

[image: cover.eps]

HTML5 For Dummies® Quick Reference

Table of Contents

Part 1: Moving on to HTML5

A Quick History of HTML

A bit of ancient history

And the first browser war begins . . .

A new challenger arises from the ashes

HTML 4 was getting old

Getting to Know the Real HTML5

HTML5 Is More than HTML!

HTML

CSS

JavaScript

Server technologies

Looking At Browser Features

Assessing your browser’s capabilities

Checking for features in your code

Picking a Suitable Browser

Using Chrome Frame to Add Support to IE

Part 2: HTML Foundations

Exploring HTML and XHTML

Appreciating HTML

Emergence of XHTML

It’s alive, and it’s HTML5!

Setting up a basic HTML page

Fleshing Out Your Page

Adding images

Including links

Making lists and tables

Utilizing tables

Making a Form

Form structure tags

Constructing text input

Creating password fields

Erecting a multiline text box

Forming drop-down lists

Making checkboxes

Popping in radio buttons

Putting in action buttons

Validating Your Pages

Part 3: New or Changed HTML5 Elements

Semantic Page Elements

address

article

aside

footer

header

hgroup

menu

nav

section

Inline Semantic Elements

command

details

dfn

figcaption

figure

summary/details

time

wbr

Media Elements

audio

canvas

embed

source

svg

video

Ruby Elements

ruby

rt

rp

Part 4: New and Modified Form Elements

New Form Elements

datalist

fieldset

keygen

label

meter

output

progress

New Form Element Attributes

autofocus

pattern

placeholder

required

Validation

New Form Input Types

color

date

datetime

datetime-local

email

month

number

range

search

tel

time

url

week

Part 5: Formatting with CSS

A Quick Overview of CSS

Employing local styles

Making use of ids and classes

Managing levels of CSS

Managing the Appearance of Your Page

Comprehending hex colors

Editing text

Joining the border patrol

Putting in background images

Using Float Positioning

Getting to know the display types

Having a block party

Floating to a two-column look

Cleaning up the form

Using absolute positioning

Part 6: New and Improved CSS Elements

CSS3’s New Selection Tools

Attribute selection

not

nth-child

Other new pseudo-classes

Downloadable Fonts and Text Support

@font-face

Column support

text-stroke

text-shadow

Flexible Box Layout Model

Creating a flexible box layout

Viewing a flexible box layout

. . . And now for a little reality

New Visual Elements

Color values

Gradients

Image borders

Reflections

Rounded corners

Shadows

Transformations

Transition animation

Transparency

Part 7: Changes in JavaScript

Behold: The New JavaScript Selection Options

document.getElementsByClassName()

document.getElementsByTagName()

document.querySelector()

document.querySelectorAll()

Data Options

Achieving offline cache

Local storage

WebSQL database

Miscellaneous New JavaScript Features

Geolocation

Notifications

Web sockets

Web workers

Part 8: Working with the Canvas

Canvas Basics

Setting up the canvas

Understanding how canvas works

Controlling Fill and Stroke Styles

Colors

Gradients

Patterns

Drawing Essential Shapes

Drawing rectangles

Drawing text

Enhancing shapes with shadows

Drawing More Complex Shapes

Line-drawing options

Making arcs and circles

Making quadratic curves

Producing a bezier curve

Images

Drawing an image on the canvas

Drawing part of an image

Manipulating Images with Transformations

Building a transformed image

Some key points about transformations

Using Animation

Basic structure of the animation loop

Creating the constants

Deploying the animation

Giving animation to the current frame

Moving an element

Now we’re bouncing off the walls

Working with Pixel Manipulation

		
			HTML5 For Dummies® Quick Reference

			by Andy Harris

			
				[image: WileyTitlePageLogo.eps]
			

			HTML5 For Dummies® Quick Reference

				Published by
Wiley Publishing, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

				Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

				Published simultaneously in Canada

				No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

				Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

				Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

				For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

				For technical support, please visit www.wiley.com/techsupport.

				Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

				Library of Congress Control Number: 2011924127

				ISBN: 978-1-118-01252-9

				Manufactured in the United States of America

				10 9 8 7 6 5 4 3 2 1

				
								
				[image: WileycopyrightLogo.eps]

				

				About the Author

				Andy Harris once owned a TRS-80 Model I. It’s still in the garage. He remembers fondly typing BASIC code into that machine and wondering how it really worked. He eventually taught himself enough programming to work as a consultant while pursuing a career in special education. He now teaches for Indiana University — Purdue University / Indianapolis as a Senior Lecturer in Computer Science. He teaches Web programming, game development, and Freshman Computer Science classes.

				Dedication

				I dedicate this book to Jesus Christ, my personal savior, and to Heather, the joy in my life. I also dedicate this project to Benjamin, Jacob, Matthew, and Elizabeth. I love each of you.

				Author’s Acknowledgments

				People often think of writing as a solo sport, but I know better. Thanks to Heather, for being amazing (again and again). Thank you Katie Feltman, for another interesting project, and for being a consistent friend. Thanks to Blair Pottenger for all your support on this book. You wrestled this monster into decent shape. Thanks very much to Heidi Unger for your editing help. It took more than a minute to win this one. Thank you Ronald Norman for the technical edit. You found a number of goofy errors that would have confused students. Thank you so much for your vigilance.

				Thanks also to the many people at Wiley who the author never gets to meet. I appreciate your contributions. Thank you also to the open-source community which creates so many excellent tools. A big thanks to the IUPUI family for supporting me through this and so many other projects, especially Michele and Lingma.

				Finally, thank you to my extended family — the Friday morning guys, and the Sunday evening families. I’m lucky to have a job where I get to publicly thank you for all you add to my life.

				Publisher’s Acknowledgments

				We’re proud of this book; please send us your comments through our online registration form located at www.dummies.com/register/.

				Some of the people who helped bring this book to market include the following:

				Acquisitions, Editorial, and Media Development

				Project Editor: Blair J. Pottenger

				Acquisitions Editor: Katie Feltman

				Copy Editor: Heidi Unger

				Technical Editor: Ronald Norman

				Editorial Manager: Kevin Kirschner

				Media Development Project Manager: Laura Moss-Hollister

				Media Development Assistant Project Manager: Jenny Swisher

				Media Development Associate Producers: Josh Frank, Marilyn Hummel, Douglas Kuhn, and Shawn Patrick

				Editorial Assistant: Amanda Graham

				Sr. Editorial Assistant: Cherie Case

				Cartoons: Rich Tennant (www.the5thwave.com)

				Composition Services

				Project Coordinator: Katie Crocker

				Layout and Graphics: Erin Zeltner

				Proofreaders: John Greenough, Sossity R. Smith

				Indexer: Potomac Indexing LLC

				Publishing and Editorial for Technology Dummies

				Richard Swadley, Vice President and Executive Group Publisher

				Andy Cummings, Vice President and Publisher

				Mary Bednarek, Executive Acquisitions Director

				Mary C. Corder, Editorial Director

				Publishing for Consumer Dummies

				Diane Graves Steele, Vice President and Publisher

				Composition Services

				Debbie Stailey, Director of Composition Services

				A Note About the Term HTML5

				As this book was nearing completion, the World Wide Web Consortium (W3C) announced that the change of the upcoming version of HTML would not be HTML5, but simply HTML. They reasoned that a collaborative project like an HTML standard is an evolution rather than a strict milestone. When HTML5 is reasonably universal, there will be no need to call it HTML5, but simple HTML will do.

				For the purposes of this book, it is important to distinguish between the current state of the art and the evolving standard that is the focus of this work. For that reason, I refer to the emerging standards as HTML5 to distinguish them from the older approaches to Web development, and keep the term HTML5 in the title.

				Companion Resources On the Web

				Be sure to check out my Web site for working examples of every code fragment in the book: www.aharrisbooks.net/h5qr.

				Also check out this book’s companion Web site at www.dummies.com/go/html5fdqr to access “Bonus Part 1: Using JavaScript” for a review (or preview) of computer programming in JavaScript. Programming is a complex business, and learning how to program in JavaScript deserves its own book; see my JavaScript and AJAX For Dummies (Wiley) or HTML, XHTML, and CSS All-In-One For Dummies, 2nd Edition (Wiley) books for a more complete treatment.

				Please note that some special symbols used in this eBook may not display properly on all eReader devices. If you have trouble determining any symbol, please call Wiley Product Technical Support at 800-762-2974. Outside of the United States, please call 317-572-3993. You can also contact Wiley Product Technical Support at www.wiley.com/techsupport.

				

			
		
			
				Part 1

				Moving on to HTML5

				HTML5 is the newest incarnation of the HTML family of languages. HTML, which stands for HyperText Markup Language, is one of the main reasons the Web is as powerful and useful as it is. HTML is a reasonably simple system of plain-text codes that provide the structure of all Web pages on the Internet.

				In this part, you take a quick look at how HTML5 fits in the history of the Web, and put together a few tools you’ll need to get started.

				[image: tip.eps] Be sure to check out my Web site for working examples of every code fragment in the book: www.aharrisbooks.net/h5qr.

				In this part . . .

				[image: check.png]Looking at the History of HTML

				[image: check.png]Understanding What HTML5 Is

				[image: check.png]Running Tests for Browser Features

				[image: check.png]Deciding on a Suitable Browser

				[image: check.png]Utilizing Chrome Frame to Add Support to IE

				A Quick History of HTML

				HTML is a key part of the Internet. It has a short but extremely vibrant history. In order to understand what HTML5 is about, it’s useful to look at where it came from. The Internet (and the Web in particular) has been changing at a dizzying pace. HTML has been trying to keep up.

				When HTML was first devised, it comprised a handful of tags, and HTML did little more than determine how a page was laid out. As the Web matured, many features were added. Today’s Internet is still about documents, but it’s also about applications. Today’s Web sites are dynamic interactive applications.

				The kinds of devices used on the Internet are changing, too. In the early days, only desktop computers used the Web. Now cellphones and mobile devices are among the most important players on the Web. They require a different way of thinking than the standard desk-based behemoths of a few years ago.

				It’s time for a fresh new set of standards that will help support the way people are using the Internet today. HTML5 is that set of standards.

				A bit of ancient history

				In the distant mists of time (1989) Tim Berners-Lee created a new system of connecting electronic documents. He devised a simple language that allowed document authors to link various documents together with limited formatting options. This language was called HTML.

				At that point, the Internet existed, but it was mainly accessed by basic command-line programs, and was not easy to use. HTML (and some other underlying technologies) was designed from the beginning to be easy to work with, and to create documents that were easy for users to manage. The design of HTML was deliberately kept simple, so as many people as possible could participate in the process of building documents in this new format.

				Of course, the Web took off in a very major way, and soon Web pages became ubiquitous. It became clear that the simple features in basic HTML were not enough to satisfy the interests of the many people who were now building Web pages.

				And the first browser war begins . . .

				As various organizations started building Web browsers (the tools that read HTML and display it to the user), they began competing by adding new HTML features. By 1993, the Mosaic browser included the ability to add images (which were not part of the original specification). Many browsers were being created by small teams all around the world, and each had its own set of new features.

				By 1994, one platform emerged as the dominant browser. Netscape Navigator was a profoundly successful browser. At the same time, there were working groups forming to address the lack of standards in the Web browser world. The most important of these groups was called the World Wide Web Consortium (W3C) headed by Tim Berners-Lee (the same guy who started all this mess). However, Netscape had such a dominant position that Netscape representatives often skipped the standards meetings and created whatever features they wanted.

				Microsoft did not come into the browser world until 1995. Internet Explorer (IE) was designed to compete directly with Netscape’s browser. For a time (sometimes called the first browser wars), Netscape and Microsoft were in an arms race, each trying to produce exclusive features that would steer developers toward their own vision of the Web.

				While there was a standards body in place, the reality was both Netscape and Microsoft added whatever features they wanted and basically ignored the W3C. There was some small progress made on Web standards. HTML 2 was adopted as a standard in 1994/1995 (although none of the manufacturers stuck with it completely). HTML 3.2 was released in 1997, followed by HTML 4 in Spring of 1998.

				By about the same time HTML 4 was gaining traction, it became clear that Microsoft was dominating the browser space. By 2002, Internet Explorer was used by approximately 95 percent of Internet users. With that kind of clout, the future of HTML was almost entirely in Microsoft’s hands, and efforts of standards bodies were largely irrelevant. By any measure, Microsoft won the first browser war. Internet Explorer 6 (which used mainly HTML 4) was the only browser that really mattered, and there was very little innovation for several years.

				A new challenger arises from the ashes

				However, there were some new browsers that challenged Microsoft’s dominance. The Firefox browser (first released in 2004) in particular was especially important, as it introduced a number of innovative features and followed most of the standards of the W3C working group. Firefox (and to a lesser extent other browsers like Apple’s Safari, Opera, and eventually Google Chrome) shook up the Web. These other browsers tended to be more committed to following standards than IE was, and they prompted new versions of IE following a long era of stagnation. Even Microsoft began to at least pay lip service to the notion of standards, promising more standards compliance in each of the new versions of IE introduced. Some consider this the opening of the second browser war, with various developers competing for share of the browser market.

				However, there is a difference this time around. The Web is no longer a novelty, but now a key part of business and society. A Web-based document is now held to the same visual standards as printed documents, and HTML 4 is simply not capable of easily meeting this standard. In fact, the entire notion of the Web as a series of documents is being challenged. Web pages are being replaced by Web applications. Much of what people now do on the Internet isn’t about reading documents any more. Today, developers are using the Web itself as a programming interface.

				HTML 4 was getting old

				Changes in the Web required a change in the thinking about document standards. HTML 4 was clearly not up to the task of supporting modern Web development. The various proprietary tags added through the years added some visual flexibility, but not nearly enough. There was not a satisfying solution for page layout or font management. There was a set of features for entering form data, but these tools were limited and ugly. Most browsers featured a form of the JavaScript programming language, but the implementations varied wildly, and making a real application using Web technologies was a chancy proposition.

				The W3C introduced XHTML in 2002 to address some of these concerns. XHTML was proposed as a version of HTML adhering to the stricter standards of the XML markup language. XHTML is much less forgiving than HTML, so if a page meets the stringent requirements of the standard, it is (presumably) well-behaved and predictable. Unfortunately, the idealism of the XHTML movement was never realized. Creating valid XHTML documents proved difficult enough that very few developers tried. Browsers rendered inaccurate XHTML code decently (if not perfectly). In fact, most browsers didn’t really render XHTML at all, but quietly converted it to a form of HTML. There was little incentive for developers to adhere to XHTML standards (unless they were taking my class).

				In order to get the functionality that was missing from HTML, many developers turned to plug-in technology like Java Applets and embedded Flash. Java never caught on as a client-side environment (although it remains extremely important in other applications) but Flash was very popular for a time. Unfortunately, Flash introduces problems of its own. The content of a Flash applet can only be modified by a Flash editor, and it cannot be read (at least easily) by search engines. Many of the new features of HTML5 (particularly the font support and the canvas tag) can be seen as a direct response to Flash.

				The W3C moved to create a new form of XHTML called XHTML 2.0, but in the mean time, a second group called WHATWG (Web Hypertext Application Technology Working Group) began working on their own competing standard, which came to be known as HTML5. The main reason for these competing standards was a sense that XHTML was too rigid, and was still focused on HTML as a document language. Part of the motivation for HTML5 was to create a framework for building Web applications that would really be used by developers. Eventually, W3C dropped support for XHTML 2 and is now supporting the WHATG proposal, so HTML5 appears to be the next standard.

				Getting to Know the Real HTML5

				The WHATWG group seems to have learned a few lessons from history. The design of HTML5 indicates these priorities:

				[image: check.png] The core language should be simple. HTML5 is quite a bit cleaner than XHTML. The document type in particular is a breath of fresh air compared to the nonsense you have to write to start an XHTML page. Every tag is about describing some feature of the page. Most of the tags are plain English with few abbreviations.

				[image: check.png] Markup is based on semantics. One of the original ideas in HTML was markup based on meaning rather than details. For example, a headline is simply marked as <h1> rather than specifying a particular font size or typeface. HTML5 returns to this tradition, adding a number of new tags to describe common parts of a page.

				[image: check.png] CSS is used for style details. Like XHTML, HTML5 relies heavily on another language, called CSS (Cascading Style Sheets), to handle the details of how a particular element looks. In essence, HTML describes what a page element is, and CSS describes how that element looks. HTML5 does not contain tags like or <center> because these characteristics are handled in a more flexible way by CSS.

				[image: check.png] Pages are often applications. Forms (the elements that allow users to enter data in a Web site) have been a part of HTML since the beginning, but they have not seen much improvement over the years. HTML5 adds a number of very exciting new form elements that make HTML a much better tool for interacting with users.

				[image: check.png] JavaScript is central. Most Web browsers have had a form of the JavaScript (JS) programming language built in for years. However, it was difficult to take JavaScript very seriously because it had a number of limitations. Some limitations were because of legitimate security concerns, and others were simply poor or incompatible implementation. With the advent of new powerful JavaScript engines and a new paradigm called AJAX (Asynchronous JavaScript and XML), JavaScript has re-emerged as a powerful and important programming environment. Many of the most interesting features of HTML5 (like the canvas tag) are mainly improvements in the JavaScript language. (The canvas tag is an HTML tag, but it doesn’t do anything interesting without JavaScript.)

				HTML5 Is More than HTML!

				It’s a little unfortunate that this technology has been called HTML5, because the HTML language is actually only one part of a much bigger picture. In truth, the thing we call HTML5 is the integration of several different technologies (HTML, CSS, and JavaScript, and server-based technologies), which each have their own role as follows:

				HTML

				Of course, there have been changes to the HTML language itself. A few tags have been added to the HTML 4 standard, and a number have been taken away. However, HTML5 remains backwards-compatible with HTML 4, so there’s no absolute requirement to write your code in the HTML5 standard. Adapting from HTML 4 to HTML5 is probably the easiest part of moving to the complete HTML mindset.

				Here are the main HTML features:

				[image: check.png] Semantic markup: HTML5 now includes new tags that describe parts of a document. Now there are dedicated tags for navigation elements, articles, sections, headers, and footers.

				[image: check.png] New form elements: HTML5 forms have some major updates. There are several new versions of the <input> element, allowing users to pick colors, numbers, e-mail addresses, and dates with easy-to-use elements.

				[image: check.png] Media elements: At long last, HTML5 has native support for audio and video with tags similar to the tag.

				[image: check.png] canvas tag: The canvas tag allows the programmer to build graphics interactively. This capability will allow for very intriguing capabilities like custom gaming and interface elements.

				CSS

				Probably the biggest adjustment for those used to HTML 4 isn’t really the HTML itself, but the changing relationship between HTML and CSS. In HTML5 (like in XHTML), the markup language only describes what various elements mean. CSS is used to describe how things look. If you’re really going to switch to HTML5, you can no longer use tags like and <center>, which are about describing details. CSS could be considered an optional add-on to HTML 4, but it’s central to the HTML5 way of thinking. If you haven’t yet learned CSS, it’s definitely time. CSS is a different way of thinking, but it’s incredibly powerful and flexible. Along with the HTML5 standard comes a new standard for CSS, called CSS3. It’s nearly impossible to talk about HTML5 without also including CSS3 because they’re so closely related. Here are the main new features:

				[image: check.png] Embedded font support: With this long-awaited tool, you can include a font with a Web page, and it will render even if the user doesn’t have the font installed on her operating system.

				[image: check.png] New selectors: Selectors are used to describe a chunk of code to be modified. CSS3 now supports new selectors that let you choose every other element, as well as specific sub-elements (different types of input tags, for example).

				[image: check.png] Columns: HTML has never had decent support for columns, and all kinds of hacks have been used to overcome this shortcoming. Finally, CSS includes the ability to break an element into any number of columns easily.

				[image: check.png] Visual enhancements: CSS has a number of interesting new capabilities: transparency, shadows, rounded corners, animations, gradients, and transformations. These provide a profound new level of control over the appearance of a page.

				JavaScript

				If HTML describes what parts of the document are, and CSS describe how these parts look, JavaScript is used to define how elements act. JavaScript is a full-blown programming language, and it deserves its own book (which, of course it has; look to my book JavaScript and AJAX For Dummies [Wiley] for one example). It is not possible to describe JavaScript completely in this reference guide, but JavaScript is a very critical part of the HTML5 point of view. A few of HTML5’s most interesting features (the canvas tag, geolocation, and local data storage, for example) are accessible only through JavaScript. I describe these features in this book. See Bonus Part 1 for an overview of JavaScript if you need a review or an introduction.

				[image: check.png] Vector graphics support: Vector-based graphics provide an interesting alternative to traditional graphics because they can be created on the fly through code. HTML5 actually has two ways to do this: through SVG (Scalable Vector Graphics) and the canvas tag.

				[image: check.png] New selectors: Most JavaScript programming begins by grabbing an element by ID. HTML5 now allows you to select elements by tag name, or by the same mechanisms you use to select elements in CSS.

				[image: check.png] Local storage mechanisms: Previous versions of HTML allowed very limited storage of information on the client. HTML5 now allows the developer to store data on the client. There is even a built-in database manager that accepts SQL commands.

				[image: check.png] Geolocation: This interesting feature uses a variety of mechanisms to determine where the user is located.

				Server technologies

				Modern Web development is about communication. All of the technologies that make up HTML5 reside in the Web browser, which is an important part of the Web. However, an equally important part of Web development is a raft of technologies that live on the Web server. Many of the most interesting things happening today use technologies like PHP or ASP to run programs that create Web pages. Many interesting applications also use database programs like Oracle or MySQL to manage large amounts of data. The advent of AJAX has made integration between those technologies and the browser much easier. Interesting as these tools are, I do not focus on them in this reference book. If you’re interested in them, please see my book HTML, XHTML, CSS All-in-One For Dummies (Wiley) for a thorough treatment of these and other topics.

				Looking At Browser Features

				As you can see in the history of HTML, calling something a standard doesn’t make it so. Officially, HTML5 hasn’t been accepted yet, and there isn’t a single popular browser that implements all of its features. If that’s the case, you might wonder if it’s worth it to study this technology yet. I think so, for these reasons:

				[image: check.png] Most of the ideas are accepted. While HTML5 itself has not yet been ratified as a formal standard, most of the critical ideas are available today. Today’s Web browsers will work fine with HTML5 even if they don’t know how to do all the cool things with it.

				[image: check.png] There is little doubt that HTML5 is the new standard. W3C has essentially conceded that XHTML 2.0 is not a viable solution, leaving HTML5 as the clear winner in the standards war. If there is to be any standard at all, HTML5 (and the related features in CSS and JS) is it.

				[image: check.png] Standards-compliance is now a desirable feature. In the first browser war, manufacturers were competing to add new features without any regard to standards. Today, browsers are judged by their adherence to accepted Web standards. Even Microsoft has gotten into the mix, claiming that IE 9 supports a majority of the HTML5 features.

				[image: check.png] HTML5 promotes good coding habits. The separation of content from layout is a critical part of modern Web development. If you’re coming from XHTML, you’re already comfortable with this situation. If you’re more familiar with HTML 4, it’s a new idea, but one that has been inevitable.

				Officially, HTML5 is not expected to be completely accepted as a standard until 2022. This seems like an eternity in Web time. However, parts of the standard (such as the canvas tag) are universally available right now and are worth exploring immediately. Others (like most of the form elements and the semantic markup tags) provide suitable backups automatically if the browser doesn’t support the advanced features. Others (like drag-and-drop) are simply not ready for use yet. A few (like the local data support mechanism) are hotly debated, and it is not clear which form of the technology will become part of the standard. As I discuss each of these topics throughout the book, I try to give you a sense of whether it is ready to be used yet, and which browsers support particular features.

				Assessing your browser’s capabilities

				HTML5 has a lot of different technologies going on, and different browsers have adopted different parts of the standards. It can be very confusing to determine which features can be used. There are a couple of good solutions to this problem. A number of sites have charts that indicate which features are supported in which browser. I like the ones at http://caniuse.com and http://en.wikipedia.org/wiki/Comparison_of_layout_engines_%28HTML5%29. These tools can help you see what is currently supported by the major browsers. It’s especially handy for checking browsers you don’t have on your own machine.

				However, browser support for HTML5 features literally changes every day. New versions of major browsers are appearing all the time, and it’s very hard to keep track of what’s currently happening. For that reason, I’ve provided you with a program you can use to check your current browser to see which HTML5 features it supports. Figure 1-1 shows the detect.html program in action.

				
					Figure 1-1

				

				[image: 9781118012529-fg0101.eps]

				The detect.html page can be found at my Web site, www.aharrisbooks.net/h5qr/detect.html. Use it with any browser to get real-time analysis of which HTML5 features are available in your browser.

				The program uses a script called Modernizr, which automates checking for various browser features. You can get Modernizr for free from www.modernizr.com.

				Checking for features in your code

				You can also use the Modernizr script in your own code. Essentially, Modernizr creates a Boolean (true/false) value for each of the HTML features. You can check a variable to see if the current browser supports a particular feature. If it does, you can implement the feature. If not, you will generally implement some sort of fallback. Here’s how it’s done:

				 1. Download the Modernizr script. The Modernizr script can be downloaded free from www.modernizr.com. Install the script in the same directory as your Web page. (If you move your page to a server, you’ll also need to make a copy of the script available.)

				 2. Include a reference to the script. Use the <script> tag to make a reference to the script in your header (before any other JavaScript code):

				<script type = “text/javascript”

				src = “modernizr-1.6.min.js”></script>

				 3. Add a special class to the HTML tag. The Modernizr script needs to have a special tag available so it knows what to do. Add the “no-js” class to the HTML tag:

				<html lang = “en”

				class = “no-js”>

				 4. Write a new JavaScript function. Add a new JavaScript function to do the actual testing. Specific examples are shown in the code listing later in this section.

				 5. Use the appropriate Boolean property to check for a particular feature. Each of the HTML5 features supported by Modernizr has a corresponding variable. (You can look up the variables on the Modernizr site, or look at my detect.html script, which uses them all.)

				 6. Use the feature or an alternative. Normally, you’ll use Modernizr to check for a feature. If that feature exists, you’ll use it. If not, you’ll implement some other alternative.

				As an example, the following page uses the Modernizr script to test whether the current browser supports the HTML5 video tag. If so, it also checks for support of the two main video codecs.

				<!DOCTYPE HTML>

				<html lang = “en”

				class = ”no-js”>

				<head>

				<title>checkVideo.html</title>

				<meta charset = ”UTF-8” />

				<script type = ”text/javascript”

				src = ”modernizr-1.6.min.js”></script>

				<script type = ”text/javascript”>

				function init(){

				var output = document.getElementById(”output”);

				if (Modernizr.video){

				output.innerHTML =

				”Your browser supports video
 ”;

				if (Modernizr.video.h264){

				output.innerHTML += ”H.264 codec supported
”;

				} // end if

				if (Modernizr.video.ogg){

				output.innerHTML +=

				”Ogg Theora video codec supported
”;

				} // end if

				} else {

				output.innerHTML = ”Your browser does not support the HTML5 video tag”;} // end if

				} // end init

				</script>

				</head>

				

				<body onload = ”init()”>

				<h1>Check for HTML5 Video</h1>

				<div id = ”output”>

				checking video...

				</div>

				</body>

				</html>

				Figure 1-2 shows the video-checking script in action.

				
					Figure 1-2

				

				[image: 9781118012529-fg0102.eps]

				[image: TechnicalStuff.eps] This example simply checks for the support for the video elements. A more sophisticated example would actually embed the appropriate tags or code in the page to display a video according to the browser’s capabilities.

				For more information on the video tag, please check Part 3.

				Picking a Suitable Browser

				If you’re going to be writing HTML5 code, you’ll probably want to view your pages in a browser that interprets HTML5 correctly. That’s not as easy as it sounds. HTML5 isn’t really one specification, but a number of different standards. The various browsers have differing versions of support. It’s best to have a wide variety of browsers to see which one works best for you. There are several browsers currently available, which all have varying levels of HTML5 support.

				While there are a large number of browsers available, most are based on a smaller set of tools called rendering engines. It’s the rendering engine that really supports features or not. Here is a list of the primary engines, the browsers that use them, and how well they support HTML5:

				[image: check.png] Gecko (Firefox): The Gecko engine is the main engine of Firefox, Mozilla, and a number of other related browsers. It has support for many, but not all features. Gecko 2.0 is expected to include most features of HTML5, but that version of the engine is not yet released (and will probably be the foundation of Firefox 4). Although Firefox is a well-known and respected browser in the Web development community, it does not (yet) have extremely good support for HTML5.

				[image: check.png] Trident (Internet Explorer): The various forms of Internet Explorer all use the Trident engine. So far, this engine has the weakest support of HTML5 features among all the major browsers. IE9 promises to have much more complete support for HTML5, but even this version is projected to be missing some key features, including advanced form element support and geolocation.

				[image: check.png] WebKit: The WebKit engine was originally created by Apple based on code from the open source KHTML project. Apple then released the code as open source, where it became the foundation of a number of browsers. The Safari browser on Macs, iPhones, and iPads all uses the WebKit engine. WebKit is also the foundation of the Google Chrome browser, and the browser on the Android mobile platform. WebKit has become the standard rendering engine for mobile platforms. If you want to see how your pages will look on mobile platforms, you should check with a WebKit-based browser like Chrome or Safari. WebKit has the widest support for HTML5 elements, although it still doesn’t support everything. Most of the code in this book was tested in Google Chrome 6, which supports the current WebKit rendering engine.

				[image: check.png] Presto: The Presto engine is the engine underlying the Opera family of browsers. Opera has long been considered a technically superior browser, but it has never gotten the market share it should. A number of gaming and portable browsers are based on Presto, including the Wii Internet Channel, the Nintendo DS Browser, and Opera Mobile, available on numerous cellphones and portable devices.

				[image: TechnicalStuff.eps] Browser specifications are likely to change. It’s likely that new features have been added by the time you read this book. You should always test your page in as many browsers as you can, so you won’t be surprised. You might also check http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(HTML5. This Wikipedia site tends to have the latest information on what features of HTML are supported by which browser.

				Using Chrome Frame to Add Support to IE

				It might be depressing to note that the browser with the largest market share has the least support for HTML5 standards. However, there is an answer. Google Chrome Frame is a special tool that embeds the Chrome rendering engine inside IE. To use it, put the following code in your page:

				<!DOCTYPE html>

				<html lang=”en”>

				<head>

				 <title>ChromeFrame.html</title>

				 <meta charset=”UTF-8”>

				<script type=”text/javascript”

				src=”http://ajax.googleapis.com/ajax/libs/chrome-frame/1/CFInstall.min.js”></script>

				</head>

				<body onload = ”CFInstall.check()”>

				</body>

				</html>

				The rest of your code can be written assuming the user has Chrome (which has excellent support for HTML5). This is the best way to use HTML5 in IE until Microsoft decides to add meaningful support to HTML5.

			

		

	
		
			
				Part 2

				HTML Foundations

				HTML5 is the latest of a series of HTML versions. To get the most out of HTML5, you need to know how it fits in with the other versions of HTML that came before it.

				Most of this chapter is a review of standard HTML ideas. If you’ve never written any HTML by hand before, you’ll want to look it over carefully. If you’re already a code ace, you can probably just skim over it.

				The content of this chapter forms a baseline. The code described here works in all modern browsers. As much of the HTML5 content is still browser-dependent, begin with a standard set of tags and elements that work on every browser. This chapter describes this lowest-common-denominator HTML syntax, which is expanded upon throughout the book.

				[image: tip.eps] This chapter is really an overview. If you’re totally new to HTML, you might consider looking over one of my other books — HTML, XHTML, and CSS All–in-One For Dummies, 2nd edition (Wiley). It goes into great detail on HTML, CSS, and lots of other good stuff. That book is a standard reference for today’s Web. The book you’re holding now is really more about where the Web is going in the near future.

				[image: Remember.eps] Be sure to check out my Web site for working examples of every code fragment in the book: www.aharrisbooks.net/h5qr.

				In this part . . .

				[image: check.png]Reviewing HTML

				[image: check.png]Comparing HTML5 to XHTML and HTML 4

				[image: check.png]Building the Basic Page

				[image: check.png]Adding Images and Links

				[image: check.png]Formatting Data with Lists and Tables

				[image: check.png]Validating Your Code

				[image: check.png]Building Forms

				Exploring HTML and XHTML

				HTML has been around for a while now, and it has been continuously changing. Ideas that were once cutting edge (like using frames) are now considered out of date. HTML began as a very simple language, which became more complex as it was used more. HTML5 tries to make HTML simple again. The following ideas have driven the development of HTML5.

				[image: check.png] Make the code as clean as possible. Things will get complicated fast. HTML code should be clean and easy to read. It shouldn’t have any unnecessary features, and it should be formatted in a way that is easy to follow.

				[image: check.png] Separate structure from design. Try to keep your HTML code focused on the structure of the code (what it means) rather than the display (how it looks). This keeps the HTML code relatively clean and easy to work with.

				[image: check.png] Use HTML for structure. Avoid tags like and <center> in your HTML code, as they are difficult to change with JavaScript, clutter up your code, and are not allowed in some forms of HTML. Use HTML code to determine the meaning and structure of the page.

				[image: check.png] Use CSS for design. You can keep the HTML a lot easier to work with if you leave the design work (colors, fonts, positions, and so on) to CSS. If you use CSS for design, your JavaScript will have a lot more ability to change how the page works because you can also modify CSS through JavaScript.

				[image: check.png] Avoid use of tables and frames for layout. These techniques were the best tools Web designers had at one point, and so they were frequently used to provide visual structure to Web pages. However, modern CSS approaches provide for much cleaner code that’s easier to work with even when things get more advanced.

				[image: check.png] Start with valid code. A lot of times, a page will look perfectly fine, but there will be some mistake hidden away that will rear its ugly head at the worst possible time (usually when you’re trying to show something to a client). It’s best to start your projects with HTML that you know is valid. See “Validating Your Pages,” later in this part, for more on ensuring the HTML foundation is in tip-top shape.

				Appreciating HTML

				HTML 4 was the dominant form of HTML for a long time. It was popular for some very good reasons:

				[image: check.png] Universal support: By the time HTML 4 came out, there was really only one dominant browser — Internet Explorer 6 (IE6). Since the vast majority of users had some form of this browser, any code that would work for this browser was considered standard. In fact, the standards we call HTML 4 are really the parts of HTML 4 that were supported by IE6.

				[image: check.png] Reasonable control: HTML 4 enhanced older versions of HTML with some nice features like font support, the ability to change colors, and some support for multimedia. Frames added a certain amount of layout support, although they brought their own problems.

				[image: check.png] Ease of use: The HTML 4 standard itself was pretty easy to learn. It wasn’t too much trouble until you tried to do advanced stuff like table-based layouts. Then the simplicity of the language began to hurt because it just couldn’t do some things.

				[image: check.png] Forgiving: HTML was designed to be very easygoing. If you did something wrong, the browser would simply guess what you were trying to say. Often, the guesses were correct.

				Emergence of XHTML

				HTML 4 was popular for a long time, but it wasn’t perfect. As Web development moved from a hobby enterprise to become the foundation of serious applications, the weaknesses of HTML 4 became more apparent. While HTML 4 never died away, a new standard called XHTML (eXtensible HyperText Markup Language) emerged among elite Web developers. XHTML was intended as a more serious answer to HTML 4. While HTML 4 was easy to get along with, it was considered sloppy by professional programmers. XHTML (especially the strict version) was much more precise and predictable, making it popular among higher-end developers. Here are the key features of XHTML Strict:

				[image: check.png] More demanding syntax: XHTML is case-sensitive, it requires all attributes to be encased in quotes, and it has very strict rules for how tags are nested. Every tag must have an explicit closing tag. (Even one-off tags like require a special closing character.) This more precise syntax made XHTML a little more exacting to program than HTML 4, but the results were far more predictable.

				[image: check.png] Validation support: The main advantage of all the strictness in XHTML was support for validation. The HTML 4 standard was so loosey-goosey that nobody could tell if a page was formatted incorrectly. With XHTML, it became possible to run a special validation program that could find structural errors in your code.

				[image: check.png] Separation of content and layout: HTML was originally intended only to describe the content of a document. By the time HTML 4 came out, it added numerous tags for handling the visual aspects of a document. The and <center> tags were prime examples of this. While these tags did their jobs, they did not provide enough control, and moved away from the central idea of HTML. XHTML strict removed all layout tags.

				[image: check.png] Rising importance of CSS: Cascading Style Sheets (CSS) were available in HTML 4, but they were not always used properly because HTML provided some alternatives. When XHTML eliminated layout tags, CSS moved from an optional enhancement to a central part of Web development.

				[image: check.png] XML syntax: Early promoters of XHTML emphasized that XHTML followed the syntax of the XML standard. While this is true, it never turned out to be quite as important as people thought it might. The XML syntax made it easier for automated programs to manipulate Web pages as data, but that’s not a feature that most Web developers are terribly concerned about.

				It’s alive, and it’s HTML5!

				XHTML Strict was a really great idea, but it never really caught on. Professional developers (especially those who were integrating programming languages like JavaScript and PHP into their web projects) loved XHTML Strict. Top designers enjoyed the newfound freedom of CSS. However, XHTML was a little too unforgiving for most developers, and the vast majority of pages never bothered to validate to the new standards. When the time came to devise a new standard, the W3C finally decided to support HTML5 rather than XHTML 2.

				HTML5 is not really a rejection of XHTML. It has some of the best features of both HTML 4 and XHTML:

				[image: check.png] Simple doctype: The doctype definition (the boilerplate code that begins every Web page) for XHTML was really complicated. Even people who taught classes and wrote books about it (like, um, me) never memorized the doctype, but had to copy and paste it every time. HTML5 has a very simple and clean document definition, and it’s once again possible to write a page with a text editor from memory.

				[image: check.png] Separation of content and style: HTML5 does not include the style tags from HTML 4 (font, center, and so on), requiring developers to use CSS for all styling. Likewise, frames and table-based layout are discouraged in favor of CSS-style layout.

				[image: check.png] Validation support: Validation turned out to be a very useful tool, so HTML5 can be validated just like XHTML. The W3C validator (http://validator.w3.org; see “Validating Your Pages” later in this part) supports HTML5 now, and other validation tools are coming online. Validation is an easy way to eliminate goofy coding mistakes, and can greatly simplify your coding once you start adding programming support to your documents.

				[image: check.png] Strict tradition: The coding standards of HTML5 are more like XHTML than HTML 4. While it’s still possible to use sloppy coding in HTML5, most developers use the XHTML strict standards to make the code easier to read and more predictable.

				[image: tip.eps] All the code in this book adheres to the stricter style standards of XHTML.

				[image: check.png] Tighter integration of CSS and programming languages: Perhaps the most important feature of HTML5 is its humility. While HTML is still the central language of the Internet, HTML5 is really about distributing control to other languages. HTML5 is designed as a central glue that ties together many other technologies: CSS for visual layout, JavaScript for client-side programming, server-side languages like PHP for server control, and databases.

				[image: check.png] New capabilities: Of course, HTML5 presents new capabilities, which are the primary focus of this book. Many of the new features are not technically HTML but advances in the various other related technologies (integrated databases, new JavaScript syntax, new CSS features, and so on).

				Setting up a basic HTML page

				The basic HTML5 page is quite easy to build. Just open up any text editor and add the following code:

				<!DOCTYPE HTML>

				<html lang = “en”>

				<head>

				<!-- basic.html -->

				<title>basic.html</title>

				<meta charset = ”UTF-8” />

				</head>

				<body>

				<h1>Level One Headline</h1>

				<p>

				This is a paragraph.

				Note that the text is automatically wrapped.

				</p>

				

				</body>

				</html>

				This page, shown in Figure 2-1, is not difficult to create:

				[image: tip.eps] I tend to bump up the font sizes in these screenshots when I can — doing so makes the page a bit easier to read. Be sure to look at the actual page on the Web site (www.aharrisbooks.net) to see exactly how it works.

				
					Figure 2-1

				

				[image: 9781118012529-fg0201.eps]

				To build a basic HTML5 page, follow these steps:

				 1. Begin with the doctype. Modern versions of HTML (XHTML and HTML5) have a special attribute called the doctype, which indicates which form of HTML is being used. The doctype for XHTML was extremely confusing, and HTML 4 didn’t have a doctype at all. Set the doctype to HTML5 with this tag: <!DOCTYPE HTML>. The doctype definition should be on the first line of your Web site. If you leave this out, you will still probably be able to use HTML5 features, but validators will have to guess about which form of HTML you’re using. (Consult any science fiction movie to see what happens when computers make guesses about things.)

				 2. Add the <html> tag. This special tag indicates the beginning of a Web page. It’s best to indicate which language the page is written in. Specify lang = “en” for English. Be sure to have a corresponding </html> tag at the bottom of the page. This indicates the end of the page you began with the <html> tag at the beginning of the page.

				 3. Create a <head> area. The head is something like the engine compartment of a car. People don’t usually go there, but there’s lots of important machinery. The head is empty in this simple example, but it will fill up with JavaScript and CSS goodness soon enough.

				 4. Specify the character set. While this isn’t strictly necessary, it’s considered good form to let the browser know what kind of characters to use when displaying your page. Pages written in English should generally use UTF-8, so indicate this with the following code: <meta charset = “UTF-8” />.

				 5. Indent your code. Browsers don’t care if your code is indented, but it’s a very good habit to get into. Generally, I indent every time I open a new element that isn’t closed on the same line. Then it’s easy for me to line up my beginning and ending tags to ensure the page is well formed and I didn’t miss any ending tags.

				 6. Add a comment. Comments aren’t strictly required, but they’re very good form. HTML comments begin with <!-- and end with -->. Typically the comments in this book will be a brief summary of the purpose of the page. Comments can last over several lines.

				 7. Put in a title with <title></title>. This tag allows you to specify a title for your page. The title typically appears in the Web browser’s title bar, and will also often appear in search engine results for your page. In this book, I generally put the filename in the title, so you can easily match the programs on the book’s companion Web site with those in the book code listings.

				 8. Include the bulk of the page in the <body> tags. If the head area is the engine compartment, the body is the passenger space. Most of the text that’s visible on the Web site is part of the body. The </body> tag is usually right before the </html> tag, as you’ll typically finish off the body and then close off the HTML.

				 9. Use heading tags to describe your outline. The <h1> tag is an example of a heading. The heading tags all begin with h followed by a number indicating the strength of the heading. All your main topics should be denoted by level-one headings. Subtopics should be level-two headings (<h2>). The heading levels go all the way to h6, but it’s unusual to use anything smaller than level 3.

				 10. Place most of the text into paragraphs. Although HTML doesn’t require use of paragraph tags, they’re still a very good idea. Place every paragraph inside a <p></p> pair. This will make it much easier to manage the look and behavior of your text later.

				 11. Save your file with the .html extension. Be sure to save the file with a .html extension. You can then load the file into a browser to see how it looks.

				[image: Remember.eps] Some of these elements (especially the headings) will tend to have a particular visual style. The default styles are just there as guidelines. Avoid the temptation to pick headings based on their appearance. When you use CSS in Part 5, you’ll be able to make any heading look however you want.

				Fleshing Out Your Page

				If you’ve used HTML 4 or XHTML, you’ll find HTML5 very familiar. Most of your text will go into paragraphs, marked with the <p></p> pair. Larger sections may be enclosed in divisions, using the <div></div> pair. You’ll then add various other elements: images, links, lists, tables, and forms. HTML5 adds a few new elements, but for now, stick with the base that works in every browser.

				Adding images

				Web pages are capable of far more than text. Figure 2-2 shows a page with an embedded image.

				
					Figure 2-2

				

				[image: 9781118012529-fg0202.eps]

				Images are pretty easy to add to Web pages. Here’s the code for adding the image:

				<!DOCTYPE HTML>

				<html lang = “en”>

				<head>

				<title>imageDemo.html</title>

				<meta charset = ”UTF-8” />

				</head>

				<body>

				<h1>Image Demo</h1>

				<p>

				<img src = “monkey.png“

				alt = “Picture of a happy monkey“ />

				</p>

				<h2>This page has a picture of a monkey</h2>

				<p>

				This monkey is called ‘Suzanne.‘ It‘s a default

				object in an incredible free 3D modeling tool

				called ‘Blender.‘

				</p>

				</body>

				</html>

				Adding an image is relatively easy. Here’s what you do:

				 1. Identify the image you want to use. Of course, you have to have access to an image before you can use it. Be sure you have permission to use the image in your site.

				 2. Modify the image if necessary. You may need to adjust the image for use on the page. It’s best to resize your images before you use them on the Web. You can use commercial image-manipulation software, but I prefer IrfanView or Gimp for this kind of work. Links to both of these free programs are available on my Web site (www.aharrisbooks.net/h5qr/resources.html).

				 3. Choose your image type. Web browsers can display .jpg, .gif, and .png images. If your image is in another format, use a tool like IrfanView or Gimp to change it to one of these Web-friendly formats.

				 4. Put your image in the right place. The image file should be in the same directory as the HTML file. That way, when you post your page to the server, it will be easy to move the image as well.

				 5. Build your page as normal. The image will be placed with a tag embedded into the body.

				 6. Use the tag to indicate the image. This tag needs to be embedded inside a paragraph or div if you want the page to validate correctly.

				 7. Use the src attribute to indicate the file containing the image. If the image file is in the same directory as the Web page, all you need is the name of the image. If the image file is elsewhere on the Internet, you can use a complete URL like http://www.aharrisbooks.net/jad/jad_2/monkey.png.

				 8. Include the alt attribute describing the image. The alt attribute contains text describing the image. This is important for those who cannot see your image — users with visual impairments, people who have turned off images to increase browsing speed, and search engine bots, which can’t see the images but read alt tags.

				 9. End the image tag with a /. The img tag is a special tag that doesn’t require (or allow) an end tag. The slash character at the end of the tag indicates that the tag is a one-shot tag that serves as its own ending tag.

				Including links

				The H in HTML stands for hypertext, which is a fancy term for links. Links are one of the things that make the Internet so cool and powerful. It’s very easy to add a link to a Web page. Figure 2-3 shows an example with two different kinds of links in it.

				
					Figure 2-3

				

				[image: 9781118012529-fg0203.eps]

				The code for building the links is reproduced here:

				<!DOCTYPE HTML>

				<html lang = “en”>

				<head>

				<title>linkDemo.html</title>

				<meta charset = ”UTF-8” />

				</head>

				<body>

				<h1>Link Demo</h1>

				<h2>Relative reference to an image</h2>

				<p>

				This paragraph has a link to a

				monkey picture.

				</p>

				

				<h2>Absolute reference to a web page</h2>

				<p>

				This paragraph contains a link to

				

				Andy’s main site.

				

				</p>

				</body>

				</html>

				Links are more than they appear. They display text on the page, but when the user clicks the text, the browser loads a different page on the Internet. Building links into your pages is quite straightforward.

				 1. Begin with an ordinary page. Links are usually embedded directly into your page. Links cannot stand on their own, but are usually part of some other block-level element like a paragraph.

				 2. Use the <a> tag to indicate a link. The a stands for anchor. (I know; it should be the link tag, but that term is used for something else in HTML.)

				 3. Utilize the href attribute to describe where the link will go. Most links have an href (hypertext reference) attribute, which describes what page should load when the user clicks the link. The href can be a relative or absolute address.

				 • Relative: The href can be a simple filename. If you are linking to a file in the same directory as the Web page you’re writing, you can simply indicate the filename. This is known as a relative reference because the browser assumes the linked file is in the current directory of the current server. The first link of my example points to the monkey image in the same directory as the page itself.

				 • Absolute: The href can also be a complete Web address. If you prefer, you can give the entire address of a Web site. This is known as an absolute reference because it explains how to find the file regardless of the location of the current page. If you want to point to pages or files on somebody else’s server, you must use absolute references.

				 4. Place the visible text between the <a> and tags. Any text that appears between the <a> and the tags will be displayed on the screen in a format that indicates a link. The default format is blue underlined text. You find out how to change that (and many other display tricks) in Part 5.

				The file you link to can be a Web page or anything else the browser can read. The first link on linkDemo.html points to an image file, and the second points to a Web page. Most links point to Web sites, but you can also link anything the browser can read, including images.

				Making lists and tables

				Pages are often about data, and data is often organized into lists. Figure 2-4 illustrates a page with a series of lists on it.

				
					Figure 2-4

				

				[image: 9781118012529-fg0204.eps]

				The page in Figure 2-4 shows two main types of lists and a combination list that nests one type into another. Here’s the code used to create the lists:

				<!DOCTYPE HTML>

				<html lang = “en”>

				<head>

				<title>listDemo.html</title>

				<meta charset = “UTF-8” />

				</head>

				<body>

				<h2>Languages</h2>

				

				English

				Spanish

				Japanese

				

				

				<h2>Counting in English</h2>

				

				one

				two

				three

				

				

				<h2>Counting in Other Languages</h2>

				

				Spanish

				

				uno

				dos

				tres

				

				

				

				Japanese

				

				ichi

				ni

				san

				

				

				

				</body>

				</html>

				Lists, like most HTML elements, are quite easy to build.

				 1. Designate the beginning of the list with or . The tag indicates an unordered (bullet) list, and the tag is used to describe an ordered (numbered) list. When you use CSS (described in Part 5) to style your lists, you can have many different kinds of marking, including numbers, Roman numerals, bullets, or custom graphics.

				 2. Mark each item with an pair. The tag is used to indicate a list item. All elements of a list should be enclosed in the tag.

				 3. (Optional) Nest lists inside each other. The of one list can contain an entire new list. This is the technique used to build the nested lists in the example. Just be sure to close off one list before beginning a new one. Proper indentation helps you keep track of how deeply you’re nested.

				Utilizing tables

				Sometimes you will encounter data that is best presented in a tabular format. HTML has a full-featured table system for exactly this purpose. For example, consider the table displayed in Figure 2-5.

				
					Figure 2-5

				

				[image: 9781118012529-fg0205.eps]

				The basic structure of a table in HTML format is reasonably easy to understand. Here’s the code that created basicTable.html:

				<!DOCTYPE HTML>

				<html lang = “en”>

				<head>

				<title>basicTable.html</title>

				<meta charset = “UTF-8” />

				<style type = “text/css”>

				table, td, th {

				border: 1px solid black;

				}

				</style>

				</head>

				

				<body>

				<h1>A Basic Table</h1>

				<h2>HTML Superheroes</h2>

				<table>

				<tr>

				<th>Hero</th>

				<th>Power</th>

				<th>Nemesis</th>

				</tr>

				

				<tr>

				<td>The XMLator</td>

				<td>Standards compliance</td>

				<td>Sloppy Code Boy</td>

				</tr>

				

				<tr>

				<td>Captain CSS</td>

				<td>Superlayout</td>

				<td>Lord Deprecated</td>

				</tr>

				

				<tr>

				<td>Browser Woman</td>

				<td>Megacompatibility</td>

				<td>Ugly Code Monster</td>

				</tr>

				

				</table>

				</body>

				</html>

				When you examine this code, you can see that a table is simply a set of carefully nested tags. The process for building a table is not difficult, but it does require some forethought.

				 1. Plan your table first. It’s much easier to build a table in HTML if you already know how it will be structured. You should know how many columns you will have, and which rows or columns will be headlines. It’s a good idea to sketch out your table on paper if you’re not sure of these things.

				 2. Begin the table with the <table> tag. The <table></table> pair encloses the entire table.

				 3. Create a table row with <tr>. The table is defined with a series of rows. Use the <tr></tr> pair to enclose each row of data.

				 4. Signify headings with <th>. Some cells will contain headings, and some will contain actual data. Often, the top row will contain headings (sometimes the left-most column will, too). Use the <th></th> pair to signify text that should be treated as a heading cell. By default, such cells are generally bolder and centered, but that can be changed with CSS.

				 5. Specify ordinary data cells with <td>. The <td></td> pair is used to specify an ordinary data cell. Most of the cells in your table will be specified by td tags.

				 6. Keep the number of cells consistent. Each row should have the same number of cells. (Although there are techniques that allow you to extend a cell across multiple rows or columns, I stick to basic techniques in this introductory part.)

				 7. Add CSS as needed. Tables do have a basic format, but as usual, you can change things with CSS. I added borders to this example, so it’s easier to see the table in Figure 2-5.

				 8. Do not use tables for layout. The early versions of HTML did not have adequate support for layout (creating columns and precise page layout). Clever HTML developers came up with all sorts of hacks using tables to simulate a layout system. CSS (covered in Parts 5 and 6) provides all the page layout techniques you need, so use of tables should be restricted to its original purpose: presenting tabular data.

				Making a Form

				From the beginning, Web pages have had the ability to gather data from users. HTML has a standard but quite useful set of form elements that you can use to get input. You can’t do anything with the data in plain HTML, but that’s what JavaScript and PHP are for. You’ll write a number of programs to extract data from Web forms, so it’s a good idea to know how they work. Figure 2-6 shows a form containing all the main HTML form elements you might encounter.

				
					Figure 2-6

				

				[image: 9781118012529-fg0206.eps]

				The page in Figure 2-6 has a lot of code on it compared to the earlier examples in this part. I show you the entire code here so you can see how it fits together, and then I explain how the various parts work.

				<!DOCTYPE HTML>

				<html lang = “en”>

				<head>

				<title>formDemo.html</title>

				<meta charset = ”UTF-8” />

				</head>

				<body>

				<h1>Form Demo</h1>

				<form>

				<fieldset>

				<legend>Text input</legend>

				<p>

				<label>Text box</label>

				<input type = “text“

				id = “myText“

				value = “text here“ />

				</p>

				<p>

				<label>Password</label>

				<input type = “password“

				id = “myPwd“

				value = “secret“ />

				</p>

				

				<p>

				<label>Text Area</label>

				<textarea id = “myTextArea“

				rows = “3“

				cols = “80“>Your text here</textarea>

				</p>

				</fieldset>

				

				<fieldset>

				<legend>Selecting elements</legend>

				<p>

				<label>Select List</label>

				

				<select id = “myList“>

				<option value = “1“>one</option>

				<option value = “2“>two</option>

				<option value = “3“>three</option>

				<option value = “4“>four</option>

				</select>

				</p>

				

				<p>

				<label>Check boxes</label>

				<input type = “checkbox“

				id = “chkEggs“

				value = “greenEggs“ />

				<label for = “chkEggs“>Green Eggs</label>

				

				<input type = “checkbox“

				id = “chkHam“

				value = “ham” />

				<label for = “chkHam”>Ham</label>

				</p>

				<p>

				<label>Radio buttons</label>

				<input type = ”radio”

				name = ”radSize”

				id = ”sizeSmall”

				value = ”small”

				checked = ”checked” />

				<label for = ”sizeSmall”>small</label>

				

				<input type = ”radio”

				name = ”radSize”

				id = ”sizeMed”

				value = ”medium” />

				<label for = ”sizeMed”>medium</label>

				<input type = ”radio”

				name = ”radSize”

				id = ”sizeLarge”

				value = ”large” />

				<label for = ”sizeLarge”>large</label>

				</p>

				</fieldset>

				

				<fieldset>

				<legend>Buttons</legend>

				<p>

				<button type = ”button”>

				standard button

				</button>

				

				<input type = ”button”

				value = ”input button” />

				<input type = ”reset” />

				<input type = ”submit” />

				</p>

				</fieldset>

				</form>

				</body>

				</html>

				As you can see, form elements follow many of the same rules as the tags you’ve already seen, but there are some differences.

				[image: tip.eps] The form elements shown in this example are available in all current versions of HTML. See Part 4 for information on new form elements available in HTML5.

				Form structure tags

				These tags are used to help manage the general structure of the form:

				[image: check.png] <form>: The <form> tag is the actual tag containing the form. All the form elements are enclosed inside this tag. The <form> tag should also include the action = “” attribute. This indicates that you do not plan to call a server-side script when the form is submitted.

				[image: check.png] <fieldset>: This is a special tag that allows you to group a series of input elements together. It is not required, but it can make complex forms easier to navigate. By default, a fieldset has a single border around it, but you can change this with CSS.

				[image: check.png] <legend>: A legend can be added to a fieldset. It acts as a label for the entire fieldset.

				[image: check.png] <label>: The <label> tag marks text as the label associated with a particular input element. You can use the optional for attribute to specify which input element the label is associated with. Label tags are normally used to make CSS styling of forms easier to manage.

				[image: tip.eps] The fieldset, legend, and label tags are not required, and frankly, they weren’t used much in earlier forms of HTML. These tags are used more commonly in XHTML and HTML5, where use of tables to organize the physical layout of the page is discouraged. These tags help you organize the page so it’s easier to lay out with CSS. Proper use of these tags and CSS often makes your forms much easier to work with than the older table-based hacks.

				Constructing text input

				Many of the form elements are based on the input tag. This workhorse is a general-purpose tag used to make a number of interesting input objects. The type attribute is used to determine what type of element the tag creates on the page. By far, the most common input element is the basic text box. Its code looks like this:

				<input type = “text”

				id = “myText”

				value = “text here” />

				Building it is straightforward.

				 1. Create an input element. The <input> tag creates the general structure of the element.

				 2. Set the type to “text”. This indicates you are building a standard text element, not something more elaborate.

				 3. Add an id attribute. The id attribute allows you to name the element. This will be very important when you add JavaScript to the page because your JavaScript code will use the ID to extract data from the form.

				 4. Add default data. You can add default data if you want, using the value attribute. Any text you place in the value will become the default value of the form.

				The text element will place a small box on the screen. When the user selects the box, the cursor will change to an I-beam, and the user will be able to type text into the box.

				Of course, if you want to do something with this text, you’ll need to write some code. See Bonus Part 1 for information on using JavaScript to read data from forms.

				Creating password fields

				The standard input element has a cousin that is sometimes used — password. The code for the password looks a lot like the code for a standard input element.

				<input type = “password”

				id = “myPwd”

				value = “secret” />

				The password field looks very similar to the ordinary text field, but it does have one primary difference. When the user types data into the text field, the actual contents of the field are replaced by asterisks. This prevents evil henchmen from looking over your shoulders to discover your password.

				[image: Warning.eps] The password field doesn’t provide any real security to speak of. When it is used to send a request to a Web server, that request is normally sent in the clear, where those evil henchmen are sure to find it. In JavaScript processing, the situation is even worse because the code used to retrieve the data will be freely available to the browser. JavaScript is not the language to use if you want to keep a lot of secrets.

				Erecting a multiline text box

				Sometimes you’ll need the ability to enter several lines of text. The text area element is perfect for this situation. Its syntax is a bit different from the input element you’ve seen so far:

				<textarea id = “myTextArea”

				rows = “3”

				cols = “80”>Your text here</textarea>

				To make your own text area:

				 1. Begin with the <textarea> tag. This tag indicates the beginning of a multiline text box.

				 2. Specify the number of rows. Indicate the number of rows (or lines) of text you want the text area to contain. Larger boxes accommodate more text but require more room on the screen.

				 3. Indicate the number of columns. The number of columns shows how wide (in characters) the text box should be. 80 characters is typical for a page-width form.

				Forming drop-down lists

				Drop-down lists are a common feature in Web pages. They are nice because they allow the programmer to specify a number of choices. The user can choose a selection without typing. Drop-down lists are especially nice because they don’t require a lot of screen real estate — the options are visible only while the user is selecting them.

				Drop-down lists have one more incredibly important attribute; they prevent certain kinds of errors. The limited options make the response very predictable. When you allow the user to type information into a form, it can be very difficult to check for all the crazy things the user might enter. With a list box, you’ve already predetermined all the possible answers. There’s a lot less that can go wrong.

				In HTML/XHTML, drop-down lists are created by two types of object. The overall structure uses the <select> tags, while each of the possible choices has its own <option> tag. Here’s how it works:

				<select id = “myList”>

				<option value = “1”>one</option>

				<option value = “2”>two</option>

				<option value = “3”>three</option>

				<option value = “4”>four</option>

				</select>

				The select list is a real powerhouse, so you should know how to make it:

				 1. Create the <select> element first. The container for the list will be a <select> element. The entire list is encased in the <select></select> pair.

				 2. Give the select element an ID. You’ll use this ID to refer to the element in code.

				 3. Add an option element to the select element. I normally indent the options to remind myself they are part of the select object.

				 4. Give each option a value. The value will be the response sent to a program when the user chooses an option. The user will not necessarily see the value.

				 5. Indicate the text the user will see. The text that the user will see for the option goes between the <option> and </option> tags. This can be different from the value, or the same. (That will make more sense after you do some JavaScript coding.)

				 6. Add as many options as you want. Create a new option object for each choice you want to have available in the list.

				[image: tip.eps] Select boxes don’t have to have the drop-down behavior. If you want the box to take up more vertical space on the page, just specify the number of rows with the size attribute.

				Making checkboxes

				Sometimes you’ll have some kind of information that can be true or false. The checkbox element is perfect for this kind of input because the user can click to select or deselect the option. Checkboxes are another variant of the versatile input tag:

				<p>

				<label>Check boxes</label>

				<input type = “checkbox”

				id = “chkEggs”

				value = “greenEggs” />

				<label for = “chkEggs”>Green Eggs</label>

				

				<input type = “checkbox”

				id = “chkHam”

				value = “ham” />

				<label for = “chkHam”>Ham</label>

				</p>

				When you build a checkbox, you’ll typically also attach a label to the text box. This way, the user can click the checkbox or the associated label to make a selection. Checkboxes often appear in groups, but they are independent of each other. Here’s how to build a checkbox:

				 1. Begin with an input element. Checkboxes are just another form of the input element.

				 2. Set the type attribute to checkbox. This clarifies that the input element will be a checkbox. A small checkable box will be placed on the screen.

				 3. Give the element an id. Like all form elements, you’ll need an id field so that your code can work directly with the element.

				 4. Specify a value. You can attach a value to a checkbox. The user won’t see the value (unless you choose to make the label look just like the value).

				 5. Add a label. Checkboxes really need to have a label associated with them so that the user will understand what the checkbox is about. The label of a checkbox is usually applied to the right of the checkbox.

				 6. Add the for attribute to the label. The label has a special attribute called for, which allows you to specify which input element the label corresponds to. Place the id value of the checkbox into this attribute of the label. This is especially useful for checkboxes because in most browsers the user can click either the label or the checkbox to trigger the selection. Associating the label to the checkbox gives the user a larger target to click on, and makes the form easier to use.

				[image: tip.eps] HTML forms don’t do anything on their own. You’ll need to add some sort of programming in JavaScript or HTML to make the form do something.

				Popping in radio buttons

				On the surface, radio buttons seem a lot like checkboxes, but they are different in a number of important ways.

				[image: check.png] Radio buttons occur only in groups. You can have one checkbox on a form, but radio buttons make sense only when they are placed in groups.

				[image: check.png] One element of a radio group is selected. In a radio button group, selecting one button deselects the others. It’s like a car radio, where clicking one of the preset buttons deselects the others. (It’s really like the old car radios where if the selected station was physically pushed in, the others would pop out. I’m not going to mention that, though, because it would make me seem old.)

				[image: check.png] There should always be one element selected. When you build a radio group, you should always make one element of the group selected. If not, any programs attached to your form will get confused.

				[image: check.png] The id of each radio button is still unique. Each id on a Web page must be unique, and the id elements of each radio button will follow the same rules as usual.

				[image: check.png] Each radio element also has a name attribute. The name attribute is used to specify the entire group of radio objects.

				[image: check.png] All radio buttons in a group have the same name. HTML uses the name attribute to figure out which group a radio button is in, and to ensure that only one button in a group is selected.

				Building a radio group is quite similar to creating checkboxes, but there are a few differences.

				 1. Begin by creating an input element. As usual, the input element provides the basic foundation.

				 2. Set the type to radio. Use the type attribute to form radio buttons.

				 3. Give each element a unique id. As usual, apply a unique id to each radio button.

				 4. Give all buttons in a group the same name. Use the name attribute to identify the buttons in a group.

				 5. Consider visual grouping as well. The user won’t be able to tell which buttons are part of a group by the HTML formatting alone. It might be best to use fieldsets or other formatting tricks to help the user know which buttons are in which group. All buttons in one group should be physically near each other.

				 6. Make one of the buttons checked (selected) by default. Apply the checked = “checked” attribute (provided by the department of redundancy department) to one of the elements so it will start out checked.

				Putting in action buttons

				One more critical form element is the ubiquitous button. Buttons are great because they just sit there looking irresistible. Users normally expect something important to happen when they click a button. There are actually three main types of buttons, although they all look identical to the user.

				[image: check.png] Standard button: A standard button just looks like a button. These buttons are usually used in JavaScript programming to trigger some kind of action on the client end. You use this type of button a lot in JavaScript.

				[image: check.png] Submit button: This button is normally used in server-side programming. It packages up all the data in the form and submits it to a program that lives on a remote Web server.

				[image: check.png] Reset button: This special button type has built-in behavior. When the user clicks a reset button, all the data in the form is reset to its original default values.

				In addition to the three types of buttons, button elements can be created in two different ways. The amazing input element can be used to build a button as well, like this:

				<input type = “button”

				value = “input button” />

				When used in this way, the value property becomes the label of the button, and the type property indicates which type of button you intend to build. It isn’t necessary to add a label to a button because the label is implied.

				This is the original way buttons were created in HTML, and it’s still commonly used. But buttons aren’t really used for input; they’re used to specify that the user wants to do something. For that reason, a new button syntax has evolved:

				<button type = “button”>

				standard button

				</button>

				This syntax introduces a button tag with start and end tags. The type attribute is used to indicate which type of button you want to use. (The default type is “submit,” used primarily in server-side development, which is not the focus of this book.) The text inside the button indicates the text printed on the button. I tend to use the button syntax because I think it’s cleaner, and also because it makes CSS formatting (see Part 5) a bit easier, as buttons are rarely formatted in the same way as other input elements.

				Validating Your Pages

				The guidelines described in this part will generally give you a decent Web site, but if you’re like me, you’ll still make sloppy mistakes sometimes. It would be great if you had some sort of tool that acted like a spell-checker for code. It could look for dumb mistakes like missing tags and stuff that’s out of order. Sometimes you’ll have junk like that in your code, and you won’t even know it’s a problem. It may look fine on your browser, but mistakes like this have a habit of appearing when you’re hooked up to a projector showing hundreds of people how to build Web sites. (Well, maybe that’s just me. . . .)

				Fortunately, there is exactly such a code-checker available. The W3 consortium (the same guys who came up with the standards in the first place) have provided a software tool that allows you to check any page to see if it complies with the standards you’ve declared in the doctype. This tool is called the W3 validator, and it’s available at this cleverly named address:

				http://validator.w3.org

				Figure 2-7 shows a page being checked by the W3 validator.

				The validator is great, but it’s not perfect. It can’t find every mistake, and of course it works only when you’re connected to the Internet. More troubling, the error messages it gives you are sometimes very mysterious and not very helpful.

				[image: tip.eps] The W3 validator checks XHTML and HTML5 code. As HTML5 becomes more common, watch for other tools to be available directly in your browser and editor to simplify validating HTML5 code.

				
					Figure 2-7

				

				[image: 9781118012529-fg0207.eps]

			

		

	

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/9781118012529-fg0202_fmt.jpeg
' B/ | imageDemo.html &\

€' £ |© localhost,

Image Demo

This page has a picture of a monkey

This monkey is called *Suzanne." Ifs a default object in an incredible free 3D modeling tool called ‘Blender.”

I VIR

OEBPS/images/9781118012529-fg0101_fmt.jpeg
| 7] detect.html

<« c e]@Iocalhost'oq /part_01/detect.html

Form Elements

input.autocomplete
o linput.autofocus
input.list
e linput.max
e [input.min
o [input.multiple
o |input.pattern
o input.placeholder
o [input.required
e [input.step
e linputtypes

inputtypes.color

inputtypes.month
e (inputtypes.number
o [inputtypes.range
o inputtypes.search

OEBPS/images/9781118012529-fg0205_fmt.jpeg
 basicTable.htm
<« B € @ |® localhost/hsqr/ar/part_2/basicTable.html

A Basic Table

ﬂf%%

HTML Superheroes
| Hero | Power | Nemesis |
|The XMLator ||Standards compliance”Sloppy Code Boy |

ICaptain CSS

”Superlayout

”Lord Deprecated |

IBrowser Woman”Megacompatibility

||Ugly Code Monster|

OEBPS/images/tip_fmt.jpeg

OEBPS/images/9781118012529-fg0508_fmt.jpeg
aukground. The headmg uses a lighter version of tlu ba;l\ground. and the paragraph uses
solid color background. The heading uses a lighter version of the background, and the

paragraph uses a solid color background.

\
e =T

AN

o PR

OEBPS/images/hearts.jpg

OEBPS/images/9781118012529-fg0606_fmt.jpeg
|7 transform.html

<« (<X~) |O localhost/h5qr/part_04/transform.htm

Transform Demo

OEBPS/images/uparrow.jpg

OEBPS/images/arrow.jpg

OEBPS/images/9781118012529-fg0514_fmt.jpeg
“absolutelhtml - Opera

[Z) absolute.html U + |
o-|[D|[# | [E nttp:/ocalhost/nsqripart_bjabsolute.html

Absolute Positioning Example

bug in it!!! This = seems to have a bug in it!!! This page seems
to have a bug i N This page seems to have a bug in it!!! This
page seems to have a bug in it!!! This page seems to have a bug
in it!!! This page seems to have a bug in it!!!

This page seemxhave a bug in it!!! This page seems to have a

OEBPS/images/9781118012529-fg0802_fmt.jpeg
| pattern.html

<« [~ [G) localhost/h5qr/part_06/pattern.html

%G X

Pattern.html

Pattern!

OEBPS/images/9781118012529-fg0511_fmt.jpeg
formBlock.html - Opera

[EformBlock.html [+]

€| |[o-|[D][#]|E http/oc

Name

Address

Phone

@ View (160%) ~

OEBPS/images/fingerpoint.jpg

OEBPS/images/9781118012529-fg0603_fmt.jpeg
| borderimage.html x

<« [~ [G) localhost/h5qr/part_04/borderimage.html

|G A

Border Image Demo

Original image:

Frame using border-image

OEBPS/images/9781118012529-fg0701_fmt.jpeg
Web Socket Echo Chamber

| connect to server | [HTML5 Quick F | send

s
CONNECTED TO SERVER
MESSAGE SENT: HTML5 Quick Reference for Dummies
RESPONSE: HTMLS5 Quick Reference for Dummies

DISCONNECTED

OEBPS/images/9781118012529-fg0502_fmt.jpeg
| ‘] namedColors.html|

<« (X~) |C) localhost/h5qr/part_b/namedColors.htm

Named Colors

color name color value
aqua
black
blue
fuchsia
gray
green
lime
maroon
navy
olive
purple
red
silver
teal
white
yellow

OEBPS/images/9781118012529-fg0505_fmt.jpeg
c e |O localhost/h5qr/part_b/colorTester.html

Color Tester
Current Color: #FFFF00

Red Green Blue

FF | FF | FF

[cc] cc Jcc]

oo | 9 | 99

(33 |[33 |[33]
100 | 00 | 00 |

OEBPS/images/9781118012529-fg0604_fmt.jpeg
Reflection demo

OEBPS/images/arrow.png

OEBPS/images/9781118012529-fg0509_fmt.jpeg

OEBPS/images/9781118012529-fg0503_fmt.jpeg
€' @ |® localhost

CSS Selectors

This paragraph has fancy styling.
This is a regular paragraph

This is an alternate paragraph
This is a regular paragraph

This is an alternate paragraph

OEBPS/images/9781118012529-fg0301_fmt.jpeg

OEBPS/images/tomato.jpg

OEBPS/images/9781118012529-fg0806_fmt.jpeg
|7 lineStyle.html +
<« (<X~ IO localhost/h5qr/part_06/lineStyle.html

Line Style

OEBPS/images/WileyTitlePageLogo_fmt.jpeg
@

wiE
Wiley Publishing Inc

OEBPS/images/9781118012529-fg0206_fmt.jpeg
| formDemo.html| x

<« [~ [G) localhost/h5qr/part_a/formDemo.html

%G A

Form Demo

— Text input-

Text box |text here

Password [sseees

Your text here

Text Area

Jectng ek e

Select List
Check boxes =) Green Eggs) Ham

Radio buttons © small © medium © large

(immtion] (s] (st] (i)

OEBPS/images/9781118012529-fg0811_fmt.jpeg
|} image.html

localhost/h5qr/part_06/imagePart.html
areeo qr/part g

LAY

Image in canvas

OEBPS/images/Warning_fmt.jpeg

OEBPS/images/checkbox.jpg

OEBPS/images/macapple.jpg

OEBPS/images/9781118012529-fg0805_fmt.jpeg
L] pathDemo.html! x

« (<X~ [O localhost/h5qr/part_06/pathDemo.html

%G A

Path Demo

OEBPS/images/9781118012529-fg0207_fmt.jpeg
M (Valid] Markup Validat.. »
‘ W € £ | © validator.w3.org/check?uri=http://www.aharisbooks.net/h5qr/formDemo.htmli&charset=(detect+automat ¥y kA N\

eck the ML, Ve uments

Markup Validation Service

i

Jump To: Notes and Potential Issues Congratulations - Icons

This document was successfully checked as HTML5!]

Result: | Passed, 1 warning(s)

Address : http://www.aharrisbooks.net/h5qr/formbDemo. html
Encoding: utf-8 (detect automatically) v
Doctype: HTMLS (detect automatically) X

Root Element: html

The W3C validators rely on community support for hosting and development. ;f'w
Donate and help us build better tools for a better web.

Options

OEBPS/images/9781118012529-fg0201_fmt.jpeg
| basic.html x

<« [~ [G) localhost/h5qr/part_a/basic.html

%G A

Level One Headline

This is a paragraph. Note that the text is automatically wrapped.

OEBPS/images/9781118012529-fg0812_fmt.jpeg
L] transform.html
<« (X~ |© localhost/h5qr/part_06/transform.htm|

Transformations

OEBPS/images/9781118012529-fg0302_fmt.jpeg

OEBPS/images/9781118012529-fg0801_fmt.jpeg
|] gradient.html|

<« (<X~ ‘OIocthostwm:‘:,Jg 06/g

Gradients

OEBPS/images/clubs.jpg

OEBPS/images/9781118012529-fg0810_fmt.jpeg
|} image.html

‘ e Q [C) localhost/h5qr/part_06/image.html

LAY

Image in canvas

@
*®

OEBPS/images/9781118012529-fg0510_fmt.jpeg
'] formNoStyle.html x

‘ e e [O localhost/h5qr/part_b/formNoStyle.html

%G A

Name |

submit request

Address

Phone |

OEBPS/images/9781118012529-fg0605_fmt.jpeg
|| boxshadow.htm!
<« [~ [O localhost/h5qr/part_04/boxShadow.html

Box Shadow Demo

This box has a shadow

OEBPS/images/9781118012529-fg0504_fmt.jpeg
X 8! S —
Y [externStyle.html >

<« €' @ |® localhost % Ea' Q

This page uses an external
style

No styles are defined directly in the page. They are called in

from a separate file, which can be re-used by other pages.

OEBPS/images/9781118012529-fg0513_fmt.jpeg
formFloat.html - Opera

JaformFloat.html x|[+]

« | & |[o-|[D || #]||E http:yocalhost/hsar/part_b/formFloat.html

Name

Address

Phone

@ View (160%) ~

OEBPS/images/9781118012529-fg0602_fmt.jpeg
« (<X~) [O localhost/h5qr/part_04/gradient.htm!

Demonstrate a gradient

OEBPS/images/TechnicalStuff_fmt.jpeg

OEBPS/images/9781118012529-fg0507_fmt.jpeg
[borderstyleshtml
« c e ’O localhost/h5qr/part_b/borderStyles.html ﬁ] q LS

Border Styles

o fsolid |
o (double If

. Eroove
o fridge

. rinset

o foutset

FOEE EE EE BN EE BN BN BN B B B BN B B B Ee Ee o Em g
e dashed

h - o o S S N S S S S S O B e e e s e o
P I NI NN NN NSNS E NS NN NN NN NN NSNS EEEEEEEEEEEEEEN
o =dotted .

OEBPS/images/check.png

OEBPS/images/9781118012529-fg0203_fmt.jpeg
| 7 linkDemo.html

<« [~) |O localhost/h5qr/part_a/linkDemo.html

Link Demo

Relative reference to an image

This paragraph has a link to a monkey picture.

Absolute reference to a web page

This paragraph contains a link to Andy's main site.

OEBPS/images/checkmark.jpg

OEBPS/images/cover.jpg

OEBPS/images/check.jpg

OEBPS/images/9781118012529-fg0804_fmt.jpeg
|] text.html

) 'Olocalhost Sqr/part

Text

Canvas Rocks!
Canvas Rocks!

OEBPS/images/9781118012529-fg0807_fmt.jpeg
<« [~ [@ localhost/h5qr/part_06/arcCirc.html

Arc and Circle demo

-

OEBPS/images/WileycopyrightLogo_fmt.jpeg

OEBPS/images/frown.jpg

OEBPS/images/9781118012529-fg0102_fmt.jpeg
| checkvideo.html x

<« (X~ [@ localhost/h5qr/part_01/videoCheck.html

%G A

Check for HTMLS Video

Your browser supports video
H.264 codec supported
Ogg Theora video codec supported

OEBPS/images/Remember_fmt.jpeg
e}

OEBPS/images/9781118012529-fg0601_fmt.jpeg
|1 flexBox.html
<« (X~ [C) localhost/h5qr/part_04/flexBox.html

Flexible Box Model Example

b lc It

OEBPS/images/smile.jpg

OEBPS/images/9781118012529-fg0506_fmt.jpeg
|| textManipulation.html

<« c e ’@ localhost/h5qr/part_b/textManipulation.html

This paragraph uses the default style.
This paragraph is italicized.
This paragraph is bold-faced.
Thi hi Jerlined
hi b Kent] " .
This paragraph is centered.
This paragraph is right-justified.

This paragraph uses a sans-serif font

This paragraph uses a larger font

; hi | lined

OEBPS/images/downarrow.jpg

OEBPS/images/9781118012529-fg0607_fmt.jpeg
opacity.html

« € | © localhost

Opacity Demo

OEBPS/images/9781118012529-fg0512_fmt.jpeg
formTwoCol.html - Opera

JaformTwoCol.html x|[+]

« | »|[o-|[D || #||E http:yiocalhosthsar/part_b/formTwoCol.html - [~

Name
Address
Phone

@ View (160%) ~

OEBPS/images/9781118012529-fg0809_fmt.jpeg
| 7] bezier.html

<« ¢ o |Olocalhost hSqr/part_06/be

Bezier path demo

Beginning and end shown in blue
control points shown in red

OEBPS/images/spades.jpg

OEBPS/images/9781118012529-fg0808_fmt.jpeg
|] quad.html

<« ¢ o |Olocalhosl 5qr/part_06/quad.htm

Quadratic path demo
.

Beginning and end shown in blue
control points shown in red

OEBPS/images/9781118012529-fg0501_fmt.jpeg
CSS Colors

OEBPS/images/maccmd.jpg

OEBPS/images/9781118012529-fg0803_fmt.jpeg
| rectangle.htm|

(<X~ ‘O localhost/h5qr/part_06/rectangle.htm

Rectangle Demo

OEBPS/images/diamonds.jpg

OEBPS/images/turnover.jpg

OEBPS/images/9781118012529-fg0204_fmt.jpeg
| listDemo.html x

<« [~ [@ localhost/h5qr/part_a/listDemo.htm

%G A

Languages

« English
« Spanish
« Japanese

Counting in English

1. one
2. two
3. three

Counting in Other Languages

« Spanish
1. uno
2. dos
3. tres

« Japanese
1. ichi
2. ni
3. san

