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Preface
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Architects tend to think visually, in concepts, while engineers tend to think mathematically, in details. The disparity between the way architects and engineers perceive and process information is not addressed by most structural engineering textbooks, which focus heavily on technical aspects and often intimidate the architectural student. Actually, structures is the most intuitive of engineering disciplines, its principles easily perceived and visible in countless everyday situations. Our intent in this work is to de-mystify structural principles and present them in an intuitive, easy-to-read, and graphically friendly format.

We wish to thank Tim Maldonado, former Dean of the School of Technology at The NYC College of Technology, for his encouragement and guidance especially during the early stages of development. We also wish to thank Stella Deporis, R. Elias Dabby, and Latif Dabby for their advice and inspiration, as well as Andrzej Flakowicz, and Rodrigo da Silva (our former student and now graduate architect) for their much-valued early assistance on the illustrations.

While we collaborated with and also thank our many other academic and professional colleagues, we would not have imagined this work to be complete without the thoughts and reviews from two very talented engineers—our dear friends, Tom Michon and Sunil Saigal. Tom is simply one of the most brilliant practicing structural engineers with whom we've ever had the pleasure of knowing and working. Sunil, Dean of The Newark College of Engineering at NJIT and Distinguished Professor of Structures, has always placed his students before anything else. With an avid passion for structures and academics, Tom and Sunil's primary desire was to help develop quality technical material for students, while keeping it easy-to-understand.

We would like to express our appreciation to Wiley Acquisitions Editor Paul Drougas and Senior Production Manager Kerstin Nasdeo for their confidence, patience, and publishing guidance.

Finally, we wish to thank our families who wondered about, and put up with, our discussions lasting hours on end. Barbara and Kiran, we could not have accomplished this without your support and understanding—we lovingly dedicate this to you.

We welcome and appreciate any comments, suggestions, or corrections by the reader.

Ramsey Dabby, RA

Ashwani K. Bedi, PE
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CHAPTER 1

Architects, Engineers, and Design

To the general public the distinction between architects and engineers, and their relationship to design, is blurred. What exactly is the difference between an architect and an engineer? Between architecture and engineering? Don't architects, after all, study engineering? What do engineers have to do with design? Isn't design what architects do? And if architects and engineers are so highly trained in design and construction, why is a third group—contractors—needed to construct buildings? The confusion is understandable.

For centuries, there was little, if any, distinction among architects, engineers, and builders. With the advent of the Industrial Revolution, the world became increasingly complex. The guild and trades system, in which skills and techniques were handed down from generation to generation, began to break down. By the mid-1800s, architecture in the United States evolved into a profession distinct from engineering and construction.

There are many ways to define architecture, but perhaps the most expressive definition was the one provided by Marcus Vitruvius Pollio, a first-century AD Roman writer, architect, and engineer. Vitruvius wrote De architectura, a Latin treatise on architecture, in which he asserted that a structure (architecture) must exhibit the three qualities of firmitas, utilitas, and venustas, loosely translated as strength, having soundness of construction; usefulness, having practical value or purpose; and beauty, giving pleasure and delight to those who experience it.


Figure 1.1 Denver International Airport, Denver, CO

[image: ch02fig001.eps]


Determining strength and usefulness is relatively easy. Determining beauty is more difficult, since each of us is free to decide what gives us visual pleasure and delight. With all due respect to Vitruvius, perhaps another way to define architecture is to simply call it the art and science of constructing.


Figure 1.2 Puente de la Mujer, Buenos Aires, Argentina

[image: ch02fig002.eps]


In modern practice, the knowledge and information needed to design and construct a large building requires many areas of expertise, too much for any one profession to know. The entire process of determining a building's appearance, the materials and systems to be used, and their configurations and sizes is broadly called design. Design falls mainly on the shoulders of architects and engineers. Architects have primary responsibility for determining the building's size and shape, along with the myriad architectural materials, finishes, and details. Engineers have primary responsibility for determining the mechanical, electrical, and structural systems, along with the many engineering calculations and details.


Figure 1.3 Hoover Dam, Boulder City, NV

[image: ch02fig003.eps]


Contemporary architects, as the leaders and orchestrators of most building projects, are trained as generalists and humanists conversant with aesthetics, planning, sociology, and economics, as well as engineering. By contrast, the training of contemporary engineers is highly technical and focused on a specific engineering discipline. Early engineering had only two disciplines, military and civil. As technology advanced, new branches of engineering such as mechanical, electrical, and chemical engineering emerged from civil engineering as individual disciplines. Structural engineering, however, the branch of engineering concerned with designing buildings and other types of structures to stand up and resist loads, has always been considered a part of civil engineering and remains so today.

Structural engineering is the engineering discipline most closely intertwined with architectural form. The best architecture exhibits a strong understanding of how forces move through a structure. Toward that end, the primary intent of this book is to increase the structural vocabulary of future architects. It is our hope that by doing so, the architect's dialogue with the structural engineer will be enriched, thereby affording architecture the opportunity to reach its fullest potential.


Figure 1.4 CN Tower, Toronto, Canada

[image: ch02fig004.eps]






CHAPTER 2

Stability and Strength

In a broad sense, all structural engineering can be reduced to satisfying two basic conditions: stability and strength.

Through stability, the various forces that act on a structure are kept in balance, preventing the structure from toppling, sliding, bending, or twisting.

Through strength, the size and physical makeup of the structural materials are made sufficient to withstand the various forces acting on them.

Let's use an example of a weightlifter, Andre, holding a barbell over his head in order to illustrate the concepts of stability and strength. Suppose that the barbell has a 100 lb weight on each end and that Andre is well trained and intuitively keeps his hands evenly spaced. Since the barbell is balanced by the spacing of his hands, and since Andre has the strength to support the 200 total lbs, Andre stands upright, in firm control of the barbell and weights (Figure 2.1).


Figure 2.1 Lifter Supporting Barbell and Weights

[image: ch02fig001.eps]


Now suppose that Andre's hands are not evenly spaced. The barbell would tend to tilt and eventually topple. Although he would be strong enough to support the 200 total lbs, he would be unable to control the load due to a failure of stability (Figure 2.2).


Figure 2.2 A Failure of Stability

[image: ch02fig002.eps]


Now suppose that Andre's hands are evenly spaced but that the weight on each end is increased from 100 lbs to 200 lbs. His arms and legs would tend to bow and eventually would buckle beneath the increased weight. Although he would be sufficiently well balanced to control the 400 total lbs, he would be unable to support the load due to a failure of strength (Figure 2.3).


Figure 2.3 A Failure of Strength

[image: ch02fig003.eps]


Without stability, the strongest of buildings will fail, and without strength, the most stable of buildings will fail. Not only must the building as a whole satisfy these two conditions, but every one of its components must do so as well.





CHAPTER 3

Loads

Structures are subject to numerous and sometimes complex forces, called loads, that exert pressure vertically, horizontally, or at some angle in between. Loads can be predictable, such as fixed mechanical equipment on a roof, or unpredictable, such as wind on a façade; they can be concentrated, such as a column supported by a beam, or distributed over a wide area, such as snow falling on a roof. Loads can be static and subject to little or no change over time, or dynamic and subject to rapid change. With respect to the engineering analysis of structures, however, all loads are ultimately analyzed as acting statically in either a vertical or a horizontal direction. For this reason, perhaps the best way to categorize loads is by grouping them into vertical gravity loads and horizontal lateral loads.

3.1 Gravity Loads

Gravity loads act downward, pulling all objects toward the center of the Earth. They may be classified as dead loads or live loads.

Dead loads are those that are built into a structure, such as the weight of permanent floors, roofs, walls, and fixed mechanical equipment. Dead loads are finite and can be accurately determined.

Live loads are variable, unpredictable, and mobile, such as people, furniture, snow, rain, and ice. These loads can vary at any given moment, so building codes specify minimum live loads to be used for the design of floors and roofs. Live loads are expressed in pounds per square foot (psf), such as 40 psf for office floors or 150 psf for warehouse storage floors (Figure 3.1).


Figure 3.1 Live and Dead Gravity Loads

[image: ch03fig001.eps]


3.2 Lateral Loads

Lateral loads are caused by wind and seismic movement (earthquake) and, in general, are considered to act horizontally. Although wind and seismic loads are unpredictable, codes account for their complexity by prescribing equivalent static lateral loads based upon geographic zones.

Wind loads are dependent upon many factors such as velocity and the shape and height of the building, as well as the geometry and proximity of adjacent buildings. Wind loads exert pressure on the sides of a building, causing it to sway (Figure 3.2a).


Figure 3.2 Behavior of Buildings under lateral Loads

[image: ch03fig002.eps]


Seismic loads are created by random, variable, and erratic motions of the ground during an earthquake. Seismic loads also cause a building to sway (Figure 3.2b).

Although the behavior of a building under wind and seismic loads is different, the net effect is similar in that both types of lateral loads create conditions of (a) bending and (b) base shear on the building (Figures 3.3 and 3.4).


Figure 3.3 Effect of Wind Load

[image: ch03fig003.eps]



Figure 3.4 Effect of Seismic Load

[image: ch03fig004.eps]


Wind loads create positive pressure by pushing inward against the building's exterior surfaces on the windward side, and negative pressure (suction) by pulling outward on the building's exterior surfaces on the leeward side (Figure 3.5). For very tall or irregularly shaped structures, wind tunnel tests are often used to supplement information provided in codes and to predict actual aerodynamic forces more precisely.


Figure 3.5 Wind Pressures

[image: ch03fig005.eps]


Wind and seismic loads also tend to twist a structure, creating torsion, a complex behavior in a building (Figure 3.6).


Figure 3.6 Torsion on a Structure

[image: ch03fig006.eps]


Wind and seismic loads can also create uplift forces at the base of a structure, tending to overturn it. Communications towers, which are relatively lightweight, are particularly susceptible to uplift and overturning (Figure 3.7).


Figure 3.7 Uplift and Overturning of a Tower

[image: ch03fig007.eps]


Structural systems that resist lateral loads will be examined more closely in Chapter 15.

3.3 Dynamic Loads

Loads that change rapidly, that are applied suddenly, or that are the result of an amplified rhythmic movement are called dynamic loads. Examples of dynamic loads include heavy vibrating machinery, an elevator starting and stopping in its shaft, a vehicle starting or stopping in a garage, and soldiers marching in rhythm on a bridge (Figure 3.8). The net effect of a dynamic load is that it increases its actual static load. Since the analysis of dynamic loads is complex, codes typically account for them by substituting additional equivalent static loads.


Figure 3.8 Dynamic Loads

[image: ch03fig008.eps]


3.4 Impact Loads

Loads that result from a sudden collision or an explosion are called impact loads. For example, columns in a garage are normally designed to withstand a moderate impact force from an automobile. Blast-resistant design must consider the impact force of the explosion as well as the impact force from projectiles being hurtled about. Codes typically account for impact loads by prescribing additional factors of safety on the static loads.

3.5 Load Paths

All loads applied to a structure, whether gravity or lateral, eventually make their way down through the structure's components to the ground. Let's take the simple example of a man sitting on a four-legged stool. The man's weight is transferred from the seat of the stool to the legs, and from the legs to the ground. If the man weighs 200 lbs, the seat will transmit 50 lbs to each leg, and each leg will transmit 50 lbs to the floor. The flow of loads through a structure, in this case the stool, is called the load path (Figure 3.9).


Figure 3.9 Load Path of a Man on a Stool

[image: ch03fig009.eps]


The most efficient load path is a direct line to the ground (Figure 3.10).


Figure 3.10 Load Paths

[image: ch03fig010.eps]


In framed buildings, loads applied to the roof, floors, and vertical supports make their way down through the structure to the foundations and ultimately to the ground. The ground, in turn, exerts resisting forces against the foundations, continuing through the structure and opposing the downward flow of loads—in a sense, a reverse load path (Figure 3.11).


Figure 3.11 Load Path in a Simple Building

[image: ch03fig011.eps]


In a cable suspension bridge (Figure 3.12), the vehicle loads from the roadway are supported by vertical suspension cables (in tension) extending up to the main cable (in tension), down through the towers (in compression) to the foundations, and ultimately to the ground. The main cable is held in tension by attachments in the anchorage abutments. The concepts of tension and compression will be explored more fully in Chapter 4.


Figure 3.12 Load Path in a Suspension Bridge

[image: ch03fig012.eps]


For any structure to be stable and not move, all of the forces acting on it and all of its components must be in equilibrium (i.e., in balance). 

We'll examine equilibrium and how this balance of forces is analyzed in Chapter 6.





CHAPTER 4

States of Stress

While loads are external forces applied to a body, stress is the internal resistance of the body to those forces. There are three basic types of stress: tension, compression, and shear. All stress consists of these three basic types or some combination thereof.

4.1 Tension

Tension is the tendency of a body to be pulled apart. The rope in Figure 4.1a has direct tensile stress acting on it (the two men pulling on each end) in a direction perpendicular to its cross section (Figure 4.1b).


Figure 4.1a A Rope in Tension

[image: ch04fig001.eps]



Figure 4.1b Direct Tensile Stress

[image: ch04fig002.eps]


4.2 Compression

Compression is the tendency of a body to be crushed. The post in Figure 4.2a has direct compressive stress acting on it (the downward force and the upward resistance of the ground) in a direction perpendicular to its cross section (Figure 4.2b).


Figure 4.2a A Post in Compression

[image: ch04fig003.eps]



Figure 4.2b Direct Compressive Stress

[image: ch04fig004.eps]


4.3 Shear

Shear is the tendency of a body to be sliced. The bolt in Figure 4.3a has direct shear stress acting on it (the two bars pulling in opposition to each other) in a direction parallel to its cross section (Figure 4.3b).


Figure 4.3a A Bolt under Shear

[image: ch04fig005.eps]



Figure 4.3b Direct Shear Stress

[image: ch04fig006.eps]


4.4 Torsion

Torsion is a type of shear in which a body tends to be twisted, resulting in shear stresses (Figures 4.4 and 4.5).


Figure 4.4 A Pole Sign under Torsion

[image: ch04fig007.eps]



Figure 4.5 A Spandrel Girder under Torsion

[image: ch04fig008.eps]


4.5 Bending

Bending is the tendency of a body, such as a beam, to bow, thereby creating stress in the body. When bowed, the body compresses along one edge and stretches along the other. The bending of a simply supported beam under load produces tension along the bottom of the beam and compression along the top (Figure 4.6). Moving away from the tension and compression edges toward the centerline of the beam, the tensile and compressive stresses gradually diminish until they reach zero. The imaginary plane passing through the centerline of a beam along its length, at which no tension or compression occurs, is called the neutral plane or neutral axis. Although bending is of paramount importance in beams, it may occur in any structural member, including columns. Bending is also referred to as flexure.


Figure 4.6 Tension and Compression in a Beam

[image: ch04fig009.eps]


In addition to producing tensile and compressive stresses from bending, a beam under load will produce shear stress, both perpendicular (i.e., vertical) and parallel (i.e., horizontal) to the length of the beam (Figures 4.7 and 4.8).


Figure 4.7 Vertical Shear Perpendicular to the Length of a Beam

[image: ch04fig010.eps]



Figure 4.8 Horizontal Shear Parallel to the Length of a Beam

[image: ch04fig011.eps]


With a load placed at the center of a span, the maximum bending stresses in a beam occur at the center of the span (Figure 4.9), with the maximum compressive stress at the top edge and the maximum tensile stress at the bottom edge (4.10).


Figure 4.9 Maximum Bending Stresses at the Center of a Span

[image: ch04fig012.eps]



Figure 4.10 Maximum Compressive and Tensile Stresses at the Edges of a Beam

[image: ch04fig013.eps]


Since tensile, compressive, and shear stresses vary for any point along the length of a beam, their computation in beams is more complex than in members under direct stress. Beam analysis, as well as the analysis of members under direct stress, will be examined more closely in subsequent chapters.





CHAPTER 5

Forces, Movement, Levers, and Moment

Dynamics and especially statics are the two branches of mechanics (which, in turn, is a branch of physics) that are most applicable to structural design. Dynamics concerns objects in motion, while statics concerns objects at rest. In the next few chapters, we'll examine some of the basic principles of mechanics as they relate to structures.

5.1 Applied and Reactive Forces

We all have an intuitive understanding of what a force is, but we need to be more specific. Sir Isaac Newton in the seventeenth century defined a force by relating it to motion. Depending on the situation, a force can cause motion on a body (e.g., make a stationary wagon roll), change motion (make the wagon speed up, slow down, or change direction), or stop motion (bring the wagon to a stop). A push, a pull, gravity, and friction are a few common examples of forces.

For building structures, the typical concern is to assure that the structure and its various components remain stationary and do not move. Therefore, any force applied on a stationary body (tending to cause it to move) must be opposed (resisted) by an equal and opposite force for that body to have no movement. The force tending to cause the movement is called the applied force, and the force resisting the movement is called the reactive force (or reaction).

Let's examine the two basic types of movement, translational and rotational, to see how this works.

5.2 Translational Movement

In Figure 5.1, a crate on wheels is being pushed by a man. Under the force exerted by the man (the applied force), the crate moves from left to right. This type of movement, in this case horizontally, is called translational movement.


Figure 5.1 Translational Movement

[image: ch05fig004.eps]


5.3 Rotational Movement

In Figure 5.2, a man is stepping on the left side of a horizontal seesaw. Under the force exerted by the man's foot (the applied force), the seesaw rotates about the support (fulcrum). This type of movement, in this case counterclockwise, is called rotational movement.


Figure 5.2 Rotational Movement

[image: ch05fig005.eps]


5.4 Levers

The rotational movement of the seesaw underlies the familiar principle of the lever. Levers allow heavy objects to be moved with much less force than their weight alone. By doing so, the lever is said to produce a mechanical advantage. In Figure 5.3a, a long crowbar, acting as a lever, enables a man to move a heavy rock with less force than if he tried to move it directly out of place. The longer the crowbar, the greater the mechanical advantage, or leverage, and the easier it is to move the rock. The distance between the point of rotation (the fulcrum) and the force being applied (the man pushing down) is called the lever arm (Figure 5.3b).


Figure 5.3 Principle of the Lever

[image: ch05fig006.eps]


Note that the lever arm is the perpendicular distance between the line of action of the force and the point of rotation. In order to lift the rock, a given force applied at 90 degrees to the crowbar (Figure 5.4a) is the most efficient way to do so since it has the greatest perpendicular distance (i.e., the greatest lever arm) between the line of action of the force and the point of rotation (see Figures 5.4b and 5.4c for comparison).


Figure 5.4 Forces on a Crowbar

[image: ch05fig007.eps]


5.5 Moment

The lever underlies the important structural concept of moment. Moment is the tendency of a force on a body to produce rotational movement about any chosen point. In mathematical terms, moment is the product of a force times the distance of the force about a chosen point of rotation. (Torque, a term similar to moment, is used more often in mechanical engineering applications.)

Moment = Force × Distance





EXAMPLE 5a: Moment on a Crowbar

The man attempting to lift the rock applies a 20 lb force perpendicular to one end of a 6 ft long crowbar. The crowbar is embedded 1 ft under the rock, creating a fulcrum 1 ft from the other end of the crowbar. What is the moment about the fulcrum created by the 20 lb force?

Moment = Force × Distance

Moment = 20 lb (force) × 5 ft (distance, i.e., lever arm)

Moment = 100 lb-ft (in the clockwise direction)


Figure 5.5 Moment from a Crowbar

[image: ch05fig008.eps]











EXAMPLE 5b: Torque (Moment) on a Bolt

A carpenter applies a 10 lb force perpendicular to the end of a 2 ft long wrench to tighten a large bolt. What is the torque (moment) on the bolt created by the 10 lb force on the wrench?

Torque (Moment) = Force × Distance

Torque = 10 lb (force) × 2 ft (distance, i.e., lever arm)

Torque = 20 lb-ft (in the clockwise direction)


Figure 5.6 Torgue on a Bolt

[image: ch05fig009.eps]







We'll see how translational movement, rotational movement, and moment apply to structural analysis in Chapter 6.





CHAPTER 6

Stability and Equilibrium

Authors' Note: Stability and equilibrium are closely related terms, frequently used interchangeably. The difference is semantically debatable and not particularly relevant to the larger concepts of structural engineering. At times the use of the terms may seem inconsistent or blurred, but for our purposes we'll generally use stability when referring to structures as a whole and equilibrium when referring to individual members within a structure. Although equilibrium can be dynamic or static, we'll use the term to refer to static equilibrium, the typical condition of concern for structures.

6.1 Introduction

Stability is the condition in which gravity and lateral loads that tend to crush, slide, bend, or topple a structure are resisted so that the structure, as a whole, does not move. Equilibrium is the condition in which all forces acting on a body are in balance so that the body does not move.

Structural engineering is primarily concerned with applying the principles of stability and equilibrium to calculate all forces acting on a structure and its individual members, then selecting the size, shape, and material to resist those forces with a reasonable margin of safety.

Let's continue with our Chapter 5 examples of the crate and the seesaw in order to demonstrate the conditions for equilibrium.

6.2 Translational Equilibrium

In Figure 6.1a, the crate in Chapter 5 continues to be pushed by the man until it comes up against a wall and can go no further. The applied force on the crate (the man's push) is resisted by a reactive force on the crate (the wall) acting in an equal and opposite direction. In addition, the downward force of gravity (the crate's weight) is resisted by the reactive upward force of the ground (through the crate's wheels) acting in an equal and opposite direction (Figure 6.1b). No matter how hard the man pushes or how heavy the crate is, the wall prevents horizontal movement and the ground prevents vertical movement. The crate is said to be in equilibrium.


Figure 6.1 Translational Equilibrium

[image: ch06fig003.eps]


6.3 Rotational Equilibrium

In Figure 6.2a, the man steps onto one end of a horizontal seesaw, which begins to rotate until the other end comes up against the underside of a ledge and can rotate no further. The applied force on the seesaw (the man's weight) is resisted by a reactive force on the seesaw (the ledge) acting in an equal and opposite direction. In addition, the downward forces of the man's weight and the ledge are resisted by the upward force of the ground (acting through the fulcrum). No matter how much the man weighs, the ledge prevents rotational movement and the ground prevents vertical translational movement. The seesaw is said to be in equilibrium.


Figure 6.2 Rotational Equilibrium

[image: ch06fig004.eps]


6.4 Sign Conventions

For consistency in algebraic computations, the direction of forces and moments are given signs by convention. For our purposes, we'll only analyze forces and moments in two directions, x and y (the xy plane). In more complex analyses, the third direction, z, must also be considered (Figure 6.3a).


Figure 6.3 Sign Conventions

[image: ch06fig005.eps]


Vertical (y) forces acting upward are positive, and vertical forces acting downward are negative (Figure 6.3b).

Horizontal (x) forces acting to the right are positive, and horizontal forces acting to the left are negative (Figure 6.3c).

Moments that tend to produce clockwise rotation are positive, and moments that tend to produce counterclockwise rotation are negative (Figure 6.3d). (Note that clockwise and counterclockwise directions are relative terms dependent upon the viewer's position in relation to the object being viewed. With this understanding, we'll refer to clockwise and counterclockwise based upon the viewpoint of our illustrations.)

6.5 The Equilibrium Equations

Our examples of the crate and the seesaw illustrate the two basic and simultaneous conditions that must be met in order for equilibrium to exist on a body: that there be no translational movement and that there be no rotational movement. Stated mathematically:


	For there to be no translational movement, the algebraic sum of all forces acting in the (x) direction must equal zero, and the algebraic sum of all forces acting in the (y) direction must equal zero:

[image: Unnumbered Display Equation]

	For there to be no rotational movement, the algebraic sum of all moments about any chosen point must equal zero:
[image: Unnumbered Display Equation]



Note that the equation for rotational equilibrium, ∑M = 0, applies to moments taken about any chosen point. Although the seesaw rotates about the fulcrum, and you could certainly choose to calculate moments about that point, the equation is equally valid should you choose to calculate moments about any other point. (Try it in any of the examples that follow.)

6.6 Free-Body Diagrams and Familiar Examples of Equilibrium

Let's analyze several common examples to see how to apply the equilibrium equations. We'll examine (1) a log, (2) a barbell, (3) our familiar seesaw, (4) a diving board, and (5) a fishing pole, all under load. As we examine these examples, think of each of these five objects as a beam with applied and reactive forces acting on it. To keep our analyses simple, we'll ignore the actual weights of the objects, and to help visualize the forces acting on the objects, we'll create free-body diagrams for each situation.

Free-body diagrams simplify the structural analysis of an individual member (in our case, the objects) by isolating it, essentially showing it “cut free” from other members or conditions attached to it. The other members or conditions are then replaced by forces representing their effect on the member.

Generally, the most efficient way to apply the equilibrium equations to a free-body diagram is through a ∑M = 0 calculation about each support. By doing so, a result is obtained for the reaction at each support. The results should then be verified through a ∑Fy = 0 calculation. (Note that our five examples have forces acting only in the vertical (y) direction. Since there are no forces acting in the horizontal (x) direction, there is no need to use the equation ∑Fx.) The equilibrium equations will be applied in this manner in our examples. While the verification will be performed only on the first example, you are encouraged to do so on your own in the subsequent examples.

Once you are comfortable with the idea of free-body diagrams, you may often find yourself mentally reducing common, everyday situations to free-body conditions.





EXAMPLE 6a: The Log

A thick log, 20 ft long, is spanning a ditch. A 200 lb man starting at the right bank traverses the log. How much weight is supported at each bank when he reaches the middle (Figure 6.4)?


Figure 6.4 A Man on a Log

[image: ch06fig006.eps]


With the man standing at the middle of the log, it's easily visualized that each bank carries half of his weight, or 100 lbs. Nevertheless, let's create a free-body diagram to see how the equilibrium equations work. We'll call the reaction at the left bank R1 and the reaction at the right bank R2 (Figure 6.5).

Applying the equilibrium equations to the free-body diagram:

[image: Unnumbered Display Equation]

Verifying the results:

[image: Unnumbered Display Equation]


Figure 6.5 Free-body Diagram

[image: ch06fig007.eps]


Now let's suppose that the man is standing 5 ft from the left bank. How much weight is now supported at each bank (Figure 6.6)?


Figure 6.6 Free-body Diagram

[image: ch06fig008.eps]


Applying the equilibrium equations to the free-body diagram:

[image: Unnumbered Display Equation]

Verifying the results (by the reader)

DISCUSSION

When the man begins his traverse, the right bank (R2) carries all of his weight, decreasingly so until he reaches the middle, when both banks carry his weight equally. As he passes the middle, the left bank (R1) begins to carry most of his weight, increasingly so until he completes his traverse, when the left bank then carries all of his weight.

If we now imagine that the log is not very thick (i.e., has a small cross-sectional area), the log will noticeably bend. The thinner the log (i.e., the smaller the cross-sectional area), the more it will bend. As the man begins his traverse, the log begins to bend—not very much at first but increasingly so as he approaches the middle. When he reaches the middle, the log is at its point of maximum bending, or maximum bending moment (Figure 6.7). As the man continues past the middle, the bending gradually decreases until he reaches the left bank.


Figure 6.7 A Log Bending under the Weight of a Man

[image: ch06fig009.eps]


The bowed shape of the log under the man's weight is called its deformation. The maximum vertical distance that the deformation deviates from its original true shape is called its deflection (Figure 6.8). These two terms are sometimes used interchangeably.


Figure 6.8 Deformation and Deflection of the Log

[image: ch06fig010.eps]











EXAMPLE 6b: The Barbell

A barbell, 6 ft long with a 100 lb weight on each end, is held overhead by a weightlifter whose hands are evenly spaced 1 ft from each end. How much weight is supported by each hand (Figure 6.9)?


Figure 6.9 A Weightlifter Supporting a Symmetrically Loaded Barbell

[image: ch06fig011.eps]


Although we could apply the equilibrium equations, it's easy visualized from the free-body diagram that each hand, R1 and R2, carries half of the 200 lb total weight, or 100 lbs (Figure 6.10).


Figure 6.10 Free-body Diagram

[image: ch06fig012.eps]


The deformation and deflection of the barbell are shown in Figure 6.11.


Figure 6.11 Deformation and Deflection of the Barbell

[image: ch06fig013.eps]


Now suppose that a 175 lb weight is on the left end and a 25 lb weight is on the right. How much weight is now supported by each hand (Figures 6.12 and 6.13)?


Figure 6.12 A Weightlifter Supporting an Asymmetrically Loaded Barbell

[image: ch06fig014.eps]



Figure 6.13 Free-body Diagram

[image: ch06fig015.eps]


Applying the equilibrium equations to the free-body diagram:

[image: Unnumbered Display Equation]

[image: Unnumbered Display Equation]

Verifying the results (by the reader)

DISCUSSION

With the condition of uneven weights, it's easily visualized, as well as apparent from the calculations, that the weightlifter's left hand (R1) carries a much heavier load than the weightlifter's right hand (R2). We also notice that R2 is a negative number. This is because, in our free-body diagram, we assumed that the weightlifter's right hand would be pushing upward to support the barbell. The negative number tells us that our assumption was wrong and that the weightlifter's right hand actually exerts a downward force on the barbell, preventing it from rotating counterclockwise around the weightlifter's left hand. Also note that the force exerted by the weightlifter's left hand (R1) is 212.5 lb, a force greater than the combined 200 lbs of weight on the barbell!










EXAMPLE 6c: The Seesaw

A seesaw, 12 ft long with the fulcrum in the middle, has a 100 lb boy sitting on the left end balanced by a 100 lb girl sitting on the right end. How much weight is supported by the fulcrum (Figure 6.14)?


Figure 6.14 A Boy and a Girl on a Seesaw

[image: ch06fig016.eps]


Although we could apply the equilibrium equations, it's easily visualized from the free-body diagram that the fulcrum (R) would support the total weight of the boy and girl, or 200 lbs (Figure 6.15).


Figure 6.15 Free-body Diagram

[image: ch06fig017.eps]


The deformation and deflection of the seesaw are shown in Figure 6.16.


Figure 6.16 Deformation and Deflection of the Seesaw

[image: ch06fig018.eps]


Now suppose that the 100 lb boy is sitting on the left end and a 200 lb man is sitting on the right end. What distance (d) must the man sit from the fulcrum to keep the seesaw in balance, and what total weight (R) does the fulcrum support (Figures 6.17 and 6.18)?


Figure 6.17 A Boy and a Man on a Seesaw

[image: ch06fig019.eps]



Figure 6.18 Free-body Diagram

[image: ch06fig020.eps]


Applying the equilibrium equations to the free-body diagram:

[image: Unnumbered Display Equation]

Verifying the results (by the reader)

DISCUSSION

The heavier weight of the man requires a shorter lever arm (the distance of the man from the fulcrum) to balance the lighter weight of the boy with the longer lever arm.










EXAMPLE 6d: The Diving Board

A diving board, 12 ft long, has a 100 lb diver standing on the diving end and a roller support 4 ft from the other end, which has a pinned support. How much weight is carried by the roller and pinned supports (Figures 6.19, 6.20, and 6.21)? (The support conditions described as roller and pinned in this example will be explained more fully in Chapter 8.)


Figure 6.19 A Diver Standing on a Diving Board

[image: ch06fig021.eps]



Figure 6.20 Free-body Diagram

[image: ch06fig022.eps]



Figure 6.21 Deformation and Deflection of the Diving Board

[image: ch06fig023.eps]


Applying the equilibrium equations to the free-body diagram:

[image: Unnumbered Display Equation]

[image: Unnumbered Display Equation]

Verifying the results (by the reader)

DISCUSSION

It's easily visualized from the free-body diagram that the pinned support (R2) exerts a downward force on the diving board to prevent it from rotating counterclockwise around the roller support (R1). By comparing the free-body diagrams, we see that this situation is somewhat similar to that of a seesaw, except that in this case, no matter how much the diver weighs, the reactive forces at R1 and R2 will increase to compensate and keep the diving board in equilibrium. The heavier the diver, the greater the downward reactive force at R2 and the greater the upward reactive force at R1.










EXAMPLE 6e: The Fishing Pole

An old-fashioned 6 ft long fishing pole, held horizontally by a strong fisherman on a pier, has snagged a 50 lb tire (P). What are the reactions needed by the fisherman's hands to hold the pole level (Figures 6.22, 6.23, and 6.24)?


Figure 6.22 Fisherman Catching a Tire

[image: ch06fig024.eps]



Figure 6.23 Free-body Diagram

[image: ch06fig025.eps]



Figure 6.24 Deformation and Deflection of the Fishing Pole

[image: ch06fig026.eps]


Applying the equilibrium equations to the free-body diagram:

[image: Unnumbered Display Equation]

Using ∑Fy = 0, we quickly see from the free-body diagram that the fisherman must exert an upward force R of 50 lbs to oppose P, the 50 lb weight of the tire.

But with no other forces at play, R and P would cause the pole to rotate in the clockwise direction. Therefore, some other reaction is being developed to keep the pole from rotating. This reaction is a resisting moment exerted by the fisherman's hands. We can determine the magnitude of this resisting moment by using ∑M = 0.

[image: Unnumbered Display Equation]

Verifying the results (by the reader)

DISCUSSION

R and P are two equal forces acting in opposite directions, having parallel lines of action. R and P, called a force couple, tend to produce pure rotation. With no other forces at play, a force couple can only be resisted by a pure moment. Not all types of support are capable of providing resisting moment but, in this case, you can well imagine the fisherman's strong hands being capable of doing so. His hands exert a counterclockwise 300 lb-ft moment on the pole to counteract the clockwise rotational tendency of force couple R and P. Note that M, the resisting moment, is considered to be a reaction along with R.






6.7 Introduction to Bending in Beams

With an understanding of how to create free-body diagrams and apply the equilibrium equations, let's again use the example of the log to visualize several basic factors affecting bending in the log:


1. The more the man weighs, the more the log bends. Where the man stands also affects how much the log bends. If the man were to lie down, thereby spreading out his weight, the log would bend less.

2. The greater the distance between the shorelines, the more the log bends.

3. The thinner the log, the more the log bends.

4. If the log has begun to decay, making it less strong than when freshly fallen, the more the log bends.



If we state the above factors in more technical terms, considering the log as a beam, we can describe several important factors that affect the amount of bending in a beam, and consequently its design:


1. The magnitude of the load on the beam, where it's placed, and how it's distributed

2. The span of the beam (or, more generally, the conditions of support)

3. The cross-sectional shape and dimensions of the beam

4. The strength of the material of which the beam is made



We'll examine these factors, as well as other considerations for beam design, more closely in subsequent chapters.






End of sample
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