

[image: cover.eps]

Excel® 2010 Power Programming with VBA

Table of Contents

Introduction

 Topics Covered

 What You Need to Know

 What You Need to Have

 Conventions in This Book

 Excel commands

 Visual Basic Editor commands

 Keyboard conventions

 Mouse conventions

 What the Icons Mean

 How This Book Is Organized

 Part I: Some Essential Background

 Part II: Excel Application Development

 Part III: Understanding Visual Basic for Applications

 Part IV: Working with UserForms

 Part V: Advanced Programming Techniques

 Part VI: Developing Applications

 Part VII: Other Topics

 Part VIII: Appendixes

 About the Companion CD-ROM

 About the Power Utility Pak Offer

 How to Use This Book

 Reach Out

Part I: Some Essential Background

	Chapter 1: Excel 2010: Where It Came From

 A Brief History of Spreadsheets

 It all started with VisiCalc

 Lotus 1-2-3

 Quattro Pro

 Microsoft Excel

 Current Competition

 Why Excel Is Great for Developers

 Excel's Role in Microsoft's Strategy

	Chapter 2: Excel in a Nutshell

 Thinking in Terms of Objects

 Workbooks

 Worksheets

 Chart sheets

 XLM macro sheets

 Excel 5/95 dialog sheets

 Excel's User Interface

 About the Ribbon

 Shortcut menus and the Mini Toolbar

 Dialog boxes

 Keyboard shortcuts

 Smart Tags

 Task pane

 Customizing the Display

 Data Entry

 Formulas, Functions, and Names

 Selecting Objects

 Formatting

 Protection Options

 Protecting formulas from being overwritten

 Protecting a workbook's structure

 Applying password protection to a workbook

 Protecting VBA code with a password

 Charts

 Shapes and SmartArt

 Database Access

 Worksheet databases

 External databases

 Internet Features

 Analysis Tools

 Add-Ins

 Macros and Programming

 File Format

 Excel's Help System

	Chapter 3: Formula Tricks and Techniques

 About Formulas

 Calculating Formulas

 Cell and Range References

 Why use references that aren't relative?

 About R1C1 notation

 Referencing other sheets or workbooks

 Using Names

 Naming cells and ranges

 Applying names to existing references

 Intersecting names

 Naming columns and rows

 Scoping names

 Naming constants

 Naming formulas

 Naming objects

 Formula Errors

 Array Formulas

 An array formula example

 An array formula calendar

 Array formula pros and cons

 Counting and Summing Techniques

 Counting formula examples

 Summing formula examples

 Other counting tools

 Working with Dates and Times

 Entering dates and times

 Using pre-1900 dates

 Creating Megaformulas

	Chapter 4: Understanding Excel Files

 Starting Excel

 File Types

 Excel file formats

 Text file formats

 Database file formats

 Other file formats

 Working with Template Files

 Viewing templates

 Creating templates

 Creating workbook templates

 Inside an Excel File

 Dissecting a file

 Why is the file format important?

 The OfficeUI File

 The XLB File

 Add-In Files

 Excel Settings in the Registry

 About the Registry

 Excel's settings

Part II: Excel Application Development

	Chapter 5: What Is a Spreadsheet Application?

 Spreadsheet Applications

 The Developer and the End User

 Who are developers? What do they do?

 Classifying spreadsheet users

 The audience for spreadsheet applications

 Solving Problems with Excel

 Basic Spreadsheet Types

 Quick-and-dirty spreadsheets

 For-your-eyes-only spreadsheets

 Single-user applications

 Spaghetti applications

 Utility applications

 Add-ins that contain worksheet functions

 Single-block budgets

 What-if models

 Data storage and access spreadsheets

 Database front ends

 Turnkey applications

	Chapter 6: Essentials of Spreadsheet Application Development

 Steps for Application Development

 Determining User Needs

 Planning an Application That Meets User Needs

 Determining the Most Appropriate User Interface

 Customizing the Ribbon

 Customizing shortcut menus

 Creating shortcut keys

 Creating custom dialog boxes

 Using ActiveX controls on a worksheet

 Executing the development effort

 Concerning Yourself with the End User

 Testing the application

 Making the application bulletproof

 Making the application aesthetically appealing and intuitive

 Creating a user Help system

 Documenting the development effort

 Distributing the application to the user

 Updating the application when necessary

 Other Development Issues

 The user's installed version of Excel

 Language issues

 System speed

 Video modes

Part III: Understanding Visual Basic for Applications

	Chapter 7: Introducing Visual Basic for Applications

 Getting Some BASIC Background

 Delving in to VBA

 Object models

 VBA versus XLM

 Covering the Basics of VBA

 Introducing the Visual Basic Editor

 Displaying Excel's Developer tab

 Activating the VBE

 The VBE windows

 Working with the Project Explorer

 Adding a new VBA module

 Removing a VBA module

 Exporting and importing objects

 Working with Code Windows

 Minimizing and maximizing windows

 Storing VBA code

 Entering VBA code

 Customizing the VBE Environment

 Using the Editor tab

 Using the Editor Format tab

 Using the General tab

 Using the Docking tab

 The Macro Recorder

 What the macro recorder actually records

 Relative or absolute recording?

 Recording options

 Cleaning up recorded macros

 About Objects and Collections

 The object hierarchy

 About collections

 Referring to objects

 Properties and Methods

 Object properties

 Object methods

 The Comment Object: A Case Study

 Viewing Help for the Comment object

 Properties of a Comment object

 Methods of a Comment object

 The Comments collection

 About the Comment property

 Objects within a Comment object

 Determining whether a cell has a comment

 Adding a new Comment object

 Some Useful Application Properties

 Working with Range Objects

 The Range property

 The Cells property

 The Offset property

 Things to Know about Objects

 Essential concepts to remember

 Learning more about objects and properties

	Chapter 8: VBA Programming Fundamentals

 VBA Language Elements: An Overview

 Comments

 Variables, Data Types, and Constants

 Defining data types

 Declaring variables

 Scoping variables

 Working with constants

 Working with strings

 Working with dates

 Assignment Statements

 Arrays

 Declaring arrays

 Declaring multidimensional arrays

 Declaring dynamic arrays

 Object Variables

 User-Defined Data Types

 Built-in Functions

 Manipulating Objects and Collections

 With-End With constructs

 For Each-Next constructs

 Controlling Code Execution

 GoTo statements

 If-Then constructs

 Select Case constructs

 Looping blocks of instructions

	Chapter 9: Working with VBA Sub Procedures

 About Procedures

 Declaring a Sub procedure

 Scoping a procedure

 Executing Sub Procedures

 Executing a procedure with the Run Sub/UserForm command

 Executing a procedure from the Macro dialog box

 Executing a procedure with a Ctrl+shortcut key combination

 Executing a procedure from the Ribbon

 Executing a procedure from a customized shortcut menu

 Executing a procedure from another procedure

 Executing a procedure by clicking an object

 Executing a procedure when an event occurs

 Executing a procedure from the Immediate window

 Passing Arguments to Procedures

 Error-Handling Techniques

 Trapping errors

 Error-handling examples

 A Realistic Example That Uses Sub Procedures

 The goal

 Project requirements

 What you know

 The approach

 What you need to know

 Some preliminary recording

 Initial setup

 Code writing

 Writing the Sort procedure

 More testing

 Fixing the problems

 Utility availability

 Evaluating the project

	Chapter 10: Creating Function Procedures

 Sub Procedures versus Function Procedures

 Why Create Custom Functions?

 An Introductory Function Example

 Using the function in a worksheet

 Using the function in a VBA procedure

 Analyzing the custom function

 Function Procedures

 A function's scope

 Executing function procedures

 Function Arguments

 Function Examples

 Functions with no argument

 A function with one argument

 A function with two arguments

 A function with an array argument

 A function with optional arguments

 A function that returns a VBA array

 A function that returns an error value

 A function with an indefinite number of arguments

 Emulating Excel's SUM function

 Extended Date Functions

 Debugging Functions

 Dealing with the Insert Function Dialog Box

 Using the MacroOptions method

 Specifying a function category

 Adding a function description manually

 Using Add-ins to Store Custom Functions

 Using the Windows API

 Windows API examples

 Determining the Windows directory

 Detecting the Shift key

 Learning more about API functions

	Chapter 11: VBA Programming Examples and Techniques

 Learning by Example

 Working with Ranges

 Copying a range

 Moving a range

 Copying a variably sized range

 Selecting or otherwise identifying various types of ranges

 Prompting for a cell value

 Entering a value in the next empty cell

 Pausing a macro to get a user-selected range

 Counting selected cells

 Determining the type of selected range

 Looping through a selected range efficiently

 Deleting all empty rows

 Duplicating rows a variable number of times

 Determining whether a range is contained in another range

 Determining a cell's data type

 Reading and writing ranges

 A better way to write to a range

 Transferring one-dimensional arrays

 Transferring a range to a variant array

 Selecting cells by value

 Copying a noncontiguous range

 Working with Workbooks and Sheets

 Saving all workbooks

 Saving and closing all workbooks

 Hiding all but the selection

 Synchronizing worksheets

 VBA Techniques

 Toggling a Boolean property

 Determining the number of printed pages

 Displaying the date and time

 Getting a list of fonts

 Sorting an array

 Processing a series of files

 Some Useful Functions for Use in Your Code

 The FileExists function

 The FileNameOnly function

 The PathExists function

 The RangeNameExists function

 The SheetExists function

 The WorkbookIsOpen function

 Retrieving a value from a closed workbook

 Some Useful Worksheet Functions

 Returning cell formatting information

 A talking worksheet

 Displaying the date when a file was saved or printed

 Understanding object parents

 Counting cells between two values

 Determining the last non-empty cell in a column or row

 Does a string match a pattern?

 Extracting the nth element from a string

 Spelling out a number

 A multifunctional function

 The SheetOffset function

 Returning the maximum value across all worksheets

 Returning an array of nonduplicated random integers

 Randomizing a range

 Windows API Calls

 Determining file associations

 Determining disk drive information

 Determining default printer information

 Determining video display information

 Adding sound to your applications

 Reading from and writing to the Registry

Part IV: Working with UserForms

	Chapter 12: Custom Dialog Box Alternatives

 Before You Create That UserForm . . .

 Using an Input Box

 The VBA InputBox function

 The Excel InputBox method

 The VBA MsgBox Function

 The Excel GetOpenFilename Method

 The Excel GetSaveAsFilename Method

 Prompting for a Directory

 Displaying Excel's Built-In Dialog Boxes

 Displaying a Data Form

 Making the data form accessible

 Displaying a data form by using VBA

	Chapter 13: Introducing UserForms

 How Excel Handles Custom Dialog Boxes

 Inserting a New UserForm

 Adding Controls to a UserForm

 Toolbox Controls

 CheckBox

 ComboBox

 CommandButton

 Frame

 Image

 Label

 ListBox

 MultiPage

 OptionButton

 RefEdit

 ScrollBar

 SpinButton

 TabStrip

 TextBox

 ToggleButton

 Adjusting UserForm Controls

 Adjusting a Control's Properties

 Using the Properties window

 Common properties

 Accommodating keyboard users

 Displaying a UserForm

 Displaying a modeless UserForm

 Displaying a UserForm based on a variable

 Loading a UserForm

 About event-handler procedures

 Closing a UserForm

 Creating a UserForm: An Example

 Creating the UserForm

 Writing code to display the dialog box

 Testing the dialog box

 Adding event-handler procedures

 Validating the data

 The finished dialog box

 Understanding UserForm Events

 Learning about events

 UserForm events

 SpinButton events

 Pairing a SpinButton with a TextBox

 Referencing UserForm Controls

 Customizing the Toolbox

 Adding new pages to the Toolbox

 Customizing or combining controls

 Adding new ActiveX controls

 Creating UserForm Templates

 A UserForm Checklist

	Chapter 14: UserForm Examples

 Creating a UserForm “Menu”

 Using CommandButtons in a UserForm

 Using a ListBox in a UserForm

 Selecting Ranges from a UserForm

 Creating a Splash Screen

 Disabling a UserForm's Close Button

 Changing a UserForm's Size

 Zooming and Scrolling a Sheet from a UserForm

 ListBox Techniques

 Adding items to a ListBox control

 Determining the selected item in a ListBox

 Determining multiple selections in a ListBox

 Multiple lists in a single ListBox

 ListBox item transfer

 Moving items in a ListBox

 Working with multicolumn ListBox controls

 Using a ListBox to select worksheet rows

 Using a ListBox to activate a sheet

 Using the MultiPage Control in a UserForm

 Using an External Control

 Animating a Label

	Chapter 15: Advanced UserForm Techniques

 A Modeless Dialog Box

 Displaying a Progress Indicator

 Creating a stand-alone progress indicator

 Showing a progress indicator by using a MultiPage control

 Showing a progress indicator without using a MultiPage control

 Creating Wizards

 Setting up the MultiPage control for the wizard

 Adding the buttons to the wizard's UserForm

 Programming the wizard's buttons

 Programming dependencies in a wizard

 Performing the task with the wizard

 Emulating the MsgBox Function

 MsgBox emulation: MyMsgBox code

 How the MyMsgBox function works

 Using the MyMsgBox function

 A UserForm with Movable Controls

 A UserForm with No Title Bar

 Simulating a Toolbar with a UserForm

 A Resizable UserForm

 Handling Multiple UserForm Controls with One Event Handler

 Selecting a Color in a UserForm

 Displaying a Chart in a UserForm

 Saving a chart as a GIF file

 Changing the Image control Picture property

 Making a UserForm Semitransparent

 An Enhanced Data Form

 About the Enhanced Data Form

 Installing the Enhanced Data Form add-in

 A Puzzle on a UserForm

 Video Poker on a UserForm

Part V: Advanced Programming Techniques

	Chapter 16: Developing Excel Utilities with VBA

 About Excel Utilities

 Using VBA to Develop Utilities

 What Makes a Good Utility?

 Text Tools: The Anatomy of a Utility

 Background for Text Tools

 Project goals for Text Tools

 The Text Tools workbook

 How the Text Tools utility works

 The UserForm for the Text Tools utility

 The Module1 VBA module

 The UserForm1 code module

 Making the Text Tools utility efficient

 Saving the Text Tools utility settings

 Implementing Undo

 Displaying the Help file

 Adding the RibbonX code

 Post-mortem of the project

 Understand the Text Tools utility

 More about Excel Utilities

	Chapter 17: Working with Pivot Tables

 An Introductory Pivot Table Example

 Creating a pivot table

 Examining the recorded code for the pivot table

 Cleaning up the recorded pivot table code

 Creating a More Complex Pivot Table

 The code that created the pivot table

 How the more complex pivot table works

 Creating Multiple Pivot Tables

 Creating a Reverse Pivot Table

	Chapter 18: Working with Charts

 Getting the Inside Scoop on Charts

 Chart locations

 The macro recorder and charts

 The Chart object model

 Creating an Embedded Chart

 Creating a Chart on a Chart Sheet

 Using VBA to Activate a Chart

 Moving a Chart

 Using VBA to Deactivate a Chart

 Determining Whether a Chart Is Activated

 Deleting from the ChartObjects or Charts Collection

 Looping through All Charts

 Sizing and Aligning ChartObjects

 Exporting a Chart

 Exporting all graphics

 Changing the Data Used in a Chart

 Changing chart data based on the active cell

 Using VBA to determine the ranges used in a chart

 Using VBA to Display Arbitrary Data Labels on a Chart

 Displaying a Chart in a UserForm

 Understanding Chart Events

 An example of using Chart events

 Enabling events for an embedded chart

 Example: Using Chart events with an embedded chart

 Discovering VBA Charting Tricks

 Printing embedded charts on a full page

 Hiding series by hiding columns

 Creating unlinked charts

 Displaying text with the MouseOver event

 Animating Charts

 Scrolling a chart

 Creating a hypocycloid chart

 Creating a “clock” chart

 Creating an Interactive Chart without VBA

 Getting the data to create an interactive chart

 Creating the Option Button controls for an interactive chart

 Creating the city lists for the interactive chart

 Creating the interactive chart data range

 Creating the interactive chart

 Working with Sparkline Charts

	Chapter 19: Understanding Excel's Events

 What You Should Know about Events

 Understanding event sequences

 Where to put event-handler procedures

 Disabling events

 Entering event-handler code

 Event-handler procedures that use arguments

 Getting Acquainted with Workbook-Level Events

 The Open event

 The Activate event

 The SheetActivate event

 The NewSheet event

 The BeforeSave event

 The Deactivate event

 The BeforePrint event

 The BeforeClose event

 Examining Worksheet Events

 The Change event

 Monitoring a specific range for changes

 The SelectionChange event

 The BeforeDoubleClick event

 The BeforeRightClick event

 Checking Out Chart Events

 Monitoring with Application Events

 Enabling Application-level events

 Determining when a workbook is opened

 Monitoring Application-level events

 Using UserForm Events

 Accessing Events Not Associated with an Object

 The OnTime event

 The OnKey event

	Chapter 20: Interacting with Other Applications

 Starting an Application from Excel

 Using the VBA Shell function

 Using the Windows ShellExecute API function

 Activating an Application with Excel

 Using AppActivate

 Activating a Microsoft Office application

 Running Control Panel Dialog Boxes

 Using Automation in Excel

 Working with foreign objects using automation

 Early versus late binding

 A simple example of late binding

 Controlling Word from Excel

 Controlling Excel from another application

 Sending Personalized E-Mail via Outlook

 Sending E-Mail Attachments from Excel

 Using SendKeys

	Chapter 21: Creating and Using Add-Ins

 What Is an Add-In?

 Comparing an add-in with a standard workbook

 Why create add-ins?

 Understanding Excel's Add-In Manager

 Creating an Add-in

 An Add-In Example

 Adding descriptive information for the example add-in

 Creating an add-in

 Installing an add-in

 Testing the add-in

 Distributing an add-in

 Modifying an add-in

 Comparing XLAM and XLSM Files

 XLAM file VBA collection membership

 Visibility of XLSM and XLAM files

 Worksheets and chart sheets in XLSM and XLAM files

 Accessing VBA procedures in an add-in

 Manipulating Add-Ins with VBA

 AddIn object properties

 Accessing an add-in as a workbook

 AddIn object events

 Optimizing the Performance of Add-ins

 Special Problems with Add-Ins

 Ensuring that an add-in is installed

 Referencing other files from an add-in

 Detecting the proper Excel version for your add-in

Part VI: Developing Applications

	Chapter 22: Working with the Ribbon

 Ribbon Basics

 Using VBA with the Ribbon

 Accessing a Ribbon control

 Working with the Ribbon

 Activating a tab

 Customizing the Ribbon

 A simple RibbonX example

 A simple Ribbon example, take 2

 Another RibbonX example

 Ribbon controls demo

 A DynamicMenu Control Example

 More on Ribbon customization

 Creating an Old-Style Toolbar

 Limitations of old-style toolbars in Excel 2010

 Code to create a toolbar

	Chapter 23: Working with Shortcut Menus

 CommandBar Overview

 CommandBar types

 Listing shortcut menus

 Referring to CommandBars

 Referring to controls in a CommandBar

 Properties of CommandBar controls

 Displaying all shortcut menu items

 Using VBA to Customize Shortcut Menus

 Resetting a shortcut menu

 Disabling a Shortcut Menu

 Disabling shortcut menu items

 Adding a new item to the Cell shortcut menu

 Adding a submenu to a shortcut menu

 Shortcut Menus and Events

 Adding and deleting menus automatically

 Disabling or hiding shortcut menu items

 Creating a context-sensitive shortcut menu

	Chapter 24: Providing Help for Your Applications

 Help for Your Excel Applications

 Help Systems That Use Excel Components

 Using cell comments for help

 Using a text box for help

 Using a worksheet to display help text

 Displaying help in a UserForm

 Displaying Help in a Web Browser

 Using HTML files

 Using an MHTML file

 Using the HTML Help System

 Using the Help method to display HTML Help

 Associating a Help File with Your Application

 Associating a Help topic with a VBA function

	Chapter 25: Developing User-Oriented Applications

 What is a User-Oriented Application?

 The Loan Amortization Wizard

 Using the Loan Amortization Wizard

 The Loan Amortization Wizard workbook structure

 How the Loan Amortization Wizard works

 Potential enhancements for the Loan Amortization Wizard

 Application Development Concepts

Part VII: Other Topics

	Chapter 26: Compatibility Issues

 What Is Compatibility?

 Types of Compatibility Problems

 Avoid Using New Features

 But Will It Work on a Mac?

 Dealing with 64-bit Excel

 Creating an International Application

 Multilanguage applications

 VBA language considerations

 Using local properties

 Identifying system settings

 Date and time settings

	Chapter 27: Manipulating Files with VBA

 Performing Common File Operations

 Using VBA file-related statements

 Using the FileSystemObject object

 Displaying Extended File Information

 Working with Text Files

 Opening a text file

 Reading a text file

 Writing a text file

 Getting a file number

 Determining or setting the file position

 Statements for reading and writing

 Text File Manipulation Examples

 Importing data in a text file

 Exporting a range to a text file

 Importing a text file to a range

 Logging Excel usage

 Filtering a text file

 Exporting a range to HTML format

 Exporting a range to an XML file

 Zipping and Unzipping Files

 Zipping files

 Unzipping a File

 Working with ADO

	Chapter 28: Manipulating Visual Basic Components

 Introducing the IDE

 The IDE Object Model

 The VBProjects collection

 Displaying All Components in a VBA Project

 Listing All VBA Procedures in a Workbook

 Replacing a Module with an Updated Version

 Using VBA to Write VBA Code

 Adding Controls to a UserForm at Design Time

 Design-time versus runtime UserForm manipulations

 Adding 100 CommandButtons at design time

 Creating UserForms Programmatically

 A simple runtime UserForm example

 A useful (but not so simple) dynamic UserForm example

	Chapter 29: Understanding Class Modules

 What is a Class Module?

 Example: Creating a NumLock Class

 Inserting a class module

 Adding VBA code to the class module

 Using the NumLockClass class

 More about Class Modules

 Programming properties of objects

 Programming methods for objects

 Class module events

 Example: A CSV File Class

 Class module–level variables for the CSVFileClass

 Property procedures for the CSVFileClass

 Method procedures for the CSVFileClass

 Using the CSVFileClass object

	Chapter 30: Working with Colors

 Specifying Colors

 The RGB color system

 The HSL color system

 Converting colors

 Understanding Grayscale

 Converting colors to gray

 Viewing charts as grayscale

 Experimenting with Colors

 Understanding Document Themes

 About document themes

 Understanding document theme colors

 Displaying all theme colors

 Working with Shape Objects

 A shape's background color

 Shapes and theme colors

 Shape examples

 Modifying Chart Colors

	Chapter 31: Frequently Asked Questions about Excel Programming

 Getting the Scoop on FAQs

 General Excel Questions

 The Visual Basic Editor

 Procedures

 Functions

 Objects, Properties, Methods, and Events

 UserForms

 Add-Ins

 User Interface

Part VIII: Appendixes

	Appendix A: Excel Resources Online

 Support options

 Microsoft Knowledge Base

 Microsoft Excel home page

 Microsoft Office home page

 Accessing newsgroups by using a newsreader

 Accessing newsgroups by using a Web browser

 Searching newsgroups

 The Spreadsheet Page

 Daily Dose of Excel

 Jon Peltier's Excel Page

 Pearson Software Consulting

 Contextures

 Pointy Haired Dilbert

 David McRitchie's Excel Pages

 Mr. Excel

	Appendix B: VBA Statements and Functions Reference

	Appendix C: VBA Error Codes

	Appendix D: What's on the CD-ROM

 Applications

 eBook version of Excel 2010 Power Programming with VBA

 Sample files for Excel 2010 Power Programming with VBA

		
			
			

			
				Excel® 2010 Power Programming with VBA

				by John Walkenbach

				Excel® 2010 Power Programming with VBA

				Published byWiley Publishing, Inc.111 River StreetHoboken, NJ 07030-5774
www.wiley.com

				Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

				Published by Wiley Publishing, Inc., Indianapolis, Indiana

				Published simultaneously in Canada

				No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

				Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. Excel is a registered trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

				Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

				For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

				For technical support, please visit www.wileycom/techsupport.

				Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

				Library of Congress Control Number: 2010923549

				ISBN: 978-0-470-47535-5

				Manufactured in the United States of America

				10 9 8 7 6 5 4 3 2 1

				About the Author

				John Walkenbach is author of more than 50 spreadsheet books and lives in southern Arizona. Visit his Web site: http://spreadsheetpagecom.

				Publisher's Acknowledgments

				We're proud of this book; please send us your comments at http://dummiescusthelpcom. For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

				Some of the people who helped bring this book to market include the following:

				Acquisitions, Editorial, and Media Development

				Project Editor: Kelly Ewing

				Acquisitions Editor: Katie Mohr

				Technical Editor: Todd Meister

				Editorial Manager: Jodi Jensen

				Media Development Project Manager: Laura Moss-Hollister

				Media Development Assistant Project Manager: Jenny Swisher

				Media Development Associate Producer: Douglas Kuhn

				Media Development Quality Assurance: Marilyn Hummel

				Editorial Assistant: Amanda Graham

				Sr. Editorial Assistant: Cherie Case

				Composition Services

				Project Coordinator: Katherine Crocker

				Layout and Graphics: Carrie A. Cesavice, Joyce Haughey, Jennifer Mayberry

				Proofreaders: Laura L. Bowman, John Greenough

				Indexer: Broccoli Information Management

				Publishing and Editorial for Technology Dummies

				Richard Swadley, Vice President and Executive Group Publisher

				Andy Cummings, Vice President and Publisher

				Mary Bednarek, Executive Acquisitions Director

				Mary C. Corder, Editorial Director

				Publishing for Consumer Dummies

				Diane Graves Steele, Vice President and Publisher

				Composition Services

				Debbie Stailey, Director of Composition Services

			

		

	
		
			
				Introduction

				Welcome to Excel 2010 Power Programming with VBA. If your job involves developing Excel workbooks that others will use — or if you simply want to get the most out of Excel — you've come to the right place.

				Topics Covered

				This book focuses on Visual Basic for Applications (VBA), the programming language built into Excel (and other applications that make up Microsoft Office). More specifically, it will show you how to write programs that automate various tasks in Excel. This book covers everything from recording simple macros through creating sophisticated user-oriented applications and utilities.

				This book does not cover Microsoft Visual Studio Tools for Office (VSTO). VSTO is a relatively new technology that uses Visual Basic .NET and Microsoft Visual C#. VSTO can also be used to control Excel and other Microsoft Office applications.

				What You Need to Know

				This is not a book for beginning Excel users. If you have no experience with Excel, a better choice might be my Excel 2010 Bible, which provides comprehensive coverage of all the features of Excel. That book is meant for users of all levels.

				To get the most out of this book, you should be a relatively experienced Excel user. I didn't spend much time writing basic how-to information. In fact, I assume that you know the following:

				• How to create workbooks, insert sheets, save files, and so on

				• How to navigate through a workbook

				• How to use the Excel Ribbon user interface

				• How to enter formulas

				• How to use Excel's worksheet functions

				• How to name cells and ranges

				• How to use basic Windows features, such as file management techniques and the Clipboard

				If you don't know how to perform the preceding tasks, you could find some of this material over your head, so consider yourself warned. If you're an experienced spreadsheet user who hasn't used Excel 2010, Chapter 2 presents a brief overview of what this product offers.

				What You Need to Have

				To make the best use of this book, you need a copy of Excel 2010. Although most of the material also applies to Excel 2003 and later versions, I assume that you're using Excel 2010. Although Excel 2007 and Excel 2010 are radically different from their predecessors, the VBA environment hasn't changed at all. If you plan to develop applications that will be used in earlier versions of Excel, I strongly suggest that you don't use Excel 2010 for your development work. Rather, use the earliest version of Excel that the target audience will be using.

				This book isn't intended for any version of Excel for Macintosh. Any computer system that can run Windows will suffice, but you'll be much better off with a fast machine with plenty of memory. Excel is a large program, and using it on a slower system or a system with minimal memory can be extremely frustrating.

				I recommend using a high-resolution video driver (1280 × 1024 is adequate, and 1600 × 1200 is even better). For optimal results, try a dual-monitor system and place Excel on one screen and the Visual Basic Editor on the other. You'll soon become spoiled.

				To use the examples on the companion CD, you also need a CD-ROM drive.

				Conventions in This Book

				Take a minute to skim this section and learn some of the typographic conventions used throughout this book.

				Excel commands

				Beginning with Excel 2007, the product features a brand-new “menu-less” user interface. In place of a menu system, Excel uses a context-sensitive Ribbon system. The words along the top (such as Insert, View, and so on) are known as tabs. Click a tab, and the Ribbon of icons displays the commands that are most suited to the task at hand. Each icon has a name that is (usually) displayed next to or below the icon. The icons are arranged in groups, and the group name appears below the icons.

				The convention I use in this book is to indicate the tab name, followed by the group name, followed by the icon name. So, for example, the command used to toggle word wrap within a cell is indicated as:

				HomeAlignmentWrap Text

				Clicking the first tab, labeled File, takes you to a new screen called Backstage. The Backstage window has commands along the left side of the window. To indicate Backstage commands, I use the word File, followed by the command. For example, the following command displays the Excel Options dialog box:

				FileExcel Options

				Visual Basic Editor commands

				The Visual Basic Editor is the window in which you work with your VBA code. The VB Editor uses the traditional menu-and-toolbar interface. A command like the following means to click the Tools menu and select the References menu item:

				ToolsReferences

				Keyboard conventions

				You need to use the keyboard to enter data. In addition, you can work with menus and dialog boxes directly from the keyboard — a method that you might find easier if your hands are already positioned over the keys.

				Input

				Input that you are supposed to type from the keyboard appears in boldface — for example, enter =SUM(B2: B50) into cell B51.

				More lengthy input usually appears on a separate line in a monospace font. For example, I might instruct you to enter the following formula:

				=VLOOKUP(StockNumber,PriceList,2)

				VBA code

				This book contains many snippets of VBA code, as well as complete procedure listings. Each listing appears in a monospace font; each line of code occupies a separate line. (I copied these listings directly from the VBA module and pasted them into my word processor.) To make the code easier to read, I often use one or more tabs to create indentations. Indentation is optional, but it does help to delineate statements that go together.

				If a line of code doesn't fit on a single line in this book, I use the standard VBA line continuation sequence: At the end of a line, a space followed by an underscore character indicates that the line of code extends to the next line. For example, the following two lines are a single code statement:

				If Right(ActiveCell, 1) = “!” Then ActiveCell _

				 = Left(ActiveCell, Len(ActiveCell) - 1)

				You can enter this code either on two lines, exactly as shown, or on a single line without the underscore character.

				Functions, filenames, and named ranges

				Excel's worksheet functions appear in uppercase font, like so: “Enter a SUM formula in cell C20.” VBA procedure names, properties, methods, and objects appear in monospace font: “Execute the GetTotals procedure.” I often use mixed uppercase and lowercase letters to make these names easier to read.

				I also use the monospace font for filenames and named ranges in a worksheet — for example: Open myfile.xlsm and select the range named data.

				Mouse conventions

				If you're reading this book, you're well versed in mouse usage. The mouse terminology I use is all standard fare: pointing, clicking, right-clicking, dragging, and so on.

				What the Icons Mean

				Throughout the book, I use icons to call your attention to points that are particularly important:

				[image: newfeature.eps] I use this icon to indicate that the material discussed is new to Excel 2010.

				[image: note.eps] I use Note icons to tell you that something is important — perhaps a concept that could help you master the task at hand or something fundamental for understanding subsequent material.

				[image: tip.eps] Tip icons indicate a more efficient way of doing something or a technique that might not be obvious.

				[image: on_the_cd.eps] These icons indicate that an example file is on the companion CD-ROM. (See “About the Companion CD-ROM,” later in this Preface.) This CD holds many of the examples that I show in the book.

				[image: caution.eps] I use Caution icons when the operation that I'm describing can cause problems if you're not careful.

				[image: cross_ref.eps] I use the Cross-Reference icon to refer you to other chapters that have more to say on a subject.

				How This Book Is Organized

				The chapters of this book are grouped into eight main parts.

				Part I: Some Essential Background

				In this part, I set the stage for the rest of the book. Chapter 1 presents a brief history of spreadsheets so that you can see how Excel fits into the big picture. In Chapter 2, I offer a conceptual overview of Excel 2010 — quite useful for experienced spreadsheet users who are switching to Excel. In Chapter 3, I cover the essentials of formulas, including some clever techniques that might be new to you. Chapter 4 covers the ins and outs of the various files used and generated by Excel.

				Part II: Excel Application Development

				This part consists of just two chapters. In Chapter 5, I broadly discuss the concept of a spreadsheet application. Chapter 6 goes into more detail and covers the steps typically involved in a spreadsheet application development project.

				Part III: Understanding Visual Basic for Applications

				Chapters 7 through 11 make up Part III, and these chapters include everything that you need to know to learn VBA. In this part, I introduce you to VBA, provide programming fundamentals, and detail how to develop VBA subroutines and functions. Chapter 11 contains many useful VBA examples.

				Part IV: Working with UserForms

				The four chapters in this part cover custom dialog boxes (also known as UserForms). Chapter 12 presents some built-in alternatives to creating custom UserForms. Chapter 13 provides an introduction to UserForms and the various controls that you can use. Chapters 14 and 15 present many examples of custom dialog boxes, ranging from basic to advanced.

				Part V: Advanced Programming Techniques

				Part V covers additional techniques that are often considered advanced. The first three chapters discuss how to develop utilities and how to use VBA to work with pivot tables and charts (including the new Sparkline graphics). Chapter 19 covers event handling, which enables you to execute procedures automatically when certain events occur. Chapter 20 discusses various techniques that you can use to interact with other applications (such as Word). Chapter 21 concludes Part V with an in-depth discussion of creating add-ins.

				Part VI: Developing Applications

				The chapters in Part VI deal with important elements of creating user-oriented applications. Chapter 22 discusses how to modify the new Ribbon interface. Chapter 23 describes how to modify Excel's shortcut menus. Chapter 24 presents several different ways to provide online help for your applications. In Chapter 25, I present some basic information about developing user-oriented applications, and I describe such an application in detail.

				Part VII: Other Topics

				The six chapters in Part VII cover additional topics. Chapter 26 presents information regarding compatibility. In Chapter 27, I discuss various ways to use VBA to work with files. In Chapter 28, I explain how to use VBA to manipulate Visual Basic components such as UserForms and modules. Chapter 29 covers the topic of class modules. Chapter 30 explains how to work with color in Excel. I finish the part with a useful chapter that answers many common questions about Excel programming.

				Part VIII: Appendixes

				Four appendixes round out the book. Appendix A contains useful information about Excel resources online. Appendix B is a reference guide to all VBA's keywords (statements and functions). I explain VBA error codes in Appendix C, and Appendix D describes the files available on the companion CD-ROM.

				About the Companion CD-ROM

				The inside back cover of this book contains a CD-ROM that holds many useful examples that I discuss in the text. When I write about computer-related material, I emphasize learning by example. I know that I learn more from a well-thought-out example than from reading a dozen pages in a book. I assume that this is true for many other people. Consequently, I spent more time developing the examples on the CD-ROM than I did writing chapters.

				The files on the companion CD-ROM aren't compressed, so you can access them directly from the CD.

				[image: cross_ref.eps] Refer to Appendix D for a description of each file on the CD-ROM.

				About the Power Utility Pak Offer

				Toward the back of the book, you'll find a coupon that you can redeem for a discounted copy of my popular Power Utility Pak software. PUP is an award-winning collection of useful Excel utilities and many new worksheet functions. I developed this package exclusively with VBA.

				I think you'll find this product useful in your day-to-day work with Excel. You can also purchase the complete VBA source code for a nominal fee. Studying the code is an excellent way to pick up some useful programming techniques.

				You can take Power Utility Pak for a test drive by installing the 30-day trial version available at my Web site:

				http://spreadsheetpage.com

				How to Use This Book

				You can use this book any way that you please. If you choose to read it from cover to cover, be my guest. But because I'm dealing with intermediate-to-advanced subject matter, the chapter order is often immaterial. I suspect that most readers will skip around, picking up useful tidbits here and there. If you're faced with a challenging task, you might try the index first to see whether the book specifically addresses your problem.

				Reach Out

				The publisher and I want your feedback. After you've had a chance to use this book, please take a moment to visit the Wiley Publishing Web site to give us your comments. (Go to www.wileycom and then click the Contact Us link.) Please be honest in your evaluation. If you thought a particular chapter didn't tell you enough, let us know. Of course, I would prefer to receive comments like, “This is the best book I've ever read,” or “Thanks to this book, I was promoted and now make $124,000 a year.”

				I get at least a half dozen questions every day, via e-mail, from people who have read my books. I appreciate the feedback. Unfortunately, I simply don't have the time to reply to specific questions. Appendix A provides a good list of sources that can answer your questions.

				I also invite you to visit my Web site, which contains lots of Excel-related material. The URL is

				http://spreadsheetpage.com

			

		

	
		
			
				Part I: Some Essential Background

				CHAPTER 1

				Excel 2010: Where It Came From

				CHAPTER 2

				Excel in a Nutshell

				CHAPTER 3

				Formula Tricks and Techniques

				CHAPTER 4

				Understanding Excel's Files

			

		

	
		
			
				Chapter 1: Excel 2010: Where It Came From

				IN THIS CHAPTER

				• Exploring the history of spreadsheets

				• Discussing Excel's evolution

				• Analyzing why Excel is a good tool for developers

				A Brief History of Spreadsheets

				Most people tend to take spreadsheet software for granted. In fact, it may be hard to fathom, but there really was a time when electronic spreadsheets weren't available. Back then, people relied instead on clumsy mainframes or calculators and spent hours doing what now takes minutes.

				It all started with VisiCalc

				The world's first electronic spreadsheet, VisiCalc, was conjured up by Dan Bricklin and Bob Frankston back in 1978, when personal computers were pretty much unheard of in the office environment. VisiCalc was written for the Apple II computer, which was an interesting little machine that is something of a toy by today's standards. (But in its day, the Apple II kept me mesmerized for days at a time.) VisiCalc essentially laid the foundation for future spreadsheets, and you can still find its row-and-column-based layout and formula syntax in modern spreadsheet products. VisiCalc caught on quickly, and many forward-looking companies purchased the Apple II for the sole purpose of developing their budgets with VisiCalc. Consequently, VisiCalc is often credited for much of the Apple II's initial success.

				In the meantime, another class of personal computers was evolving; these PCs ran the CP/M operating system. A company called Sorcim developed SuperCalc, which was a spreadsheet that also attracted a legion of followers.

				When the IBM PC arrived on the scene in 1981, legitimizing personal computers, VisiCorp wasted no time porting VisiCalc to this new hardware environment, and Sorcim soon followed with a PC version of SuperCalc.

				By current standards, both VisiCalc and SuperCalc were extremely crude. For example, text entered into a cell couldn't extend beyond the cell — a lengthy title had to be entered into multiple cells. Nevertheless, the ability to automate the budgeting tedium was enough to lure thousands of accountants from paper ledger sheets to floppy disks.

				[image: tip.eps] You can download a copy of the original VisiCalc from Dan Bricklin's Web site at www.bricklin.com. And yes, nearly 30 years later, this 27K program still runs on today's PCs (see Figure 1-1).

				[image: 475355-fg0101.tif]

				FIGURE 1-1: VisiCalc, running in a DOS window on a PC running Windows XP.

				Lotus 1-2-3

				Envious of VisiCalc's success, a small group of computer freaks at a start-up company in Cambridge, Massachusetts, refined the spreadsheet concept. Headed by Mitch Kapor and Jonathan Sachs, the company designed a new product and launched the software industry's first full-fledged marketing blitz. I remember seeing a large display ad for 1-2-3 in The Wall Street Journal. It was the first time that I'd ever seen software advertised in a general interest publication.

				Released in January 1983, Lotus Development Corporation's 1-2-3 was an instant success. Despite its $495 price tag (which is probably close to $1,000 in today's dollars), it quickly outsold VisiCalc, rocketing to the top of the sales charts, where it remained for many years.

				What Lotus did right

				Lotus 1-2-3 improved on all the basics embodied in VisiCalc and SuperCalc and was also the first program to take advantage of the new and unique features found in the powerful 16-bit IBM PC AT. For example, 1-2-3 bypassed the slower DOS calls and wrote text directly to display memory, giving it a snappy and responsive feel that was unusual for the time. The online help system was a breakthrough, and the ingenious “moving bar” menu style set the standard for many years.

				One feature that really set 1-2-3 apart, though, was its macro capability — a powerful tool that enabled spreadsheet users to record their keystrokes to automate many procedures. When such a macro was “played back,” the original keystrokes were sent to the application, and it was like a super-fast typist was at the keyboard. Although a far cry from today's macro capability, 1-2-3 macros were definitely a step in the right direction.

				1-2-3 was not the first integrated package, but it was the first successful one. It combined (1) a powerful electronic spreadsheet with (2) elementary graphics and (3) some limited but handy database features. Easy as 1, 2, 3 — get it?

				Lotus followed up the original 1-2-3 Release 1 with Release 1A in April 1983. This product enjoyed tremendous success and put Lotus in the enviable position of virtually owning the spreadsheet market. In September 1985, Release 1A was replaced by Release 2, which was a major upgrade that was superseded by the bug-fixed Release 2.01 the following July. Release 2 introduced add-ins, which are special-purpose programs that can be attached to give an application new features and extend the application's useful life. Release 2 also had improved memory management, more functions, 8,192 rows (four times as many as its predecessor), and added support for a math coprocessor. Release 2 also included some significant enhancements to the macro language.

				Not surprisingly, the success of 1-2-3 spawned many clones — work-alike products that usually offered a few additional features and sold at a much lower price. Among the more notable were Paperback Software's VP Planner series and Mosaic Software's Twin. Lotus eventually took legal action against Paperback Software for copyright infringement (for copying the “look and feel” of 1-2-3); the successful suit essentially put Paperback out of business.

				In the summer of 1989, Lotus shipped DOS and OS/2 versions of the long-delayed 1-2-3 Release 3. This product literally added a dimension to the familiar row-and-column-based spreadsheet: It extended the paradigm by adding multiple spreadsheet pages. The idea wasn't really new, however; a relatively obscure product called Boeing Calc originated the 3-D spreadsheet concept, and SuperCalc 5 and CubeCalc also incorporated it.

				1-2-3 Release 3 offered features that users wanted — features that ultimately became standard fare: multilayered worksheets, the capability to work with multiple files simultaneously, file linking, improved graphics, and direct access to external database files. But it still lacked an important feature that users were begging for: a way to produce high-quality printed output.

				Release 3 began life with a reduced market potential because it required an 80286-based PC and a minimum of 1MB of RAM — fairly hefty requirements in 1989. But Lotus had an ace up its corporate sleeve. Concurrent with the shipping of Release 3, the company surprised nearly everyone by announcing an upgrade of Release 2.01. (The product materialized a few months later as 1-2-3 Release 2.2.) Release 3 was not a replacement for Release 2, as most analysts had expected. Rather, Lotus made the brilliant move of splitting the spreadsheet market into two segments: those with high-end hardware and those with more mundane equipment.

				Too little, too late

				1-2-3 Release 2.2 wasn't a panacea for spreadsheet buffs, but it was a significant improvement. The most important Release 2.2 feature was Allways, an add-in that gave users the ability to churn out attractive reports, complete with multiple typefaces, borders, and shading. In addition, users could view the results on-screen in a WYSIWYG (What You See Is What You Get) manner. Allways didn't, however, let users issue any worksheet commands while they viewed and formatted their work in WYSIWYG mode. Despite this rather severe limitation, many 1-2-3 users were overjoyed with this new capability because they could finally produce near-typeset-quality output.

				In May 1990, Microsoft released Windows 3.0. As you probably know, Windows changed the way that people used personal computers. Apparently, the decision-makers at Lotus weren't convinced that Windows was a significant product, and the company was slow getting out of the gate with its first Windows spreadsheet, 1-2-3 for Windows, which wasn't introduced until late 1991. Worse, this product was, in short, a dud. It didn't really capitalize on the Windows environment and disappointed many users. It also disappointed at least one book author. My very first book was titled PC World 1-2-3 For Windows Complete Handbook (Wiley). I think it sold fewer than 1,000 copies.

				Serious competition from Lotus never materialized. Consequently, Excel, which had already established itself as the premier Windows spreadsheet, became the overwhelming Windows spreadsheet market leader and has never left that position. Lotus came back with 1-2-3 Release 4 for Windows in June 1993, which was a vast improvement over the original. Release 5 for Windows appeared in mid-1994.

				Also in mid-1994, Lotus unveiled 1-2-3 Release 4.0 for DOS. Many analysts (including myself) expected a product more compatible with the Windows product. But we were wrong; DOS Release 4.0 was simply an upgraded version of Release 3.4. Because of the widespread acceptance of Windows, that was the last DOS version of 1-2-3 to see the light of day.

				Over the years, spreadsheets became less important to Lotus. In mid-1995, IBM purchased Lotus Development Corporation. Additional versions of 1-2-3 became available, but it seems to be a case of too little, too late. The current version is Release 9.8. Excel clearly dominates the spreadsheet market, and 1-2-3 users are an increasingly rare breed.

				Quattro Pro

				The other significant player in the spreadsheet world is (or, I should say, was) Borland International. Borland started in spreadsheets in 1987 with a product called Quattro. Word has it that the internal code name was Buddha because the program was intended to “assume the Lotus position” in the market (that is, #1). Essentially a clone of 1-2-3, Quattro offered a few additional features and an arguably better menu system at a much lower price. Importantly, users could opt for a 1-2-3-like menu system that let them use familiar commands and also ensured compatibility with 1-2-3 macros.

				In the fall of 1989, Borland began shipping Quattro Pro, which was a more powerful product that built upon the original Quattro and trumped 1-2-3 in just about every area. For example, the first Quattro Pro let you work with multiple worksheets in movable and resizable windows — although it did not have a graphical user interface (GUI). More trivia: Quattro Pro was based on an obscure product called Surpass, which Borland acquired.

				Released in late 1990, Quattro Pro Version 2.0 added 3-D graphs and a link to Borland's Paradox database. A mere six months later — much to the chagrin of Quattro Pro book authors — Version 3.0 appeared, featuring an optional graphical user interface and a slide show feature. In the spring of 1992, Version 4 appeared with customizable SpeedBars and an innovative analytical graphics feature. Version 5, which came out in 1994, had only one significant new feature: worksheet notebooks (that is, 3-D worksheets).

				Like Lotus, Borland was slow to jump on the Windows bandwagon. When Quattro Pro for Windows finally shipped in the fall of 1992, however, it provided some tough competition for the other two Windows spreadsheets, Excel 4.0 and 1-2-3 Release 1.1 for Windows. Importantly, Quattro Pro for Windows had an innovative feature, known as the UI Builder, that let developers and advanced users easily create custom user interfaces.

				Also worth noting was a lawsuit between Lotus and Borland. Lotus won the suit, forcing Borland to remove the 1-2-3 macro compatibility and 1-2-3 menu option from Quattro Pro. This ruling was eventually overturned in late 1994, however, and Quattro Pro can now include 1-2-3 compatibility features (as if anyone really cares). Both sides spent millions of dollars on this lengthy legal fight, and when the dust cleared, no real winner emerged.

				Borland followed up the original Quattro Pro for Windows with Version 5. In 1994, Novell purchased WordPerfect International and Borland's entire spreadsheet business, and Version 6 was released.

				In 1996, WordPerfect and Quattro Pro were both purchased by Corel Corporation. As I write, the current version of Quattro Pro is Version 14, which is part of WordPerfect Office X4.

				There was a time when Quattro Pro seemed the ultimate solution for spreadsheet developers. But then Excel 5 arrived.

				Microsoft Excel

				And now on to the good stuff.

				Most people don't realize that Microsoft's experience with spreadsheets extends back to the early '80s. Over the years, Microsoft's spreadsheet offerings have come a long way, from the barely adequate MultiPlan to the powerful Excel 2010.

				It started with MultiPlan

				In 1982, Microsoft released its first spreadsheet, MultiPlan. Designed for computers running the CP/M operating system, the product was subsequently ported to several other platforms, including Apple II, Apple III, XENIX, and MS-DOS.

				MultiPlan essentially ignored existing software user-interface standards. Difficult to learn and use, it never earned much of a following in the United States. Not surprisingly, Lotus 1-2-3 pretty much left MultiPlan in the dust.

				Excel arrives

				Excel sort of evolved from MultiPlan, first surfacing in 1985 on the Macintosh. Like all Mac applications, Excel was a graphics-based program (unlike the character-based MultiPlan). In November 1987, Microsoft released the first version of Excel for Windows (labeled Excel 2.0 to correspond with the Macintosh version). Because Windows wasn't in widespread use at the time, this version included a runtime version of Windows — a special version that had just enough features to run Excel and nothing else. Less than a year later, Microsoft released Excel Version 2.1. In July 1990, Microsoft released a minor upgrade (2.1d) that was compatible with Windows 3.0. Although these 2.x versions were quite rudimentary by current standards (see Figure 1-2) and didn't have the attractive, sculpted look of later versions, they attracted a small but loyal group of supporters and provided an excellent foundation for future development.

				Excel's first macro language also appeared in Version 2.The XLM macro language consisted of functions that were evaluated in sequence. It was quite powerful, but very difficult to learn and use. The XLM macro language was replaced by Visual Basic for Applications (VBA), which is the topic of this book. However, Excel 2010 still supports XLM macros.

				[image: 475355-fg0102.tif]

				FIGURE 1-2: The original Excel 2.1 for Windows. This product has come a long way.

				(Photo courtesy of Microsoft)

				Meanwhile, Microsoft developed a version of Excel (numbered 2.20) for OS/2 Presentation Manager, released in September 1989 and upgraded to Version 2.21 about 10 months later. OS/2 never quite caught on, despite continued efforts by IBM.

				In December 1990, Microsoft released Excel 3 for Windows, which boasted a significant improvement in both appearance and features (see Figure 1-3). The upgrade included a toolbar, drawing capabilities, a powerful optimization feature (Solver), add-in support, Object Linking and Embedding (OLE) support, 3-D charts, macro buttons, simplified file consolidation, workgroup editing, and the ability to wrap text in a cell. Excel 3 also had the capability to work with external databases (via the Q+E program). The OS/2 version upgrade appeared five months later.

				[image: 475355-fg0103.tif]

				FIGURE 1-3: Excel 3 was a vast improvement over the original release.

				(Photo courtesy of Microsoft)

				Version 4, released in the spring of 1992, not only was easier to use but also had more power and sophistication for advanced users (see Figure 1-4). Excel 4 took top honors in virtually every spreadsheet product comparison published in the trade magazines. In the meantime, the relationship between Microsoft and IBM became increasingly strained, and Microsoft stopped making versions of Excel for OS/2.

				[image: 475355-fg0104.tif]

				FIGURE 1-4: Excel 4 was another significant step forward, although still far from Excel 5.

				(Photo courtesy of Microsoft)

				VBA is born

				Excel 5 hit the streets in early 1994 and immediately earned rave reviews. Like its predecessor, it finished at the top of every spreadsheet comparison published in the leading trade magazines. Despite stiff competition from 1-2-3 Release 5 for Windows and Quattro Pro for Windows 5 — both were fine products that could handle just about any spreadsheet task thrown their way — Excel 5 continued to rule the roost. This version, by the way, was the first to feature VBA.

				Excel 95 (also known as Excel 7) was released concurrently with Microsoft Windows 95. (Microsoft skipped over Version 6 to make the version numbers consistent across its Office products.) On the surface, Excel 95 didn't appear to be much different from Excel 5. Much of the core code was rewritten, however, and speed improvements were apparent in many areas. Importantly, Excel 95 used the same file format as Excel 5, which is the first time that an Excel upgrade didn't use a new file format. This compatibility wasn't perfect, however, because Excel 95 included a few enhancements in the VBA language. Consequently, it was possible to develop an application using Excel 95 that would load but not run properly in Excel 5.

				In early 1997, Microsoft released Office 97, which included Excel 97. Excel 97 is also known as Excel 8. This version included dozens of general enhancements plus a completely new interface for developing VBA-based applications. In addition, the product offered a new way of developing custom dialog boxes (called UserForms rather than dialog sheets). Microsoft tried to make Excel 97 compatible with previous versions, but the compatibility was far from perfect. Many applications that were developed using Excel 5 or Excel 95 required some tweaking before they would work with Excel 97 or later versions.

				[image: cross_ref.eps] I discuss compatibility issues in Chapter 26.

				Excel 2000 was released in early 1999 and was also sold as part of Office 2000. The enhancements in Excel 2000 dealt primarily with Internet capabilities, although a few significant changes were apparent in the area of programming.

				Excel 2002 (sometimes known as Excel XP) hit the market in mid-2001. Like its predecessor, it didn't offer many significant new features. Rather, it incorporated a number of minor new features and several refinements of existing features. Perhaps the most compelling new feature was the ability to repair damaged files and save your work when Excel crashed.

				Excel 2003 (released in fall 2003) was perhaps the most disappointing upgrade ever. This version had very few new features. Microsoft touted the ability to import and export eXtensible Markup Language (XML) files and map the data to specific cells in a worksheet — but very few users actually needed such a feature. In addition, Microsoft introduced some “rights management” features that let you place restrictions on various parts of a workbook (for example, allow only certain users to view a particular worksheet). In addition, Excel 2003 had a new Help system (which put the Help contents in the task pane) and a new “research” feature that lets you look up a variety of information in the task pane. (Some of these required a fee-based account.)

				[image: note.eps] For some reason, Microsoft chose to offer two sub-versions of Excel 2003. The XML and rights management features are available only in the stand-alone version of Excel and in the version of Excel that's included with the Professional version of Office 2003. Because of this, Excel developers may now need to deal with compatibility issues within a particular version!

				A new user interface

				Excel 2007 (Version 12) became available in late 2006 and was part of the Microsoft 2007 Office System. In terms of user interface, this upgrade was clearly the most significant ever. A new Ribbon UI replaced menus and toolbars. In addition, the Excel 2007 grid size is 1,000 times larger than in previous versions, and the product uses a new open XML file format. Other improvements include improved tables, conditional formatting enhancements, major cosmetic enhancements for charts, and document themes.

				Reaction to the new UI was mixed. Some users loved it, others hated it. Several companies even created add-ins that allowed Excel 2007 users to revert to the old menu system. Clearly, Excel 2007 is easier for beginners, but long-time users may spend a lot of time wondering where to find their old commands.

				The current version, Excel 2010, is part of Microsoft 2010 Office System. Apparently, the decision-makers at Microsoft are a bit superstitious. They skipped Version 13, and went straight to Version 14.

				Excel 2010 features enhancements in pivot tables, conditional formatting, and image editing. The product now supports in-cell charts called sparklines and the ability to preview pasting before committing to it. A new backstage feature is devoted to document-related tasks, such as saving and printing. In addition, end users can now customize the Ribbon. And finally, dozens of new worksheet functions are available — mostly highly specialized functions that replace old functions that had some accuracy problems.

				Current Competition

				So there you have it: More than three decades of spreadsheet history condensed into a few pages. It has been an interesting ride, and I've been fortunate enough to have been involved with spreadsheets the entire time.

				Things have changed. Microsoft not only dominates the spreadsheet market, it virtually owns it. What little competition exists is primarily in the form of free open-source products, such as OpenOffice and StarOffice. Increasingly, you hear about Web-based spreadsheets, such as Google Spreadsheets (see Figure 1-5). Microsoft has responded, and now has its own Web-based version of Excel and other Office 2010 applications.

				In the final analysis, Microsoft's biggest competitor is probably itself. Users tend to settle on a particular version of Excel, and if things are working well, they have very little motivation to upgrade. Convincing users to upgrade to a new version that provides only a few advantages is one of Microsoft's biggest challenges.

				Why Excel Is Great for Developers

				Excel is a highly programmable product, and it's easily the best choice for developing spreadsheet-based applications.

				[image: 475355-fg0105.eps]

				FIGURE 1-5: A Web-based spreadsheet from Google.

				For developers, Excel's key features include the following:

				• File structure: The multisheet orientation makes it easy to organize an application's elements and store them in a single file. For example, a single workbook file can hold any number of worksheets and chart sheets. UserForms and VBA modules are stored with a workbook but are invisible to the end user.

				• Visual Basic for Applications: This macro language lets you create structured programs directly in Excel. This book focuses on using VBA, which, as you'll discover, is extremely powerful and relatively easy to learn.

				• Easy access to controls: Excel makes it very easy to add controls, such as buttons, list boxes, and option buttons, to a worksheet. Implementing these controls often requires little or no macro programming.

				• Custom dialog boxes: You can easily create professional-looking dialog boxes by creating UserForms.

				• Custom worksheet functions: With VBA, you can create custom worksheet functions to simplify formulas and calculations.

				• Customizable user interface: Developers have lots of control over the user interface. In previous versions, changing the interface involved creating custom menus and toolbars. Beginning with Excel 2007, it involves modifying the Ribbon. Changing the Ribbon interface is not as easy as it was in previous versions, but you can still do it.

				• Customizable shortcut menus: Using VBA, you can customize the right-click, context-sensitive shortcut menus.

				• Powerful data analysis options: Excel's PivotTable feature makes it easy to summarize large amounts of data with very little effort. The data can reside in a worksheet or in an external database.

				• Microsoft Query: You can access important data directly from the spreadsheet environment. Data sources include standard database file formats, text files, and Web pages.

				• Extensive protection options: Your applications can be kept confidential and protected from changes by casual users.

				• Ability to create add-ins: With a single command, you can create add-in files that bring new features to Excel.

				• Support for automation: With VBA, you can control other applications that support automation. For example, your VBA macro can generate a report in Microsoft Word.

				• Ability to create Web pages: You can easily create a HyperText Markup Language (HTML) document from an Excel workbook. The HTML is very bloated, but it's readable by Web browsers.

				Excel's Role in Microsoft's Strategy

				Currently, most copies of Excel are sold as part of Microsoft Office — a suite of products that includes a variety of other programs. (The exact programs that you get depend on which version of Office you buy.) Obviously, it helps if the programs can communicate well with each other. Microsoft is at the forefront of this trend. All the Office products have extremely similar user interfaces, and all support VBA.

				Therefore, after you hone your VBA skills in Excel, you'll be able to put them to good use in other applications — you just need to learn the object model for the other applications.

			

		

	
		
			
				Chapter 2: Excel in a Nutshell

				IN THIS CHAPTER

				• Introducing Excel's object orientation

				• Gaining a conceptual overview of Excel, including a description of its major features

				• Discovering the new features in Excel 2010

				• Taking advantage of helpful tips and techniques

				Thinking in Terms of Objects

				When you're developing applications with Excel (especially when you're dabbling with Visual Basic for Applications — VBA), it's helpful to think in terms of objects, or Excel elements that you can manipulate manually or via a macro. Here are some examples of Excel objects:

				• The Excel application

				• An Excel workbook

				• A worksheet in a workbook

				• A range or a table in a worksheet

				• A ListBox control on a UserForm (a custom dialog box)

				• A chart embedded in a worksheet

				• A chart series in a chart

				• A particular data point in a chart

				You may notice that an object hierarchy exists here: The Excel object contains workbook objects, which contain worksheet objects, which contain range objects. This hierarchy comprises Excel's object model. Excel has more than 200 classes of objects that you can control directly or by using VBA. Other Microsoft Office products have their own object models.

				[image: note.eps] Controlling objects is fundamental to developing applications. Throughout this book, you find out how to automate tasks by controlling Excel's objects, and you do so by using VBA. This concept becomes clearer in subsequent chapters.

				Workbooks

				The most common Excel object is a workbook. Everything that you do in Excel takes place in a workbook, which is stored in a file that, by default, has an XLSX extension. An Excel workbook can hold any number of sheets (limited only by memory). There are four types of sheets:

				• Worksheets

				• Chart sheets

				• Excel 4.0 XLM macro sheets (obsolete, but still supported)

				• Excel 5.0 dialog sheets (obsolete, but still supported)

				You can open or create as many workbooks as you like (each in its own window), but at any given time, only one workbook is the active workbook. Similarly, only one sheet in a workbook is the active sheet. To activate a sheet, click its sheet tab at the bottom of the screen. To change a sheet's name, double-click the tab and enter the new text. Right-clicking a tab brings up a shortcut menu with additional options for the sheet, including changing its tab color, hiding the sheet, and so on.

				You can also hide the window that contains a workbook by using the ViewWindowHide command. A hidden workbook window remains open, but it isn't visible to the user. Use the ViewWindowUnhide command to make the window visible again. A single workbook can display in multiple windows (choose ViewWindowNew Window). Each window can display a different sheet or a different area of the same sheet.

				Worksheets

				The most common type of sheet is a worksheet, which is what people normally think of when they think of a spreadsheet. Worksheets contain cells, and the cells store data and formulas.

				Excel 2010 worksheets have 16,384 columns and 1,048,576 rows. You can hide unneeded rows and columns to keep them out of view, but you can't increase or decrease the number of rows or columns.

				[image: note.eps] Versions prior to Excel 2007 used the XLS binary format, and worksheets had only 65,536 rows and 256 columns. If you open such a file, Excel 2010 automatically enters compatibility mode in order to work with the smaller worksheet grid. To convert such a file to the new format, save it as an XLSX or XLSM file. Then close the workbook and re-open it.

				How big is a worksheet?

				It's interesting to stop and think about the actual size of a worksheet. Do the arithmetic (16,384 × 1,048,576), and you'll see that a worksheet has 17,179,869,184 cells. Remember that this is in just one worksheet. A single workbook can hold more than one worksheet.

				If you're using a 1600 x 1200 video mode with the default row heights and column widths, you can see 24 columns and 49 rows (or 1,176 cells) at a time — which is about .0000068 percent of the entire worksheet. In other words, more than 14.6 million screens of information reside within a single worksheet.

				If you entered a single digit into each cell at the relatively rapid clip of one cell per second, it would take you over 500 years, nonstop, to fill up a worksheet. To print the results of your efforts would require more than 36 million sheets of paper — a stack about 12,000 feet high. (That's ten Empire State Buildings stacked on top of each other.)

				As you might suspect, filling an entire workbook with values is impossible. It's not even close to being possible. Even if you use the 64-bit version of Excel, you'd soon run out of memory, and Excel would probably crash.

				The real value of using multiple worksheets in a workbook isn't access to more cells. Rather, multiple worksheets enable you to organize your work better. Back in the old days, when a file comprised a single worksheet, developers wasted a lot of time trying to organize the worksheet to hold their information efficiently. Now you can store information on any number of worksheets and still access it instantly by clicking a sheet tab.

				[image: note.eps] By default, every new workbook starts out with three worksheets. You can easily add a new sheet when necessary, so you really don't need to start with three sheets. You may want to change this default to a single sheet. To change this option, use the OfficeExcel Options command, click the General tab, and change the setting for the option labeled Include This Many Sheets.

				As you know, a worksheet cell can hold a constant value or the result of a formula. The value may be a number, a date, a Boolean value (True or False), or text. Every worksheet also has an invisible drawing layer, which lets you insert graphic objects, such as charts, shapes, SmartArt, UserForm controls, pictures, and other embedded objects.

				You have complete control over the column widths and row heights — in fact, you can even hide rows and columns (as well as entire worksheets). You can specify any font size, and you have complete control over colors. You can display text in a cell vertically (or at an angle) and even wrap it around to occupy multiple lines. In addition, you can merge a group of cells to create a single larger cell.

				[image: note.eps] In the past, Excel was limited to a palette of 56 colors. Beginning with Excel 2007, the number of colors has been virtually unlimited. In addition, Excel 2007 introduced document themes. A single click lets you apply a new theme to a workbook, which can give it an entirely different look.

				Chart sheets

				A chart sheet normally holds a single chart. Many users ignore chart sheets, preferring to store charts on the worksheet's drawing layer. Using chart sheets is optional, but they make it a bit easier to print a chart on a page by itself, and they're especially useful for presentations. Figure 2-1 shows a pie chart on a chart sheet.

				[image: 475355-fg0201.eps]

				FIGURE 2-1: A pie chart on a chart sheet.

				XLM macro sheets

				An XLM macro sheet (also known as an MS Excel 4 macro sheet) is essentially a worksheet, but it has some different defaults. More specifically, an XLM macro sheet displays formulas rather than the results of formulas. In addition, the default column width is larger than in a normal worksheet.

				As the name suggests, an XLM macro sheet is designed to hold XLM macros. As you may know, the XLM macro system is a holdover from previous versions of Excel (Version 4.0 and earlier). Excel 2010 continues to support XLM macros for compatibility reasons — although it no longer provides the option of recording an XLM macro. This book doesn't cover the XLM macro system; instead, it focuses on the more powerful VBA macro system.

				What's new in Excel 2010?

				Here's a quick overview of the new features in Excel 2010:

				• 64-bit version: If your hardware and Windows version supports it, you can install the 64-bit version, which lets you create larger workbooks. You might experience some incompatible macros and add-ins. Specifically, macros that use 32-bit Windows API calls won't work in 64-bit Excel 2010. In most cases, however, you can modify the code so that the API calls work with both versions of Excel.

				• Sparkline charts: Create small in-cell charts to summarize a range of data graphically.

				• Slicers: A slicer is a new way to filter and display data in pivot tables.

				• New pivot table formatting options: You have more control over the appearance of pivot table reports.

				• Office button changes: The big round Office button in Excel 2007 has been replaced by a File button, displayed to the left of the tabs. Clicking it displays Office Backstage, a screen that lets you perform various operations on your workbook. This view essentially replaces the traditional File and Print menus — plus quite a bit more.

				• Conditional formatting enhancements: Data bar conditional formatting can display in a solid color, and the bars provide a more accurate display and support negative values.

				• Function enhancements: Some of Excel's worksheet financial and statistical functions have been improved in terms of numerical accuracy. These functions have new names, and the old versions are still available for compatibility.

				• Image-editing enhancements: You have much more control over graphic images inserted into a workbook, including the ability to remove non-essential parts from the background of an image.

				• Screen capture tool: You can easily capture a window from a different program and insert the image on a worksheet.

				• Paste preview: When you copy a range, the Paste command displays various options with a live preview so that you can see how the paste operation will look.

				• Ribbon customization: End users can customize the Ribbon by adding new tabs and groups. Unfortunately, it's still not possible to customize the Ribbon using VBA.

				• Equation editor: You can create and display (noncalculating) mathematical equations and embed them on a worksheet.

				• Faster: Microsoft made some improvements to the calculation engine, and files load a bit faster.

				• New security features: Workbooks downloaded from the Internet or from e-mail attachments are opened in Protected View mode. You can designate workbooks as trusted, and they don't need to reside in special trusted folders.

				• Solver: Excel 2010 includes a new version of the Solver add-in.

				• Enhancements to VBA: You can now perform operations that used to require old XLM macros directly using VBA macro commands. In addition, macro recording now works for operations such as chart and shape formatting.

				Excel 5/95 dialog sheets

				In Excel 5 and Excel 95, you created a custom dialog box by inserting a special dialog sheet. Excel 97 and later versions still support these dialog sheets, but a much better alternative is available: UserForms. You work with UserForms in the Visual Basic Editor (VBE).

				If you open a workbook that contains an Excel 5/95 dialog sheet, you can access the dialog sheet by clicking its tab.

				I don't discuss Excel 5/95 dialog sheets in this book.

				Excel's User Interface

				A user interface (UI) is the means by which an end user communicates with a computer program. Generally speaking, a UI includes elements such as menus, toolbars, dialog boxes, keystroke combinations, and so on.

				The release of Office 2007 signaled the end of traditional menus and toolbars. The UI for Excel consists of the following elements:

				• The Ribbon

				• The Quick Access toolbar

				• Right-click shortcut menus

				• Dialog boxes

				• Keyboard shortcuts

				• Smart Tags

				• Task pane

				About the Ribbon

				In Office 2007, Microsoft introduced an entirely new UI for its product. Menus and toolbars are gone, replaced with a tab and Ribbon UI. Click a tab along the top (that is, a word such as Home, Insert, or Page Layout), and the Ribbon displays the commands for that tab. Office 2007 was the first software in history to use this new interface, and a few other companies have incorporated this new UI style in their products.

				The appearance of the commands on the Ribbon varies, depending on the width of the Excel window. When the window is too narrow to display everything, the commands adapt and may seem to be missing. But the commands are still available. Figure 2-2 shows the Home tab of the Ribbon with all controls fully visible. Figure 2-3 shows the Ribbon when Excel's window is narrower. Notice that some of the descriptive text is gone, but the icons remain. Figure 2-4 shows the extreme case, in which the window is very narrow. Some of the groups display a single icon. However, if you click the icon, all the group commands are available to you.

				[image: 475355-fg0202.eps]

				FIGURE 2-2: The Home tab of the Ribbon.

				[image: 475355-fg0203.eps]

				FIGURE 2-3: The Home tab when Excel's window is narrower.

				[image: 475355-fg0204.eps]

				FIGURE 2-4: The Home tab when Excel's window is very narrow.

				[image: tip.eps] If you'd like to hide the Ribbon to increase your worksheet view, just double-click any of the tabs. The Ribbon goes away, and you'll be able to see about four additional rows of your worksheet. When you need to use the Ribbon again, just click any tab, and it comes back. You can also press Ctrl+F1 to toggle the Ribbon display or use the ^ control, to the left of the Help icon in the tab bar.

				Contextual tabs

				In addition to the standard tabs, Excel includes contextual tabs. Whenever an object (such as a chart, a table, a picture, or SmartArt) is selected, tools for working with that specific object are made available in the Ribbon.

				Figure 2-5 shows the contextual tabs that appear when an embedded equation is selected. In this case, Excel displays two contextual tabs: Format (for working with object) and Design (for working with the equation). Notice that the contextual tabs contain a description (Drawing Tools and Equation Tools) in Excel's title bar. When contextual tabs are displayed, you can, of course, continue to use all the other tabs.

				[image: 475355-fg0205.eps]

				FIGURE 2-5: When you select an object, contextual tabs contain tools for working with that object.

				Types of commands on the Ribbon

				For the most part, the commands in the Ribbon work just as you'd expect them to. You'll encounter several different styles of commands on the Ribbon:

				• Simple buttons: Click the button, and it does its thing. An example of a simple button is the Increase Font Size button in the Font group of the Home tab. Some buttons perform the action immediately; others display a dialog box so that you can enter additional information. Button controls may or may not be accompanied by text.

				• Toggle buttons: A toggle button is clickable and also conveys some type of information by displaying two different colors. An example is the Bold button in the Font group of the Home tab. If the active cell isn't bold, the Bold button displays in its normal color. But if the active cell is already bold, the Bold button displays a different background color. If you click this button, it toggles the Bold attribute for the selection.

				• Simple drop-downs: If the Ribbon command has a small downward-pointing arrow, then the command is a drop-down list. Click it, and additional commands appear below it. An example of a simple drop-down is the Merge and Center command in the Alignment group of the Home Tab. When you click this control, you see four options related to merging and centering information.

				• Split buttons: A split button control combines a one-click button (on the top) with a drop-down (on the bottom). If you click the button part, the command is executed. If you click the drop-down part, you choose from a list of related commands. You can identify a split button because it displays in two colors when you hover the mouse over it. An example of a split button is the Paste command in the Clipboard group of the Home tab. Clicking the top part of this control pastes the information from the Clipboard. If you click the bottom part of the control, you get a list of paste-related commands (see Figure 2-6).

				• Check boxes: A check box control turns something on or off. An example is the Gridlines control in the Show/Hide group of the View tab. When the Gridlines check box is checked, the sheet displays gridlines. When the control isn't checked, the sheet gridlines aren't displayed.

				• Spinners: An example of a spinner control is in the Scale to Fit group of the Page Layout tab. Click the top part of the spinner to increase the value; click the bottom part of the spinner to decrease the value.

				[image: 475355-fg0206.eps]

				FIGURE 2-6: The Paste command is a split button control.

				[image: cross_ref.eps] Refer to Chapter 22 for information about customizing Excel's Ribbon.

				Some of the Ribbon groups contain a small icon in the lower-right corner, known as a dialog launcher. For example, if you examine the HomeAlignment group, you'll see this icon (refer to Figure 2-7). Click it, and it displays the Format Cells dialog box, with the Number tab preselected. This dialog box provides options that aren't available in the Ribbon.

				[image: 475355-fg0207.tif]

				FIGURE 2-7: This small dialog launcher icon, when clicked, displays a dialog box that has additional options.

				[image: newfeature.eps] In Excel 2007, end users couldn't modify the Ribbon. In Excel 2010, users can easily add or remove commands. See Chapter 22 for information about customizing the Ribbon.

				The Quick Access toolbar

				The Quick Access toolbar is a place to store commonly used commands. The Quick Access toolbar is always visible, regardless of which Ribbon tab you select. Normally, the Quick Access toolbar appears on the left side of the title bar. Alternatively, you can display the Quick Access toolbar below the Ribbon by right-clicking the Quick Access toolbar and selecting Show Quick Access Toolbar Below the Ribbon.

				By default, the Quick Access toolbar contains three tools: Save, Undo, and Redo. You can, of course, customize the Quick Access toolbar by adding other commands that you use often. To add a command from the Ribbon to your Quick Access toolbar, right-click the command and choose Add To Quick Access toolbar.

				Excel has quite a few commands that aren't available in the Ribbon. In most cases, the only way to access these commands is to add them to your Ribbon or Quick Access toolbar. Figure 2-8 shows the Quick Access toolbar section of the Excel Options dialog box. This area is your one-stop shop for Quick Access toolbar customization. A quick way to display this dialog box is to right-click the Quick Access toolbar and choose Customize Quick Access toolbar.

				Accessing the Ribbon by using your keyboard

				At first glance, you may think that the Ribbon is completely mouse-centric. After all, none of the commands has the traditional underlined letter to indicate the Alt+keystrokes. But, in fact, the Ribbon is very keyboard friendly. The trick is to press the Alt key to display the pop-up keytips. Each Ribbon control has a letter (or series of letters) that you type to issue the command.

				[image: 475355-fg0208.eps]

				FIGURE 2-8: Add new icons to your Quick Access toolbar by using the Quick Access toolbar section of the Excel Options dialog box.

				[image: tip.eps] You don't 'need to hold down the Alt key as you type the keytip letters.

				Figure 2-9 shows how the Home tab looks after I press the Alt key to display the keytips. If you press one of the keytips, the screen then displays more keytips. For example, to use the keyboard to align the cell contents to the left, press Alt, followed by H (for Home) and then AL (for Align Left). If you're a keyboard fan (like me), it will just take a few times before you memorize the keystrokes required for common commands.

				After you press Alt, you can also use the left and right arrow keys to scroll through the tabs. When you reach the proper tab, press the down-arrow key to enter the Ribbon. Then use the left- and right-arrow keys to scroll through the Ribbon commands. When you reach the command you need, press Enter to execute it. This method isn't as efficient as using the keytips, but it's a quick way to take a look at the choices on the Ribbon.

				[image: 475355-fg0209.eps]

				FIGURE 2-9: Pressing Alt displays the keytips.

				[image: note.eps] Excel 2010 still supports the menu-oriented keyboard shortcuts from Excel 2003. So if you've memorized key sequences, such as Alt+ES (to display the Paste Special dialog box), you can still use those shortcuts.

				Shortcut menus and the Mini Toolbar

				The only menus that remain in Excel are shortcut menus. These menus appear when you right-click your mouse. The shortcut menus are context-sensitive. In other words, the menu that appears depends on the location of the mouse pointer when you right-click. You can right-click just about anything — a cell, a row or column border, a workbook title bar, a toolbar, and so on.

				Right-clicking some objects displays a Mini Toolbar above the shortcut menu. This toolbar provides quick access to commonly used formatting commands. Figure 2-10 shows the Mini Toolbar when a cell is selected.

				Although you can't customize the Ribbon by using VBA, you can use VBA to customize any of the shortcut menus. You can't, however, modify the Mini Toolbar.

				Refer to Chapter 23 for more information about customizing shortcut menus.

				[image: 475355-fg0210.tif]

				FIGURE 2-10: Right-clicking some objects displays a Mini Toolbar in addition to a shortcut menu.

				Dialog boxes

				Some Ribbon commands display a dialog box. In many cases, these dialog boxes contain additional controls that aren't available in the Ribbon.

				You'll find two general classes of dialog boxes in Excel:

				• Modal dialog boxes: When a modal dialog box is displayed, it must be closed in order to execute the commands. An example is the Format Cells dialog box. None of the options you specify are executed until you click OK. Use the Cancel button to close the dialog box without making any changes.

				• Modeless dialog boxes: These are stay-on-top dialog boxes. For example, if you're working with a chart using the Format dialog box, your changes are reflected immediately in the chart. Modeless dialog boxes usually have a Close button rather than OK and Cancel buttons.

				Many of Excel's dialog boxes use a notebook tab metaphor, which makes a single dialog box function as several different dialog boxes. In older dialog boxes, the tabs are usually along the top. But in newer dialog boxes (such as the one shown in Figure 2-11), the tabs are along the left side.

				[image: 475355-fg0211.eps]

				FIGURE 2-11: Tabbed dialog boxes make many options accessible without overwhelming the user.

				Developers can create custom dialog boxes by using the UserForm feature. As you'll see, you can create a wide variety of dialog boxes, including tabbed dialog boxes.

				[image: cross_ref.eps] Refer to Part IV for information about creating and working with UserForms.

				Keyboard shortcuts

				Excel has many useful keyboard shortcuts. For example, you can press Ctrl+D to copy a cell to selected cells below it. If you're a newcomer to Excel — or you just want to improve your efficiency — I urge you to check out the Help system (access the Accessibility main topic and go from there). Learning these shortcuts is key to becoming proficient in Excel. The Help file has tables that summarize useful keyboard commands and shortcuts.

				And, as I note previously, you can access the Ribbon commands by using the keyboard.

				Smart Tags

				A Smart Tag is a small icon that appears automatically in your worksheet after you perform certain actions. Clicking a Smart Tag reveals several options. For example, if you copy and paste a range of cells, Excel generates a Smart Tag that appears below the pasted range (see Figure 2-12) and provides you with several options regarding the formatting of the pasted data.

				[image: 475355-fg0212.tif]

				FIGURE 2-12: This Smart Tag appears when you paste a copied range.

				Task pane

				Excel 2002 introduced a new UI element known as the task pane. This multipurpose user interface element is normally docked on the right side of Excel's window (but you can drag it anywhere). The task pane is used for a variety of purposes, including displaying the Office Clipboard, displaying a pivot table field list, inserting clipart, providing research assistance, and mapping eXtensible Markup Language (XML) data. Figure 2-13 shows the Clip Art task pane.

				What's new in the Visual Basic Editor?

				Nothing.

				Most of Excel 2010's updated object model is accessible in your VBA code, but the VB Editor hasn't changed in many versions. The Microsoft Office applications all use the new Ribbon UI, but the VB Editor still uses menus and toolbars. By comparison, most would agree that the VB Editor is starting to look very old-fashioned. Maybe we'll see an updated UI in the next release. But I'm not holding my breath.

				[image: 475355-fg0213.tif]

				FIGURE 2-13: Locating clipart is one of several uses for the task pane.

				Customizing the Display

				Excel offers a great deal of flexibility regarding what is displayed on-screen (formula bar, gridlines, row and column headings, and so on). These commands are located in the View tab.

				In fact, Excel makes it possible to develop an application that doesn't even look like a spreadsheet. For example, by choosing ViewWorkbook ViewsFull Screen, you can get rid of everything except the title bar, thereby maximizing the amount of information visible. To exit full-screen mode, right-click any cell and choose Close Full Screen from the shortcut menu.

				Notice the zoom control in the right side of the status bar. This control makes zooming in or out very easy. In addition, you can right-click the status bar and specify the type of information you'd like to see.

				Data Entry

				Data entry in Excel is quite straightforward. Excel interprets each cell entry as one of the following:

				• A numeric value (including date and time values)

				• Text

				• A Boolean value (True or False)

				• A formula

				Formulas always begin with an equal sign (=). Excel accommodates habitual 1-2-3 users, however, and accepts an each-at symbol (@), a plus sign (+), or a minus sign (–) as the first character in a formula. Excel automatically adjusts the entry after you press Enter.

				Formulas, Functions, and Names

				Formulas are what make a spreadsheet a spreadsheet. Excel has some advanced formula-related features that are worth knowing. They enable you to write array formulas, use an intersection operator, include links, and create megaformulas (my term for a lengthy and incomprehensible — but very efficient — formula).

				[image: cross_ref.eps] Chapter 3 covers formulas and presents lots of tricks and tips.

				Excel also has some useful auditing capabilities that help you identify errors or track the logic in an unfamiliar spreadsheet. To access these features, use the commands in the FormulasFormula Auditing group.

				You may find the FormulasFormula AuditingError Checking command useful. This command scans your worksheet and identifies possibly erroneous formulas. In Figure 2-14, Excel identifies a possibly inconsistent formula and provides some options.

				Worksheet functions enable you to perform calculations or operations that would otherwise be impossible. Excel provides a huge number of built-in functions.

				The easiest way to locate the function that you need is to use the Insert Function dialog box, as shown in Figure 2-15. Access this dialog box by clicking the Insert Function button on the formula bar (or by pressing Shift+F3). After you select a function, Excel displays its Function Arguments dialog box, which assists with specifying the function's arguments.

				[image: note.eps] Beginning with Excel 2007, the Analysis ToolPak functions became part of Excel. In other words, you can use these function even if the Analysis ToolPak add-in isn't installed.

				[image: 475355-fg0214.tif]

				FIGURE 2-14: Excel can monitor your formulas for possible errors.

				[image: 475355-fg0215.eps]

				FIGURE 2-15: The Insert Function dialog box is the best way to insert a function into a formula.

				[image: cross_ref.eps] Excel also lets you create your own worksheet functions by using VBA. For details about this powerful feature, see Chapter 10.

				A name is an identifier that enables you to refer to a cell, range, value, formula, or graphic object. Formulas that use names are much easier to read than formulas that use cell references, and creating formulas that use named references is much easier.

				[image: cross_ref.eps] I discuss names in Chapter 3. As you can see there, Excel handles names in some unique ways.

				Selecting Objects

				Selecting objects in Excel conforms to standard Windows practices. You can select a range of cells by clicking and dragging. (Learning the keyboard shortcuts is more efficient, however.) Clicking an object that has been placed on the drawing layer selects the object. To select multiple objects or noncontiguous cells, press Ctrl while you select the objects or cells.

				[image: note.eps] Clicking a chart selects a specific object within the chart. To select the chart object itself, press Ctrl while you click the chart.

				If an object has a macro assigned to it, clicking the object executes the macro. To actually select such an object, right-click it and press Esc to hide the shortcut menu. Or press Ctrl while you click the object.

				Formatting

				Excel provides two types of formatting: numeric formatting and stylistic formatting.

				Numeric formatting refers to how a number appears in the cell. In addition to choosing from an extensive list of predefined formats, you can create your own formats (see Figure 2-16). The procedure is thoroughly explained in the Help system.

				Excel applies some numeric formatting automatically, based on the entry. For example, if you precede a number with a currency symbol (a dollar sign in the United States), Excel applies Currency number formatting. You can also use the conditional formatting feature to apply number formatting conditionally, based on the magnitude of the number.

				Stylistic formatting refers to the formatting that you apply to make your work look good. Many Ribbon buttons offer direct access to common formatting options, but you'll want to access the object's Format dialog box for the full range of formatting options.

				The easiest way to get to the correct dialog box and format an object is to select the object and press Ctrl+1. You can also right-click the object and choose Format xxx (where xxx is the selected object) from the shortcut menu. Either of these actions brings up a tabbed dialog box that holds all the formatting options for the selected object.

				[image: 475355-fg0216.eps]

				FIGURE 2-16: Excel's numeric formatting options are very flexible.

				Excel's conditional formatting feature is particularly useful. This feature, accessed by choosing HomeStylesConditional Formatting, allows you to specify formatting that will be applied only if certain conditions are met. For example, you can make cells that exceed a specified value appear in a different color.

				Excel 2007 introduced several conditional formatting options, including data bars, color scales, and icon sets. These features have been enhanced in Excel 2010. Figure 2-17 shows the data bars conditional formatting option that displays a histogram directly in the cells.

				[image: 475355-fg0217.tif]

				FIGURE 2-17: The data bars option is one of the conditional formatting features.

				Protection Options

				Excel offers a number of different protection options. For example, you can protect formulas from being overwritten or modified, protect a workbook's structure, password-protect a workbook, and protect your VBA code.

				Protecting formulas from being overwritten

				In many cases, you might want to protect your formulas from being overwritten or modified. To do so, perform the following steps:

				1. Select the cells that may be overwritten.

				2. Right-click and choose Format Cells from the shortcut menu.

				3. In the Format Cells dialog box, click the Protection tab.

				4. In the Protection tab, clear the Locked check box.

				5. Click OK to close the Format Cells dialog box.

				6. Choose ReviewChangesProtect Sheet to display the Protect Sheet dialog box, as shown in Figure 2-18.

				7. In the Protect Sheet dialog box, select the options that correspond to the actions to allow, specify a password if desired, and then click OK.

				[image: note.eps] By default, all cells are locked. The locked status of a cell has no effect, however, unless you have a protected worksheet.

				[image: 475355-fg0218.eps]

				Figure 2-18: The Protect Sheet dialog box.

				You can also hide your formulas so that they won't appear in Excel's formula bar when the cell is activated. To do so, select the formula cells and make sure that the Hidden check box is marked in the Protection tab of the Format Cells dialog box.

				Protecting a workbook's structure

				When you protect a workbook's structure, you can't add or delete sheets. Choose the ReviewChangesProtect Workbook command to display the Protect Structure and Windows dialog box, as shown in Figure 2-19. Make sure that you enable the Structure check box. If you also mark the Windows check box, you can't move or resize the window.

				[image: 475355-fg0219.eps]

				FIGURE 2-19: The Protect Structure and Windows dialog box.

				Applying password protection to a workbook

				In some cases, you may want to limit access to a workbook to only those who know the password.

				To save a workbook file with a password, choose FileInfoProtect WorkbookEncrypt With Password to display the Encrypt Document dialog box (see Figure 2-20). In this dialog box, you can specify a password that's required to open the workbook.

				[image: 475355-fg0220.eps]

				FIGURE 2-20: Use the Encrypt Document dialog box to save a workbook with a password.

				Protecting VBA code with a password

				If your workbook contains VBA code, you may wish to use a password to prevent others from viewing or modifying your macros. To apply a password to the VBA code in a workbook, activate the VBE (Alt+F11) and select your project in the Projects window. Then choose Toolsxxxx Properties (where xxxx corresponds to your Project name) to display the Project Properties dialog box.

				In the Project Properties dialog box, click the Protection tab (see Figure 2-21). Enable the Lock Project for Viewing check box and enter a password (twice). Click OK and then save your file. When the file is closed and then reopened, a password will be required to view or modify the code.

				[image: caution.eps] Keep in mind that Excel isn't really a secure application. The protection features, even when used with a password, are intended to prevent casual users from accessing various components of your workbook. Anyone who really wants to defeat your protection can probably do so by using readily available password-cracking utilities (or by knowing a few “secrets”).

				[image: 475355-fg0221.eps]

				FIGURE 2-21: Protecting a VBA project with the Project Properties dialog box.

				Charts

				Excel is perhaps the most commonly used application in the world for creating charts. As I mention earlier in this chapter, you can store charts on a chart sheet or float them on a worksheet. You can also create pivot charts. A pivot chart is linked to a pivot table, and you can view various graphical summaries of your data by using the same techniques used in a pivot table.

				A new feature in Excel 2010 is Sparkline charts. These small charts fit inside a cell. This type of chart is completely separate from Excel's standard chart feature. Figure 2-22 shows a worksheet with some Sparkline charts added.

				[image: 475355-fg0222.tif]

				FIGURE 2-22: Sparkline charts in a worksheet.

				Shapes and SmartArt

				As I mention earlier in this chapter, each worksheet has an invisible drawing layer that holds charts, pictures, controls (such as buttons and list boxes), and shapes.

				Excel enables you to easily draw a wide variety of geometric shapes directly on your worksheet. To access the Shape gallery, choose InsertIllustrationsShapes. The shapes are highly customizable, and you can even add text. You can also group objects into a single object, which is easier to size or position.

				A feature introduced in Office 2007 is SmartArt, which you use to create a wide variety of customizable diagrams. Figure 2-23 shows an example of a SmartArt diagram on a worksheet.

				[image: 475355-fg0223.tif]

				FIGURE 2-23: A SmartArt diagram.

				Database Access

				Over the years, most spreadsheets have enabled users to work with simple flat database tables. Excel has some slick tools.

				Databases fall into two categories:

				• Worksheet databases: The entire database is stored in a worksheet, limiting the size of the database.

				• External databases: The data is stored in one or more files and is accessed as needed.

				Worksheet databases

				Generally, a rectangular range of data that contains column headers can be considered a worksheet database.

				Excel 2007 was the first version that enabled you to specifically designate a range as a table. Select any cell in your rectangular range of data and choose InsertTablesTable. Using a table offers many advantages: an automatic summary row at the bottom, easy filtering and sorting, auto-fill formulas in columns, and simplified formatting. In addition, if you create a chart from a table, the chart expands automatically as you add rows to the table.

				Tables are particularly useful when working with columns of data. Each column header is actually a drop-down list that contains easy access for filtering or sorting (see Figure 2-24). Table rows that don't meet the filter criteria are temporarily hidden.

				[image: 475355-fg0224.tif]

				FIGURE 2-24: Excel's table feature makes it easy to sort and filter rows.

				External databases

				To work with external database tables, use the commands in the DataGet External Data group. Excel 2010 can work with a wide variety of external databases.

				Internet Features

				Excel includes a number of features that relate to the Internet. For example, you can save a worksheet or an entire workbook in HyperText Markup Language (HTML) format, accessible in a Web browser. In addition, you can insert clickable hyperlinks (including e-mail addresses) directly in cells.

				[image: caution.eps] In versions prior to Excel 2007, HTML was a round-trip file format. In other words, you could save a workbook in HTML format and then reopen it in Excel, and nothing would be lost. That's no longer the case. HTML is now considered an export-only format.

				You can also create Web queries to bring in data stored in a corporate intranet or on the Internet. Such a query can be refreshed, so the data updates as new information is posted. Figure 2-25 shows an example of a Web query.

				[image: 475355-fg0225.eps]

				FIGURE 2-25: Create a Web query to import data into a worksheet.

				Analysis Tools

				Excel is certainly no slouch when it comes to analysis. After all, that's what most people use a spreadsheet for. You can handle most analysis tasks with formulas, but Excel offers many other options:

				• Outlines: A worksheet outline is often an excellent way to work with hierarchical data such as budgets. Excel can create an outline (horizontal, vertical, or both) automatically, or you can do so manually. After you create the outline, you can collapse or expand it to display various levels of detail.

				• Analysis ToolPak: In previous versions of Excel, the Analysis ToolPak add-in provided additional special-purpose analysis tools and worksheet functions, primarily statistical in nature. Beginning with Excel 2007, these features are built in. These tools make Excel suitable for casual statistical analysis.

				• Pivot tables: Pivot tables are among Excel's most powerful tools. A pivot table is capable of summarizing data in a handy table, and you can arrange this table in many ways. In addition, you can manipulate a pivot table entirely by VBA. Data for a pivot table comes from a worksheet database or an external database and is stored in a special cache, which enables Excel to recalculate rapidly after a pivot table is altered. Figure 2-26 shows a pivot table.

				[image: 475355-fg0226.tif]

				FIGURE 2-26: Excel's pivot table feature has many applications.

				[image: cross_ref.eps] See Chapter 17 for information about manipulating pivot tables with VBA.

				• Solver: For specialized linear and nonlinear problems, Excel's Solver add-in calculates solutions to what-if scenarios based on adjustable cells, constraint cells, and, optionally, cells that must be maximized or minimized.

				[image: newfeature.eps] The Solver add-in has finally been updated in Excel 2010. It has a new look as well as some performance improvements.

				Add-Ins

				An add-in is a program that's attached to an application to give it additional functionality. To attach an Excel add-in, use the Add-Ins tab in the Excel Options dialog box.

				In addition to the add-ins that ship with Excel, you can download additional add-ins from Microsoft's Web site (http://officemicrosoftcom), and you can purchase or download many third-party add-ins from online services. You can use the coupon in the back of the book to acquire a discounted copy of the Power Utility Pak add-in. And, as I detail in Chapter 21, creating your own add-ins is very easy.

				Macros and Programming

				Excel has two built-in macro programming languages: XLM and VBA. The original XLM macro language is obsolete and has been replaced by VBA. Excel 2010 can still execute most XLM macros, and you can even create new ones. However, you can't record XLM macros. You'll want to use VBA to develop new macros.

				[image: cross_ref.eps] Part III of this book is devoted to the VBA language.

				File Format

				A key consideration is file compatibility. Excel 97 through Excel 2003 all use the same file format, so file compatibility isn't a problem for these four versions. Microsoft introduced a new file format with Excel 2007, and it's also used in Excel 2010. Fortunately, Microsoft has made a compatibility pack available for Excel XP and Excel 2003. This compatibility pack enables these older versions of Excel to read and write the new file format.

				It's important to understand the difference between file compatibility and feature compatibility. For example, even though the compatibility pack enables Excel 2003 to open files created by Excel 2010, it can't handle features that were introduced in later versions.

				[image: cross_ref.eps] Refer to Chapter 4 for more information about Excel's file format and read Chapter 26 for more information about compatibility issues for developers.

				Excel's Help System

				One of Excel's most important features is its Help system. When you get stuck, simply click the question mark below the title bar (or press F1). Excel's Help window appears, and you can search or use the Table of Contents.

				[image: tip.eps] The Search button in the Help window is actually a drop-down control. Use the options to help narrow your search or to specify the source to search (see Figure 2-27).

				[image: 475355-fg0227.eps]

				FIGURE 2-27: Excel's Help window.

			

		

	
		
			
				Chapter 3: Formula Tricks and Techniques

				IN THIS CHAPTER

				• Getting an overview of Excel formulas

				• Differentiating between absolute and relative references in formulas

				• Understanding and using names

				• Introducing array formulas

				• Counting and summing cells

				• Working with dates and times

				• Creating megaformulas

				About Formulas

				Virtually every successful spreadsheet application uses formulas. In fact, constructing formulas can certainly be construed as a type of programming.

				[image: note.eps] For a much more comprehensive treatment of Excel formulas and functions, refer to my book, Excel 2010 Formulas (Wiley).

				Formulas, of course, are what make a spreadsheet a spreadsheet. If it weren't for formulas, your worksheet would just be a static document — something that a word processor that has great support for tables could produce.

				A formula entered into a cell can consist of any of the following elements:

				• Operators such as + (for addition) and * (for multiplication)

				• Cell references (including named cells and ranges)

				• Numbers or text strings

				• Worksheet functions (such as SUM or AVERAGE)

				A formula in Excel 2010 can consist of up to 8,192 characters. After you enter a formula into a cell, the cell displays the result of the formula. The formula itself appears in the formula bar when the cell is activated. For a better view of a lengthy formula, click and drag the thick border of the formula bar to expand it vertically.

				Calculating Formulas

				You've probably noticed that the formulas in your worksheet get calculated immediately. If you change a cell that a formula uses, the formula displays a new result with no effort on your part. This is what happens when the Excel Calculation mode is set to Automatic. In this mode (which is the default mode), Excel uses the following rules when calculating your worksheet:

				• When you make a change — enter or edit data or formulas, for example — Excel immediately calculates those formulas that depend on the new or edited data.

				• If it's in the middle of a lengthy calculation, Excel temporarily suspends calculation when you need to perform other worksheet tasks; it resumes when you're finished.

				• Formulas are evaluated in a natural sequence. In other words, if a formula in cell D12 depends on the result of a formula in cell D11, cell D11 is calculated before D12.

				Sometimes, however, you might want to control when Excel calculates formulas. For example, if you create a worksheet with thousands of complex formulas, calculation might slow things down. In such a case, you should set Excel's calculation mode to Manual. Use the Calculation Options control in the FormulasCalculation group.

				When you're working in Manual Calculation mode, Excel displays Calculate in the status bar when you have any uncalculated formulas. You can press the following shortcut keys to recalculate the formulas:

				• F9 calculates the formulas in all open workbooks.

				• Shift+F9 calculates the formulas in the active worksheet only. Other worksheets in the same workbook won't be calculated.

				• Ctrl+Alt+F9 forces a recalculation of everything in all workbooks. Use it if Excel (for some reason) doesn't seem to be calculating correctly, or if you want to force a recalculation of formulas that use custom functions created with Visual Basic for Applications (VBA).

				• Ctrl+Alt+Shift+F9 rechecks all dependent formulas and calculates all cells in all workbooks (including cells not marked as needing to be calculated).

				[image: note.eps] Excel's Calculation mode isn't specific to a particular worksheet. When you change Excel's Calculation mode, it affects all open workbooks, not just the active workbook.

				Cell and Range References

				Most formulas refer to one or more cells. You can make cell references by using the cell's or range's address or name (if it has one). Cell references come in four styles:

				• Relative: The reference is fully relative. When the formula is copied, the cell reference adjusts to its new location. Example: A1.

				• Absolute: The reference is fully absolute. When the formula is copied, the cell reference doesn't change. Example: A1.

				• Row Absolute: The reference is partially absolute. When the formula is copied, the column part adjusts, but the row part doesn't change. Example: A$1.

				• Column Absolute: The reference is partially absolute. When the formula is copied, the row part adjusts, but the column part doesn't change. Example: $A1.

				By default, all cell and range references are relative. To change a reference, you must manually add the dollar signs. Or, when editing a cell in the formula bar, move the cursor to a cell address and press F4 repeatedly to cycle through all four types of cell referencing.

				Why use references that aren't relative?

				If you think about it, you'll realize that the only reason why you would ever need to change a reference is if you plan to copy the formula. Figure 3-1 demonstrates why this is so. The formula in cell C3 is

				=$B3*C$2

				[image: 475355-fg0301.tif]

				FIGURE 3-1: An example of using nonrelative references in a formula.

				This formula calculates the area for various lengths (listed in column B) and widths (listed in row 3). After the formula is entered, you can then copy it down to C7 and across to F7. Because the formula uses absolute references to row 2 and column B and relative references for other rows and columns, each copied formula produces the correct result. If the formula used only relative references, copying the formula would cause all the references to adjust and thus produce incorrect results.

				About R1C1 notation

				Normally, Excel uses what's known as A1 notation: Each cell address consists of a column letter and a row number. However, Excel also supports R1C1 notation. In this system, cell A1 is referred to as cell R1C1, cell A2 as R2C1, and so on.

				To change to R1C1 notation, access the Formulas tab of the Excel Options dialog box. Place a check mark next to R1C1 Reference Style. After you do so, you'll notice that the column letters all change to numbers. All the cell and range references in your formulas are also adjusted.

				Table 3-1 presents some examples of formulas that use standard notation and R1C1 notation. The formula is assumed to be in cell B1 (also known as R1C2).

				Table 3-1: Comparing Simple Formulas In Two Notations

				
					
						
								
								Standard

							
								
								R1C1

							
						

						
								
								=A1+1

							
								
								=RC[–1]+1

							
						

						
								
								=A1+1

							
								
								=R1C1+1

							
						

						
								
								=$A1+1

							
								
								=RC1+1

							
						

						
								
								=A$1+1

							
								
								=R1C[–1]+1

							
						

						
								
								=SUM(A1:A10)

							
								
								=SUM(RC[–1]:R[9]C[–1])

							
						

						
								
								=SUM(A1:A10)

							
								
								=SUM(R1C1:R10C1)

							
						

					
				

				If you find R1C1 notation confusing, you're not alone. R1C1 notation isn't too bad when you're dealing with absolute references. But when relative references are involved, the brackets can be very confusing.

				The numbers in brackets refer to the relative position of the references. For example, R[–5]C[–3] specifies the cell that's five rows above and three columns to the left. On the other hand, R[5]C[3] references the cell that's five rows below and three columns to the right. If the brackets are omitted, the notation specifies the same row or column. For example, R[5]C refers to the cell five rows below in the same column.

				Although you probably won't use R1C1 notation as your standard system, it does have at least one good use. Using R1C1 notation makes spotting an erroneous formula easy. When you copy a formula, every copied formula is exactly the same in R1C1 notation. This is true regardless of the types of cell references that you use (relative, absolute, or mixed). Therefore, you can switch to R1C1 notation and check your copied formulas. If one looks different from its surrounding formulas, there's a good chance that it might be incorrect.

				In addition, if you write VBA code to create worksheet formulas, you might find it easier to create the formulas by using R1C1 notation.

				Referencing other sheets or workbooks

				When a formula refers to other cells, the references don't need to be on the same sheet as the formula. To refer to a cell in a different worksheet, precede the cell reference with the sheet name followed by an exclamation point. Here's an example of a formula that uses a cell reference in a different worksheet (Sheet2):

				=Sheet2!A1+1

				You can also create link formulas that refer to a cell in a different workbook. To do so, precede the cell reference with the workbook name (in square brackets), the worksheet name, and an exclamation point. Here's an example:

				=[Budget.xlsx]Sheet1!A1

				If the workbook name in the reference includes one or more spaces, you must enclose it (and the sheet name) in single quotation marks. For example:

				='[Budget For 2010.xlsx]Sheet1'!A1

				If the linked workbook is closed, you must add the complete path to the workbook reference. Here's an example:

				='C:\Budgeting\Excel Files\[Budget For 2010.xlsx]Sheet1'!A1

				Although you can enter link formulas directly, you can also create the reference by using normal pointing methods. To do so, the source file must be open. When you do so, Excel creates absolute cell references. If you plan to copy the formula to other cells, make the references relative.

				[image: caution.eps] Working with links can be tricky. For example, if you choose the FileSave As command to make a backup copy of the source workbook, you automatically change the link formulas to refer to the new file (not usually what you want to do). Another way to mess up your links is to rename the source workbook when the dependent workbook is not open.

				Referencing Data in a Table

				Beginning with Excel 2007, you can designate a range to be a table by using the InsertTablesTable command. Tables add a few new twists to formulas.

				When you enter a formula into a cell in a table, Excel automatically copies the formula to all the other cells in the column — but only if the column was empty. This is known as a calculated column. If you add a new row to the table, the calculated column formula is entered automatically for the new row. Most of the time, this is exactly what you want. If you don't like the idea of Excel entering formulas for you, use the SmartTag to turn off this feature. The SmartTag appears after Excel enters the calculated column formula.

				Excel also supports “structured referencing” for referring to cells within a table. The table in the accompanying figure is named Table1.

				[image: 475355-sb0301.tif]

				You can create formulas that refer to cells within the table by using the column headers. In some cases, using column headers may make your formulas easier to understand. But the real advantage is that your formulas will continue to be valid if rows are added or removed from the table. For example, these are all valid formulas that use table references:

				=Table1[[#Totals],[Income]]

				=SUM(Table1[Income])

				=Table1[[#Totals],[Income]]-Table1[[#Totals],[Expenses]]

				=SUM(Table1[Income])-SUM(Table1[Expenses])

				=SUMIF(Table1[State],”Oregon”,Table1[Income])

				=Table1[@Expenses]

				The last formula uses an each-at symbol (@), which means “this row.” This formula is valid only if it's in a cell in one of the rows occupied by the table.

				Using Names

				One of the most useful features in Excel is its ability to provide meaningful names for various items. For example, you can name cells, ranges, rows, columns, charts, and other objects. You can even name values or formulas that don't appear in cells in your worksheet. (See the “Naming constants” section, later in this chapter.)

				Naming cells and ranges

				Excel provides several ways to name a cell or range:

				• Choose FormulasDefined NamesDefine Name to display the New Name dialog box.

				• Use the Name Manager dialog box (FormulasDefined NamesName Manager or press Ctrl+F3). This method isn't the most efficient because it requires clicking the New button in the Name Manger dialog box, which displays the New Name dialog box.

				• Select the cell or range and then type a name in the Name box and press Enter. The Name box is the drop-down control displayed to the left of the formula bar.

				• If your worksheet contains text that you'd like to use for names of adjacent cells or ranges, select the text and the cells to be named and choose FormulasDefined NamesCreate from Selection. In Figure 3-2, for example, B3:E3 is named North, B4:E4 is named South, and so on. Vertically, B3:B6 is named Qtr_1, C3:C6 is named Qtr_2, and so on. Note that Excel changes the names to make them valid. (A hyphen isn't a valid character in a name.)

				Using names is especially important if you write VBA code that uses cell or range references. The reason? VBA does not automatically update its references if you move a cell or range that's referred to in a VBA statement. For example, if your VBA code writes a value to Range(“C4”), the data will be written to the wrong cell if the user inserts a new row above or a new column to the left of cell C4. Using a reference to a named cell, such as Range(“InterestRate”), avoids these potential problems.

				[image: 475355-fg0302.eps]

				FIGURE 3-2: Excel makes it easy to create names that use descriptive text in your worksheet.

				Applying names to existing references

				When you create a name for a cell or a range, Excel doesn't automatically use the name in place of existing references in your formulas. For example, assume that you have the following formula in cell F10:

				=A1–A2

				If you define the names Income for A1 and Expenses for A2, Excel doesn't automatically change your formula to

				=Income-Expenses

				However, replacing cell or range references with their corresponding names is fairly easy. Start by selecting the range that contains the formulas that you want to modify. Then choose FormulasDefined NamesDefine NameApply Names. In the Apply Names dialog box, select the names that you want to apply and then click OK. Excel replaces the range references with the names in the selected cells.

				Hidden names

				Some Excel macros and add-ins create hidden names. Hidden names exist in a workbook but don't appear in the Name Manager dialog box. For example, the Solver add-in creates a number of hidden names. Normally, you can just ignore these hidden names. However, sometimes these hidden names create a problem. If you copy a sheet to another workbook, the hidden names are also copied, and they might create a link that is very difficult to track down.

				You can use the following VBA procedure to delete all hidden names in the workbook:

				Sub DeleteHiddenNames()

				 Dim n As Name

				 Dim Count As Integer

				 For Each n In ActiveWorkbook.Names

				 If Not n.Visible Then

				 n.Delete

				 Count = Count + 1

				 End If

				 Next n

				 MsgBox Count & “ hidden names were deleted.”

				End Sub

				[image: note.eps] Unfortunately, you can't automatically unapply names. In other words, if a formula uses a name, you can't convert the name to an actual cell or range reference. Even worse, if you delete a name that a formula uses, the formula doesn't revert to the cell or range address — it simply returns a #NAME? error.

				My Power Utility Pak add-in (available by using the coupon in the back of the book) includes a utility that scans all formulas in a selection and automatically replaces names with their cell addresses.

				Intersecting names

				Excel has a special operator called the intersection operator that comes into play when you're dealing with ranges. This operator is a space character. Using names with the intersection operator makes creating meaningful formulas very easy. For this example, refer to Figure 3-2. If you enter the following formula into a cell

				=Qtr_2 South

				the result is 7,015 — the intersection of the Qtr_2 range and the South range.

				Naming columns and rows

				Excel lets you name complete rows and columns. In the preceding figure, the name Qtr_1 is assigned to the range B3:B6. Alternatively, Qtr_1 could be assigned to all of column B, Qtr_2 to column C, and so on. You also can do the same horizontally so that North refers to row 3, South to row 4, and so on.

				The intersection operator works exactly as before, but now you can add more regions or quarters without having to change the existing names.

				When naming columns and rows, make sure that you don't store any extraneous information in named rows or columns. For example, remember that if you insert a value in cell C7, it is included in the Qtr_1 range.

				Scoping names

				A named cell or range normally has a workbook-level scope. In other words, you can use the name in any worksheet in the workbook.

				Another option is to create names that have a worksheet-level scope. To create a worksheet-level name, define the name by preceding it with the worksheet name followed by an exclamation point: for example, Sheet1!Sales. If the name is used on the sheet in which it is designed, you can omit the sheet qualifier when you reference the name. You can, however, reference a worksheet-level name on a different sheet if you precede the name with the sheet qualifier.

				The Name Manager dialog box (FormulasDefined NamesName Manager) makes identifying names by their scope easy (see Figure 3-3). Note that the dialog box is resizable, and you can adjust the column widths. You can also sort the information within this dialog box. For example, click the Scope column header, and the names are sorted by scope.

				[image: 475355-fg0303.eps]

				FIGURE 3-3: The Name Manager displays the scope for each defined name.

				Naming constants

				Virtually every experienced Excel user knows how to create cell and range names (although not all Excel users actually do so). But most Excel users don't know that you can use names to refer to values that don't appear in your worksheet — that is, constants.

				Suppose that many formulas in your worksheet need to use a particular interest rate value. One approach is to type the interest rate into a cell and give that cell a name, such as InterestRate. After doing so, you can use that name in your formulas, like this:

				=InterestRate*A3

				An alternative is to call up the New Name dialog box (FormulasDefined NamesDefine Name) and enter the interest rate directly into the Refers To box (see Figure 3-4). Then you can use the name in your formulas just as if the value were stored in a cell. If the interest rate changes, just change the definition for InterestRate, and Excel updates all the cells that contain this name.

				[image: tip.eps] This technique also works for text. For example, you can define the name IWC to stand for International Widget Corporation. Then you can enter =IWC into a cell, and the cell displays the full name.

				[image: 475355-fg0304.eps]

				FIGURE 3-4: Excel lets you name constants that don't appear in worksheet cells.

				Naming formulas

				In addition to naming cells, ranges, and constants, you can also create named formulas. It's important to understand that a named formula, as described here, does not exist in a cell. A named formula exists only in memory To create a named formula, enter a formula directly into the Refers To field in the New Name dialog box.

				[image: note.eps] This point is very important: The formula that you enter uses cell references relative to the active cell at the time that you create the named formula.

				Figure 3-5 shows a formula (=A1^B1) entered directly in the Refers To box in the New Name dialog box. In this case, the active cell is C1, so the formula refers to the two cells to its left. (Notice that the cell references are relative.) After this name is defined, entering =Power into a cell raises the value two cells to the left to the power represented by the cell directly to the left. For example, if B10 contains 3 and C10 contains 4, entering the following formula into cell D10 returns a value of 81 (3 to the 4th power).

				=Power

				[image: 475355-fg0305.tif]

				FIGURE 3-5: You can name a formula that doesn't appear in any worksheet cell.

				When you display the Name Manager after creating the named formula, the Refers To column displays a formula that is relative to the current active cell. For example, if cell D32 is the active cell, the Refers To column displays

				=Sheet1!B32^Sheet1!C32

				Notice that Excel qualifies the cell references by adding the worksheet name to the cell references used in your formula. This, of course, will cause the named formula to produce incorrect results if you use it on a worksheet other than the one in which it was defined. If you'd like to use this named formula on a sheet other than Sheet1, you need to remove the sheet references from the formula (but keep the exclamation points). For example:

				=!A1^!B1

				After you understand the concept, you might discover some new uses for named formulas. One distinct advantage is apparent if you need to modify the formula. You can just change the formula one time rather than edit each occurrence of the formula.

				[image: on_the_cd.eps] The companion CD-ROM contains a workbook with several examples of named formulas. The workbook is called named formulas.xlsx.

				[image: tip.eps] When you're working in the New Name dialog box, the Refers To field is normally in “point mode,” which makes it easy to enter a range reference by clicking in the worksheet. Press F2 to toggle between point mode and normal editing mode, which allows you to use the arrow keys to edit the formula.

				The secret to understanding cell and range names

				Excel users often refer to named ranges and named cells. In fact, I use these terms frequently throughout this chapter. Actually, this terminology isn't quite accurate.

				Here's the secret to understanding names:

				When you create a name for a cell or a range in Excel, you're actually creating a named formula — a formula that doesn't exist in a cell. Rather, these named formulas exist in Excel's memory.

				When you work with the New Name dialog box, the Refers To field contains the formula, and the Name field contains the formula's name. You'll find that the contents of the Refers To field always begin with an equal sign — which makes it a formula.

				This isn't exactly an earthshaking revelation, but keeping this “secret” in mind could help you understand what's going on behind the scenes when you create and use names in your workbooks.

				Naming objects

				In addition to providing names for cells and ranges, you can give more meaningful names to objects such as pivot tables and shapes. Using meaningful names can make referring to such objects easier, especially when you refer to them in your VBA code.

				To change the name of a nonrange object, use the Name box, which is located to the left of the formula bar. Just select the object, type the new name in the Name box, and then press Enter.

				[image: note.eps] If you simply click elsewhere in your workbook after typing the name in the Name box, the name won't stick. You must press Enter.

				For some reason, Excel doesn't allow you to use the Name box to rename a chart. You must use Chart ToolsLayoutPropertiesChart Name.

				Formula Errors

				Entering a formula and receiving an error in return isn't uncommon. One possibility is that the formula you entered is the cause of the error. Another possibility is that the formula refers to a cell that has an error value. The latter scenario is known as the ripple effect — a single error value can make its way to lots of other cells that contain formulas that depend on the cell. The tools in the FormulasFormula Auditing group can help you trace the source of formula errors.

				Table 3-2 lists the types of error values that may appear in a cell that has a formula.

				Table 3-2: Excel Error Values

				
					
						
								
								Error Value

							
								
								Explanation

							
						

						
								
								#DIV/0!

							
								
								The formula is trying to divide by 0 (zero), an operation that's not allowed on this planet. This error also occurs when the formula attempts to divide by a cell that is empty.

							
						

						
								
								#N/A

							
								
								The formula is referring (directly or indirectly) to a cell that uses the NA worksheet function to signal the fact that data isn't available. A LOOKUP function that can't locate a value also returns #N/A.

							
						

						
								
								#NAME?

							
								
								The formula uses a name that Excel doesn't recognize. This can happen if you delete a name that's used in the formula or if you have unmatched quotes when using text. A formula will also display this error if it uses a function defined in an add-in and that add-in isn't installed.

							
						

						
								
								#NULL!

							
								
								The formula uses an intersection of two ranges that don't intersect. (This concept is described in the section “Intersecting names,” earlier in the chapter.

							
						

						
								
								#NUM!

							
								
								There is a problem with a function argument; for example, the SQRT function is attempting to calculate the square root of a negative number. This error also appears if a calculated value is too large or too small. Excel doesn't support nonzero values less than 1E–307 or greater than 1E+308 in absolute value.

							
						

						
								
								#REF!

							
								
								The formula refers to a cell that isn't valid. This can happen if that cell has been deleted from the worksheet.

							
						

						
								
								#VALUE!

							
								
								The formula includes an argument or operand of the wrong type. An operand is a value or cell reference that a formula uses to calculate a result. This error also occurs if your formula uses a custom VBA worksheet function that contains an error.

							
						

						
								
								#####

							
								
								A cell displays a series of hash marks under two conditions: The column isn't wide enough to display the result, or the formula returns a negative date or time value.

							
						

					
				

				Array Formulas

				In Excel terminology, an array is a collection of cells or values that is operated on as a group. An array formula is a special type of formula that works with arrays. An array formula can produce a single result, or it can produce multiple results — with each result displayed in a separate cell.

				For example, when you multiply a 1 x 5 array by another 1 x 5 array, the result is a third 1 x 5 array. In other words, the result of this kind of operation occupies five cells; each element in the first array is multiplied by each corresponding element in the second array to create five new values, each getting its own cell. The array formula that follows multiplies the values in A1:A5 by the corresponding values in B1:B5. This array formula is entered into five cells simultaneously:

				{=A1:A5*B1:B5}

				[image: note.eps] You enter an array formula by pressing Ctrl+Shift+Enter. To remind you that a formula is an array formula, Excel surrounds it with curly braces in the formula bar. When I present an array formula in this book, I enclose it in curly braces to distinguish it from a normal formula. Don't enter the braces yourself.

				An array formula example

				An array formula enables you to perform individual operations on each cell in a range in much the same way that a programming language's looping feature enables you to work with elements of an array. If you've never used array formulas before, this section will get your feet wet with a hands-on example.

				Figure 3-6 shows a worksheet with text in A1:A5. The goal of this exercise is to create a single formula that returns the sum of the total number of characters in the range. Without the single formula requirement, you'd write a formula with the LEN function, copy it down the column, and then use the SUM function to add the results of the intermediate formulas.

				[image: 475355-fg0306.tif]

				FIGURE 3-6: Cell B1 contains an array formula that returns the total number of characters contained in range A1:A5. Notice the brackets in the formula bar.

				To demonstrate how an array formula can occupy more than one cell, create the worksheet shown in the figure and then try these steps:

				1. Select the range B1:B5.

				2. Type the following formula:

				=LEN(A1:A5)

				3. Press Ctrl+Shift+Enter.

				The preceding steps enter a single array formula into five cells. Enter a SUM formula that adds the values in B1:B5, and you'll see that the total number of characters in A1:A5 is 29.

				Here's the key point: It's not necessary to actually display those five array elements. Rather, Excel can store the array in memory. Knowing this, you can type the following single array formula in any blank cell (Remember: Don't type the curly brackets and make sure that you enter it by pressing Ctrl+Shift+Enter):

				{=SUM(LEN(A1:A5))}

				This formula essentially creates a five-element array (in memory) that consists of the length of each string in A1:A5. The SUM function uses this array as its argument, and the formula returns 29.

				An array formula calendar

				Figure 3-7 shows a worksheet set up to display a calendar for any month. (Change the month, and the calendar updates.) Believe it or not, the calendar is created with a single array formula that occupies 42 cells.

				The array formula, entered in the range B5:H10, is

				{=IF(MONTH(DATE(YEAR(B3),MONTH(B3),1))<>MONTH(DATE(YEAR(B3),

				MONTH(B3),1)-(WEEKDAY(DATE(YEAR(B3),MONTH(B3),1))-1)

				+{0;1;2;3;4;5}*7+{1,2,3,4,5,6,7}-1),””,

				DATE(YEAR(B3),MONTH(B3),1)-(WEEKDAY(DATE(YEAR(B3),

				MONTH(B3),1))-1)+{0;1;2;3;4;5}*7+{1,2,3,4,5,6,7}-1)}

				The formula returns date serial numbers, and you need to format the cells to display the day number only by using a custom number format (“d”).

				[image: 475355-fg0307.tif]

				FIGURE 3-7: A single multicell array formula is all it takes to make a calendar for any month in any year.

				[image: on_the_cd.eps] The companion CD-ROM contains a workbook with the calendar example, as well as several additional array formula examples. The file is named array formula examples.xlsx. In addition, you'll find a workbook named yearly calendar.xlsx that displays a calendar for a complete year.

				Array formula pros and cons

				The advantages of using array formulas rather than single-cell formulas include the following:

				• They can sometimes use less memory.

				• They can make your work much more efficient.

				• They can eliminate the need for intermediate formulas.

				• They can enable you to do things that would be difficult or impossible otherwise.

				A few disadvantages of using array formulas are the following:

				• Using many complex array formulas can sometimes slow your spreadsheet recalculation time to a crawl.

				• They can make your worksheet more difficult for others to understand.

				• You must remember to enter an array formula with a special key sequence (by pressing Ctrl+Shift+Enter).

				Counting and Summing Techniques

				A common task in Excel is conditional counting or summing. This section contains a number of formula examples that deal with counting various items on a worksheet, based on single or multiple criteria. You can adapt these formulas to your own needs.

				[image: note.eps] Excel 2007 introduced two new counting and summing functions that aren't available in previous versions (COUNTIFS and SUMIFS). Therefore, I present two versions of some formulas: an Excel 2007 and later version and an array formula that works with all recent versions of Excel.

				Figure 3-8 shows a simple worksheet to demonstrate the formulas that follow. The following range names are defined:

				[image: 475355-fg0308.tif]

				FIGURE 3-8: This worksheet demonstrates some useful formulas for counting and summing.

				• Month: A2:A10

				• Region: B2:B10

				• Sales: C2:C10

				[image: on_the_cd.eps] This workbook (including the formula examples) is available on the companion CD-ROM. The file is named counting and summing examples.xlsx.

				Counting formula examples

				Table 3-3 contains formulas that demonstrate a variety of counting techniques.

				Table 3-3: Counting Formula Examples

				
					
						
								
								Formula

							
								
								Description

							
						

						
								
								=COUNTIF(Region,”North”)

							
								
								Counts the number of rows in which Region = “North”

							
						

						
								
								=COUNTIF(Sales,300)

							
								
								Counts the number of rows in which Sales = 300

							
						

						
								
								=COUNTIF(Sales,”>300”)

							
								
								Counts the number of rows in which Sales > 300

							
						

						
								
								=COUNTIF(Sales,”<>100”)

							
								
								Counts the number of rows in which Sales <> 100

							
						

						
								
								=COUNTIF(Region,”?????”)

							
								
								Counts the number of rows in which Region contains five letters

							
						

						
								
								=COUNTIF(Region,”*h*”)

							
								
								Counts the number of rows in which Region contains the letter H (not case-sensitive)

							
						

						
								
								=COUNTIFS(Month,”Jan”,Sales,”>200”)

							
								
								Counts the number of rows in which Month = “Jan” and Sales > 200 (Excel 2007 and later)

							
						

						
								
								{=SUM((Month=”Jan”)*(Sales>200))}

							
								
								An array formula that counts the number of rows in which Month = “Jan” and Sales > 200

							
						

						
								
								=COUNTIFS(Month,”Jan”,Region,”North”)

							
								
								Counts the number of rows in which Month = “Jan” and Region = “North” (Excel 2007 and later)

							
						

						
								
								{=SUM((Month=”Jan”)*(Region=”North”))}

							
								
								An array formula that counts the number of rows in which Month = “Jan” and Region = “North”

							
						

						
								
								=COUNTIFS(Month,”Jan”,Region,”North”)+COUNTIFS(Month,”Jan”,Region,”South”)

							
								
								Counts the number of rows in which Month = “Jan” and Region = “North” or “South” (Excel 2007 and later)

							
						

						
								
								{=SUM((Month=”Jan”)*((Region=”North”)+(Region=”South”)))}

							
								
								An array formula that counts the number of rows in which Month = “Jan” and Region = “North” or “South”

							
						

						
								
								=COUNTIFS(Sales,”>=300”,Sales,”<=400”)

							
								
								Counts the number of rows in which Sales is between 300 and 400 (Excel 2007 and later)

							
						

						
								
								{=SUM((Sales>=300)*(Sales<=400))}

							
								
								An array formula that counts the number of rows in which Sales is between 300 and 400

							
						

					
				

				Summing formula examples

				Table 3-4 shows a number of formula examples that demonstrate a variety of summing techniques.

				Table 3-4: Summing Formula Examples

				
					
						
								
								Formula

							
								
								Description

							
						

						
								
								=SUMIF(Sales,”>200”)

							
								
								Sum of all Sales over 200

							
						

						
								
								=SUMIF(Month,”Jan”,Sales)

							
								
								Sum of Sales in which Month = “Jan”

							
						

						
								
								=SUMIF(Month,”Jan”,Sales)+SUMIF(Month,”Feb”,Sales)

							
								
								Sum of Sales in which Month =”Jan” or “Feb”

							
						

						
								
								{=SUM((Month=”Jan”)*(Region=”North”)*Sales)}

							
								
								Sum of Sales in which Month=”Jan” and Region=”North”

							
						

						
								
								=SUMIFS(Sales,Month,”Jan”,Region,”North”)

							
								
								Sum of Sales in which Month=”Jan” and Region=”North” (Excel 2007 and later)

							
						

						
								
								{=SUM((Month=”Jan”)*(Region=”North”)*Sales)}

							
								
								An array formula that returns the sum of Sales in which Month=”Jan” and Region=”North”

							
						

						
								
								=SUMIFS(Sales,Month,”Jan”,Region,”<>North”)

							
								
								Sum of Sales in which Month=”Jan” and Region <> “North” (Excel 2007 and later)

							
						

						
								
								{=SUM((Month=”Jan”)*(Region<>”North”)*Sales)}

							
								
								An array formula that returns the sum of Sales in which Month=”Jan” and Region <> “North”

							
						

						
								
								=SUMIFS(Sales,Month,”Jan”,Sales,”>=200”)

							
								
								Sum of Sales in which Month=”Jan” and Sales>=200 (Excel 2007 and later)

							
						

						
								
								{=SUM((Month=”Jan”)*(Sales>=200)*(Sales))}

							
								
								An array formula that returns the sum of Sales in which Month=”Jan” and Sales>=200

							
						

						
								
								=SUMIFS(Sales,Sales,”>=300”,Sales,”<=400”)

							
								
								Sum of Sales between 300 and 400 (Excel 2007 and later)

							
						

						
								
								{=SUM((Sales>=300)*(Sales<=400)*(Sales))}

							
								
								An array formula that returns the sum of Sales between 300 and 400

							
						

					
				

				Other counting tools

				Other ways to count or sum cells that meet certain criteria are:

				• Filtering (using a table)

				• Advanced filtering

				• The DCOUNT and DSUM functions

				• Pivot tables

				For more information, consult the Help system.

				Working with Dates and Times

				Excel uses a serial number system to store dates. The earliest date that Excel can understand is January 1, 1900. This date has a serial number of 1. January 2, 1900, has a serial number of 2, and so on.

				Most of the time, you don't have to be concerned with Excel's serial number date system. You simply enter a date in a familiar date format, and Excel takes care of the details behind the scenes. For example, if you need to enter August 15, 2010, you can simply enter the date by typing August 15, 2010 (or use any of a number of different date formats). Excel interprets your entry and stores the value 40405, which is the serial number for that date.

				[image: note.eps] In this chapter, I assume the U.S. date system. If your computer uses a different date system, you'll need to adjust accordingly. For example, you might need to enter 15 August, 2010.

				Entering dates and times

				When working with times, you simply enter the time into a cell in a recognized format. Excel's system for representing dates as individual values is extended to include decimals that represent portions or fractions of days. In other words, Excel perceives all time with the same system whether that time is a particular day, a certain hour, or a specific second. For example, the date serial number for August 15, 2010, is 40405. Noon (halfway through the day) is represented internally as 40405.5. Again, you normally don't have to be concerned with these fractional serial numbers.

				Because dates and times are stored as serial numbers, it stands to reason that you can add and subtract dates and times. For example, you can enter a formula to calculate the number of days between two dates. If cells A1 and A2 both contain dates, the following formula returns the number of intervening days:

				=A2-A1

				[image: tip.eps] When performing calculations with time, things get a bit trickier. When you enter a time without an associated date, the date is assumed to be January 0, 1900 (date serial number 0). This is not a problem — unless your calculation produces a negative time value. When this happens, Excel displays an error (displayed as #########). The solution? Switch to the 1904 date system. Display the Excel Options dialog box, click the Advanced tab, and then enable the Use 1904 Date System check box. Be aware that switching to the 1904 date system can cause problems with dates already entered in your file or dates in workbooks that are linked to your file.

				[image: tip.eps] In some cases, you may need to use time values to represent duration, rather than a point in time. For example, you may need to sum the number of hours worked in a week. When you add time values, you can't display more than 24 hours. For each 24-hour period, Excel simply adds another day to the total. The solution is to change the number formatting to use square brackets around the hour part of the format. The following number format, for example, displays more than 24 hours:

				[hh]:mm

				Using pre-1900 dates

				The world, of course, didn't begin on January 1, 1900. People who work with historical information when using Excel often need to work with dates before January 1, 1900. Unfortunately, the only way to work with pre-1900 dates is to enter the date into a cell as text. For example, you can enter the following into a cell, and Excel won't complain:

				July 4, 1776

				You can't, however, perform any manipulation on dates that are actually text. For example, you can't change its formatting, you can't determine which day of the week this date occurred on, and you can't calculate the date that occurs seven days later.

				VBA, however, supports a much wider range of dates. I created a number of VBA worksheet functions that allow you to work with pre-1900 dates. Figure 3-9 shows a demonstration of these functions used in a worksheet. It's also an excellent example of how VBA can extend the features in Excel.

				[image: 475355-fg0309.tif]

				FIGURE 3-9: The Extended Date Functions add-in lets you work with pre-1900 dates.

				[image: cross_ref.eps] See Chapter 10 for more information about the Extended Date functions.

				Creating Megaformulas

				Often, a formula requires intermediate formulas to produce a desired result. In other words, a formula may depend on other formulas, which in turn depend on other formulas. After you get all these formulas working correctly, you can often eliminate the intermediate formulas and use what I refer to as a single megaformula instead. The advantages? You use fewer cells (less clutter), the file size is smaller, and recalculation may even be a bit faster. The main disadvantage is that the formula may be impossible to decipher or modify.

				Here's an example: Imagine a worksheet that has a column with thousands of people's names. And suppose that you've been asked to remove all the middle names and middle initials from the names — but not all the names have a middle name or initial. Editing the cells manually would take hours, and even Excel's DataData ToolsText To Columns command isn't much help. So you opt for a formula-based solution. Although this task isn't difficult, it normally involves several intermediate formulas.

				Figure 3-10 shows the results of the more conventional solution, which requires six intermediate formulas shown in Table 3-5. The names are in column A; the end result goes in column H. Columns B through G hold the intermediate formulas.

				[image: 475355-fg0310.tif]

				FIGURE 3-10: Removing the middle names and initials requires intermediate formulas.

				Table 3-5: Intermediate Formulas Written In Row 2 in Figure 3-10

				
					
						
								
								Column

							
								
								Intermediate Formula

							
								
								What It Does

							
						

						
								
								B

							
								
								=TRIM(A2)

							
								
								Removes excess spaces.

							
						

						
								
								C

							
								
								=FIND(“ “,B2,1)

							
								
								Locates the first space.

							
						

						
								
								D

							
								
								=FIND(“ “,B2,C2+1)

							
								
								Locates the second space. Returns #VALUE! if there is no second space.

							
						

						
								
								E

							
								
								=IF(ISERROR(D2),C2,D2)

							
								
								Uses the first space if no second space exists.

							
						

						
								
								F

							
								
								=LEFT(B2,C2)

							
								
								Extracts the first name.

							
						

						
								
								G

							
								
								=RIGHT(B2,LEN(B2)-E2)

							
								
								Extracts the last name.

							
						

						
								
								H

							
								
								=F2&G2

							
								
								Concatenates the two names.

							
						

					
				

				You can eliminate the intermediate formulas by creating a megaformula. You do so by creating all the intermediate formulas and then going back into the final result formula and replacing each cell reference with a copy of the formula in the cell referred to (without the equal sign). Fortunately, you can use the Clipboard to copy and paste. Keep repeating this process until cell H2 contains nothing but references to cell A2. You end up with the following megaformula in one cell:

				=LEFT(TRIM(A2),FIND

				(“ “,TRIM(A2),1))&RIGHT(TRIM(A2),LEN(TRIM(A2))-

				IF(ISERROR(FIND(“ “,TRIM(A2),FIND(“ “,TRIM(A2),1)+1)),

				FIND(“ “,TRIM(A2),1),FIND(“ “,TRIM(A2),FIND

				(“ “,TRIM(A2),1)+1)))

				When you're satisfied that the megaformula is working, you can delete the columns that hold the intermediate formulas because they're no longer used.

				The megaformula performs exactly the same tasks as all the intermediate formulas — although it's virtually impossible for anyone to figure out, even the author. If you decide to use megaformulas, make sure that the intermediate formulas are performing correctly before you start building a megaformula. Even better, keep a single copy of the intermediate formulas somewhere in case you discover an error or need to make a change.

				Another way to approach this problem is to create a custom worksheet function in VBA. Then you could replace the megaformula with a simple formula, such as

				=NOMIDDLE(A1)

				In fact, I wrote such a function to compare it with intermediate formulas and megaformulas. The listing follows.

				Function NOMIDDLE(n) As String

				 Dim FirstName As String, LastName As String

				 n = Application.WorksheetFunction.Trim(n)

				 FirstName = Left(n, InStr(1, n, “ “))

				 LastName = Right(n, Len(n) - InStrRev(n, “ “))

				 NOMIDDLE = FirstName & LastName

				End Function

				[image: on_the_cd.eps] A workbook that contains the intermediate formulas, the megaformula, and the NOMIDDLE VBA function is available on the companion CD-ROM. The workbook is named megaformula.xlsm.

				Because a megaformula is so complex, you may think that using one slows down recalculation. Actually, that's not the case. As a test, I created a workbook that used the megaformula 175,000 times. Then I created another workbook that used six intermediate formulas to compute the 175,000 results. I compared the results in terms of calculation time and file size; see Table 3-6.

				Table 3-6: Comparing Intermediate Formulas and Megaformula

				
					
						
								
								Method

							
								
								Recalculation Time (Seconds)

							
								
								File Size

							
						

						
								
								Intermediate formulas

							
								
								5.8

							
								
								12.60MB

							
						

						
								
								Megaformula

							
								
								3.9

							
								
								2.95MB

							
						

					
				

				The actual results will vary significantly, depending on system speed, amount of memory installed, and the actual formula.

				The VBA function was much slower — I abandoned the timed test after five minutes. This is fairly typical of VBA functions; they are always slower than built-in Excel functions.

			

		

	
		
			
				Chapter 4: Understanding Excel Files

				IN THIS CHAPTER

				• Starting Excel

				• Opening and saving different types of files in Excel

				• Introducing the XML file format in Excel 2007

				• Figuring out how Excel uses the Windows Registry

				Starting Excel

				You can start Excel in various ways, depending on how it's installed. You can click an icon on the desktop, use the Windows Start button, or double-click a file associated with the Excel application. All methods ultimately launch the excel.exe executable file.

				When Excel 2010 starts, it performs the following actions:

				• It reads its settings stored in the Windows Registry.

				• It reads and applies any Quick Access toolbar or Ribbon customizations defined in the Excel.officeUI file.

				• It opens the *.xlb menu/toolbar customization file.

				• It opens all add-ins that are installed (that is, those that are checked in the Add-Ins dialog box).

				• It opens any workbooks that are in the XLStart directory.

				• It opens any workbooks that are in the alternate start-up directory (specified in the Advanced tab of the Excel Options dialog box).

				• It determines whether Excel ended with a crash the last time it was used. If so, it displays a list of autorecovered workbooks.

				• It displays an empty workbook — unless the user specified a workbook to open or one or more files were found in the XLStart or alternate start-up directory.

				You can install Excel in any location. But in most cases, the Excel executable file is located in the default installation directory:

				C:\Program Files\Microsoft Office\Office14\EXCEL.EXE

				You can create one or more shortcuts to this executable file and customize those shortcuts' various parameters, or command line switches. Table 4-1 lists these command line switches.

				Table 4-1: Excel Command Line Switches

				
					
						
								
								Switch

							
								
								What It Does

							
						

						
								
								filename

							
								
								Opens the specified file. The filename is a parameter and does not require a switch.

							
						

						
								
								/r filename

							
								
								Opens the specified file in read-only mode.

							
						

						
								
								/t filename

							
								
								Opens the specified file as a template.

							
						

						
								
								/n filename

							
								
								Opens the specified file as a template (same as /t).

							
						

						
								
								/e

							
								
								Starts Excel without creating a new workbook and without displaying its splash screen.

							
						

						
								
								/p directory

							
								
								Sets the active path to a directory other than the default directory.

							
						

						
								
								/s

							
								
								Starts Excel in Safe mode and does not load any add-ins or files in the XLStart or alternate start-up file directories.

							
						

						
								
								/m

							
								
								Forces Excel to create a new workbook that contains a single Microsoft Excel 4.0 macro sheet (obsolete).

							
						

					
				

				You can experiment with these command line switches by using the Windows StartRun command (or use the Search box to start the Windows Run program). Put the path to Excel in quotes, followed by a space and the command line switch. Figure 4-1 shows an example.

				One way to specify any of these switches is to edit the properties of the shortcut that starts Excel. For example, if there are times when you'd like Excel to start and use a folder named c:\xlfiles as its default folder, you can customize a Windows shortcut. In this case, you need to use the /p switch and specify the folder.

				[image: 475355-fg0401.eps]

				FIGURE 4-1: Starting Excel from the Windows Run dialog box.

				[image: note.eps] The instructions that follow are for Windows Vista.

				Start with an icon that launches Excel. Right-click the icon and choose Properties. In the Properties dialog box, click the Shortcut tab and enter the following in the Target field (see Figure 4-2):

				[image: 475355-fg0402.eps]

				FIGURE 4-2: Customizing a shortcut to launch Excel.

				“C:\Program Files\Microsoft Office\Office14\EXCEL.EXE” /p c:\xlfiles

				Keep in mind that the path to excel.exe can vary for different installations and for different versions.

				You can also assign a shortcut key to launch Excel, which can be useful. If Excel is already running, pressing the shortcut key activates Excel.

				[image: note.eps] You can run multiple instances of Excel on a single system. Each instance is treated as a separate task. Most people have pretty good success running multiple versions of Excel on a single system. For best results, install the versions in the order of their release dates (earliest to newest).

				File Types

				Although the Excel 2010 default file format is an XLSX workbook file, the program can also open and save a wide variety of other file formats. This section provides an overview of the file types that Excel 2010 can handle.

				[image: note.eps] Beginning with Excel 2007, Microsoft removed support for Lotus and Quattro Pro spreadsheet file formats.

				Excel file formats

				Excel 2007 introduced a new default file format, and that format is also used in Excel 2010. However, these recent versions can still read and write older Excel file formats.

				[image: tip.eps] To change the default file save setting, choose FileOptions and click the Save tab in the Excel Options dialog box. You'll find a drop-down list that lets you select the default file format.

				Table 4-2 lists the Excel file types that Excel 2010 supports. Keep in mind that an Excel workbook or add-in file can have any extension that you like. In other words, these files don't need to be stored with the standard extensions shown in the table. However, Excel may display a warning if you try to open a file in which the content does not match the extension.

				Table 4-2: Excel File Types

				
					
						
								
								File Type

							
								
								Extension

							
								
								Read/Write

							
								
								Notes

							
						

						
								
								Excel Workbook

							
								
								xlsx

							
								
								Yes/Yes

							
								
								The default Excel 2010 file format. It can't store VBA or XLM macro code.

							
						

						
								
								Excel Macro-Enabled Workbook

							
								
								xlsm

							
								
								Yes/Yes

							
								
								The Excel 2010 file format for workbooks that contain macros.

							
						

						
								
								Excel Binary Workbook

							
								
								xlsb

							
								
								Yes/Yes

							
								
								The Excel 2010 binary file format. It's an updated version of the previous XLS format.

							
						

						
								
								Template

							
								
								xltx

							
								
								Yes/Yes

							
								
								The Excel 2010 file format for a template. It can't store VBA or XLM macro code.

							
						

						
								
								Macro-Enabled Template

							
								
								xltm

							
								
								Yes/Yes

							
								
								The Excel 2010 file format for a template that contains macros.

							
						

						
								
								Excel Add-In

							
								
								xlam

							
								
								Yes/Yes

							
								
								The Excel 2010 file format for an add-in. It can store VBA and XLM macros.

							
						

						
								
								Excel 97–Excel 2003 Workbook

							
								
								xls

							
								
								Yes/Yes

							
								
								The Excel binary format (BIFF8) that's compatible with Excel 97 through Excel 2003.

							
						

						
								
								Excel 97–Excel 2003 Template

							
								
								xlt

							
								
								Yes/Yes

							
								
								The Excel binary template format (BIFF8) that's compatible with Excel 97 through Excel 2003.

							
						

						
								
								Excel 97–Excel 2003 Add-In

							
								
								xla

							
								
								Yes/Yes

							
								
								The Excel binary format (BIFF8) for add-ins that's compatible with Excel 97 through Excel 2003.

							
						

						
								
								Microsoft Excel 5.0/95 Workbook

							
								
								xls

							
								
								Yes/Yes

							
								
								The Excel binary format (BIFF5) that's compatible with Excel 5.0 and Excel 95.

							
						

						
								
								XML Spreadsheet 2003

							
								
								xml

							
								
								Yes/Yes

							
								
								Microsoft's XML Spreadsheet 2003 file format (XMLSS).

							
						

					
				

				[image: note.eps] Microsoft Office XP and Office 2003 users can install the Microsoft Office Compatibility Pack, which allows them to open and save documents in the Office 2010 and Office 2007 file formats. The Compatibility Pack is available at http://office.microsoft.com.

				Text file formats

				When you attempt to load a text file into Excel, the Text Import Wizard might kick in to help you specify how you want the file retrieved.

				[image: tip.eps] To bypass the Text Import Wizard, press the Shift key when you click Open in the Open dialog box.

				Table 4-3 lists the text file types supported by Excel 2010. All text file formats are limited to a single worksheet.

				Table 4-3: Text File Types

				
					
						
								
								File Type

							
								
								Extension

							
								
								Read/Write

							
								
								Notes

							
						

						
								
								CSV (comma separated values)

							
								
								csv

							
								
								Yes/Yes

							
								
								Columns are delimited with a comma, and rows are delimited with a carriage return. Excel supports subtypes for Macintosh and MS-DOS.

							
						

						
								
								Formatted Text

							
								
								prn

							
								
								Yes/Yes

							
								
								Columns are delimited with a space character, and rows are delimited with a carriage return.

							
						

						
								
								Text

							
								
								txt

							
								
								Yes/Yes

							
								
								Columns are delimited with a tab, and rows are delimited with a carriage return. Excel supports subtypes for Macintosh, MS-DOS, and Unicode.

							
						

						
								
								Data Interchange Format (DIF)

							
								
								dif

							
								
								Yes/Yes

							
								
								The file format originally used by VisiCalc.

							
						

						
								
								Symbolic Link (SYLK)

							
								
								slk

							
								
								Yes/Yes

							
								
								The file format originally used by Multiplan.

							
						

					
				

				Database file formats

				Table 4-4 lists the database file types supported by Excel 2010. All database file formats are limited to a single worksheet.

				Table 4-4: Database File Types

				
					
						
								
								File Type

							
								
								Extension

							
								
								Read/Write

							
								
								Notes

							
						

						
								
								Access

							
								
								mdb, mde, accdb, accde

							
								
								Yes/No

							
								
								You can open one table from the database.

							
						

						
								
								dBASE

							
								
								dbf

							
								
								Yes/No

							
								
								The file format originally created by Ashton-Tate.

							
						

						
								
								Others

							
								
								Various

							
								
								Yes/No

							
								
								By using the commands in the DataGet External Data group, you can import data from various data sources that have connections or queries defined on your system.

							
						

					
				

				Other file formats

				Table 4-5 lists the other file types supported by Excel 2010.

				Table 4-5: Other File Types

				
					
						
								
								File Type

							
								
								Extension

							
								
								Read/Write

							
								
								Notes

							
						

						
								
								Hypertext Markup Language (HTML)

							
								
								htm, html

							
								
								Yes/Yes

							
								
								Beginning with Excel 2007, this file format no longer supports “round-tripping.” If you save a file and then re-open it, you may lose information.

							
						

						
								
								Single File Web Page

							
								
								mht, mhtml

							
								
								Yes/Yes

							
								
								Also known as Archived Web Page. The only browsers that can display these files are Microsoft Internet Explorer and Opera.

							
						

						
								
								OpenDocument Spreadsheet

							
								
								ods

							
								
								Yes/Yes

							
								
								A file format developed by Sun Microsystems and OASIS. Readable by open source spreadsheets, such as OpenOffice.

							
						

						
								
								Portable Document Format (PDF)

							
								
								pdf

							
								
								No/Yes

							
								
								The file format originated by Adobe.

							
						

						
								
								XML Paper Specification

							
								
								xps

							
								
								No/Yes

							
								
								Microsoft's alternative to Adobe's PDF.

							
						

					
				

				Workspace files

				A workspace file is a special file that contains information about an Excel workspace. For example, if you have a project that uses two workbooks and you like to have the workbook windows arranged in a particular way, you can save an XLW file to save this window configuration. Then, whenever you open the XLW file, Excel restores the desired workspace.

				To save a workspace, choose ViewWindowSave Workspace and provide a name when prompted.

				To open a workspace file, use FileOpen and select Workspaces (*.xlw) from the Files of Type drop-down list.

				It's important to understand that a workspace file does not include the workbooks — only the configuration information that makes those workbooks visible in your Excel workspace. So if you need to distribute a workspace to someone else, make sure that you include the workbook files as well as the XLW file.

				Working with Template Files

				A template is essentially a model that serves as the basis for something else. An Excel template is a workbook that's used to create other workbooks. You can save any workbook as a template file (XLTX extension). Doing so is useful if you tend to create similar files on a regular basis. For example, you might need to generate a monthly sales report. You can save some time by creating a template that holds the necessary formulas and charts for your report. When you start new files based on the template, you need only to plug in the values.

				Viewing templates

				Excel gives you access to many templates. To explore the Excel templates, choose FileNew to display the Available Templates screen.

				The Office Online Templates section contains a number of categories. Click a category, and you'll see the available templates. To use a template, select it and click Download. Figure 4-3 shows some of templates available in the Invoices category.

				[image: 475355-fg0403.eps]

				FIGURE 4-3: Templates that you can use for invoices.

				Microsoft Office Online has a wide variety of templates, and some are better than others. If you download a few duds, don't give up. Even though a template may not be perfect, you can often modify a template to meet your needs. Modifying an existing template is often easier than creating a workbook from scratch.

				[image: note.eps] The location of the Templates folder varies, depending on the version of Excel. To find the location of your Templates folder, execute the following VBA statement:

				MsgBox Application.TemplatesPath

				Creating templates

				Excel supports three types of templates:

				• The default workbook template: Used as the basis for new workbooks. This file is named book.xltx.

				• The default worksheet template: Used as the basis for new worksheets inserted into a workbook. This file is named sheet.xltx.

				• Custom workbook templates: Usually, ready-to-run workbooks that include formulas. They can be as simple or as complex as you like. Typically, these templates are set up so that a user can simply plug in values and get immediate results.

				Using the workbook template to change workbook defaults

				Every new workbook that you create starts out with some default settings. For example, the workbook has three worksheets, the worksheets have gridlines, text appears in Calibri 11-point font, columns are 8.43 units wide, and so on. If you're not happy with any of the default workbook settings, you can change them.

				Making changes to Excel's default workbook is fairly easy to do, and it can save you lots of time in the long run. Here's how you change Excel's workbook defaults:

				1. Open a new workbook.

				2. Add or delete sheets to give the workbook the number of worksheets that you want.

				3. Make any other changes that you want to make, which can include column widths, named styles, page setup options, and many of the settings that are available in the two Display Options sections in the Advanced tab of the Excel Options dialog box.

				 To change the default formatting for cells, choose HomeStylesCell Styles and then modify the settings for the Normal style. For example, you can change the default font, size, or number format.

				4. When your workbook is set up to your liking, choose FileSave As.

				5. In the Save As dialog box, select Template (*.xltx) from the box labeled Save As Type.

				6. Enter book.xltx for the filename.

				7. Save the file in your \XLStart folder (not in your Templates folder).

				8. Close the file.

				[image: tip.eps] To determine the location of \XLStart, execute this VBA statement:

				MsgBox Application.StartupPath

				After you perform the preceding steps, the new default workbook that appears when Excel is started is based on the book.xltx workbook template. You can also press Ctrl+N to create a workbook based on this template. If you ever want to revert back to the standard default workbook, just delete the book.xltx file.

				[image: note.eps] If you choose FileNew and select Blank Workbook, the workbook will not be based on the book.xltx template. I don't know whether that's a bug or by design. In any case, it provides a way to override the custom book.xltx template if you need to.

				Using the worksheet template to change worksheet defaults

				When you insert a new worksheet into a workbook, Excel uses its built-in worksheet defaults for the worksheet. These defaults include items such as column width, row height, and so on. If you don't like the default settings for a new worksheet, you can change them by following these steps:

				1. Start with a new workbook and delete all the sheets except one.

				2. Make any changes that you want to make, which can include column widths, named styles, page setup options, and many of the settings that are available in the Excel Options dialog box.

				3. When your workbook is set up to your liking, choose FileSave As.

				4. In the Save As dialog box, select Template (*.xltx) from the Save As Type box.

				5. Enter sheet.xltx for the filename.

				6. Save the file in your \XLStart folder (not in your Templates folder).

				7. Close the file.

				8. Close and restart Excel.

				After performing this procedure, all new sheets that you insert by clicking the Insert Worksheet button (which is next to the last sheet tab) will be formatted like your sheet.xltx template. You can also press Shift+F11 to insert a new worksheet.

				Creating workbook templates

				The book.xltx and sheet.xltx templates discussed in the preceding section are two special types of templates that determine default settings for new workbooks and new worksheets. This section discusses other types of templates, referred to as workbook templates, which are simply workbooks that you set up as the basis for new workbooks or worksheets.

				Why use a workbook template? The simple answer is that it saves you from repeating work. Assume that you create a monthly sales report that consists of your company's sales by region, plus several summary calculations and charts. You can create a template file that consists of everything except the input values. Then, when it's time to create your report, you can open a workbook based on the template, fill in the blanks, and be finished.

				[image: note.eps] You could, of course, just use the previous month's workbook and save it with a different name. This approach is prone to errors, however, because you easily can forget to use the Save As command and accidentally overwrite the previous month's file. Another option is to use the New From Existing icon in the New Workbook dialog box. This step creates a new workbook from an existing one, but gives a different name to ensure that the old file is not overwritten.

				When you create a workbook that is based on a template, the default workbook name is the template name with a number appended. For example, if you create a new workbook based on a template named Sales Report.xltx, the workbook's default name is Sales Report1.xlsx. The first time that you save a workbook that is created from a template, Excel displays its Save As dialog box so that you can give the template a new name if you want to.

				A custom template is essentially a normal workbook, and it can use any Excel feature, such as charts, formulas, and macros. Usually, a template is set up so that the user can enter values and get immediate results. In other words, most templates include everything but the data, which is entered by the user.

				[image: note.eps] If your template contains macros, it must be saved as an Excel Macro-Enabled Template, with an XLTM extension.

				Inside an Excel File

				Excel 2010 uses an XML format for its workbooks, templates, and add-ins. These files are actually Zip compressed files. As such, they can be “unzipped” and examined.

				Versions prior to Excel 2007 used a binary file format. Although the binary file format specifications are known, working with binary files is not easy. The Excel XML file format, on the other hand, is an open format. As such, these files can be created and manipulated using other software.

				Dissecting a file

				In this section, I describe the various parts within a typical Excel XLSM (macro-enabled) workbook file. The workbook, named sample.xlsm, is shown in Figure 4-4. It has one worksheet, one chart sheet, and a simple VBA macro. The worksheet contains a table, a button (from the Forms controls), a SmartArt diagram, and a photo of a flower.

				[image: on_the_cd.eps] The sample.xlsm workbook is available on the companion CD-ROM.

				To view the innards of an Excel 2010 file, you need to open an Explorer window and add a ZIP extension to the filename. So the sample.xlsm file is renamed to sample.xlsm.zip. You can then open the file by using any unzipping program. I use the Zip feature built into Windows Vista.

				[image: note.eps] If your system is set up to hide file extensions, I suggest that you turn off that option. In a Windows Explorer window, choose ToolsFolder Options and click the View tab. In the File and Folders section, remove the check mark from Hide Extensions For Known File Types.

				[image: tip.eps] You may prefer to extract the zipped files into an uncompressed directory. Doing so makes it easier to view the files. In Windows, right-click the filename and choose Extract All.

				[image: 475355-fg0404.eps]

				FIGURE 4-4: A simple workbook.

				The first thing that you notice is that the file contains a directory structure. The left panel of Figure 4-5 shows the fully expanded directory structure for the workbook file. The actual directories will vary with the workbook.

				With a few exceptions, all the files are text files. More specifically, they are XML files. You can view them in a text file editor, an XML editor, a Web browser, or even Excel. Figure 4-6 shows one of these files viewed in the Firefox browser. The non-XML files include graphic images and VBA projects (these are stored in binary format).

				This XML file has four root-level folders, and some of these have subfolders. Many of the folders contain a _rels folder. These folders contain XML files that define the relationships to other parts within the package.

				[image: 475355-fg0405.eps]

				FIGURE 4-5: The directory structure of the workbook file.

				Following is a list of the folders in the sample.xlsm workbook:

				• _rels: Contains information about the package relationships.

				• customXml: Contains information about Ribbon enhancements stored in the workbook.

				• docProps: Contains XML files that describe the file properties and application settings.

				• xl: Holds the meat of the file. The folder name varies with the Office document type (xl, ppt, word, and so on). You'll find several XML files that contain settings for the workbook. And if your workbook contains VBA code, it will be in a binary file with a BIN extension. The xl folder has several subfolders. (Some workbooks may have more or fewer subfolders, depending on the content.)

				• charts: Contains an XML file for each chart. This file contains the chart settings.

				• chartsheets: Contains an XML file with data for each chart sheet in the workbook.

				• diagrams: Contains XML files that describe the diagrams (SmartArt) in the workbook.

				• drawings: Contains an XML file with data for each drawing. Drawings include items such as buttons, charts, and images.

				• media: Contains embedded media, such GIF and JPG files.

				• tables: Contains an XML file with data for each table.

				• theme: Contains an XML file with data about the workbook's theme.

				• worksheets: Contains an XML file for each worksheet in the workbook.

				[image: 475355-fg0406.eps]

				FIGURE 4-6: Viewing an XML file in a Web browser.

				[image: tip.eps] If you add a ZIP extension to an Excel file, you can still open it in Excel — although you'll get a warning message first. Also, you can save a workbook with a ZIP extension. In the Save As dialog box, add a ZIP extension and then place double quotation marks around the entire filename — for example, “Myworkbook.xlsx.zip”.

				Why is the file format important?

				The open XML file formats introduced in Microsoft Office 2007 represent a significant step for the computing community. For the first time, it's relatively easy to read and write Excel workbooks using software other than Excel. For example, you can write a program to modify thousands of Excel workbook files without even opening Excel. Such a program could insert a new worksheet into every file. The programmer, of course, would need to have excellent knowledge of the XML file structures, but such a task is definitely doable.

				Importantly, the new file formats are somewhat less prone to corruption (compared to the old binary formats). I saved a workbook file and then deleted one of the worksheet XML files. When I tried to reopen it in Excel, I got the message shown in Figure 4-7. Excel was able to tell that the file was damaged by comparing the information in the .res files with what's actually in the file. In this case, Excel was able to repair the file and open it. The deleted worksheet was re-inserted, but it was empty.

				[image: 475355-fg0407.eps]

				FIGURE 4-7: Excel can often repair a damaged workbook file.

				In addition, the zipped XML files are usually smaller than comparable binary files. And, finally, the structured nature of the files makes extracting individual elements (for example, all graphic images) possible.

				The typical Excel user won't need to examine or modify the XML components of a workbook file. But, as a developer, you may want to write code that changes Excel's Ribbon user interface. If that's the case, you will need to be at least somewhat familiar with the structure of a workbook XML file.

				[image: cross_ref.eps] Refer to Chapter 22 for more information about modifying Excel's Ribbon.

				The OfficeUI File

				A file named Excel.officeUI stores changes made to the Quick Access toolbar and Ribbon. This XML file is located here:

				C:\Users\<username>\AppData\Local\Microsoft\Office

				This file is updated whenever a change is made to the Quick Access toolbar or to the Ribbon. It's updated immediately, not when Excel is closed. This file doesn't exist unless you've made at least one change to the user interface.

				You can view Excel.officeUI using an XML editor, a Web browser, or Excel. To view this file in Excel, follow these steps:

				1. Make a copy of the Excel.officeUI file.

				2. Add an XML extension to the copy of the file so that the name is Excel.officeUI.XML.

				3. Choose FileOpen to open the file or just drag it into Excel's window.

				4. You'll see a dialog box with some options; choose As an XML Table.

				Figure 4-8 shows an imported Excel.officeUI file (the file is displayed as a table). In this case, the Quick Access toolbar has two commands enabled (rows 12 and 13 in the table), and I added a new tab and group, with two commands (rows 14 and 15 in the table).

				It's possible to share an Excel.officeUI file with other users. For example, you may have customized your Quick Access toolbar with some handy tools, and added a new Ribbon tab with lots of useful commands, nicely organized . If a colleague is impressed, just give him a copy of your Excel.officeUI file and tell him where to put it. Keep in mind that replacing an existing Excel.officeUIfile will overwrite any changes your colleague has made.

				Don't attempt to modify the Excel.officeUI file unless you know what you're doing. But feel free to experiment. If Excel reports an error in the Excel.officeUI file at start-up, you can just delete the file, and Excel will create a new one. Better yet, keep a backup copy of the original.

				[image: 475355-fg0408.tif]

				FIGURE 4-8: Viewing an Excel.officeUI data file in Excel.

				The XLB File

				Excel stores customized toolbar and menu bar configurations in an XLB file. Even though Excel 2010 doesn't officially support custom toolbars and menus in the way that it did in previous versions, it still uses an XLB file if you use any applications that create toolbars or custom menus. If you can't find an XLB file, it means that Excel isn't storing any custom toolbar or menu configurations.

				When you exit Excel, the current toolbar configuration is saved in a file named Excel12.xlb. This file is (most likely) located here:

				C:\Users\<username>\AppData\Roaming\Microsoft\Excel

				This binary file contains information regarding the position and visibility of all custom toolbars and custom menu bars, plus modifications that you've made to built-in toolbars or menu bars.

				Add-In Files

				An add-in is essentially an Excel workbook file with a few important differences:

				• The workbook's IsAddin property is True — which means that it can be loaded and unloaded by using the Add-Ins dialog box.

				• The workbook is hidden and cannot be unhidden by the user. Consequently, an add-in is never the active workbook.

				• When using VBA, the add-in workbook is not part of the Workbooks collection.

				[image: tip.eps] Access the Add-Ins dialog box by choosing FileExcel Options. Click the Add-Ins tab, select Excel Add-Ins from the Manage list, and click Go. If you've set up Excel to display the Developer tab, you can also use DeveloperAdd-InsAddins. Or (easiest of all), just press Alt+TI, a handy key combination leftover from Excel 2003.

				Many add-ins provide new features or functions to Excel. You can access these new features as if they were built into the product.

				You can create your own add-ins from workbook files. In fact, creating add-ins is the preferred method of distributing some types of Excel applications. Excel 2010 add-ins have an XLAM extension by default.

				[image: note.eps] Besides XLAM add-ins, Excel supports XLL add-ins and COM add-ins. These types of add-ins are created using software other than Excel. This book discusses only XLAM add-ins.

				[image: cross_ref.eps] Chapter 21 covers the topic of add-ins in detail.

				Excel Settings in the Registry

				The Excel Options dialog box has dozens of user-specified options. Excel uses the Windows Registry to store these settings and retrieve them when Excel is started. In this section, I provide some background information about the Windows Registry and discuss how Excel uses the Registry to store its settings.

				About the Registry

				The Windows Registry is essentially a central hierarchical database that is used by the operating system and by application software. The Registry first appeared in Windows 95 and replaces the old INI files that stored Windows and application settings.

				[image: cross_ref.eps] Your VBA macros can also read and write information to the Registry. Refer to Chapter 11 for details.

				You can use the Registry Editor program (included with Windows) to browse the Registry — and even to edit its contents if you know what you're doing. The Registry Editor is named regedit.exe. Before beginning your explorations, take a minute to read the sidebar “Before You Edit the Registry. . . .” Figure 4-9 shows what the Registry Editor looks like.

				[image: 475355-fg0409.eps]

				FIGURE 4-9: The Registry Editor lets you browse and make changes to the Registry.

			
				Before you edit the Registry . . .

				You can use the regedit.exe program to change anything in the Registry, including information that is critical to your system's operation. In other words, if you change the wrong piece of information, Windows may no longer work properly.

				Get into the habit of choosing the FileExport command in Regedit. This command enables you to save an ASCII version of the entire Registry or just a specific branch of the Registry. If you find that you messed up something, you can always import the ASCII file to restore the Registry to its previous condition (choose the FileImport command). Refer to the Help file for Regedit for details.

			

				The Registry consists of keys and values, arranged in a hierarchy. The top-level keys are

				• HKEY_CLASSES_ROOT

				• HKEY_CURRENT_USER

				• HKEY_LOCAL_MACHINE

				• HKEY_USERS

				• HKEY_CURRENT_CONFIG

				Excel's settings

				Information used by Excel 2010 is stored in this Registry section:

				HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Excel

				In this section of the Registry, you'll find a number of keys that contain specific values that determine how Excel operates.

				The Registry settings are updated automatically by Excel when Excel closes.

				[image: note.eps] It's important to understand that Excel reads the Windows Registry only once — when it starts up. In addition, Excel updates the Registry settings only when Excel closes normally. If Excel crashes (unfortunately, not an uncommon occurrence), the Registry information is not updated. For example, if you change one of Excel's settings, such as the visibility of the formula bar, this setting is not written to the Registry until Excel closes by normal means.

				Table 4-6 lists some of the Registry sections that are relevant to Excel 2010. You may not find all these sections in your Registry database, and you may find some others.

				Table 4-6: Excel Configuration Information in the Registry

				
					
						
								
								Section

							
								
								Description

							
						

						
								
								Add-In Manager

							
								
								Lists add-ins that appear in the Add-Ins dialog box. Add-ins that are included with Excel do not appear in this list. If you have an add-in entry in this list box that you no longer use, you can remove it by using the Registry Editor.

							
						

						
								
								Converters

							
								
								Lists additional (external) file converters that are not built into Excel.

							
						

						
								
								Error Checking

							
								
								Holds the settings for formula error checking

							
						

						
								
								File MRU

							
								
								Holds information about the most recently used files (which appears in the Recent Documents list when you choose FileRecent).

							
						

						
								
								Options

							
								
								A catch-all section; holds a wide variety of settings.

							
						

						
								
								Recent Templates

							
								
								Stores the names of templates you've used recently.

							
						

						
								
								Resiliency

							
								
								Information used for recovering documents.

							
						

						
								
								Security

							
								
								Specifies the security options for opening files that contain macros.

							
						

						
								
								Spell Checker

							
								
								Stores information about your spell checker options.

							
						

						
								
								StatusBar

							
								
								Stores the user choices for what appears in the status bar.

							
						

						
								
								UserInfo

							
								
								Stores information about the user.

							
						

					
				

				Although you can change most of the settings via the Excel Options dialog box, you can't change a few settings directly from Excel (but you can use the Registry Editor to make changes). For example, when you select a range of cells, you may prefer that the selected cells appear in high contrast white-on-black. There is no way to specify this setting in Excel, but you can add a new Registry key like this:

				1. Open the Registry Editor and locate this section:

				HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Excel\Options

				2. Right-click and choose NewDWORD Value.

				3. Name this value Options6.

				4. Right-click the Options6 key and select Modify.

				5. In the Edit DWORD Value dialog box, click the Decimal option and enter 16 (see Figure 4-10).

				[image: 475355-fg0410.eps]

				FIGURE 4-10: Setting a value for a Registry setting.

				When you restart Excel, range selections will appear with a black background rather than the usual light blue. If you don't like this look, just delete the Options6 Registry entry.

				[image: tip.eps] If you have trouble starting Excel, the Registry keys may have become corrupt. You can try using the Registry Editor to delete the entire Excel section:

				HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Excel

				The next time Excel starts, it will rebuild the Registry keys. You will, however, lose all the customization information that was stored there.

			

		

	
		
			
				Part II: Excel Application Development

				CHAPTER 5

				What Is a Spreadsheet Application?

				CHAPTER 6

				Essentials of Spreadsheet Application Development

			

		

	
		
			
				Chapter 5: What Is a Spreadsheet Application?

				IN THIS CHAPTER

				• Getting a working definition of a spreadsheet application

				• Understanding the difference between a spreadsheet user and a spreadsheet developer

				• Classifying spreadsheet users to help you conceptualize the audience for your applications

				• Discussing why people use spreadsheets

				• Exploring a taxonomy of the basic types of spreadsheets

				Spreadsheet Applications

				For the purposes of this book, a spreadsheet application is a spreadsheet file (or group of related files) that is designed so that someone other than the developer can perform useful work without extensive training. According to this definition, most of the spreadsheet files that you've developed probably don't qualify as spreadsheet applications. You may have dozens or hundreds of spreadsheet files on your hard drive, but it's a safe bet that most of them aren't really designed for others to use.

				A good spreadsheet application has the following characteristics:

				• It enables the end user to perform a task that he or she probably would not be able to do otherwise.

				• It provides the appropriate solution to the problem. (A spreadsheet environment isn't always the optimal approach.)

				• It accomplishes what it is supposed to do. This prerequisite may be obvious, but it's not at all uncommon for applications to fail this test.

				• It produces accurate results and is free of bugs.

				• It uses appropriate and efficient methods and algorithms to accomplish its job.

				• It traps errors before the user is forced to deal with them.

				[image: note.eps] Note that errors and bugs are not the same. Attempting to divide by zero is an error, whereas failure to identify that error before it occurs is a bug.

				• It does not allow the user to delete or modify important components accidentally (or intentionally).

				• Its user interface is clear and consistent so that the user always knows how to proceed.

				• Its formulas, macros, and user interface elements are well documented, allowing for subsequent changes, if necessary.

				• It is designed so that it can be modified in simple ways without making major changes. A basic fact of life is that a user's needs change over time.

				• It has an easily accessible help system that provides useful information on at least the major procedures.

				• It is designed to be portable and to run on any system that has the proper software (in this case, a copy of the appropriate version of Excel).

				It should come as no surprise that it is possible to create spreadsheet applications for many different usage levels, ranging from simple fill-in-the-blank templates to extremely complex applications that use a custom interface and that may not even look like spreadsheets.

				The Developer and the End User

				I've already used the terms developer and end user, and you will see them frequently throughout this book. Because you've gotten this far, I think I can safely assume that you're either a spreadsheet application developer or a potential developer.

				My definitions regarding developers and end users are simple. The person who creates the spreadsheet application is the developer. For joint projects, there are multiple developers: a development team. The person who uses the results of the developer's spreadsheet programming efforts is the end user (which I often shorten to simply user). In many cases, there will be multiple end users, and often the developer is one of the users.

				Who are developers? What do they do?

				I've spent about 20 years trading methodologies and hanging out (usually in a virtual manner online) with the motley crew of folks who call themselves spreadsheet developers. I divide them into two primary groups:

				• Insiders are developers who are intimately involved with the users and thoroughly understand their needs. In many cases, these developers are also users of the application. Often, they develop an application in response to a particular problem.

				• Outsiders are developers who are hired to produce a solution to a problem. In most cases, developers in this category are familiar with the business in general but not with the specifics of the application they are developing. In other cases, these developers are already employed by the company that requests the application (but they normally work in a different department).

				Some developers devote all their time to development efforts. These developers may be either insiders or outsiders. A fair number of consultants (outsiders) make a decent living developing spreadsheet applications on a freelance basis.

				Other spreadsheet developers don't work full time at the task and may not even realize they are developing spreadsheet applications. These developers are often office computer gurus who seem to know everything about computers and software. These folks often create spreadsheet applications as a way to make their lives easier — the time spent developing a well-designed application for others can often save hours of training time and can greatly reduce the time spent answering others' questions.

				Spreadsheet developers are typically involved in the following activities, often performing most or all of each task on their own:

				• Determining the needs of the user

				• Planning an application that meets these needs

				• Determining the most appropriate user interface

				• Creating the spreadsheet, formulas, macros, and user interface

				• Testing the application under all reasonable sets of conditions

				• Making the application relatively user-friendly (often based on results from the testing)

				• Making the application aesthetically appealing and intuitive

				• Documenting the development effort

				• Distributing the application to users

				• Updating the application if and when it's necessary

				[image: cross_ref.eps] I discuss these developer activities in more detail in Chapter 6.

				Developers must have a thorough understanding of their development environment (in this case, Excel). And there's certainly a lot to know when it comes to Excel. Developing nontrivial spreadsheet applications with Excel requires an in-depth knowledge of formulas, functions, macros, custom dialog boxes, user interface elements, and add-ins. Most Excel users, of course, don't meet these qualifications and have no intention of ever learning these details — which brings me to the next topic: classifying spreadsheet users.

				Classifying spreadsheet users

				Over the years, I've found that it's often useful to classify people who use spreadsheets (including both developers and end users) along two dimensions: their degree of experience with spreadsheets and their interest in learning about spreadsheets.

				To keep things simple, each of these two dimensions has three levels. These levels can be combined in nine combinations, which are shown in Table 5-1. In reality, only seven segments are worth thinking about because both moderately experienced and very experienced spreadsheet users generally have at least some interest in spreadsheets. (After all, that's what motivated them to get their experience.) Users who have a lot of spreadsheet experience and a low level of interest would make very bad developers.

				Table 5-1: Classification of Spreadsheet Users by Experience and Interest

				
					
						
								
							
								
								No Interest

							
								
								Moderately Interested

							
								
								Very Interested

							
						

						
								
								Little Experience

							
								
								User

							
								
								User

							
								
								User/Potential Developer

							
						

						
								
								Moderately Experienced

							
								
								N/A

							
								
								User

							
								
								Developer

							
						

						
								
								Very Experienced

							
								
								N/A

							
								
								User

							
								
								Developer

							
						

					
				

				It should be clear that spreadsheet developers must have a great deal of experience with spreadsheets as well as a high interest in spreadsheets. Those with little spreadsheet experience but a great deal of interest are potential developers. All they need is more experience. If you're reading this book, you probably fall into one of the boxes in the last column of the table.

				The audience for spreadsheet applications

				The remaining segments in the preceding table comprise spreadsheet end users, whom you can think of as the consumers of spreadsheet applications. When you develop a spreadsheet application for others to use, you need to know which of these groups of people will actually be using your application.

				Users with little experience and no interest in learning more about spreadsheets make up a large percentage of all spreadsheet users, probably the largest group of all. These are the people who need to use a spreadsheet for their jobs but who view the spreadsheet simply as a means to an end. Typically, they know very little about computers and software, and they usually have no interest in learning anything more than what's required to get their work done. They might even feel a bit intimidated by computers. Often, these users don't even know which version of Excel they use, and they are largely unfamiliar with what it can do. Obviously, applications developed for this group must be user-friendly. By that I mean straightforward, unintimidating, easy to use, and as foolproof as possible.

				From the developer's point of view, a more interesting group is comprised of users who have little or moderate spreadsheet experience but who are interested in learning more. These users understand the concept of formulas, use worksheet functions, and generally have a good idea of what the product is capable of doing. These users generally appreciate the work that you put into an application and are often impressed by your efforts. Even better, they'll often make excellent suggestions for improving your applications. Applications developed for this group should also be user-friendly, but they can also be more complex and customizable than applications designed for the less experienced and less interested groups.

				Solving Problems with Excel

				In the previous sections, I cover the basic concept of a spreadsheet application, discuss the end users and developers of such applications, and even attempt to figure out why people use spreadsheets at all. Now, it's time to take a look at the types of tasks that are appropriate for spreadsheet applications.

				You may already have a good idea of the types of tasks for which you can use a spreadsheet. Traditionally, spreadsheet software has been used for numerical applications that are largely interactive. Corporate budgets are an excellent example of this interactivity. After the model has been set up (that is, after formulas have been developed), working with a budget is simply a matter of plugging in amounts and observing the bottom-line totals. Often, budgeters simply need to allocate fixed resources among various activities and present the results in a reasonably attractive (or at least legible) format. Excel, of course, is ideal for this scenario.

				Budget-type problems, however, probably account for only a small percentage of your spreadsheet-development time. If you're like me, you've learned that uses for Excel can often extend well beyond the types of tasks for which spreadsheets were originally designed.

				Here are just a few examples of nontraditional ways that you can use Excel:

				• As a presentation device: For example, with minimal effort, you can create an attractive, interactive, on-screen slide show with only Excel. PowerPoint is a better choice, but Excel will do in a pinch.

				• As a data-entry tool: For repetitive data-entry tasks, a spreadsheet is often the most efficient route to take. You can then export the data to a variety of formats for use in other programs.

				• As a database manager: If you're dealing with a fairly small amount of data, you may find it much easier to manage it using Excel rather than a program like Access.

				• As a forms generator: For creating attractive printed forms, many find it easier to use Excel's formatting capabilities than to learn a desktop publishing package.

				• As a text processor: Excel's text functions and macro capability enable you to manipulate text in ways that are impossible using a word processor.

				• As a platform for simple games: Clearly, Excel was not designed with gaming in mind. However, I've downloaded (and written) some interesting strategy games by using the tools found in Excel and other spreadsheets.

				You can probably think of many more examples for this list.

				Ironically, the versatility of spreadsheets is a double-edged sword. On one hand, it's tempting to try to use a spreadsheet for every problem that crops up. On the other hand, you'll often be spinning your wheels by trying to use a spreadsheet for a problem that's better suited for a different solution.

				Basic Spreadsheet Types

				In this section, I classify spreadsheets into several basic types to provide a better perspective on how spreadsheet applications fit into the overall scheme of things. This is all quite arbitrary, of course, and is based solely on my own experience. Moreover, the categories have quite a bit of overlap, but they cover most of the spreadsheets that I've seen and developed.

				My names for these categories are as follows:

				• Quick-and-dirty

				• For-your-eyes-only

				• Single-user applications

				• Spaghetti applications

				• Utility applications

				• Add-ins that contain worksheet functions

				• Single-block budgets

				• What-if models

				• Data storage and access

				• Database front ends

				• Turnkey applications

				I discuss each of these categories in the following sections.

				Quick-and-dirty spreadsheets

				This is probably the most common type of spreadsheet. Most of the spreadsheets in this category are fairly small and are developed to quickly solve a problem or answer a question. Here's an example: You're about to buy a new car, and you want to figure out your monthly payment for various loan amounts. Or perhaps you need to generate a chart that shows your company's sales by month, so you quickly enter 12 values and whip out a chart, which you paste into your word processor.

				In both of the preceding cases, you can probably input the entire model in a few minutes, and you certainly won't take the time to document your work. You probably won't even think of developing any macros or custom dialog boxes. In fact, you might not even deem these simple spreadsheets worthy of saving to disk. Obviously, spreadsheets in this category are not applications.

				For-your-eyes-only spreadsheets

				As the name implies, no one except you — the creator — will ever see or use the spreadsheets that fall into this category. An example of this type might be a file in which you keep information relevant to your income taxes. You open the file whenever a check comes in the mail, you incur an expense that can be justified as business, you buy tax-deductible Girl Scout cookies, and so on. Another example is a spreadsheet that you use to keep track of your employees' time records (sick leave, vacation, and so on).

				Spreadsheets in this category differ from quick-and-dirty spreadsheets in that you use them more than once, so you save these spreadsheets to files. But, again, they're not worth spending a great deal of time on. You might apply some simple formatting, but that's about it. This type of spreadsheet also lacks any type of error detection because you understand how the formulas are set up; you know enough to avoid inputting data that will produce erroneous results. If an error does crop up, you immediately know what caused it.

				Spreadsheets in this category don't qualify as applications, although they sometimes increase in sophistication over time.

				Single-user applications

				This is a spreadsheet application that only the developer uses, but its complexity extends beyond the spreadsheets in the for-your-eyes-only category. For example, I developed a workbook to keep track of registered users for my software applications. It started out as a simple worksheet database (for my eyes only), but then I realized that I could also use it to generate mailing labels and invoices. One day I spent an hour or so writing macros and then realized that I had converted this workbook from a for-your-eyes-only spreadsheet to a single-user application.

				Creating single-user applications for yourself is an excellent way to get practice with Excel's developer's tools. For example, you can learn to create custom dialog boxes, modify the user interface, write Visual Basic for Applications (VBA) macros, and so on.

				[image: tip.eps] Working on a meaningful project (even if it's meaningful only to you) is the best way to learn advanced features in Excel — or any other software, for that matter.

				Spaghetti applications

				An all-too-common type of spreadsheet is what I call a spaghetti application. The term stems from the fact that the parts of the application are difficult to follow, much like a plate of spaghetti. Most of these spreadsheets begin life as a reasonably focused, single-user application. But over time, they're passed along to others who make their own modifications. As requirements change and employees come and go, new parts are added, and others are ignored. Before too long, the original purpose of the workbook may have been forgotten. The result is a file that is used frequently, but no one really understands exactly how it all works.

				Everyone who's involved with it knows that the spaghetti application should be completely reworked. But because nobody really understands it, the situation tends to worsen over time. Spreadsheet consultants make a lot of money untangling such applications. I've found that, in many cases, the most efficient solution is to redefine the users' needs and build a new application from scratch.

				Utility applications

				Good as it is, I still find quite a bit lacking in Excel. This brings me to the next category of spreadsheets: utility applications. Utilities are special tools designed to perform a single recurring task. For example, if you often import text into Excel, you may want some additional text-handling commands, such as the ability to convert selected text to uppercase (without using formulas). The solution? Develop a text-handling utility that does exactly what you want.

				[image: note.eps] The Power Utility Pak is a collection of utility applications for Excel. I developed these utilities to extend Excel's functionality. These utilities work just like normal Excel commands. You can download a trial version of the Power Utility Pak from my Web site (www.spreadsheetpage.com), and you can get a discounted copy of the licensed version by using the coupon located at the back of the book. And if you're interested, the complete VBA source code is also available for a small fee.

				The best utility applications are very general in nature. Most macros are designed to perform a specific operation on a specific type of data found in a specific type of workbook. A good utility essentially works like a command normally found in Excel. In other words, the utility needs to recognize the context in which a command is executed and take appropriate action. This usually requires quite a bit of error-handling code so that the utility can handle any situation that comes up.

				Utility applications always use macros and may or may not use custom dialog boxes. Fortunately, Excel makes creating such utilities relatively easy, and they can be converted to add-ins and attached to Excel's user interface so that they appear to be part of Excel.

				[image: cross_ref.eps] The topic of creating utilities is so important that I devote an entire chapter to it. Chapter 16 discusses how to create custom Excel utilities with VBA.

				Add-ins that contain worksheet functions

				As you know, Excel has many worksheet functions that you can use in formulas. Chances are that you've needed a particular function, only to find that it doesn't exist. The solution? Create your own by using VBA. Custom worksheet functions can often simplify your formulas and make your spreadsheet easier to maintain.

				[image: cross_ref.eps] In Chapter 10, you'll find everything you need to know about creating custom worksheet functions, including lots of examples.

				Single-block budgets

				By a single-block budget, I mean a spreadsheet (not necessarily a budget model) that essentially consists of one block of cells. The top row might contain names that correspond to time (months, quarters, or years), and the left column usually contains categories of some type. Typically, the bottom row and right column contain formulas that add the numbers together. There may or may not be formulas that compute subtotals within the block.

				This is a very common type of spreadsheet. In most cases, simple single-block budget models are not good candidates for applications because they are simple to begin with, but there are exceptions. For example, you might consider converting such a spreadsheet into an application if the model is an unwieldy 3-D spreadsheet, needs to include consolidations from other files, or will be used by departmental managers who may not understand spreadsheets.

				What-if models

				Many consider the what-if model category to be the epitome of spreadsheets at their best. The ability to instantly recalculate thousands of formulas makes spreadsheet software the ideal tool for financial modeling and other models that depend on the values of several variables. If you think about it, just about any spreadsheet that contains formulas is a what-if model (which are often distributed as templates). Changing the value of a cell used in a formula is akin to asking “what if . . .?” My view of this category, however, is a bit more sophisticated. It includes spreadsheets designed exclusively for systematically analyzing the effects of various inputs.

				What-if models often benefit from additional work to make them more user-friendly, especially if the model will be used for a lengthy period of time. Creating a good user interface on an application can make it very easy for anyone to use, including computer-illiterates. As an example, you might create an interface that lets users provide names for various sets of assumptions and then lets them instantly view the results of a selected scenario and create a perfectly formatted summary chart with the click of a button.

				Data storage and access spreadsheets

				A large percentage of Excel workbooks consist of one or more database tables (sometimes known as lists). These tables are used to track just about anything you can think of. Most people find that it's much easier to view and manipulate data in a spreadsheet than it is using normal database software. If the tables are set up properly, they can be summarized with a pivot table.

				Spreadsheets in this category are often candidates for applications, especially if end users need to perform things like data validation and pivot table summaries.

				For more sophisticated database applications, such as those that use multiple tables with relationships between them, you'll be better off using a real database program such as Access.

				Database front ends

				Increasingly, spreadsheet products are used to access external databases. Spreadsheet users can access data stored in external files, even if they come in a variety of formats, by using tools that Excel provides. When you create an application that does this, it's sometimes referred to as an executive information system, or EIS. This sort of system combines data from several sources and summarizes it for users.

				Accessing external databases from a spreadsheet often strikes fear in the hearts of beginning users. Creating an executive information system is therefore an ideal sort of Excel application because its chief goal is usually ease of use.

				Turnkey applications

				The final category of spreadsheet types is the most complex. By turnkey, I mean ready to go, with little or no preparation by the end user. For example, the user loads the file and is presented with a user interface that makes user choices perfectly clear. Turnkey applications may not even look as if they are being powered by a spreadsheet, and, often, the user interacts completely with dialog boxes rather than cells. I've heard these types of applications referred to as “dictator applications” because the user can perform only the operations that the developer has allowed.

				Actually, you can convert many of the categories just described into turnkey applications. The critical common elements, as I discuss throughout the remainder of the book, include good planning, error handling, and user interface design.

			

		

	
		
			
				Chapter 6: Essentials of Spreadsheet Application Development

				IN THIS CHAPTER

				• Discovering the basic steps involved in spreadsheet application development

				• Determining end users' needs

				• Planning applications to meet users' needs

				• Developing and testing your applications

				• Documenting your development efforts and writing user documentation

				Steps for Application Development

				There is no simple, surefire recipe for developing an effective spreadsheet application. Everyone has his or her own style for creating such applications, and I haven't discovered one best way that works for everyone. In addition, every project is different and, therefore, requires its own approach. Finally, the demands and technical expertise of the people you work with (or for) also play a role in how the development process proceeds.

				As I mention in the preceding chapter, spreadsheet developers typically perform the following activities:

				• Determine the needs of the user(s)

				• Plan an application that meets these needs

				• Determine the most appropriate user interface

				• Create the spreadsheet, formulas, macros, and user interface

				• Test and debug the application

				• Attempt to make the application bulletproof

				• Make the application aesthetically appealing and intuitive

				• Document the development effort

				• Develop user documentation and Help systems

				• Distribute the application to the user

				• Update the application when necessary

				Not all these steps are required for each application, and the order in which these activities are performed varies from project to project. I describe each of these activities in the pages that follow, and in most cases, I cover the technical details in subsequent chapters.

				Determining User Needs

				When you undertake a new Excel project, one of your first steps is to identify exactly what the end users require. Failure to thoroughly assess the end users' needs early on often results in additional work later when you have to adjust the application so that it does what it was supposed to do in the first place.

				In some cases, you'll be intimately familiar with the end users — you may even be an end user yourself. In other cases (for example, if you're a consultant developing a project for a new client), you may know little or nothing about the users or their situations.

				How do you determine the needs of the user? If you've been asked to develop a spreadsheet application, it's a good idea to meet with the end users and ask very specific questions. Better yet, get everything in writing, create flow diagrams, pay attention to minor details, and do anything else to ensure that the product you deliver is the product that is needed.

				Here are some guidelines that may help make this phase easier:

				• Don't assume that you know what the user needs. Second-guessing at this stage almost always causes problems later on.

				• If possible, talk directly to the end users of the application, not just their supervisor or manager.

				• Learn what, if anything, is currently being done to meet the users' needs. You might be able to save some work by simply adapting an existing application. At the very least, looking at current solutions will familiarize you with the operation.

				• Identify the resources available at the user's site. For example, try to determine whether you must work around any hardware or software limitations.

				• If possible, determine the specific hardware systems that will be used. If your application will be used on slower systems, you need to take that into account. See the later section “System speed.”

				• Identify which version(s) of Excel is (are) in use. Although Microsoft does everything in its power to urge users to upgrade to the latest version of the software, the majority of Excel users haven't upgraded to the most recent version.

				• Understand the skill levels of the end users. This information will help you design the application appropriately.

				• Determine how long the application will be used and whether any changes are anticipated during the lifetime of the project. Knowing this information may influence the amount of effort that you put into the project and help you plan for changes.

				One final note: Don't be surprised if the project specifications change before you complete the application. This occurrence is quite common, and you're in a better position if you expect changes rather than being surprised by them. Just make sure that your contract (if you have one) addresses the issue of changing specifications.

				Planning an Application That Meets User Needs

				After you determine the end users' needs, it's very tempting to jump right in and start fiddling around in Excel. Take it from someone who suffers from this problem: Try to restrain yourself. Builders don't construct a house without a set of blueprints, and you shouldn't build a spreadsheet application without some type of plan. The formality of your plan depends on the scope of the project and your general style of working, but you should spend at least some time thinking about what you're going to do and coming up with a plan of action.

				Before rolling up your sleeves and settling down at your keyboard, you'll benefit by taking some time to consider the various ways you can approach the problem. This planning period is where a thorough knowledge of Excel pays off. Avoiding blind alleys rather than stumbling into them is always a good idea.

				If you ask a dozen Excel experts to design an application based on very precise specifications, chances are that you'll get a dozen different implementations of the project that meet those specifications. Of those solutions, some will definitely be better than the others because Excel often provides several different options to accomplish a task. If you know Excel inside and out, you'll have a good idea of the potential methods at your disposal, and you can choose the one most appropriate for the project at hand. Often, a bit of creative thinking yields an unusual approach that's vastly superior to other methods.

				So at the beginning stage of this planning period, consider some general options, such as these:

				• File structure: Think about whether you want to use one workbook with multiple sheets, several single-sheet workbooks, or a template file.

				• Data structure: You should always consider how your data will be structured, and also determine whether you will be using external database files or storing everything in worksheets.

				• Formulas versus VBA: Should you use formulas or write Visual Basic for Applications (VBA) procedures to perform calculations? Both methods have advantages and disadvantages.

				• Add-in or workbook file: In some cases, an add-in may be the best choice for your final product. Or, perhaps you might use an add-in in conjunction with a standard workbook.

				• Version of Excel: Will your Excel application be used with Excel 2010 only? With Excel 2007? What about Excel 2003 and earlier versions? Will your application also be run on a Macintosh? These considerations are very important because each new version of Excel adds features that aren't available in previous versions. The new user interface introduced in Excel 2007 makes it more challenging than ever to create an application that works with older versions.

				• Error handling: Error handling is a major issue with applications. You need to determine how your application will detect and deal with errors. For example, if your application applies formatting to the active worksheet, you need to be able to handle a case in which a chart sheet is active.

				• Use of special features: If your application needs to summarize a lot of data, you may want to consider using Excel's pivot table feature. Or, you may want to use Excel's data validation feature as a check for valid data entry.

				• Performance issues: The time to start thinking about increasing the speed and efficiency of your application is at the development stage, not when the application is completed and users are complaining.

				• Level of security: As you may know, Excel provides several protection options to restrict access to particular elements of a workbook. For example, you can lock cells so that formulas cannot be changed, and you can assign a password to prevent unauthorized users from viewing or accessing specific files. Determining up front exactly what you need to protect — and what level of protection is necessary — will make your job easier.

				[image: note.eps] Be aware that Excel's protection features aren't 100-percent effective — far from it. If you desire complete and absolute security for your application, Excel probably isn't the best platform.

				You'll probably have to deal with many other project-specific considerations in this phase. The important thing is that you consider all options and don't settle on the first solution that comes to mind.

				Another design consideration is remembering to plan for change. You'll do yourself a favor if you make your application as generic as possible. For example, don't write a procedure that works with only a specific range of cells. Rather, write a procedure that accepts any range as an argument. When the inevitable changes are requested, such a design makes it easier for you to carry out the revisions. Also, you may find that the work that you do for one project is similar to the work that you do for another. Keeping reusability in mind when you are planning a project is always a good idea.

				Learning while you develop

				Now a few words about reality: Excel is a moving target. Excel's upgrade cycle is approximately 18 to 24 months, which means that you have fewer than two years to get up to speed with its current innovations before you have even more innovations to contend with.

				Excel 5, which introduced VBA, represented a major paradigm shift for Excel developers. Thousands of people up until that point earned their living developing Excel applications (in Excel 2, 3, and 4) that were largely based on the XLM macro language. Beginning with Excel 5, dozens of new tools became available, and developers, for the most part, eagerly embraced them.

				When Excel 97 became available, developers faced yet another shift. This new version introduced a new file format, the Visual Basic Editor (VBE), and UserForms as a replacement for dialog sheets. Excel 2000, 2002, and 2003 introduced additional features, but these changes weren't as radical as those in previous upgrades.

				Excel 2007 was perhaps the most significant upgrade ever. The key challenge is dealing with the new Ribbon user interface. In the past, creating custom menus and toolbars was relatively easy, and you could do it entirely using VBA. But modifying the Ribbon requires quite a bit of additional work, and you'll need to go beyond VBA to make it happen. In addition, the new file formats will require some additional considerations. You may find it more efficient to create two versions of your applications: one for Excel 2007 and 2010, and one for Excel 2003 and earlier versions.

				VBA isn't difficult to learn, but it definitely takes time to become comfortable with it — and even more time to master it. Consequently, it's not uncommon to be in the process of learning VBA while you're developing applications with it. In fact, I think it's impossible to learn VBA without developing applications. If you're like me, you'll find it much easier to learn VBA if you have a project that requires it. Learning VBA just for the sake of learning VBA usually doesn't work.

				One thing that I've learned from experience is to avoid letting the end user completely guide your approach to a problem. For example, suppose that you meet with a manager who tells you that the department needs an application to write text files that will be imported into another application. Don't confuse the user's need with the solution. The user's real need is to share data. Using an intermediate text file to do it is just one possible solution to the need. There may be better ways to approach the problem. In other words, don't let the users define their problem by stating it in terms of a solution approach. Determining the best approach is your job.

				Determining the Most Appropriate User Interface

				When you develop spreadsheets that others will use, you need to pay special attention to the user interface. By user interface, I mean the method by which the user interacts with the application and executes your VBA macros.

				Menu and toolbar compatibility

				Excel 2010 still supports custom menus and toolbars, but the way these UI elements are handled may not be to your liking.

				The following figure shows a custom menu and toolbar displayed in Excel 2003. The menu and toolbar were created using my Power Utility Pak add-in. Each menu item and toolbar button executes a macro.

				[image: 475355-sb0601.eps]

				As shown in the following figure, when the Power Utility Pak add-in is installed in Excel 2010, the custom menu appears in a group labeled Add-InsMenu Commands, and the custom toolbar is in a group labeled Add-InsCustom Toolbars. (You can't resize or move the toolbars.) These Ribbon groups display the menu additions and toolbars for all the applications or add-ins that are loaded. The menu items and toolbar buttons still function, but the designer's original UI conception has been compromised.

				[image: 475355-sb0602.eps]

				To solve this problem, I created a new version of PUP specifically for Excel 2007 and later.

				With Excel 2010 (and Excel 2007), some of these decisions are irrelevant. Custom menus and toolbars are, for all intents and purposes, obsolete. Consequently, developers must learn how to work with the Ribbon.

				Excel provides several features that are relevant to user interface design:

				• Ribbon customization

				• Shortcut menu customization

				• Shortcut keys

				• Custom dialog boxes (UserForms)

				• Controls (such as a ListBox or a CommandButton) placed directly on a worksheet

				I discuss these features briefly in the following sections and cover them more thoroughly in later chapters.

				Customizing the Ribbon

				The Ribbon UI introduced in Excel 2007 is a dramatic shift in user interface design. Fortunately, the developer has a fair amount of control over the Ribbon. Although Excel 2010 allows the end user to modify the Ribbon, making UI changes via code isn't a simple task.

				[image: cross_ref.eps] See Chapter 22 for information about working with the Ribbon.

				Customizing shortcut menus

				Excel 2010 still allows the VBA developer to customize the right-click shortcut menus. Figure 6-1 shows a customized shortcut menu that appears when you right-click a row number. Notice that this shortcut menu has several menu items (those with a “P” icon) that aren't normally available.

				[image: 475355-fg0601.tif]

				FIGURE 6-1: An example of a customized shortcut menu.

				[image: cross_ref.eps] Chapter 23 describes how to work with shortcut menus using VBA.

				Creating shortcut keys

				Another user interface option at your disposal is to create custom shortcut keys. Excel lets you assign a Ctrl key (or Shift+Ctrl key) combination to a macro. When the user presses the key combination, the macro executes.

				Be aware, however, of these two caveats: First, you must make it clear to the user which keys are active and what they do; second, you need to be careful not to assign a key combination that's already used for something else. A key combination that you assign to a macro takes precedence over the built-in shortcut keys. For example, Ctrl+S is a built-in Excel shortcut key used to save the current file. If you assign this key combination to a macro, you lose the capability to save the file with Ctrl+S. Remember that shortcut keys are case-sensitive, so you can use a combination such as Ctrl+Shift+S.

				Creating custom dialog boxes

				Anyone who has used a personal computer for any length of time is undoubtedly familiar with dialog boxes. Consequently, custom Excel dialog boxes can play a major role in the user interfaces that you design for your applications. Figure 6-2 shows an example of a custom dialog box.

				A custom dialog box is known as a UserForm. A UserForm can solicit user input, get a user's options or preferences, and direct the flow of your entire application. You create and edit UserForms in the VBE. The elements that make up a UserForm (buttons, drop-down lists, check boxes, and so on) are called controls — more specifically, ActiveX controls. Excel provides a standard assortment of ActiveX controls, and you can also incorporate third-party controls.

				After adding a control to a dialog box, you can link it to a worksheet cell so that it doesn't require any macros (except a simple macro to display the dialog box). Linking a control to a cell is easy, but it's not always the best way to get user input from a dialog box. Most of the time, you want to develop VBA macros that work with your custom dialog boxes.

				[image: cross_ref.eps] I cover UserForms in detail in Part IV.

				[image: 475355-fg0602.eps]

				FIGURE 6-2: A dialog box created with Excel's UserForm feature.

				Using ActiveX controls on a worksheet

				Excel also lets you add the UserForm ActiveX controls to a worksheet's drawing layer (an invisible layer on top of a sheet that holds pictures, charts, and other objects). Figure 6-3 shows a simple worksheet model with several UserForm controls inserted directly on the worksheet. This sheet contains the following ActiveX controls: a CheckBox, a ScrollBar, and two sets of OptionButtons. This workbook uses no macros. Rather, the controls are linked to worksheet cells.

				[image: on_the_cd.eps] This workbook is available on the companion CD-ROM. The file is named worksheet controls.xlsx.

				Perhaps the most common control is a CommandButton. By itself, a CommandButton doesn't do anything, so you need to attach a macro to each CommandButton.

				[image: 475355-fg0603.tif]

				FIGURE 6-3: You can add UserForm controls to worksheets and link them to cells.

				Using dialog box controls directly in a worksheet often eliminates the need for custom dialog boxes. You can often greatly simplify the operation of a spreadsheet by adding a few ActiveX controls (or Form controls) to a worksheet. These ActiveX controls let the user make choices by operating familiar controls rather than making entries into cells.

				Access these controls by using the DeveloperControlsInsert command (see Figure 6-4). If the Developer tab isn't on the Ribbon, add it by using the Customize Ribbon tab of the Excel Options dialog box.

				[image: 475355-fg0604.tif]

				FIGURE 6-4: Worksheet controls.

				The controls come in two types: Form Controls and ActiveX Controls. Both sets of controls have their advantages and disadvantages. Generally, the Form controls are easier to use, but the ActiveX controls are a bit more flexible. Table 6-1 summarizes these two classes of controls.

				Table 6-1: ActiveX Controls Versus Form Controls

				
					
						
								
							
								
								ActiveX Controls

							
								
								Form Controls

							
						

						
								
								Excel versions

							
								
								97, 2000, 2002, 2003, 2007, 2010

							
								
								5, 95, 97, 2000, 2002, 2003, 2007, 2010

							
						

						
								
								Controls available

							
								
								CheckBox, TextBox, CommandButton, OptionButton, ListBox, ComboBox, ToggleButton, SpinButton, ScrollBar, Label, Image (and others can be added)

							
								
								GroupBox, Button, CheckBox, OptionButton, ListBox, DropDown (ComboBox), ScrollBar, Spinner

							
						

						
								
								Macro code storage

							
								
								In the code module for the Sheet

							
								
								In any standard VBA module

							
						

						
								
								Macro name

							
								
								Corresponds to the control name (for example, CommandButton1_Click)

							
								
								Any name you specify

							
						

						
								
								Correspond to . . .

							
								
								UserForm controls

							
								
								Pre–Excel 97 Dialog Sheet controls

							
						

						
								
								Customization

							
								
								Extensive, using the Properties box

							
								
								Minimal

							
						

						
								
								Respond to events

							
								
								Yes

							
								
								Click or Change events only

							
						

					
				

				Executing the development effort

				After you identify user needs, determine the approach that you'll take to meet those needs, and decide on the components that you'll use for the user interface, it's time to get down to the nitty-gritty and start creating the application. This step, of course, comprises a great deal of the total time that you spend on a particular project.

				How you go about developing the application depends on your own personal style and the nature of the application. Except for simple fill-in-the-blanks template workbooks, your application will probably use macros. Developing the macros is the tough part. Creating macros in Excel is easy, but creating good macros is difficult.

				Concerning Yourself with the End User

				In this section, I discuss the important development issues that surface as your application becomes more and more workable and as the time to package and distribute your work grows nearer.

				Testing the application

				How many times have you used a commercial software application, only to have it bomb out on you at a crucial moment? Most likely, the problem was caused by insufficient testing that didn't catch all the bugs. All nontrivial software has bugs, but in the best software, the bugs are simply more obscure. As you'll see, you sometimes must work around the bugs in Excel to get your application to perform properly.

				After you create your application, you need to test it. Testing is one of the most crucial steps; it's not uncommon to spend as much time testing and debugging an application as you did creating the application in the first place. Actually, you should be doing a great deal of testing during the development phase. After all, whether you're writing a VBA routine or creating formulas in a worksheet, you want to make sure that the application is working the way it's supposed to work.

				Like standard compiled applications, spreadsheet applications that you develop are prone to bugs. A bug can be defined as (1) something that does happen but shouldn't happen while a program (or application) is running, or (2) something that doesn't happen when it should happen. Both species of bugs are equally nasty, and you should plan on devoting a good portion of your development time to testing the application under all reasonable conditions and fixing any problems that you find. In some cases, unfortunately, the problems aren't entirely your fault. Excel, too, has its problems (see the “Bugs? In Excel?” sidebar).

				I probably don't need to tell you to thoroughly test any spreadsheet application that you develop for others. And depending on its eventual audience, you may want to make your application bulletproof. In other words, try to anticipate all the errors and screw-ups that could possibly occur and make concerted efforts to avoid them — or, at least, to handle them gracefully. This foresight not only helps the end user but also makes it easier on you and protects your reputation. Also consider using beta testing; your end users are likely candidates because they're the ones who will be using your product. (See the upcoming sidebar “What about beta testing?”)

				Bugs? In Excel?

				You may think that a product like Excel, which is used by millions of people throughout the world, would be relatively free of bugs. Think again. Excel is such a complex piece of software that it is only natural to expect some problems with it. And Excel does have some problems.

				Getting a product like Excel out the door isn't easy, even for a company like Microsoft with seemingly unlimited resources. Releasing a software product involves compromises and trade-offs. It's commonly known that most major software vendors release their products with full knowledge that they contain bugs. Most bugs are considered insignificant enough to ignore. Software companies could postpone their releases by a few months and fix many of them, but software, like everything else, is ruled by economics. The benefits of delaying a product's release often don't exceed the costs involved. Although Excel definitely has its share of bugs, my guess is that the majority of Excel users never encounter one.

				In this book, I point out the problems with Excel that I know about. You'll surely discover some more on your own. Some problems occur only with a particular version of Excel — and under a specific configuration involving hardware and/or software. These bugs are the worst ones of all because they aren't easily reproducible.

				So what's a developer to do? It's called a workaround. If something that you try to do doesn't work — and all indications say that it should work — it's time to move on to Plan B. Frustrating? Sure. A waste of your time? Absolutely. It's all part of being a developer.

				Although you can't conceivably test for all possibilities, your macros should be able to handle common types of errors. For example, what if the user enters a text string instead of a numeric value? What if the user tries to run your macro when a workbook isn't open? What if he cancels a dialog box without making any selections? What happens if the user presses Ctrl+F6 and jumps to the next window? When you gain experience, these types of issues become very familiar, and you account for them without even thinking.

				Making the application bulletproof

				If you think about it, destroying a spreadsheet is fairly easy. Erasing one critical formula or value can cause errors throughout the entire worksheet — and perhaps even other dependent worksheets. Even worse, if the damaged workbook is saved, it replaces the good copy on disk. Unless a backup procedure is in place, the user of your application may be in trouble, and you'll probably be blamed for it.

				What about beta testing?

				Software manufacturers typically have a rigorous testing cycle for new products. After extensive internal testing, the pre-release product is usually sent to a group of interested users for beta testing. This phase often uncovers additional problems that are usually corrected before the product's final release.

				If you're developing an Excel application that more than a few people will use, you may want to consider a beta test. This test enables your intended users to use your application in its intended setting on different hardware (usually).

				The beta period should begin after you've completed all your own testing and you feel that the application is ready to distribute. You'll need to identify a group of users to help you. The process works best if you distribute everything that will ultimately be included in your application: user documentation, the installation program, help, and so on. You can evaluate the beta test in a number of ways, including face-to-face discussions, questionnaires, and phone calls.

				You almost always become aware of problems that you need to correct or improvements that you need to make before you undertake a widespread distribution of the application. Of course, a beta testing phase takes additional time, and not all projects can afford that luxury.

				Obviously, you can easily see why you need to add some protection when users — especially novices — will be using your worksheets. Excel provides several techniques for protecting worksheets and parts of worksheets:

				• Lock specific cells: You can lock specific cells (by using the Protection tab in the Format Cells dialog box) so that users can't change them. Locking takes effect only when the document is protected with the ReviewChangesProtect Sheet command. The Protect Sheet dialog box has options that allow you to specify which actions users can perform on a protected sheet (see Figure 6-5).

				[image: 475355-fg0605.eps]

				FIGURE 6-5: Using the Protect Sheet dialog box to specify what users can and can't do.

				• Hide the formulas in specific cells: You can hide the formulas in specific cells (by using the Protection tab in the Format Cells dialog box) so that others can't see them. Again, hiding takes effect only when the document is protected by choosing the ReviewChangesProtect Sheet command.

				• Protect an entire workbook: You can protect an entire workbook — the structure of the workbook, the window position and size, or both. Use the ReviewChangesProtect Workbook command for this purpose.

				• Lock objects on the worksheet: Use the Properties tab in the Size and Properties dialog box to lock objects (such as shapes) and prevent them from being moved or changed. To access the Size and Properties dialog box, select the object and then click the dialog box launcher in the Drawing ToolsFormatSize group. (This context tab appears only when an object is selected.) Locking objects takes effect only when the document is protected via the ReviewChangesProtect Sheet command. By default, all objects are locked.

				• Hide rows, columns, sheets, and documents: You can hide rows, columns, sheets, and entire workbooks. Doing so helps prevent the worksheet from looking cluttered and also provides some modest protection against prying eyes.

				• Designate an Excel workbook as read-only recommended: You can designate an Excel workbook as read-only recommended (and use a password) to ensure that the file can't be overwritten with any changes. You do this designation in the General Options dialog box. Display this dialog box by choosing FileSave As. In the Save As dialog box, click the Tools button and choose General Options.

				• Assign a password: You can assign a password to prevent unauthorized users from opening your file. Choose FileInfoProtect WorkbookEncrypt With Password.

				• Use a password-protected add-in: You can use a password-protected add-in, which doesn't allow the user to change anything on its worksheets.

				How secure are Excel's passwords?

				As far as I know, Microsoft has never advertised Excel as a secure program. And for good reason: Circumventing Excel's password system is actually quite easy to do. Several commercial programs are available that can break passwords. Excel 2002 and later versions seem to have stronger security than previous versions, but a determined user can still crack them. Bottom line? Don't think of password protection as foolproof. Sure, it will be effective for the casual user. But if someone really wants to break your password, he can probably do so.

				Making the application aesthetically appealing and intuitive

				If you've used many different software packages, you've undoubtedly seen examples of poorly designed user interfaces, difficult-to-use programs, and just plain ugly screens. If you're developing spreadsheets for other people, you should pay particular attention to how the application looks.

				How a computer program looks can make all the difference in the world to users, and the same is true with the applications that you develop with Excel. Beauty, however, is in the eye of the beholder. If your skills lean more in the analytical direction, consider enlisting the assistance of someone with a more aesthetic sensibility to provide help with design.

				The good news is that, beginning with Excel 2007, new features make creating better-looking spreadsheets a relatively easy task. If you stick with the pre-designed cell styles, your work stands a good chance of looking good. And, with the click of a mouse, you can apply a new theme that completely transforms the look of the workbook — and still looks good. Unfortunately, Excel 2010 adds nothing new in the area of UserForm design, so you're on your own in that area.

				End users appreciate a good-looking user interface, and your applications will have a much more polished and professional look if you devote additional time to design and aesthetic considerations. An application that looks good demonstrates that its developer cared enough about the product to invest extra time and effort. Take the following suggestions into account:

				• Strive for consistency. When designing dialog boxes, for example, try to emulate the look and feel of Excel's dialog boxes whenever possible. Be consistent with formatting, fonts, text size, and colors.

				• Keep it simple. A common mistake that developers make is trying to cram too much information into a single screen or dialog box. A good rule is to present only one or two chunks of information at a time.

				• Break down input screens. If you use an input screen to solicit information from the user, consider breaking it up into several, less crowded screens. If you use a complex dialog box, you may want to break it up by using a MultiPage control, which lets you create a familiar tabbed dialog box.

				• Don't overdo color. Use color sparingly. It's very easy to overdo color and make the screen look gaudy.

				• Monitor typography and graphics. Pay attention to numeric formats and use consistent typefaces, font sizes, and borders.

				Evaluating aesthetic qualities is very subjective. When in doubt, strive for simplicity and clarity.

				[image: note.eps] Versions prior to Excel 2007 used a pallet of 56 colors. That restriction has been removed, and Excel now supports more than 16 million colors.

				Creating a user Help system

				With regard to user documentation, you basically have two options: paper-based documentation or electronic documentation. Providing electronic help is standard fare in Windows applications. Fortunately, your Excel applications can also provide help — even context-sensitive help. Developing help text takes quite a bit of additional effort, but for a large project, it may be worth it. Figure 6-6 shows an example of a custom Help system in compiled HTML format.

				[image: 475355-fg0606.tif]

				FIGURE 6-6: An example of a custom help file for an Excel add-in.

				Another point to consider is support for your application. In other words, who gets the phone call if the user encounters a problem? If you aren't prepared to handle routine questions, you need to identify someone who is. In some cases, you want to arrange it so that only highly technical or bug-related issues escalate to the developer.

				[image: cross_ref.eps] In Chapter 24, I discuss several alternatives for providing help for your applications.

				Documenting the development effort

				Putting a spreadsheet application together is one thing. Making it understandable for other people is another. As with traditional programming, it's important that you thoroughly document your work. Such documentation helps you if you need to go back to it (and you will), and it helps anyone else whom you might pass it on to.

				[image: tip.eps] You may want to consider a couple of things when you document your project. For example, if you were hired to develop an Excel application, you may not want to share all your hard-earned secrets by thoroughly documenting everything. If this situation is the case, you should maintain two versions: one thoroughly documented (for your own reference) and the other partially documented (for other users).

				How do you document a workbook application? You can either store the information in a worksheet or use another file. You can even use a paper document, if you prefer. Perhaps the easiest way is to use a separate worksheet to store your comments and key information for the project. For VBA code, use comments liberally. (VBA text preceded with an apostrophe is ignored because that text is designated as a comment.) Although an elegant piece of VBA code can seem perfectly obvious to you today, when you come back to it in a few months, your reasoning may be completely obscured unless you use the VBA comment feature.

				Distributing the application to the user

				You've completed your project, and you're ready to release it to the end users. How do you go about distributing it? You can choose from many ways to distribute your application, and the method that you choose depends on many factors.

				You could just hand over a CD-ROM, scribble a few instructions, and be on your way. Or, you may want to install the application yourself — but this approach isn't always feasible. Another option is to develop an official setup program that performs the task automatically. You can write such a program in a traditional programming language, purchase a generic setup program, or write your own in VBA.

				Excel 2000 and later versions incorporate technology to enable developers to digitally sign their applications. This process is designed to help end users identify the author of an application, to ensure that the project has not been altered, and to help prevent the spread of macro viruses or other potentially destructive code. To digitally sign a project, you first apply for a digital certificate from a formal certificate authority (or, you can self-sign your project by creating your own digital certificate). Refer to the Help system or the Microsoft Web site for additional information.

				Why is there no runtime version of Excel?

				When you distribute your application, you need to be sure that each end user has a licensed copy of the appropriate version of Excel. Distributing a copy of Excel along with your application is illegal. Why, you might ask, doesn't Microsoft provide a runtime version of Excel? A runtime version is an executable program that can load files but not create them. With a runtime version, the end user wouldn't need a copy of Excel to run your application. (This is common with database programs.)

				I've never seen a clear or convincing reason why Microsoft doesn't have a runtime version of Excel, and no other spreadsheet manufacturer offers a runtime version of its product, either. The most likely reason is that spreadsheet vendors fear that doing so would reduce sales of the software. Or, it may be that developing a runtime version would require a tremendous amount of programming that would just never pay off.

				On a related note . . . Microsoft does offer an Excel file viewer. This product lets you view Excel files if you don't own a copy of Excel. Macros, however, won't execute. You can get a copy of this free file viewer from the Microsoft Web site (http://office.microsoft.com/downloads).

				Updating the application when necessary

				After you distribute your application, you're finished with it, right? You can sit back, enjoy yourself, and try to forget about the problems that you encountered (and solved) during the course of developing your application. In rare cases, yes, you may be finished. More often, however, the users of your application won't be completely satisfied. Sure, your application adheres to all the original specifications, but things change. Seeing an application working often causes the user to think of other things that the application could be doing. I'm talking updates.

				When you need to update or revise your application, you'll appreciate that you designed it well in the first place and that you fully documented your efforts. If not, well . . . we learn from our experiences.

				Other Development Issues

				You need to keep several other issues in mind when developing an application — especially if you don't know exactly who will be using the application. If you're developing an application that will have widespread use (a shareware application, for example), you have no way of knowing how the application will be used, what type of system it will run on, or what other software will be running concurrently.

				The user's installed version of Excel

				With every new release of Excel, the issue of compatibility rears its head. As I write this book, Excel 2010 is about to be released — yet many large corporations are still using Excel 2003 and some use even earlier versions.

				Unfortunately, there is no guarantee that an application developed for, say, Excel 2000 will work perfectly with later versions of Excel. If you need your application to work with a variety of Excel versions, the best approach is to work with the lowest version — and then test it thoroughly with all other versions.

				Things get even more complicated when you consider Excel's subversions. Microsoft distributes service releases (SRs), Service Packs (SPs), and security updates to correct problems. In some cases, your Excel application won't work correctly unless the user has installed a particular update.

				[image: cross_ref.eps] I discuss compatibility issues in Chapter 26.

				Language issues

				Consider yourself very fortunate if all your end users have the English language version of Excel. Non-English versions of Excel aren't always 100 percent compatible, so that means additional testing on your part. In addition, keep in mind that two users can both be using the English language version of Excel yet use different Windows regional settings. In some cases, you may need to be aware of potential problems.

				[image: cross_ref.eps] I briefly discuss language issues in Chapter 26.

				System speed

				You're probably a fairly advanced computer user and tend to keep your hardware reasonably up to date. In other words, you have a fairly powerful system that is probably better than the average user's system. In some cases, you'll know exactly what hardware the end users of your applications are using. If so, it's vitally important that you test your application on that system. A procedure that executes almost instantaneously on your system may take several seconds on another system. In the world of computers, several seconds may be unacceptable.

				[image: tip.eps] When you gain more experience with VBA, you'll discover that there are ways to get the job done, and there are ways to get the job done fast. It's a good idea to get into the habit of coding for speed. Other chapters in this book can certainly help you out in this area.

				Video modes

				As you probably know, users' video displays vary widely. As I write this book, the most commonly used video resolution is 1280 x 1024, followed closed by 1024 x 768. Systems with a resolution of 800 x 600 are becoming much less common, but quite a few are still in use. Higher resolution displays and even dual displays are becoming increasingly common. Just because you have a super-high-resolution monitor, you can't assume that everyone else does.

				Video resolution can be a problem if your application relies on specific information being displayed on a single screen. For example, if you develop an input screen that fills the screen in 1280 x 1024 mode, users with a 1024 x 768 display won't be able to see the whole input screen without scrolling or zooming.

				Also, it's important to realize that a restored (that is, not maximized or minimized) workbook is displayed at its previous window size and position. In the extreme case, it's possible that a window saved by using a high-resolution display may be completely off the screen when opened on a system running in a lower resolution.

				Unfortunately, you can't automatically scale things so that they look the same regardless of the display resolution. In some cases, you can zoom the worksheet (using the Zoom control in the status bar), but doing so reliably may be difficult. Unless you're certain of the video resolution that the users of your application will use, you should probably design your application so it works with the lowest common denominator — 800 x 600 or 1024 x 768 mode.

				As you discover later in the book (see Chapter 10), you can determine the user's video resolution by using Windows API calls from VBA. In some cases, you may want to programmatically adjust things depending on the user's video resolution.

			

		

	

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/475355-fg2409_fmt.jpeg
[rr——

Tapms riasn s,

s

OEBPS/images/475355-fg2507_fmt.jpeg
I:\iéi I!)

OEBPS/images/475355-fg0216_fmt.jpeg

OEBPS/images/475355-fg1314_fmt.jpeg

OEBPS/images/475355-fg1118_fmt.jpeg

OEBPS/images/475355-fg2216_fmt.jpeg
& o~ Ba3d-

[ape—

F T

OEBPS/images/475355-fg1412_fmt.jpeg

OEBPS/images/475355-fg1510_fmt.jpeg

OEBPS/images/475355-fg2510_fmt.jpeg

OEBPS/images/475355-fg0801_fmt.jpeg

OEBPS/images/475355-fg1801_fmt.jpeg

OEBPS/images/475355-fg2801_fmt.jpeg

OEBPS/images/475355-sb0602_fmt.jpeg

OEBPS/images/475355-fg2703_fmt.jpeg

OEBPS/images/475355-fg0409_fmt.jpeg

OEBPS/images/475355-fg1507_fmt.jpeg

OEBPS/images/475355-fg1409_fmt.jpeg

OEBPS/images/475355-fg1605_fmt.jpeg

OEBPS/images/475355-fg0605_fmt.jpeg

OEBPS/images/475355-fg1703_fmt.jpeg
B
s i
- Z=n

e
e ks
S et
Ehnes

OEBPS/images/475355-fg0703_fmt.jpeg

OEBPS/images/475355-fg0404_fmt.jpeg

OEBPS/images/475355-fg1404_fmt.jpeg
XYZ Pet Supply

Customer

Tracking
System

OEBPS/images/475355-fg2211_fmt.jpeg

OEBPS/images/475355-fg0208_fmt.jpeg
Ererm———

OEBPS/images/475355-fg1121_fmt.jpeg

OEBPS/images/475355-fg1417_fmt.jpeg

OEBPS/images/475355-fg1826_fmt.jpeg

OEBPS/images/475355-fg1904_fmt.jpeg

OEBPS/images/475355-fg1530_fmt.jpeg

OEBPS/images/475355-fg0904_fmt.jpeg

OEBPS/images/475355-fg1515_fmt.jpeg

OEBPS/images/475355-fg2806_fmt.jpeg

OEBPS/images/475355-fg1821_fmt.jpeg

OEBPS/images/475355-fg1806_fmt.jpeg
Chart3

Chart6

geararaznse

gRaRERIAR=e

Chart2

Charts

Charts

gearsassaze

grarssssaze

grazesesnse

Chart1

Chartd.

Chart7

gearsassaze

grarsssanze

grazeseanse

OEBPS/images/475355-fg2003_fmt.jpeg

OEBPS/images/475355-fg1003_fmt.jpeg

OEBPS/images/475355-fg1113_fmt.jpeg

OEBPS/images/475355-fg2404_fmt.jpeg

OEBPS/images/475355-fg2502_fmt.jpeg

OEBPS/images/475355-fg1211_fmt.jpeg

OEBPS/images/check.jpg

OEBPS/images/475355-fg0211_fmt.jpeg

OEBPS/images/475355-sb1901_fmt.jpeg
B e

OEBPS/images/475355-fg1502_fmt.jpeg

OEBPS/images/475355-fg0715_fmt.jpeg

OEBPS/images/475355-fg0105_fmt.jpeg
ST S

OEBPS/images/475355-fg2105_fmt.jpeg

OEBPS/images/475355-fg1105_fmt.jpeg

OEBPS/images/475355-fg0912_fmt.jpeg

OEBPS/images/note_fmt.jpeg

OEBPS/images/475355-fg0224_fmt.jpeg
=5 e =

OEBPS/images/475355-fg1011_fmt.jpeg

OEBPS/images/475355-fg3011_fmt.jpeg

OEBPS/images/475355-fg1008_fmt.jpeg
e

5 Cominon 'y i
a e .
i B e

OEBPS/images/475355-fg1106_fmt.jpeg

OEBPS/images/475355-fg1204_fmt.jpeg
R S,

OEBPS/images/475355-fg1302_fmt.jpeg

OEBPS/images/cross_ref_fmt.jpeg
b,

OEBPS/images/475355-fg2002_fmt.jpeg
—

OEBPS/images/475355-fg1519_fmt.jpeg

OEBPS/images/475355-fg1528_fmt.jpeg

OEBPS/images/475355-fg1522_fmt.jpeg
e

OEBPS/images/475355-fg1531_fmt.jpeg

OEBPS/images/475355-fg1707_fmt.jpeg
Stoe ours s convriant.

Stores e e maianet

o
e

o
s
orm
-
i

OEBPS/images/475355-fg3007_fmt.jpeg

OEBPS/images/475355-fg2203_fmt.jpeg

OEBPS/images/475355-fg0909_fmt.jpeg

OEBPS/images/475355-fg1007_fmt.jpeg

OEBPS/images/475355-fg1405_fmt.jpeg

OEBPS/images/475355-fg0203_fmt.jpeg

OEBPS/images/475355-fg0908_fmt.jpeg

OEBPS/images/475355-fg0310_fmt.jpeg

OEBPS/images/475355-fg2209_fmt.jpeg

OEBPS/images/475355-fg1903_fmt.jpeg

OEBPS/images/475355-fg1601_fmt.jpeg

OEBPS/images/475355-fg1814_fmt.jpeg
r Lo lw v T o
ik a Colurn t0 View Reglona Detals

S
. BB

OEBPS/images/475355-fg0209_fmt.jpeg

OEBPS/images/475355-fg3008_fmt.jpeg

OEBPS/images/475355-fg0711_fmt.jpeg

OEBPS/images/475355-fg1818_fmt.jpeg

OEBPS/images/475355-fg0708_fmt.jpeg

OEBPS/images/475355-fg2708_fmt.jpeg

OEBPS/images/475355-fg1830_fmt.jpeg

OEBPS/images/475355-fg0101_fmt.jpeg

OEBPS/images/475355-fg1208_fmt.jpeg

OEBPS/images/475355-fg1306_fmt.jpeg
e
BE-a's L anlsols v auinay tial

e e

OEBPS/images/475355-fg1010_fmt.jpeg
ierfh

s

))

OEBPS/images/475355-fg3010_fmt.jpeg

OEBPS/images/475355-fg1827_fmt.jpeg

OEBPS/images/475355-fg0911_fmt.jpeg

OEBPS/images/475355-fg2301_fmt.jpeg

OEBPS/images/475355-fg2212_fmt.jpeg

OEBPS/images/475355-fg2508_fmt.jpeg

OEBPS/images/475355-fg1408_fmt.jpeg

OEBPS/images/475355-fg2101_fmt.jpeg

OEBPS/images/475355-fg0301_fmt.jpeg

OEBPS/images/475355-fg0212_fmt.jpeg

OEBPS/images/475355-fg1805_fmt.jpeg

OEBPS/images/475355-fg2711_fmt.jpeg
oo i R e e
o+ Ll [t]

OEBPS/images/475355-fg1420_fmt.jpeg
:
oS £

EEECEDI

OEBPS/images/475355-fg1503_fmt.jpeg

OEBPS/images/475355-fg1207_fmt.jpeg

OEBPS/images/475355-fg2207_fmt.jpeg

OEBPS/images/475355-fg2403_fmt.jpeg
Instructions

O i o et

L T

e —

OEBPS/images/475355-fg2501_fmt.jpeg
. Amorsanin schecule
. et by v ke

T 7 ¥ |
i am=

OEBPS/images/newfeature_fmt.jpeg
&
S

OEBPS/images/475355-fg0210_fmt.jpeg

OEBPS/images/475355-fg0305_fmt.jpeg

OEBPS/images/475355-fg1403_fmt.jpeg

OEBPS/images/475355-fg1421_fmt.jpeg

OEBPS/images/475355-fg1709_fmt.jpeg
gl
ol

el
e
She
o
el

B

OEBPS/images/475355-fg1905_fmt.jpeg

OEBPS/images/475355-fg2810_fmt.jpeg

OEBPS/images/475355-fg2709_fmt.jpeg
i "
fr s -

e
ez

OEBPS/images/475355-fg0712_fmt.jpeg

OEBPS/images/475355-fg0220_fmt.jpeg

OEBPS/images/475355-fg1516_fmt.jpeg

OEBPS/images/475355-fg1810_fmt.jpeg

OEBPS/images/475355-fg2102_fmt.jpeg

OEBPS/images/475355-fg1119_fmt.jpeg
=]

OEBPS/images/475355-fg1102_fmt.jpeg

OEBPS/images/475355-fg2802_fmt.jpeg
e T L amiron

OEBPS/images/475355-fg1820_fmt.jpeg
gy g
Ritwas s

OEBPS/images/475355-fg1411_fmt.jpeg

OEBPS/images/475355-fg0215_fmt.jpeg
e ———

OEBPS/images/475355-fg1809_fmt.jpeg

OEBPS/images/475355-fg0702_fmt.jpeg

OEBPS/images/475355-fg0910_fmt.jpeg

OEBPS/images/475355-sb1701_fmt.jpeg

OEBPS/images/475355-sb0701_fmt.jpeg

OEBPS/images/475355-fg1518_fmt.jpeg

OEBPS/images/475355-fg1910_fmt.jpeg

OEBPS/images/475355-fg2107_fmt.jpeg

OEBPS/images/475355-fg1202_fmt.jpeg

OEBPS/images/475355-fg0202_fmt.jpeg

OEBPS/images/475355-fg0205_fmt.jpeg
EEEEEEEE]

jewh &t

OEBPS/images/WileycopyrightLogo_fmt.jpeg

OEBPS/images/475355-fg1205_fmt.jpeg

OEBPS/images/475355-fg1413_fmt.jpeg

OEBPS/images/475355-fg1704_fmt.jpeg

OEBPS/images/475355-fg0704_fmt.jpeg
R O T T ar

OEBPS/images/475355-fg2710_fmt.jpeg

OEBPS/images/475355-fg0307_fmt.jpeg
b
¥

OEBPS/images/475355-sb2402_fmt.jpeg

OEBPS/images/475355-fg1526_fmt.jpeg
muzessnzaeeys

es

OEBPS/images/475355-fg1604_fmt.jpeg

OEBPS/images/475355-fg1307_fmt.jpeg
o st h— TS |

OEBPS/images/475355-fg1823_fmt.jpeg

OEBPS/images/475355-fg0302_fmt.jpeg

OEBPS/images/475355-fg2204_fmt.jpeg
L P T

OEBPS/images/475355-fg1406_fmt.jpeg

OEBPS/images/475355-fg0213_fmt.jpeg

OEBPS/images/475355-fg1311_fmt.jpeg

OEBPS/images/475355-fg1829_fmt.jpeg

OEBPS/images/475355-fg3002_fmt.jpeg

OEBPS/images/arrow.jpg

OEBPS/images/on_the_cd_fmt.jpeg

OEBPS/images/475355-fg1902_fmt.jpeg

OEBPS/images/475355-fg0602_fmt.jpeg

OEBPS/images/475355-fg1813_fmt.jpeg
sanusey Thesugh ine

OEBPS/images/475355-sb2102_fmt.jpeg

OEBPS/images/475355-fg2706_fmt.jpeg

OEBPS/images/475355-fg1701_fmt.jpeg

OEBPS/images/475355-fg1110_fmt.jpeg

OEBPS/images/475355-fg1523_fmt.jpeg

OEBPS/images/475355-fg1819_fmt.jpeg
S sen; b, -a

A . - .

OEBPS/images/WileyTitlePageLogo_fmt.jpeg
&)

VALEY
Wiley Publishing, Inc.

OEBPS/images/475355-fg1505_fmt.jpeg

OEBPS/images/475355-fg1908_fmt.jpeg
e I e L [& T
i R e T e

OEBPS/images/475355-fg1416_fmt.jpeg

OEBPS/images/475355-fg2601_fmt.jpeg
e

OEBPS/images/475355-fg2405_fmt.jpeg

OEBPS/images/475355-fg2008_fmt.jpeg
e —

HEHHHTH

Monthly Payment at Various APRs

OEBPS/images/475355-fg0707_fmt.jpeg
L h—

OEBPS/images/475355-fg0903_fmt.jpeg

OEBPS/images/475355-fg0913_fmt.jpeg
8 o

OEBPS/images/475355-fg1803_fmt.jpeg

OEBPS/images/475355-fg1120_fmt.jpeg

OEBPS/images/475355-fg1006_fmt.jpeg

OEBPS/images/475355-fg1009_fmt.jpeg

OEBPS/images/475355-fg2010_fmt.jpeg
S s
monppian G
TR L S

OEBPS/images/475355-fg2214_fmt.jpeg

OEBPS/images/475355-fg2217_fmt.jpeg

OEBPS/images/475355-fg2306_fmt.jpeg

OEBPS/images/475355-fg0401_fmt.jpeg
el e

)] ()

OEBPS/images/475355-fg2303_fmt.jpeg

OEBPS/images/475355-fg1508_fmt.jpeg
EruEaREYIERERERENY

OEBPS/images/475355-sb2201_fmt.jpeg
e i e ——
2 s Tt

3

OEBPS/images/475355-fg0223_fmt.jpeg

OEBPS/images/475355-fg1419_fmt.jpeg

OEBPS/images/475355-fg2805_fmt.jpeg

OEBPS/images/475355-fg1816_fmt.jpeg

OEBPS/images/475355-fg1520_fmt.jpeg

OEBPS/images/475355-fg1301_fmt.jpeg

OEBPS/images/475355-fg1212_fmt.jpeg
o5 S

OEBPS/images/475355-fg3012_fmt.jpeg

OEBPS/images/475355-fg2201_fmt.jpeg

OEBPS/images/475355-fg2408_fmt.jpeg
mm

Elephants 4U
Form Letter Application Help

R

e

)
BT

[—

OEBPS/images/475355-fg0201_fmt.jpeg

OEBPS/images/475355-fg0103_fmt.jpeg
Microosh Excel - REVENUVEIL) KB
Ele_Edn_FormulsFomai Do~ Optons et Viindoe ey

e (o] (S () () () () (S T

OEBPS/images/475355-sb2203_fmt.jpeg

OEBPS/images/475355-sb2301_fmt.jpeg

OEBPS/images/475355-fg1525_fmt.jpeg

OEBPS/images/475355-fg1517_fmt.jpeg

OEBPS/images/475355-fg1108_fmt.jpeg
_ ==

S |

OEBPS/images/475355-fg2108_fmt.jpeg

OEBPS/images/475355-fg2304_fmt.jpeg
-
=

OEBPS/images/475355-fg1422_fmt.jpeg

OEBPS/images/475355-fg2713_fmt.jpeg
o o ovo oo e Tor R oA o st e
o R S e
el T
oo e
e T G G

5 G0 Dolimia Gueecas Lo ot a9
P i b e e)
e e S WR
e Al)
P e B
e e R i]
= ke mmres e e o am

OEBPS/images/475355-fg0226_fmt.jpeg

OEBPS/images/475355-fg0304_fmt.jpeg

OEBPS/images/475355-fg1304_fmt.jpeg

OEBPS/images/475355-fg2103_fmt.jpeg
oo |yt _com []

OEBPS/images/475355-fg0713_fmt.jpeg

OEBPS/images/475355-fg1103_fmt.jpeg
LH

OEBPS/images/475355-fg1808_fmt.jpeg

OEBPS/images/475355-fg2808_fmt.jpeg
ol el
ol o]

EYET}
ﬂﬂﬂ:}ﬂdﬂﬂ:u

OEBPS/images/475355-fg2901_fmt.jpeg

OEBPS/images/tip_fmt.jpeg

OEBPS/images/475355-fg1607-_fmt.jpeg
e

SRR R

OEBPS/images/475355-fg1901_fmt.jpeg

OEBPS/images/475355-fg0901_fmt.jpeg

OEBPS/images/475355-fg1111_fmt.jpeg

OEBPS/images/475355-fg1116_fmt.jpeg

OEBPS/images/475355-fg3013_fmt.jpeg

OEBPS/images/475355-fg2410_fmt.jpeg
Hal > sl

OEBPS/images/475355-fg1828_fmt.jpeg

OEBPS/images/475355-fg2407_fmt.jpeg

OEBPS/images/475355-fg1407_fmt.jpeg
1587
1588
1589
1590
1591
1592
1593
159
1595

273
320
178

56
122
311
309
487

99

279
331
452
140
209
170

362
393

OEBPS/images/475355-fg0407_fmt.jpeg

OEBPS/images/475355-fg0402_fmt.jpeg

OEBPS/images/475355-fg1509_fmt.jpeg

OEBPS/images/475355-fg2402_fmt.jpeg

OEBPS/images/475355-fg0218_fmt.jpeg

OEBPS/images/475355-fg0906_fmt.jpeg

OEBPS/images/475355-fg3005_fmt.jpeg

OEBPS/images/475355-fg1402_fmt.jpeg

OEBPS/images/475355-fg2509_fmt.jpeg

OEBPS/images/475355-fg1906_fmt.jpeg

OEBPS/images/475355-fg2005_fmt.jpeg

OEBPS/images/475355-fg1005_fmt.jpeg

OEBPS/images/475355-fg1115_fmt.jpeg
Boteng
s Batanache

. Bevhons 95

- saveuse

e omon

T

. Ber S B

. Bectin san FB Demi-
. ernad N Conensed
L eriom

. Bioor
st 17
S

5 v

. LEGHIAY D TYFE

. e oy

s Bodon T

. Bodons MT Black
ST b
bt g

. Book Avtiqua

. Bookanan Old Style
als” /T8 2 b 57~

OEBPS/images/475355-fg0308_fmt.jpeg

OEBPS/images/475355-fg1602_fmt.jpeg

OEBPS/images/475355-fg2406_fmt.jpeg

OEBPS/images/475355-fg2504_fmt.jpeg

OEBPS/images/475355-fg0222_fmt.jpeg

OEBPS/images/475355-fg1706_fmt.jpeg

OEBPS/images/475355-fg1513_fmt.jpeg

OEBPS/images/475355-fg0902_fmt.jpeg

OEBPS/images/475355-fg0406_fmt.jpeg
e
T R s Dm0 255
T e e D255
e

e et

OEBPS/images/475355-fg0219_fmt.jpeg

OEBPS/images/475355-fg1608_fmt.jpeg

OEBPS/images/475355-fg2804_fmt.jpeg
=]

OEBPS/images/475355-fg2902_fmt.jpeg

OEBPS/images/475355-fg1410_fmt.jpeg

OEBPS/images/475355-fg2701_fmt.jpeg

OEBPS/images/475355-fg2505_fmt.jpeg
O N N =)

OEBPS/images/475355-sb0702_fmt.jpeg

OEBPS/images/475355-fg1309_fmt.jpeg
T ——

OEBPS/images/475355-fg0701_fmt.jpeg

OEBPS/images/475355-fg1512_fmt.jpeg

OEBPS/images/475355-fg0221_fmt.jpeg

OEBPS/images/475355-fg1529_fmt.jpeg

OEBPS/images/475355-fg0714_fmt.jpeg
c-siaaKes il

e

R

OEBPS/images/475355-fg1907_fmt.jpeg

OEBPS/images/475355-fg2803_fmt.jpeg

OEBPS/images/475355-fg0803_fmt.jpeg

OEBPS/images/475355-fg0705_fmt.jpeg

OEBPS/images/475355-fg2104_fmt.jpeg

OEBPS/images/475355-fg2009_fmt.jpeg
R R B)
TOHE@) L 40 o
CEL - EHE e

Loan Amount: $250,890

OEBPS/images/475355-fg2006_fmt.jpeg

OEBPS/images/475355-fg1824_fmt.jpeg

OEBPS/images/475355-fg0104_fmt.jpeg
Exotic Excursions
199201 Q2 Q3 o4
Golf | 1,000 1,100 1,200 1,300]
Safari 2,000 2,200 2,400 2,600|

Temnis 3,000 3,300 3,600 3.900)

yrmrr
5 |

OEBPS/images/475355-fg1001_fmt.jpeg
R
ERr Ay

OEBPS/images/475355-fg1303_fmt.jpeg

OEBPS/images/475355-fg1401_fmt.jpeg

OEBPS/images/475355-fg3001_fmt.jpeg

OEBPS/images/475355-fg3004_fmt.jpeg

OEBPS/images/475355-fg0603_fmt.jpeg
N

Efar——u]

OEBPS/images/475355-fg1312_fmt.jpeg

OEBPS/images/475355-fg1004_fmt.jpeg

OEBPS/images/475355-fg2206_fmt.jpeg

OEBPS/images/475355-fg0905_fmt.jpeg

OEBPS/images/475355-fg2012_fmt.jpeg

OEBPS/images/475355-sb0301_fmt.jpeg

OEBPS/images/475355-sb2101_fmt.jpeg

OEBPS/images/475355-fg0206_fmt.jpeg

OEBPS/images/475355-fg1811_fmt.jpeg
* orscount mauarade
Customer s st

e e
= Store hours e convenient

OEBPS/images/475355-fg2705_fmt.jpeg

OEBPS/images/475355-fg1201_fmt.jpeg
=i
=
e —

OEBPS/images/475355-fg1414_fmt.jpeg
e i
e]
eI

ot

OEBPS/images/475355-fg2305_fmt.jpeg

OEBPS/images/475355-fg0207_fmt.jpeg

OEBPS/images/475355-fg1112_fmt.jpeg

OEBPS/images/475355-fg3014_fmt.jpeg
Chart Titke

OEBPS/images/475355-fg2109_fmt.jpeg

OEBPS/images/475355-fg0403_fmt.jpeg

OEBPS/images/475355-fg1109_fmt.jpeg

OEBPS/images/475355-fg1305_fmt.jpeg

OEBPS/images/475355-fg1501_fmt.jpeg

OEBPS/images/475355-fg0709_fmt.jpeg

OEBPS/images/475355-fg1807_fmt.jpeg
"
Mouse Pads In.

i e

St et

Brearpimre
e A —

You sre easy to reach by phone

FEEERLTEPP I
EEEEFELEFRT I

OEBPS/images/475355-fg2712_fmt.jpeg

OEBPS/images/475355-fg2807_fmt.jpeg

OEBPS/images/475355-fg0225_fmt.jpeg
o i esiz) () © 912 3818 e

OEBPS/images/475355-fg1418_fmt.jpeg

OEBPS/images/475355-fg1606-_fmt.jpeg
st

b

OEBPS/images/475355-fg1122_fmt.jpeg
.

OEBPS/images/475355-fg2511_fmt.jpeg
e
Er
B
e
iy
Sama

OEBPS/images/475355-fg1802_fmt.jpeg

OEBPS/images/475355-fg1511_fmt.jpeg
= IS

OEBPS/images/475355-fg0606_fmt.jpeg

OEBPS/images/475355-fg0802_fmt.jpeg

OEBPS/images/475355-fg1315_fmt.jpeg

OEBPS/images/475355-fg0102_fmt.jpeg

OEBPS/images/475355-fg1825_fmt.jpeg

OEBPS/images/475355-fg2506_fmt.jpeg
o —
P
Emmm————

O T e = |

OEBPS/images/475355-fg2215_fmt.jpeg
Saieted
BAFE
S EET
- R

OEBPS/images/475355-fg1506_fmt.jpeg

OEBPS/images/475355-fg2411_fmt.jpeg

OEBPS/images/475355-sb0601_fmt.jpeg
e i e ——
2 s Tt

3

OEBPS/images/475355-fg1702_fmt.jpeg

OEBPS/images/475355-fg1210_fmt.jpeg

OEBPS/images/475355-fg2702_fmt.jpeg

OEBPS/images/475355-fg2210_fmt.jpeg

OEBPS/images/475355-fg1524_fmt.jpeg

OEBPS/images/475355-fg1812_fmt.jpeg

OEBPS/images/475355-fg1815_fmt.jpeg

OEBPS/images/475355-fg1521_fmt.jpeg

OEBPS/images/475355-fg0227_fmt.jpeg
c.szoeKes

OEBPS/images/475355-sb2701_fmt.jpeg

OEBPS/images/475355-fg0604_fmt.jpeg

OEBPS/images/475355-fg2809_fmt.jpeg

OEBPS/images/475355-sb2202_fmt.jpeg
EFTER T FLEETETE RN

OEBPS/images/475355-fg2202_fmt.jpeg
) et

OEBPS/images/475355-fg2205_fmt.jpeg

OEBPS/images/cover.jpg
Microsoft

Excel 2010

Power Programming
with VBA

John Walkenbach

OEBPS/images/475355-fg1107_fmt.jpeg

OEBPS/images/475355-fg1609-_fmt.jpeg

OEBPS/images/475355-fg2704_fmt.jpeg

OEBPS/images/475355-sb2302_fmt.jpeg
zmevooaTosss

$aa51334387100

AoRvriat il

b

ERT RPN HeFv

2 LLhadnaparne
B2

OEBPS/images/475355-fg0710_fmt.jpeg

OEBPS/images/475355-fg1817_fmt.jpeg

OEBPS/images/475355-fg1313_fmt.jpeg

OEBPS/images/475355-fg0204_fmt.jpeg
L e et imart
miiinals920®

] ()] ="

e i | B

OEBPS/images/475355-fg2302_fmt.jpeg

OEBPS/images/475355-fg2213_fmt.jpeg

OEBPS/images/475355-fg1308_fmt.jpeg

OEBPS/images/475355-fg2011-_fmt.jpeg

OEBPS/images/475355-fg1504_fmt.jpeg

OEBPS/images/475355-fg2602_fmt.jpeg

OEBPS/images/caution_fmt.jpeg

OEBPS/images/475355-fg1804_fmt.jpeg
LeEEEEIEE

Product C|

BTTTILL

OEBPS/images/475355-fg1415_fmt.jpeg

OEBPS/images/475355-fg0706_fmt.jpeg

OEBPS/images/475355-sb2801_fmt.jpeg
& s

OEBPS/images/475355-fg1911_fmt.jpeg
iy

EEEEEEEYIE

OEBPS/images/475355-fg2007_fmt.jpeg
B SV —

[———

OEBPS/images/475355-fg0214_fmt.jpeg

OEBPS/images/475355-fg0410_fmt.jpeg

OEBPS/images/475355-fg2707_fmt.jpeg
s Tinos Simol ael wers]
Pamar | e s 0] e

[os| oo sn|_ s
EREDETDETE R

zn | s | v
EmETRTE TR
| o]] swwa]
e W e T |
St s17555 1005 | v |
oo 7050 | At |
im0 | T7ece] 555
B [1555 a5 o] e
ot sz [pws v s |

OEBPS/images/475355-fg1909_fmt.jpeg

OEBPS/images/475355-fg0309_fmt.jpeg
TETEIEEEUREENEY

OEBPS/images/475355-fg1203_fmt.jpeg
g 1 el |
o) Cent) T
Fiy - . i

OEBPS/images/475355-fg0405_fmt.jpeg

OEBPS/images/475355-fg1114_fmt.jpeg
=]

OEBPS/images/475355-fg1310_fmt.jpeg

OEBPS/images/475355-fg3003_fmt.jpeg

OEBPS/images/475355-fg1002_fmt.jpeg

OEBPS/images/475355-fg0601_fmt.jpeg

OEBPS/images/475355-fg1209_fmt.jpeg

OEBPS/images/475355-fg1527_fmt.jpeg

OEBPS/images/475355-fg0907_fmt.jpeg

OEBPS/images/475355-fg1708_fmt.jpeg

OEBPS/images/475355-fg1705_fmt.jpeg

OEBPS/images/475355-fg3006_fmt.jpeg
“mllllllll!g

OEBPS/images/475355-fg1101_fmt.jpeg

OEBPS/images/475355-fg3009_fmt.jpeg

OEBPS/images/475355-fg1104_fmt.jpeg
=i
=)

T —

OEBPS/images/475355-sb2401_fmt.jpeg
Elephants 4U

OEBPS/images/475355-fg0303_fmt.jpeg

OEBPS/images/475355-fg2401_fmt.jpeg
] 3 N lepha
—

OEBPS/images/475355-fg2208_fmt.jpeg

OEBPS/images/475355-fg2001_fmt.jpeg

OEBPS/images/475355-fg1603-_fmt.jpeg

OEBPS/images/475355-fg0217_fmt.jpeg

OEBPS/images/475355-fg2004_fmt.jpeg

OEBPS/images/475355-fg1822_fmt.jpeg
R T

OEBPS/images/475355-fg0306_fmt.jpeg

OEBPS/images/475355-fg1012_fmt.jpeg

OEBPS/images/475355-fg2811_fmt.jpeg

OEBPS/images/475355-fg1514_fmt.jpeg

OEBPS/images/475355-fg2503_fmt.jpeg

OEBPS/images/475355-fg1117_fmt.jpeg

OEBPS/images/475355-fg0408_fmt.jpeg

OEBPS/images/475355-fg1206_fmt.jpeg

OEBPS/images/475355-fg2106_fmt.jpeg
e ———

