return 0;
}

Tips on Making Your Programs Readable

Making your programs readable is good programming practice. A readable program is much easier to understand, and that makes it easier to correct or modify. The act of making a program readable also helps clarify your own concept of what the program does.

You’ve already seen two techniques for improving readability: Choose meaningful variable names and use comments. Note that these two techniques complement each other. If you give a variable the name width, you don’t need a comment saying that this variable represents a width, but a variable called video_routine_4 begs for an explanation of what video routine 4 does.

Another technique involves using blank lines to separate one conceptual section of a function from another. For example, the simple sample program has a blank line separating the declaration section from the action section. C doesn’t require the blank line, but it enhances read-ability.

A fourth technique is to use one line per statement. Again, this is a readability convention, not a C requirement. C has a free-form format. You can place several statements on one line or spread one statement over several. The following is legitimate, but ugly, code:

int main(void) { int four; four
=
4
;
printf(
 "%d\n",
four); return 0;}

The semicolons tell the compiler where one statement ends and the next begins, but the program logic is much clearer if you follow the conventions used in this chapter’s example (see Figure 2.5).

Figure 2.5. Making your program readable.

[image: Making your program readable]

Taking Another Step in Using C

The first sample program was pretty easy, and the next example, shown in Listing 2.2, isn’t much harder.

Listing 2.2. The fathm_ft.c Program

// fathm_ft.c -- converts 2 fathoms to feet
#include <stdio.h>
int main(void)
{
 int feet, fathoms;

 fathoms = 2;
 feet = 6 * fathoms;
 printf("There are %d feet in %d fathoms!\n", feet, fathoms);
 printf("Yes, I said %d feet!\n", 6 * fathoms);

 return 0;
}

What’s new? The code provides a program description, declares multiple variables, does some multiplication, and prints the values of two variables. Let’s examine these points in more detail.

Documentation

First, the program begins with a comment (using the new comment style) identifying the filename and the purpose of the program. This kind of program documentation takes but a moment to do and is helpful later when you browse through several files or print them.

Multiple Declarations

Next, the program declares two variables instead of just one in a single declaration statement. To do this, separate the two variables (feet and fathoms) by a comma in the declaration statement. That is,

int feet, fathoms;

and

int feet;
int fathoms;

are equivalent.

Multiplication

Third, the program makes a calculation. It harnesses the tremendous computational power of a computer system to multiply 2 by 6. In C, as in many languages, * is the symbol for multiplication. Therefore, the statement

feet = 6 * fathoms;

means “look up the value of the variable fathoms, multiply it by 6, and assign the result of this calculation to the variable feet.”

Printing Multiple Values

Finally, the program makes fancier use of printf(). If you compile and run the example, the output should look like this:

There are 12 feet in 2 fathoms!
Yes, I said 12 feet!

This time, the code made two substitutions in the first use of printf(). The first %d in the quotes was replaced by the value of the first variable (feet) in the list following the quoted segment, and the second %d was replaced by the value of the second variable (fathoms) in the list. Note that the list of variables to be printed comes at the tail end of the statement after the quoted part. Also note that each item is separated from the others by a comma.

The second use of printf() illustrates that the value printed doesn’t have to be a variable; it just has to be something, such as 6 * fathoms, that reduces to a value of the right type.

This program is limited in scope, but it could form the nucleus of a program for converting fathoms to feet. All that is needed is a way to assign additional values to feet interactively; we will explain how to do that in later chapters.

While You’re at It—Multiple Functions

So far, these programs have used the standard printf() function. Listing 2.3 shows you how to incorporate a function of your own—besides main()—into a program.

Listing 2.3. The two_func.c Program

/* two_func.c -- a program using two functions in one file */
#include <stdio.h>
void butler(void); /* ISO/ANSI C function prototyping */
int main(void)
{
 printf("I will summon the butler function.\n");
 butler();
 printf("Yes. Bring me some tea and writeable CD-ROMS.\n");

 return 0;
}

void butler(void) /* start of function definition */
{
 printf("You rang, sir?\n");
}

The output looks like the following:

I will summon the butler function.
You rang, sir?
Yes. Bring me some tea and writeable CD-ROMS.

The butler() function appears three times in this program. The first appearance is in the prototype, which informs the compiler about the functions to be used. The second appearance is in main() in the form of a function call. Finally, the program presents the function definition, which is the source code for the function itself. Let’s look at each of these three appearances in turn.

The C90 standard added prototypes, and older compilers might not recognize them. (We’ll tell you what to do when using such compilers in a moment.) A prototype is a form of declaration that tells the compiler that you are using a particular function. It also specifies properties of the function. For example, the first void in the prototype for the butler() function indicates that butler() does not have a return value. (In general, a function can return a value to the calling function for its use, but butler() doesn’t.) The second void—the one in butler(void)—means that the butler() function has no arguments. Therefore, when the compiler reaches the point in main() where butler() is used, it can check to see whether butler() is used correctly. Note that void is used to mean “empty,” not “invalid.”

Older C supported a more limited form of function declaration in which you just specified the return type but omitted describing the arguments:

void butler();

Older C code uses function declarations like the preceding one instead of function prototypes. The C90 and C99 standards recognize this older form but indicate it will be phased out in time, so don’t use it. If you inherit some legacy C code, you may want to convert the old-style declarations to prototypes. Later chapters in this book return to prototyping, function declarations, and return values.

Next, you invoke butler() in main() simply by giving its name, including parentheses. When butler() finishes its work, the program moves to the next statement in main().

Finally, the function butler() is defined in the same manner as main(), with a function header and the body enclosed in braces. The header repeats the information given in the prototype: butler() takes no arguments and has no return value. For older compilers, omit the second void.

One point to note is that it is the location of the butler() call in main()—not the location of the butler() definition in the file—that determines when the butler() function is executed. You could, for example, put the butler() definition above the main() definition in this program, and the program would still run the same, with the butler() function executed between the two calls to printf() in main(). Remember, all C programs begin execution with main(), no matter where main() is located in the program files. However, C practice is to list main() first because it normally provides the basic framework for a program.

The C standard recommends that you provide function prototypes for all functions you use. The standard include files take care of this task for the standard library functions. For example, under standard C, the stdio.h file has a function prototype for printf(). The final example in Chapter 6 will show you how to extend prototyping to non-void functions, and Chapter 9 covers functions fully.

Introducing Debugging

Now that you can write a simple C program, you are in a position to make simple errors. Program errors often are called bugs, and finding and fixing the errors is called debugging. Listing 2.4 presents a program with some bugs. See how many you can spot.

Listing 2.4. The nogood.c Program

/* nogood.c -- a program with errors */
#include <stdio.h>
int main(void)
(
 int n, int n2, int n3;

/* this program has several errors
 n = 5;
 n2 = n * n;
 n3 = n2 * n2;
 printf("n = %d, n squared = %d, n cubed = %d\n", n, n2, n3)

 return 0;
)

Syntax Errors

Listing 2.4 contains several syntax errors. You commit a syntax error when you don’t follow C’s rules. It’s analogous to a grammatical error in English. For instance, consider the following sentence: Bugs frustrate be can. This sentence uses valid English words but doesn’t follow the rules for word order, and it doesn’t have quite the right words, anyway. C syntax errors use valid C symbols in the wrong places.

So what syntax errors did nogood.c make? First, it uses parentheses instead of braces to mark the body of the function—it uses a valid C symbol in the wrong place. Second, the declaration should have been

int n, n2, n3;

or perhaps

int n;
int n2;
int n3;

Next, the example omits the */ symbol pair necessary to complete a comment. (Alternatively, you could replace /* with the new // form.) Finally, it omits the mandatory semicolon that should terminate the printf() statement.

How do you detect syntax errors? First, before compiling, you can look through the source code and see whether you spot anything obvious. Second, you can examine errors found by the compiler because part of its job is to detect syntax errors. When you compile this program, the compiler reports back any errors it finds, identifying the nature and location of each error.

However, the compiler can get confused. A true syntax error in one location might cause the compiler to mistakenly think it has found other errors. For instance, because the example does not declare n2 and n3 correctly, the compiler might think it has found further errors whenever those variables are used. In fact, rather than trying to correct all the reported errors at once, you should correct just the first one or two and then recompile; some of the other errors may go away. Continue in this way until the program works. Another common compiler trick is reporting the error a line late. For instance, the compiler may not deduce that a semicolon is missing until it tries to compile the next line. So if the compiler complains of a missing semicolon on a line that has one, check the line before.

Semantic Errors

Semantic errors are errors in meaning. For example, consider the following sentence: Furry inflation thinks greenly. The syntax is fine because adjectives, nouns, verbs, and adverbs are in the right places, but the sentence doesn’t mean anything. In C, you commit a semantic error when you follow the rules of C correctly but to an incorrect end. The example has one such error:

n3 = n2 * n2;

Here, n3 is supposed to represent the cube of n, but the code sets it up to be the fourth power of n.

The compiler does not detect semantic errors, because they don’t violate C rules. The compiler has no way of divining your true intentions. That leaves it to you to find these kinds of errors. One way is to compare what a program does to what you expected it to do. For instance, suppose you fix the syntax errors in the example so that it now reads as shown in Listing 2.5.

Listing 2.5. The stillbad.c Program

/* stillbad.c -- a program with its syntax errors fixed */
#include <stdio.h>
int main(void)
{
 int n, n2, n3;

/* this program has a semantic error */
 n = 5;
 n2 = n * n;
 n3 = n2 * n2;
 printf("n = %d, n squared = %d, n cubed = %d\n", n, n2, n3);

 return 0;
}

Its output is

n = 5, n squared = 25, n cubed = 625

If you are cube-wise, you’ll notice that 625 is the wrong value. The next stage is to track down how you wound up with this answer. For this example, you probably can spot the error by inspection. In general, however, you need to take a more systematic approach. One method is to pretend you are the computer and to follow the program steps one by one. Let’s try that method now.

The body of the program starts by declaring three variables: n, n2, and n3. You can simulate this situation by drawing three boxes and labeling them with the variable names (see Figure 2.6). Next, the program assigns 5 to n. Simulate that by writing 5 into the n box. Next, the program multiplies n by n and assigns the result to n2, so look in the n box, see that the value is 5, multiply 5 by 5 to get 25, and place 25 in box n2. To duplicate the next C statement (n3 = n2 * n2;), look in n2 and find 25. You multiply 25 by 25, get 625, and place it in n3. Aha! You are squaring n2 instead of multiplying it by n.

Figure 2.6.
Tracing a program.

[image: Tracing a program.]

Well, perhaps this procedure is overkill for this example, but going through a program step-by-step in this fashion is often the best way to see what’s happening.

Program State

By tracing the program step-by-step manually, keeping track of each variable, you monitor the program state. The program state is simply the set of values of all the variables at a given point in program execution. It is a snapshot of the current state of computation.

We just discussed one method of tracing the state: executing the program step-by-step yourself. In a program that makes, say, 10,000 iterations, you might not feel up to that task. Still, you can go through a few iterations to see whether your program does what you intend. However, there is always the possibility that you will execute the steps as you intended them to be executed instead of as you actually wrote them, so try to be faithful to the actual code.

Another approach to locating semantic problems is to sprinkle extra printf() statements throughout to monitor the values of selected variables at key points in the program. Seeing how the values change can illuminate what’s happening. After you have the program working to your satisfaction, you can remove the extra statements and recompile.

A third method for examining the program states is to use a debugger. A debugger is a program that enables you to run another program step-by-step and examine the value of that program’s variables. Debuggers come in various levels of ease of use and sophistication. The more advanced debuggers show which line of source code is being executed. This is particularly handy for programs with alternative paths of execution because it is easy to see which particular paths are being followed. If your compiler comes with a debugger, take time now to learn how to use it. Try it with Listing 2.4, for example.

Keywords and Reserved Identifiers

Keywords are the vocabulary of C. Because they are special to C, you can’t use them as identifiers, for example, or as variable names. Many of these keywords specify various types, such as int. Others, such as if, are used to control the order in which program statements are executed. In the following list of C keywords, boldface indicates keywords added by the ISO/ANSI C90 standard, and italics indicate new keywords added by the C99 standard.

[image: image]

If you try to use a keyword, for, say, the name of a variable, the compiler catches that as a syntax error. There are other identifiers, called reserved identifiers, that you shouldn’t use. They don’t cause syntax errors because they are valid names. However, the language already uses them or reserves the right to use them, so it could cause problems if you use these identifiers to mean something else. Reserved identifiers include those beginning with an underscore character and the names of the standard library functions, such as printf().

Key Concepts

Computer programming is a challenging activity. It demands abstract, conceptual thinking combined with careful attention to detail. You’ll find that compilers enforce the attention to detail. When you talk to a friend, you might use a few words incorrectly, make a grammatical error or two, perhaps leave some sentences unfinished, but your friend will still understand what you are trying to say. But a compiler doesn’t make such allowances; to it, almost right is still wrong.

The compiler won’t help you with conceptual matters, such as these, so this book will try to fill that gap by outlining the key concepts in each chapter.

For this chapter, your goal should be to understand what a C program is. You can think of a program as a description you prepare of how you want the computer to behave. The compiler handles the really detailed job of converting your description to the underlying machine language. (As a measure of how much work a compiler does, it can create an executable file of 60KB from your source code file of 1KB; a lot of machine language goes into representing even a simple C program.) Because the compiler has no real intelligence, you have to express your description in the compiler’s terms, and these terms are the formal rules set up by the C language standard. (Although restrictive, this still is far better than having to express your description directly in machine language!)

The compiler expects to receive its instructions in a specific format, which we described in detail in this chapter. Your job as a programmer is to express your ideas about how a program should behave within the framework that the compiler—guided by the C standard—can process successfully.

Summary

A C program consists of one or more C functions. Every C program must contain a function called main() because it is the function called when the program starts up. A simple function consists of a header followed by an opening brace, followed by the statements constituting the function body, followed by a terminating, or closing, brace.

Each C statement is an instruction to the computer and is marked by a terminating semicolon. A declaration statement creates a name for a variable and identifies the type of data to be stored in the variable. The name of a variable is an example of an identifier. An assignment statement assigns a value to a variable or, more generally, to a storage area. A function call statement causes the named function to be executed. When the called function is done, the program returns to the next statement after the function call.

The printf() function can be used to print phrases and the values of variables.

The syntax of a language is the set of rules that governs the way in which valid statements in that language are put together. The semantics of a statement is its meaning. The compiler helps you detect syntax errors, but semantic errors show up in a program’s behavior only after it is compiled. Detecting semantic errors may involve tracing the program state—that is, the values of all variables—after each program step.

Finally, keywords are the vocabulary of the C language.

Review Questions

You’ll find answers to the review questions in Appendix A, “Answers to the Review Questions.”

1. What are the basic modules of a C program called?

2. What is a syntax error? Give an example of one in English and one in C.

3. What is a semantic error? Give an example of one in English and one in C.

4. Indiana Sloth has prepared the following program and brought it to you for approval. Please help him out.

include studio.h
int main{void} /* this prints the number of weeks in a year /*
(
int s

s := 56;
print(There are s weeks in a year.);
return 0;

5. Assuming that each of the following examples is part of a complete program, what will each one print?

a. printf("Baa Baa Black Sheep.");
 printf("Have you any wool?\n");

b. printf("Begone!\nO creature of lard!");

c. printf("What?\nNo/nBonzo?\n");

d. int num;

 num = 2;
 printf("%d + %d = %d", num, num, num + num);

6. Which of the following are C keywords? main, int, function, char, =

7. How would you print the values of words and lines in the form There were 3020 words and 350 lines.? Here, 3020 and 350 represent values for the two variables.

8. Consider the following program:

#include <stdio.h>
int main(void)
{
 int a, b;

 a = 5;
 b = 2; /* line 7 */
 b = a; /* line 8 */
 a = b; /* line 9 */
 printf("%d %d\n", b, a);
 return 0;
}

What is the program state after line 7? Line 8? Line 9?

Programming Exercises

Reading about C isn’t enough. You should try writing one or two simple programs to see whether writing a program goes as smoothly as it looks in this chapter. A few suggestions follow, but you should also try to think up some problems yourself. You’ll find answers to selected programming exercises on the publisher’s website: www.samspublishing.com.

1. Write a program that uses one printf() call to print your first name and last name on one line, uses a second printf() call to print your first and last names on two separate lines, and uses a pair of printf() calls to print your first and last names on one line. The output should look like this (but using your name):

	Anton Bruckner

	←First print statement

	Anton

	←Second print statement

	Bruckner

	←Still the second print statement

	Anton Bruckner

	←Third and fourth print statements

2. Write a program to print your name and address.

3. Write a program that converts your age in years to days and displays both values. At this point, don’t worry about fractional years and leap years.

4. Write a program that produces the following output:

For he’s a jolly good fellow!
For he’s a jolly good fellow!
For he’s a jolly good fellow!
Which nobody can deny!

Have the program use two user-defined functions in addition to main(): one that prints the “jolly good” message once, and one that prints the final line once.

5. Write a program that creates an integer variable called toes. Have the program set toes to 10. Also have the program calculate what twice toes is and what toes squared is. The program should print all three values, identifying them.

6. Write a program that produces the following output:

Smile!Smile!Smile!
Smile!Smile!
Smile!

Have the program define a function that displays the string Smile! once, and have the program use the function as often as needed.

7. Write a program that calls a function named one_three(). This function should display the word one on one line, call the function two(), and then display the word three on one line. The function two() should display the word two on one line. The main() function should display the phrase starting now: before calling one_three() and display done! after calling it. Thus, the output should look like the following:

starting now:
one
two
three
done!

CHAPTER 3

DATA AND C

You will learn about the following in this chapter:

• Keywords:

int, short, long, unsigned, char, float, double, _Bool, _Complex, _Imaginary

• Operator:

sizeof

• Function:

scanf()

• The basic data types that C uses

• The distinctions between integer types and floating-point types

• Writing constants and declaring variables of those types

• How to use the printf() and scanf() functions to read and write values of different types

Programs work with data. You feed numbers, letters, and words to the computer, and you expect it to do something with the data. For example, you might want the computer to calculate an interest payment or display a sorted list of vintners. In this chapter, you do more than just read about data; you practice manipulating data, which is much more fun.

This chapter explores the two great families of data types: integer and floating point. C offers several varieties of these types. This chapter tells you what the types are, how to declare them, and how and when to use them. Also, you discover the differences between constants and variables, and as a bonus, your first interactive program is coming up shortly.

A Sample Program

Once again, you begin with a sample program. As before, you’ll find some unfamiliar wrinkles that we’ll soon iron out for you. The program’s general intent should be clear, so try compiling and running the source code shown in Listing 3.1. To save time, you can omit typing the comments.

Listing 3.1. The rhodium.c Program

/* rhodium.c -- your weight in rhodium */
#include <stdio.h>
int main(void)
{
 float weight; /* user weight */
 float value; /* rhodium equivalent */

 printf("Are you worth your weight in rhodium?\n");
 printf("Let’s check it out.\n");
 printf("Please enter your weight in pounds: ");

/* get input from the user */
 scanf("%f", &weight);
/* assume rhodium is $770 per ounce */
/* 14.5833 converts pounds avd. to ounces troy */
 value = 770.0 * weight * 14.5833;
 printf("Your weight in rhodium is worth $%.2f.\n", value);
 printf("You are easily worth that! If rhodium prices drop,\n");
 printf("eat more to maintain your value.\n");

 return 0;
}

[image: Errors and Warnings]

Errors and Warnings

If you type this program incorrectly and, say, omit a semicolon, the compiler gives you a syntax error message. Even if you type it correctly, however, the compiler may give you a warning similar to “Warning—conversion from ’double’ to ’float,’ possible loss of data.” An error message means you did something wrong and prevents the program from being compiled. A warning, however, means you’ve done something that is valid code but possibly is not what you meant to do. A warning does not stop compilation. This particular warning pertains to how C handles values such as 770.0. It’s not a problem for this example, and the chapter explains the warning later.

When you type this program, you might want to change the 770.0 to the current price of the precious metal rhodium. Don’t, however, fiddle with the 14.5833, which represents the number of ounces in a pound. (That’s ounces troy, used for precious metals, and pounds avoirdupois, used for people—precious and otherwise.)

Note that “entering” your weight means to type your weight and then press the Enter or Return key. (Don’t just type your weight and wait.) Pressing Enter informs the computer that you have finished typing your response. The program expects you to enter a number, such as 150, not words, such as too much. Entering letters rather than digits causes problems that require an if statement (Chapter 7, “C Control Statements: Branching and Jumps”) to defeat, so please be polite and enter a number. Here is some sample output:

Are you worth your weight in rhodium?
Let’s check it out.
Please enter your weight in pounds: 150
Your weight in rhodium is worth $1684371.12.
You are easily worth that! If rhodium prices drop,
eat more to maintain your value.

What’s New in This Program?

There are several new elements of C in this program:

• Notice that the code uses a new kind of variable declaration. The previous examples just used an integer variable type (int), but this one adds a floating-point variable type (float) so that you can handle a wider variety of data. The float type can hold numbers with decimal points.

• The program demonstrates some new ways of writing constants. You now have numbers with decimal points.

• To print this new kind of variable, use the %f specifier in the printf() code to handle a floating-point value. Use the .2 modifier to the %f specifier to fine-tune the appearance of the output so that it displays two places to the right of the decimal.

• To provide keyboard input to the program, use the scanf() function. The %f instructs scanf() to read a floating-point number from the keyboard, and the &weight tells scanf() to assign the input value to the variable named weight. The scanf() function uses the & notation to indicate where it can find the weight variable. The next chapter discusses & further; meanwhile, trust us that you need it here.

• Perhaps the most outstanding new feature is that this program is interactive. The computer asks you for information and then uses the number you enter. An interactive program is more interesting to use than the noninteractive types. More important, the interactive approach makes programs more flexible. For example, the sample program can be used for any reasonable weight, not just for 150 pounds. You don’t have to rewrite the program every time you want to try it on a new person. The scanf() and printf() functions make this interactivity possible. The scanf() function reads data from the keyboard and delivers that data to the program, and printf() reads data from a program and delivers that data to your screen. Together, these two functions enable you to establish a two-way communication with your computer (see Figure 3.1), and that makes using a computer much more fun.

Figure 3.1.
The scanf() and printf() functions at work.

[image: The scanf() and printf() functions at work.]

This chapter explains the first two items in this list of new features: variables and constants of various data types. Chapter 4, “Character Strings and Formatted Input/Output,” covers the last three items, but this chapter will continue to make limited use of scanf() and printf().

Data Variables and Constants

A computer, under the guidance of a program, can do many things. It can add numbers, sort names, command the obedience of a speaker or video screen, calculate cometary orbits, prepare a mailing list, dial phone numbers, draw stick figures, draw conclusions, or anything else your imagination can create. To do these tasks, the program needs to work with data, the numbers and characters that bear the information you use. Some types of data are preset before a program is used and keep their values unchanged throughout the life of the program. These are constants. Other types of data may change or be assigned values as the program runs; these are variables. In the sample program, weight is a variable and 14.5833 is a constant. What about 770.0? True, the price of rhodium isn’t a constant in real life, but this program treats it as a constant. The difference between a variable and a constant is that a variable can have its value assigned or changed while the program is running, and a constant can’t.

Data: Data-Type Keywords

Beyond the distinction between variable and constant is the distinction between different types of data. Some types of data are numbers. Some are letters or, more generally, characters. The computer needs a way to identify and use these different kinds. C does this by recognizing several fundamental data types. If a datum is a constant, the compiler can usually tell its type just by the way it looks: 42 is an integer, and 42.100 is floating point. A variable, however, needs to have its type announced in a declaration statement. You’ll learn the details of declaring variables as you move along. First, though, take a look at the fundamental types recognized by C. K&R C recognized seven keywords relating to types. The C90 standard added two to the list. The C99 standard adds yet another three (see Table 3.1).

Table 3.1. C Data Keywords

[image: image]

The int keyword provides the basic class of integers used in C. The next three keywords (long, short, and unsigned) and the ANSI addition signed are used to provide variations of the basic type. Next, the char keyword designates the type used for letters of the alphabet and for other characters, such as #, $, %, and *. The char type also can be used to represent small integers. Next, float, double, and the combination long double are used to represent numbers with decimal points. The _Bool type is for Boolean values (true and false), and _Complex and _Imaginary represent complex and imaginary numbers, respectively.

The types created with these keywords can be divided into two families on the basis of how they are stored in the computer: integer types and floating-point types.

[image: Bits, Bytes, and Words]

Bits, Bytes, and Words

The terms bit, byte, and word can be used to describe units of computer data or to describe units of computer memory. We’ll concentrate on the second usage here.

The smallest unit of memory is called a bit. It can hold one of two values: 0 or 1. (Or you can say that the bit is set to “off” or “on.”) You can’t store much information in one bit, but a computer has a tremendous stock of them. The bit is the basic building block of computer memory.

The byte is the usual unit of computer memory. For nearly all machines, a byte is 8 bits, and that is the standard definition, at least when used to measure storage. (The C language, however, has a different definition, as discussed in the “Using Characters: Type char” section later in this chapter.) Because each bit can be either 0 or 1, there are 256 (that’s 2 times itself 8 times) possible bit patterns of 0s and 1s that can fit in an 8-bit byte. These patterns can be used, for example, to represent the integers from 0 to 255 or to represent a set of characters. Representation can be accomplished with binary code, which uses (conveniently enough) just 0s and 1s to represent numbers. (Chapter 15, “Bit Fiddling,” discusses binary code, but you can read through the introductory material of that chapter now if you like.)

A word is the natural unit of memory for a given computer design. For 8-bit microcomputers, such as the original Apples, a word is just 8 bits. Early IBM compatibles using the 80286 processor are 16-bit machines. This means that they have a word size of 16 bits. Machines such as the Pentium-based PCs and the Macintosh PowerPCs have 32-bit words. More powerful computers can have 64-bit words or even larger.

Integer Versus Floating-Point Types

Integer types? Floating-point types? If you find these terms disturbingly unfamiliar, relax. We are about to give you a brief rundown of their meanings. If you are unfamiliar with bits, bytes, and words, you might want to read the nearby sidebar about them first. Do you have to learn all the details? Not really, not any more than you have to learn the principles of internal combustion engines to drive a car, but knowing a little about what goes on inside a computer or engine can help you occasionally.

For a human, the difference between integers and floating-point numbers is reflected in the way they can be written. For a computer, the difference is reflected in the way they are stored. Let’s look at each of the two classes in turn.

The Integer

An integer is a number with no fractional part. In C, an integer is never written with a decimal point. Examples are 2, –23, and 2456. Numbers such as 3.14, 0.22, and 2.000 are not integers. Integers are stored as binary numbers. The integer 7, for example, is written 111 in binary. Therefore, to store this number in an 8-bit byte, just set the first 5 bits to 0 and the last 3 bits to 1 (see Figure 3.2).

Figure 3.2.
Storing the integer 7 using a binary code.

[image: Storing the integer 7 using a binary code.]

The Floating-Point Number

A floating-point number more or less corresponds to what mathematicians call a real number. Real numbers include the numbers between the integers. Some floating-point numbers are 2.75, 3.16E7, 7.00, and 2e–8. Notice that adding a decimal point makes a value a floating-point value. So 7 is an integer type but 7.00 is a floating-point type. Obviously, there is more than one way to write a floating-point number. We will discuss the e-notation more fully later, but, in brief, the notation 3.16E7 means to multiply 3.16 by 10 to the 7th power; that is, by 1 followed by 7 zeros. The 7 would be termed the exponent of 10.

The key point here is that the scheme used to store a floating-point number is different from the one used to store an integer. Floating-point representation involves breaking up a number into a fractional part and an exponent part and storing the parts separately. Therefore, the 7.00 in this list would not be stored in the same manner as the integer 7, even though both have the same value. The decimal analogy would be to write 7.0 as 0.7E1. Here, 0.7 is the fractional part, and the 1 is the exponent part. Figure 3.3 shows another example of floating-point storage. A computer, of course, would use binary numbers and powers of two instead of powers of 10 for internal storage. You’ll find more on this topic in Chapter 15. Now, let’s concentrate on the practical differences:

• An integer has no fractional part; a floating-point number can have a fractional part.

• Floating-point numbers can represent a much larger range of values than integers can. See Table 3.3 near the end of this chapter.

• For some arithmetic operations, such as subtracting one large number from another, floating-point numbers are subject to greater loss of precision.

• Because there is an infinite number of real numbers in any range—for example, in the range between 1.0 and 2.0—computer floating-point numbers can’t represent all the values in the range. Instead, floating-point values are often approximations of a true value. For example, 7.0 might be stored as a 6.99999 float value—more about precision later.

• Floating-point operations are normally slower than integer operations. However, microprocessors developed specifically to handle floating-point operations are now available, and they have closed the gap.

Figure 3.3.
Storing the number pi in floating-point format (decimal version).

[image: Storing the number]

Basic C Data Types

Now let’s look at the specifics of the basic data types used by C. For each type, we describe how to declare a variable, how to represent a constant, and what a typical use would be. Some older C compilers do not support all these types, so check your documentation to see which ones you have available.

The int Type

C offers many integer types, and you might wonder why one type isn’t enough. The answer is that C gives the programmer the option of matching a type to a particular use. In particular, the C integer types vary in the range of values offered and in whether negative numbers can be used. The int type is the basic choice, but should you need other choices to meet the requirements of a particular task or machine, they are available.

The int type is a signed integer. That means it must be an integer and it can be positive, negative, or zero. The range in possible values depends on the computer system. Typically, an int uses one machine word for storage. Therefore, older IBM PC compatibles, which have a 16-bit word, use 16 bits to store an int. This allows a range in values from –32768 to 32767. Current personal computers typically have 32-bit integers and fit an int to that size. See Table 3.3 near the end of this chapter for examples. Now the personal computer industry is moving toward 64-bit processors that naturally will use even larger integers. ISO/ANSI C specifies that the minimum range for type int should be from –32767 to 32767. Typically, systems represent signed integers by using the value of a particular bit to indicate the sign. Chapter 15 discusses common methods.

Declaring an int Variable

As you saw in Chapter 2, “Introducing C,” the keyword int is used to declare the basic integer variable. First comes int, and then the chosen name of the variable, and then a semicolon. To declare more than one variable, you can declare each variable separately, or you can follow the int with a list of names in which each name is separated from the next by a comma. The following are valid declarations:

int erns;
int hogs, cows, goats;

You could have used a separate declaration for each variable, or you could have declared all four variables in the same statement. The effect is the same: Associate names and arrange storage space for four int-sized variables.

These declarations create variables but don’t supply values for them. How do variables get values? You’ve seen two ways that they can pick up values in the program. First, there is assignment:

cows = 112;

Second, a variable can pick up a value from a function—from scanf(), for example. Now let’s look at a third way.

Initializing a Variable

To initialize a variable means to assign it a starting, or initial, value. In C, this can be done as part of the declaration. Just follow the variable name with the assignment operator (=) and the value you want the variable to have. Here are some examples:

int hogs = 21;
int cows = 32, goats = 14;
int dogs, cats = 94; /* valid, but poor, form */

In the last line, only cats is initialized. A quick reading might lead you to think that dogs is also initialized to 94, so it is best to avoid putting initialized and noninitialized variables in the same declaration statement.

In short, these declarations create and label the storage for the variables and assign starting values to each (see Figure 3.4).

Figure 3.4. Defining and initializing a variable.

[image: Defining and initializing a variable.]

Type int Constants

The various integers (21, 32, 14, and 94) in the last example are integer constants. When you write a number without a decimal point and without an exponent, C recognizes it as an integer. Therefore, 22 and –44 are integer constants, but 22.0 and 2.2E1 are not. C treats most integer constants as type int. Very large integers can be treated differently; see the later discussion of the long int type in the section “long Constants and long long Constants Constants and long long Constants.”

Printing int Values

You can use the printf() function to print int types. As you saw in Listing 3.2 presents a simple program that initializes a variable and prints the value of the variable, the value of a constant, and the value of a simple expression. It also shows what can happen if you are not careful.

Listing 3.2. The print1.c Program

/* print1.c-displays some properties of printf() */
#include <stdio.h>
int main(void)
{
 int ten = 10;
 int two = 2;

 printf("Doing it right: ");
 printf("%d minus %d is %d\n", ten, 2, ten - two);
 printf("Doing it wrong: ");
 printf("%d minus %d is %d\n", ten); // forgot 2 arguments

 return 0;
}

Compiling and running the program produced this output on one system:

Doing it right: 10 minus 2 is 8
Doing it wrong: 10 minus 10 is 2

For the first line of output, the first %d represents the int variable ten, the second %d represents the int constant 2, and the third %d represents the value of the int expression ten - two. The second time, however, the program used ten to provide a value for the first %d and used whatever values happened to be lying around in memory for the next two! (The numbers you get could very well be different from those shown here. Not only might the memory contents be different, but different compilers will manage memory locations differently.)

You might be annoyed that the compiler doesn’t catch such an obvious error. Blame the unusual design of printf(). Most functions take a specific number of arguments, and the compiler can check to see whether you’ve used the correct number. However, printf() can have one, two, three, or more arguments, and that keeps the compiler from using its usual methods for error checking. Remember, check to see that the number of format specifiers you give to printf() matches the number of values to be displayed.

Octal and Hexadecimal

Normally, C assumes that integer constants are decimal, or base 10, numbers. However, octal (base 8) and hexadecimal (base 16) numbers are popular with many programmers. Because 8 and 16 are powers of 2, and 10 is not, these number systems occasionally offer a more convenient way for expressing computer-related values. For example, the number 65536, which often pops up in 16-bit machines, is just 10000 in hexadecimal. Also, each digit in a hexadecimal number corresponds to exactly 4 bits. For example, the hexadecimal digit 3 is 0011 and the hexadecimal digit 5 is 0101. So the hexadecimal value 35 is the bit pattern 0011 0101, and the hexadecimal value 53 is 0101 0011. This correspondence makes it easy to go back and forth between hexadecimal and binary (base 2) notation. But how can the computer tell whether 10000 is meant to be a decimal, hexadecimal, or octal value? In C, special prefixes indicate which number base you are using. A prefix of 0x or 0X (zero-ex) means that you are specifying a hexadecimal value, so 16 is written as 0x10, or 0X10, in hexadecimal. Similarly, a 0 (zero) prefix means that you are writing in octal. For example, the decimal value 16 is written as 020 in octal. Chapter 15 discusses these alternative number bases more fully.

Be aware that this option of using different number systems is provided as a service for your convenience. It doesn’t affect how the number is stored. That is, you can write 16 or 020 or 0x10, and the number is stored exactly the same way in each case—in the binary code used internally by computers.

Displaying Octal and Hexadecimal

Just as C enables you write a number in any one of three number systems, it also enables you to display a number in any of these three systems. To display an integer in octal notation instead of decimal, use %o instead of %d. To display an integer in hexadecimal, use %x. If you want to display the C prefixes, you can use specifiers %#o, %#x, and %#X to generate the 0, 0x, and 0X prefixes, respectively. Listing 3.3 shows a short example. (Recall that you may have to insert a getchar(); statement in the code for some IDEs to keep the program execution window from closing immediately.)

Listing 3.3. The bases.c Program

/* bases.c--prints 100 in decimal, octal, and hex */
#include <stdio.h>
int main(void)
{
 int x = 100;

 printf("dec = %d; octal = %o; hex = %x\n", x, x, x);
 printf("dec = %d; octal = %#o; hex = %#x\n", x, x, x);

 return 0;
}

Compiling and running this program produces this output:

dec = 100; octal = 144; hex = 64
dec = 100; octal = 0144; hex = 0x64

You see the same value displayed in three different number systems. The printf() function makes the conversions. Note that the 0 and the 0x prefixes are not displayed in the output unless you include the # as part of the specifier.

Other Integer Types

When you are just learning the language, the int type will probably meet most of your integer needs. To be complete, however, we’ll cover the other forms now. If you like, you can skim this section and jump to the discussion of the char type in the “Using Characters: Type char” section, returning here when you have a need.

C offers three adjective keywords to modify the basic integer type: short, long, and unsigned. Here are some points to keep in mind:

• The type short int or, more briefly, short may use less storage than int, thus saving space when only small numbers are needed. Like int, short is a signed type.

• The type long int, or long, may use more storage than int, thus enabling you to express larger integer values. Like int, long is a signed type.

• The type long long int, or long long (both introduced in the C99 standard), may use more storage than long, thus enabling you to express even larger integer values. Like int, long long is a signed type.

• The type unsigned int, or unsigned, is used for variables that have only nonnegative values. This type shifts the range of numbers that can be stored. For example, a 16-bit unsigned int allows a range from 0 to 65535 in value instead of from –32768 to 32767. The bit used to indicate the sign of signed numbers now becomes another binary digit, allowing the larger number.

• The types unsigned long int, or unsigned long, and unsigned short int, or unsigned short, are recognized as valid by the C90 standard. To this list, C99 adds unsigned long long int, or unsigned long long.

• The keyword signed can be used with any of the signed types to make your intent explicit. For example, short, short int, signed short, and signed short int are all names for the same type.

Declaring Other Integer Types

Other integer types are declared in the same manner as the int type. The following list shows several examples. Not all older C compilers recognize the last three, and the final example is new with the C99 standard.

long int estine;
long johns;
short int erns;
short ribs;
unsigned int s_count;
unsigned players;
unsigned long headcount;
unsigned short yesvotes;
long long ago;

Why Multiple Integer Types?

Why do we say that long and short types “may” use more or less storage than int? Because C guarantees only that short is no longer than int and that long is no shorter than int. The idea is to fit the types to the machine. On an IBM PC running Windows 3.1, for example, an int and a short are both 16 bits, and a long is 32 bits. On a Windows XP machine or a Macintosh PowerPC, however, a short is 16 bits, and both int and long are 32 bits. The natural word size on a Pentium chip or a PowerPC G3 or G4 chip is 32 bits. Because this allows integers in excess of 2 billion (see Table 3.3), the implementers of C on these processor/operating system combinations did not see a necessity for anything larger; therefore, long is the same as int. For many uses, integers of that size are not needed, so a space-saving short was created. The original IBM PC, on the other hand, has only a 16-bit word, which means that a larger long was needed.

Now that 64-bit processors, such as the IBM Itanium, AMD Opteron, and PowerPC G5, are beginning to become more common, there’s a need for 64-bit integers, and that’s the motivation for the long long type.

The most common practice today is to set up long long as 64 bits, long as 32 bits, short as 16 bits, and int to either 16 bits or 32 bits, depending on the machine’s natural word size. In principle, however, these four types could represent four distinct sizes.

The C standard provides guidelines specifying the minimum allowable size for each basic data type. The minimum range for both short and int is –32,767 to 32,767, corresponding to a 16-bit unit, and the minimum range for long is –2,147,483,647 to 2,147,483,647, corresponding to a 32-bit unit. (Note: For legibility, we’ve used commas, but C code doesn’t allow that option.) For unsigned short and unsigned int, the minimum range is 0 to 65,535, and for unsigned long, the minimum range is 0 to 4,294,967,295. The long long type is intended to support 64-bit needs. Its minimum range is a substantial –9,223,372,036,854,775,807 to 9,223,372,036,854,775,807, and the minimum range for unsigned long long is 0 to 18,446,744,073,709,551,615. (For those of you writing checks, that’s eighteen quintillion, four hundred and forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion, seven hundred nine million, five hundred fifty-one thousand, six hundred fifteen in U.S. notation, but who’s counting?)

When do you use the various int types? First, consider unsigned types. It is natural to use them for counting because you don’t need negative numbers, and the unsigned types enable you to reach higher positive numbers than the signed types.

Use the long type if you need to use numbers that long can handle and that int cannot. However, on systems for which long is bigger than int, using long can slow down calculations, so don’t use long if it is not essential. One further point: If you are writing code on a machine for which int and long are the same size, and you do need 32-bit integers, you should use long instead of int so that the program will function correctly if transferred to a 16-bit machine.

Similarly, use long long if you need 64-bit integer values. Some computers already use 64-bit processors, and 64-bit processing in servers, workstations, and even desktops may soon become common.

Use short to save storage space if, say, you need a 16-bit value on a system where int is 32-bit. Usually, saving storage space is important only if your program uses arrays of integers that are large in relation to a system’s available memory. Another reason to use short is that it may correspond in size to hardware registers used by particular components in a computer.

[image: Integer Overflow]

Integer Overflow

What happens if an integer tries to get too big for its type? Let’s set an integer to its largest possible value, add to it, and see what happens. Try both signed and unsigned types. (The printf() function uses the %u specifier to display unsigned int values.)

/* toobig.c-exceeds maximum int size on our system */
#include <stdio.h>
int main(void)
{
 int i = 2147483647;
 unsigned int j = 4294967295;

 printf("%d %d %d\n", i, i+1, i+2);
 printf("%u %u %u\n", j, j+1, j+2);

 return 0;
}

Here is the result for our system:

2147483647 -2147483648 -2147483647
4294967295 0 1

The unsigned integer j is acting like a car’s odometer. When it reaches its maximum value, it starts over at the beginning. The integer i acts similarly. The main difference is that the unsigned int variable j, like an odometer, begins at 0, but the int variable i begins at –2147483648. Notice that you are not informed that i has exceeded (overflowed) its maximum value. You would have to include your own programming to keep tabs on that.

The behavior described here is mandated by the rules of C for unsigned types. The standard doesn’t define how signed types should behave. The behavior shown here is typical, but you could encounter something different

long Constants and long long Constants

Normally, when you use a number such as 2345 in your program code, it is stored as an int type. What if you use a number such as 1000000 on a system in which int will not hold such a large number? Then the compiler treats it as a long int, assuming that type is large enough. If the number is larger than the long maximum, C treats it as unsigned long. If that is still insufficient, C treats the value as long long or unsigned long long, if those types are available.

Octal and hexadecimal constants are treated as type int unless the value is too large. Then the compiler tries unsigned int. If that doesn’t work, it tries, in order, long, unsigned long, long long, and unsigned long long.

Sometimes you might want the compiler to store a small number as a long integer. Programming that involves explicit use of memory addresses on an IBM PC, for instance, can create such a need. Also, some standard C functions require type long values. To cause a small constant to be treated as type long, you can append an l (lowercase L) or L as a suffix. The second form is better because it looks less like the digit 1. Therefore, a system with a 16-bit int and a 32-bit long treats the integer 7 as 16 bits and the integer 7L as 32 bits. The l and L suffixes can also be used with octal and hex integers, as in 020L and 0x10L.

Similarly, on those systems supporting the long long type, you can use an ll or LL suffix to indicate a long long value, as in 3LL. Add a u or U to the suffix for unsigned long long, as in 5ull or 10LLU or 6LLU or 9Ull.

Printing short, long, long long, and unsigned Types

To print an unsigned int number, use the %u notation. To print a long value, use the %ld format specifier. If int and long are the same size on your system, just %d will suffice, but your program will not work properly when transferred to a system on which the two types are different, so use the %ld specifier for long. You can use the l prefix for x and o, too. Therefore, you would use %lx to print a long integer in hexadecimal format and %lo to print in octal format. Note that although C allows both uppercase and lowercase letters for constant suffixes, these format specifiers use just lowercase.

C has several additional printf() formats. First, you can use an h prefix for short types. Therefore, %hd displays a short integer in decimal form, and %ho displays a short integer in octal form. Both the h and l prefixes can be used with u for unsigned types. For instance, you would use the %lu notation for printing unsigned long types. Listing 3.4 provides an example. Systems supporting the long long types use %lld and %llu for the signed and unsigned versions. Chapter 4 provides a fuller discussion of format specifiers.

Listing 3.4. The print2.c Program

/* print2.c-more printf() properties */
#include <stdio.h>
int main(void)
{
 unsigned int un = 3000000000; /* system with 32-bit int */
 short end = 200; /* and 16-bit short */
 long big = 65537;
 long long verybig = 12345678908642;

 printf("un = %u and not %d\n", un, un);
 printf("end = %hd and %d\n", end, end);
 printf("big = %ld and not %hd\n", big, big);
 printf("verybig= %lld and not %ld\n", verybig, verybig);

 return 0;
}

Here is the output on one system:

un = 3000000000 and not -1294967296
end = 200 and 200
big = 65537 and not 1
verybig= 12345678908642 and not 1942899938

This example points out that using the wrong specification can produce unexpected results. First, note that using the %d specifier for the unsigned variable un produces a negative number! The reason for this is that the unsigned value 3000000000 and the signed value –129496296 have exactly the same internal representation in memory on our system. (Chapter 15 explains this property in more detail.) So if you tell printf() that the number is unsigned, it prints one value, and if you tell it that the same number is signed, it prints the other value. This behavior shows up with values larger than the maximum signed value. Smaller positive values, such as 96, are stored and displayed the same for both signed and unsigned types.

Next, note that the short variable end is displayed the same whether you tell printf() that end is a short (the %hd specifier) or an int (the %d specifier). That’s because C automatically expands a type short value to a type int value when it’s passed as an argument to a function. This may raise two questions in your mind: Why does this conversion take place, and what’s the use of the h modifier? The answer to the first question is that the int type is intended to be the integer size that the computer handles most efficiently. So, on a computer for which short and int are different sizes, it may be faster to pass the value as an int. The answer to the second question is that you can use the h modifier to show how a longer integer would look if truncated to the size of short. The third line of output illustrates this point. When the value 65537 is written in binary format as a 32-bit number, it looks like 00000000000000010000000000000001. Using the %hd specifier persuaded printf() to look at just the last 16 bits; therefore, it displayed the value as 1. Similarly, the final output line shows the full value of verybig and then the value stored in the last 32 bits, as viewed through the %ld specifier.

Earlier you saw that it is your responsibility to make sure the number of specifiers matches the number of values to be displayed. Here you see that it is also your responsibility to use the correct specifier for the type of value to be displayed.

[image: Match the Type printf() Specifiers]

Match the Type printf() Specifiers

Remember to check to see that you have one format specifier for each value being displayed in a printf() statement. And also check that the type of each format specifier matches the type of the corresponding display value.

Using Characters: Type char

The char type is used for storing characters such as letters and punctuation marks, but technically it is an integer type. Why? Because the char type actually stores integers, not characters. To handle characters, the computer uses a numerical code in which certain integers represent certain characters. The most commonly used code in the U.S. is the ASCII code given in the table on the inside front cover. It is the code this book assumes. In it, for example, the integer value 65 represents an uppercase A. So to store the letter A, you actually need to store the integer 65. (Many IBM mainframes use a different code, called EBCDIC, but the principle is the same. Computer systems outside the U.S. may use entirely different codes.)

The standard ASCII code runs numerically from 0 to 127. This range is small enough that 7 bits can hold it. The char type is typically defined as an 8-bit unit of memory, so it is more than large enough to encompass the standard ASCII code. Many systems, such as the IBM PC and the Apple Macintosh, offer extended ASCII codes (different for the two systems) that still stay within an 8-bit limit. More generally, C guarantees that the char type is large enough to store the basic character set for the system on which C is implemented.

Many character sets have many more than 127 or even 255 values. For example, there is the Japanese kanji character set. The commercial Unicode initiative has created a system to represent a variety of characters sets worldwide and currently has over 96,000 characters. The International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) has developed a standard called ISO/IEC 10646 for character sets. Fortunately, the Unicode standard has been kept compatible with the more extensive ISO/IEC 10646 standard.

A platform that uses one of these sets as its basic character set could use a 16-bit or even a 32-bit char representation. The C language defines a byte to be the number of bits used by type char, so as far as C documentation goes, a byte would be 16 or 32 bits, rather than 8 bits on such systems.

Declaring Type char Variables

As you might expect, char variables are declared in the same manner as other variables. Here are some examples:

char response;
char itable, latan;

This code would create three char variables: response, itable, and latan.

Character Constants and Initialization

Suppose you want to initialize a character constant to the letter A. Computer languages are supposed to make things easy, so you shouldn’t have to memorize the ASCII code, and you don’t. You can assign the character A to grade with the following initialization:

char grade = ’A’;

A single letter contained between single quotes is a C character constant. When the compiler sees ’A’, it converts the ’A’ to the proper code value. The single quotes are essential. Here’s another example:

char broiled; /* declare a char variable */
broiled = ’T’; /* OK */
broiled = T; /* NO! Thinks T is a variable */
broiled = "T"; /* NO! Thinks "T" is a string */

If you omit the quotes, the compiler thinks that T is the name of a variable. If you use double quotes, it thinks you are using a string. We’ll discuss strings in Chapter 4.

Because characters are really stored as numeric values, you can also use the numerical code to assign values:

char grade = 65; /* ok for ASCII, but poor style */

In this example, 65 is type int, but, because the value is smaller than the maximum char size, it can be assigned to grade without any problems. Because 65 is the ASCII code for the letter A, this example assigns the value A to grade. Note, however, that this example assumes that the system is using ASCII code. Using ’A’ instead of 65 produces code that works on any system. Therefore, it’s much better to use character constants than numeric code values.

Somewhat oddly, C treats character constants as type int rather than type char. For example, on an ASCII system with a 32-bit int and an 8-bit char, the code

char grade = ’B’;

represents ’B’ as the numerical value 66 stored in a 32-bit unit, but grade winds up with 66 stored in an 8-bit unit. This characteristic of character constants makes it possible to define a character constant such as ’FATE’, with four separate 8-bit ASCII codes stored in a 32-bit unit. However, attempting to assign such a character constant to a char variable results in only the last 8 bits being used, so the variable gets the value ’E’.

Nonprinting Characters

The single-quote technique is fine for characters, digits, and punctuation marks, but if you look through the table on the inside front cover of this book, you’ll see that some of the ASCII characters are nonprinting. For example, some represent actions such as backspacing or going to the next line or making the terminal bell ring (or speaker beep). How can these be represented? C offers three ways.

The first way we have already mentioned—just use the ASCII code. For example, the ASCII value for the beep character is 7, so you can do this:

char beep = 7;

The second way to represent certain awkward characters in C is to use special symbol sequences. These are called escape sequences. Table 3.2 shows the escape sequences and their meanings.

Table 3.2. Escape Sequences

[image: image]

Escape sequences must be enclosed in single quotes when assigned to a character variable. For example, you could make the statement

char nerf = ’\n’;

and then print the variable nerf to advance the printer or screen one line.

Now take a closer look at what each escape sequence does. The alert character (\a), added by C90, produces an audible or visible alert. The nature of the alert depends on the hardware, with the beep being the most common. (With some systems, the alert character has no effect.) The ANSI standard states that the alert character shall not change the active position. By active position, the standard means the location on the display device (screen, teletype, printer, and so on) at which the next character would otherwise appear. In short, the active position is a generalization of the screen cursor with which you are probably accustomed. Using the alert character in a program displayed on a screen should produce a beep without moving the screen cursor.

Next, the \b, \f, \n, \r, \t, and \v escape sequences are common output device control characters. They are best described in terms of how they affect the active position. A backspace (\b) moves the active position back one space on the current line. A form feed character (\f) advances the active position to the start of the next page. A newline character (\n) sets the active position to the beginning of the next line. A carriage return (\r) moves the active position to the beginning of the current line. A horizontal tab character (\t) moves the active position to the next horizontal tab stop (typically, these are found at character positions 1, 9, 17, 25, and so on). A vertical tab (\v) moves the active position to the next vertical tab position.

These escape sequence characters do not necessarily work with all display devices. For example, the form feed and vertical tab characters produce odd symbols on a PC screen instead of any cursor movement, but they work as described if sent to a printer instead of to the screen.

The next three escape sequences (\\, \’, and \") enable you to use \, ’, and " as character constants. (Because these symbols are used to define character constants as part of a printf() command, the situation could get confusing if you use them literally.) Suppose you want to print the following line:

Gramps sez, "a \ is a backslash."

Then use this code:

printf("Gramps sez, \"a \\ is a backslash.\"\n");

The final two forms (\0oo and \xhh) are special representations of the ASCII code. To represent a character by its octal ASCII code, precede it with a backslash (\) and enclose the whole thing in single quotes. For example, if your compiler doesn’t recognize the alert character (\a), you could use the ASCII code instead:

beep = ’\007’;

You can omit the leading zeros, so ’\07’ or even ’\7’ will do. This notation causes numbers to be interpreted as octal, even if there is no initial 0.

Beginning with C90, C provides a third option—using a hexadecimal form for character constants. In this case, the backslash is followed by an x or X and one to three hexadecimal digits. For example, the Ctrl+P character has an ASCII hex code of 10 (16, in decimal), so it can be expressed as ’\x10’ or ’\X010’. Figure 3.5 shows some representative integer types.

Figure 3.5. Writing constants with the int family.

[image: Writing constants with the int family.]

When you use ASCII code, note the difference between numbers and number characters. For example, the character 4 is represented by ASCII code value 52. The notation ’4’ represents the symbol 4, not the numerical value 4.

At this point, you may have three questions:

• Why aren’t the escape sequences enclosed in single quotes in the last example (printf("Gramps sez, \"a \\ is a backslash\"\"n");)?When a character, be it an escape sequence or not, is part of a string of characters enclosed in double quotes, don’t enclose it in single quotes. Notice that none of the other characters in this example (G, r, a, m, p, s, and so on) are marked off by single quotes. A string of characters enclosed in double quotes is called a character string. (Chapter 4 explores strings.) Similarly, printf("Hello!\007\n"); will print Hello! and beep, but printf("Hello!7\n"); will print Hello!7. Digits that are not part of an escape sequence are treated as ordinary characters to be printed.

• When should I use the ASCII code, and when should I use the escape sequences?If you have a choice between using one of the special escape sequences, say ’\f’, or an equivalent ASCII code, say ’\014’, use the ’\f’. First, the representation is more mnemonic. Second, it is more portable. If you have a system that doesn’t use ASCII code, the ’\f’ will still work.

• If I need to use numeric code, why use, say, ’\032’ instead of 032?First, using ’\032’ instead of 032 makes it clear to someone reading the code that you intend to represent a character code. Second, an escape sequence such as \032 can be embedded in part of a C string, the way \007 was in the first point.

Printing Characters

The printf() function uses %c to indicate that a character should be printed. Recall that a character variable is stored as a 1-byte integer value. Therefore, if you print the value of a char variable with the usual %d specifier, you get an integer. The %c format specifier tells printf() to display the character that has that integer as its code value. Listing 3.5 shows a char variable both ways.

Listing 3.5. The charcode.c Program

/* charcode.c-displays code number for a character */
#include <stdio.h>
int main(void)
{
 char ch;

 printf("Please enter a character.\n");
 scanf("%c", &ch); /* user inputs character */
 printf("The code for %c is %d.\n", ch, ch);

 return 0;
}

Here is a sample run:

Please enter a character.
C
The code for C is 67.

When you use the program, remember to press the Enter or Return key after typing the character. The scanf() function then fetches the character you typed, and the ampersand (&) causes the character to be assigned to the variable ch. The printf() function then prints the value of ch twice, first as a character (prompted by the %c code) and then as a decimal integer (prompted by the %d code). Note that the printf() specifiers determine how data is displayed, not how it is stored (see Figure 3.6).

Figure 3.6.
Data display versus data storage.

[image: Data display versus data storage.]

Signed or Unsigned?

Some C implementations make char a signed type. This means a char can hold values typically in the range –128 through 127. Other implementations make char an unsigned type, which provides a range of 0 through 255. Your compiler manual should tell you which type your char is, or you can check the limits.h header file, discussed in the next chapter.

With C90, C enables you to use the keywords signed and unsigned with char. Then, regardless of what your default char is, signed char would be signed, and unsigned char would be unsigned. These versions of char are useful if you’re using the type to handle small integers. For character use, just use the standard char type without modifiers.

The _Bool Type

The _Bool type is a C99 addition that’s used to represent Boolean values—that is, the logical values true and false. Because C uses the value 1 for true and 0 for false, the _Bool type really is just an integer type, but one that, in principle, only requires 1 bit of memory, because that is enough to cover the full range from 0 to 1.

Programs use Boolean values to choose which code to execute next. Code execution is covered more fully in Chapter 6, “C Control Statements: Looping,” and Chapter 7, “C Control Statements: Branching and Jumps,” so let’s defer further discussion until then.

Portable Types: inttypes.h

Are there even more integer types? No, but there are more names that you can use for the existing types. You might think you’ve seen more than an adequate number of names, but the primary names do have a problem. Knowing that a variable is an int doesn’t tell you how many bits it is unless you check the documentation for your system. To get around this problem, C99 provides an alternative set of names that describes exactly what you get. For example, the name int16_t indicates a 16-bit signed integer type and the name uint32_t indicates a 32-bit unsigned integer type.

To make these names available to a program, include the inttypes.h header file. (Note that at the time this edition was prepared, some compilers don’t yet support this feature.) That file uses the typedef facility (first described briefly in Chapter 5, “Operators, Expressions, and Statements”) to create new type names. For example, it will make uint32_t a synonym or alias for a standard type with the desired characteristics—perhaps unsigned int on one system and unsigned long on another. Your compiler will provide a header file consistent with the computer system you are using. These new designations are called exact width types. Note that, unlike int, uint32_t is not a keyword, so the compiler won’t recognize it unless you include the inttypes.h header file.

One possible problem with attempting to provide exact width types is that a particular system might not support some of the choices, so there is no guarantee that there will be, say, an int8_t type (8-bit signed). To get around that problem, the C99 standard defines a second set of names that promises the type is at least big enough to meet the specification and that no other type that can do the job is smaller. These types are called minimum width types. For example, int_least8_t will be an alias for the smallest available type that can hold an 8-bit signed integer value. If the smallest type on a particular system were 8 bits, the int8_t type would not be defined. However, the int_least8_t type would be available, perhaps implemented as a 16-bit integer.

Of course, some programmers are more concerned with speed than with space. For them, C99 defines a set of types that will allow the fastest computations. These are called the fastest minimum width types. For example, the int_fast8_t will be defined as an alternative name for the integer type on your system that allows the fastest calculations for 8-bit signed values.

Finally, for some programmers, only the biggest possible integer type on a system will do; intmax_t stands for that type, a type that can hold any valid signed integer value. Similarly, uintmax_t stands for the largest available unsigned type. Incidentally, these types could be bigger than long long and unsigned long because C implementations are permitted to define types beyond the required ones.

C99 not only provides these new, portable type names, it also has to assist with input and output. For example, printf() requires specific specifiers for particular types. So what do you do to display an int32_t value when it might require a %d specifier for one definition and an %ld for another? The C99 standard provides some string macros (introduced in Listing 3.6 shows a brief example illustrating how to use a portable type and its associated specifier.

Listing 3.6. The altnames.c Program

/* altnames.c -- portable names for integer types */
#include <stdio.h>
#include <inttypes.h> // supports portable types
int main(void)
{
 int16_t me16; // me16 a 16-bit signed variable

 me16 = 4593;
 printf("First, assume int16_t is short: ");
 printf("me16 = %hd\n", me16);
 printf("Next, let’s not make any assumptions.\n");
 printf("Instead, use a \"macro\" from inttypes.h: ");
 printf("me16 = %" PRId16 "\n", me16);

 return 0;
}

In the final printf() argument, the PRId16 is replaced by its inttypes.h definition of "hd", making the line this:

printf("me16 = %" "hd" "\n", me16);

But C combines consecutive quoted strings into a single quoted string, making the line this:

printf("me16 = %hd\n", me16);

Here’s the output; note that the example also uses the \" escape sequence to display double quotation marks:

First, assume int16_t is short: me16 = 4593
Next, let’s not make any assumptions.
Instead, use a "macro" from inttypes.h: me16 = 4593

Reference Section VI, “Expanded Integer Types,” provides a complete rundown of the inttypes.h header file additions and also lists all the specifier macros.

[image: C99 Support]

C99 Support

Compiler vendors have approached implementing new C99 features at different paces and with different priorities. At the time this book was prepared, some compilers haven’t yet implemented the inttypes.h header file and features.

Types float, double, and long double

The various integer types serve well for most software development projects. However, financial and mathematically oriented programs often make use of floating-point numbers. In C, such numbers are called type float, double, or long double. They correspond to the real types of FORTRAN and Pascal. The floating-point approach, as already mentioned, enables you to represent a much greater range of numbers, including decimal fractions. Floating-point number representation is similar to scientific notation, a system used by scientists to express very large and very small numbers. Let’s take a look.

In scientific notation, numbers are represented as decimal numbers times powers of 10. Here are some examples.

[image: image]

The first column shows the usual notation, the second column scientific notation, and the third column exponential notation, or e-notation, which is the way scientific notation is usually written for and by computers, with the e followed by the power of 10. Figure 3.7 shows more floating-point representations.

Figure 3.7.
Some floating-point numbers.

[image: Some floating-point numbers.]

The C standard provides that a float has to be able to represent at least six significant figures and allow a range of at least 10−37 to 10+37. The first requirement means, for example, that a float has to represent accurately at least the first six digits in a number such as 33.333333. The second requirement is handy if you like to use numbers such as the mass of the sun (2.0e30 kilograms), the charge of a proton (1.6e–19 coulombs), or the national debt. Often, systems use 32 bits to store a floating-point number. Eight bits are used to give the exponent its value and sign, and 24 bits are used to represent the nonexponent part, called the mantissa or significand, and its sign.

C also has a double (for double precision) floating-point type. The double type has the same minimum range requirements as float, but it extends the minimum number of significant figures that can be represented to 10. Typical double representations use 64 bits instead of 32. Some systems use all 32 additional bits for the nonexponent part. This increases the number of significant figures and reduces round-off errors. Other systems use some of the bits to accommodate a larger exponent; this increases the range of numbers that can be accommodated. Either approach leads to at least 13 significant figures, more than meeting the minimum standard.

C allows for a third floating-point type: long double. The intent is to provide for even more precision than double. However, C guarantees only that long double is at least as precise as double.

Declaring Floating-Point Variables

Floating-point variables are declared and initialized in the same manner as their integer cousins. Here are some examples:

float noah, jonah;
double trouble;
float planck = 6.63e-34;
long double gnp;

Floating-Point Constants

There are many choices open to you when you write a floating-point constant. The basic form of a floating-point constant is a signed series of digits, including a decimal point, followed by an e or E, followed by a signed exponent indicating the power of 10 used. Here are two valid floating-point constants:

-1.56E+12

2.87e-3

You can leave out positive signs. You can do without a decimal point (2E5) or an exponential part (19.28), but not both simultaneously. You can omit a fractional part (3.E16) or an integer part (.45E–6), but not both (that wouldn’t leave much!). Here are some more valid floating-point constants:

3.14159

.2

4e16

.8E-5

100.

Don’t use spaces in a floating-point constant.

	
Wrong:

	
1.56 E+12

By default, the compiler assumes floating-point constants are double precision. Suppose, for example, that some is a float variable and that you have the following statement:

some = 4.0 * 2.0;

Then 4.0 and 2.0 are stored as double, using (typically) 64 bits for each. The product is calculated using double precision arithmetic, and only then is the answer trimmed to regular float size. This ensures greater precision for your calculations, but it can slow down a program.

C enables you to override this default by using an f or F suffix to make the compiler treat a floating-point constant as type float; examples are 2.3f and 9.11E9F. An l or L suffix makes a number type long double; examples are 54.3l and 4.32e4L. Note that L is less likely to be mistaken for 1 (one) than is l. If the floating-point number has no suffix, it is type double.

C99 has added a new format for expressing floating-point constants. It uses a hexadecimal prefix (0x or 0X) with hexadecimal digits, a p or P instead of e or E, and an exponent that is a power of 2 instead of a power of 10. Here’s what such a number might look like:

0xa.1fp10

The a is 10, the .1f is 1/16th plus 15/256th, and the p10 is 210, or 1024, making the complete value 10364.0 in base 10 notation.

Not all C compilers have added support for this C99 feature.

Printing Floating-Point Values

The printf() function uses the %f format specifier to print type float and double numbers using decimal notation, and it uses %e to print them in exponential notation. If your system supports the C99 hexadecimal format for floating-point numbers, you can use a or A instead of e or E. The long double type requires the %Lf, %Le, and %La specifiers to print that type. Note that both float and double use the %f, %e, or %a specifier for output. That’s because C automatically expands type float values to type double when they are passed as arguments to any function, such as printf(), that doesn’t explicitly prototype the argument type. Listing 3.7 illustrates these behaviors.

Listing 3.7. The showf_pt.c Program

/* showf_pt.c -- displays float value in two ways */
#include <stdio.h>
int main(void)
{
 float aboat = 32000.0;
 double abet = 2.14e9;
 long double dip = 5.32e-5;

 printf("%f can be written %e\n", aboat, aboat);
 printf("%f can be written %e\n", abet, abet);
 printf("%f can be written %e\n", dip, dip);

 return 0;
}

This is the output:

32000.000000 can be written 3.200000e+04
2140000000.000000 can be written 2.140000e+09
0.000053 can be written 5.320000e-05

This example illustrates the default output. The next chapter discusses how to control the appearance of this output by setting field widths and the number of places to the right of the decimal.

Floating-Point Overflow and Underflow

Suppose the biggest possible float value on your system is about 3.4E38 and you do this:

float toobig = 3.4E38 * 100.0f;
printf("%e\n", toobig);

What happens? This is an example of overflow—when a calculation leads to a number too large to be expressed. The behavior for this case used to be undefined, but now C specifies that toobig gets assigned a special value that stands for infinity and that printf() displays either inf or infinity (or some variation on that theme) for the value.

What about dividing very small numbers? Here the situation is more involved. Recall that a float number is stored as an exponent and as a value part, or mantissa. There will be a number that has the smallest possible exponent and also the smallest value that still uses all the bits available to represent the mantissa. This will be the smallest number that still is represented to the full precision available to a float value. Now divide it by 2. Normally, this reduces the exponent, but the exponent already is as small as it can get. So, instead, the computer moves the bits in the mantissa over, vacating the first position and losing the last binary digit. An analogy would be taking a base 10 value with four significant digits, such as 0.1234E-10, dividing by 10, and getting 0.0123E-10. You get an answer, but you’ve lost a digit in the process. This situation is called underflow, and C refers to floating-point values that have lost the full precision of the type as subnormal. So dividing the smallest positive normal floating-point value by 2 results in a subnormal value. If you divide by a large enough value, you lose all the digits and are left with 0. The C library now provides functions that let you check whether your computations are producing subnormal values.

There’s another special floating-point value that can show up: NaN, or not-a-number. For example, you give the asin() function a value, and it returns the angle that has that value as its sine. But the value of a sine can’t be greater than 1, so the function is undefined for values in excess of 1. In such cases, the function returns the NaN value, which printf() displays as nan, NaN, or something similar.

[image: Floating-Point Round-off Errors]

Floating-Point Round-off Errors

Take a number, add 1 to it, and subtract the original number. What do you get? You get 1. A floating-point calculation, such as the following, may give another answer:

/* floaterr.c--demonstrates round-off error */
#include <stdio.h>
int main(void)
{
 float a,b;

 b = 2.0e20 + 1.0;
 a = b - 2.0e20;
 printf("%f \n", a);

 return 0;
}

The output is this:

0.000000 ←older gcc on Linux
-13584010575872.000000 ←Turbo C 1.5
4008175468544.000000 ←CodeWarrior 9.0, MSVC++ 7.1

The reason for these odd results is that the computer doesn’t keep track of enough decimal places to do the operation correctly. The number 2.0e20 is 2 followed by 20 zeros and, by adding 1, you are trying to change the 21st digit. To do this correctly, the program would need to be able to store a 21-digit number. A float number is typically just six or seven digits scaled to bigger or smaller numbers with an exponent. The attempt is doomed. On the other hand, if you used 2.0e4 instead of 2.0e20, you would get the correct answer because you are trying to change the fifth digit, and float numbers are precise enough for that.

Complex and Imaginary Types

Many computations in science and engineering use complex and imaginary numbers. C99 supports these numbers, with some reservations. A free-standing implementation, such as that used for embedded processors, doesn’t need to have these types. (A VCR chip probably doesn’t need complex numbers to do its job.) Also, more generally, the imaginary types are optional.

In brief, there are three complex types, called float _Complex, double _Complex, and long double _Complex. A float _Complex variable, for example, would contain two float values, one representing the real part of a complex number and one representing the imaginary part. Similarly, there are three imaginary types, called float _Imaginary, double _Imaginary, and long double _Imaginary.

Including the complex.h header file lets you substitute the word complex for _Complex and the word imaginary for _Imaginary, and it allows you to use the symbol I to represent the square root of –1.

Beyond the Basic Types

That finishes the list of fundamental data types. For some of you, the list must seem long. Others of you might be thinking that more types are needed. What about a character string type? C doesn’t have one, but it can still deal quite well with strings. You will take a first look at strings in Chapter 4.

C does have other types derived from the basic types. These types include arrays, pointers, structures, and unions. Although they are subject matter for later chapters, we have already smuggled some pointers into this chapter’s examples. (A pointer points to the location of a variable or other data object. The & prefix used with the scanf() function creates a pointer telling scanf() where to place information.)

[image: Summary: The Basic Data Types]

Summary: The Basic Data Types

Keywords:

The basic data types are set up using 11 keywords: int, long, short, unsigned, char, float, double, signed, _Bool, _Complex, and _Imaginary.

Signed Integers:

These can have positive or negative values:

• int—The basic integer type for a given system. C guarantees at least 16 bits for int.

• short or short int—The largest short integer is no larger than the largest int and may be smaller. C guarantees at least 16 bits for short.

• long or long int—Can hold an integer at least as large as the largest int and possibly larger. C guarantees at least 32 bits for long.

• long long or long long int—This type can hold an integer at least as large as the largest long and possibly larger. The long long type is least 64 bits.

Typically, long will be bigger than short, and int will be the same as one of the two. For example, DOS-based systems for the PC provide 16-bit short and int and 32-bit long, and Windows 95–based systems provide 16-bit short and 32-bit int and long.

You can, if you like, use the keyword signed with any of the signed types, making the fact that they are signed explicit.

Unsigned Integers:

These have zero or positive values only. This extends the range of the largest possible positive number. Use the keyword unsigned before the desired type: unsigned int, unsigned long, unsigned short. A lone unsigned is the same as unsigned int.

Characters:

These are typographic symbols such as A, &, and +. By definition, the char type uses 1 byte of memory to represent a character. Historically, this character byte has most often been 8 bits, but it can be 16 bits or larger, if needed to represent the base character set.

• char—The keyword for this type. Some implementations use a signed char, but others use an unsigned char. C enables you to use the keywords signed and unsigned to specify which form you want.

Boolean:

Boolean values represent true and false; C uses 1 for true and 0 for false.

• _Bool—The keyword for this type. It is an unsigned int and need only be large enough to accommodate the range 0 through 1.

Real Floating Point:

These can have positive or negative values:

• float—The basic floating-point type for the system; it can represent at least six significant figures accurately.

• double—A (possibly) larger unit for holding floating-point numbers. It may allow more significant figures (at least 10, typically more) and perhaps larger exponents than float.

• long double—A (possibly) even larger unit for holding floating-point numbers. It may allow more significant figures and perhaps larger exponents than double.

Complex and Imaginary Floating Point:

The imaginary types are optional. The real and imaginary components are based on the corresponding real types:

• float _Complex

• double _Complex

• long double _Complex

• float _Imaginary

• double _Imaginary

• long double _Imaginary

[image: Summary: How to Declare a Simple Variable]

Summary: How to Declare a Simple Variable

1. Choose the type you need.

2. Choose a name for the variable using the allowed characters.

3. Use the following format for a declaration statement:

type-specifier variable-name;

The type-specifier is formed from one or more of the type keywords; here are examples of declarations:

int erest;
unsigned short cash;.

4. You can declare more than one variable of the same type by separating the variable names with commas. Here’s an example:

char ch, init, ans;.

5. You can initialize a variable in a declaration statement:

float mass = 6.0E24;

Type Sizes

Tables 3.3 and 3.4 show type sizes for some common C environments. (In some environments, you have a choice.) What is your system like? Try running the program in Listing 3.8 to find out.

Table 3.3. Integer Type Sizes (Bits) for Representative Systems

[image: image]

Table 3.4. Floating-point Facts for Representative Systems

[image: image]

For each type, the top row is the number of significant digits and the second row is the exponent range (base 10).

Listing 3.8. The typesize.c Program

/* typesize.c -- prints out type sizes */
#include <stdio.h>
int main(void)
{
/* c99 provides a %zd specifier for sizes */
 printf("Type int has a size of %u bytes.\n", sizeof(int));
 printf("Type char has a size of %u bytes.\n", sizeof(char));
 printf("Type long has a size of %u bytes.\n", sizeof(long));
 printf("Type double has a size of %u bytes.\n",
 sizeof(double));
 return 0;
}

C has a built-in operator called sizeof that gives sizes in bytes. (Some compilers require %lu instead of %u for printing sizeof quantities. That’s because C leaves some latitude as to the actual unsigned integer type that sizeof uses to report its findings. C99 provides a %zd specifier for this type, and you should use it if your compiler supports it.) The output from List-ing 3.8 is as follows:

Type int has a size of 4 bytes.
Type char has a size of 1 bytes.
Type long has a size of 4 bytes.
Type double has a size of 8 bytes.

This program found the size of only four types, but you can easily modify it to find the size of any other type that interests you. Note that the size of char is necessarily 1 byte because C defines the size of 1 byte in terms of char. So, on a system with a 16-bit char and a 64-bit double, sizeof will report double as having a size of 4 bytes. You can check the limits.h and float.h header files for more detailed information on type limits. (The next chapter discusses these two files further.)

Incidentally, notice in the last line how the printf() statement is spread over two lines. You can do this as long as the break does not occur in the quoted section or in the middle of a word.

Using Data Types

When you develop a program, note the variables you need and which type they should be. Most likely, you can use int or possibly float for the numbers and char for the characters. Declare them at the beginning of the function that uses them. Choose a name for the variable that suggests its meaning. When you initialize a variable, match the constant type to the variable type. Here’s an example:

int apples = 3; /* RIGHT */
int oranges = 3.0; /* POOR FORM */

C is more forgiving about type mismatches than, say, Pascal. C compilers allow the second initialization, but they might complain, particularly if you have activated a higher warning level. It is best not to develop sloppy habits.

When you initialize a variable of one numeric type to a value of a different type, C converts the value to match the variable. This means you may lose some data. For example, consider the following initializations:

int cost = 12.99; /* initializing an int to a double */
float pi = 3.1415926536; /* initializing a float to a double */

The first declaration assigns 12 to cost; when converting floating-point values to integers, C simply throws away the decimal part (truncation) instead of rounding. The second declaration loses some precision, because a float is guaranteed to represent only the first six digits accurately. Compilers may issue a warning (but don’t have to) if you make such initializations. You might have run into this when compiling Listing 3.1.

Many programmers and organizations have systematic conventions for assigning variable names in which the name indicates the type of variable. For example, you could use an i_ prefix to indicate type int and us_ to indicate unsigned short, so i_smart would be instantly recognizable as a type int variable and us_verysmart would be an unsigned short variable.

Arguments and Pitfalls

It’s worth repeating and amplifying a caution made earlier in this chapter about using printf(). The items of information passed to a function, as you may recall, are termed arguments. For instance, the function call printf("Hello, pal.") has one argument: "Hello, pal.". A series of characters in quotes, such as "Hello, pal.", is called a string. We’ll discuss strings in Chapter 4. For now, the important point is that one string, even one containing several words and punctuation marks, counts as one argument.

Similarly, the function call scanf("%d", &weight) has two arguments: "%d” and &weight. C uses commas to separate arguments to a function. The printf() and scanf() functions are unusual in that they aren’t limited to a particular number of arguments. For example, we’ve used calls to printf() with one, two, and even three arguments. For a program to work properly, it needs to know how many arguments there are. The printf() and scanf() functions use the first argument to indicate how many additional arguments are coming. The trick is that each format specification in the initial string indicates an additional argument. For instance, the following statement has two format specifiers, %d and %d:

printf("%d cats ate %d cans of tuna\n", cats, cans);

This tells the program to expect two more arguments, and indeed, there are two more—cats and cans.

Your responsibility as a programmer is to make sure that the number of format specifications matches the number of additional arguments and that the specifier type matches the value type. C now has a function-prototyping mechanism that checks whether a function call has the correct number and correct kind of arguments, but it doesn’t work with printf() and scanf() because they take a variable number of arguments. What happens if you don’t live up to the programmer’s burden? Suppose, for example, you write a program like that in Listing 3.9.

Listing 3.9. The badcount.c Program

/* badcount.c -- incorrect argument counts */
#include <stdio.h>
int main(void)
{
 int f = 4;
 int g = 5;
 float h = 5.0f;

 printf("%d\n", f, g); /* too many arguments */
 printf("%d %d\n",f); /* too few arguments */
 printf("%d %f\n", h, g); /* wrong kind of values */

 return 0;
}

Here’s the output from Microsoft Visual C++ 7.1 (Windows XP):

4
4 34603777
0 0.000000

Next, here’s the output from Digital Mars (Windows XP):

4
4 4239476
0 0.000000

And the following is the output from Metrowerks CodeWarrior Development Studio 9 (Macintosh OS X):

4
4 3327456
1075052544 0.000000

Note that using %d to display a float value doesn’t convert the float value to the nearest int; instead, it displays what appears to be garbage. Similarly, using %f to display an int value doesn’t convert an integer value to a floating-point value. Also, the results you get for too few arguments or the wrong kind of argument differ from platform to platform.

None of the compilers we tried raised any objections to this code. Nor were there any complaints when we ran the program. It is true that some compilers might catch this sort of error, but the C standard doesn’t require them to. Therefore, the computer may not catch this kind of error, and because the program may otherwise run correctly, you might not notice the errors, either. If a program doesn’t print the expected number of values or if it prints unexpected values, check to see whether you’ve used the correct number of printf() arguments. (Incidentally, the Unix syntax-checking program lint, which is much pickier than the Unix compiler, does mention erroneous printf() arguments.)

One More Example: Escape Sequences

Let’s run one more printing example, one that makes use of some of C’s special escape sequences for characters. In particular, the program in Listing 3.10 shows how the backspace (\b), tab (\t), and carriage return (\r) work. These concepts date from when computers used teletype machines for output, and they don’t always translate successfully to contemporary graphical interfaces. For example, Listing 3.10 doesn’t work as described on some Macintosh implementations.

Listing 3.10. The escape.c Program

/* escape.c -- uses escape characters */
#include <stdio.h>
int main(void)
{
 float salary;

 printf("\aEnter your desired monthly salary:");/* 1 */
 printf(" $_______\b\b\b\b\b\b\b"); /* 2 */
 scanf("%f", &salary);
 printf("\n\t$%.2f a month is $%.2f a year.", salary,
 salary * 12.0); /* 3 */
 printf("\rGee!\n"); /* 4 */

 return 0;
}

What Happens When the Program Runs

Let’s walk through this program step by step as it would work under an ANSI C implementation. The first printf() statement (the one numbered 1) sounds the alert signal (prompted by the \a) and then prints the following:

Enter your desired monthly salary:

Because there is no \n at the end of the string, the cursor is left positioned after the colon.

The second printf() statement picks up where the first one stops, so after it is finished, the screen looks as follows:

Enter your desired monthly salary: $_______

The space between the colon and the dollar sign is there because the string in the second printf() statement starts with a space. The effect of the seven backspace characters is to move the cursor seven positions to the left. This backs the cursor over the seven underscore characters, placing the cursor directly after the dollar sign. Usually, backspacing does not erase the characters that are backed over, but some implementations may use destructive backspacing, negating the point of this little exercise.

At this point, you type your response, say 2000.00. Now the line looks like this:

Enter your desired monthly salary: $2000.00

The characters you type replace the underscore characters, and when you press Enter (or Return) to enter your response, the cursor moves to the beginning of the next line.

The third printf() statement output begins with \n\t. The newline character moves the cursor to the beginning of the next line. The tab character moves the cursor to the next tab stop on that line, typically, but not necessarily, to column 9. Then the rest of the string is printed. After this statement, the screen looks like this:

Enter your desired monthly salary: $2000.00
 $2000.00 a month is $24000.00 a year.

Because the printf() statement doesn’t use the newline character, the cursor remains just after the final period.

The fourth printf() statement begins with \r. This positions the cursor at the beginning of the current line. Then Gee! is displayed there, and the \n moves the cursor to the next line. Here is the final appearance of the screen:

Enter your desired monthly salary: $2000.00
Gee! $2000.00 a month is $24000.00 a year.

Flushing the Output

When does printf() actually send output to the screen? Initially, printf() statements send output to an intermediate storage area called a buffer. Every now and then, the material in the buffer is sent to the screen. The standard C rules for when output is sent from the buffer to the screen are clear: It is sent when the buffer gets full, when a newline character is encountered, or when there is impending input. (Sending the output from the buffer to the screen or file is called flushing the buffer.) For instance, the first two printf() statements don’t fill the buffer and don’t contain a newline, but they are immediately followed by a scanf() statement asking for input. That forces the printf() output to be sent to the screen.

You may encounter an older implementation for which scanf() doesn’t force a flush, which would result in the program looking for your input without having yet displayed the prompt onscreen. In that case, you can use a newline character to flush the buffer. The code can be changed to look like this:

printf("Enter your desired monthly salary:\n");
scanf("%f", &salary);

This code works whether or not impending input flushes the buffer. However, it also puts the cursor on the next line, preventing you from entering data on the same line as the prompting string. Another solution is to use the fflush() function described in Chapter 13, “File Input/Output.”

Key Concepts

C has an amazing number of numeric types. This reflects the intent of C to avoid putting obstacles in the path of the programmer. Instead of mandating, say, that one kind of integer is enough, C tries to give the programmer the options of choosing a particular variety (signed or unsigned) and size that best meet the needs of a particular program.

Floating-point numbers are fundamentally different from integers on a computer. They are stored and processed differently. Two 32-bit memory units could hold identical bit patterns, but if one were interpreted as a float and the other as a long, they would represent totally different and unrelated values. For example, on a PC, if you take the bit pattern that represents the float number 256.0 and interpret it as a long value, you get 113246208. C does allow you to write an expression with mixed data types, but it will make automatic conversions so that the actual calculation uses just one data type.

In computer memory, characters are represented by a numeric code. The ASCII code is the most common in the U.S., but C supports the use of other codes. A character constant is the symbolic representation for the numeric code used on a computer system—it consists of a character enclosed in single quotes, such as ’A’.

Summary

C has a variety of data types. The basic types fall into two categories: integer types and floating-point types. The two distinguishing features for integer types are the amount of storage allotted to a type and whether it is signed or unsigned. The smallest integer type is char, which can be either signed or unsigned, depending on the implementation. You can use signed char and unsigned char to explicitly specify which you want, but that’s usually done when you are using the type to hold small integers rather than character codes. The other integer types include the short, int, long, and long long type. C guarantees that each of these types is at least as large as the preceding type. Each of them is a signed type, but you can use the unsigned keyword to create the corresponding unsigned types: unsigned short, unsigned int, unsigned long, and unsigned long long. Or you can add the signed modifier to explicitly state that the type is signed. Finally, there is the _Bool type, an unsigned type able to hold the values 0 and 1, representing false and true.

The three floating-point types are float, double, and, new with ANSI C, long double. Each is at least as large as the preceding type. Optionally, an implementation can support complex and imaginary types by using the keywords _Complex and _Imaginary in conjunction with the floating-type keywords. For example, there would be a double _Complex type and a float _Imaginary type.

Integers can be expressed in decimal, octal, or hexadecimal form. A leading 0 indicates an octal number, and a leading 0x or 0X indicates a hexadecimal number. For example, 32, 040, and 0x20 are decimal, octal, and hexadecimal representations of the same value. An l or L suffix indicates a long value, and an ll or LL indicates a long long value.

Character constants are represented by placing the character in single quotes: ’Q’, ’8’, and ’$’, for example. C escape sequences, such as ’\n’, represent certain nonprinting characters. You can use the form ’\007’ to represent a character by its ASCII code.

Floating-point numbers can be written with a fixed decimal point, as in 9393.912, or in exponential notation, as in 7.38E10.

The printf() function enables you to print various types of values by using conversion specifiers, which, in their simplest form, consist of a percent sign and a letter indicating the type, as in %d or %f.

Review Questions

You’ll find answers to the review questions in Appendix A, “ Answers to the Review Questions.”

1. Which data type would you use for each of the following kinds of data?

a. The population of East Simpleton

b. The cost of a movie on DVD

c. The most common letter in this chapter

d. The number of times that the letter occurs in this chapter

2. Why would you use a type long variable instead of type int?

3. What portable types might you use to get a 32-bit signed integer, and what would the rationale be for each choice?

4. Identify the type and meaning, if any, of each of the following constants:

a. ’\b’

b. 1066

c. 99.44

d. 0XAA

e. 2.0e30

5. Dottie Cawm has concocted an error-laden program. Help her find the mistakes.

include <stdio.h>
main
(
 float g; h;
 float tax, rate;

 g = e21;
 tax = rate*g;
)

6. Identify the data type (as used in declaration statements) and the printf() format specifier for each of the following constants:

[image: image]

7. Identify the data type (as used in declaration statements) and the printf() format specifier for each of the following constants (assume a 16-bit int):

[image: image]

8. Suppose a program begins with these declarations:

int imate = 2;
long shot = 53456;
char grade = ’A’;
float log = 2.71828;

Fill in the proper type specifiers in the following printf() statements:

printf("The odds against the %__ were %__ to 1.\n", imate, shot);
printf("A score of %__ is not an %__ grade.\n", log, grade);

9. Suppose that ch is a type char variable. Show how to assign the carriage-return character to ch by using an escape sequence, a decimal value, an octal character constant, and a hex character constant. (Assume ASCII code values.)

10. Correct this silly program. (The / in C means division.)

void main(int) / this program is perfect /
{
 cows, legs integer;
 printf("How many cow legs did you count?\n);
 scanf("%c", legs);
 cows = legs / 4;
 printf("That implies there are %f cows.\n", cows)
}

11. Identify what each of the following escape sequences represents:

a. \n

b. \\

c. \"

d. \t

Programming Exercises

1. Find out what your system does with integer overflow, floating-point overflow, and floating-point underflow by using the experimental approach; that is, write programs having these problems.

2. Write a program that asks you to enter an ASCII code value, such as 66, and then prints the character having that ASCII code.

3. Write a program that sounds an alert and then prints the following text:

Startled by the sudden sound, Sally shouted, "By the Great Pumpkin, what was that!"

4. Write a program that reads in a floating-point number and prints it first in decimal-point notation and then in exponential notation. Have the output use the following format (the actual number of digits displayed for the exponent depends on the system):

The input is 21.290000 or 2.129000e+001.

5. There are approximately 3.156 × 107 seconds in a year. Write a program that requests your age in years and then displays the equivalent number of seconds.

6. The mass of a single molecule of water is about 3.0×10-23 grams. A quart of water is about 950 grams. Write a program that requests an amount of water, in quarts, and displays the number of water molecules in that amount.

7. There are 2.54 centimeters to the inch. Write a program that asks you to enter your height in inches and then displays your height in centimeters. Or, if you prefer, ask for the height in centimeters and convert that to inches.

CHAPTER 4

CHARACTER STRINGS AND FORMATTED INPUT/OUTPUT

You will learn about the following in this chapter:

• Function:

strlen()

• Keywords:

const

• Character strings

• How character strings are created and stored

• How you can use scanf() and printf() to read and display character strings

• How to use the strlen() function to measure string lengths

• The C preprocessor’s #define directive and ANSI C’s const modifier for creating symbolic constants

This chapter concentrates on input and output. You’ll add personality to your programs by making them interactive and using character strings. You will also take a more detailed look at those two handy C input/output functions, printf() and scanf(). With these two functions, you have the program tools you need to communicate with users and to format output to meet your needs and tastes. Finally, you’ll take a quick look at an important C facility, the C preprocessor, and learn how to define and use symbolic constants.

Introductory Program

By now, you probably expect a sample program at the beginning of each chapter, so Listing 4.1 is a program that engages in a dialog with the user. To add a little variety, the code uses the new C99 comment style.

Listing 4.1. The talkback.c Program

// talkback.c -- nosy, informative program
#include <stdio.h>
#include <string.h> // for strlen() prototype
#define DENSITY 62.4 // human density in lbs per cu ft
int main()
{
 float weight, volume;
 int size, letters;
 char name[40]; // name is an array of 40 chars

 printf("Hi! What’s your first name?\n");
 scanf("%s", name);
 printf("%s, what’s your weight in pounds?\n", name);
 scanf("%f", &weight);
 size = sizeof name;
 letters = strlen(name);
 volume = weight / DENSITY;
 printf("Well, %s, your volume is %2.2f cubic feet.\n",
 name, volume);
 printf("Also, your first name has %d letters,\n",
 letters);
 printf("and we have %d bytes to store it in.\n", size);

 return 0;
}

Running talkback.c produces results such as the following:

Hi! What’s your first name?
Sharla
Sharla, what’s your weight in pounds?
139
Well, Sharla, your volume is 2.23 cubic feet.
Also, your first name has 6 letters,
and we have 40 bytes to store it in.

Here are the main new features of this program:

• It uses an array to hold a character string. Here, someone’s name is read into the array, which, in this case, is a series of 40 consecutive bytes in memory, each able to hold a single character value.

• It uses the %s conversion specification to handle the input and output of the string. Note that name, unlike weight, does not use the & prefix when used with scanf(). (As you’ll see later, both &weight and name are addresses.)

• It uses the C preprocessor to define the symbolic constant DENSITY to represent the value 62.4.

• It uses the C function strlen() to find the length of a string.

The C approach might seem a little complex compared with the input/output of, say, BASIC. However, this complexity buys a finer control of I/O and greater program efficiency, and it’s surprisingly easy once you get used to it.

Let’s investigate these new ideas.

Character Strings: An Introduction

A character string is a series of one or more characters. Here is an example of a string:

"Zing went the strings of my heart!"

The double quotation marks are not part of the string. They inform the compiler that they enclose a string, just as single quotation marks identify a character.

Type char Arrays and the Null Character

C has no special variable type for strings. Instead, strings are stored in an array of type char. Characters in a string are stored in adjacent memory cells, one character per cell, and an array consists of adjacent memory locations, so placing a string in an array is quite natural (see Figure 4.1).

Figure 4.1.
A string in an array.

[image: A string in an array.]

Note that Figure 4.1 shows the character \0 in the last array position. This is the null character, and C uses it to mark the end of a string. The null character is not the digit zero; it is the nonprinting character whose ASCII code value (or equivalent) is 0. Strings in C are always stored with this terminating null character. The presence of the null character means that the array must have at least one more cell than the number of characters to be stored.

Now just what is an array? You can think of an array as several memory cells in a row. If you prefer more formal language, an array is an ordered sequence of data elements of one type. This example creates an array of 40 memory cells, or elements, each of which can store one char-type value by using this declaration:

char name[40];

The brackets after name identify it as an array. The 40 within the brackets indicates the number of elements in the array. The char identifies the type of each element (see Figure 4.2).

Figure 4.2.
Declaring a variable versus declaring an array.

[image: Declaring a variable versus declaring an array.]

Using a character string is beginning to sound complicated! You have to create an array, place the characters of a string into an array, one by one, and remember to add \0 at the end. Fortunately, the computer can take care of most of the details itself.

Using Strings

Try the program in Listing 4.2 to see how easy it really is to use strings.

Listing 4.2. The praise1.c Program

/* praise1.c -- uses an assortment of strings */
#include <stdio.h>
#define PRAISE "What a super marvelous name!"
int main(void)
{
 char name[40];

 printf("What’s your name?\n");
 scanf("%s", name);
 printf("Hello, %s. %s\n", name, PRAISE);

 return 0;
}

The %s tells printf() to print a string. The %s appears twice because the program prints two strings: the one stored in the name array and the one represented by PRAISE. Running praise1.c should produce an output similar to this:

What’s your name?
Hilary Bubbles
Hello, Hilary. What a super marvelous name!

You do not have to put the null character into the name array yourself. That task is done for you by scanf() when it reads the input. Nor do you include a null character in the character string constant PRAISE. We’ll explain the #define statement soon; for now, simply note that the double quotation marks that enclose the text following PRAISE identify the text as a string. The compiler takes care of putting in the null character.

Note (and this is important) that scanf() just reads Hilary Bubble’s first name. After scanf() starts to read input, it stops reading at the first whitespace (blank, tab, or newline) it encounters. Therefore, it stops scanning for name when it reaches the blank between Hilary and Bubbles. In general, scanf() is used with %s to read only a single word, not a whole phrase, as a string. C has other input-reading functions, such as gets(), for handling general strings. Later chapters will explore string functions more fully.

Strings Versus Characters

The string constant "x" is not the same as the character constant ’x’. One difference is that ’x’ is a basic type (char), but "x" is a derived type, an array of char. A second difference is that "x" really consists of two characters, ’x’ and ’\0’, the null character (see Figure 4.3).

Figure 4.3.
The character ’x’ and the string "x".

[image: image]

The strlen() Function

The previous chapter unleashed the sizeof operator, which gives the size of things in bytes. The strlen() function gives the length of a string in characters. Because it takes one byte to hold one character, you might suppose that both would give the same result when applied to a string, but they don’t. Add a few lines to the example, as shown in Listing 4.3, and see why.

Listing 4.3. The praise2.c Program

/* praise2.c */
#include <stdio.h>
#include <string.h> /* provides strlen() prototype */
#define PRAISE "What a super marvelous name!"
int main(void)
{
 char name[40];

 printf("What’s your name?\n");
 scanf("%s", name);
 printf("Hello, %s. %s\n", name, PRAISE);
 printf("Your name of %d letters occupies %d memory cells.\n",
 strlen(name), sizeof name);
 printf("The phrase of praise has %d letters ",
 strlen(PRAISE));
 printf("and occupies %d memory cells.\n", sizeof PRAISE);

 return 0;
}

If you are using a pre-ANSI C compiler, you might have to remove the following line:

#include <string.h>

The string.h file contains function prototypes for several string-related functions, including strlen(). Chapter 11, “Character Strings and String Functions,” discusses this header file more fully. (By the way, some pre-ANSI Unix systems use strings.h instead of string.h to contain declarations for string functions.)

More generally, C divides the C function library into families of related functions and provides a header file for each family. For example, printf() and scanf() belong to a family of standard input and output functions and use the stdio.h header file. The strlen() function joins several other string-related functions, such as functions to copy strings and to search through strings, in a family served by the string.h header.

Notice that Listing 4.3 uses two methods to handle long printf() statements. The first method spreads one printf() statement over two lines. (You can break a line between arguments to printf() but not in the middle of a string—that is, not between the quotation marks.) The second method uses two printf() statements to print just one line. The newline character (\n) appears only in the second statement. Running the program could produce the following interchange:

What’s your name?
Morgan Buttercup
Hello, Morgan. What a super marvelous name!
Your name of 6 letters occupies 40 memory cells.
The phrase of praise has 28 letters and occupies 29 memory cells.

See what happens. The array name has 40 memory cells, and that is what the sizeof operator reports. Only the first six cells are needed to hold Morgan, however, and that is what strlen() reports. The seventh cell in the array name contains the null character, and its presence tells strlen() when to stop counting. Figure 4.4 illustrates this concept.

Figure 4.4.
The strlen() function knows when to stop.

[image: The strlen() function knows when to stop.]

When you get to PRAISE, you find that strlen() again gives you the exact number of characters (including spaces and punctuation) in the string. The sizeof operator gives you a number one larger because it also counts the invisible null character used to end the string. You didn’t tell the computer how much memory to set aside to store the phrase. It had to count the number of characters between the double quotes itself.

One other point: The preceding chapter used sizeof with parentheses, but this example doesn’t. Whether you use parentheses depends on whether you want the size of a type or the size of a particular quantity. Parentheses are required for types but are optional for particular quantities. That is, you would use sizeof(char) or sizeof(float) but can use sizeof name or sizeof 6.28. However, it is all right to use parentheses in these cases, too, as in sizeof (6.28).

The last example used strlen() and sizeof for the rather trivial purpose of satisfying a user’s potential curiosity. Actually, however, strlen() and sizeof are important programming tools. For example, strlen() is useful in all sorts of character-string programs, as you’ll see in Chapter 11.

Let’s move on to the #define statement.

Constants and the C Preprocessor

Sometimes you need to use a constant in a program. For example, you could give the circumference of a circle as follows:

circumference = 3.14159 * diameter;

Here, the constant 3.14159 represents the world-famous constant pi (п). To use a constant, just type in the actual value, as in the example. However, there are good reasons to use a symbolic constant instead. That is, you could use a statement such as the following and have the computer substitute in the actual value later:

circumference = pi * diameter;

Why is it better to use a symbolic constant? First, a name tells you more than a number does. Compare the following two statements:

owed = 0.015 * housevalue;
owed = taxrate * housevalue;

If you read through a long program, the meaning of the second version is plainer.

Also, suppose you have used a constant in several places, and it becomes necessary to change its value. After all, tax rates do change. Then you only need to alter the definition of the symbolic constant, rather than find and change every occurrence of the constant in the program.

Okay, how do you set up a symbolic constant? One way is to declare a variable and set it equal to the desired constant. You could write this:

float taxrate;
taxrate = 0.015;

This provides a symbolic name, but taxrate is a variable, so your program might change its value accidentally. Fortunately, C has a couple better ideas.

The original better idea is the C preprocessor. In Chapter 2, “Introducing C,” you saw how the preprocessor uses #include to incorporate information from another file. The preprocessor also lets you define constants. Just add a line like the following at the top of the file containing your program:

#define TAXRATE 0.015

When your program is compiled, the value 0.015 will be substituted everywhere you have used TAXRATE. This is called a compile-time substitution. By the time you run the program, all the substitutions have already been made (see Figure 4.5). Such defined constants are often termed manifest constants.

Figure 4.5.
What you type versus what is compiled.

[image: What you type versus what is compiled.]

Note the format. First comes #define. Next comes the symbolic name (TAXRATE) for the constant and then the value (0.015) for the constant. (Note that this construction does not use the = sign.) So the general form is as follows:

#define NAME value

You would substitute the symbolic name of your choice for NAME and the appropriate value for value. No semicolon is used because this is a substitution mechanism, not a C statement. Why is TAXRATE capitalized? It is a sensible C tradition to type constants in uppercase. Then, when you encounter one in the depths of a program, you know immediately that it is a constant, not a variable. Capitalizing constants is just another technique to make programs more readable. Your programs will still work if you don’t capitalize the constants, but capitalizing them is a good habit to cultivate.

Other, less common, naming conventions include prefixing a name with a c_ or k_ to indicate a constant, producing names such as c_level or k_line.

The names you use for symbolic constants must satisfy the same rules that the names of variables do. You can use uppercase and lowercase letters, digits, and the underscore character. The first character cannot be a digit. Listing 4.4 shows a simple example.

Listing 4.4. The pizza.c Program

/* pizza.c -- uses defined constants in a pizza context */
#include <stdio.h>
#define PI 3.14159
int main(void)
{
 float area, circum, radius;

 printf("What is the radius of your pizza?\n");
 scanf("%f", &radius);
 area = PI * radius * radius;
 circum = 2.0 * PI *radius;
 printf("Your basic pizza parameters are as follows:\n");
 printf("circumference = %1.2f, area = %1.2f\n", circum,
 area);
 return 0;
}

The %1.2f in the printf() statement causes the printout to be rounded to two decimal places. Of course, this program may not reflect your major pizza concerns, but it does fill a small niche in the world of pizza programs. Here is a sample run:

What is the radius of your pizza?
6.0
Your basic pizza parameters are as follows:
circumference = 37.70, area = 113.10

The #define statement can be used for character and string constants, too. Just use single quotes for the former and double quotes for the latter. The following examples are valid:

#define BEEP ’\a’
#define TEE ’T’
#define ESC ’\033’
#define OOPS "Now you have done it!"

Remember that everything following the symbolic name is substituted for it. Don’t make this common error:

/* the following is wrong */
#define TOES = 20

If you do this, TOES is replaced by = 20, not just 20. In that case, a statement such as

digits = fingers + TOES;

is converted to the following misrepresentation:

digits = fingers + = 20;

The const Modifier

C90 added a second way to create symbolic constants—using the const keyword to convert a declaration for a variable into a declaration for a constant:

const int MONTHS = 12; // MONTHS a symbolic constant for 12

This makes MONTHS into a read-only value. That is, you can display MONTHS and use it in calculations, but you cannot alter the value of MONTHS. This newer approach is more flexible than using #define; Chapter 12, “Storage Classes, Linkage, and Memory Management,” discusses this and other uses of const.

Actually, C has yet a third way to create symbolic constants, and that is the enum facility discussed in Chapter 14, “Structures and Other Data Forms.”

Manifest Constants on the Job

The C header files limits.h and float.h supply detailed information about the size limits of integer types and floating types, respectively. Each file defines a series of manifest constants that apply to your implementation. For instance, the limits.h file contains lines similar to the following:

#define INT_MAX +32767
#define INT_MIN -32768

These constants represent the largest and smallest possible values for the int type. If your system uses a 32-bit int, the file would provide different values for these symbolic constants. The file defines minimum and maximum values for all the integer types. If you include the limits.h file, you can use code such as the following:

printf("Maximum int value on this system = %d\n", INT_MAX);

If your system uses a 4-byte int, the limits.h file that comes with that system would provide definitions for INT_MAX and INT_MIN that match the limits of a 4-byte int. Table 4.1 lists some of the constants found in limits.h.

Table 4.1. Some Symbolic Constants from limits.h

[image: image]

Similarly, the float.h file defines constants such as FLT_DIG and DBL_DIG, which represent the number of significant figures supported by the float type and the double type. Table 4.2 lists some of the constants found in float.h. (You can use a text editor to open and inspect the float.h header file your system uses.) This example relates to the float type. Equivalent constants are defined for types double and long double, with DBL and LDBL substituted for FLT in the name. (The table assumes the system represents floating-point numbers in terms of powers of 2.)

Table 4.2. Some Symbolic Constants from float.h

[image: image]

Listing 4.5 illustrates using data from float.h and limits.h. (Note that many current compilers do not yet fully support the C99 standard and may not accept the LLONG_MIN identifier.)

Listing 4.5. The defines.c Program

// defines.c -- uses defined constants from limit.h and float.
#include <stdio.h>
#include <limits.h> // integer limits
#include <float.h> // floating-point limits
int main(void)
{
 printf("Some number limits for this system:\n");
 printf("Biggest int: %d\n", INT_MAX);
 printf("Smallest long long: %lld\n", LLONG_MIN);
 printf("One byte = %d bits on this system.\n", CHAR_BIT);
 printf("Largest double: %e\n", DBL_MAX);
 printf("Smallest normal float: %e\n", FLT_MIN);
 printf("float precision = %d digits\n", FLT_DIG);
 printf("float epsilon = %e\n", FLT_EPSILON);

 return 0;
}

Here is the sample output:

Some number limits for this system:
Biggest int: 2147483647
Smallest long long: -9223372036854775808
One byte = 8 bits on this system.
Largest double: 1.797693e+308
Smallest normal float: 1.175494e-38
float precision = 6 digits
float epsilon = 1.192093e-07

The C preprocessor is a useful, helpful tool, so take advantage of it when you can. We’ll show you more applications as you move along through this book.

Exploring and Exploiting printf() and scanf()

The functions printf() and scanf() enable you to communicate with a program. They are called input/output functions, or I/O functions for short. They are not the only I/O functions you can use with C, but they are the most versatile. Historically, these functions, like all other functions in the C library, were not part of the definition of C. C originally left the implementation of I/O up to the compiler writers; this made it possible to better match I/O to specific machines. In the interests of compatibility, various implementations all came with versions of scanf() and printf(). However, there were occasional discrepancies between implementations. The C90 and C99 standards describe standard versions of these functions, and we’ll follow that standard.

Although printf() is an output function and scanf() is an input function, both work much the same, each using a control string and a list of arguments. We will show you how these work, first with printf() and then with scanf().

The printf() Function

The instructions you give printf() when you ask it to print a variable depend on the variable type. For example, we have used the %d notation when printing an integer and the %c notation when printing a character. These notations are called conversion specifications because they specify how the data is to be converted into displayable form. We’ll list the conversion specifications that the ANSI C standard provides for printf() and then show how to use the more common ones. Table 4.3 presents the conversion specifiers and the type of output they cause to be printed.

Table 4.3. Conversion Specifiers and the Resulting Printed Output

[image: image]

[image: image]

Using printf()

Listing 4.6 contains a program that uses some of the conversion specifications.

Listing 4.6. The printout.c Program

/* printout.c -- uses conversion specifiers */
#include <stdio.h>
#define PI 3.141593
int main(void)
{
 int number = 5;
 float espresso = 13.5;
 int cost = 3100;

 printf("The %d CEOs drank %f cups of espresso.\n", number,
 espresso);
 printf("The value of pi is %f.\n", PI);
 printf("Farewell! thou art too dear for my possessing,\n");
 printf("%c%d\n", ’$’, 2 * cost);

 return 0;
}

The output, of course, is

The 5 CEOs drank 13.500000 cups of espresso.
The value of pi is 3.141593.
Farewell! thou art too dear for my possessing,
$6200

This is the format for using printf():

printf(Control-string, item1, item2,...);

Item1, item2, and so on, are the items to be printed. They can be variables or constants, or even expressions that are evaluated first before the value is printed. Control-string is a character string describing how the items are to be printed. As mentioned in Chapter 3, “Data and C,” the control string should contain a conversion specifier for each item to be printed. For example, consider the following statement:

printf("The %d CEOs drank %f cups of espresso.\n", number,
 espresso);

Control-string is the phrase enclosed in double quotes. It contains two conversion specifiers corresponding to number and espresso—the two items to be displayed. Figure 4.6 shows another example of a printf()statement.

Figure 4.6.
Arguments for printf().

[image: Arguments for printf().]

Here is another line from the example:

printf("The value of pi is %f.\n", PI);

This time, the list of items has just one member—the symbolic constant PI.

As you can see in Figure 4.7, Control-string contains two distinct forms of information:

• Characters that are actually printed

• Conversion specifications

Figure 4.7.
Anatomy of a control string.

[image: Anatomy of a control string.]

[image: Caution]

Caution

Don’t forget to use one conversion specification for each item in the list following Control-string. Woe unto you should you forget this basic requirement! Don’t do the following:

printf("The score was Squids %d, Slugs %d.\n", score1);

Here, there is no value for the second %d. The result of this faux pas depends on your system, but at best you will get nonsense.

If you want to print only a phrase, you don’t need any conversion specifications. If you just want to print data, you can dispense with the running commentary. Each of the following statements from Listing 4.6 is quite acceptable:

printf("Farewell! thou art too dear for my possessing,\n");
printf("%c%d\n", ’$’, 2 * cost);

In the second statement, note that the first item on the print list was a character constant rather than a variable and that the second item is a multiplication. This illustrates that printf() uses values, be they variables, constants, or expressions.

Because the printf() function uses the % symbol to identify the conversion specifications, there is a slight problem if you want to print the % sign itself. If you simply use a lone % sign, the compiler thinks you have bungled a conversion specification. The way out is simple—just use two % symbols, as shown here:

pc = 2*6;
printf("Only %d%% of Sally’s gribbles were edible.\n", pc);

The following output would result:

Only 12% of Sally’s gribbles were edible.

Conversion Specification Modifiers for printf()

You can modify a basic conversion specification by inserting modifiers between the % and the defining conversion character. Tables 4.4 and 4.5 list the characters you can place there legally. If you use more than one modifier, they should be in the same order as they appear in Table 4.4. Not all combinations are possible. The table reflects the C99 additions; your implementation may not yet support all the options shown here.

Table 4.4. The printf() Modifiers

[image: image]

[image: image]

Table 4.5. The printf() Flags

[image: image]

[image: Conversion of float Arguments]

Conversion of float Arguments

There are conversion specifiers to print the floating types double and long double. However, there is no specifier for float. The reason is that float values were automatically converted to type double before being used in an expression or as an argument under K&R C. ANSI C, in general, does not automatically convert float to double. To protect the enormous number of existing programs that assume float arguments are converted to double, however, all float arguments to printf()—as well as to any other C function not using an explicit prototype—are still automatically converted to double. Therefore, under either K&R C or ANSI C, no special conversion specifier is needed for displaying type float.

Examples Using Modifiers and Flags

Let’s put these modifiers to work, beginning with a look at the effect of the field width modifier on printing an integer. Consider the program in Listing 4.7.

Listing 4.7. The width.c Program

/* width.c -- field widths */
#include <stdio.h>
#define PAGES 931
int main(void)
{
 printf("*%d*\n", PAGES);
 printf("*%2d*\n", PAGES);
 printf("*%10d*\n", PAGES);
 printf("*%-10d*\n", PAGES);

 return 0;
}

Listing 4.7 prints the same quantity four times using four different conversion specifications. It uses an asterisk (*) to show you where each field begins and ends. The output looks as follows:

931
931
* 931*
*931 *

The first conversion specification is %d with no modifiers. It produces a field with the same width as the integer being printed. This is the default option; that is, it’s what’s printed if you don’t give further instructions. The second conversion specification is %2d. This should produce a field width of 2, but because the integer is three digits long, the field is expanded automatically to fit the number. The next conversion specification is %10d. This produces a field 10 spaces wide, and, indeed, there are seven blanks and three digits between the asterisks, with the number tucked into the right end of the field. The final specification is %-10d. It also produces a field 10 spaces wide, and the - puts the number at the left end, just as advertised. After you get used to it, this system is easy to use and gives you nice control over the appearance of your output. Try altering the value for PAGES to see how different numbers of digits are printed.

Now look at some floating-point formats. Enter, compile, and run the program in Listing 4.8.

Listing 4.8. The floats.c Program

// floats.c -- some floating-point combinations
#include <stdio.h>

int main(void)
{
 const double RENT = 3852.99; // const-style constant

 printf("*%f*\n", RENT);
 printf("*%e*\n", RENT);
 printf("*%4.2f*\n", RENT);
 printf("*%3.1f*\n", RENT);
 printf("*%10.3f*\n", RENT);
 printf("*%10.3e*\n", RENT);
 printf("*%+4.2f*\n", RENT);
 printf("*%010.2f*\n", RENT);

 return 0;
}

This time, the program uses the keyword const to create a symbolic constant. The output is

3852.990000
3.852990e+03
3852.99
3853.0
* 3852.990*
* 3.853e+03*
+3852.99
0003852.99

The example begins with the default version, %f. In this case, there are two defaults—the field width and the number of digits to the right of the decimal. The second default is six digits, and the field width is whatever it takes to hold the number.

Next is the default for %e. It prints one digit to the left of the decimal point and six places to the right. We’re getting a lot of digits! The cure is to specify the number of decimal places to the right of the decimal, and the next four examples in this segment do that. Notice how the fourth and the sixth examples cause the output to be rounded off.

Finally, the + flag causes the result to be printed with its algebraic sign, which is a plus sign in this case, and the 0 flag produces leading zeros to pad the result to the full field width. Note that in the specifier %010, the first 0 is a flag, and the remaining digits (10) specify the field width.

You can modify the RENT value to see how variously sized values are printed. Listing 4.9 demonstrates a few more combinations.

Listing 4.9. The flags.c Program

/* flags.c -- illustrates some formatting flags */
#include <stdio.h>
int main(void)
{
 printf("%x %X %#x\n", 31, 31, 31);
 printf("**%d**% d**% d**\n", 42, 42, -42);
 printf("**%5d**%5.3d**%05d**%05.3d**\n", 6, 6, 6, 6);

 return 0;
}

The output looks as follows:

1f 1F 0x1f
42 42**-42**
** 6** 006**00006** 006**

First, 1f is the hex equivalent of 31. The x specifier yields 1f, and the X specifier yields 1F. Using the # flag provides an initial 0x.

The second line of output illustrates how using a space in the specifier produces a leading space for positive values, but not for negative values. This can produce a pleasing output because positive and negative values with the same number of significant digits are printed with the same field widths.

The third line illustrates how using a precision specifier (%5.3d) with an integer form produces enough leading zeros to pad the number to the minimum value of digits (three, in this case). Using the 0 flag, however, pads the number with enough leading zeros to fill the whole field width. Finally, if you provide both the 0 flag and the precision specifier, the 0 flag is ignored.

Now let’s examine some of the string options. Consider the example in Listing 4.10.

Listing 4.10. The strings.c Program

/* strings.c -- string formatting */
#include <stdio.h>
#define BLURB "Authentic imitation!"
int main(void)
{
 printf("/%2s/\n", BLURB);
 printf("/%24s/\n", BLURB);
 printf("/%24.5s/\n", BLURB);
 printf("/%-24.5s/\n", BLURB);

 return 0;
}

Here is the output:

/Authentic imitation!/
/ Authentic imitation!/
/ Authe/
/Authe /

Notice how the field is expanded to contain all the specified characters. Also notice how the precision specification limits the number of characters printed. The .5 in the format specifier tells printf() to print just five characters. Again, the - modifier left-justifies the text.

Using What You Just Learned

Okay, you’ve seen some examples. Now how would you set up a statement to print something having the following form?

The NAME family just may be $XXX.XX dollars richer!

Here, NAME and XXX.XX represent values that will be supplied by variables in the program—say, name[40] and cash.

One solution is

printf("The %s family just may be $%.2f richer!\n",name,cash);

What Does a Conversion Specification Convert?

Let’s take a closer look at what a conversion specification converts. It converts a value stored in the computer in some binary format to a series of characters (a string) to be displayed. For example, the number 76 may be stored internally as binary 01001100. The %d conversion specifier converts this to the characters 7 and 6, displaying 76. The %x conversion converts the same value (01001100) to the hexadecimal representation 4c. The %c converts the same value to the character representation L.

The term conversion is probably somewhat misleading because it might suggest that the original value is replaced with a converted value. Conversion specifications are really translation specifications; %d means “translate the given value to a decimal integer text representation and print the representation.”

Mismatched Conversions

Naturally, you should match the conversion specification to the type of value being printed. Often, you have choices. For instance, if you want to print a type int value, you can use %d or %x or %o. All these specifiers assume that you are printing a type int value; they merely provide different representations of the value. Similarly, you can use %f, %e, or %g to represent a type double value.

What if you mismatch the conversion specification to the type? You’ve seen in the preceding chapter that mismatches can cause problems. This is a very important point to keep in mind, so Listing 4.11 shows some more examples of mismatches within the integer family.

Listing 4.11. The intconv.c Program

/* intconv.c -- some mismatched integer conversions */
#include <stdio.h>
#define PAGES 336
#define WORDS 65618
int main(void)
{
 short num = PAGES;
 short mnum = -PAGES;

 printf("num as short and unsigned short: %hd %hu\n", num,
 num);
 printf("-num as short and unsigned short: %hd %hu\n", mnum,
 mnum);
 printf("num as int and char: %d %c\n", num, num);
 printf("WORDS as int, short, and char: %d %hd %c\n",
 WORDS, WORDS, WORDS);
 return 0;
}

Our system produces the following results:

num as short and unsigned short: 336 336
-num as short and unsigned short: -336 65200
num as int and char: 336 P
WORDS as int, short, and char: 65618 82 R

Looking at the first line, you can see that both %hd and %hu produce 336 as output for the variable num; no problem there. The %u (unsigned) version of mnum came out as 65200, however, not as the 336 you might have expected. This results from the way that signed short int values are represented on our reference system. First, they are 2 bytes in size. Second, the system uses a method called the two’s complement to represent signed integers. In this method, the numbers 0 to 32767 represent themselves, and the numbers 32768 to 65535 represent negative numbers, with 65535 being –1, 65534 being –2, and so forth. Therefore, –336 is represented by 65536 - 336, or 65200. So 65200 represents –336 when interpreted as a signed int and represents 65200 when interpreted as an unsigned int. Be wary! One number can be interpreted as two different values. Not all systems use this method to represent negative integers. Nonetheless, there is a moral: Don’t expect a %u conversion to simply strip the sign from a number.

The second line shows what happens if you try to convert a value greater than 255 to a character. On this system, a short int is 2 bytes and a char is 1 byte. When printf() prints 336 using %c, it looks at only 1 byte out of the 2 used to hold 336. This truncation (see Figure 4.8) amounts to dividing the integer by 256 and keeping just the remainder. In this case, the remainder is 80, which is the ASCII value for the character P. More technically, you can say that the number is interpreted modulo 256, which means using the remainder when the number is divided by 256.

Figure 4.8.
Reading 336 as a character.

[image: Reading 336 as a character.]

Finally, we tried printing an integer (65618) larger than the maximum short int (32767) allowed on our system. Again, the computer does its modulo thing. The number 65618, because of its size, is stored as a 4-byte int value on our system. When we print it using the %hd specification, printf() uses only the last 2 bytes. This corresponds to using the remainder after dividing by 65536. In this case, the remainder is 82. A remainder between 32767 and 65536 would be printed as a negative number because of the way negative numbers are stored. Systems with different integer sizes would have the same general behavior, but with different numerical values.

When you start mixing integer and floating types, the results are more bizarre. Consider, for example, Listing 4.12.

Listing 4.12. he floatcnv.c Program

/* floatcnv.c -- mismatched floating-point conversions */
#include <stdio.h>
int main(void)
{
 float n1 = 3.0;
 double n2 = 3.0;
 long n3 = 2000000000;
 long n4 = 1234567890;

 printf("%.1e %.1e %.1e %.1e\n", n1, n2, n3, n4);
 printf("%ld %ld\n", n3, n4);
 printf("%ld %ld %ld %ld\n", n1, n2, n3, n4);

 return 0;
}

On our system, Listing 4.12 produces the following output:

3.0e+00 3.0e+00 3.1e+46 1.7e+266
2000000000 1234567890
0 1074266112 0 1074266112

The first line of output shows that using a %e specifier does not convert an integer to a floating-point number. Consider, for example, what happens when you try to print n3 (type long) using the %e specifier. First, the %e specifier causes printf() to expect a type double value, which is an 8-byte value on this system. When printf() looks at n3, which is a 4-byte value on this system, it also looks at the adjacent 4 bytes. Therefore, it looks at an 8-byte unit in which the actual n3 is embedded. Second, it interprets the bits in this unit as a floating-point number. Some bits, for example, would be interpreted as an exponent. So even if n3 had the correct number of bits, they would be interpreted differently under %e than under %ld. The net result is nonsense.

The first line also illustrates what we mentioned earlier—that float is converted to double when used as arguments to printf(). On this system, float is 4 bytes, but n1 was expanded to 8 bytes so that printf() would display it correctly.

The second line of output shows that printf() can print n3 and n4 correctly if the correct specifier is used.

The third line of output shows that even the correct specifier can produce phony results if the printf() statement has mismatches elsewhere. As you might expect, trying to print a floating-point value with an %ld specifier fails, but here, trying to print a type long using %ld fails! The problem lies in how C passes information to a function. The exact details of this failure are implementation dependent, but the sidebar “Passing Arguments” discusses a representative system.

[image: Passing Arguments]

Passing Arguments

The mechanics of argument passing depend on the implementation. This is how argument passing works on our system. The function call looks as follows:

printf("%ld %ld %ld %ld\n", n1, n2, n3, n4);

This call tells the computer to hand over the values of the variables n1, n2, n3, and n4 to the computer. It does so by placing them in an area of memory called the stack. When the computer puts these values on the stack, it is guided by the types of the variables, not by the conversion specifiers. Consequently, for n1, it places 8 bytes on the stack (float is converted to double). Similarly, it places 8 more bytes for n2, followed by 4 bytes each for n3 and n4. Then control shifts to the printf() function. This function reads the values off the stack but, when it does so, it reads them according to the conversion specifiers. The %ld specifier indicates that printf() should read 4 bytes, so printf() reads the first 4 bytes in the stack as its first value. This is just the first half of n1, and it is interpreted as a long integer. The next %ld specifier reads 4 more bytes; this is just the second half of n1 and is interpreted as a second long integer (see Figure 4.9). Similarly, the third and fourth instances of %ld cause the first and second halves of n2 to be read and to be interpreted as two more long integers, so although we have the correct specifiers for n3 and n4, printf() is reading the wrong bytes.

Figure 4.9.
Passing arguments.

[image: Passing arguments.]

The Return Value of printf()

As mentioned in Chapter 2, a C function generally has a return value. This is a value that the function computes and returns to the calling program. For example, the C library contains a sqrt() function that takes a number as an argument and returns its square root. The return value can be assigned to a variable, can be used in a computation, can be passed as an argument—in short, it can be used like any other value. The printf() function also has a return value; it returns the number of characters it printed. If there is an output error, printf() returns a negative value. (Some ancient versions of printf() have different return values.)

The return value for printf() is incidental to its main purpose of printing output, and it usually isn’t used. One reason you might use the return value is to check for output errors. This is more commonly done when writing to a file rather than to a screen. If a full floppy disk prevented writing from taking place, you could then have the program take some appropriate action, such as beeping the terminal for 30 seconds. However, you have to know about the if statement before doing that sort of thing. The simple example in Listing 4.13 shows how you can determine the return value.

Listing 4.13. The prntval.c Program

/* prntval.c -- finding printf()’s return value */
#include <stdio.h>
int main(void)
{
 int bph2o = 212;
 int rv;

 rv = printf("%d F is water’s boiling point.\n", bph2o);
 printf("The printf() function printed %d characters.\n",
 rv);
 return 0;
}

The output is as follows:

212 F is water’s boiling point.
The printf() function printed 32 characters.

First, the program used the form rv = printf(...); to assign the return value to rv. This statement therefore performs two tasks: printing information and assigning a value to a variable. Second, note that the count includes all the printed characters, including the spaces and the unseen newline character.

Printing Long Strings

Occasionally, printf() statements are too long to put on one line. Because C ignores whitespace (spaces, tabs, newlines) except when used to separate elements, you can spread a statement over several lines, as long as you put your line breaks between elements. For example, Listing 4.13 used two lines for a statement.

printf("The printf() function printed %d characters.\n",
 rv);

The line is broken between the comma element and rv. To show a reader that the line was being continued, the example indents the rv. C ignores the extra spaces.

However, you cannot break a quoted string in the middle. Suppose you try something like the following:

printf("The printf() function printed %d
 characters.\n", rv);

C will complain that you have an illegal character in a string constant. You can use \n in a string to symbolize the newline character, but you can’t have the actual newline character generated by the Enter (or Return) key in a string.

If you do have to split a string, you have three choices, as shown in Listing 4.14.

Listing 4.14. The longstrg.c Program

/* longstrg.c –– printing long strings */
#include <stdio.h>
int main(void)
{
 printf("Here’s one way to print a ");
 printf("long string.\n");
 printf("Here’s another way to print a \
long string.\n");
 printf("Here’s the newest way to print a "
 "long string.\n"); /* ANSI C */
 return 0;
}

Here is the output:

Here’s one way to print a long string.
Here’s another way to print a long string.
Here’s the newest way to print a long string.

Method 1 is to use more than one printf() statement. Because the first string printed doesn’t end with a \n character, the second string continues where the first ends.

Method 2 is to terminate the end of the first line with a backslash/return combination. This causes the text onscreen to start a new line without a newline character being included in the string. The effect is to continue the string over to the next line. However, the next line has to start at the far left, as shown. If you indent that line, say, five spaces, those five spaces become part of the string.

Method 3, new with ANSI C, is string concatenation. If you follow one quoted string constant with another, separated only by whitespace, C treats the combination as a single string, so the following three forms are equivalent:

printf("Hello, young lovers, wherever you are.");
printf("Hello, young " "lovers" ", wherever you are.");
printf("Hello, young lovers"
 ", wherever you are.");

With all these methods, you should include any required spaces in the strings: "young" "lovers" becomes "younglovers", but the combination "young " "lovers" is "young lovers".

Using scanf()

Now let’s go from output to input and examine the scanf() function. The C library contains several input functions, and scanf() is the most general of them, because it can read a variety of formats. Of course, input from the keyboard is text because the keys generate text characters: letters, digits, and punctuation. When you want to enter, say, the integer 2004, you type the characters 2 0 0 and 4. If you want to store that as a numerical value rather than as a string, your program has to convert the string character-by-character to a numerical value; that is what scanf() does! It converts string input into various forms: integers, floating-point numbers, characters, and C strings. It is the inverse of printf(), which converts integers, floating-point numbers, characters, and C strings to text that is to be displayed onscreen.

Like printf(), scanf() uses a control string followed by a list of arguments. The control string indicates the destination data types for the input stream of characters. The chief difference is in the argument list. The printf() function uses variable names, constants, and expressions. The scanf() function uses pointers to variables. Fortunately, you don’t have to know anything about pointers to use the function. Just remember these simple rules:

• If you use scanf() to read a value for one of the basic variable types we’ve discussed, precede the variable name with an &.

• If you use scanf() to read a string into a character array, don’t use an &.

Listing 4.15 presents a short program illustrating these rules.

Listing 4.15. The input.c Program

// input.c -- when to use &
#include <stdio.h>
int main(void)
{
 int age; // variable
 float assets; // variable
 char pet[30]; // string

 printf("Enter your age, assets, and favorite pet.\n");
 scanf("%d %f", &age, &assets); // use the & here
 scanf("%s", pet); // no & for char array
 printf("%d $%.2f %s\n", age, assets, pet);

 return 0;
}

Here is a sample exchange:

Enter your age, assets, and favorite pet.
38
92360.88 llama
38 $92360.88 llama

The scanf() function uses whitespace (newlines, tabs, and spaces) to decide how to divide the input into separate fields. It matches up consecutive conversion specifications to consecutive fields, skipping over the whitespace in between. Note how the input is spread over two lines. You could just as well have used one or five lines, as long as you had at least one newline, space, or tab between each entry. The only exception to this is the %c specification, which reads the very next character, even if that character is whitespace. We’ll return to this topic in a moment.

The scanf() function uses pretty much the same set of conversion-specification characters as printf() does. The main difference is that printf() uses %f, %e, %E, %g, and %G for both type float and type double, whereas scanf() uses them just for type float, requiring the l modifier for double. Table 4.6 lists the main conversion specifiers as described in the C99 standard.

Table 4.6. ANSI C Conversion Specifiers for scanf()

[image: image]

You also can use modifiers in the conversion specifiers shown in Table 4.6. The modifiers go between the percent sign and the conversion letter. If you use more than one in a specifier, they should appear in the same order as shown in Table 4.7.

Table 4.7. Conversion Modifiers for scanf()

[image: image]

As you can see, using conversion specifiers can be involved, and these tables have omitted some of the features. The omitted features primarily facilitate reading selected data from highly formatted sources, such as punched cards or other data records. Because this book uses scanf() primarily as a convenient means for feeding data to a program interactively, it won’t discuss the more esoteric features.

The scanf() View of Input

Let’s look in more detail at how scanf() reads input. Suppose you use a %d specifier to read an integer. The scanf() function begins reading input a character at a time. It skips over whitespace characters (spaces, tabs, and newlines) until it finds a non-whitespace character. Because it is attempting to read an integer, scanf() expects to find a digit character or, perhaps, a sign (+ or -). If it finds a digit or a sign, it saves the sign and then reads the next character. If that is a digit, it saves the digit and reads the next character. scanf() continues reading and saving characters until it encounters a nondigit. It then concludes that it has reached the end of the integer. scanf() places the nondigit back in the input. This means that the next time the program goes to read input, it starts at the previously rejected, nondigit character. Finally, scanf() computes the numerical value corresponding to the digits it read and places that value in the specified variable.

If you use a field width, scanf() halts at the field end or at the first whitespace, whichever comes first.

What if the first non-whitespace character is, say, an A instead of a digit? Then scanf() stops right there and places the A (or whatever) back in the input. No value is assigned to the specified variable, and the next time the program reads input, it starts at the A again. If your program has only %d specifiers, scanf() will never get past that A. Also, if you use a scanf() statement with several specifiers, ANSI C requires the function to stop reading input at the first failure.

Reading input using the other numeric specifiers works much the same as the %d case. The main difference is that scanf() may recognize more characters as being part of the number. For instance, the %x specifier requires that scanf() recognize the hexadecimal digits a–f and A–F. Floating-point specifiers require scanf() to recognize decimal points, e-notation, and the new p-notation.

If you use an %s specifier, any character other than whitespace is acceptable, so scanf() skips whitespace to the first non-whitespace character and then saves up non-whitespace characters until hitting whitespace again. This means that %s results in scanf() reading a single word—that is, a string with no whitespace in it. If you use a field width, scanf() stops at the end of the field or at the first whitespace. You can’t use the field width to make scanf() read more than one word for one %s specifier. A final point: When scanf() places the string in the designated array, it adds the terminating ’\0’ to make the array contents a C string.

If you use a %c specifier, all input characters are fair game. If the next input character is a space or a newline, a space or a newline is assigned to the indicated variable; whitespace is not skipped.

Actually, scanf() is not the most commonly used input function in C. It is featured here because of its versatility (it can read all the different data types), but C has several other input functions, such as getchar() and gets(), that are better suited for specific tasks, such as reading single characters or reading strings containing spaces. We will cover some of these functions in Chapter 7, “C Control Statements: Branching and Jumps,” Chapter 11, “Character Strings and String Functions,” and Chapter 13, “File Input/Output.” In the meantime, if you need an integer or decimal fraction or a character or a string, you can use scanf().

Regular Characters in the Format String

The scanf() function does enable you to place ordinary characters in the format string. Ordinary characters other than the space character must be matched exactly by the input string. For example, suppose you accidentally place a comma between two specifiers:

scanf("%d,%d", &n, &m);

The scanf() function interprets this to mean that you will type a number, type a comma, and then type a second number. That is, you would have to enter two integers as follows:

88,121

Because the comma comes immediately after the %d in the format string, you would have to type it immediately after the 88. However, because scanf() skips over whitespace preceding an integer, you could type a space or newline after the comma when entering the input. That is,

88, 121

and

88,
121

also would be accepted.

A space in the format string means to skip over any whitespace before the next input item. For instance, the statement

scanf("%d ,%d", &n, &m);

would accept any of the following input lines:

88,121
88 ,121
88 , 121

Note that the concept of “any whitespace” includes the special cases of no whitespace.

Except for %c, the specifiers automatically skip over whitespace preceding an input value, so scanf("%d%d", &n, &m) behaves the same as scanf("%d %d", &n, &m). For %c, adding a space character to the format string does make a difference. For example, if %c is preceded by a space in the format string, scanf() does skip to the first non-whitespace character. That is, the command scanf("%c", &ch) reads the first character encountered in input, and scanf(" %c", &ch) reads the first non-whitespace character encountered.

The scanf() Return Value

The scanf() function returns the number of items that it successfully reads. If it reads no items, which happens if you type a nonnumeric string when it expects a number, scanf() returns the value 0. It returns EOF when it detects the condition known as “end of file.” (EOF is a special value defined in the stdio.h file. Typically, a #define directive gives EOF the value –1.) We’ll discuss end of file in Chapter 6, “C Control Statements: Looping,” and make use of scanf()’s return value later in the book. After you learn about if statements and while statements, you can use the scanf() return value to detect and handle mismatched input.

The * Modifier with printf() and scanf()

Both printf() and scanf() can use the * modifier to modify the meaning of a specifier, but they do so in dissimilar fashions. First, let’s see what the * modifier can do for printf().

Suppose that you don’t want to commit yourself to a field width in advance but rather you want the program to specify it. You can do this by using * instead of a number for the field width, but you also have to use an argument to tell what the field width should be. That is, if you have the conversion specifier %*d, the argument list should include a value for * and a value for d. The technique also can be used with floating-point values to specify the precision as well as the field width. Listing 4.16 is a short example showing how this works.

Listing 4.16. The varwid.c Program

/* varwid.c -- uses variable-width output field */
#include <stdio.h>
int main(void)
{
 unsigned width, precision;
 int number = 256;
 double weight = 242.5;

 printf("What field width?\n");
 scanf("%d", &width);
 printf("The number is :%*d:\n", width, number);
 printf("Now enter a width and a precision:\n");
 scanf("%d %d", &width, &precision);
 printf("Weight = %*.*f\n", width, precision, weight);
 printf("Done!\n");

 return 0;
}

The variable width provides the field width, and number is the number to be printed. Because the * precedes the d in the specifier, width comes before number in printf()’s argument list. Similarly, width and precision provide the formatting information for printing weight. Here is a sample run:

What field width?
6
The number is : 256:
Now enter a width and a precision:
8 3
Weight = 242.500
Done!

Here, the reply to the first question was 6, so 6 was the field width used. Similarly, the second reply produced a width of 8 with 3 digits to the right of the decimal. More generally, a program could decide on values for these variables after looking at the value of weight.

The * serves quite a different purpose for scanf(). When placed between the % and the specifier letter, it causes that function to skip over corresponding input. Listing 4.17 provides an example.

Listing 4.17. The skip2.c Program

/* skip2.c -- skips over first two integers of input */
#include <stdio.h>
int main(void)
{
 int n;

 printf("Please enter three integers:\n");
 scanf("%*d %*d %d", &n);
 printf("The last integer was %d\n", n);

 return 0;
}

The scanf() instruction in Listing 4.17 says, “Skip two integers and copy the third into n.” Here is a sample run:

Please enter three integers:
2004 2005 2006
The last integer was 2006

This skipping facility is useful if, for example, a program needs to read a particular column of a file that has data arranged in uniform columns.

Usage Tips for printf()

Specifying fixed field widths is useful when you want to print columns of data. Because the default field width is just the width of the number, the repeated use of, say,

printf("%d %d %d\n", val1, val2, val3);

produces ragged columns if the numbers in a column have different sizes. For example, the output could look like the following:

 12 234 1222
 4 5 23
22334 2322 10001

(This assumes that the value of the variables has been changed between print statements.)

The output can be cleaned up by using a sufficiently large fixed field width. For example, using

printf("%9d %9d %9d\n", val1, val2, val3);

yields the following:

 12 234 1222
 4 5 23
22334 2322 10001

Leaving a blank between one conversion specification and the next ensures that one number never runs into the next, even if it overflows its own field. This is so because the regular characters in the control string, including spaces, are printed.

On the other hand, if a number is to be embedded in a phrase, it is often convenient to specify a field as small or smaller than the expected number width. This makes the number fit in without unnecessary blanks. For example,

printf("Count Beppo ran %.2f miles in 3 hours.\n", distance);

might produce

Count Beppo ran 10.22 miles in 3 hours.

Changing the conversion specification to %10.2f would give you the following:

Count Beppo ran 10.22 miles in 3 hours.

Key Concepts

The C char type represents a single character. To represent a sequence of characters, C uses the character string. One form of string is the character constant, in which the characters are enclosed in double quotation marks; "Good luck, my friend" is an example. You can store a string in a character array, which consists of adjacent bytes in memory. Character strings, whether expressed as a character constant or stored in a character array, are terminated by a hidden character called the null character.

It’s a good idea to represent numerical constants in a program symbolically, either by using #define or the keyword const. Symbolic constants make a program more readable and easier to maintain and modify.

The standard C input and output functions scanf() and printf() use a system in which you have to match type specifiers in the first argument to values in the subsequent arguments. Matching, say, an int specifier such as %d to a float value produces odd results. You have to exert care to match the number and type of specifiers to the rest of the function arguments. For scanf(), remember to prefix variables’ names with the address operator (&).

Whitespace characters (tabs, spaces, and newlines) play a critical role in how scanf() views input. Except when in the %c mode (which reads just the next character), scanf() skips over whitespace characters to the first non-whitespace character when reading input. It then keeps reading characters either until encountering whitespace or until encountering a character that doesn’t fit the type being read. Let’s consider what happens if we feed the identical input line to several different scanf() input modes. Start with the following input line:

-13.45e12# 0

First, suppose we use the %d mode; scanf() would read the three characters (–13) and stop at the period, leaving the period as the next input character. scanf() then would convert the character sequence –13 into the corresponding integer value and store that value in the destination int variable. Next, reading the same line in the %f mode, scanf() would read the –13.45E12 characters and stop at the # symbol, leaving it as the next input character. It then would convert the character sequence –13.45E12 into the corresponding floating-point value and store that value in the destination float variable. Reading the same line in the %s mode, scanf() would read –13.45E12#, stopping at the space, leaving it as the next input character. It then would store the character codes for these 10 characters into the destination character array, appending a null character at the end. Finally, reading the same line using the %c specifier, scanf() would read and store the first character, in this case a space.

Summary

A string is a series of characters treated as a unit. In C, strings are represented by a series of characters terminated by the null character, which is the character whose ASCII code is 0. Strings can be stored in character arrays. An array is a series of items, or elements, all of the same type. To declare an array called name that has 30 elements of type char, do the following:

char name[30];

Be sure to allot a number of elements sufficient to hold the entire string, including the null character.

String constants are represented by enclosing the string in double quotes: "This is an example of a string".

The strlen() function (declared in the string.h header file) can be used to find the length of a string (not counting the terminating null character). The scanf() function, when used with the %s specifier, can be used to read in single-word strings.

The C preprocessor searches a source code program for preprocessor directives, which begin with the # symbol, and acts upon them before the program is compiled. The #include directive causes the processor to add the contents of another file to your file at the location of the directive. The #define directive lets you establish manifest constants—that is, symbolic representations for constants. The limits.h and float.h header files use #define to define a set of constants representing various properties of integer and floating-point types. You also can use the const modifier to create symbolic constants.

The printf() and scanf() functions provide versatile support for input and output. Each uses a control string containing embedded conversion specifiers to indicate the number and type of data items to be read or printed. Also, you can use the conversion specifiers to control the appearance of the output: field widths, decimal places, and placement within a field.

Review Questions

You’ll find answers to the review questions in Appendix A, “Answers to Review Questions.”

	1.

	
Run Listing 4.1 again, but this time give your first and last name when it asks you for your first name. What happens? Why?

	2.

	Assuming that each of the following examples is part of a complete program, what will each one print?

a.

printf("He sold the painting for $%2.2f.\n", 2.345e2);

b.

printf("%c%c%c\n", ’H’, 105, ’\41’);

c.

#define Q "His Hamlet was funny without being vulgar."
 printf("%s\nhas %d characters.\n", Q, strlen(Q));

d.

printf("Is %2.2e the same as %2.2f?\n", 1201.0, 1201.0);

	3.

	
In Question 2c, what changes could you make so that string Q is printed out enclosed in double quotation marks?

	4.

	
It’s find the error time!

define B booboo
define X 10
main(int)
{
 int age;
 char name;

 printf("Please enter your first name.");
 scanf("%s", name);
 printf("All right, %c, what’s your age?\n", name);
 scanf("%f", age);
 xp = age + X;
 printf("That’s a %s! You must be at least %d.\n", B, xp);
 rerun 0;
}

	5.

	
Suppose a program starts as follows:

#define BOOK "War and Peace"
int main(void)
{
 float cost =12.99;
 float percent = 80.0;

Construct a printf() statement that uses BOOK, cost, and percent to print the following:

This copy of "War and Peace" sells for $12.99.
That is 80% of list.

	6.

	
What conversion specification would you use to print each of the following?

a. A decimal integer with a field width equal to the number of digits

b. A hexadecimal integer in the form 8A in a field width of 4

c. A floating-point number in the form 232.346 with a field width of 10

d. A floating-point number in the form 2.33e+002 with a field width of 12

e. A string left-justified in a field of width 30

	7.

	
Which conversion specification would you use to print each of the following?

a. An unsigned long integer in a field width of 15

b. A hexadecimal integer in the form 0x8a in a field width of 4

c. A floating-point number in the form 2.33E+02 that is left-justified in a field width of 12

d. A floating-point number in the form +232.346 in a field width of 10

e. The first eight characters of a string in a field eight characters wide

	8.

	
What conversion specification would you use to print each of the following?

a. A decimal integer having a minimum of four digits in a field width of 6

b. An octal integer in a field whose width will be given in the argument list

c. A character in a field width of 2

d. A floating-point number in the form +3.13 in a field width equal to the number of characters in the number

e. The first five characters in a string left-justified in a field of width 7

	9.

	
For each of the following input lines, provide a scanf() statement to read it. Also declare any variables or arrays used in the statement.

a. 101

b. 22.32 8.34E–09

c. linguini

d. catch 22

e. catch 22 (but skip over catch)

	10.

	
What is whitespace?

	11.

	
Suppose that you would rather use parentheses than braces in your programs. How well would the following work?

#define ({
#define) }

Programming Exercises

	
1.

	
Write a program that asks for your first name, your last name, and then prints the names in the format last, first.

	
2.

	
Write a program that requests your first name and does the following with it:

a. Prints it enclosed in double quotation marks

b. Prints it in a field 20 characters wide, with the whole field in quotes

c. Prints it at the left end of a field 20 characters wide, with the whole field enclosed in quotes

d. Prints it in a field three characters wider than the name

	
3.

	
Write a program that reads in a floating-point number and prints it first in decimal-point notation and then in exponential notation. Have the output use the following formats (the number of digits shown in the exponent may be different for your system):

a. The input is 21.3 or 2.1e+001.

b. The input is +21.290 or 2.129E+001.

	
4.

	
Write a program that requests your height in inches and your name, and then displays the information in the following form:

Dabney, you are 6.208 feet tall

Use type float, and use / for division. If you prefer, request the height in centimeters and display it in meters.

	
5.

	
Write a program that requests the user’s first name and then the user’s last name. Have it print the entered names on one line and the number of letters in each name on the following line. Align each letter count with the end of the corresponding name, as in the following:

Melissa Honeybee
 7 8

Next, have it print the same information, but with the counts aligned with the beginning of each name.

Melissa Honeybee
7 8

	
6.

	
Write a program that sets a type double variable to 1.0/3.0 and a type float variable to 1.0/3.0. Display each result three times—once showing four digits to the right of the decimal, once showing 12 digits to the right of the decimal, and once showing 16 digits to the right of the decimal. Also have the program include float.h and display the values of FLT_DIG and DBL_DIG. Are the displayed values of 1.0/3.0 consistent with these values?

	
7.

	
Write a program that asks the user to enter the number of miles traveled and the number of gallons of gasoline consumed. It should then calculate and display the miles-per-gallon value, showing one place to the right of the decimal. Next, using the fact that one gallon is about 3.785 liters and one mile is about 1.609 kilometers, it should convert the mile-per-gallon value to a liters-per-100-km value, the usual European way of expressing fuel consumption, and display the result, showing one place to the right of the decimal. (Note that the U.S. scheme measures the amount of fuel per distance, whereas the European scheme measures the distance per amount of fuel.) Use symbolic constants (using const or #define) for the two conversion factors.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/graphics/t0601-02.jpg
Decimal Hexadecimal Binary Decimal Hexadecimal Binary
Digit Digit Equivalent Digit Digit Equivalent
0 0 0000 8 8 1000

1 1 0001 9 1001

2 2 0010 10 A 1010

OEBPS/html/graphics/t0842-01.jpg
Constant Identifier

Minimum (in Magnitude) Value

INTN_MIN Exactly 2"-1)
INTN_MAX Exactly 21
UINTN_MAX Exactly 2"-1
INT_LEASTN_MIN “2%-1)
INT_LEASTN_NAX 241
UINT_LEASTN_MAX 241
INT_FASTN_MIN ")
INT_FASTN_MAX 2%
UINT_FASTN_NAX 241
INTPTR_MIN ~2"-1)
INTPTR_MAX 251
UINTPTR_WAX 21
INTMAX_MIN ~2"-1)
INTUAX_MAX 291
UINTMAX_WAX 241

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/03fig01.gif
1#rhodium.c*/

int main(void)

i

scanf(*-----) <gcllmg keyboard input

printf(*Are you--) displaying program mnpm> ‘Are you
printf() =

return 0;

OEBPS/html/graphics/03fig02.gif
ofofofefo] 1]
2 2 2
IR

8-bit word

integer 7

OEBPS/html/graphics/t0836-01.jpg
Prototype Description

int setjmp(jmp_buf env); Saves the calling environment in the array env and
returns 0 if called directly and nonzero if the return is
from a call to 1ongjmp ()

void longjmp(jmp_buf env, int val); Restores the environment saved by the most recent evo-
cation of setjmp() that set the env array; after complet-
ing this change, the program continues as though that
evocation of setjmp() had returned val, except that a
return value of @ is not allowed and is converted to 1

OEBPS/html/graphics/03fig03.gif
+ 314159 1
sign fraction exponent
N 314150 X 19

3.14159

OEBPS/html/graphics/t0727-01.jpg
Data Form Pros Cons.

Array Directly supported by C Size determined at compile time.
Provides random access Inserting and deleting elements is time
consuming
Linked list ~Size determined during runtime No random access

Inserting and deleting elements is quick. User must provide programming support

OEBPS/html/graphics/t0859-01.jpg
double difftime(time_t t1, time_t t0);

Calculates the difference (t1 - t0) between two
calendar times; expresses the result in seconds and
returns the result

time_t mktime(struct tm *tmptr);

Converts the broken-down time in the structure
pointed to by tmptr into a calendar time; having
the same encoding used by the time() function,
the structure s altered in that out-of-range values
are adjusted (for example, 2 minutes, 100 seconds
becomes 3 minutes, 40 seconds) and tn_uday and
tn_yday are set to the values implied by the other
members. Returns (tine_t) (-1) if the calendar
time cannot be represented; otherwise, returns the
calendar time in time_t format.

time_t time(time_t *ptm)

Returns the current calendar time and also places it
in the location pointed to by ptm, provided ptm is
not NULL. Returns (time_t) (-1) if the calendar
time is not available,

char *asctime(const struct tm *tmpt);

Converts the broken-down time in the structure
pointed to by tmpt into a string of the form Thu
Feb 26 13:14:33 1998\n\0 and returns a pointer
to that string.

char *ctime(const time_t *ptm);

Converts the calendar time pointed to by ptm into a
string in the form Wed Aug 11 10:48:24
1999\n\@ and returns a pointer to that string,

struct tm *gntime(const time_t *ptm);

Converts the calendar time pointed to by ptm into a
broken-down time, expressed as Coordinated
Universal Time (UTC), formerly known as
Greenwich Mean Time (GMT), and returns a pointer
to . structure holding that information. Returns
NULL if UTC is not available.

struct tn *localtime(const time t *ptm);

Converts the calendar time pointed to by ptm into a
broken-down time, expressed as local time. Stores a
tmstructure and returns a pointer 1o that structure.

OEBPS/html/graphics/03fig04.gif
int sows;

int boar:

create stor:

create storage and giv

OEBPS/html/graphics/t0601-01.jpg
Octal Digit Binary Equivalent

0 000

1 001

010

on

100

101

110

Njo|jv|s~|jw N

m

OEBPS/html/graphics/t0865-01.jpg
wchar_t *wcscpy(wehar_t * restrict s1,
const wchar_t * restrict s2);

wehar_t *wesncpy(wchar_t * restrict si,
const wchar_t * restrict s2, size_t n);

wchar_t *wcscat (wchar_t * restrict s1,
const wchar_t * restrict s2);

wchar_t *wcsncat (wchar_t * restrict si,
const wchar_t * restrict s2, size_t n);

int wescmp(const wehar_t *s1, const wehar_t *s2);

int wescoll(const wehar_t *s1, const wehar_t *s2);

int wesncmp (const wehar_t *si, const wchar_t *s2,
size_t n);

size_t wosxfrm(wchar_t * restrict st,
const wchar_t * restrict s2, size_t n);

wchar_t *wcsohr (const wchar_t *s, wchar_t c);

size_t wescspn(const wehar_t *si, const wehar_t *s2);

size_t wcslen(const wchar_t *s);

wchar_t *wcspbrk(const wchar_t *si, const wchar_t *s2);

wchar_t *wcsrchr(const wchar_t *s, wehar_t c);

size_t wesspn(const wehar_t *si, const wchar_t *s2);

wehar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

wchar_t *wcstok(wchar_t * restrict s1,
const wchar_t * restrict s2, wchar_t ** restrict ptr);

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

int wmemcmp (wehar_t * restrict st,
const wehar_t * restrict s2, size_t n);

wchar_t *umemcpy (wchar_t * restrict si,

const wchar_t * restrict s2, size_t n);

wchar_t *wmemmove(wchar_t *s1, const wohar_t *s2,
size_t n);

wchar_t *umemset (wchar_t *s, wchar_t ¢, size_t n);

OEBPS/html/graphics/17fig02.gif
#define TSIZE 45
struct filn {
char title(TSIZE)
int rating;
struct filn * next;

b
struct filn * hoad;
2240
2240 | —> | Wodern Tines 10 | nu

head title rating next

OEBPS/html/graphics/17fig03.gif
2240

2240 Modern Times 10 | 260

head title rating next
2360

Titanic s |

title rating next

OEBPS/html/graphics/17fig01.gif
struct film * movie;

movie = (struct film *) malloc(5*sizeof (struct film);

movie —» | movie[0][movie(1]| movie[2]|movie[3]| movie[4]

int i3
struct film * movies(s];

for (i = 03 ic< 55 iss)
novies(i] = (struct films *) malloc(sizeof (struct films));

novies(4] movies[1]

' |

novies(0] —» |

movies(2] —»

1

novies[3]

OEBPS/html/graphics/t0807-01.jpg
- is the unary operator and produces a value with each bit of the operand inverted.

&5 AND and produces a value in which each bit s set to 1 only if both corresponding bits in
the two operands are 1

| is OR and produces a value in which each bit is set to 1 if either, or both, corresponding
bits of the two operands are 1.

~ is EXCLUSIVE OR and produces a value in which each bit is set to 1 only if one or the other
(but not both) of the corresponding bits of the two operands is 1

<< i left-shift and produces a value obtained by shifting the bits of the left-hand operand to
the left by the number of places given by the right-hand operand. Vacated slots are filled
with zeros.

>> i right-shift and produces a value obtained by shifting the bits of the left-hand operand to
the right by the number of places given by the right-hand operand. For unsigned integers, the
vacated slots are filled with zeros. The behavior for signed values is implementation dependent.

OEBPS/html/graphics/17fig06.gif
Four folks in a queue

sue Bob Joe Meg

front rear

Ken joins the queue, then Sue leaves the queue Ken

Sue Bob Joe Meg Ken =
front rear
sue
- [L
Bob [oe |Mea | Ken

front reer

OEBPS/html/graphics/t0137-01.jpg
square grains total fraction of

added grains US total
1 1.00e+400 1.00e+00 1.00e-15
2 2.000400 3.00e+00 3.00e-15
3 4.00e+00 7.00e+00 7.00e-15
4 8.00e+00 1.50e+01 1.50e-14
5 1.60e+01 3.10e+01 3.10e-14
6 3.20e+01 6.30e+01 6.30e-14
7 6.40e+01 1.27e402 1.27e-13
8 1.28e402 2.55e+02 2.55e-13
9 2.56e402 5.11e+02 5.11e-13
5.12e402 1.02e+03 1.02e-12

OEBPS/html/graphics/t0269-01.jpg
Category

Single

Tax

15% of first $17,850 plus 28% of excess

Head of Household

15% of first $23,900 plus 28% of excess

Married, Joint

15% of first $29,750 plus 28% of excess

Married, Separate

15% of first $14,875 plus 28% of excess

OEBPS/html/graphics/17fig07.gif
Four folks in a queue

sue | Bob | oo [meg

front \ rear /
room for 6

Ken joins the queue, then Sue leaves the queue Ken

Sue Bob Joe Meg Ken r

front rear
sue

Bob | oo | Meg Ken

front \ V
room for 5

OEBPS/html/graphics/t0653-01.jpg
Macro

Meaning

__DATE__ A character string literal in the form “Mmm dd yyyy"” representing the date of
preprocessing

__FILE__ A character string literal representing the name of the current source code file

__LINE__ An integer constant representing the line number in the current source code
file

__sToC__ Set to 1 to indicate the implementation conforms to the C Standard

__STDC_HOSTED__

Set to 1 for a hosted environment; 0 otherwise

__STDC_VERSTON__

For €99, set to 199901L

TIME,

The time of translation in the form “hh:mm:ss”

OEBPS/html/graphics/17fig04.gif
2240

star Wars. 4320 l—

OEBPS/html/graphics/17fig05.gif
list.h
[+ Lst.n--hesder file for a simple 1ist type
1+ progra-specttic declarations +/

WGetine TSIZE 45 /* size of array to hold title */
struct fam

«

ehar wittoTsize];
int rating;

Vo1 Traverse (List 1, void (* pfun) (Iten iten));

«
)

list.c

[+ List.c.-functions supporting 1ist oparations */
Fincluecstaio.n>
Fincluecatalib. i
binciuge st

I+ coptes an sten into nodo */
static void CopyToNode (Iten ites, Node * pnode)

prode->iten = stem; /* strusture copy */

filns3.c

[+ i1as3.c - using and ADT-style linkes List */
sinclue <staio.n>

#include <stalib.n> /* prototype for exit() */
bincluge listnt

Vo1 showmovies(Tten it}

in(void)

OEBPS/html/graphics/t0836-02.jpg
Macro

Description

STGABRT Abnormal termination, such as initiated by a call to abort ()
SIGFPE Erroneous arithmetic operation.

STGILL Invalid function image (such as illegal instruction) detected
SIGINT Interactive attention signal received (such as a DOS interrupt)
STGSEGV Invalid access to storage.

STGTERM Termination request sent to program.

OEBPS/html/graphics/t0515-01.jpg
Mode Measures Offset From

SEEK_SET Beginning of file

SEEK_CUR Current position

SEEK_END End of file

OEBPS/html/graphics/05fig07.gif
lwhvle

false

S
note prefix nota 1003
fish gels incremer ch!

before each test
calculation true

*o0d=quota*fish;
printf(*ad ,fo0d, fish);

OEBPS/html/graphics/t0373-01.jpg
Valid Invalid

ptrits; urnt+;

ptr2 = ptri + 2; ptr2 = ptr2 + ptri;

ptr2 = urn + 1; ptrz = urn * ptri;

OEBPS/html/graphics/t0860-01.jpg
size_t strftime(char * restrict s, Copies string fmt to string, s, replacing format

size_t max const char * restrict fmt, specifiers (see Table RS.V.38)in fmt with

const struct tn * restrict tmpt); appropriate data derived from the contents of the
broken-down time structure pointed to by tmpt; no
more than max characters are placed into s. The
function returns the number of characters placed
(excluding the null character); f the resulting string
(including null character) i larger than max charac-
ters, the function returns @ and the contents of s
are indeterminate

OEBPS/html/graphics/t0860-02.jpg
Format Specifier Replaced By

s Locale’s abbreviated weekday name
%A Locale’s full weekday name

wb Locale’s abbreviated month name

%8 Locale’s full month name:

s Locale’s appropriate date and time designation

% Day of the month as a decimal number (01-31)

%D Equivalent to “%m/%ds%y "

se Day of the month as a decimal number, with single digits preceded by a space
%F Equivalent to “%Y -%m-%d "

ug The last two digits of the week-based year (00-99)

4G The week-based year as a decimal number

“h Equivalent to “%b"

H The hour (24-hour clock) as a decimal number (00-23)

%1 The hour (12-hour clock) as a decimal number (01-12)

5 The day of the year as a decimal number (001-366)

wn The month as a decimal number (01-12)

OEBPS/html/graphics/t0155-01.jpg
Dedlaration statement. int toes;

Assignment statement: toes = 1.
Function callstatement. printf (*sdn*, toss)
Structured statement: while (toes < 20)

toes = toes + 2;

NULL statement: 5 /* does nothing */

OEBPS/html/graphics/t0694-01.jpg
Type Name:

Simple List

Type Properties:

Can hold a sequence of items,

Type Operations:

Initialize list to empty.

Determine whether list is empty.
Determine whether list is full
Determine number of items in the list.
Add item to end of list.

Traverse list, processing each item in list

Empty the list.

OEBPS/html/graphics/notesicon_icon.gif

OEBPS/html/graphics/01fig02.gif
UNIX
operating
system

computer C embedded

I language systems

A_ 4
B/ E

Star
Wars

OEBPS/html/graphics/01fig01.gif

OEBPS/html/graphics/15fig01.gif
vitnumber 76 s 4 3 2

o1 fofef 1|0

hum\u:» 8 64 2 16 8 4

This example shows bits 6, 3, and 0 set 10 1.
The value of this byte is 64 + 8 + 1 or 73.

OEBPS/html/graphics/15fig02.gif

OEBPS/html/graphics/15fig03.gif
the bOX union

the bOX union
seen s a structure

nun_prtrs
gameio
num_concds
num_drives
vid_setup
mother_bd
has_drive

box. sh_view

R EERERERERREE
bit bit
15 o
] ‘l@ ||1|'1

OEBPS/html/graphics/t0854-01.jpg
void *memset(void *s, int v, size_t n);

Copies the value v (converted to type unsigned
char) to the first n bytes pointed to by s; returns s.

char *strcat(char * restrict st,
const char * restrict s2);

Appends a copy of the string pointed to by s2
(including the null character) to the location pointed
to by st; the first character of the s2 string over-

writes the null character of the s1 string; returns s1.

char *strncat(char * restrict si,
const char * restrict s2, size_t n);

Appends a copy up to n characters or up to the
null character from the string pointed to by s2 to
the location pointed to by s+, with the first charac-
ter of s2 overwriting the nul character of s1; a
null character is always appended; the function
returns s1

char *stropy(char * restrict si,
const char * restrict s2);

Copies the string pointed to by s2 (including the
null character) to the location pointed to by s1;
returns s1

char *strncpy(char * restrict s,
const char * restrict s2, size_t n);

Copies up to n characters or up to the null character
from the string pointed to by s2 to the location
pointed to by s1; if the null character in s2 occurs
before n characters are copied, null characters are
appended to bring the total to n; if n characters are
copied before reaching a null character, no null
character is appended; the function returns s1

int strcmp(const char *si, const
char *s2);

Compares the strings pointed to by s1 and s2; two
strings are identical if all pairs match; otherwise, the
strings compare as the first unmatching pair.
Characters are compared using the character code
values; the function returns zero if the strings are
the same, less than zero if the first string s less than
the second, and greater than zero if the string array
is greater.

int strcoll(const char *st, const char
*s2);

Works like stromp () except that it uses the
collating sequence specified by the LC_COLLATE
category of the current locale as set by the
setlocale() function.

OEBPS/html/graphics/t0847-01.jpg
Prototype

Description

double atof (const char * nptr);

Returns the initial portion of the string nptr con-
verted to a type double value; conversion ends
upon reaching the first character that is not part of
the number; initial whitespace is skipped; zero is
returned if no number is found.

int atoi(const char * nptr);

Returns the initial portion of the string nptr con-
verted to a type int value; conversion ends upon
reaching the first character that is not part of the
number; initial whitespace is skipped; zero is
returned if no number is found.

int atol(const char * nptr);

Returns the initial portion of the string nptr con-
verted to a type Long value; conversion ends upon
reaching the first character that is not part of the
number; initial whitespace i skipped; zero is
returned if no number is found.

double strtod(
char * restrict npt,
char ** restrict ept);

Returns the initial const portion of the string
nptr converted to a type double value;
conversion ends upon reaching the first character
that is not part of the number; initial whitespace is
skipped; zero s returned if no number is found. If
conversion s successful, the address of the first
character after the number is assigned to the loca-
tion pointed to by ept; if conversion fails, npt is
assigned to the location pointed to by ept

float strtof(
const char * restrict npt,
char ** restrict ept);

Same as strtod(), Ut converts the string
pointed to by nptr 1o a type fLoat value (C99).

OEBPS/html/graphics/t0797-01.jpg
Items Sequential Search Binary Search

3 3 2

1,023 10

16

OEBPS/html/graphics/t0240-01.jpg
Traditional 150646.h

&& and

I or

! not

OEBPS/html/graphics/t0177-01.jpg
Operator Meaning

< Is less than

Is less than or equal to

Is equal to

Is greater than or equal to

> Is greater than

Is not equal to

OEBPS/html/graphics/t0452-01.jpg
P Printinput as is

U Map input to all uppercase

1 Mapinput to all lowercase

OEBPS/html/graphics/t0825-02.jpg
Prototype Description

void feclearexcept (int excepts); Clears the exceptions represented by excepts.

void fegetexceptflag(Stores the states of the floating-point status flags

fexcept_t *flagp, int excepts); indicated by excepts in the object pointed to by
flagp.

void feraiseexcept(int excepts); Raises the exceptions specified by excepts.

void fesetexceptflag(Sets those floating-point status flags indicated by

const fexcept_t *flagp, excepts to the values provided by flagp; flagp

int excepts); should have been set by a previous call to

fegetexceptflag()

OEBPS/html/graphics/appc.jpg
Operators (from High to Low Precedence)

++ (postfn) - (postf) () (function cal) [) {) (compound lteral) . ->

< (prefi) —— (prefi) -+ - 1 sizeot * (dereference) & (address) ol unary) RL
(type nase) RL
K =
+—(both binary) R
<> R
e R
= =
3 R
g R
] R
s R
I =
7 + (conditional expression) RL
R RL
, (comma operator) =3

OEBPS/html/graphics/t0853-02.jpg
Prototype

Description

void *memchr(const void *s
size_t n);

int c,

Searches for the first occurrence of ¢ (converted to
unsigned char) in the initial n characters of the
object pointed to by s; returns a pointer to the first
occurrence, NULL if none is found.

int memcmp(const void *si, const void
*s2, size_t n);

Compares the first n_characters of the object
pointed to by s1 to the first n characters of the
object pointed to by s2, interpreting each value as
unsigned char. The two objects are identical f all
n pairs match; otherwise, the objects compare as
the first unmatching pair. Returns zero i the objects
are the same, less than zero if the first object is
numerically less than the second, and greater than
ze10if the first object is greater.

void *memcpy(void * restrict st,
const void * restrict s2, size_t n);

Copies n bytes from the location pointed to by s2
to the location pointed to by s1; behavior is unde-
fined if the two locations overlap; returns the value
of st

void *memmove(void *si, const void *s2,
size_t n);

Copies n bytes from the location pointed to by s2
to the location pointed to by s1; behaves as If copy-
ing. First uses a temporary location so that copying
10 an overlapping location works; returns the value
of 1

OEBPS/html/graphics/t0876-01.jpg
Digraph Symbol Digraph Symbol Digraph symbol

t >] < <

5%

- }

OEBPS/html/graphics/t0196-01.jpg
Adds the right-hand quantity to the left-hand variable

Subtracts the right-hand quantity from the left-hand variable

Muliplies the left-hand variable by the right-hand quantity

Divides the left-hand variable by the right-hand quantity

Gives the remainder obtained from dividing the left-hand variable by the right-hand quantity

OEBPS/html/graphics/t0853-01.jpg
size_t wcstombs(char * restrict s,
const wehart_t * restrict pwes,
size_t n);

Converts the sequence of wide-character codes
stored in the array pointed to by pwes into a
multibyte character sequence copied to the loca-
tion pointed to by s, stopping after storing n bytes
or a null character, whichever comes first. If an
invalid wide-character code is encountered, it
returns (size_t) (-1); otherwise, it returns the
number of array bytes filled (excluding a nul char-
acter, if any).

OEBPS/html/graphics/t0825-01.jpg
Macro Represents

FE_DIVBYZERO Division-by-zero exception raised

FE_INEXAGT Inexact value exception raised

FE_LINVALID Invalid value exception raised

FE_OVERFLOW Overflow exception raised

FE_UNDERFLOW Underflow exception raised

FE_ALL_EXCEPT The bitwise OR of al the floating-point exceptions supported by the implementation

FE_DOWNWARD Rounds downward

FE_TONEAREST ~ Rounds to the nearest value

FE_TOWARDZERO Rounds toward zero

FE_UPWARD Rounds upward

FE_DFL_ENV Represents the default environment and has the type const fenv_t *

OEBPS/html/graphics/t0848-01.jpg
long double strtols(
const char * restrict npt,
char ** restrict ept);

Same as strtod(), but converts the string
pointed to by nptr to a type long double
value (C99),

long strtol(
const char * restrict npt
char ** restrict ept, int base);

Returns the initial portion of the string nptr
converted to a type Long value; conversion

ends upon reaching the first character that is not
part of the number; initial whitespace is skipped;
zero is returned if no number is found. If conver-
sion s successful, the address of the first character
after the number s assigned to the location
pointed to by ept; if conversion fails, npt is
assigned to the location pointed to by ept. The
number in the string is assumed to be written in a
base specified by base

long long strtoll(
const char * restrict npt,
char ** restrict ept, int base);

Same as strtol(), but converts the sting
pointed to by nptr t0a type Long long value
(©99)

unsigned long strtoul(
const char * restrict npt,
char ** restrict ept, int base);

Returns the initial portion of the string nptr
converted to a type unsigned long value;
conversion ends upon reaching the first character
that is not part of the number; initial whitespace is
skipped; zero is returned if no number is found. If
conversion is successful, the address of the first
character after the number is assigned to the loca-
tion pointed to by ept; if conversion fails, npt is
assigned to the location pointed to by ept. The
number in the string is assumed to be written in a
base specified by base.

unsigned long long strtoull(
const char * restrict npt,
char ** restrict ept, int base);

Same as strtoul(), but converts the string
pointed to by nptr to a type unsigned
long long value (C99)

int rand(void);

Returns a pseudorandom integer in the range @ to
RAND_MAX.

void srand(unsigned int seed);

Sets the random-number generator seed to seed;
if rand () is called before a call to srand(), the
seed is 1

OEBPS/html/graphics/t0876-02.jpg
Macro Operator Macro Operator Macro Operator

bitand &

and 8 and_eq

bitor | compl. - not

not_eq or Il or_eq

xor xor_eq

OEBPS/html/graphics/t0607-01.jpg
number << n Multiplies number by 2 to the nth power

number >> n Divides number by 2 to the nth power if number is not negative

OEBPS/html/graphics/t0234-01.jpg
Number Response

Sorry, you lose a turn!

10 You're close!

15 None

OEBPS/html/graphics/t0796-01.jpg
Type Nam Stack.

Type Properties: Can hold an ordered sequence of items

Type Operations: Initialize stack to empty.
Determine whether stack is empty.
Determine whether stack is full.
Add item to top of stack (pushing an item).

Remove and recover item from top of stack (popping an item).

OEBPS/html/graphics/13fig03.gif
int num = 1234

v

stores 12345 as binary number in num

v

oo [sarion

fprintf (fp, %", num);

v

writes the binary codes for the characters
"y 'S’ 10 the file

v

00110001 | oo11010 | 0110011 | co110100 | G01t0t0r

furite(snun, sizeof (int), 1, p);

v

writes the binary codes for the value 12345 to the file

v

(this figure assumes an integer size of 16 bits)

OEBPS/html/graphics/13fig02.gif
command input queue

Ginitial state) [w [n | a1 e

ch = getehar(); nfal1fe
ungete(ch, staim); [w|h]af1]e

OEBPS/html/graphics/13fig01.gif
an MS-DOS
textfile | to her heav

7

Rebecca clutched theirin
jowel-encorusted scarab\rin

4ng bosun. \rin

v

Rebecca clutched the\r\n
Jewel-encrusted scarab\rin
o her heaving bosun.\r\n
k2

the way it looks (0.4 C
program when opened in
the binary mode

v

Rebecca clutched the\n
jowel-encrusted scarab\n
to her heaving bosun.\n

the way it looks (o a C program when

opened in the text mode.

OEBPS/html/graphics/t0814-01.jpg
Declaration statement:

int toes;

Assignment statement:

toes = 12;

Function call statement:

printf (*d\n", toes);

Control statement:

while (toes < 20) toes

= toes + 2;

Null statement:

/* does nothing */

OEBPS/html/graphics/f0fm1-01.jpg
Declnal| Octal | Mox [Binary | Character | ASH
oo o ool [t
oo _Jooooooon [_—[som
I I e) S
N I T e
;w5 Jos Jooooon] _Jowg
¢ o6 Jow Jooooono]s [acx
R o = R
+— oo o _Joooorooo] _[os
O I o o S
o o Jossoron [vT
o o Jowonoon v
I I ol] R
o o Jowomiow 50
6 o0 o [oooroo0]+ [0
7o Jou Jocorooon [ra_Joct
ooz Jouz [ooorooro] Jocz
9 oas Jou [ocoroon [5s_—Jocs
R T) e A)
oo Jous [oooromon [0
o7 Jou [ooorom [[
2o ous [wonooo[x —Jow
I T) o e
26— o2 o Joconiono] 2[5
I T D e i
oot ouc [womoo[n |5
N (3)] S
%o Jowte foonmo]or [
o7 our Jeeorm - Jus
5 on Joar [sorooon],

%o [oaz [sorooro]

% o0 ows fereon [

% ou oas [wrcoro[s
7o oas [oorcoron [
%o [oas [sorono]e

% o0 o [ooroon

2w ous [ororo]e

I N G

5 Joss o rororon [+

& o Joae [oviorveo|

OEBPS/html/graphics/t0602-01.jpg
111

15

3 3 oon m B 101
4 4 0100 12 [« 1100
5 5 0101 13 D 1101
6 6 0110 14 g 1110
7 7

0 1

OEBPS/html/graphics/f0fm1-02.jpg
s [oss JodJooronier] |
i5 o5 [oar [cwromo
o7 Jout [ooorm |7
ts o0 Jooo [corioo0]o
5 Joer_Joun [oomoon [1
% o6 ooz [corcono]z
5o oo [eerioon 3
7o Jous [coro[s
5 Joes Jous [somonole
55 o7 o [corom]2
o0 Joos [coroo]e
572 Joos [corion
5 ors Jous [oomon:
% o7t Jooe [eormoo] <
I N] T
7 Torr Joor Toommlr |
o ous [orooooo]e.
6 ovoz[ow [orccoon0]e
5 o1or[ou [or000100]0
6o o10 [ows [orooonn[¢
2 o1os[ows [orocono] -
nTov07 [own [orooom [
o [ous [ovooroon
75 o [ow [ororon [«
76— Tov vk [oroonoo]
7o ons [ove [orcomo]
75 or [owt [oroorm [0
% ormo oo [oroweo]e
oo o [oworoom [0
7 or o [ororoon s
o orae[ors [ororo100]
35— o [ows [orowon [
26— o12s[os [ororomo]v
ssoro o [oromooo]x
5 o131 [orss [ovorio0T [

OEBPS/html/graphics/t0457-01.jpg
Storage Class Duration Scope Linkage How Declared

automatic Automatic Block None In a block

register Automatic Block None Ina block with the keyword
register

static with external linkage Static Fle Bdemal Outside of all functions

static with internal linkage ~ Static file Internal Outside of all functions with
the keyword static

static with no linkage Static Block None Inablock with the keyword static

OEBPS/html/graphics/t0763-01.jpg
Constant Type Specifier
12 int %d

ox3 unsigned int X

el char (really int) %C
2.34E07 double e
"\040" char (really int) %

7.0 double f

6L 1ong s1d
6.0f float st

OEBPS/html/graphics/t0763-02.jpg
Constant Type Specifier
o012 unsigned int 5#o
2.9e05L long double sle
‘s char (really int) %
100000 long s1d
\n' char (really int) %C
20.0f float st
0x44 unsigned int 55

OEBPS/html/graphics/t0820-02.jpg
Macro Description

complex Expands (o the type keyword_Complex

_Complex_I Expands to an expression of type const loat _Complex, whose value, when
squared, is -1

inaginary If imaginary types are supported, expands to the type keyword _Inaginary

_Inaginary_I If imaginary types are supported, expands to an expression of type const float
_Inaginary, whose value, when squared, is ~1

1 Expands to either _Complex_I or _Imaginary_I

OEBPS/html/graphics/t0820-01.jpg
Prototype Description

void assert(int exprs); If exprs evaluates to nonzero (or true), the macro does nothing. If it
evaluates to zero (false), assert () displays expression, the line number
for the assert () statement, and the name of the file containing the

statement. Then it calls abort ()

OEBPS/html/graphics/f0fm1-03.jpg
7 Jorss o oo [
oo w7 Joreo |5
3o [ow [ormion |1
s Jos osa orer |

OEBPS/html/graphics/03fig05.gif
Examples of Integer Constants

pe bexadecimal | octal decimal
char \0xa1 0101 |NA
int oxa1 0101 65
unsigned int oxaty o101y |65u
long oxa1L o101 [esL
unsigned long oxa1uL o101uL [esuL
long long ox41LL 0101LL |65LL
unsigned long long |Ox41ULL 0101ULL | B5ULL

OEBPS/html/graphics/03fig06.gif
67

storage (ASCII code)

code

display

OEBPS/html/graphics/03fig07.gif
2.58

1.6€-19

1.37647

12e20

OEBPS/html/graphics/t0239-02.jpg
5 > 2 & 4 > 7is false because only one subexpression is true.

5> 2 || 4 > 7is true because at least one of the subexpressions is true.

(4 > 7) is true because 4 is not greater than 7.

OEBPS/html/graphics/t0831-01.jpg
FP_FAST_FMAL (Optional) If defined, this macro indicates that the fmal() function works about
as fast, or faster than, a multiply and add of long double operands.

FP_IL0GBO An integer constant expression representing the value returned by i1ogb (@)
FP_ILOGBNAN An integer constant expression representing the value returned by i1ogb (NaN)
MATH_ERRNO Expands to the integer constant 1

MATH_ERREXCEPT Expands to the integer constant 2

math_errhandling Has the value MATH_ERRNO or MATH_ERREXCEPT or the bitwise OR of those two
values,

OEBPS/html/graphics/t0239-01.jpg
Operator Meaning

& and

1 or

not

OEBPS/html/graphics/t0831-02.jpg
Prototype

Description

int

classify(real-floating x);

A €99 macro that returns the floating-point dlassifica-
tion value appropriate for x.

int

isfinite(real-floating x);

A €99 macro that returns a nonzero value if, and only
if, x s finite.

int

isfin(real-floating x);

A €99 macro that returns a nonzero value if, and only
if, x s infinite,

int

isnan(real-floating x);

A C99 macro that returns a nonzero value if, and only
if, x is a NaN.

int

isnormal (real-floating x);

A C99 macro that returns a nonzero value if, and only
if, x is normal

int

signbit (real-floating x);

A €99 macro that returns a nonzero value if, and only
if, the sign of x is negative.

OEBPS/html/graphics/09fig02.gif
header

#include <stdio.h> —— 1
#define WIDTH 40
void starbar (void)

for (count=1;-
putchar (
putchar('\n');

)

preprocessor instructions

f— function name

t— declaration statement
{— control loop statement
{— function statement
f— function statement

OEBPS/html/graphics/t0053-01.jpg
Original K&R Keywords

€90 Keywords

€99 Keywords

int signed _Bool
long void _Conplex
short _Inaginary
unsigned

char

float

double

OEBPS/html/graphics/09fig01.gif
main()

starbar()

printf()

printf()

printf()

starbar()

putchar()

each function may "call”
other functions
cach function is "run” in turn

putchar()

OEBPS/html/graphics/t0099-01.jpg
Symbolic Constant Represents

CHAR_BIT Number of bits in a char
CHAR_MAX Maximum char value

CHAR_MIN Minimum char value

SCHAR_NAX Maximum signed char value
SCHAR_WIN Minimum signed char value
UCHAR_WAX Maximum unsigned char value
SHRT_MAX Maximum short value

SHRT_MIN Minimum short value
USHRT_WAX Maximum unsigned short value
INT_HAX Maximum int value

INT_WIN Minimum int value

UINT_MAX Maximum unsigned int value
LONG_MAX Maximum 1ong value

LONG_MIN Minimum 1ong value

ULONG_WAX Maximum unsigned long value
LLONG_HAX Maximum long long value
LLONG_WIN Minimum long long value

ULLONG_AX Maximum unsigned long long value

OEBPS/html/graphics/t0869-02.jpg
Prototype Description

int iswalnum(wint_t we); Returns true if we represents an alphanumeric (alphabetic or
numeric) character

int iswalpha(wint_t we); Returns true if we represents an alphabetic character

int iswblank(wint_t we); Returns true if we represents a blank

int iswentrl(wint_t we); Returns true if we represents a control character

int iswdigit(wint_t we); Returns true if we represents a digit

int iswgraph(wint_t we); Returns true if iswprint (wc) is true and iswspace (wc) is false

int iswlower(wint_t we); Returns true if we represents a lowercase character

int iswprint(wint_t wc); Returns true if we represents a printable character

int iswpunct(wint_t we); Returns true if we represents a punctuation character

int iswspace(wint_t wc); Returns true if we represents a tab, space, or newline

int iswupper(wint_t wc); Returns true if we corresponds to a uppercase character

int

isuxdigit(wint_t we);

Returns true if we represents a hexadecimal digit

OEBPS/html/graphics/t0708-01.jpg
Type Name

Queue

Type Properties:

Can hold an ordered sequence of items,

Type Operations:

Initialize queue to empty.

Determine whether queue is empty.
Determine whether queue is full

Determine number of items in the queue.

Add item to rear of queue,

Remove and recover item from front of queue.

Empty the queue.

OEBPS/html/graphics/t0846-01.jpg
_list);

of type va_list, initialized by va_start, instead of a
variable argument list

int vsprintf(char * restrict,
size_t n);
const char * restrict, va_list);

Like snprint () ;, except uses a single list argument
of type va_list initialized by va_start instead
of a variable argument list

int vsprintf(char * restrict,
const char * restrict, va_list);

Like sprintf () ;, except uses a single list argument
of type va_list initialized by va_start instead of a
variable argument list

OEBPS/html/graphics/t0846-02.jpg
Type Description

size_t The integer type returned by the sizeof operator.

wehar_t The integer type used to represent wide characters

div_t The structure type returned by div(); it has a quot and a rem member, both of type int

1div_t The structure type returned by 1div(); it has a quot and a rem member, both of type Long.

11div_t The structure type returned by 11div(); it has a quot and a rem member, both of type
long long. (C99)

OEBPS/html/graphics/11fig01.gif
extra elements initialized 1o \0

4I_‘

e | e clalt]|-]w[w[w

char pets[12] = *nice cat.

OEBPS/html/graphics/t0823-01.jpg
Prototype

Description

int isalmun(int ¢); Returns true if o is alphanumeric (alphabetic or numeric).

int isalpha(int ¢); Returns true if ¢ is alphabetic.

int isblank(int c); Returns true if c is aspace or a horizontal tab. (C99)

int isentrl(int ¢); Returns true if o is a control character, such as Ctrl+8,

int isdigit(int c¢); Returns true if ¢ is a digit.

int isgraph(int c); Returns true if c s any printing character other than a space.

int islower(int c); Returns true if ¢ is a lowercase character.

int isprint(int c); Returns true if ¢ is a printing character.

int ispunct(int c); Returns true if c is a punctuation character (any printing character other
than a space or an alphanumeric character).

int isspace(int c); Returns true If o is a whitespace character: space, newline, formfeed,
cariage return, vertical tab, horizontal tab, or, possibly, another
implementation-defined character.

int isupper(int c); Returns true if c is an uppercase character,

int isxdigit(int c); Returns true if o is a hexadecimal-digit character.

int tolower(int c); If the argument is an uppercase character, returns the lowercase version;
othenwise, just returns the original argument.

int toupper(int c); If the argument is a lowercase character, returns the uppercase version;

otherwise, just returns the original argument.

OEBPS/html/graphics/t0846-03.jpg
Type Description

NULL The nul pointer (equivalent to 0)

EXIT_FAILURE Can be used as an argument to exit () to indicate unsuccessful execution of a
program

EXIT_SUGCESS Can be used as an argument to exit () to indicate successful execution of a program

RAND WAX The maximum value (an integer) returned by rand ()

WB_GUR_WAX The maximum number of bytes for a multibyte character for the extended character
set corresponding to the current locale

OEBPS/html/graphics/09fig04.gif
variables:

after level 1 call

after level 2 call

after level 3 call

after level 4 call

after return from level 4
after return from level 3
after return from level 2
after return from level |

5
5

n
1
1
1
1
1
1
1

(all gone)

OEBPS/html/graphics/09fig03.gif
int main(void)

{

space(25); 4 actual argument is 25, a value
. passed by main() (0 space() and

+

assigned 10 the variable number

formal parametr s unber |,
a variable declared in the
function heading

void space (int nusber)

[

OEBPS/html/graphics/09fig06.gif
52000 5200152002 52003 52004 52005 52000 52010 machine addres

elbytel byteloyteloyteloytelbyte|byte| bytelbyte| bytelby

Mo [] swwon o]
:
&ch = 52000 float type variable
afeet = 52001 takes 4 bytes

sdate = 52003
ssunnass = 52005
squit = 52009

L address operator

OEBPS/html/graphics/09fig05.gif
address operators

1

sfeet ssunnass.

v v

52000 5200152002 52003 52004 52005 52009 52010

machine addre

Ibyte|bytelbytelbytelbyte|bytel byte| bytelbyte | bytelby

. :
*pfeet *psun

Lindirection operators J

variable name

declaring pointers
giving pointer
values (addresses)

getting value
stored at address

OEBPS/html/graphics/t0118-01.jpg
Modifier

Meaning

Suppress assignment (see text).

Example: *%*d"
digit(s) Maximun field width. Input stops when the maximum field width is reached or when the
first whitespace character is encountered, whichever comes first.
Example: *%10s"
hh Read an integer as a signed char or unsigned char.
Examples: “%hnd" "shhu"
1 Read an integer as a long long or unsigned long long (C99)
Examples: “%11d" *%11u*
h,1,orL 'shd' and *shi* indicate that the value will be stored in a short int. "She 5

and *%shu* indicate that the value will be stored in an unsigned short int. '%1d" and
“%1i* indicate that the value will be stored in a long. "%10*, *%1x*, and "%1lu" indicate
that the value will be stored in unsigned long. *%le*, "%1f*, and '%1g" indicate that
the value will be stored in type double. Using L instead of 1 with e, f, and g indicates
that the value will be stored in type 1ong double. In the absence of these modifiers, d,
1,0, and x indicate type int, and e, ¥, and g indicate type float

OEBPS/html/graphics/08fig01.gif
unbuffered input

1IH

type HI1
v contents made immediately

available to program

buffered input

buffer.
type HI! W] [] -

characters sent I ‘ buffer contents made I
ons by one 1o buffer as typed “available to program

OEBPS/html/graphics/t0643-01.jpg
#include <stdio.h> «Filename in angle brackets

#include “mystuff.h* «Filename in double quotation marks

OEBPS/html/graphics/08fig02.gif
prose:
Tshphat the robot

slid open the hatch
and shouted his challenge.

prose in a file:

Ishphat the robot\nslid open the hatch\nand shouted his challenge.\n"Z

OEBPS/html/graphics/t0869-01.jpg
wetype_t A scalar type that can represent locale-specific character classifications.

WEOF A constant expression of type wint_t that does not correspond to any member of
the extended character set; the wide character equivalent of EOF, it's used to indi-
cate end-of-file for wide-character input

OEBPS/html/graphics/t0870-01.jpg
Prototype Description

int iswctype(wint_t wc, wotype_t desc); Returns true if we has the property described by
desc. (See discussion in the accompanying text.)

wetype_t wctype(const char *property); The wetype function constructs a value with type
wotype_t that describes a class of wide characters
identified by the string argument property. If the
property identifies a valid class of wide characters
according to the LC_CTYPE category of the current
locale, the wetype () function returns a nonzero
value that is valid as the second argument to the
iswctype() function; otherwise, it returns zero.

OEBPS/html/graphics/t0870-02.jpg
Prototype

Description

wint_t towlower(wint_t wc);

Returns the uppercase version of we if wc is
lowercase; otherwise, returns we.

wint_t towupper(wint_t we);

Returns the lowercase version of we if we is
uppercase; otherwise, returns wc

wint_t towctrans(wint_t we, wotrans_t desc);

Returns the lowercase version of we (as deter-
mined by the LC_GTYPE setting) if desc is
equal to the return value of

wetrans (“lower*); returns the uppercase
version of we (as determined by the
LC_GTYPE setting) if desc is equal to the
return value of wctrans (“upper*)

wotrans_t wotrans(const char *property);

If the argument is "upper” or *Lower", the
function returns a wetrans_t value usable as
an argument to towctrans () and reflecting
the LG_GTYPE setting; othenwise, returns 0.

OEBPS/html/graphics/t0643-02.jpg
#include <stdio.h> «>Searches system directories

#include "hot.h* «Searches your current working directory

#include "/usr/biff/p.h* «Searches the /usr/biff directory

OEBPS/html/graphics/10fig01.gif
12
1

[
[TTT] 7T Ty Tl T

[EEEIC o YR EIOTE o e =

mn:uenk imn:lmkir.m(:uz)k irnnE)mk 1

mnf_iu..k [P = (e § wnglmk L

ra const float rain(5](12)

OEBPS/html/graphics/t0864-01.jpg
wint_t getwchar(void);

wint_t putwe(wehar_t ¢, FILE *stream);

wint_t putwchar (wchar_t ¢);

wint_t ungetwc(wint_t ¢, FILE *stream);

OEBPS/html/graphics/10fig02.gif
= 0N =) 3 = 0N = D
e e O = IO = I
int sq[2](3] = {

{5,6),

7,8)

OEBPS/html/graphics/t0864-02.jpg
Function Prototype

double westod(const wehar_t * restrict nptr,
wehar_t ** restrict endptr);

float westof (const wehar_t * restrict nptr,
wehar_t ** restrict endptr);

long double wcstold(const wehar_t * restrict nptr,
wehar_t ** restrict endptr);

long int westol(const wehar_t * restrict nptr,
wehar_t ** restrict endptr, int base);

long long int westoll(const wohar_t * restrict nptr,
wehar_t ** restrict endptr, int base);

unsigned long int wcstoul(const wehar_t * restrict nptr,
wehar_t ** restrict endptr, int base);

unsigned long long int westoull(
const wehar_t * restrict nptr,
wehar_t ** restrict endptr, int base);

OEBPS/html/graphics/10fig03.gif
pointer addition increases by 2
since pti is type int

56014 56015 56016 56017 56018 56019 56020 56021 — machine addres

dates[0] dates(1] dates[2] dates[3]

array clements

int dates[y], *pti;
pti = dates; (or pti = & dates(0];)

A

pointer variable pt1 is assigned the
address of the first element of the array dates

OEBPS/html/graphics/10fig04.gif
| | | |
[1 I 1 I 1 [1
oo o &l
ptr1 address stored

*ptr1 s the value of the address

00DC, which is currently 100

ptr1zuen;

here

ptri set to 00DC

then

array
element

memory
address

array
values

ptriss sets ptri to 00DE

ete.

OEBPS/html/graphics/t0159-01.jpg
As a unary operator, changes the sign of the value at its right.

Multiplies the value at ts left by the value atits right

I Divides the value at its left by the value at its right. The answer is truncated if both operands
are integers.

% Yields the remainder when the value at its left is divided by the value to it right (integers
only).

++ Adds 1 1o the value of the variable to its right (prefix mode) or to the value of the variable to

itsleft (postfix mode)

Like ++, but subtracts 1

Miscellaneous Operators:

sizeof Yields the size, in bytes, of the operand to its right. The operand can be a type specifier in

parentheses, as i sizeof (float), or it can be the name of a particular variable, array,
and 5o forth, as in sizeof foo,

(type) As the cast operator, converts the following value to the type specified by the enclosed

keyword(s). For example, (float) 9 converts the integer 9 1o the floating-point number
0.0

OEBPS/html/graphics/10fig05.gif
zippo zippo+1 zippo+2 zippo+3
| zippo 101 | zippo 111 zippo [2] | zippo [3]
Zippo | zippo | zippo | zippo | 2ippo | 2ippo | zippo | zippo
to1t0) | to1011 | (13101 | (11011 | t21101 | 121011 | 131101 | 131011
addresses 4 OBF2 OBF4 OBFG 0BFG OBFA OBFC OBFE 0C00
|
“2ippo+t

*2ippo+2

OEBPS/html/graphics/t0858-01.jpg
Type Description

size_t The integer type returned by the sizeof operator
clock_t An arithmetic type suitable to represent time
time_t An arithmetic type suitable to represent time

struct tm A structure type for holding components of calendar time

OEBPS/html/graphics/t0806-01.jpg
(5>3) 7?1 : 2hasthevalue 1

(3>5) 71 : 2hasthevalue 2

(a>b) ?a: bhasthevalue of the larger of a or b.

OEBPS/html/graphics/07fig05.gif
— switen(nuber)

{

case 1: statement 1;
break;

> case 2: statement 2;

break;

case 3: statement 3;
break

default: statement

)

L statenent 5;

— switch(nuber)

{

case 1: statement 1;

L5 case 2: statement 2;
case 3: statement 3;

[— default: statement
)

L statenent 5;

OEBPS/html/graphics/07fig01.gif
(nun>10)

false rue

num=2+nun;

prantf(*%a\n®,nun) ;

[

if
(nun>10)
else
True
prantt("3d\n’, num); nun=2*nun;
. N

next statement

v

OEBPS/html/graphics/07fig02.gif
ih<=BREAKT

Kuh<=BREAK2

DALL=RATE1 *kuh

REAK?) (kwh - BREAK1)

OEBPS/html/graphics/07fig03.gif
if (condition)
do this;

it (condition)
do this;

olse
do this;

if (condition)
¢
do this;
if (condition)
do this;
}
olse
do this;

else goes with the most
recent i

else goes with the first if
since braces enclose inner
1f statements

OEBPS/html/graphics/t0858-03.jpg
Prototype

Description

clock_t clock(void);

Returns the implementations best approximation of
the processor time elapsed since the program was
invoked; divide by CLOCKS_PER_SEC to get the time
in seconds. Returns (clock_t) (-1) if the time is
not available or representable.

OEBPS/html/graphics/t0875-01.jpg
Trigraph symbol Trigraph Symbol Trigraph Symbol

22([22/ \

1 27 d 22< {

OEBPS/html/graphics/07fig04.gif
while ((ch = getchar()) {=EOF)
[
blanblan(ch) ;
if (oh == ")
break;
yakyak(ch);
}
blunder (n,m); «——

while ((ch = getchar()) I=EOF)
{

blanblah(ch) ;

if (ch == \n')

continue;

yakyak(ch);
)
blunder (n,m);

OEBPS/html/graphics/t0858-02.jpg
Member

Description

int tm_sec Seconds after the minute (0-61)

int tm_min Minutes after the hour (0-59)

int tm_hour Hours after midnight (0-23)

int tm_mday Day of the month (0-31)

int tn_mon Months since January (0-11)

int tm_year Years since 1900

int tn_wday Days since Sunday (0-6)

int tm_yday Days since January 1 (0-365)

int tn_isdst Daylight Savings Time flag (greater than zero value means DST is in effect; zero

means not in effect; negative means information not available)

OEBPS/html/graphics/t0380-01.jpg
zippo «the address of the first two-int element

zippo+2 «the address of the third two-int element

*(zippot2) «the third element, a two-int array, hence the address of its first
element, an int

*(zippo+2) + 1 «the address of the second element of the two-int array, also an int

((zippo+2) + 1) «the value of the second int in the third row (zippo[2][1])

OEBPS/html/graphics/t0158-01.jpg
= Assigns the value at its right to the variable at its left.

Arithmetic Operators:

+ Adds the value at ts right to the value at it left

- Subtracts the value at ts right from the value at is left.

OEBPS/html/graphics/t0731-01.jpg
Type Nam«

Binary Search Tree

Type Properties:

Type Operations:

A binary tree s either an empty set of nodes (an empty tree) or a set of
nodes with one node designated the root.

Each node has exactly two trees, called the left subtree and the right
subtree, descending from it.

Each subtree is itself a binary tree, which includes the possibility of
being an empty tree.

A binary search tree is an ordered binary tree in which each node con-
tains an item, in which allitems in the left subtree precede the root
item, and in which the root item precedes all items in the right subtree.

Initializing tree to empty.

Determining whether tree is empty.
Determining whether tree is full
Determining the number of items in the tree.
Adding an item to the tree

Removing an item from the tree.

Searching the tree for an item.

Visiting each item in the tree.

Emptying the tree

OEBPS/html/graphics/t0863-01.jpg
Function Prototype

int fuprintf(FILE * restrict stream,const wchar_t * restrict format, ...);

int fuscanf(FILE * restrict stream,const wchar_t * restrict format, ...);

int swprintf(wchar_t * restrict s, size_t n,const wchar_t * restrict format, ...)

int swscanf (const wehar_t * restrict s,const wchar_t * restrict format, ...);

int vfuprintf(FILE * restrict stream,
const wchar_t * restrict format, va_list arg);

int vfuscanf (FILE * restrict stream,
const wehar_t * restrict format, va_list arg);

int vswprintf (wchar_t * restrict s, size t n,
const wehar_t * restrict format, va_list arg);

int vswscanf (const wchar_t * restrict s,
const wehar_t * restrict format, va_list arg);

int vwprintf(const wchar_t * restrict format,va_list arg);

int vwscanf (const wchar_t * restrict format,va_list arg);

int wprintf(const wehar_t * restrict format, ...);

int wscanf(const wchar_t * restrict format,

wint_t fgetwc(FILE *stream);

wchar_t *fgetws(wchar_t * restrict s, int n,FILE * restrict stream);

wint_t fputwe(wchar_t ¢, FILE *stream);

int fputws(const wehar_t * restrict s,FILE * restrict stream);

int fwide(FILE *stream, int mode);

wint_t getwc(FILE *stream);

OEBPS/html/graphics/01fig05.gif
enter
source code

¥
Text Editor

nane.c 4

F source code

¥

Compiler

a.out 4

P | executable code

run program by
typing filename
a.0ut

OEBPS/html/graphics/01fig04.gif
concrete.c

source code

L—

l

Compiler

)

concrete.

object code

library code

obj

]

Linker

start-up code

)

concrete.

executable code

OEBPS/html/graphics/t0802-01.jpg
Operators (from High to Low Precedence)

Associativity

++ (postfix) -- (postfix) () (function

call) [1 {} (compound fiteral) . -> LR
++ (prefix) - - (prefix) - + ~ 1 R-L
sizeof * (dereference) & (address)
(type) (all unary)
(type name) R-L
“Is LR
+ - (both binary) LR
<< >> LR
<> LR
LR
& LR
: LR
| LR
8 LR
I LR
? : (conditional expression) R-L
= 4= o= <<= o= = | R-L
, (comma operator) LR

OEBPS/html/graphics/01fig03.gif
program

Test and debug
o the program

2;: Design the program

the program objectives

OEBPS/html/graphics/t0087-01.jpg
Constant Type Specifier

a 12

b. ox3

o

d. 2.34E07

e '\040'

f. 7.0

g. 6L

h. 6.0f

OEBPS/html/graphics/t0230-01.jpg
Name Action

tolower() If the argument is an uppercase character, this function returns the lowercase version;
othenwise, it just returns the original argument.

toupper() If the argument is a lowercase character, this function returns the uppercase version;
othenwise, it just returns the original argument.

OEBPS/html/graphics/t0660-01.jpg
Prototype Description

double acos(double x) Returns the angle (0 to = radians) whose cosine is x

double asin(double x) Returns the angle (/2 to n/2 radians) whose sine is x

double atan(double x) Returns the angle (-m/2 to /2 radians) whose tangent is x

OEBPS/html/graphics/t0829-01.jpg
char *positive sign

String used to indicate a non-negative formatted monetary value.

char *negative_sign

String used to indicate a negative formatted monetary value.

char int_frac_digits

Number of digits displayed after the decimal point for an internationally
formatted monetary quantity.

char frac_digits

Number of digits displayed after the decimal point for a locally format-
ted monetary quantity.

char p_cs_precedes

Setto 1 or 0 depending on whether currency_symbol precedes or fol-
lows the value of a non-negative formatted monetary quantity.

char p_sep_by_space

Set to 1 or 0 depending on whether currency_symboll is separated by
a space from the value of a non-negative formatted monetary quantity.

char n_cs_precedes

Setto 1 or 0 depending on whether currency_symbol precedes or fol-
lows the value of a negative formatted monetary quantity.

char n_sep_by_space

Set to 1 or 0 depending on whether currency_symbol s separated by a
space from the value of a negative formatted monetary quantity.

char p_sign_posn

Set 10 a value Indicating the positioning of a positive_sign string; 0
means parentheses surround the quantity and currency symbol, 1 means
the string precedes the quantity and currency symbol, 2 means the
string follows the quantity and currency symbol, 3 means the string
immediately precedes the currency symbol, and 4 means the string
immediately follows the currency symbol

char n_sign_posn

Set 10 a value indicating the positioning of a negat ive_sign string; the
meaning i the same s for char p_sign_posn.

char int_p_cs_precedes

Set 0 1 or 0 depending on whether int_currency_synbol precedes
or follows the value of a non-negative formatted monetary quantity.

char int_p_sep_by_space

Set 0 1 or 0 depending on whether int_currency_synbol is sepa-
rated by a space from the value of a non-negative formatted monetary
quantity.

char int_n_cs_precedes

Set 0 1 or 0 depending on whether int_currency_synbol precedes
or follows the value of a negative formatted monetary quantity.

char int_n_sep_by_space

Set to 1 or 0 depending on whether int_currency_symbol is separated
by a space from the value of a negative formatted monetary quantity.

char int_p_sign_posn

Set to a value indicating the positioning of the positive_sign fora
non-negative internationally formatted monetary quantity.

char int_n_sign_posn

Set to a value indicating the positioning of negative_sign for a nega-
tive internationally formatted monetary quantity.

OEBPS/html/graphics/t0087-02.jpg
Constant

Type

Specifier

a. 012

b. 2.9e05L

d. 100000

e \n'

f. 20.0f

9. 0xas

OEBPS/html/graphics/t0102-01.jpg
sf Floating-point number, decimal notation.

% Use %f or %e, depending on the value. The e style is used if the exponent is less than
4 or greater than or equal to the precision

%G Use %F or E, depending on the value. The %€ style is used if the exponent is less than
4 or greater than or equal to the precision

i Signed decimal integer (same as %d).

% Unsigned octal integer

%p A pointer.

s Character string

w Unsigned decimal integer.

- Unsigned hexadecimal integer, using hex digits Of

- Unsigned hexadecimal integer, using hex digits OF

a5 Prints a percent sign.

OEBPS/html/graphics/t0031-01.jpg
Valid Names

Invalid Names

wiggles $2)**
cat2 2cat
Hot_Tub Hot -Tub
taxRate tax rate
keab don't

OEBPS/html/graphics/t0830-01.jpg
Macro

Description

HUGE_VAL A positive double constant not necessarily expressible as a float; in the past, it
was used as the return value for functions when the magnitude of the result
exceeded the largest representable value.

HUGE_VALF The type float counterpart of HUGE_VAL.

HUGE_VALL The type long double counterpart of HUGE_VAL.

INFINITY Expands 1o a constant fLoat expression representing positive or unsigned infin-
ity, if available; otherwise, expands to a positive float constant that overflows
during compile time.

NAN Defined, if and only if, the implementation supports quiet NaNis (a value signify-

ing Not-a-Number) for f1loat.

FP_INFINITE

Classification number indicating an infinite floating-point value:

FP_NAN

Classification number indicating a floating-point value that s not a number.

FP_NORMAL

Classification number indicating a normal floating-point value.

FP_SUBNORMAL

Classification number indicating a subnormal (lowered precision) floating-point
value.

FP_ZERO

Classification number indicating a floating-point value representing 0.

FP_FAST_FMA

(Optional) If defined, this macro indicates that the fma() function works about
as fast, or faster than, a multiply and add of double operands.

FP_FAST_FMAF

(Optional) If defined, this macro indicates that the fmaf () function works about
as fast, or faster than, a multiply and add of f1loat operands.

OEBPS/html/graphics/t0841-02.jpg
typedef Name Properties

intptr_t Signed type can hold a pointer value

uintptr_t Unsigned type can hold a pointer value

OEBPS/html/graphics/t0241-01.jpg
Operator Meaning

s& and

I or

not

OEBPS/html/graphics/t0841-01.jpg
typedef Name Properties

intmax_t The widest signed type

uintmax_t The widest unsigned type

OEBPS/html/graphics/17fig10.gif
apples rice

bread yogurt
o = L

o111
-
corn
create new node
= e
reset pointers
corn
apples
rice

— bread
[yogurt

L = ST

6111

OEBPS/html/graphics/17fig13.gif
Data

Teft [rignt
1200 | 1580)" i

to be deleted

revised tree segment

OEBPS/html/graphics/17fig14.gif
Teft
1200

node to

be deleted

data

Toft | rignt
2220 | 2450

data

data

Teft

reconnect stranded
subtree to parent node

b)

Teft
1320

OEBPS/html/graphics/17fig11.gif
First gu

Arnie

Chioe

Fritz

susan

sylvia

Torval

Ursula

val

Wally

Winfred

Xaveria

Arnie

Chioe

Fritz

susan

sylvia

Torval

Ursula

val

Wally.

Winfred

Xaveria

Second guess —

Arnie

Chioe

Fritz

susan

sylvia

Eliminated from

Torval

Ursula

val

consideration

vally

Winfred

Xaveria

Eliminated from
‘consideration

OEBPS/html/graphics/t0824-02.jpg
Type Represents

fenv_t The entire floating-point environment

fexcept_t The collection of floating-point status flags

OEBPS/html/graphics/17fig12.gif
left subtree

right subtree

left child node

right child node

Garoet e
1] 11 1] 11
MOLL L NOLL UL ML L ML ML

OEBPS/html/graphics/t0824-01.jpg
Macro Meaning

EDOM A domain error in a function call (the argument is out of range)

ERANGE A range error in a function return (the return value is out of range)

EILSEQ A wide-character translation error

OEBPS/html/graphics/17fig15.gif
& @
@” T '

original ree deleting the node leaves two
unconnected subirees

.

)

b g

attach left subree o original attach right subiree 1o first open
parent node Tocation along the rightmost

‘branches of first subtree.

OEBPS/html/graphics/17fig16.gif
oot

NULL

OEBPS/html/graphics/11fig07.gif
executable file
called "echo""

[repeate
int main(int arge,charvargv(]) 4 run program with
‘

repeat Resistance s futile
N argv(@] argv[1] argv(2] argv[3]
) command-line

arguments

arge = ¢

.

three strings

OEBPS/html/graphics/t0504-01.jpg
Mode String

Meaning

-

Open a text file for reading

Open a text file for writing, truncating an existing file to zero length, or

"
creating the file if it does not exist.

‘ar Open a text file for writing, appending to the end of an existing file, or
creating the file if it does not exist.

e Open a text file for update (that i, for both reading and writing).

e Open a text file for update (reading and writing), first truncating the file
to zero length if it exists or creating the file if it does not exist.

rare Open a text file for update (reading and writing), appending to the end

of an existing file, or creating the file if it does not yet exist; the whole
file can be read, but writing can only be appended

b, wbr, *abr,
abt, ah®, twb,
bt abit, *asb*

Like the preceding modes, except it uses binary mode instead of text
mode

OEBPS/html/graphics/t0852-01.jpg
1ldiv_t 1ldiv(long numer, long denom);

Computes the quotient and remainder from divid-
ing numer by denon, placing the quotient in the
quot member of an 11div_t structure and the
remainder in the rem member; for inexact division,
the quotient is the integer of lesser magnitude that
is nearest the algebraic quotient—that is, truncate
toward zero (C99)

int mblen(const char *s, size_t n);

Returns the number of bytes (up to n) constituting
the multibyte character pointed to by s, returns @
if s points to the null character, returns -1 if s does
not point to a multibyte character; if s is NULL,
returns nonzero if multibyte characters have state-
dependent encoding, and zero otherwise.

int mbtowc(wchar_t *pw, const char
*s, size_t n);

If s is not NULL, determines the number of bytes
(up to n) constituting the multibyte character
pointed to by s and determines the type wehar_t
code for that character; if pw is not NULL, assigns
the code to the location pointed to by pw; returns
the same value as mblen(s, n)

int wetomb(char *s, wohar_t we);

Converts the character code in we to the corre-
sponding multibyte character representation and
stores it in the array pointed to by s, unless s is
NULL; if s i not NULL, it returns -1 if we does not
correspond to a valid multibyte character. If wc is
valid, it returns the number of bytes constituting
the multibyte character. I s is NULL, it returns
nonzero if multibyte characters have state-depen-
dent encoding, and it returns zero otherwise.

size_t mbstowos(
wehar_t * restrict pwcs,
const char *s restrict ,
size_t n);

Converts the array of multibyte characters
pointed to by s to an array of wide character
codes stored at the location beginning at pes:
conversion proceeds up to n elements in the pucs
array or a null byte in the s array, whichever occurs
first. If an invalid multibyte character is encoun-
tered, it returns (size_t) (-1); otherwise, it
returns the number of array elements filled
(excluding a null character, if any).

OEBPS/html/graphics/11fig06.gif
before sorting:

ptrst(o] points to input[0]
ptest(1] points to input[1]

ete

input(0] } o 3 2

(ejre) (ejr1] (0)(8e)
input(1] } T h 3 2

(el () (1)180]
snput(2) } s a 2 3

21101 (2111 (2]180)
input (3] } A n 2 3

EICHEE 1s11s0)

after sorting:

ptrst(o] points to input(3]
ptrst(1] points to input[2]
etc

OEBPS/html/graphics/t0229-01.jpg
Name True If the Argument Is

isalnum() Alphanumeric (alphabetic or numeric)

isalpha() Alphabetic

isblank() A standard blank character (space, horizontal tab, or newline) or any additional
locale-specific character so specified

iscntrl() A control character, such as Ctrl+8

isdigit() A digit

isgraph() Any printing character other than a space

islower() A lowercase character

isprint() A printing character

ispunct () A punctuation character (any printing character other than a space or an alphanu-

meric character)

isspace () A whitespace character (a space, newline, formfeed, carriage return, vertical tab,
horizontal tab, or, possibly, other locale-defined character)

isupper() An uppercase character

isxdigit() A hexadecimal-digit character

OEBPS/html/graphics/17fig08.gif
Four folks in a queue

Bob

tront

80b

o~

front

Joe

rear

Sue and Bob leave the queue and
Ken joins the queue

sue Ken

e Xen

Liz and Ben join the queue
rear

Bon —>

Liz

;

Lz

front

Joe

Ken

Circular queue wraps around to front of array

OEBPS/html/graphics/17fig09.gif
apples.

bread

rice

yogurt

make roor

ing items

Lfe et

apples | bread di1l | rice | yogurt
place new item
apples [bread | corn | @il | rice | yogurt

OEBPS/html/graphics/11fig03.gif
Input Original Input | Name. Remaining
Statement Queue* Contents | Queue
scanf(*%s', nane); | FleebertDHup | Fleevert | Okup
scanf(*%6s’, nane); | FleebertTHup | Fleeb ertCtup
scanf(*%8s", name); | AmnOular Ann Oular

sthe O represents the space character

OEBPS/html/graphics/11fig02.gif
r[we]ve]\e
nlale]0
char fruit(3](7]
{“Appler,
“pear”,
“orange*
H
differences in
declarations
e
[0
nlole]v0

char+ fruit(3]
{"Apple”,
“pear-,
“orange*
3.

OEBPS/html/graphics/11fig05.gif
Ble Tt[h[e[[bJe[s[t] Ttna[t] Ty[oJu[TcTa[n] Tb[e]

copy copy + 7

[(lele]s[tTa

orig

[BIe[TE[rTel ToleTalsTt TR al] Ty[oful Tealn[Tofel-

the command
stropy (copy + 7, orig);
means "copy string from orig to here”

OEBPS/html/graphics/11fig04.gif
of1fa| [ofn

er fit(m

st stop
puts(mesq):

sart stop
puts(mesg + 8):

OEBPS/html/graphics/t0835-01.jpg
double fmin(double x, double y);

Returns the minimum numeric value of the arguments.
If one argument is a NaN and the other numeric, the
numeric value is returned (C99).

double fma(double x, double y,
double z);

Returns the quantity (x*y)+2 as a terary operation,
rounding once at the end (C99).

int isgreater(real-floating x,
real-floating y);

A €99 macro that returns the value of (x) > ()
without raising the “invalid” floating-point exception
if one or both arguments are NaNs

int isgreaterequal(real-floating x,
real-floating y);

A €99 macro that returns the value of (x) >= (y)
without raising the “invalid floating-point exception
if one or both arguments are NaNs

int isless(real-floating x,
real-floating y);

A €99 macro that returns the value of (x) < (y)
without raising the “invalid” floating-point exception
if one or both arguments are NaNs.

int islessequal(real-floating x,
real-floating y);

A €99 macro that returns the value of (x) <= (y)
without raising the “invalid” floating-point exception
if one or both arguments are Nals

int islessgreater(real-floating X,
real-floating y);

A €99 macro that returns the value of

(x) < () 1] (x) > (y) without raising the
“invalid" floating-point exception f one or both argu-
ments are NaNs.

int isunordered(real-floating x
real-floating y);

Returns one if the arguments are unordered
(at least one being a Nan) and zero otherwise.

OEBPS/html/graphics/pub.jpg

OEBPS/html/graphics/t0072-01.jpg
Number Scientific Notation Exponential Notation
1,000,000,000 =1.0x10° =1.0e9

123,000 =1.23x10° =1.23e5

32256 =3.2256x10% =3.2256e2

0.000056 .6x10°5 .66-5

OEBPS/html/graphics/04fig07.gif
‘Tne value of pi is 8f. \n'

literal characters literal characters

conversion specifications

OEBPS/html/graphics/04fig06.gif
control statement

v

variable list

v

printf (

“You look great in %s\nf]

, [eotor]);

OEBPS/html/graphics/04fig09.gif
float n1; /* passed as type double */
double n2;
long ng, né;

printf(*s1d %1d %1d ¥1d\n', nt, n2, n3, n4);

8 bytes
4 bytes
s
3
210
n2
alg
ula
« "
w10
printf () removes Arguments n1 and n2 placed
values from stack as on stack as type double values,

type long n3 and n4 as type 1ong

OEBPS/html/graphics/t0804-04.jpg
dds the R-H quantity to the L-H variable and places the result in the L-H variable.

= subtracts the R-H quantity from the L-H variable and places the result in the L-H variable.

multiplies the L-H variable by the R-H quantity and places the result in the L-H variable.

/= divides the L-H variable by the R-H quantity and places the result in the L-H variable.

%= gives the remainder from dividing the L-H quantity by the R-H quantity and places the
result in the L-H variable.

&= assigns L-H & R-H to the L-H quantity and places the result in the L-H variable.

ssigns L-H | R-H to the L-H quantity and places the result in the L-H variable.

= assigns L-H ~ R-H to the L-H quantity and places the result in the L-H variable.

>>= assigns L-H >> R—H to the L-H quantity and places the result in the L-H variable.

<<= assigns L-H << R—H to the L-H quantity and places the result in the L-H variable.

OEBPS/html/graphics/04fig08.gif
80 in binary ASCIL of1]e[1[oeJefe]0

336 in binary

oo fofe]o]o]o]1

OEBPS/html/graphics/t0804-03.jpg
assigns the value at its right to the Ivalue on its left.

OEBPS/html/graphics/t0804-02.jpg
5 > 2is true and has the value 1

ais false and has the value 0.

(2 +a)

OEBPS/html/graphics/t0827-01.jpg
Prototype

Description

intmax_t imaxabs(intmax_t j);

Returns the absolute value of

inaxdiv_t inaxdiv(intmax_t numer,
intmax_t denom);

Computes the quotient and remainder of
nuner/denon in a single operation and
stores the two values in the returned
structure

intmax_t strtoimax(const char * restrict
nptr, char ** restrict endptr, int base);

Equivalent to the strtol ()function, except
that it converts the string to type intnax_t
and returns that value

uintmax_t strtoumax(const char * restrict
nptr, char ** restrict endptr, int base);

Equivalent to the strtoul ()function,
except that it converts the string to type
uintmax_t and returns that value

intmax_t westoimax(const wchar_t * restrict
nptr, wehar_t ** restrict endptr, int base);

The wchar_t version of strtoinax()

uintmax_t wostoumax(const wehar_t * restrict
nptr, wehar_t ** restrict endptr, int base);

The wehar_t version of strtoumax ()

OEBPS/html/graphics/t0804-01.jpg
< Less than

Less than or equal to

Equal to

Greater than or equal to

> Greater than

Unequal to

OEBPS/html/graphics/t0100-01.jpg
Symbolic Constant

Represents

FLT_WANT_DIG

Number of bits in the mantissa of a f1oat.

FLT_DIG

Minimum number of significant decimal digits for a t1oat

FLT_MIN_10_EXP

Minimum base-10 negative exponent for a f1oat with a fullset of significant
figures

FLT_MAX_10_EXP

Maximum base-10 positive exponent for a float

FLT_MIN

Minimum value for a positive fLoat retaining full precision

FLT_MAX

Maximum value for a positive f1oat

FLT_EPSTLON

Difference between 1.00 and the least float value greater than 1.00

OEBPS/html/graphics/t0851-01.jpg
void gsort(void *base, size_t
nmem, size_t size, int (*comp)
(const void *, const void *));

Sorts the array pointed to by base in the order
provided by the function pointed to by comp;

the array has nmen elements, each of size bytes;
the comparison function will return a value less
than zero if the object pointed to by the first argu-
ment is less than the object pointed to by the sec-
ond argument, zero if the objects are equivalent,
or avalue greater than zero if the frst object is
greater.

int abs(int n);

Returns the absolute value of n; the return value
may be undefined if n is a negative value with no
positive counterpart, which can happen if n is
INT_WIN in two's complement representation

div_t div(int numer, int denom);

Computes the quotient and remainder from divid-
ing numer by denon, placing the quotient in the
quot member of a div_t structure and the
remainder in the rem member; for inexact division,
the quotient is the integer of lesser magnitude
that s nearest the algebraic quotient (that is,
truncate toward zero).

long labs(int n);

Returns the absolute value of n; the return value
may be undefined if n is a negative value with no
positive counterpart, which can happen if n is
LONG_WIN in two's complement representation.

ldiv_t ldiv(long numer, long denom);

Computes the quotient and remainder from divid-
ing numer by denon, placing the quotient in the
quot member of an 1div_t structure and the
remainder in the rem member; for inexact division,
the quotient is the integer of lesser magnitude
that is nearest the algebraic quotient (that s, trun-
cate toward zero).

long long 1labs(int n);

Returns the absolute value of n; the return value
may be undefined if nis a negative value with no
positive counterpart, which can happen if n is
LONG_LONG_IN in two's complement
representation (C99).

OEBPS/html/graphics/t0827-02.jpg
Prototype Description

char * setlocale(int The function sets certain locale values to the values
category, const char * specified by the locale and indicated by locale. The
locale); category value controls which locale values get set (see

Table RS.:11). The function returns the null pointer f it
cannot honor the request. Otherwise, it returns a pointer
associated with the specified category in the new locale.

struct leonv * localeconv(void); Returnsa pointer toa struct lconv structure filled in
with the values of the current locale.

OEBPS/html/graphics/t0066-01.jpg
Sequence Meaning

\a Alert (ANSI C).
b Backspace.

\f Form feed.

\n Newine.

\r Carriage return.
1t Horizontal tab.
v Vertical tab.

n Backslash (1).

Single quote (*).

Double quote (*).

\? Question mark (2)

\@oo Octal value. (o represents an octal digit.)

\xhh Hexadecimal value. (h represents a hexadecimal digit.)

OEBPS/html/graphics/t0874-02.jpg
Type printf () scanf () Minimum Maximum
Name Specifier Specifier Value Value

intptr_t PRIAPTR SCNAPTR INTPTR_MIN INTPTR_MAX

uintptr_t PRIUPTR SCBUPTR 0 UINTPTR_NAX

OEBPS/html/graphics/t0874-01.jpg
Type printf () scanf () Minimum Maximum
Name Specifier Specifier Value Value

intmax_t PRIGHAX SCNAMAX INTMAX_MIN INTMAX_MAX

uintmax_t PRIUMAX SCBUMAX [} UINTMAX_MAX

OEBPS/html/graphics/02fig03.gif
printf()

printf(*That's mere contrarinessi\n®);

OEBPS/html/graphics/02fig02.gif
aspignment
Jperat

OEBPS/html/graphics/02fig01.gif
typical C

program
#include preprocessor instructions
main () is always the
int main(void) first function called
functions are
statenents | — made up of
statements

function a()

function b()

functions are the
building blocks of C

decaration

assignnent keywords
v 5 types of [renction - identifiers
statements is » [Hpunction operators

C language control data

w1l

language

OEBPS/html/graphics/02fig06.gif
executing line in
program stillbad.c

state of variables

variables allocated }

variable n setto 5 }

variable n2 set to n

variable n3 set to n2

squared when it }

should be n * n2

2w
w2 om
25| |7

2w
25| [623]
2 o3

OEBPS/html/graphics/02fig05.gif
int main(void) /* converts 2 fathoms to feet */ —use comments

{

int feet, fathows; ———— pick meaningful names
e wespace

fathons=2;

feet=6* fathons; —————————————— one statement per line

printf(“There are %d feet in %d fathons!\n', feet, fathons);
return 0;
}

OEBPS/html/graphics/02fig04.gif
Header

preprocessor instructions — | ¢ #include <stdio.h>
function name with arguments — | © it main(void)

I
declaration statement — | © int g
issignment statement — | © @ = 1
function statement — | © printf (*%d is neat. \n*,q);
return 0;

)

OEBPS/html/graphics/t0868-02.jpg
Macro Description

wint_t An integer type that can hold any value of the extended character set plus at least
one value not a member of the extended character set

wotrans_t A scalar type that can represent locale-specific character mappings.

OEBPS/html/graphics/tipsicon_icon.gif

OEBPS/html/graphics/t0868-01.jpg
size_t wcsrtombs(

char * restrict dst,

const wehar_t ** restrict src,
size_t len,

mbstate_t * restrict ps);

The wesrtombs () function converts a sequence of wide
characters from the array indirectly pointed to by

src into a sequence of corresponding multibyte
characters that begins in the conversion state described
by the object pointed to by ps. If dst is not a null pointer,
the converted characters are then stored into the array
pointed to by dst. Conversion continues up to and
including a terminating null wide character, which is also
stored. Conversion stops earlier in two cases: when a
wide character is reached that does not correspond to a
valid multibyte character, and (if dst is not a null pointer)
when the next multibyte character would exceed the limit
of Len total bytes to be stored into the array pointed to
by dst. Each conversion takes place as if by a call to the
wertonb function. If dst is not a null pointer, the pointer
object pointed to by src is assigned either a null pointer
(if conversion stopped due to reaching a terminating null
wide character) or the address just past the last wide char-
acter converted (if any). If conversion stopped due to
reaching a terminating nul wide character, the resulting
state described is the initial conversion state. If successful,
the function returns the number of multibyte characters in
the resulting multibyte sequence (excluding the null char-
acter, if any); otherwise it returns 1

OEBPS/html/graphics/t0822-01.jpg
double complex
ctanh(double complex z);

Returns the complex hyperbolic tangent of z

double complex
cexp(double complex z);

Returns the complex value of e to the z power

double complex
clog(double complex z);

Returns the complex natural (base e) logarithm of z

double
cabs (double complex z);

Returns absolute value (or magnitude) of z

double complex
cpows (double complex z,
double complex y);

Returns the value of z raised to the y power

double complex
csart (double complex z);

Returns the complex square root of z

double
carg(double complex z);

Returns the phase angle (or argument), in radians, of z

double
cinag(double complex z);

Returns the imaginary part of z as a real number

double complex
conj (double complex z);

Returns the complex conjugate of z

double complex
cproj (double complex z);

Returns the projection of z onto the Riemann sphere

double
creal (double complex z);

Returns the real part of z as a real number

OEBPS/html/graphics/t0117-01.jpg
Conversion Specifier _Meaning

%C Interpret input as a character.

sd Interpret input as a signed decimal integer.

%e, %f, %, % Interpret input as a floating-point number (a is C99).

SE, %F, %6, %A Interpret input as a floating-point number (A is C99).

%1 Interpret input as a signed decimal integer.

%0 Interpret input as a signed octal integer.

% Interpret input as a pointer (an address)

s Interpret input as a string. Input begins with the first non-whitespace charac-

ter and includes everything up to the next whitespace character.

s Interpret input as an unsigned decimal integer.

o, %X Interpret input as a signed hexadecimal integer.

OEBPS/html/graphics/04fig03.gif
X' the character } x
wnesing P [[0

e A

OEBPS/html/graphics/04fig02.gif
‘type char
allocate 1 byle

char ch;

oh

type char

tamanetsi; YL\
[

name

OEBPS/html/graphics/04fig05.gif
#define taxrate 0.015
int main(void)

«

bill=taxrate * sun;

¢

int wain(void)

B

bi11-0.015 * sun;

COMPILER

o ryou e

D
at work

OEBPS/html/graphics/9780132713603.jpg
SAMS

C

Primer Plus

Fifth Edition

Stephen Prata

OEBPS/html/graphics/04fig04.gif
terminating null character

6 characters

OEBPS/html/graphics/t0193-01.jpg
scores += 20 is the same as scores = scores + 20.

dimes -= 2 s the same as dimes = dimes - 2.

bunnies *= 2is the same as bunnies = bunnies * 2

time /= 2.73is the same as time = time / 2.73

reduce %= 3 is the same as reduce = reduce % 3.

OEBPS/html/graphics/t0615-01.jpg
Bit Pattern Decimal Color
000 0 Black
001 1 Red

010 2 Green
011 3 Yellow
100 4 Blue

101 5 Magenta
110 6 Cyan
m 7 White

OEBPS/html/graphics/04fig01.gif
Z]iInJo] [wle[n]tT TtThTe] Jst]r]in

A

each cell is one byte null character

OEBPS/html/graphics/t0833-01.jpg
double scalbn(double x, int n);

Returns x x FLT_RADIX" (C99).

double scalbln(double x, long n);

Returns x x FLT_RADIX" (C99).

double cbrt (double x);

Returns the cube root of x (C99).

double hypot (double x, double y);

Returns the square root of the sums of the squares of
xand y (C99).

double pow(double x, double y);

Returns x to the y power.

double sqrt (double x);

Returns the square root of x

double erf(double x);

Returns the error function of x (C99).

double erfc(double x);

Returns the complementary error function of x (C99).

double lgamma(double x);

Returns the natural logarithm of the absolute value of
the gamma function of x (C99).

double tgamma(double x);

Returns the gamma function of x (C99).

double ceil(double x);

Returns the smallest integral value not less than x

double fabs(double x);

Returns the absolute value of x.

double floor(double x);

Returns the largest integral value not greater than x.

double nearbyint (double x);

Rounds x to the nearest integer in floating-point for-
mat; it uses the rounding direction specified by the
floating-point environment, if available. The “inexact”
exception is not raised. (C99).

double rint(double x);

Like nearbyint (), except it may raise the “inexact”
exception (C99).

long int lrint(double x);

Rounds x to the nearest integer in long int format; it
uses the rounding direction specified by the floating-
point environment, if available (C99).

long long int 1lrint(double x);

Rounds x to the nearest integer in 1ong long int
format; it uses the rounding direction specified by the
floating-point environment, if available (C99).

double round(double x);

Rounds x o the nearest integer in floating-point for-
mat; it always rounds halfway values away from zero
(€99).

long int lround(double x);

Like round (), but the answer is returned as type long
int (C99).

OEBPS/html/graphics/t0840-01.jpg
typedef Name Properties

int_leasts_t At least 8 bits signed
int_least16_t At least 16 bits signed
int_least32 t At least 32 bits signed
int_least6a_t At least 64 bits signed
uint_leasts_t At least 8 bits unsigned
uint_least16_t At least 16 bits unsigned
uint_leastd2_t At least 32 bits unsigned

uint_least64_t At least 64 bits unsigned

OEBPS/html/graphics/t0840-02.jpg
typedef Name

int_fasts_t

Properties

At least 8 bits signed

int_fast16_t

At least 16 bits signed

int_fast32_t

At least 32 bits signed

int_fasté4_t

At least 64 bits signed

uint_fasts_t

At least 8 bits unsigned

uint_fast16_t

At least 16 bits unsigned

uint_fast32_t

At least 32 bits unsigned

uint_fasted_t

At least 64 bits unsigned

OEBPS/html/graphics/t0867-01.jpg
aren’t enough to specify a valid wide character but
appear to potentially represent part of one, the function
returns -2. If there is a coding error, the function returns
-1, stores EILSEQ in errno, and stores no value.

Size_t wortomb(char * restrict s,
wchar_t wc,
mbstate_t * restrict ps);

1f's is the null pointer, the cal is equivalent to setting wo.
to the null wide character and using an internal buffer
for the first argument. If s is not a null pointer, the
wertomb () function determines the number of bytes
needed to represent the multibyte character that corre-
sponds to the wide character given by we (including any
shift sequences), and stores the multibyte character repre-
sentation in the array whose first element is pointed to by
5. At most, MB_CUR_MAX bytes are stored. If wc is a null
wide character, a null byte is stored, preceded by any shift
sequence needed to restore the initial shift state; the
resulting state described is the initial conversion state. If
we is a valid wide character, the function returns the num-
ber of bytes to store the multibyte version, include bytes,
if any, specifying a shift state. If w is not valid, the func-
tion stores EILSEQ in errno, and returns —1

size_t mbsrtowcs(

wchar_t * restrict dst,
const char ** restrict src,
size_t len,

mbstate_t * restrict ps);

The mbstrtowes () function converts a sequence of
multibyte characters that begins in the conversion state
described by the object pointed to by ps, from the array
indirectly pointed to by src, into a sequence of corre-
sponding wide characters. If dst is not a null pointer, the
converted characters are stored in the array pointed to by
dst. Conversion continues up to and including a terminat-
ing null character, which s also stored. Conversion stops
earlier in two cases: when a sequence of bytes is encoun-
tered that does not form a valid multibyte character, and
(if dst is not a null pointer) when 1en wide characters
have been stored into the array pointed to by dst. Each
conversion takes place as if by a call to the mbrtowc()
function. If dst is not a null pointer, the pointer object
pointed to by src is assigned either a null pointer (if con-
version stopped due to reaching a terminating null charac-
ter) or the address just past the last multibyte character
converted (if any). If conversion stopped due to reaching a
terminating null character and if dst is not a null pointer,
the resulting state described is the initial conversion state.
If successful, the function returns the number of multibyte
characters successfully converted (excluding the null char-
acter, if any); otherwise it returns 1

OEBPS/html/graphics/06fig07.gif
int boo[4] (note: 2 byles per int)
1980 8 4816 3
boo(0] boo(1] boo(2] bool3]
char fool4] (note: I-byte char)
h o 1 3
fool0] foo(1] fool2] foo(3]

OEBPS/html/graphics/06fig06.gif
character array but not a string

v o]u c[a]n s]e]e AE

character array

ing

v |o]u c[a]n s]e]e i[e] T

A

aull character

OEBPS/html/graphics/06fig05.gif
ldo

printf("Fa la la lat\n");

next
statenent

false

Twnie

true

OEBPS/html/graphics/06fig04.gif
lﬁ»r

Gunces=1,

ounces++,
COSt+=NEXT_02

o this;

OEBPS/html/graphics/06fig03.gif
Jfor

initialize expression once -
before loop begi count=1;
T this expression is done.
atend of each loop.
=] counts+;

printf(*8e my Valentine!\n');

OEBPS/html/graphics/06fig02.gif
‘comparison

hecks (0 see if the
value of canoes is 5

gives canoes
the value of 5

OEBPS/html/graphics/t0805-01.jpg
rabbits *= 1.6; has the same effect as rabbits = rabbits * 1.6;.

OEBPS/html/graphics/06fig01.gif
lwmk

next false

statenent

true

printf(*Tra la la lalin’);

OEBPS/html/graphics/t0805-02.jpg
AND

OR

NOT

OEBPS/html/graphics/t0805-03.jpg
6>24& 3

3is true.

(6>2883==3)isfale

x 1= 0 && 20/x < 5. The second expression is evaluated only if x is nonzero

OEBPS/html/graphics/t0834-01.jpg
long long int llround(double x);

Like round(), but the answer is returned as type long
long int (C99)

double trunc(double X);

Rounds x to the nearest integer in floating-point for-
mat that is no greater in magnitude than x (C99).

int fmod(double x, double y);

Returns the fractional part of x/y; If y is nonzero, the
esult has the same sign as x and is smaller in magni-
tude than y.

double remainder(double x, double y);

Returns x REM y, which IEC 60559 defines as x -
n*y, where n is the integer nearest the value of x/y; n
is even if the absolute value of (n - x/y) is 1/2. (C99).

double remquo(double x, double y,
int *quo);

Returns the same value as remainder () and places in
the location pointed to by quo a value having the same
sign as x/y and having the value the integer magni-
tude of x/y modulus 2", where k is an
implementation-dependent integer whose value is at
least 3 (C99).

double copysign(double x, double y);

Returns a value with the magnitude of x and the sign
of y (C99).

double nan(const char *tagp);

Returns the type double representation of a quiet
NaN; nan (*n-char-seq*) is equivalent to
strtod("NAN(n-char-seq)", (char **)NULL);
nan (**) is equivalent to strtod(“NAN()*, (char
**)NULL); for other argument strings, the call is equiv-
alent to strtod ("NAN', (char **)NULL). Returns O
if quiet NaNs are not supported (C99).

double nextafter(double x, double y);

Returns the next representable type double value after
xin the direction of y; returns x if x equals y (C99).

double nexttoward(double x,
long double y);

The same as nextafter (), except the second
argument is long double and, if x equals y, the
function returns y converted to double (C99).

double fdim(double x, double y);

Returns the positive difference of the arguments (C99).

double fmax(double x, double y);

Returns the maximum numeric value of the argu-
ments; if one argument is a NaN and the other
numeric, the numeric value is returned (C99).

OEBPS/html/graphics/t0140-01.jpg
Operators Associativity
0 Left o right
+ - (unary) Right to left
“ Leftto right
+ - (binary) Leftto right

Right 0 left

OEBPS/html/graphics/t0106-01.jpg
Flag

Meaning

The item is left-justified; that is, it is printed beginning at the left of the field.

Example: *%-20s"

Signed values are displayed with a plus sign, if positive, and with a minus sign, if negative.

Example: '%+6.2"

space

Signed values are displayed with a leading space (but no sign) if positive and with a minus sign
if negative. A + flag overrides a space.

Example: "% 6.2f"

Use an alternative form for the conversion specification. Produces an initial @ for the %o form
and an initial 0x or X for the %x or %X form, respectively. For all floating-point forms, # guaran-
tees that a decimal-point character is printed, even if no digits follow. For %g and %G forms, it
prevents trailing zeros from being removed

Examples: "5s#0", *%#8.0f", and "%+#10.3E"

For numeric forms, pad the field width with leading zeros instead of with spaces. This flag is
ignored if a - flag is present or if, for an integer form, a precision is specified.

Examples: *%010d" and *%08.3f*

OEBPS/html/graphics/t0811-01.jpg
Storage Class Duration _Scope _Linkage How Declared

Automatic Automatic Block None Ina block

Register Automatic Block None Ina block with the keyword
register

Static with external linkage ~ Static File External Outside of all functions

Static with intemal linkage ~ Static file Internal Outside of allfunctions with static

Static with no linkage static Block None Inablock with the keyword static

OEBPS/html/graphics/t0517-01.jpg
Function Call Effect

fseek(file, @L, SEEK SET) Go to the beginning of the file.
fseek(file, 0L, SEEK_CUR) Stay at the current position.
fseek(file, L, SEEK_END) Go to the file's end.

fseek(file,ftell-pos, SEEK SET) Go to position ftell-pos from the beginning;
ftel1-pos is a value returned by ftell()

OEBPS/html/graphics/t0839-01.jpg
Macro Description

NULL An implementation-defined constant representing the null pointer

of fsetof (type, Expands to a size_t value representing the offset, in bytes, of the indicated
member -designator) member from the beginning of structure having type type; the behavior is
undefined if the member is a bit ield,

OEBPS/html/graphics/16fig03.gif

OEBPS/html/graphics/t0839-02.jpg
typedef Name Properties

ints_t 8 bits signed
int16_t 16 bits signed
inta2_t 32 bits signed
intea_t 64 bits signed
uints_t 8 bits unsigned
uinti6_t 16 bits unsigned
uint32_t 32 bits unsigned

uint6a_t 64 bits unsigned

OEBPS/html/graphics/t0862-02.jpg
Macro Description

NULL The null pointer.

WCHAR_MAX The maximum value for wehar_t

WCHAR_MIN The minimum value for wehar_t

WEOF A constant expression of type wint_t that does not correspond to any member of

the extended character set; the wide character equivalent of EOF, it's used to indi-
cate end-of-fle for wide-character input.

OEBPS/html/graphics/t0862-01.jpg
Type Description

wohar._t Aninteger type that can represent the largest extended character set specified by
supported locales

wint_t An integer type that can hold any value of the extended character set plus at least
one value not a member of the extended character set

size_t The integer type returned by the sizeof operator

mbstate_t A non-array type that can hold the conversion state information needed to convert

between sequences of multibyte character and of wide characters

struct tn Astructure type for holding components of calendar time

OEBPS/html/graphics/16fig02.gif
macro arguments
#define MEAN(X,Y),

((x)+(M)/2)

macro replacement body

OEBPS/html/graphics/16fig01.gif
#dotine PX prantf(*x is 4d.\n*,x)

LrH—r—l

macro body

preprocessor
directive

OEBPS/html/graphics/t0845-01.jpg
char * gets(char *);

Gets the next line from the standard input

void perror(const char *);

Wiites system erfor messages to the standard error

int printf(
const char * restrict, ...);

Writes formatted output to the standard output

int putc(int, FILE *);

Writes the indicated character to the indicated output

int putchar (int);

Writes the indicated character to the standard output

int puts(const char *);

Wites the string to the standard output

int remove(const char *)

Removes the named file

int rename(const char *
constchar *);

Renames the named file

void rewind(FILE *)

Sets the file-position pointer to the start of the file

int scanf(const char * restrict,
)y

Reads formatted input from the standard input

void setbuf (FILE * restrict,
char * restrict);

Sets the buffer size and location

int setvbuf (FILE * restrict,
char *restrict, int, size t);

Sets the buffer size, location, and mode

int snprintf(char * restrict,
size_t n,
const char * restrict, ...);

Wites formatted output up to n characters to the
indicated string

int sprintf(char * restrict,
const char * restrict, ...);

Wites formatted output to the indicated string

int sscanf (const char *restrict,
const char * restrict, ...);

Reads formatted input from the indicated string

FILE * tmpfile(void);

Creates a temporary file

char * tmpnan(char *);

Generates a unique name for a temporary file

int ungetc(int, FILE *);

Pushes the indicated character back onto the input
stream

int vfprintf (FILE * restrict,
const char * restrict, va_list);

Like fprint () ;, except uses a single list argument
of type va_list, initialized by va_start, instead of a
variable argument list

int vprintf(const char * restrict,

Like printf () ;, except uses a single list argument

OEBPS/html/graphics/t0044-01.jpg
ISO/ANSI C Keywords

auto enun restrict unsigned
break extern return void

case float short volatile
char for signed while
const goto sizeof _Bool
continue if static _Complex
default inline struct _Imaginary
do int switch

double long typedef

else register union

OEBPS/html/graphics/t0661-01.jpg
double

atan2(double y, double x)

Returns the angle (—x to = radians) whose tangent isy / x

double

cos(double x)

Returns the cosine of x (x i radians)

double

sin(double x)

Returns the sine of x (x in radians)

double

tan(double x)

Returns the tangent of x (x in radians)

double

exp(double x)

Returns the exponential function of x (€*)

double

1og(double x)

Returns the natural logarithm of x

double

1og10(double x)

Returns the base 10 logarithm of x

double

pow(double x, double y)

Returns x to the y power

double

sart(double x)

Returns the square oot of x

double

ceil(double x)

Returns the smallest integral value not less than x

double

fabs (double x)

Returns the absolute value of x

double

f1oor (double X)

Returns the largest integral value not greater than x

OEBPS/html/graphics/t0828-02.jpg
Macro

Description

char *decimal_point

Decimal-point character for non-monetary values.

char *thousands_sep

Character used to separate groups of digits before the decimal point for
non-monetary quantities.

char *grouping

Astring whose elements indicate the size of each group of digits for
non-monetary quantities.

char *int_curr_symbol

The international currency symbol.

char *currency_symbol

The local currency symbol.

char *mon_decimal_point

Decimal-point character for monetary values.

char *mon_thousands_sep

Character used to separate groups of digits before the decimal point for
monetary quantities.

char *mon_grouping

Astring whose elements indicate the size of each group of digits for
monetary quantities.

OEBPS/html/graphics/t0828-01.jpg
Macro Description

NULL Leave the locale unchanged and return a pointer to the current locale.

Lo ALL Change all locale values.

LC_COLLATE Change locale values for the collating sequence used by strcol1() and strxfrm()

Lo_CTYPE Change locale values for the character-handling functions and the multibyte functions.

LC_MONETARY Change locale values for monetary-formatting information.

LC_NUMERIG Change locale values for the decimal point symbol and non-monetary formatting used
by formatted VO and by string-conversion functions.

LCTIME Change locale values for the time formatting used by strftine()

OEBPS/html/graphics/t0101-01.jpg
Conversion
Specification Output

%a Floating-point number, hexadecimal digits and p-notation (C99).
A Floating-point number, hexadecimal digits and P-notation (C99).
“e Single character.

wd Signed decimal integer.

se Floating-point number, e-notation.

SE Floating-point number, e-notation.

OEBPS/html/graphics/t0873-02.jpg
Type printf() scanf () Minimum Maximum
Name Specifier Specifier Value Value
int_fast8_t PRIFASTAS SCNFASTdS INT_FAST8_MIN INT_FAST8_MAX
int_fasti6_t PRIFASTA16 SCNFASTA16 INT_FAST16_MIN INT_FAST16_MAX
int_fast32_t PRIFASTA32 SCNFASTd32 INT_FAST32 MIN INT_FAST32_MAX
int_fast 64_t PRIFASTd64 SCNFASTd64 INT_FASTE4_MIN INT_FAST64_WAX
uint_fast 8_t PRIFASTUS SCNFASTUS ° UINT_FAST8_MAX
uint_fast 16_t PRIFASTu16 SCNFASTu16 ° UINT_FAST16_MAX
uint_fast 32_t PRIFASTU32 SCNFASTu32 ° UINT_FAST32_MAX
uint_fast 64_t PRIFASTUS4 SCNFASTUG4 ° UINT_FAST64_MAX

OEBPS/html/graphics/t0856-01.jpg
char *strtok(char * restrict si,
const char * restrict s2);

This function decomposes the string s1 into
separate tokens; the string s2 contains the charac-
ters that are recognized as token separators. The
function s called sequentially. For the initial call, st
should point to the string to be separated into
tokens. The function locates the first token separa-
tor that follows a non-separator character and
replaces it with a null character. It returns a pointer
toastring holding the first token. If no tokens are
found, it returns NULL. To find further tokens in the
string, call strtok() again, but with NULL as the first
argument. Each subsequent call returns a pointer to
the next token o to NULL if no further tokens are
found. (See the example following this table.)

char * strerror(int errnum);

Returns a pointer to an implementation-dependent
error message string corresponding to the error
number stored in erraun.

int strlen(const char * s);

Returns the number of characters (excluding the
terminating null character) in the string s

OEBPS/html/graphics/t0873-01.jpg
Type printf () scanf () Minimum Maximum

Name Specifier Specifier Value Value
int_least32_t PRILEASTA32 ~ SCNLEASTA32 INT_LEASTS2 MIN INT_LEAST32_MAX
int_least 64_t PRILEASTA64 SCNLEASTd64 INT_LEAST64_MIN INT_LEAST64_MAX
uint_least 8 t PRILEASTUS SCNLEASTuS 0 UINT_LEASTB_MAX
uint_least 16_t PRILEASTu16 SCNLEASTU16 © UINT_LEAST16_MAX
uint_least 32 t PRILEASTu32 SCNLEASTu32 © UINT_LEAST32_MAX
uint_least 64_t PRILEASTU64 SCNLEASTu64 © UINT_LEAST64_MAX

OEBPS/html/graphics/t0627-01.jpg
Bit(s)

Meaning

0-1 Number of 1.4MB floppy drives
2 Not used

34 Number of CD-ROM drives

5 Not used

Number of hard drives

OEBPS/html/graphics/t0185-01.jpg
- Is less than

Is less than o equal to

Is equal to

Is greater than or equal to

> Is greater than

Is unequal to

OEBPS/html/graphics/cautionicon_icon.gif

OEBPS/html/graphics/t0861-01.jpg
sn The newline character

W The minute as a decimal number (00-59)

. Locale’s equivalent of a.m./p.m. for 12-hour clock

s Locale’s 12-hour clock time

%R Equivalent o "SH: %"

% The second as a decimal number (00-61)

st The horizontal tab character

%T Equivalent to "%H:%M:%S"

w 150 8601 weekday number (1-7), with Monday being 1

W Week number of the year, counting Sunday as the first day of week 1 (00-53)

W 150 8601 week number of the year, counting Sunday as the first day of week 1
(00-53)

" Weekday as a decimal, beginning with Sunday (0-6)

s Week number of the year, counting Monday as the first day of week 1 (00-53)

X The locale’s date representation

X The locale’s time representation

sy The year without century as a decimal number (00-99)

W The year with century as a decimal number

w2 Offset from UTC in 1SO 8601 format ("~800" meaning eight hours behind
Greenwich, thus eight hours west); no characters are substituted if the information
is not available

sz The time zone name; no characters are substituted if the information is not available

s % (that is, the percent sign)

OEBPS/html/graphics/t0855-01.jpg
int strncmp(const char *si, const char
*s2, size_t n);

Compares up to the first n characters or up to the
first null character of the arrays pointed to by s1
and s2; two arrays are identical if al tested pairs
match; otherwise, the arrays compare as the first
unmatching pair. Characters are compared using
the character code values; the function returns zero
if the arrays are the same, less than zero If the first
array is less than the second, and greater than zero
if the first array is greater.

size_t strxfrm(char * restrict st,
const char * restrict s2, size_t n);

Transforms the string in s2 and copies up to n
characters, including a terminating null character, to
the array pointed to by s1; the criterion for the
transformation is that two transformed strings will
be placed in the same order by stremp() as str-
col1() would place the untransformed strings; the
function returns the length of the transformed
string (not including the terminal null character).

char *strchr(const char *s, int c);

Searches for the first occurrence of ¢ (converted to
char) in the string pointed to by s; the null charac-
ter is part of the string; returns a pointer to the first
occurrence, or NULL if none is found

size_t strospn(const char *si, const
char *s2);

Returns the length of the maximum initial segment
of 51 that does not contain any of the characters
found in s2.

char *strpbrk(const char *si, const
char *s2);

Returns a pointer to the location of the
first character in s1 to match any of the characters
in s2; returns NULL if no match is found

char *strrchr(const char *s, int c);

Searches for the last occurrence of ¢ (converted to
char) in the string pointed to by s; the null
character is part of the string; returns a pointer to
the first occurrence, o NULL if none is found,

size_t strspn(const char *si, const
char *s2);

Returns the length of the maximum initial segment
of s1 that consists entirely of characters from s2.

char *strstr(const char *si, const
char *s2);

Returns a pointer 1o the location of the first
occurrence in s1 of the sequence of characters in
s2 (excluding the terminating null character);
returns NULL if no match is found

OEBPS/html/graphics/t0104-01.jpg
Modifier Meaning

flag The five flags (-, +, space, #, and @) are described in Table 4.5. Zero or more flags may be
present.

Example: *5%-10d"

digitts) The minimum field width. A wider field will be used if the printed number or string won't
fit in the field

Example:

4d"

OEBPS/html/graphics/t0832-01.jpg
double

acos(double x);

Returns the angle (0 to = radians) whose cosine is x.

double

asin(double X);

Returns the angle (/2 to 12 radians) whose sine
isx.

double

atan(double X);

Returns the angle (-2 to w72 radians) whose tangent
isx.

double

atan2(double y, double x);

Returns the angle (- to 7 radians) whose tangent is y
I x

double

cos (double x);

Returns the cosine of x (x in radians).

double

sin(double x);

Returns the sine of x (x in radians).

double

tan(double x);

Returns the tangent of x (x in radians).

double

cosh(double X);

Returns the hyperbolic cosine of

double

sinh(double x);

Returns the hyperbolic sine of x

double

tanh(double x);

Returns the hyperbolic tangent of x.

double

exp(double x);

Returns the exponential function of x (")

double

exp2(double x);

Returns 2 to the x power (C99)

double

expni (double x);

Returns e* - 1(C99).

double

frexp(double v, int *pt_e);

Breaks a value, v, into a normalized fraction, which is
returned, and a power of 2, which is placed in the
location pointed to by pt_e.

int ilogh(double x);

Returns the exponent of x as a signed int (C99).

double

1dexp(double x, int p);

Returns 2 to the p power times x

double

1og(double x);

Returns the natural logarithm of x.

double

1og10(double x);

Returns the base 10 logarithm of x

double

1ogip(double X);

Returns Log(1 + x) (C99).

double

1og2(double x);

Returns the base 2 logarithm of x (C99).

double

1ogb(double x);

Returns the signed exponent of its argument for the
underlying base used to represent floating-point val-
ues on the system (FLT_RADIX) (C99).

double

modf (double x, double *p)

Breaks x into an integral part and a fraction part, both
of the same sign, returns the fractional part, and
stores the integral part in the location pointed to by p.

OEBPS/html/graphics/ap01fig01.gif
a) b

offico vave

d)

dodge gate) (office wave

OEBPS/html/graphics/ap01fig02.gif

OEBPS/html/graphics/13603.jpg

OEBPS/html/graphics/t0843-02.jpg
Prototype Description

void clearerr(FILE *); Clears end-of-file and error indicators

int fclose(FILE *); Closes the indicated file

int feof (FILE *); Tests for end-of-file

OEBPS/html/graphics/t0837-02.jpg
Prototype Description

void (*signal(int sig, void Causes the function pointed to by func to be executed if signal
(*func) (int))) (int); sig is raised. If possible, returns func; otherwise, returns SIG_ERR.

int raise(int sig); Sends the signal sig t0 the executing prograr; returns zero if suc-
cessful and nonzero otherwise

OEBPS/html/graphics/t0843-01.jpg
Constant Identifier

Meaning

PTRDIFF_MIN

Minimum value of the ptrdiff_t type

PTRDIFF_VAX

Maximum value of the ptrdiff_t type

STG_ATOMIG_WIN

Minimum value of the sig_atonic_t type

STG_ATOMIG_WAX

Maximum value of the sig_atomic_t type

WOHAR_WIN Minimum value of the wehar._t type
WHAR_WAX Maximum value of the wohar_t type
WINT_MIN Minimum value of the wint_t type
WINT_WAX Maximum value of the wint_t type
SIZE_WAX Maximum value of the size_t type

OEBPS/html/graphics/t0837-01.jpg
Macro Description

STG_DFL When used as an argument to signal (), along with a signal value, this macro indi-
cates that the default handling for that signal will occur.

STG_ERR Used as a return value for signal () if it cannot return its second argument.

STG_IGN When used as an argument to signal (), along with a signal value, this macro indi-

cates that the signal will be ignored.

OEBPS/html/graphics/t0581-01.jpg
Modifier Significance

- Indicates a pointer

0 Indicates a function

8] Indicates an array

OEBPS/html/graphics/t0151-01.jpg
Expression Value

446 2
c=3+8 11
5>3 1

6+ (c=3+8) 17

OEBPS/html/graphics/t0826-01.jpg
int fetestexcept(int excepts);

excepts specifies the status flags to be queried; the
function returns the bitwise OR of those specified
status flags.

int fegetround (void);

Returns the current rounding direction.

int fesetround(int round);

Sets the rounding direction to the value provided by
round; returns 0 if and only if successful.

void fegetenv(fenv_t *envp);

Stores the current environment in the location
pointed to by envp.

int feholdexcept(fenv_t *envp);

Saves the current floating-point environment in the
location pointed to by envp, clears the floating-point
status flags, and then, if possible, installs a nonstop
mode, in which execution continues despite excep-
tions; returns O if and only if successful

void fesetenv(const fenv_t *envp);

Installs the floating-point environment represented by
envp; envp should point to a data object set by a
prior call to fegetenv () or feholdexcept (), or toa
floating-point environment macro.

void feupdateenv(const fenv_t *envp);

Function saves the currently raised floating-point
exceptions in automatic storage, installs the floating-
point environment represented by the object pointed
to by envp, and then raises the saved floating-point
exceptions; envp should point to a data object set by
a prior call to fegetenv () or feholdexcept (), or to
a floating-point environment macro.

OEBPS/html/graphics/t0850-01.jpg
void exit(int status);

Causes normal program termination to occur, first
invoking the functions registered by atexit (),
then flushing all open output streams, and then
closing all VO streams, then closing al files created
by tmpfile(), and then returning control to the
host environment. If status is 0 or
EXIT_SUCCESS, an implementation-defined value
indicating successful termination is returned to the
host environment; if status is EXIT_FAILURE, an
implementation-defined value indicating unsuc-
cessful termination is returned to the host environ-
ment. The effects of other values of status are
implementation defined

void _Exit(int status);

Similar to exit () except that the functions regs-
tered by atexit () are not called, signal handlers
registered by signal () are not called, and the
handling of open streams is implementation
defined (C99).

char *getenv(const char * name);

Returns a pointer to a string representing the value
of the environmental variable pointed to by name;
returns NULL if it cannot match the specified name.

int systen(const char *str);

Passes the string pointed to by str to the host
environment to be executed by a command
processor, such as DOS or UNIX. If str is the NULL
pointer, the function returns nonzero if a com-
mand processor is available, and zero otherwise; if
str is not NULL, the return value is implementation
dependent.

void *bsearch(const void *key,
const void *base, size_t nmem,
size_t size, int (*comp)(const
void *, const void *));

Searches an array pointed to by base having nmem
members of size size for an element matching the
object pointed to by key; items are compared by
the function pointed to by comp; the comparison
function will return a value less than zero if the key
object is less than an array element, zero if they are
equivalent, or a value greater than zero if the key
object is greater. The function returns a pointer to
a matching element, or NULL if no element
matches; if two or more elements match the key, it
is unspecified which of the matching elements will
be selected

OEBPS/html/graphics/t0233-01.jpg
Number Response

5 None

10 You're close!

15 Sorry, you lose a turn!

OEBPS/html/graphics/t0838-03.jpg
Type Description

ptrdiff_t A signed integer type for representing the result of subtracting one pointer from another

size_t Anunsigned integer type representing the result of the sizeof operator

wohar_t Aninteger type that can represent the largest extended character set specified by sup-
ported locales

OEBPS/html/graphics/t0838-02.jpg
Macro Description

bool Expands to_Bool
false Expands to the integer constant 0
true Expands to the integer constant 1

bool_true_false_are_defined Expands to the integer constant 1

OEBPS/html/graphics/t0844-01.jpg
int ferror(FILE *);

Tests error indicator

int fflush(FILE *);

Flushes the indicated file

int fgetc(FILE *);

Gets the next character from the indicated input stream

int fgetpos(FILE * restrict,
fpos_t * restrict);

Stores the current value of the file position indicator

char * fgets(char * restrict,
FILE * restrict);

Gets the next line (or int, indicated number of
characters) from the indicated stream

FILE * fopen(const char * restrict,
const char *restrict);

Opens the indicated file

int fprintf(FILE * restrict,
const char * restrict, ...);

Writes the formatted output to the indicated stream

int fputc(int, FILE *);

Writes the indicated character to the indicated stream

int fputs(const char * restrict,
FILE * restrict);

Wiites the character string pointed to by the first
argument to the indicated stream

size_t fread(void * restrict,
size_t, size_t, FILE * restrict);

Reads binary data from the indicated stream

FILE * freopen(
const char * restrict,
const char * restrict,
FILE * restrict);

Opens the indicated file and associates it with the
indicated stream

int fscanf(FILE * restrict,
const char * restrict, ...);

Reads formatted input from the indicated stream

int fsetpos(FILE *,
const fpos_t *);

Sets the file-position pointer to the indicated value

int fseek(FILE *, long, int);

Sets the file-position pointer to the indicated value

long ftell(FILE *);

Gets the current file position

size_t furite(
const void * restrict, size_t,
size_t, FILE * restrict);

Writes binary data to the indicated stream

int getc(FILE *);

Reads the next character from the indicated input

int getchar();

Reads the next character from the standard input

OEBPS/html/graphics/t0838-01.jpg
Prototype

Description

void va_start(va_list ap, parmn);

This macro initalizes ap before use by va_arg () and
va_end(); parm is the identifier for the last named para-
meter in the argument list.

void va_copy(va_list dest,

va_list src);

This macro initializes dest as a copy of the current
state of src (C99).

type va_arg(va_list ap, type);

This macro expands to an expression having the same value
and type s the next item in the argument lst represented
by ap; type is the type for that item. Each call advances to
the next item in ap.

void va_end(va_list ap);

This macro closes out the process and may render ap unus-
able without another call to va_start().

OEBPS/html/graphics/t0809-01.jpg
int is the basic integer type for a given system.

Long or long int can hold an integer at least s large s the largest int and possibly
larger; Long is at least 32 bits.

The largest short or short int integer is no larger than the largest int, and may be
smaller. A short is at least 16 bits. Typically, 1ong is bigger than short, and int is the same
as one of the two. For example, C DOS compilers for the PC provide 16-bit short and int
and 32-bit 1ong. It al depends on the system.

The long long type, provided by the C99 standard, is at least as big as 1ong and is at least
64 bits.

OEBPS/html/graphics/t0139-01.jpg
60.0 * n The first * or / in the expression (assuming n is 6 so that 60.0 * n is
360.0)

360.0 / SCALE Then the second * or / in the expression

25.0 + 180 Finally (because SCALE is 2.0), the frst + or - in the expression, to yield|
205.0

OEBPS/html/graphics/t0821-01.jpg
Prototype

Description

double complex
cacos(double complex z);

Returns the complex arc cosine of z

double complex
casin(double complex z);

Returns the complex arcsine of z

double complex
catan(double complex z);

Returns the complex arctangent of z

double complex
ccos (double complex z);

Returns the complex cosine of z

double complex
csin(double complex z);

Returns the complex sine of z

double complex
ctan(double complex z);

Returns the complex tangent of z

double complex
cacosh(double complex z);

Returns the complex arc hyperbolic cosine of z

double complex
casinh(double complex z);

Returns the complex arc hyperbolic sine of z

double complex
catanh(double complex z);

Returns the complex arc hyperbolic tangent of z

double complex
ccosh(double complex z);

Returns the complex hyperbolic cosine of z

double complex
csinh(double complex z):

Returns the complex hyperbolic sine of z

OEBPS/html/graphics/14fig04.gif
function name used in a prototype declaration: it comp(int x, int y);
function name used in a function call: - status = conp(a,r);
n name used in a function definition: int cop(int x, int y)
O
n name used as a pointer in assignment: pfunct = cosp;
function name used as poiner argument: ~slowsort (arr,n, conp) ;

func

funct

OEBPS/html/graphics/t0507-01.jpg
Standard File File Pointer Normally

Standard input stdin Your keyboard

Standard output stdout Your screen

Standard error stderr Your screen

OEBPS/html/graphics/14fig03.gif
el 1 = = = == = - - - O]

level 2 — — — — -[TT] oo

ven—fEI'LI'I rr‘rl rrL|:| r"n

OEBPS/html/graphics/14fig02.gif
library[0]

library(1]

ibrary(99]

title author

value

Library[0] . title | 1ibrary[0] .author

Library[0] .value

Library(1].title | 1ibrary(1].author

Library[1].value

Library(2). title | Library(2].author.
it

Library[2].value

T
dot operator

Library[99] . title [1ibrary[99).author

Library[99] .valve

| |
charamay[40] char amay[40]

declaration: struct book 1ibrary[MAXBKS]

|
float type

OEBPS/html/graphics/14fig01.gif
struct stuff {
int number;
char code[4];
float cost;

i

code[0] - - - - - - - - code(3]
I L

T T
aumber code[4]

OEBPS/html/graphics/t0872-01.jpg
Type printf () scanf () Minimum Maximum
Name Specifier Specifier Value Value
int8_t PRId8 SCNa8 INT8_MIN INT8_MAX
int16_t PRId16 SCNa16 INT16_MIN INT16_MAX
int32_t PRIA32 SCNa32 INT32_MIN INT32_MAX
int64_t PRIA64 SCNa64 INTB4_MIN INTB4_MAX
uint8_t PRIu8 SCNu8 o UINT8_MAX
uint16_t PRIU16 SCNut16 o UINT16_MAX
uint32_t PR32 SoNu32] UINT32_MAX
uint64_t PRIU64 SONuB4] UINT64_MAX

OEBPS/html/graphics/05fig01.gif
22

23

OEBPS/html/graphics/05fig02.gif
binary

36-12

value is 24

Ll wooperands

unary

-16

value is -16

L one operana

both

-(12-20)

L

—— valueis 8

two operands

one operand

OEBPS/html/graphics/t0872-02.jpg
Type printf() scanf () Minimum Maximum
Name Specifier Specifier Value Value

int_least8_t PRILEASTA8 SCNLEASTdS INT_LEAST8_MIN INT_LEASTB_MAX

int_least16_t PRILEASTA16 ~ SCNLEASTA16 INT_LEASTI6_MIN INT_LEAST16_MAX

OEBPS/html/graphics/05fig05.gif
first, increment a by 1
then, multiply a by 2 and assign to q

first, multiply a by 2, assign to q
then, increment a by 1

OEBPS/html/graphics/05fig06.gif
false

£0 10 next
statement

lemc

(test congition)

e

printf(*8e ny Valentin

loop
back

OEBPS/html/graphics/05fig03.gif
SCALL
n=6;

butter=25.0+60.0%n/ SCALE

2.0

60.0

250

SOALE|

360.0

250

180

}zas,a

OEBPS/html/graphics/05fig04.gif
while loop

shoe = 2.

wnile (frshoe' < 18.5)
f
foot=SCALE*shoe + ADJUST;

| @ incrementshoc 03

| @ evaluate test (urue)

printf("------*, shoe, foot);

F @ dothese saements

@ retum 1o beginning of loop

OEBPS/html/graphics/t0184-01.jpg
Operators (From High to Low Precedence) Associativity

() LR
+ ++ —-sizeof (type) (all unary) R-L
‘1% LR
- LR
LR

LR

R-L

OEBPS/html/graphics/t0079-02.jpg
Macintosh Metrowerks Linux 1BM PC Windows XP ANSI C
Type W (Default) onaPC and Windows NT Minimum
float 6 digits 6 digits 6 digits 6 digits

371038 371038 371038 371037
double 18 digits 15 digits 15 digits 10 digits

4931 t0 4932 -307 10 308 307 to 308 371037
long 18 digits 18 digits 18 digits 10 digits
double

-4931 t0 4932

-4931 t0 4932

-4931 t0 4932

-37t037

OEBPS/html/graphics/t0079-01.jpg
Macintosh Metrowerks Linux 1BM PC Windows XP ANSI C
Type W (Default) onaPC_ and Windows NT Minimum
char 8 8 8 8
int 32 32 32 16
short 16 16 16 16
long 32 32 32 32
long long 64 64 64 64

OEBPS/html/graphics/t0866-01.jpg
Prototype

Description

wint_t bowe(int c);

If (unsigned char) cis avalid single-byte character in
the iniial shift state, the function returns the wide-
character representation; otherwise, the function returns
'WEOF.

int wetob(wint_t c);

If o s @ member of the extended character set whose
multibyte character's representation in the inital shift state
is a single byte, the function returns the single-byte repre-
sentation as an unsigned char converted to an int; oth-
erwise, the function returns EOF

int mbsinit(const mbstate_t *ps);

The function returns nonzero if ps is the null pointer, or
points to a data object that specifies an initial conversion
state; otherwise, the function returns zero.

size_t mbrlen(

const char * restrict s,
size_t n,

mbstate_t * restrict ps);

The mbrien() function is equivalent to the call
mbrtowc(NULL, s, n, ps != NULL ? ps :
&internal), where internal is the mbstate_t object
for the mbrien() function, except that the expression
designated by ps is evaluated only once.

size_t mbrtowc(

wehar_t * restrict pwc,

const char * restrict s, size_t n,
mbstate_t * restrict ps);

s s the null pointer, the call s equivalent (o setting
puc to the null pointer and n to 1. If s is not null, the
function inspects at most n bytes to determine the num-
ber of bytes needed to complete the next multibyte char-
acter (including any shift sequences). If the function
determines that the next multibyte character is complete
and valid, it determines the value of the corresponding
wide character and then, if pc is not a null pointer, stores
that value in the object pointed to by pwe. If the corre-
sponding wide character is the null wide character, the
resulting state described is the initial conversion state. The
function returns 0 if the null wide character is detected. If
it detects another valid wide character, it returns the num-
ber of bytes needed to complete the character. If n bytes

OEBPS/html/graphics/t0849-01.jpg
void *calloc(size_t nmem, size t
size);

Allocates space for an array of nmem members,
each element of which is size bytes i size; all bits
in the space are initalized to 0. The function
returns the address of the array if successful, and
NULL otherwise.

void free(void *ptr);

Deallocates the space pointed to by ptr; ptr
should be a value previously returned by a call to
calloc(), malloc(), or realloc(), Of ptr can
be the null pointer, in which case no action is
taken. The behavior is undefined for other pointer
values.

void *malloc(size_t size);

Allocates an uninitialized block of memory of size
bytes; the function returns the address of the array
if successful, and NULL otherwise.

void *realloc(void *ptr, size_t size);

Changes the size of the block of memory pointed
to by ptr to size bytes; the contents of the block
up to the lesser of the old and new sizes are unal-
tered; the function returns the location of the
block, which may have been moved; if space can-
not be reallocated, the function returns NULL and
leaves the original block unchanged. If ptr is
NULL, the behavior is the same as calling
malloc() with an argument of size; if size is
zero and ptr is not NULL, the behavior is the same
as calling free () with ptr as an argument.

void abort (void);

Causes abnormal program termination unless the
signal SIGABAT is caught and the corresponding
signal handler does not return; closing of VO
streams and temporary files is implementation
dependent; the function executes
raise(SIGABRT).

int atexit(void (*func)(void));

Registers the function pointed to by func to be
called upon normal program termination; the
implementation should support registration of at
least 32 functions, which will be called opposite
the order in which they are registered; the function
returns zero if registration succeeds, and nonzero
otherwise

OEBPS/html/graphics/t0810-01.jpg
float is the basic floating-point type for the system. It can represent at least six significant
digits accurately. Typically, f1oat uses 32 bits.

double is a (possibly) larger unit for holding floating-point numbers. it may allow more sig-
nificant figures and perhaps larger exponents than fLoat. It can represent at least 10 signifi-
cant digits accurately. Typically, double uses 64 bits.

long double is a (possibly) even larger unit for holding floating-point numbers. it may allow
more significant figures and perhaps larger exponents than double.

OEBPS/html/graphics/t0105-01.jpg
digit(s)

Precision. For %e, %E, and %f conversions, the number of digits to be printed to the right of
the decimal. For %g and %6 conversions, the maximum number of significant digits. For %s
conversions, the maximum number of characters to be printed. For integer conversions,
the minimum number of digits to appear; leading zeros are used if necessary to meet this
minimum. Using only . implies a following zero, so %.f is the same as %.0f.

Example: %5.2f* prints a f1oat in a field five characters wide with two digits after the
decimal point.

Used with an integer conversion specifier to indicate a short int or unsigned short
int value.

Examples: "%hu", *%hx", and *%6.4hd"

Used with an integer conversion specifier to indicate a signed char or unsigned char
value.

Examples: *shhu*, *%hhx*, and *%6.4hhd*

Used with an integer conversion specifier to indicate an intmax_t or uintmax_t value.

Examples: *%jd* and *%8iX"

Used with an integer conversion specifier (o indicate a Long int or unsigned long int

Examples: *%1d" and *%81u*

Used with an integer conversion specifier to indicate a long long int or unsigned long
long int.(C99)

Examples: *%11d" and *%811u"

Used with a floating-point conversion specifier to indicate a 1ong double value.

Examples: *%Lf* and "%10.4Le"

Used with an integer conversion specifier to indicate a ptrdiff_t value. This is the type
corresponding to the difference between two pointers. (C99)

Examples: "%td* and "%12ti"

Used with an integer conversion specifier to indicate a size_t value. This is the type
returned by sizeof. (C99).

Examples: "%zd* and "12zx"

OEBPS/html/graphics/t0810-03.jpg
float _Imaginary represents the imaginary part with a type float value.

double _Imaginary represents the imaginary part with a type double value

long double _Imaginary represents the imaginary part with a type long double value

OEBPS/html/graphics/t0810-02.jpg
float _Complex represents the real and imaginary parts with type float values.

double _Complex represents the real and imaginary parts with type double values

long double _Complex represents the real and imaginary parts with type Long double
values

