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				Introduction

				Networking is a vast subject that touches all aspects of computer technology. Indeed, some will argue that a computer that isn't networked isn't really a computer at all. It may be hyperbole to suggest that “The network IS the computer” as Sun did some years ago, but every important computer technology has incorporated some method for sending and receiving data to and from other computers. If you go as far back as you care to, the very first commercial computers were built to amortize their costs by allowing users to time share. Computer reservation systems such as SABRE linked to terminals worldwide, and when the personal computer became nearly as cheap as a dumb terminal, those PCs became the distributed nodes.

				The rise of the personal computer in the early 1980s and 1990s helped to spawn networking technologies that made connectivity easier to achieve, cheaper, and most importantly more standardized. A whole host of different proprietary networking technologies have given way to the networking technologies of the Internet, TCP/IP networking. Although this book discusses some of the older technologies, the focus of this book is on the current state of computer networking and, therefore, much of the book explains internetworking standards based on TCP/IP. In ultrafast, high-bandwidth, and highly reliable networks, other technologies are used.

				A number of these alternative technologies are presented in the context of the different capabilities that they provide. So while you will learn about local area networks of various types, a number of chapters in this book describe important technologies in the field of wide area networks, fiber optics, storage area networks, grid and cloud computing, and other advanced technologies. Sprinkled in the book are descriptions of new products such as the X0-1 laptop created by the One Laptop Per Child organization, SETI @ Home grid system, SONET networking, optical solitons, and many other things that you may not have heard about but that make the experience of reading this book I hope richer for you.

				This book was written to be a general networking book and not to favor one computer platform over another. By nature I'm not a computer platform zealot. My first computer was a Macintosh, and over the years I've switched to Windows systems. Recently I've been working on a Ubuntu system, and at various times I've worked on different Linux as well as Solaris systems. I work on a small network, but over the years I've worked on both large and small, homo- and heterogeneous networks. Each network operating system has its plusses and minuses, but I've found that it is rare that I couldn't perform some essential function on all of these operating systems.

				This book presents examples of networking technology using a number of different platforms. Unfortunately (from my way of thinking) there are more examples drawn from Windows that I would have liked. Please take this as being largely the result of the time I had and the convenience these examples offered, more than a statement of their being particularly special.

				I've tried to walk the fine line between being theoretical enough to give you a solid foundation in computer networking, while being practical enough for you to find and use new technologies and products in your everyday work. There is a considerable amount of product information in this book, and I've tried very hard to make this information both accurate and up to date. Unfortunately, product information ages faster than any one of use would like, and many times in the course of writing this book, I've encountered products and companies I've known that are no longer with us. Many of these products were associated with people I've either met, known, or had some acquaintance with, so the passing of these products forces me to reminisce about times gone by.

				This book is organized into seven parts:

				• Part 1. The first part of this book presents general theory and networking principles. I've presented much of the material in the context of different networking models that have been widely used in the industry.

				• Part 2. The second part of this book looks at various network hardware components, which includes systems, network interfaces, various physical media, and methods for creating and maintaining circuits with particular emphasis on routing.

				• Part 3. The third part of this book focuses on different network types, small and home networks, peer to peer technology, LANs and WANs, storage networks (SANs), as well as various high speed and high performance networks.

				• Part 4. The fourth part of this book describes the various parts of the TCP/IP networking suite. This includes not only how TCP/IP is used, but details on addressing, name resolution, and other features that both bedevil and occupy modern network administrators.

				• Part 5. The fifth part of this book describes different applications and services that run on computer networks. Various network operating systems are discussed from a general principles viewpoint, and network services such as directory services, file services, mail, streaming media, and voice over IP round out this part of the book.

				• Part 6. The three chapters in Part 6 focus on computer network security. In these chapters, you learn about: security protocols and services; firewalls, gateways, proxy servers, and other isolation technologies: and virtual private networks.

				• Part 7. In the final part of this book, different network management and diagnostic technologies are discussed. This includes classes of network management applications, some of which are large management frameworks that you might be unfamiliar with. Two chapters on network diagnostics and remote access technologies round out this book.

				I hope that you enjoy reading this book as much as I have enjoyed writing it.

				Barrie Sosinsky

				Medfield, Massachusetts

				March 18, 2009
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				Chapter 1: Networking Introduction

				In This Chapter

				Network and transmission types


				Topologies


				pLANs, LANs, MANs, CANs, and WANs

				A computer network is a connection or set of connections made between two or more computers for the purpose of exchanging data. Networks are built from a variety of building blocks: computers, switches, cables, and so forth. In order to classify networks into different types, you need to consider factors such as the number of elements, distribution of objects, and connection methods. In this chapter, different types of networks are described, as well as how the different network types impact their design.

				The smallest network is a direct attachment between two computers with a cable. Peer-to-peer systems are used in computer workgroups where there are a small number of systems that don't require a central service. Some computer buses are configurable and thus are considered small networks. These are called personal LANs, or pLANs, and Bluetooth is an example of this type of network. USB is not configurable and is therefore not a network.

				A network that spans an office, floor, or building is called a local area network, or LAN. LANs can support multiple protocols, and connect different types of clients. A LAN that is separated by a bridging element would be considered a separate LAN. When the bridge separates multiple LANs that are geographically dispersed, it is considered a wide area network, or WAN.

				You can analyze and categorize network topologies in terms of graph theory. Networks can be formed in a variety of ways that involve forming lines or chains, stars or hubs, rings, or mesh topologies. Different topologies offer different capabilities and have different requirements. The processes of mapping a network's topology can be done for physical or logical network elements, or based on how signals propagate through the network.

				Defining Computer Networking

				To be considered a network, a collection of elements needs to have the following: connection software, systems, and network elements (such as switches, physical transmission media, and an addressing system). Any computer network has the following essential components:

				• The connected systems

				• Connection software

				• Networking hardware

				• Physical transmission media

				• An addressing system for each of the aforementioned components 

				This definition is sufficiently broad to allow us to discuss not only systems composed of computers, but also cell phones and other aspects of telephony, storage devices, Wi-Fi, streaming, broadband connections, and a wide range of disparate systems that you are likely to want to network together in some way.

				Connection software is ubiquitous in all systems that must be networked together. You will find network software inside your computers' operating systems, inside your networking hardware (routers or firewalls), in custom ASICs (Application Specific Integrated Circuit) or flash memory in network cards or hubs, and even inside the physical transmission medium if the medium is intelligently switched or amplified.

				The physical transmission medium refers to any medium that can transmit an electromagnetic signal. A signal is a time varying pattern in signal amplitude, voltage, or frequency that represents information in the form of data that can be propagated some distance and recognized by a receiver. Signals can be continuously variable (analog), or they can be discrete and limited to specific states (digital). Although analog computers exist, in nearly all circumstances the systems in use are digital, and more specifically binary. Binary systems transmit information in one of two states: ON or OFF, 1 or 0, YES or NO, or voltage 1 or voltage 2. Digital computers use binary signals and Boolean logic because signaling is relatively simple and fast, and because binary signals can be made to represent any character or solve nearly any mathematical equation.

				The transmission of binary signals for the data stream between two systems in a network means not only that the physical media can be wires and cables, but also that any part of the electromagnetic spectrum can theoretically be used to transmit data. When you open a browser on a cell phone, you are connecting to a network with a radio frequency connection. When a cellular network wants to transmit data across a long distance, it does so by using microwave transmitters. The 802.11 Wi-Fi standards are radio frequency transmissions. You can get interference from a 900 MHz wireless telephone that overlaps with the 802.11b standard, or from a microwave oven that operates at 2.4 GHz and interferes with the 802.11g Wi-Fi standard. Most of the networks described in this book use fixed wires to connect computer systems. However, radio frequency connections have no physical transmission medium.

				Cross-Ref

				Radio frequency connections are covered in Chapters 5, 8, and 14. 

				Any operations where data isn't transmitted automatically aren't part of our network definition. For example, if you copy data on one computer to a USB key and walk that USB key over to another computer, that wouldn't be considered a computer network. The term we use to describe manual data transfer is sneakernet; this is not a network because it doesn't conform to the principle that networks allow data to be sent to a system based on an address or identification scheme — the data in the USB key isn't being sent to any address.

				It's best not to be too doctrinaire when using the addressing requirement, however. Broadcast communications would be considered network communications, although there is no specific address to a receiving system. Any system that fits the definition of a receiver can accept broadcast communications. Indeed, broadcast communications are essential in most network technologies. Systems send out broadcasts to indicate that they are available to perform a service, or that they exist and can service a request. Broadcast communications are used to identify a system or to browse the network. Implicit in the definition of a broadcast is that any system that conforms to the requirement meets one of the following conditions: 

				• It is on the same network, or runs the same identification protocol, such as Windows NetBEUI or WINS; or 

				• It has the software installed to accept and manage a data stream and can participate in broadcast communications. 

				In this book, I define a computer network as simply a connection or set of connections made between two or more computers for the purpose of exchanging data. Using this as a guiding principle, I cover the most common problems encountered by network administrators in business networks; by average users connecting to various important services (such as e-mail); or by people who require fundamental networking skills to manage the collection of devices that are typically found in a connected household. This book teaches you the basic principles of computer networking, which can help you solve some of the problems you might encounter in your daily work or play.

				Network Type Overview

				Networks are categorized by distribution, size, and architecture. A network can be as simple as a single serial, parallel, or USB cable joining two computers in a peer-to-peer relationship. When you connect a cable between two computers for the purpose of moving your installed software, you are creating a peer-to-peer network. These relationships can be ad hoc, meaning that the network is configured as needed when it is needed. Most people wouldn't consider two systems connected in this manner to be a network. However, if you had several systems joined in a workgroup and connected though a hub, then this would fit the definition of a peer-to-peer network. A workgroup is a collection of computers that do not share a common security database, and where network services can be provided by any member of the workgroup as required.

				The smallest networks from a distribution standpoint are personal area networks, which have come to be called pLANs (alternatively abbreviated as PANs). A pLAN is usually applied to a set of peripheral devices that connect to a single computer system. Bluetooth is a good example of a pLAN. Bluetooth devices are radio frequency connections that use frequency hopping spread spectrum technology (the communication channel constantly changes) that segments the data stream and transmits it over 75 different frequencies with approximately a 30-foot (10-meter) range. Although this kind of network is small in size, pLANs can be quite sophisticated in terms of their technology. Bluetooth has the ability to self-configure, be secured, and advertise each device's available abilities and services. Some phones, headsets, mice, keyboards, printers, GPS devices, game consoles, and PDAs use Bluetooth technology and are common examples of Bluetooth devices.

				Bluetooth certainly fits this book's definition of a network because it has all of the necessary components of a network. Bluetooth is discussed in this book because it is something that you have to configure. On the other hand, Universal Serial Bus (USB) can connect up to 127 devices per host controller, but it is self-configuring and is therefore considered a computer bus. All of the aforementioned Bluetooth devices can be connected to a computer using a USB connection. So while they are devices on a Bluetooth pLAN, they are more correctly described as peripheral devices. While USB is very capable of transferring data, it is only described as needed in this book.

				Cross-Ref

				For more on USB, see Chapter 11.

				A large portion of this book is dedicated to the subject of local area networks, or LANs. The term local is subjective. A LAN is a connected set of systems that spans a single room, floor, or building, and can be as small as a couple of systems connected through a hub. LANs are differentiated by their addressing scheme, as well as by the set of rules or protocols that they use to communicate. Therefore, an AppleTalk and a Netware network are considered to be separate LANs. Heterogeneous networks are common, and so you may find that a LAN has a Windows network with a domain server that contains Macintosh clients and Netware servers. Those Macintosh and Netware systems can still participate on an AppleTalk or Netware network, but the software and addressing used are separate for each particular LAN.

				A LAN ceases to be a LAN when the addressing changes in some meaningful way, or when there is a bridging function that links two or more networks. For example, if you had a network of computers and chose to give one group of computers one set of related addresses and another group of computers a different set of addresses, then that arrangement would still be considered a LAN. You can do this with Internet Protocol (IP) networking by using a different IP range (192.168.1.x versus 192.168.3.x), or by defining a part of any range as two or more subnets (192.168.1 through 192.168.1.99 and 192.168.1.100 through 192.168.1.199). In either case, this would still be considered a LAN. If you put a couple of routers or bridges, which are intelligent switches, in between the two network types, you would now have a set of distinct networks. The case is even more compelling when the connection between the two switches is long or when there are additional switches in between the two that provide entry to the different networks.

				A variety of terms are used to describe long-distance networks or multinetwork scenarios. The most common term is the wide area network, or WAN, which is applied to any network of networks. The Internet is the most common example of a WAN, and the term internetworking is occasionally used to describe this scenario. Other terms in use are campus area networks, or CANs (uncommon), and metropolitan area networks, or MANs. CANs span a set of buildings, while MANs span a city.

				Large, geographically dispersed networks typically use a high-capacity interconnect such as fiber optic cable with signal repeaters to span the distance. A high-capacity line is referred to as a backbone. For example, if a bank on Wall Street in New York City were to back up or mirror their data over a fiber optic line under the Hudson River to a data center in New Jersey, then that would be considered a MAN.

				Transmission Types

				Networks use two different types of data transmission: Point-to-point communication and broadcast communication.

				Point-to-point communication

				Point-to-point network communication creates named connections between two systems in the network: the sending and receiving systems. In point-to-point communication, there may be one or more intermediate systems that process the data stream along its intended route. Many point-to-point networks have redundant paths through the network, often of differing length. Therefore, the role of routers in a point-to-point network is a key factor in determining network performance.

				Various technologies are applied in point-to-point networks to ensure that the connection is made correctly, particularly when the connection spans multiple subnets, as it would in a WAN, as shown in Figure 1.1. The WAN in Figure 1.1 has three subnets — a ring network, a bus, and a wireless LAN. One technique of data transfer, called store-and-forward, takes an incoming packet sent by one router, and at a second router stores those packets until the desired point-to-point connection or connections become available. Once the connection is free, the packet is sent onto its destination. This mechanism is sometimes referred to as packet switching. A packet-switched network composed of small, equally sized packets referred to as cells is important in the area of wireless telephony, and is the basis for the cellular networks in common use today.

				Broadcast communication

				Broadcast communication networks take a message from the sending system and then transmit that message to all systems on the network. A satellite network is an example of a broadcast network. When a broadcast network is configured to send a message from one system to a subset of the available nodes (communication endpoints), that process is called multicasting. Multicasting is common for systems that stream media, as the same data stream can be targeted to multiple systems.

				 Figure 1.1

				A packet-switched WAN
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				Broadcast packets contain addressing that specifies which system is to be the receiving system or systems. The receiving system can be a single computer or multiple systems, but every node on a broadcast network gets to examine the packet. When the broadcast packet arrives at a node on the network, the address is examined and if the address matches, it is processed. When the address doesn't match, the system ignores the packet. 

				Tip

				As a general rule, the larger a network is in terms of geographical distribution, the more likely it is to be a point-to-point network. A smaller network can more efficiently utilize broadcast technologies.

				Topologies

				Another classification for computer networks is the topology that they use. A topology is the distribution or arrangement of network elements, usually both devices as well as connections. Because anything that can get an address is considered a network element, you can define a logical or virtual network element in software, and these two must be accommodated in any topological description.

				A network may be described in terms of a physical topology, which describes the relationship between devices or elements; a logical topology, which describes a relationship or hierarchy between entities on the network; or a hybrid topology, which is a combination of the two into a single topological design. In very rare circumstances, a network may be described in terms of a signal topology. A logical topology might be mapped to indicate how the nodes of a network are arranged and communicate with each other. Physical topology would define the network in terms of the physical connections and the physical structure of the network. A signal topology might be constructed to show how specific types of signals move about the network. The physical and logical topologies may be identical, but they often are entirely different.

				The mathematical study of linked systems is part of graph theory, and this discipline can make predictions as to the number of nodes required for different topologies, the number of links or fan-outs, and so forth. The specific topology used by any network can be the same, regardless of the speed of the network, the protocols used to communicate, the network node, or the connection types. Topology only refers to the relative arrangement of the elements.

				Physical topologies

				A physical topology describes the arrangement of devices used to implement the network. Topological devices can be either nodes or endpoints, or they can be connections or links. A physical topology can take many forms:

				• Buses. Where nodes attach to a linear trunk line

				• Stars. Where multiple nodes connect through a single node to one another

				• Rings. Where nodes are connected to a cyclical trunk line

				• Meshes. Where nodes are connected to other nodes directly (a web)

				• Trees. Where the nodes in a network radiate outward like the branches of a tree

				Many networks are combinations of these types.

				It is possible to calculate the required number of connections that a theoretical mesh network would have when each node is connected to every other node. With a single-link, a permanent point-to-point mesh topology between nodes is both the simplest arrangement that exists and the most impractical. To service n endpoints would require 2(n + 1) connections, which for any large network would require an unsupportable infrastructure of permanent connections. Most point-to-point networks, like the telephone networks, are switched, eliminating the need to have point-to-point connections between every node. Switching can be done either in hardware through circuit switching or by altering the addressing within the data stream, which is referred to as packet switching.

				Robert Metcalfe, who was one of the main developers of Ethernet technology, described the value of switched networks in terms of the number of users. Metcalfe's law states that the value of a telecommunication network is proportional to the square of the number of users in the network. The number of unique connections N in a point-to-point system is equal to

				N = n(n-1)/2

				where n is the number of nodes. As the number of nodes grows, it becomes asymptotically proportional to the curve for n2. An asymptote is an equation that approaches some function or value as one of its variables gets larger. In the example above when n becomes large the equation (n2-n)/2 would be dominated by n2 and that curve would be 1/2 the size of n2.

				Bus systems

				A bus is a common transmission medium that connects to two or more network nodes called endpoints. An endpoint is equivalent to a node, and on a network it has the fundamental property that it is addressable; that is, it is assigned an address. A computer NIC can be a node or endpoint and so can a router. From a fundamental perspective, a port on a switch or router can also be an endpoint or node.

				A backbone or trunk line is an example of a linear bus (see Figure 1.2) because all data travels from one endpoint to another over the bus line. In Figure 1.2 the bus is defined as the collection of connections or links, and each circle is a network node or endpoint. Data traveling from one node on a bus to another starts off by traveling down the bus to the next node, where it announces its intended recipient. If that node isn't the recipient, then the signal continues down the bus until the intended recipient is reached. This behavior introduces a propagation delay, but in modern networks, these delays are small.

				 Figure 1.2

				A linear bus system
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				All endpoints in a bus system (see Figure 1.2) require that they be logically differentiated from one another, and come with devices that perform this function, which are called terminators. Termination takes the signal and absorbs it so that it prevents data from continuing on down the bus. Termination is designed to match the impedance of the transmission line and is often a simple resistor. Some terminators are active devices that have an electrical circuit that eliminates the signal reflection.

				A linear bus system that uses a backbone or trunk transmission line is an efficient technology, but is not very flexible. By flexible I mean that it's difficult to adapt a linear bus system to changes in the number of hosts, locations of hosts, and other changes that might take place. To improve the adaptability of a bus network, it is common to use a distributed bus technology. A distributed bus adds more branches to the transmission line so that it connects additional nodes. In nearly all respects, a distributed bus is similar in function to a linear bus. Nodes still require termination. A distributed bus is often confused with a tree topology, which is the kind of topology that a file system uses. However, in a distributed bus, there is no central node that connects to all the other nodes, and there is no hierarchy defined. Figure 1.3 shows a distributed bus structure.

				 Figure 1.3

				A distributed bus structure
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				Star networks

				The star network is a very common network topology. In a star network, point-to-point connections radiate out from a central node, in an arrangement that is also called a hub and spoke, as shown in Figure 1.4. In a star network, all data traveling over the network must flow through the central node. The simplest star network is constructed using a single connection point such as a punch down block, or it can be an active connection that retransmits data, performing error correction first and then signal amplification. A punch down block, or more simply a punch block, is an electrical connection matrix with open ends on both sides that allow you to connect wires together by punching the wire into the holes in the matrix.

				Star networks can be constructed so that the hub connects two or more star networks together, as is the case for both extended star and distributed star topologies. An extended star uses one or more repeaters in-line to extend the distance that the signal can be propagated from the hub to a spoke. When you replace a repeater in an extended star with a switch, you create a hybrid topology that is sometimes called a physical star topology. Figures 1.5 and 1.6 show examples of an extended star and a distributed star topology, respectively.

				 Figure 1.4

				A star or hub-and-spoke network
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				 Figure 1.5

				An extended star topology
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				 Figure 1.6

				A distributed star topology
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				A distributed star topology connects multiple star networks with a daisy chain in a linear fashion. The distributed star has no hierarchy and no central or primary connection from which a set of stacked hubs emerge. All of the star networks in a distributed star network are peers.

				When star networks use a broadcast, they are referred to as broadcast multi-access networks, and the signal is sent to all of the spokes on the network. Some star networks use addressing to send signals from one node to another through the hub, and they are called non-broadcast multi-access (NBMA) networks.

				Rings

				A ring network, shown in Figure 1.7, is a closed loop topology where each node in the network is both the beginning and endpoint of any data transmission. In a ring network, data travels in one direction around the ring from node to node until the receiving system accepts the data. The reason that data travels in one direction is to prevent signal contention and interference. Such interference leads to signaling errors. A dual ring topology provides the potential to transmit traffic in two directions (one on each ring), or to use the second ring as either a control circuit or a failover circuit for improved fault tolerance. A failover is the process that replaces a faulty component with another component.

				 Figure 1.7

				A ring network
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				The most famous examples of a ring topology are token ring (IBM), ARCNET, token bus, and fiber distributed data interface (FDDI) networks. In a token ring, an identifier called a token is passed around the ring's nodes in sequence until the correct node has the token. The node with the token is the system that can actively work with the data that is circulating on the ring. Token ring networks are wired using a star or hub-and-spoke system, but each spoke has two connections to the hub that creates the ring. In an 802.5 Token Ring network, the central node or hub is referred to as a multistation access unit.

				Mesh networks

				A mesh network is one in which each node in the network can be connected through a point-to-point connection to another node, as shown in Figure 1.8. In this regard, mesh networks are an extension of the bus system described earlier. Mesh networks are described by Reed's law as having a value that is proportional to the exponent of the number of nodes,

				2n-n-1

				where n is the number of nodes. As a consequence, mesh networks exhibit what is called high fan-out. Their value grows exponentially greater than either the number of nodes, n, or the number of pair connections, n(n-1)/2, which was derived as Metcalfe's law.

				 Figure 1.8

				A partially connected mesh network
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				A mesh network can be either partially connected (as shown in Figure 1.8) or fully connected (as shown in Figure 1.9), depending on whether each node in the network is connected to each other node with a point-to-point link. You almost never find a fully connected mesh network except in small networking, because the number of links required to complete a mesh network tends to make them too costly to construct. In a partially connected mesh network, some nodes, and often most nodes, are connected to more than one node with a point-to-point link. The lack of unique connections introduces some latency into mesh networks, but this is something that can be managed through the use of intelligent routing, so that when the direct path isn't available, another route is chosen. An example of a partially connected mesh network is the Internet.

				 Figure 1.9

				A fully connected mesh network
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				Trees or hierarchical networks

				A tree network starts out with a highest level or root level, where a single node is connected to nodes in a second level of the hierarchy. Second-level nodes each connect to one or more nodes in the third level, and each level fans out further. There must be at least three levels in a hierarchy, as two levels define a star topology.

				The number of connections in a tree topology may be calculated using the formula

				L = n - 1

				where L is the number of point-to-point links and n is the number of nodes.

				The number of nodes attached to a parent is referred to as the fan-out or branching factor. Some networks impose symmetric branching, and if so, the branching factor (f) must be 2 or more, as a factor of 1 only defines a linear topology. Although this is called a tree network, its shape is usually drawn with the root at the top of the diagram, which means that the tree is upside down, as you can see in Figure 1.10.

				Most file systems, databases, and directory systems adopt a hierarchical topology. This is because search algorithms are much more efficient in a hierarchy than in linear or mesh type topologies. This is especially the case when the values stored at any node are indexed. As a search algorithm descends the tree, moving to the next level below eliminates 1/f of the tree's population.

				One disadvantage that is noted for hierarchical topologies is that any overhead associated with data transmission between levels is amplified as you move up the hierarchy. The nodes in each level above add to the overhead needed to process data communication.

				 Figure 1.10

				A tree network
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				Hybrid topologies

				All of the aforementioned topologies may be combined with one another to form hybrid topologies, which provide more complexity, as well as more flexibility, into a single topological design. You can create the following topologies:

				• Star-bus. A star-bus network connects two or more physical star networks along a single common network bus. In practice, this requires that a network line be terminated by two or more hubs, with each hub's uplink port connected to another hub that fans out to create the physical star. From the standpoint of the network, each of the uplink ports is connected to the star hub through the use of drop cables. As you learn in Chapter 9, an uplink port is a port on a switch that can be set so that two connected switches behave as one.

				• Hierarchical star. In a hierarchical star network, each node of the tree hierarchy is a hub from which spokes radiate. Each subsequent level in the hierarchy is a hub with spokes radiating out. There is no common bus that connects the different stars, with only point-to-point connections existing in this topology. Sometimes the root node is connected to a high-speed interconnect backbone or trunk line, which further hybridizes this technology.

				• Star-ring. The star-ring hybrid consists of a central hub where the signals are routed sequentially between all available spokes attached to the hub to simulate the ring portion of the network. The spokes from the central hub are point-to-point connections to individual nodes.

				•  Hybrid mesh. A hybrid mesh combines a mesh topology, with one or more nodes of the mesh being connected to different network topologies. A hybrid mesh technology is highly redundant and fault tolerant, and so it finds widespread use. The Internet uses a partially connected hybrid mesh topology.

				Logical topologies

				Logical topologies map out the path that data takes as it travels from node to node. A logical topology requires that a node be available on the network by the protocol used for data communications. To be available, a device has to have a unique identification number, referred to as a MAC address, which refers to Media Access Control, a method for determining that node on a network. Virtual network interfaces can be created, and they can also be assigned MAC addresses. When you use intelligent routers and switches on a network, the configuration of the logical topology can be dynamically changed, depending upon conditions. Logical daisy chain, logical star, and logical mesh are all types of logical topologies, and are described in the following sections.

				Logical daisy chain topology 

				A daisy chain network is a logical topology that can be implemented as either a linear or a ring topology, as shown in Figures 1.11 and 1.12, respectively. As you add systems to a linear daisy chain, you add a two-way connection between the new system and its neighbor or neighbors. A system in the middle of the chain must have one transmitter and one receiver for each of the connections to adjacent systems. The terminus system in the chain requires only one receiver and transmitter. In a daisy chain configured in a ring topology, the data travels around the ring in one direction, and so each node requires only a single receiver and transmitter. Ring topologies have greater latency because the data can take up to twice as long to get to its destination compared to a linear topology, but this makes them much cheaper to implement.

				 Figure 1.11

				Linear daisy chain network
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				 Figure 1.12

				A ring daisy chain network. Data can flow either clockwise or counterclockwise, and links can be either half duplex (one direction) or full duplex (both directions).
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				Logical star topology

				Star networks exist as both physical and logical topologies. In a logical star Ethernet network, the central node broadcasts a signal from any node to all of the other nodes attached to the network. When the signal is acknowledged by the proper system, the data is transmitted. Logical star networks can fail spectacularly when the central node fails, but the failure of any point-to-point connection only affects the function of the node attached to that spoke.

				Star networks can be categorized as either passive or active. In a passive star network, the sending node must be able to recognize its own signal echo returned to it from the central node. An active star network has circuitry in the central node to prevent a signal being echoed back to its originating system. Network switches are used in the various star topologies that build lookup tables of data transmission types, and the destinations and ports that were used to process them. As the lookup table becomes populated, the data that corresponds to the parameters stored in the lookup table serves as the routing table, and the data is sent to the stored destination directly.

				If you create a set of logical star networks and connect them in a hierarchy, you create a tree topology. Hubs in a logical star network typically either repeat or regenerate data as it moves through the network, although networks of this design usually distribute the workload between the different hubs. Each node in the star has one point-to-point connection. So the logical star network has the entire leaf of the tree fail when a hub fails, but only the single node fails when the point-to-point connection is broken.

				Logical star networks can also be configured in hybrid network forms. Two common hybrids are the star ring and the star bus network.

				Logical mesh topology

				A logical mesh topology is one where there are additional paths between network node pairs. Figure 1.13 shows an example of this kind of topology. There are several logical mesh designs. Highly distributed mesh networks built using a linear or ring topology are referred to as a grid network. Mesh networks can also be constructed using a toroidal or multi-ring topology, or using hypercubes. 

				As with physical mesh topologies, logical mesh topologies can be either fully connected or partially connected. Partially connected mesh networks are much more common than fully connected mesh networks due to the expense involved in creating the complete set of connections. Some fully connected mesh networks exist where highly redundant connections are required, typically in mission-critical applications. However, one fully connected ad hoc network that you might encounter is that used by the BitTorrent file sharing system. When a user initiates a torrent to perform a file transfer, pieces of the file are found on multiple systems. Those systems are temporarily connected while their pieces of the file are transmitted, and then the connection is broken. 

				 Figure 1.13

				A grid network is an example of a logical mesh topology.
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				Summary

				In this chapter, you learned the different types of networks and how to classify them. Networks can be differentiated based on their geographical distribution as personal, local, wide, campus, or metropolitan local area networks. Each network type generally uses its own specially designed industry-standard protocol that is meant to optimize the network for the types of devices that are in use.

				You can also characterize networks based on their shape or topology. Common topologies are buses or chains; stars or hub; and spokes, rings, and meshes. Various hybrid topologies exist that mix and match these topologies with one another. When you map a network, you can form the topology based on the arrangements of physical elements, or using logical elements, as well as by observing the paths that signals use to traverse the network.

			

		

	
		
			
				Chapter 2: The Network Stack

				In This Chapter

				How standards are developed


				Introduction to standards organizations


				The Open Systems Interconnection Reference model


				How to use the network stack to understand products and services


				Each layer of the OSI model and their application


				Interfaces, services, and protocols


				Examples of where the OSI isn't an accurate description 


				The TCP/IP Reference model


				Comparing the OSI and the TCP/IP Reference models

				The network stack refers to an architectural model that is used to describe network transactions starting at one computer system and ending at another system. Models were developed to standardize devices and services, and to allow industry standards to evolve that allowed communications from one level of the network to another.

				This chapter discusses the two most important network models in use today: the ISO's Open Systems Interconnection model and the Internet or TCP/IP model. Each model subdivides the different types of network devices, services, and software into a set of architectural layers, the definitions and relationships of which provide a means to categorize and discuss modern network technology. The vocabulary described in this chapter provides a means of framing the discussions in the remaining chapters in this book.

				Standard Development Organizations

				As networking standards developed in the 1970s and 1980s, the computer industry was faced with the common problem of making vendors' products interoperate with each other. Operating systems vendors such as Microsoft were able to create a de facto standard like Windows; but computer network hardware and software had no such dominant vendor. Standards could only emerge by consensus from the joint work of industry and academic standards organizations. When a new technology such as Ethernet arrived, the packet-based network protocols that communicated over this new medium arose as a set of standards from groups of vendors.

				Standards committees are typically formed by standards organizations that manage many groups of standards, or they can be created by an industry group that is organized for the sole purpose of standardizing one technology or a related set of technologies. An example of a standards organization is the American National Standards Institute, or ANSI.

				In either case, the development of any standard requires a process, and the more open, the better. As a result, you will find that the standards process is organized around a set of stages, which include any of the following:

				1. Formation of a group that represents the industry.

				2. Request for a proposal (RFP) of a standard, draft of a proposed standard, or the receipt of a proposed standard for review.

				3. Request for comments (RFC) on the proposed standard or standards from the community.

				4. Testing and modification of the proposed standard. Plugfests are often organized to test interoperability. A plugfest is an industry meeting where product vendors test their hardware and software with other vendors' products in order to ensure compatibility and to establish new standards.

				5. Draft standards, which are the proposed standards that have not yet been fully codified.

				6. Accepted standard, which is the final version of a particular standard. A standard can develop over time through iteration, such as the 802.11x Wi-Fi standards, which include a, b, g, and n.

				Considering the time and effort involved in creating standards, as well as the stakes involved in their commercialization, standards are prone to considerable controversy. Not all standards survive far beyond their introduction. Consider the effort that went into creating both the Betamax and VHS videotape standards, or more recently, HD DVD and Blu-ray, where the latter standard of each pair is the one that survived. The clout of the organization is important and can often override a superior technology.

				In the networking industry, the following standards organizations are important:

				• American National Standards Institute (ANSI; www.ansi.org). ANSI is a non-profit organization that creates standards for products and services.

				• International Organization for Standardization (ISO; www.iso.org). ISO standards are found in various data communications fields, including the standards and model described in this chapter.

				• International Telecommunications Union-Telecommunications Group (ITU-T; www.itu.int); Radiocommunications Group (ITU-R); and Telecom Development (ITU-T). ISO is a member of the ITU. Each group develops communication standards.

				• Internet Engineering Task Force (IETF; www.ietf.org). IETF creates Internet standards and is part of a group of bodies that define the TCP/IP and Internet protocols.

				• Institute of Electrical and Electronics Engineers (IEEE; www.ieee.org). IEEE (“I triple E”) is the main standards body for wire and radio communications.

				• Storage Networking Industry Association (SNIA; www.snia.org). SNIA defines storage network standards for fiber channel, high-speed Ethernet, iSCSI, and others.

				• World Wide Web Consortium (W3C; www.w3.org). W3C is the central standards body for the World Wide Web, and defines HTML and related standards, as well as protocols used by Web servers.

				Note

				You can find an explanation of how standards organizations work, as well as a longer list of standards development organizations, or SDOs, at http://en.wikipedia.org/wiki/Standards_organizations.

				The OSI Reference Model

				The most important networking model in use today is the ISO's Open Systems Interconnection (OSI) Reference model. This model divides network communications into seven different layers and highlights how each layer is used in the communication process. Each layer adds more information to data during the sending process, while using and removing that information during the receiving process. Documentation for the OSI model can be downloaded from the ITU-T under their X.200 series, from their Web site at www.itu.int/rec/T-REC-X/en.

				The OSI model defines seven layers, using the numbers 1 to 7, in the following order: the Physical, Data Link, Network, Transport, Session, Presentation, and Application layers. The first four layers are hardware related, while the last three layers are essentially software. 

				The OSI model defines the following seven layers, as shown in Table 2.1.
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								Traffic Type Supported

							
								
								Function

							
						

						
								
								Application

							
								
								Data

							
								
								The Application layer manages the network connection between an application and the network.

							
						

						
								
								Presentation

							
								
								Data

							
								
								In the Presentation layer, data is formatted into a form that can be processed at the receiving system.

							
						

						
								
								Session

							
								
								Data

							
								
								The Session layer creates the unique connection between sending and receiving systems and ensures that the data was transferred correctly.

							
						

						
								
								Transport

							
								
								Segments or Datagrams

							
								
								The Transport layer manages aspects of data transmission and reception.

							
						

						
								
								Network

							
								
								Packets

							
								
								The Network layer controls the addressing used for data transmission.

							
						

						
								
								Data Link

							
								
								Frames

							
								
								The Data Link layer manages hardware addresses.

							
						

						
								
								Physical

							
								
								Bits

							
								
								The Physical layer defines the transmission medium, such as wire, radio, light beam, or some other transmission method.

							
						

					
				

				Tip

				Some common mnemonic devices are often used to remember the OSI model and the order of each layer. They are: All People Seem To Need Data Processing, or Please Do Not Take Sales-People's Advice.

				It is very rare to find a network that uses these seven layers as the basis for its architecture. However, this is the most widely used model to describe different network devices and technologies.

				An alternative model based on TCP/IP networking was developed that uses five different layers to describe packet switching networks (the TCP/IP Reference model). Most modern networks now use devices based on the TCP/IP Reference model, but it isn't as flexible in describing other network types. The TCP/IP Reference model is discussed later in this chapter.

				How Layers Communicate

				All communication between two systems requires that the data being transferred travel down though the sending system's network stack, across the Physical layer, and then up through the receiving system's network stack. While the protocols used within a layer must be identical for peer devices, the protocols used at layer interfaces are undefined and can be changed.

				Communication begins at the Application layer on the sending system with a command or perhaps some other kind of event. That event is interpreted into an Input/Output, or I/O, request (that either sends or seeks information from a device), and translated to data that is transmitted down through the different layers of the network stack to the Physical layer for transport. Data travels over the link at the Physical layer using the specific connection that leads back up the intended system's network stack. The data then ascends the different layers of the target system's network stack to arrive at the receiver's Application layer where the data is used in some way.

				In order for data to be sent to the correct system or systems, additional information must be added to the data that describes the content and how to use it. That kind of information is commonly referred to as metadata, which is literally “data about data.” The process by which metadata is added is referred to as encapsulation; when the metadata is removed, the process is referred to as decapsulation. As data passes down through the network stack, metadata is added; as that data ascends, the network stack metadata is removed.

				Referring to Figure 2.1, you can see that the encapsulation process begins by formatting and segmenting data so that it is the optimum size for transmission. Each layer of the OSI model adds a layer header to the data containing the information necessary to support the functionality of that particular layer's protocols. Application (L7H), Presentation (L6H), Session (L5H), Transport (L4H), Network (L3H), and Data Link layer (L2H) headers are successively added. Each header contains addressing information, parameters, and the instructions on how the different layers use the information encapsulated within. A trailing section is added to the packet at the Data Link layer, which identifies the end of the packet. This trailing section also includes a data check so that the transport of the packet over the physical layer can be verified as being correct. At the receiving system, the packet is read and each OSI layer of the receiving system strips away its particular header exposing the information contained within successively.

				An algorithm such as a Cyclic Redundancy Check, or CRC, is applied to the data. This algorithm is run when a packet arrives at a destination (even an intermediate destination) to determine that the packet was correctly transmitted. If the calculated CRC value of the packet matches the value in the CRC data field, then the packet is assumed to be correctly received. A data check is done in the Data Link layer, but other layers may also include data check fields. The CRC is a hash function, and an algorithm is applied to the data contained in the communication to create an output value that is essentially unique, typically in the form of a 32-bit integer. The CRC is then used as a checksum to validate that the data sent matches the checksum contained within the data itself. The change of even a single digit in the data is enough to affect the value of the checksum and to require a retransmission of the data. Because data is binary, the CRC algorithm is very fast and efficient and doesn't add much overhead to the data transmission process. CRC-32 is now an Ethernet standard, and without this type of technology, network communications would be unreliable.

				 Figure 2.1

				OSI data encapsulation and transport
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				Seven layers are defined in the OSI model, each with its specific purpose representing a different area of networking technology. If only life were so simple. It is unlikely that you will ever work with a network comprised of seven different layers that correspond to each of these different areas; although rare, they do exist. However, economies of scale, as well as convenience provided by different packaging, costs, and other factors, lead to devices that might span two or more layers, and you should be aware that there are several other networking models that use fewer layers to define the network stack. Five layers is a common alternative.

				Tip

				To get an idea how people subdivide the network stack, refer to the layer names table found at http://en.wikipedia.org/wiki/Internet_Protocol_Suite.

				In practice, network devices and protocols will work at multiple layers in any networking model. The Cisco router is a good example of an appliance spanning multiple layers of the OSI model. Although the first routers were software that was built into operating systems such as UNIX or Solaris, Cisco achieved dominance in this area of technology by turning routing into an appliance, and by optimizing its performance. Cisco routers span both the Transport and the Network layers. However, the model still serves as the means for describing network communication and identifying devices, and it is the basis for a number of other models used to define Internet traffic, storage area networks (SANs), and more.

				It's best not to take the OSI model too literally. However, it provides the vocabulary needed to frame different vendors' products, which is why it is so useful. The real value of the OSI model is that it provides you with an understanding of how components communicate with one another. Each layer in the model describes a protocol or set of protocols, and so the model is sometimes referred to as a protocol hierarchy. Each boundary between two levels represents a vertical relationship and requires that an application programming interface, or API, be used in order to communicate with the levels above and below it. A vertical relationship between layers 4 and 5 would be referred to as the Layer 4/5 interface. Implicit in the use of the word interface is the need for a communication mechanism based on an API.

				Horizontal relationships, referred to as Layer n protocols, are considered to be peer layer communication, and often don't impose an API requirement. Horizontal relationships are only truly peers when two different entities on the same computer system use that same level: two mail applications, for example. When the same protocol layer is used by devices or entities on different computer systems, their relationship may be termed a peer relationship, but any communication between the two requires that both network stacks be traversed.

				As data travels through the network stack, it does so across the boundaries in a set of named connections or channels. Some technologies use a single pipe, similar to a one-lane road, through which data travels in one direction only; this is simplex communication. You can also use a single connection to send traffic first in one direction and then in the reverse direction; this is referred to as half-duplex communication. When communications travel in both directions at the same time, this is referred to as full duplex. Full duplex can be achieved by having a channel that is wide enough to dedicate to each direction or by having multiple channels. The type of communication used is determined by the hardware and software involved and is not specified as part of the OSI model.

				Each layer in the OSI model has one or more active elements that are sometimes referred to as an entity. An entity can be a software module or it can be dedicated logic on a chip that is part of a network function. An entity or set of entities in a layer that communicates to the layer above is referred to as a service provider, and the entity that uses the service in the layer above is the service user. The address that is used to access a service provider defines a Service Access Point, or SAP. Once two entities establish communications through an interface using an SAP, they pass what is called an interface data unit (IDU) through the SAP. Contained within the IDU is a service data unit (SDU), control information, and the data that is communicated.

				Some layers require that the data be segmented in order to be processed. When that happens, each piece of data gets a header and is transmitted as a distinct unit of data called a protocol data unit (PDU). An example of PDUs is the packetization of data for transmission, and the reassembly of those packets once they are received, verified, and sequenced.

				Services are the mechanism used to communicate between different layers in the OSI model. Services have a certain functionality and often can be accessed using an API. Services can operate between layers in either a connection or connectionless model. A connection model specifies that once your connection is established, that connection is dedicated to the service being provided. The best example of a connection-oriented service is the telephone network. The service establishes a connection by dedicating a circuit to the communications. When the call ends, the circuit is broken and released for use. A connection model offers some advantages in terms of reliability and in providing quality of service. However, once the connection is broken, the communication ends, which demonstrates the weakness of this approach: it is not fault tolerant or redundant.

				The alternate model of a connectionless service is adopted by the Internet at the Physical layer and is accounted for by the TCP/IP or Internet model. The communication carries its own addressing, and the route taken to reach its destination is unspecified and can be different, depending upon conditions. Connectionless services are characterized by high fault tolerance, but with slower performance and some additional overhead as compared to a connection-oriented service model.

				All data communication is characterized by the use of basic commands to initiate and control the connection. Connection-oriented services begin with a process called negotiation, where the characteristics of the connection are established. The squelches your modem makes with dial-up connections when it connects are its advertisement of its connection capabilities. Basic control commands or service primitives that play a role in the negotiation process take the following forms:

				• Initiation or connect request. This is the advertisement for a service to perform an action.

				• Status or indication. This is an informational event that provides information about the state of the software module or active element (entity) involved in providing the service.

				• Response. The provider sends a message that it can respond to a request.

				• Confirmation. The result of the communication is sent back to the initiating entity. Not all services use a confirmation as part of their service.

				Keep in mind that the negotiation process takes place on two different systems. Therefore, although the negotiation involves the interface between two different layers in the network model, each control command travels either up or down between the two layers on one system and is then responded to in those same two layers on the second system. A service is defined by the set of operations or command primitives, as well as the two layers that are interfaced by it. 

				Services do not specify how the operations are implemented in practice. Implementation using services is left to specific protocols. A protocol is an agreed-upon set of rules for data format that can be used by peer entities within a layer to provide a service. By isolating the command set from the implementation, a network is able to switch protocols to accommodate different vendors' products, different network types, and other variables that affect performance.

				The Physical Layer

				The Physical layer is the lowest level of the OSI model and in other related architectural models, and is the layer responsible for moving bits of data from one location to another. In defining the parameters of Physical layer devices, it is necessary to set the standards for what represents a Boolean value of 1 and 0, the voltage difference, and how long the bit should last before a new bit begins. Physical layer devices must include the electrical connections that are made, how different devices connect to one another, and other electrical and mechanical aspects.

				The most commonly used media for the Physical layers are:

				• Copper cabling or wires, which include different categories of Ethernet cable (designated by specifications such as CAT5 or CAT6), twisted pair wiring like the ones used in your phone lines or that were used for smaller peer networks such as AppleTalk from Apple, and others.

				• Fiber lines where light travels through doped glass strands.

				•  Radio communications using the different Wi-Fi 802.11 standards, microwave, and other parts of the electromagnetic spectrum in the radio range.

				The Physical layer also includes the devices that provide the connections between media, and includes computer network interface cards (NICs), modems, hubs, and other devices.

				The Data Link Layer

				The Data Link layer connects the data in bits flowing through the media of the Physical layer with the connection that is the network path either to the receiving system or from the sending system. It provides the control mechanism that determines which path the data takes. As is the case with the Physical layer, the Data Link layer appears not only in the OSI networking model but also in other related models such as the model used to describe Internet traffic.

				The control over the data link requires that this conceptual layer of the networking model format messages to mark the beginning and end of a message. It does so by breaking the data into data frames, or more simply, frames. A frame takes a large message and segments it into pieces that are between several hundred and several thousand bytes in size. The size of the frame depends upon the technology being used and can be adjusted somewhat by the user to improve performance and reliability. You might want to have a larger frame size when you are transmitting your data over a high-speed connection, or perhaps drop down to a small frame size when a low-speed or unreliable connection is in use.

				The segmentation process for frames imposes a sequence on the transmission, and the Data Link layer must provide the necessary means to recombine the frames into data at its destination. Because data can be damaged by noise, and because multiple frames may arrive that duplicate each other, it is up to this layer of the model to resolve these problems. The Data Link layer does so by returning Acknowledgment frames to the sender to indicate which frames were received. The mechanism by which errors can be detected and corrected is part of the Data Link layer's action. Data can be corrupted for many different reasons, including noise in the physical media, and mistakes in transmission or dropped data. When an error is detected at the Data Link layer, a message is sent to the sender that the data needs to be retransmitted.

				Part of the Data Link layer's function is to manage the speed of data transmission: too fast and data is lost, which requires that data be retransmitted; too slow and the communication wastes valuable bandwidth and isn't well optimized. The system by which the Data Link layer regulates the data transmission speed involves the use of frame buffers to store data as it is received. A frame buffer is a portion of memory set aside to contain frames that have been received recently. Data flowing into and out of the frame buffers requires flow regulation and error correction in order to be both efficient and well formed. Therefore, the Acknowledgment frames must contain current information about the state of the frame buffer. Because Acknowledgment frames travel over the same physical path as Data frames, one optimization that the Data Link layer uses is a piggyback scheme to send control data back to the sending system. In any broadcasting network communications, such as TCP/IP traffic flowing over Ethernet, the Data Link layer provides a control function in the medium access sublayer of the Data Link layer that determines which frames have access to shared data channels. A shared data channel is a network path that is used by two or more sending and receiving systems.

				The Network Layer

				The Network layer provides a routing and control function that determines which path data packets use to travel from one network to another, and provides the flow control needed to ensure that a subnet isn't flooded with too many packets at any one time. The concept used to define Network layer communication is called the session, and the logic used to manage sessions relies on specific routes determined by the routing function.

				Routing plays a fundamental role in switched networks because it provides the means by which traffic can adjust to dynamic changes in the network. When a router fails an acknowledgment request from a sending router, the router can fall back to the next best path. Routers store connections and routes in a routing table, which can either be statically or dynamically created. For small networks where the addresses rarely change, or for large networks where high-speed connections at well-known addresses exist, static routing tables make the most sense. For large networks, dynamic routing provides a better solution than static routing.

				Different networks or subnets can require data to be formatted in different ways. This commonly occurs when data travels across international boundaries. Addresses can change across a boundary, and so too can the data rate or the protocol used for the transmission. Some subnets require packets to arrive with information that supports an accounting function to keep track of frames forwarded by subnet intermediate systems, to produce billing information. The network layer provides the necessary means to solve these incompatibilities.

				Both the OSI model and the Internet model contain a Network layer. However, when network traffic is broadcast, it is sent out to any network system that requests the data. Broadcast data doesn't require most of the functions provided by the Network layer. Therefore, for broadcasting systems, the Network layer can be either minimal or completely missing.

				The Transport Layer

				The Transport layer connects the Network layer above it and the Session layer below. The purpose of the Transport layer is to segment the data from a session and pass appropriately sized and formatted data to the Network layer. When data is received from the Network layer, the Transport layer is responsible for ensuring that all the packets have arrived correctly, reforming the session data, and acknowledging (an ACK command) the receipt of the transmission. The Transport layer can support either connection or connectionless data transmission.

				The Transport layer manages the connection between its two adjacent layers — the Session layer and the Network layer — and when appropriate, it can create and manage multiple network connections for each Transport connection. Because the Transport layer is responsible for maintaining and managing the connection between the Session and the Network layers, it abstracts the upper layers of the network stack, which are software-based, from the hardware layers below it. As data is exchanged, the Transport layer is responsible for managing the multiplexed streams, and opening and closing connections as required. This management function is a form of flow control.

				Transport layer connections provide the only direct link that exists between the two network stacks during any communication. Whereas all other layers of the network stack work independently of their counterparts in the other network stack, the Transport layers of the sending and receiving systems talk directly to one another through the use of their message headers and control messages. A message header is a special field within a packet that contains message information, while a control message is an entire packet (usually a very short one) that is a message. Indeed, the hardware layers can only establish a connection between adjacent layers because the systems involved in the connections between the Network, Data Link, and Physical layers are indeterminate. Depending upon network conditions, routing may employ any number of systems to make the connections required by hardware. The higher layers in the network stack — the Application, Presentation, and Session layers — are all single-channel, end-to-end communications.

				The Session Layer

				The Session layer provides the means for creating and managing sessions, as well as providing the services needed to initiate those sessions. Security mechanisms, such as logons and other forms of dialog control, are a fundamental part of the Session layer.

				Traffic can flow through the Session layer in one direction at a time, or in both directions: either using a half-duplex or full-duplex mode. When a single direction is used (half duplex), the Session layer passes an identifier called a token to the traffic in one direction when its turn comes to use the channel, and then when the token is released, it is passed to the communication going in the opposite direction.

				As data flows through the Session layer, checkpoints or separation markers are inserted into the packet data so that if the transfer is interrupted, it can be reestablished without having to resend all of the session data. By synchronizing the data transfer, the Session layer ensures not only that the session is reliably transmitted but also that the transfer is efficient.

				The Presentation Layer

				The Presentation layer formats Application layer data and can compress and encrypt data before handing the data off to the Session layer. When data from the Session layer appears at the Presentation layer, it is decrypted and decompressed if necessary, so that the data can be sent to the Application layer in a form that the Application layer can accept.

				Presentation layer software takes the data objects that applications create in the different data types, such as character, integer, or binary, and converts that data into a form that can be passed along to a different system in a standard encoding format. Wire protocols bridge operating system and application differences so that a computer with one character code, such as ASCII, can communicate with another computer that has a different ASCII character set, or that is using Unicode as its character set.

				The Application Layer

				The Application layer contains the software that a user interacts with. Application layer programs include Web browsers, e-mail clients, command shells (the Command Line Interface), and office applications to name but a few. The network operating system also contains a number of Application layer programs. Not all software is Application layer software. Microsoft Word, for example, is not exclusively an Application layer application; it contains many modules that work at different layers of the network model and many modules that aren't network related. However, when you initiate a command to perform network printing, the print subsystem used to communicate this action to the network is an Application layer application.

				Application layer software is often described in terms of terminal session. A terminal session is an application that provides system status information, allows for system commands, and serves as an interface for user interaction to a system. When you open a terminal session and log into a remote system, you are using an Application layer program. In order for a terminal session to interact with a wide variety of programs, there must be a uniform way for those programs to communicate with the terminal session. Many terminal session programs use a network virtual terminal to standardize the interaction between applications such as text editors with all of the different terminals that exist so that variables such as screen resolution and keyboard equivalents are standardized.

				The Application layer hosts a very rich range of services, and the particular services are highly variable from system to system. Applications are responsible for many application service functions, including the following:

				• Display characteristics

				• Initiating and managing I/O (Input/Output)

				• File transfers

				• E-mail

				• Network printing

				•  Information lookups in directory services

				The Application layer uses the largest set of network protocols. The Hypertext Transfer Protocol (HTTP) used by Web servers and browsers, File Transfer Protocol (FTP) used in uploads and downloads, Simple Mail Transfer Protocol (SMTP), and the Post Office Protocol (POP) used for e-mail transfers are all Application layer protocols.

				The TCP/IP Reference Model

				Although the OSI Reference model is the best known, it is not the only layered network stack model in use. The best-known alternative model is called the TCP/IP model. 

				Cross-Ref

				The TCP/IP model is discussed in more detail in Chapter 18.

				The TCP/IP model uses three different protocols for transport and data format. The Transmission Control Protocol (TCP) describes how to make connections between systems on the Internet, while the User Datagram Protocol (UDP) describes how to work with connectionless data communication. The third protocol, the Internet Protocol (IP), describes how to format packets for transmission. TCP and UDP are Transport layer protocols, while IP is a Network/Interface layer protocol.

				The TCP/IP Reference model uses four different layers in its communication model. Layers 1 and 2 in the OSI model (Physical and Data Link) correspond roughly to the Host-to-Network layer in the TCP/IP model. Layer 3, the Network layer in the OSI model, corresponds directly to the Internet layer in the TCP/IP model; Layer 4, the Transport layer, exists at the same level in both. The TCP/IP model does away with Layers 5 and 6 (Session and Presentation). Finally, both models have a top-level Application layer, which was Layer 7 in the OSI model. Figure 2.2 shows the OSI and TCP/IP models side by side.

				 Figure 2.2

				Comparing the OSI and TCP/IP network models
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				Comparing the OSI and TCP/IP Reference Models

				Over the years, both the OSI and TCP/IP Reference models have shaped the vocabulary of the networking industry. However, they both contain flaws in their application to real-world networks that are important to understand. Whereas the TCP/IP model has expression in real products and technologies, based on a set of protocols that have become dominant standards, the OSI model is not supported by products to any significant extent. As a result, the OSI model is essentially an abstraction that is used to understand network communications.

				Even in networks that adopt the OSI 7-layered model, some of the layers, particularly the Session and Presentation layers, are thinly populated, if at all. At the same time, the hardware layers, such as the Data Link and Network layers, have so many functions and services that any serious analysis of them would tend to segment those layers into several sublayers.

				Part of the complexity of the OSI model is that it doesn't implement key technology in a single layer, but distributes command and control features such as flow control in each of the different layers. This redundancy makes the OSI Reference model more complex than it should be. In the real world, devices get around these issues by spanning several layers of the OSI model within the same device.

				The main reason that the OSI model seems to have been adopted with seven layers is that the Systems Network Architecture (SNA) from IBM was a seven-layer architecture. In the 1970s, it was supposed that IBM could control the networking industry, and so the OSI model was constructed in a way that it could be applied to SNA technology without too many modifications.

				While the TCP/IP Reference model is supported by a large number of products in the marketplace, it has been criticized for not being general enough to be applied to networks using other protocols. The delineation of interfaces, services, and how protocols are integrated into the model isn't clearly defined. For example, the Host-to-Network layer doesn't really implement separate protocols, and is more properly defined as an interface; there is also no formal Presentation or Session layer. This has generally been expressed in practice by the development of ad hoc protocol standards.

				It's best not to take these network models too seriously. While OSI provides a highly flexible model that is widely used in theoretical discussion, and the TCP/IP model finds expression in products, neither model can be directly applied to real-world networks. 

				Note

				Perhaps the best compromise is one of the alternative formulations considered but not adopted when the OSI model was being developed that uses a five-layer system. These unnamed models eliminate the Session and Presentation layers in the OSI Reference model and blend their functions into the Application and Transport layers. Hybrid models left the Network, Data Link, and Physical layers intact.

				Summary

				In this chapter, the OSI Reference model was presented as an architectural framework that can be used to describe computer networks and devices. This seven-layer protocol conceptualizes a network stack, beginning with applications and software at the top, formatting and data-handling layers in the middle, and hardware layers at the bottom. To communicate, data must travel from the sending system's network stack to the receiving system's network stack.

				The boundary between each layer of a network model defines an interface that requires an API be used to create a service that connects the two layers. The OSI Reference model doesn't specify the interface or the service, but highlights its need and use.

				Other architectures exist, including one based on the TCP/IP protocols. Whereas the TCP/IP model is expressed by more networks and devices, the OSI Reference model is more flexible and is more commonly used to describe aspects of computer networking. Hybrid models exist that use fewer layers than the OSI Reference model and reduce the OSI Reference model's complexity somewhat.

			

		

	
		
			
				Chapter 3: Architecture and Design

				In This Chapter

				Different network topologies


				How network connections influence network types


				Segments and routing


				Different network architectures

				In this chapter, you learn about different aspects of network design and architecture. Designs can be based on different connection types and topologies; architectures are network systems based on a common protocol. In determining whether you are considering an architecture or topology, an argument based on the highest-level protocol used is presented. Topologies are based on physical transport, while architectures use higher-level protocols.

				Different point-to-point connections are considered. Four different types of connections between endpoints can be specified: physical connections, virtual connections, transient connections, and links where there is no defined (unique) connection. These different types are the basis for all modern networks.

				A collection of nodes sharing a common physical medium is called a segment. Segments are the basic unit of networks; they do not have to have their traffic mediated, and nodes share a common logical address as opposed to a node's physical (e.g., Media Access Control or MAC) address. Segments also define collision domains.

				To separate segments, you add connection points such as switches or routers. Networks with multiple segments must have traffic travel over defined routes. These routes may have any of the four kinds of connections. Routing can be 1:1 or unicast, 1:many or multicast, 1:all or broadcast, and 1:any or anycast. The effect of switched and packet transfer on networks will be considered.

				Several different network architectures will be briefly considered from an overall network design viewpoint. They include peer-to-peer (P2P), client-server, multi-tier, and thin client/server architectures. These different network types determine how network resources must be deployed, where systems can be located, and which of the many different network protocols they may use.

				Network Architecture and Topology

				The methods used by systems to communicate on a network are referred to as the network architecture. The manner in which the physical infrastructure is deployed to connect a network is referred to as the network topology. A topology describes the physical means for transporting data; an architecture describes the technology used to manage and manipulate data.

				In some instances, a particular architecture will dictate that a particular topology be used, and in other instances a particular topology will only be suitable for a particular architecture. However, it isn't always the case that an architecture and a topology are so tightly bound.

				Most of the time, an architecture is selected to support a particular geographic distribution, organizational structure, user or system load, performance requirements, and the staff available to manage the infrastructure.

				The most common architectures in use are described as:

				• Peer-to-peer networks

				• Client/server (two-tier) networks

				• Multi-tier networks

				• Directory service or federated networks

				• Grid or distributed networks

				• Hybrid combinations of the above

				Cross-ref

				Directory services are covered in Chapter 21.

				Note

				Hybrid networks are just two or more of the aforementioned architectures.

				You can determine whether a description of a technology represents a network architecture or a network topology by the highest layer of the OSI model that the technology requires. A topology describes technology that operates at the Physical and perhaps the Data Link layer. An architecture describes technology that operates at the Network level and above.

				The difference between topology and architecture can be illustrated by some examples. Ethernet describes a technology that involves frame-based communication over media. While there are variants of Ethernet that run over twisted-pair copper, there are also versions that run over fiber optic cable. The highest layer that the Ethernet standard operates at is the Data Link layer, where a common addressing format based on Media Access Control (MAC) addressing is defined. Ethernet is a network topology. There are many different ways in which Ethernet networks may be constructed — linear buses, hierarchical trees, rings, and so forth — but all of them still are limited to MAC addressing as the single highest protocol that Ethernet supports.

				Cross-Ref

				For more discussion on Ethernet network construction, including linear buses, hierarchical trees, and rings, see Chapter 1. 

				The Internet is governed by a number of protocols or standardized agreements on how data should be composed and managed. As a group, those protocols are referred to as the Internet Protocol suite. Much of this book is concerned with explaining Internet Protocols, because this form of networking is so overwhelmingly prevalent today, and indeed you are likely very familiar with them.

				The Transport Control Protocol and Internet Protocol (TCP/IP) are the two core protocols that give the Internet much of its flavor. Transport Control Protocol (TCP) is a Transport layer protocol, and the Internet Protocol (IP) is a Network layer protocol in the OSI model. Actually, IP is more often described in terms of a different networking model, the TCP/IP networking model, where IP is part of the Internet layer. The TCP/IP Internet layer overlaps with the Network layer in the OSI model, but the OSI model includes certain technologies that involve address resolution in the Network layer that would be better placed into the Link layer of the TCP/IP model. The Address Resolution Protocol (ARP) is the one example that is commonly mentioned. The main reason that these two models diverge is that OSI makes no distinction between communication that is connection oriented and communication that has no defined connection. Be that as it may, if you were to examine the different layers of the TCP/IP model, you would find that nearly all of them are above what would be the Data Link layer of the OSI model; also, many of them, particularly routing protocols, are Application layer protocols. The higher-level protocols make the Internet Protocol an architecture.

				Figure 3.1 compares the two different network models: OSI to the TCP/IP architecture. The TCP/IP architectural model is described in the IETF's RFC 1122 (http://tools.ietf.org/rfc1122). You will find a considerable amount of variation in the literature describing how these two models relate to one another, or indeed how the TCP/IP model is structured and named. As a result you should take Figure 3.1 lightly. Some authors break the TCP/IP model into four or five different layers and refer to the different layers with different names. In some discussions, the Network Interface layer is referred to as the Link or Host to Network layer. In other discussions, the Network Interface is broken up into a Network Access/Physical, Data Link/Hardware, or Data Link/Physical coupling. The reason that the Application layer in the TCP/IP networking models consolidate the Application, Presentation, and Session layers into a single Application layer is because the upper layer IP protocols span the different layers.

				 Figure 3.1

				Comparing the OSI model to the TCP/IP architecture
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				Point-to-point

				A point-to-point connection is the simplest network connection that can be defined for any two systems. Simple, that is, before you stop to think about how even just a few elements can be manipulated to radically change topology and architecture. There are three components to any connection: two endpoints and the path or connection between them. The variation in the condition of these elements defines the type of connection, and each connection type has a defined state that determines the properties of the connection. The state of a connection may be characterized by:

				• Physical. The component (endpoint or connection) can be physical or virtual.

				• Logical. The logical state is the name or identifier that is assigned to the endpoint or connection. That name can be an IP address or an actual pathway through a network (the wired and switched connection), or the address and path can be virtual or transient.

				• Signal. Different types of connections can support one or more session, data sent as an entire message or packetized, and so forth.

				• Performance. Based on the physical, logical, and signal types, different types of connections can support different levels of performance, and the component that is the rate limiting component varies.

				The following sections discuss the four connection types. You can use the accompanying figure for each connection type to compare the connection types, the manner in which they may be physically or logically defined, and the implications that the connection type has on both the signal types that can travel over the connection and the performance characteristics and limitations. The chart next to each connection type in the figures is meant to summarize this.

				Physical point-to-point connections

				The most straightforward connection is a point-to-point connection. Figure 3.2 shows a physical connection with physical endpoints. Sp1 on the left is the sending system, and Sp2 on the right is the receiving system. The connection is made through a permanent medium, most often a wire or fiber, and most higher-level protocols dictate that a negotiation establish the session parameters. Depending upon the power and efficiency of the two network interfaces, as well as their sensed ability to transmit data over the connection, a speed is determined and data flows from left to right during a half-duplex session. If the session is full duplex, then traffic flows in both directions.

				The table to the right of each connection type lists the various characteristics of the two endpoints (Sp1 and Sp2) and the Connection (Cp1). For the point-to-point connection type, the endpoints are physical network interfaces (NICs) and the connection is a physical wire. To describe this type of connection you would need to have an address that corresponds to each of the two endpoints, and you would be able to differentiate the circuit or exact path that a signal takes traveling from one endpoint to the other. That path's physical and logical definition wouldn't change for the time that the point-to-point connection was in force.

				The advantage of a point-to-point connection is that it is capable of supporting multiple signals because the circuit includes a dedicated connection. The limiting factors of performance are the limiting factors of the physical elements involved. That is, the speed will be determined by the slowest of the following three factors: the signal rate that the sending endpoint Sp1 can send signals, the bandwidth of the network connection Cp1, or the speed at which the receiving endpoint Sp2 can accept incoming signals.

				The speed of transmission is determined by a gating factor:

				• The media's bandwidth

				• The slower of the two endpoints

				• The ability of the particular higher-level protocols to process the data

				 Figure 3.2

				A point-to-point connection and its connection state table
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				If data is sent compressed and/or encrypted, the gating for performance is measured in terms of throughput (bits per second, for example) and may be determined by the ability of the endpoint system to transform the data into clear text — or whatever form is required. To some extent, content buffering can aid in intermittent data transfer, but if you have a connection operating at full speed for a length of time, buffering will only be effective so long as incoming data doesn't overrun the buffer.

				A purely physical point-to-point connection is common in small networks and prevalent in peer-to-peer networking. Whereas a point-to-point connection is a topology, peer-to-peer is a network architecture. Picture, if you will, a network of many point-to-point connections forming a web, mesh, or grid of terrifying power (á la Twilight Zone); is that a topology or an architecture? These three different descriptions with a high order of connectivity to other network endpoints are described as a mesh or a grid architecture. If the mesh network exists simply to pass traffic around, then it is a topology; however, if the network distributes processing tasks, as is the case with distributed applications, then the grid is an architecture according to the rule that's been posited in this chapter.

				Cross-Ref

				Peer-to-peer networking is discussed at length in Chapter 11, and large mesh or grid networks are described in Chapter 17 where high-performance networks are discussed.

				Virtual point-to-point connections

				In the second example of a point-to-point connection, shown in Figure 3.3, all three components of the connection are virtualized. The endpoints Sv1 and Sv2 are virtual network interfaces, and the connection Cv1 is a virtual circuit. A virtual network interface is a simulation in software of a physical network interface. In order to have one or more virtual network interfaces on a system, you must have a physical network interface that network traffic flows through, but any number of virtual interfaces may be defined and given logical addresses that use a physical interface. Network interfaces (including virtual ones) are described in Chapter 7.

				 Figure 3.3

				A virtual point-to-point connection and its connection state table

				[image: 431313-fg0303.eps]

				The state table for a virtual point-to-point connection is shown in Figure 3.3. To describe this type of connection, you would need to have an address that corresponds to each of the two endpoints, but those addresses aren't unique to the physical interface that either Sv1 or Sv2 uses.

				The path or connection is a virtual circuit, Cv1. This means the circuit is built at the start of a session and discarded or torn down when a session is complete. You would not be able to differentiate the circuit or exact path that a signal takes traveling from one endpoint to the other after a session ends because that path changes on a session-by-session basis. However, during a session, the virtual circuit is defined. The process of buildup and tear down of virtual circuits introduces latency into virtual point-to-point circuits that don't exist in a physical point-to-point circuit.

				The advantage of a virtual point-to-point connection is that it is capable of utilizing all physical network interfaces and physical circuits because virtualizing all components allows this type of connection to use whatever is available. A virtual circuit is assigned to a session, and therefore, although endpoints can send single or multiple sessions over a virtual point-to-point connection, the circuit is still dedicated to the two endpoints involved, Sv1 and Sv2. Performance over a virtual point-to-point circuit is limited by the endpoint's signal rate or by the bandwidth that is allotted to the Cv1 connection.

				A virtual point-to-point connection has properties of a physical connection. Once the session is established, the signals travel over a circuit that is a dedicated connection. The limiting factors of performance are the limiting factors of the physical elements involved. That is, the speed will be determined by the slowest of the following three factors: the signal rate that the sending endpoint Sp1 can send signals, the bandwidth of the network connection Cp1, or the speed at which the receiving endpoint Sp2 can accept incoming signals.

				A virtual connection is a circuit that is built for a particular session and exists for that session. When the session is over, the virtual circuit is released. Most LAN topologies build virtual circuits by providing the appropriate connections at a router or switch, because it is impractical to maintain a full set of physical circuits. In order to build a virtual circuit, the switching devices have to have knowledge of their neighbors and a method for optimizing routes, and there is a certain amount of system overhead involved in “building the virtual circuit” and “tearing the circuit down.” That overhead can range from being very resource-intensive to insignificant, depending upon the technologies used. From the standpoint of desirability, once the circuit is built, there is no disadvantage to sending traffic over a virtual circuit versus a physical circuit because a virtual circuit uses a combination of physical connections as its route. Virtual circuits are the central construct necessary to create virtual private networks, which are the topic of Chapter 29.

				Virtualization is one of the great unifying concepts in computer science, one that becomes increasingly important as the industry attempts to optimize system performance. Virtual machine technology is becoming a standard method for all servers and will eventually migrate to the desktop. It is possible to virtualize anything in computer science, provided that you have at least one physical system to provide the needed hardware to perform the heavy lifting. In a sense, virtualization is a form of redirection and partitioning.

				Packet switched or transient connections

				Figure 3.4 represents a completely different model for a point-to-point connection — packet-switched or transient connections — where no connection is defined. The connectionless or stateless model is the one that the Internet uses. The lack of a defined circuit completely changes the mechanism by which data is sent and received over the network.

				 Figure 3.4

				A packet switched or transient connection and its connection state table
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				Referring to Figure 3.4, this type of connection uses what is essentially a connectionless model. The sending and receiving systems are shown as Sp1 and Sp2 as two physical endpoints, but they could just as well have been virtual endpoints Sv1 and Sv2, or any mixture of virtual and physical such as Sp1 and Sv2. I've just shown one case for simplicity. The nature of the endpoints is not the important differentiating factor here. The key differentiator is the lack of a defined path, which is shown as the dotted line Ct1 in the figure. No defined “circuit” means that the path varies and that traffic travels over whatever route is the best available route at the time. The best way to think about circuitless or stateless connections is that transmission proceeds on a “best efforts” basis.

				This is the first of the point-to-point connections that is stateless; both A and B were stateful. There are some very important conclusions that you can draw from this difference. In a stateful connection, the circuit is defined, whereas in a stateless connection there is no path defined.

				Stateful connections can be permanent, which supports sending traffic in a complete stream as a series of bits, bytes, and characters. Traffic sent this way arrives sequenced (in order) and doesn't require reassembly. Indeed, traffic might not even need to be fragmented at all, depending upon the size of the data being sent. In studies of corporate e-mail that I have been involved with, some fraction over 90 percent of the messages are quite small, 3KB or less, but the remaining 10 percent make up 90 percent of the data. With different applications, your mileage will vary, but the implication is that most data is fragmented because most protocols impose a limit on size in order to make their error correction mechanisms tractable.

				By contrast a stateless connection uses whatever physical path is available or whichever is the solution of some optimization or routing algorithm. Data as it arrives at an endpoint can travel the same path or any other path. That means that packet-switched networks are able to more fully utilize the physical network than any other type of connection can. For this reason nearly all commercial network connections are based on a switching technology. Only high speed backbone connections tend to deviate from this route. As shown in the associated state table, circuit switched networks tend to send data in a fragmented form and use multiple paths. Performance is something that can be throttled allowing endpoints to vary the sending/receiving rate and modifying the amount of bandwidth allotted to the connection dynamically.

				A point-to-point connection can also be defined, but can be intermittent or transient, as is the case in Figure 3.3. This is the case for token ring networks; hosts on the network get full use of the token ring but only on a prioritized basis and only for a session. It is also the case for Virtual Private Networks (VPNs) where the circuit is defined for the session.

				To make a connection work when there is not a defined circuit, the sending system always chops data up into chunks, called packets, frames, or datagrams. Each chunk is prepared in sequence, encrypted if needed, tagged with a sequence number, made verifiable with an error correction mechanism (usually a checksum), almost always encapsulated, and sent on its way. As each chunk goes out, it is sent to a branch point in the network and routed by the best available path on a hop-by-hop basis.

				If a link goes down, no problem — the chunks of data are sent by other routes. Stateless connections are highly fault tolerant; they will survive even limited nuclear war. Not only that, but because chunks may be routed over the best available path, the entire network can be utilized and bandwidth may be fully exploited. This is not the case with stateful connections. It is for these reasons that packet switched or transient circuit point-to-point connection technology dominates the networking industry. 

				Notice that I called packet switched circuits an architecture and not a topology. While endpoint addresses are known, the state of the connection cannot be defined. That means that higher-level protocols must always be employed to make sure that data arrives where it is intended to, above and beyond the Physical or Data Link layers.

				Along the different routes, some packets will arrive faster than others and be out of sequence, other packets will hit dead ends and need to be resent from the source, and some may arrive corrupted. It is up to the destination endpoint to error check, resequence, and unencrypt the data. Stateless connections require that each node in the network, as well as the destination endpoint, be able to participate in messaging that makes requests for data and acknowledges receipt. Messaging is an additional overhead that stateless connections impose. In some cases, especially when there is a high error rate, overhead can be a very significant burden. When applying Quality of Service (QoS) protocols, it is always easier to manage QoS in a stateful connection and to guarantee a level of service than it is in a stateless technology.

				Switched connections

				Figure 3.5 represents a switched point-to-point connection. When a circuit is available on a time-varying basis, there are two different methods that can be used to provide access to the circuit: time slicing and negotiated access. The public switched telephone network (PSTN) is the classic example of this connection type.

				 Figure 3.5

				A switched connection and its connection state table
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				With time slicing, a node has access to the circuit at regular intervals. Time slicing is common in microprocessors, but extremely rare in network technology. When you time slice access to a CPU, there is nearly no latency involved in fetching information from a primary cache. On the other hand, time slicing access to a connection requires circuit buildup and teardown, and that introduces unacceptable latency into a network. That latency results in a very poor use of a network's bandwidth.

				In Figure 3.5 the endpoints shown are physical endpoints Sp1 and Sp2. This is more commonly the case for switched networks because it is the lack of physical connections and many physical endpoints that typically drive the development of this network type. As with the packet-switched network described in the previous section, the circuit switched connection Cs1 is defined at the time the session is initiated. However, unlike packet switching, a circuit switched network's connection is complete during the entire session. The data sent over the connection may be fragmented, but it travels the same defined transient path. The advantage of a circuit switched technology is that it can support data streams, allows for the physical path to be divided into channels, and by allowing the signal quality to drop can support a bursty operation.

				The predominant method used for a switched connection is a negotiated access to the network. Any network technology that uses a token passing system for network access simulates a switched network connection. Token passing is done on regular intervals so that even a node with a high priority can't entirely command a network's bandwidth indefinitely. From the standpoint of other users, a network that is controlled by a single node seems to be frozen and crashed.

				Most network connections are switched to guarantee that a path exists between two endpoints. Some network connections, such as bridging links, backbones, and others, are dedicated connections, but they usually represent only a small fraction of the connections on most networks.

				Cross-Ref

				For more discussion on routers, bridges, and switches, see Chapter 10. For more details on WANs and backbones, see Chapter 13. 

				Switched and Packet Networks

				There's a lot of confusion regarding the terms packets, frames, and datagrams because their meanings are rather similar and depend upon the particular technology in use. A packet is a formatted data chunk that is sent over a packet switched network. Packet switching is a stateless technology that routes traffic on a packet-by-packet basis.

				Packet switching was illustrated in Figure 3.5. On a packet switched network, the data is always sent as chunks that are encapsulated with addressing, and there is no circuit defined. The switching is done at a computer, switch, router, or some other device, and the only role that the packet plays in determining the route that it travels is to present its addressing, and perhaps other data such as priority to the routing device. 

				The term circuit switching is applied to a network that builds a stateful connection between two endpoints over which network traffic flows. The classic example of a circuit switched network is the plain old telephone system, or POTS. As you can see in Figures 3.2 and 3.3, circuits can be permanent or virtual. A circuit switched network can support the widest range of transport protocols because data can be sent as a continuous stream, in whole, intermittently, or in chunks such as packets. Because the endpoints “own” the circuit, at least for the session, the data can be sent in any way that can be successfully negotiated between those endpoints.

				In order for packets to be sent and received correctly, the packet data or payload is encapsulated with supporting data such as addressing, checksums, and sequencing. This process is referred to as framing or packet framing, and the data that is sent is referred to as frames. So packetization is the process of chunking the data, and framing is a data format. This is entirely analogous to sending a letter to someone composed of text and then formatting the data inside a word processor document. The text is the letter and the formatting is the envelope.

				Remember that packet switching also requires a messaging component. Messages are packetized, but because they may only require a command and no data, what's important for message frames is the data contained in the envelope.

				The term packet can be applied to connections that are both stateful and stateless, as it refers to the chunking process and nothing else. The term datagram is used when the technology employed is over a stateless technology and uses what is considered to be an unreliable service. From the standpoint of this discussion, an unreliable service is one that requires that each step in the process of communication be matched by a messaging infrastructure.

				Cross-Ref

				Chapter 17 describes the Transmission Control Protocol and the User Datagram Protocol. Chapter 18 describes the Internet Protocol. A more complete discussion of stateful and stateless communication and the mechanisms used for each is contained in these chapters.

				A reliable service that uses packets may or may not send a message back to the sending system that the data was received correctly, but an unreliable service always sends a message back to the sending system. Not only that, but an unreliable service may also send a message back at each individual node that a packet or frame reaches. The Transmission Control Protocol (TCP), when combined with the Internet Protocol (IP), constitutes what may be considered a reliable service, TCP/IP. TCP/IP was constructed to ensure that the data sent is the data that is reconstructed exactly at the receiving endpoint. As a rule, TCP/IP is slower than methods that don't enforce reliable delivery or impose a quality of service.

				In the Internet Protocol suite, you can see the impact of messaging on a hop-by-hop basis when you issue a TRACERT command. That command builds a table from returned ICMP messages at each step along the path that the PING packets take to their destination.

				By contrast, the User Datagram Protocol (UDP) over an IP network represents an unreliable service. UDP sends data in framed packets, but doesn't require that the data be faithfully reproduced at the receiving endpoint. UDP is used for streaming media and other applications where large amounts of data are being transferred and where the loss of some data isn't important. In a movie passing by at more than 30 frames per second, your mind can't perceive a frame that is missing or out of place. It's easy to remember what a datagram is if you remember that the D in UDP stands for datagram and that this is the technology used for streaming music and video. So for anything sent as a stream, the use of the term datagram is the correct one, although few people would ever correct you if you used the term frame or even packet, instead. It's a subtlety, but it's worth keeping in mind.

				Bus Architectures

				The logical extension of a point-to-point connection is a set of point-to-point connections forming a bus structure, with many nodes sharing a common medium in a daisy chain topology (described in Chapter 1). Early Ethernet versions, such as 10BASE5 (which used vampire taps) and 10BASE2 with coaxial cable mated with BNC connectors, have this type of topology.

				In a bus architecture, the network bus defines a network segment that is a logical subgroup of network nodes. Network segments not only have the property of common addressing but they also serve as the boundaries for broadcast messages and represent the portion of the network over which network collisions occur. Signals traveling on a network segment require that the signal not be endlessly reflected back and forth on a network segment in order to limit collisions and lower network traffic, which is accomplished by a mechanism called termination. A description of network segments, collision domains, and how termination works is described in the sections that follow.

				Network segments

				A bus may be viewed as a set of one or more network segments that share common network characteristics and can communicate with one another with the least possible overhead. Every type of network has at least one network segment. At a minimum a network segment consists of two or more computers that share the same physical medium. Because a network segment represents a fundamental unit in networking technology, let's consider exactly how a network segment is defined and what characteristics it might have.

				In some instances, a network segment is a single point-to-point connection, but more often, it is a collection of point-to-point connections. Some network devices, such as couplers, hubs, and repeaters, extend a network segment across both connections. On a token bus network, a network segment is defined as the physical layer between two different Media Access Units. Because a token bus network works by passing a token along the bus from beginning to end, token bus networks are considered a single network segment.

				The definition of a network segment as one where systems share a physical network isn't universally applied. Many times, network segments are defined as that part of a network where systems can communicate with one another at the Data Link layer. That is, one system can communicate to another system based on the system's MAC addresses. Another way to look at this definition of a network segment is that it represents a collection of systems where messages can be broadcast to one another, or where all systems are on the same subnet.

				Because a subnet is defined as all systems sharing a common IP routing prefix, by definition, all systems in a subnet are in the same broadcast domain. A system on a subnet should be able to browse or PING another system on that subnet. A router, by definition, separates two connections into individual network segments. A broadcast domain is bounded by any Network layer (Level 3) device such as a router or switch.

				Tip

				A collision domain may be bounded by any Data Link layer (Level 2) device, such as a switch. A broadcast domain may be bounded by any Network level (Layer 3) device, such as a router. Chapter 2 describes the OSI data model in detail.

				Because a subnet is based on a routing prefix, in theory, each connection on the router should be an individual route. At the Physical layer, this is true, but a subnet is defined at a higher protocol level: at the Network layer in the OSI model, or for TCP/IP, at the Internet layer of the TCP/IP model. There is nothing that prevents having systems with the same subnet on both sides of a router, provided that the addresses of the systems are unique. So while in most cases, networks choose to isolate subnets on one connected link of a router for performance reasons, it isn't always the case. It's a subtle point, but one you should be aware of.

				If you separate parts of a subnet across a router, you are separating those fragments into different broadcast domains. Therefore this book uses the term broadcast domain to represent any system in a group that can receive a broadcast from another system, which is not necessarily the same thing as a subnet.

				Collision domains

				It is important to be able to recognize the boundaries of a network segment in Ethernet networks in particular, because they define what is known as a collision domain. A collision domain represents the physical layer over which collisions are possible. A collision domain is bounded by any Data Link layer (Level 2) device such as a switch. In designing networks, an important consideration is to limit the size of any one network segment in order to minimize the number of collisions that packets have. In a token ring or token bus network, only one node can communicate over the network at any one time, collisions are largely avoided, and the idea of a collision domain does not apply. As a general rule, collision domains are smaller than and contained inside broadcast domains.

				Figure 3.6 shows a representation of collision domains and broadcast domains. The collision domains are indicated by the circles in the diagram, while the broadcast domains are bounded by the rectangles. On the left-hand side of the figure the two collision domains labeled PCs on Segment_1 and PCs on Segment_2 are two different subnets each separated by a switch. Each of those subnets has their own logical address (subnet) and is bounded by a Data Link layer (Level 2) switch which defines the collision domain. The collision domain indicated by PCs on Segment_3 includes Hub_2 since a hub is a logical Physical level (Layer 1) device. The broadcast domains include the switches that the subnets are connected to, but end at the routers, which are Network layer (Level 3) devices.

				Collisions occur on networks that use a shared transmission medium. By the term shared, I mean that the wires are shared, as is the bandwidth of the connection. As mentioned previously, you can use different token passing techniques to restrict network access. Systems of this type typically have a node send data as a complete stream from the source to the destination. That means that for the time that the entitled system has network access, it is in possession of a “dedicated circuit,” and the throughput of that particular transaction is high. A dedicated circuit is one that can only accept traffic from a single endpoint or network node. Data arrives at its destination in sequence and generally requires less error checking. However, not all networks operate in this way, nor is it desirable for them to do so.

				 Figure 3.6

				This idealized network shows different collision and broadcast domains.
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				A network collision occurs when an endpoint or node starts to read the signals coming from one source, and before that data is completely received, it detects signals coming from another source and either appends the signals or intersperses them with the first source's data. Every type of network connection has a certain error rate due to collisions, and every network transport method employs a means for validating the integrity of the data it receives. The exception to this rule is a full-duplex circuit where traffic flows in both directions and each direction is separated from the other. As traffic on a network increases, the percentage of traffic suffering collisions rises, eventually becoming a significant burden.

				To prevent network collisions, nearly all networking protocols include a messaging component that acknowledges successful receipt or requests retransmission of any suspect communication. There are different technologies employed to detect collisions. The two most common are:

				• Carrier Sense Multiple Access with Collision Detection (CSMA/CD). This is the protocol that many wired networks, such as IEEE 802.3 Ethernet, use. This method has network nodes listen (carrier sense) to the channel they are on for quiet periods before they transmit new data.

				• Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). With this protocol, nodes actively signal to the network that they are about to transmit before doing so. Collision avoidance is slower than collision detection because it adds additional steps to each data transfer.

				Note

				The two CSMA protocols are discussed in detail in Chapter 12 (for Ethernet CSMA/CD) and in Chapter 14 (for Wi-Fi CSMA/CA).

				Signal termination

				It is possible to have high collision rates, even on networks with low traffic, if the connections you use aren't properly configured. Many network technologies, just like system buses, require that segments be properly terminated at their endpoints. Failure to do so results in reflection of the signal and collisions. Termination is meant to reduce signal strength to a point where any reflected signal's amplitude falls below the threshold of a recognized signal and is ignored.

				A dedicated circuit means that during the periods when that circuit is not in use, the bandwidth that the circuit represents is wasted. A dedicated circuit also means that the network must ensure that the circuit is always available in order to provide a certain level of QoS. When you want to maximize a network's bandwidth or you are sending data over links that may be transient or of varying quality, a different method must be used. That is the situation that the creators of the Internet faced, and the purpose that TCP/IP was designed for. In TCP/IP, data is sent in pieces over the best available route, and retransmitted when necessary. Packets arriving at their destination are resequenced and validated. This allows for maximum use of bandwidth and fault tolerance at the expense of additional overhead.

				There are examples of network technologies that use neither a broadcast domain nor a collision domain. They are categorized by the creation of a single dedicated link, usually established at the Data Link layer (Level 2). Examples of these kinds of technologies are VPN and the Point-to-Point (PPP) protocol. PPP links are authenticated, and data sent over the link is both compressed and encrypted. PPP is used on many different types of Physical layer connections, from Unshielded Twisted Pair such as phone lines, serial cables, cell phone links, and even fiber optic connections, to Synchronous Optical Networking (SONET) networks. There is no broadcast domain because the endpoint of the communication is the endpoint of the PPP link. There is no collision domain because the link is dedicated and the PPP protocol does not support broadcast. However, the encrypted data within a PPP frame can include a broadcast, but that is handled by the system to which the data is forwarded.

				Connection Points

				Few networking technologies use a bus topology anymore; the increasingly low cost of switches and routers have seen to that. Switches and routers serve as a locus at which a collection of endpoints may be connected. The problem is that a bus offers only limited upgrade capabilities and hardly any flexibility for moving things around. Most networks use connection devices of various types: hubs, repeaters, switches, routers, and gateways. Chapter 9 describes these devices and how they operate in detail, but for the purposes of this chapter it is worth taking a moment to discuss why they are used and what complexity they offer in network design and architecture.

				Cross-Ref

				Chapter 9 describes hubs, repeaters, switches, routers, and gateways. Token rings are described in Chapter 12.

				Hubs are the simplest devices; they are simply ways of extending a network segment. All devices connected to a hub are on the same network segment, and the hub is simply a Physical layer device that is almost like an extension of the wire. Signals travel through the low-resistance connections of a hub unimpeded. From the standpoint of network topology, hubs create star shapes or can be linked to create a hierarchical tree structure. A repeater is a hub that provides signal amplification. In a network segment that contains a hub, all of the previous discussion on a collision domain and network segment applies.

				Switches can be Network layer (Level 3) or Data Link layer (Level 2) devices, and they introduce a physical separation between network segments. Routers are switches that are endowed with the ability to route data intelligently using protocols that they understand and algorithms that run on them, and by creating and exchanging stored routing data in memory or permanent storage. The concept that these devices introduce is the route. A route is a defined path through a network from the source to the destination. At a switch or router, the route would be defined as the path through a network from that connection point to the endpoint. A route is composed of the different hops taken through the network, which represents individual network segments.

				Switches and routers are widely used on most networks today. They introduce great flexibility into a network, provide node fan-out, fault tolerance due to route switching based on conditions, and for routers, the ability to adapt and optimize the route that data takes. In networks with only switches, routing may be done at a host, but in networks with routers, the router is responsible for routing traffic.

				Route optimization is necessary because there may be many paths from one endpoint to another and some may be very slow or even intermittent. There are different types of routing optimizations possible that algorithms try to calculate, one based on the time it takes for travel, one based on calculating the smallest number of network segments that must be traveled, and another based on maximizing throughput. In most instances, optimization is done by providing the fastest route or the route that offers the most throughput. It is possible to manually create and modify static routing tables.

				Cross-Ref

				Static routing tables are covered in Chapter 9.

				There are four common routing topologies and include the following:

				• Unicast (1:1). Communications that are sent from one endpoint to another endpoint are referred to as unicast, and the process of sending this kind of message is called unicasting. Unicasting represents a single destination system by whatever route or routes are used. Many streaming services, such as Real Audio, use unicast technology.

				• Broadcast (1:all). A broadcast is sent to any system on a network (usually a network segment) that can hear the message. Broadcasts are generally confined to a single network segment because they are very bandwidth intensive.

				• Multicast (1:many). Multicasting is a message delivered to a group of nodes, usually through a subscription or opt-in mechanism.

				• Anycast (1:any). Anycasting is a message sent to the nearest or best destination, where it is responded to by a single system.

				Figure 3.7 shows these different routing topologies.

				 Figure 3.7

				The four common routing topologies
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				Gateways are Application layer (Level 7) devices. They are used to connect two different network types together at any level of the network model. You might use this type of device to connect an AppleTalk or IPX network to a TCP/IP network, although these days, most networks with Apple Macintoshes and Novell Netware use TCP/IP as the preferred protocol. Gateways can also work with applications, providing translations from an application such as a Web server to an e-Commerce server.

				Bus networks are open networks where there are no close paths; but many networks are built using a ring topology. The most common examples of ring networks are the IBM Token Ring and Fiber Distributed Data Interface (FDDI) networks. Were it not for marketing, we might all be using Token Rings today instead of Ethernet, but that is another story. Rings are created in many ways. In Token Rings, they are often wired together using a star topology where hubs connect to nodes called stations, and one wire leads into the loop and another wire leads out. A ring topology has a single collision domain and theoretically is a single network segment.

				On a ring network, if a connection fails, the segment would be broken and the ring destroyed. To alleviate this problem, ring networks use failover rings and MAUs. Many ring networks are built using two rings, and can either use the second ring as an additional data path or keep it in a hot backup capacity. The second technology uses devices that IBM calls Multistation Access Units, or MAUs. A MAU works at the Data Link layer (Level 2) to create a logical ring structure from a network comprised of star units.

				To avoid collisions on a ring network, a method of network access called token passing is often used. A token is sent around the network, and each node that receives the token compares their priority to the one contained in the token. As data from one node is delivered, the arrival of a token then allows another node to begin communication. With a token passing scheme, only one node at a time has access to the network, but when that node is communicating, it is able to do so at the full network speed using the entire network bandwidth.

				Peer-to-Peer Networks

				Peer-to-peer (P2P) networks are the first of a set of network architectures that will now be considered from a design standpoint. The previous networks described were bus networks that could be considered as simply a collection of unrelated connections. P2P networks are created as a logical extension of a collection of point-to-point links. P2P networks can use any one of a number of technologies, and even be composed on the fly, creating a network composed of ad hoc connections. The key differentiating factor that determines whether a network is P2P or some other architecture is whether each node participates in the network interaction as a nearly equal partner in processing data. Chapter 11 covers the topic of P2P networks in detail, but it is valuable here to say a few words about P2P networks as context for other architectures such as client-server, X-architecture, and multi-tiered networks that follow.

				Cross-Ref

				Chapter 1 covers the various network topologies that the different architectures can use, including bus, ring, mesh, and hybrid networks.

				A peer-to-peer network has a different meaning, depending upon the context in which the term is used. Microsoft uses the term workgroup for a peer-to-peer network on their operating system. The services participating in a peer-to-peer relationship are the security service, file and print service, and a shared Internet connection. In a Windows workgroup, only those workgroup members that are on the same network segment using the TCP/IP protocol may share network resources of the workgroup of which they are members. Microsoft differentiates their workgroup from a domain network, which uses a directory service.

				If you examine the situation more closely, you will find that Windows workgroups distribute the server functions on whichever member of the workgroup is either attached to and sharing the resource, such as a file or printer share, or attached to the first system on the workgroup to recognize that a particular network service such as a browser is required. Microsoft imposes connection limits on their workgroup members so that a personal Web server can only serve up to ten connections on a network. Microsoft Windows desktop operating systems are detuned versions of the core server operating system with restrictions placed in the code in several other important areas.

				Microsoft packages different sets of modules and extensions that seem to differentiate these OS versions more substantially than they are in fact differentiated. If you are willing to spend a little time installing interface components, adding some additional features, and changing some of the runtime behavior of services, you can make a Windows Server appear to an outsider to be nearly identical to a Windows desktop. So even though it appears that workgroups are P2P, they are actually a fully distributed client-server system. A true P2P application, to my mind, uses other systems for data sources and processes each application locally. This is a fine point, but it is worth keeping in mind. 

				Many people skirt this definition and only say that on a P2P network, nodes are equal in terms of functioning as both a client and a server on the network. When you examine P2P applications such as BitTorrent, Kazaa, and other applications that use this architecture, they tend to use a pure P2P model for some functions and an ad hoc client-server model for other functions. You will find some P2P networks use centralized (server directed), decentralized, structured, and unstructured models, as well as hybrids of these types.

				Cross-Ref

				Chapter 11 goes into detail on the architecture of some of the better-known P2P applications, such as BitTorrent and Kazaa. 

				Client-Server Networks

				A client-server network is a two-tiered software architecture where a server system performs processing that is used by a client system or systems. Client-server systems are currently the most commonly deployed form of distributed network computing and are often used in network applications such as databases, e-mail, browsers/Web servers, and other technologies that you are familiar with. Client-server technology requires that the server run server software and the client run client software; it also requires that these two pieces of software be either different or the same but serve different functions.

				There is no restriction other than the ability to communicate with one another using the required protocols where the server and clients are located. In most instances, clients and servers are on different systems. In some instances, the server and the client are on the same system; this is called a single seat system.

				In order to make a client-server application work properly, there must be a protocol that is used to request services from the server and a protocol that allows the server to provide data and/or transfer necessary data for processing from client to server. Often these protocols are part of a unified protocol. Commonly used network data transfer protocols include HTTP (Hypertext Transfer Protocol), SNMP (Sip), Java RMI, .NET remoting, TCP (Transmission Control Protocol), UDP, (User Datagram Protocol), Sockets, Windows Communication Foundation (WCF), CORBA, (Common Object Requesting Broker Architecture) and others.

				The literature describes client-server interactions in terms of sequence diagrams — which are flow charts that illustrate how messages are related and sequenced — and store these diagrams in files formatted in a standard interchange file format. You may encounter the terms timing diagram, event scenarios, or even event tracing diagrams in place of the term sequence diagram. These days, sequence diagrams are stored most often in Unified Modeling Language (UML) files. Figure 3.8 shows a sequence diagram in Effexis Software's Sequence Diagram Editor utility (www.sequencediagrameditor.com). This utility and others in its class allow you to design a sequence graphically and then save it out to a UML file.

				 Figure 3.8

				Effexis Software's Sequence Diagram Editor utility
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				In a classic client-server architecture, there is a clear differentiation between the actions of a client and a server. A client can initiate a request and processes the response when the reply is received. An application on the client that has made a request is dedicated to that request and waits for the server's reply. Clients can be connected to one or more servers concurrently, but most often there are a limited number of connections in order to preserve client performance. For example, Microsoft Internet Explorer can create and manage four connections, and Apple iTunes can manage three connections. Because actions at clients usually involve user interaction of some sort, clients often provide a graphical user interface, or GUI, application.

				The term server can be applied to a specific application, program, or software module that can perform computing upon request. A server can also refer to a hardware platform or appliance that runs any of these categories of software. Servers can advertise the availability of their service, but do not send data to clients without a request. Servers can be configured using a configuration utility; sometimes they are GUI applications, and many times they are Command Line Interface (CLI) utilities. When a server is running, it creates a process called a service. Services related to operating system functions are often managed within the Services utility provided by the server's operating system.

				Windows Server's services, for example, can be managed within a Microsoft Management Console (Services in Administrative Tools) for later versions of the operating system, or within a Control Panel for earlier versions. Services also appear in the Manage Your Server utility for Windows Server 2008. When a service is part of an application such as an enterprise database, it is common for the vendor to include a management utility or console in which services are configured and turned on and off. Services can be disabled, turned on automatically at startup or after a delay (Windows Server 2008), or set to be turned on manually.

				Multi-Tiered Networks

				Multi-tiered architecture, sometimes referred to as n-tiered or n-layer architecture, is a form of client-server architecture where a middleware service negotiates transactions between client and server. In this architecture, the client talks to the middleware server, the middleware server talks to the server, and in return the server talks to the client through the middleware layer. Examples of middleware applications are the various transaction servers and Java 2 Enterprise Edition.

				Figure 3.9 shows a two-tier or client/server versus a three-tier architecture. In nearly all deployed n-tier applications, a three-tier architecture is used. A client/server has two different layers only, the client and the server. The different layers in a three-tier architecture provide separation between different fundamental network functions as follows:

				• The client layer or presentation tier provides user interaction and system management tools.

				• The middleware layer or logic tier enforces the logical rules of the system and manages interactions in the form of discrete transactions.

				• The server layer or data tier consists of server applications and services, which provide access to stored information.

				 Figure 3.9

				Two-tier versus three-tier architectures
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				Adding a third tier to a client-server architecture provides a number of very specific benefits. By decoupling client from server, you can use the middleware server as a translation service, talking to each with a different protocol. The middleware layer abstracts both the client and the server, making both locations transparent to the other, and allowing any transaction that reaches the middleware server intact to survive a loss of the client or server's connections or the loss of either system for any reason. Transactions provide the ability for exchanges to be message-based and to comply with the ACID (Atomicity, Consistency, Isolation, Durability) model. When there is a transaction failure on an n-tiered network, those transactions can be rolled back. The ACID model describes the properties that a database transaction must maintain in order to be reliably processed as a well-defined single logical operation. 

				Three-tier systems are much easier to scale and provide much greater range for modular design and non-disruptive upgrades. The reason that this is true is that the middleware layer essentially decouples the client layer from the server layer. Should you require a major upgrade or change to the middleware layer, you can create this new system and change the references in the client and server software to point to the new middleware systems. Often it is possible and desirable to deploy multi-tier systems with different operating system platforms.

				Thin Client/Server

				The last of the network architectures that you will consider are client-server and server-client architectures based on thin clients. A thin client can be a terminal with networking and display subsystems but with little processing power. Thin clients can also be computers or portable devices running a lighter-weight operating system such as a stripped-down form of Linux, an embedded Real-Time Operating System (RTOS), or Windows CE. They can also be fully enabled computers running client software. Thin clients are thin because most of the processing is being done on a “server”; the thin client serves to provide input and display.

				I've placed the term “server” in quotes because there are two different types of client-server networks in use; they both do more or less the same thing. X-windows calls the application running on the client the server and refers to the server or provider of the data as the client. X-windows runs graphical applications on workstations with the workstation being responsible for display and the server being responsible for processing everything else.

				The second type of thin client/server is essentially the same thing, but reverses the naming convention. In Windows Terminal Server, for example, the thin client is the workstation that displays the application on its monitor, and the server is the system that does all of the processing. A Windows terminal is taking graphics information that was processed on the server and rendering that information. The key point is that a thin client/server has the workstation as the client, whereas in X-windows, the workstation is considered to be the server because that is the system that is initiating the commands (as is also the case for the client in a thin client/server system).

				Terminal servers

				A terminal server is an example of a thin client network where the server runs processes for multiple connected clients. The best-known examples of this centralized computing model are Windows Terminal Server (a service of Windows Server 2008/3) and Citrix XenApp (formerly Citrix MetaFrame (www.citrix.com/English/ps2/products/product.asp?contentID=186). In these network systems, the server's memory is partitioned and instances of the unique portions of the desktop operating system are run on the server inside each partition. The parts of the operating system that are common to all running instances are runs in a shared memory space, which is why a server can run many terminal sessions at the same time.

				When a thin client logs into the server using a special display transfer protocol such as Microsoft's Remote Desktop Protocol (RDP) or Citrix's Independent Computing Architecture (ICA), in both cases the display of the desktop running on the server is sent over the wire in compressed form to the thin client. Applications and services can be run in the client instances on the server, and the results appear as they are calculated and transferred with little data actually being exchanged.

				The nature of terminal server technology means that a powerful server with enough memory can run many desktops on a single system, or that a server farm can be employed to distribute the processing load as needed. Because the server is under administrative control and the desktops closely constrained by system policy, the user has little opportunity to modify the software or alter the hardware in ways that would be problematical. Indeed, many thin clients are sold as diskless systems.

				X Window networks

				The second type of thin client solution is the X Window System, which is based on the X11 network protocol. In an X Window system, the server is the application on the thin client (X terminal) that provides access to the system on which processing is occurring using the X display protocol. X Window calls the processing system the client. The oldest versions of X Window ran on UNIX and DEC OpenVMS, but modern versions of X Window can be downloaded for any desktop operating system you can name.

				Note

				For information on X Window products go to: www.x.org, http://xwinman.org/, and http://en.wikipedia.org/wiki/X-windows.

				The X Window System server opens a graphic user interface such as GNOME or KDE on Linux in the window. X Window is particularly useful when you want to run a process on a computer with a different operating system from another system on the network. X Window's applications are transparent over the network; what you see on the desktop (the display server) is running as an application on the client. X Window is a client-server technology, just as terminal servers are. However, here the server is the system giving the orders (user commands) and the client is the application. X Window considers that it is the application that is using the display services of the thin client as its server. Although the names applied are direct opposites, the underlying network architecture is the same.

				X Window has a long history behind it and many unique features. If you are working on a heterogeneous network, it might be a technology you want to look at.

				Summary

				This chapter presented a number of general network design principles imposed by different network devices. Among the topics described was how topology can relate to the type of network architecture. The difference between a topology and an architecture was considered.

				Point-to-point connections are considered physical connections, virtual connections, transient connections, and links where there is no defined (unique) connection. When nodes share a physical medium, they are a segment. Segments define collision domains. Collections of segments are separated by connection points such as switches or routers. Different routing types, as well as switched and packet networks, were discussed.

				In this chapter, you learned about peer-to-peer, client-server, multi-tier, and thin/client server architectures. 

				In the next chapter, you will learn about different methods for network discovery and how you can use them to map out a network and the resources that it contains.

			

		

	
		
			
				Chapter 4: Network Discovery and Mapping

				In This Chapter

				The methods used to browse networks


				The properties of connections are described


				How SNMP is used to manage network devices


				Network mapping

				Network discovery is the way systems and devices are located on a network. There are various mechanisms that are used to enumerate devices, including node advertisement or broadcasting, browse lists, polling, and direct connections. Many times, combinations of these approaches are used. These different approaches are protocol independent, although many protocols are developed with a particular method of discovery in mind.

				Network discovery uses a separate set of processes and protocols from name resolution. In order to be useful, both must work properly on a network. The methods used to look up names on a network are described. They include checking the HOSTS file; doing a DNS lookup; checking the NetBIOS name cache, WINS servers, and ARP broadcasts; and checking the LMHOSTS file.

				A network connection is a defined path with two endpoints. Different types of network connections can be defined. Paths (or circuits) and endpoints can be either physical or virtual devices. A private circuit or channel can also be defined that is the basis for virtual private networks. Connections can be either stateful or stateless. A stateful connection retains the definition of a connection during and sometimes between sessions. Stateless connections are used when the path isn't defined.

				Simple Network Management Protocol, or SNMP, is the Internet Protocol used to provide rich information about managed network devices. It works with local agents on managed nodes and stores data in a database with a standard structure. SNMP can be used to map networks and to send commands to and change the configuration of systems and devices.

				Mapping is a process by which discovered network elements are graphically displayed in relationship to one another. Discovery creates a populated database of network objects: devices that are endpoints, wires that are network paths, and other elements. Discovery then establishes how different objects are connected. Mapping relies on the discovery process to establish the current condition of the network. Because networks change and different objects may appear or disappear over time, the state of any network map is often necessarily incomplete.

				Network Discovery

				Network discovery is a set of processes by which one system or device finds other network systems and devices. Discovery can take the form of advertising network elements using a broadcast message, by collecting and distributing a list of network elements through browsing, by polling which uses a broadcast request/response mechanism, and also by directly communicating between different nodes or systems. All of these mechanisms are used, and each mechanism has different characteristics that make it useful in different circumstances.

				Network devices advertise themselves as being attached to the network, or when asked by another device to respond to a discovery request, as shown in Figure 4.1. 

				The simplest form of network discovery is through a broadcast message that advertises the availability of a network element. In this scenario shown in Figure 4.1, node A initiates a broadcast after initializing its network interface. The workstation labeled A in the figure appears on the network and sends out a short message indicating that the system is now up and giving the system's interface address. Systems that receive the broadcast from node A add that node to their network list.

				An example of a protocol that uses network advertisement would be the Bootstrap Protocol (BOOTP), where an advertisement is sent to obtain a dynamic IP address. In a broadcast advertisement system, the message indicating the system's availability is added to routing tables on a router, and to individual systems. Broadcast advertisement is a reasonable mechanism for obtaining information from a single system, such as a DHCP server, on small networks and for workgroups; but on medium and large networks, a broadcast mechanism is a very inefficient method for network discovery.

				Because assigned friendly names change over time, broadcasts do not usually provide a system's friendly name. Networks rely on name resolution services to translate a network address into a friendly name. Examples of name resolution services are the Domain Naming Service (DNS), NetBEUI, NFS, and others.

				Network discovery is most often the result of an Application layer event, such as opening a Network folder or a Get (Open) or Put (Save) dialog box that requires the network be displayed. What happens next is a function of the particular applications, the protocols in use, and the operating system. 

				 Figure 4.1

				Network discovery using a broadcast advertisement mechanism
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				A more efficient mechanism is to create a list of network elements that is dynamically updated. That list is often called a Browse list because when a system initiates a network discovery, the list is used to populate the network in the application. The system that manages the Browse list is called the Browse Master, and different NOSs and protocols handle this process in different ways. In workgroups, the Browse master is based on an election; in domains, the Browse master may be a domain server. In any event, a browse operation finds the Browse Master and requests the Browse list in order to store a local copy. Browse lists usually have an expiration period after which a system will attempt to refresh its local copy. A browse mechanism will sometimes be missing systems that have appeared on the network recently or show systems that are unavailable, but the mechanism has the advantage of greatly reducing network traffic compared to a broadcast mechanism and is a fast process.

				Figure 4.2 shows a browse operation. A network window is opened on B which causes a browse request to be issued. That request finds the Browse Master, which returns the current Browse list. The Browse list is then used to populate the network window. Notice that nodes A, C, and D do not need to be involved in a Browse operation.

				 Figure 4.2

				Network discovery using a browse mechanism
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				Another broadcast mechanism is called polling. In polling, as shown in Figure 4.3, a node broadcasts a message requesting that other network elements respond and make themselves known. As responses come back, the responses of the network elements are used to populate the network list. A common use of a polling mechanism is in the area of router discovery where a router builds it routing table or Routing Information Base (RIB) through this mechanism. Polling has all of the disadvantages of any broadcast mechanism and is a slow process.

				 Figure 4.3

				Network discovery using polling or direct communication mechanisms
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				The last of the discovery mechanism involves enumeration of network elements through direct communication. If a node maintains a list of network elements, it can use a direct communication to talk with nodes that it knows about and get those nodes to tell it about nodes that they know about, and so on. A direct communication method coupled with polling is the preferred method for discovery in routers today.

				Network discovery is ubiquitous, and it's built into all networked devices at a fundamental level. Network Interface Cards (Network Adapters or NICs), routers, switches, and even printers all store what is called a Media Access Control (MAC) address in their firmware. A MAC address is unique and is assigned by the manufacturer during the manufacturing process. Two identical MAC addresses represent a fundamental network error. 

				Caution

				Although MAC addresses are unique, they can be spoofed. Spoofing incorrectly identifies the MAC address in communicated data and is an attempt to disguise the true origin of the sender. MAC addresses can sometimes be changed in software.

				Notice that so far, I've made no mention of any particular technology used to implement the processes described in this list. Most books tell you that some networks use the Small Message Block, or SMB, protocol for browsing, or that they use NetBIOS over TCP/IP (NBT) for name resolution, or that they use the Address Resolution Protocol (ARP) to broadcast over IP networks; and, indeed, later chapters in this book will say the same thing. You might not remember those TLAs (three-letter acronyms), but chances are you can remember the general principles in this chapter. As a group, discovery technologies tend to be treated in a fragmented manner by many networking books, often as almost an afterthought. However, network discovery is fundamental to every modern network's function and needs to be grasped on a conceptual level.

				It's important to understand that while there are many different network protocols in use for the network discovery functions just described, it is the functionality that drives the protocols and not the other way around. All modern network operating software, management software, and just about any application or utility you use relies on discovery to perform the services and functions that the software provides. You can't open a GET (Open command) or a PUT (Save or Save As command) operating system dialog box that involves an external device without initiating a discovery operation.

				Some discovery services can be very rich, indeed. A rich discovery service not only advertises the existence of devices, but it also passes a set of attributes from the responding device. Rich discovery services give, at a minimum, the device status and may contain a listing of hundreds of attributes that you can query, or these services may provide a command and control function that can reconfigure devices. Some discovery services can automatically map networks — even complex networks with tens of thousands of network nodes — which is an amazing process to behold. Mapping is used for asset management, network optimization, and a truly varied range of capabilities that make modern networks practicable.

				The most widely used rich discovery method is the Simple Network Management Protocol (SNMP), which is described in more detail later in this chapter. The Windows Management Interface (WMI) is another technology that extends the Windows driver model to provide device characteristics on Windows networks. Both store device information in a database format: a Management Information Base (MIB) file for SNMP devices, and a Common Information Model (CIM) repository. A technology called Web-Based Enterprise Management (WBEM), and pronounced “Web-em,” is related to CIM and is yet another systems management function that is briefly mentioned later in this chapter. All these technologies are based on the Common Information Model.

				Network management systems rely on these technologies for their operation. Any device that can be managed in network software is discoverable; the denial of discovery is the basis for many security devices such as firewalls. Network management tools can make difficult tasks easy, such as automatically deploying an operating system to many systems on a network, or complying with Byzantine licensing regulations scattered over a diverse collection of hardware.

				Node advertisement

				In node advertisement, a system or device wants to establish that it is available to provide a service, and so it broadcasts its availability, as shown in Figure 4.1. Some broadcast methods request a response when they reach their target system, or when the first located system that meets the criteria of the broadcast replies. In this section, you learn about some of these broadcast discovery protocols.

				There are four common broadcast services that use this type of approach on current networks:

				• Dynamic Host Configuration Protocol (DHCP)

				• Bootstrap Protocol (BOOTP)

				• Routing table updates

				• Simple Network Management Protocol (SNMP)

				Cross-Ref

				Routing is described in Chapter 10, and ARP is cov ered in Chapter 19.

				DHCP is the method used for dynamic IP assignments on networks. DHCP is a required broadcast service because it needs to be found by any system that requires a dynamic address assignment, when that system requests a dynamic address. Similarly, the BOOTP protocol is used to advertise for systems that haven't yet loaded their operating systems and need to obtain an IP address from a pool that the BOOTP server maintains. The BOOTP protocol is used to push an operating system image down to a bare metal computer (one that has no software), or to boot a thin client that has no hard drive and runs its software on a terminal server.

				All of the common routing protocols use a broadcast technology to update their routing tables on the network. These protocols include the following: the Routing Information Protocol (RIP), which is used in UNIX systems such as BSD (Berkeley Software Distribution) in the routed daemon; Open Shortest Path First (OSPF); the External Gateway Protocol (EGP); and the Border Gateway Protocol (BGP). RIP is referred to as an Interior Gateway Protocol (IGP) and uses a distance vector routing algorithm for updates that time out after a certain number of seconds. OSPF is the most commonly used IGP on large networks. Of the two Exterior Gateway Protocols (EGP) used today on the Internet, the most commonly used is BGP, which uses a broadcast discovery technology.

				Cross Ref

				Routers are described more fully in Chapter 9.

				SNMP is covered later in this chapter.

				Browsing

				When you open a Network folder to view connected systems, you are performing a browse operation. The fact that the result is so simple — items show up in the window — is the result of many different processes that are going on. It includes actions that have previously occurred, and actions that your system and the network take, based on your browse request. Figure 4.4 shows a browse sequence. The sequence for actions would start with the opening of a network window on system B. If a current Browse list is cached locally, then that is used to populate the Network window. If not, a Browser request may be made using a protocol such as NetBEUI to the Browse Master and the Browse list is obtained from that system.

				 Figure 4.4

				A browse operation
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				A network browse command can rely on the following preexisting network characteristics:

				• Systems and devices that have already registered themselves on the network, are on the Browse list found on the Browse Master. 

				• The router maintains a router table containing other routers and known addresses.

				• Systems and devices have announced their presence on the network to the Browse Master when they are polled, updating the lists.

				• Clients that have previously queried the Browse Master may cache the list of machine names for later use.

				Depending upon the system used, a browse list can take a long time to populate. The refresh interval is something that can often be modified, either as a Registry entry in Windows or as a preference in the Browse Master software, such as nmdb on a Samba server. A Browse Master is a network service running on a system that maintains a master list of network elements.

				Different operating systems and software can replicate the Browse Master across a set of systems to improve performance, add fault tolerance, and work with different protocols. You may find that a browse system contains not only a Browse Master but also a Domain Master, Local Master, Preferred Master, or some other type of system list management server. The Browse Master does not need to be a domain server. In a workgroup, it can be any system. Some applications also have this capability; on a Samba file server, for example, you can elect to have that system be the Browse Master. A domain server is a system that maintains the security database for member systems of a network domain.

				The browse command can initiate the following actions:

				• Go to the local name cache to start the browse process, and partially populate the browse operation if the system has been started and is running for a while. Keep in mind that the browse list can take up to an hour to populate accurately.

				• Go out to the Browse Master and obtain the browse list stored on that system.

				• Send out a request for available systems (polling is discussed in the following section).

				The discovery of network systems and devices is only half of the problem; many services and protocols must match a network address to an assigned or friendly name. When a system wants to communicate with another system or device, it requires a network address; only a few services can work with machine names directly. That address is determined as a lookup operation in a table maintained by a service that is queried as part of the name resolution process.

				Cross-Ref

				Chapter 19 covers the different technologies used to determine addresses on TCP/IP networks.

				A lookup operation may include any of the following steps and is performed in the order listed below:

				1. Look up the system name in the HOSTS file.

				2. Perform a DNS lookup.

				3. Check the NetBIOS name cache (on Windows). Note that NetBIOS over TCP/IP is being deprecated in favor of DNS.

				4. Query the WINS server (on Windows), if one exists.

				5. Perform an ARP broadcast name lookup over UDP.

				6. Check the entries in the LMHOSTS (on Windows) file. LMHOSTS stands for the LAN Manager HOSTS file, and is the Windows version of the HOSTS file.

				Polling

				Polling is a much slower process than finding a list cached somewhere on the network and returning the list to build a network list. Polling is a slow process that requires clients' responses to build a browse list. Figure 4.3 shows an example of polling. Because of the overhead involved in polling, only the Address Resolution Protocol (ARP) is in common use. ARP provides a fallback protocol for name resolution when other methods fail. ARP is used on all types of networks, not just TCP/IP networks. You can use ARP on any LAN network — Token Ring, 802.11x wireless, or IP over ATM — to resolve IP addresses. ARP's major disadvantage is that it is a non-routable protocol. As a Link Layer protocol, ARP cannot be broadcast across a router; it applies to a single subnet.

				Cross-Ref

				DHCP is discussed in Chapter 18.

				Connections

				A network connection or circuit is a communication path between two endpoints. Network connections can have a variety of characteristics, some of which are universal and others which are dependent on the type of network in use.

				An endpoint is an addressable entity that can send and receive network traffic. Endpoints are the network interface and not the systems or devices that the network interface resides in. To be even more specific, a NIC is simply an add-in card and a packaging device for an application-specific integrated circuit (ASIC), which is the integrated circuit that is part of the Physical and Data Link layers in the OSI model. To be precise, the endpoint of a network connection is defined by a set of software routines that can send and receive network traffic over the wire, with some portion of the interface defined by the physical implementation of digital signal processing required to turn data into signals that are transmitted.

				The concept that an endpoint can be captured in software leads you naturally to a central concept in computer science, that of virtualization. Virtualization is where a system or device is emulated in software. It is possible to create a virtual endpoint or virtual interface in software whenever you need it. If you work in a virtual machine environment, and many systems create these types of emulated machines, then not only is the computer's operating system virtualized, but devices such as network interfaces are also virtual. Virtualization abstracts function from implementation, and appears in systems where emulation is required, in products like Virtual Server and VMWare, and in many other applications besides.

				A path or circuit is the second part of a connection's definition. A path can be a dedicated physical circuit that can be traced from one endpoint to another over a wire that can be identified and is unchanging. Some networks work in this manner, mostly smaller networks where the number of connections is manageable. However, because network fan-out creates an exponential number of possible connections, most networks do not define persistent physical circuits because that would be prohibitively expensive. Instead, networks use a switching technology to create a transient circuit, depending upon network conditions. Transient circuits are created and then released after their use. They are contrasted to permanent circuits where the same path is used for an entire session, and not just for a data transfer. Network traffic is routed over a transient circuit, based on sophisticated routing algorithms that determine the shortest path, least congestion, highest-performing switch, fastest transmission medium, and whatever other factors the switch or router designers want to model.

				Not all network connections are designed to be either persistent or transient. When designing a network that is inherently unreliable, different methods must be used. This is exactly the problem that the designers of the Internet were trying to solve. How do you create a highly fault-tolerant network when large portions of the network are disrupted? The solution to this problem was to use packet-switched networks, which send a stream of packets from one endpoint to another. A packet is a specially formatted segment of transmitted data. When you talk about network connections on a packet-switched network, you are describing a virtual circuit; the path is undefined or dynamically assigned and can change at any moment depending upon conditions. One packet in a stream may travel over one route, and the next may travel over another.

				Virtual circuits can be created within a connection as a separate channel that carries only a certain type of data. This is the basis for Virtual Private Networks (VPNs), where secured traffic flows from one endpoint to another. To create a VPN, two applications must negotiate a set of connection parameters that define the behavior of the virtual circuit. 

				Cross-Ref

				For more information on VPNs, see Chapter 29.

				In describing connections, I have used the terms persistent and transient to indicate the path definition. The terms used in computer science for these two types of connections are stateful and stateless. A stateful connection is one in which the connection is defined between two endpoints for an entire session and can be invoked after the session is complete to recreate the original connection. A stateful connection also stores attributes of the connection that will be reestablished. The term stateful is also applied to any process that takes the nature of the contents of communications into account. A firewall performs stateful inspection when it examines not only the headers of packets but also the contents.

				Figure 4.5 illustrates the different types of circuits in a graphic form. The endpoints are the circles at the end of the lines, which represent connections or paths. A solid line or circle indicates that the network element is persistent; an empty circle or dotted line indicates that the network element is transient. In the bottom case (private connection), the small solid line is contained within an empty larger line, indicating that the connection is not only transient, but secure.

				Figure 4.5 shows five different types of network connections that can be defined.

				 Figure 4.5

				Five different types of network connections
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				In comparison, stateless connections are those in which the path used is indeterminate and only the endpoints are known and the connection is transient. No details of the connection are retained or managed. An example of a stateless connection is communications using the HTTP protocol over a TCP/IP network. As previously mentioned, packets can travel by any convenient route between the two endpoints. A measure of “statefulness” can be applied to stateless connections without changing the classification of the connection type by recording transient information in a manner that allows the information to be retrieved later. That is exactly what Web sites do when they put a cookie on a computer; it stores information about the user, prior sessions, and other details.

				Connections are named objects in all network operating systems and are programmatically accessible in any of the object-oriented programming languages in current use. Network objects have a number of attributes that describe them and that are important in understanding how connections function. Those attributes include the state of the connection, the protocols in use, and other factors. Another defined object related to connections is that of a session. A session is a defined period during which a network connection is engaged in a communication of a defined type. For some system functions, the session may be defined as the entire time that a network interface is up and running, sending and receiving traffic. Applications use the concept of a session to set rules such as the allowed bandwidth, the Time to Live (TTL) parameter that packets have, and others. The attributes of connections and sessions allow two systems and devices to negotiate the connection properties.

				Simple Network Management Protocol

				As networks became more complex historically, the need to discover, manage, and control devices on the network became an important concern. The Simple Network Management Protocol (SNMP) was developed within the framework of the Internet Engineering Task Force (IETF) to provide a means to address these needs. SNMP is an Application layer (Layer 7) protocol that has become the most widely used method for managing network systems.

				SNMP has five built-in elements that are part of networked devices: 

				• SNMP protocol. Used to communicate between devices and SNMP-enabled software over TCP/IP networks.

				• Managed objects. Respondent devices such as Network Interface Cards (NICs), routers, switches, printers, and a panoply of other devices.

				• Agents. A small software module that is resident (running) on a managed object. It collects data from the object and from network traffic and makes it available to SNMP queries.

				• Management Information Bases (MIBs). MIBs comprise an object database that stores information about managed objects. Many, if not most, data objects used by SNMP devices are READ-only (the Device Model, for example). Other data objects are READ/WRITE (the Device Name, perhaps) and are therefore variables that are used to manage objects.

				• Management console. Where data queries are collected using SNMP-enabled software.

				SNMP software can communicate with these elements to develop a picture of the network, create an inventory of the device's state or functions, and receive and react to those events. The model used by SNMP is used by other vendors as the model for their own management systems. The Windows Management Interface (WMI) from Microsoft, which is discussed later in this chapter, is one example of a proprietary SNMP implementation.

				SNMP network management uses SNMP commands to send and retrieve data collected from the SNMP agents on managed nodes. Figure 4.6 shows how SNMP discovery and management works. A management console collects SNMP responses and stores and displays the information to users. The console can also be used to send SNMP commands that modify device settings. A managed node, labeled as a circled N in the figure, is one that can accept and act on SNMP commands. The circled A represents SNMP agents, which are small software programs that can send and receive SNMP information. SNMP has very broad product support.

				Figure 4.6 shows how these different SNMP elements interact with one another.

				Control console management software sends and receives SNMP commands from other devices on the network. Console management software is an application that can store device information, display it to a user, and change device settings through user commands. Devices that can initiate and respond to SNMP commands are referred to as a party, a name that is formalized within the SNMP version 2 definition. A party is a single identity that has a unique network location. Each party in an SNMP communication has an authentication and privacy protocol that it uses to establish a secure link with other parties. Devices that are SNMP-enabled (entities) may contain multiple parties within them, provided that each is unique. An example of an entity would be a router, where each individual port of the router would be a party. A router can be managed down to each individual port level.

				 Figure 4.6

				SNMP network discovery and management
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				Network management software works by installing small software modules called agents on managed devices. Usually the software is installed with deep hooks into the operating system so that the agents are difficult to remove. Agents can also be installed by a vendor as part of the hardware on any device that can be managed, but not all vendors go to the expense or trouble to incorporate SNMP agent software. There is a range of software that can discover, manage, or map network devices using SNMP, including the following: shareware applications that you can download for free from sites like Download.com or Tucows.com; commercial packages such as WhatsUp Gold (www.whatsupgold.com) from Ipswitch; and many of the components of the large network framework management systems, including LANtastic, HP OpenView, IBM Tivoli, CA NSM (formerly Unicenter), Altiris, ZENworks, and many others.

				SNMP is a broadcast technology that operates at the upper layer of the network model, the Application layer or Layer 7. Software can send out a request or query to any party that can listen for it, and to which another party can respond. SNMP uses a small command set that should be very familiar to anyone with knowledge of how the HTML protocol works. Commands used by SNMP, such as GETs, are used to communicate with specific agents on managed devices. Variants of these commands, such as GETBULK or GETNEXT, can be used to communicate with multiple devices. Agents also advertise their availability by sending out INFORM or TRAP commands that can be collected by management systems. Any data object that is writable can be changed using a SET command.

				The Management Information Bases (MIBs) collect data on a managed node or system. The data that an MIB contains is defined by the device type but is extensible. SNMP makes no demands on the type of information stored on a device, or which device attribute can be a variable. What SNMP specifies is the manner in which information is stored in the MIB files, and the manner in which the information is exposed.

				SNMP devices can change states at any time, and so the model requires that a device can advertise a change of state without waiting to be polled on its state. The MIB module on the device stores events that occur and then advertises these events by issuing what is called an SNMP trap for that event. Listening devices can intercept the trap and then request the details if required. SNMP is traveling over packet-switched networks such as TCP/IP, and so a management console can't assume that it has received all of the available traps that have been issued. Therefore, SNMP management software will, at an interval defined in the software, poll each managed device to update its status. Trap-directed polling requests that specific devices update their status, and because both parties in the communication are known, the traps are reliably received and updated. When an important trap is received, the interval between status updates is changed so that updates from the device are done more frequently.

				In SNMP, MIB files are organized into a hierarchical namespace, an upside-down tree structure where each node is an object identifier, or OID. Individual OIDs may be READ, SET, or both. The ISO's Open Systems Interconnection (OSI) Abstract Syntax Notation (ASN.1) standard defines the syntax by which a MIB file is queried, and is something that is platform independent, using a set of rules that describe the MIB file called the Structure of Management Information (SMI). You can examine the structure and contents of an MIB file using any number of SNMP-enabled utilities.

				Shown in Figure 4.7 is OidView Professional (www.oidview.com), one of the many SNMP utilities that are available to view MIB files, their structure, and the data that they contain. OidView performs SNMP analysis and presents the data in an MIB Browser. Different panes can display a searchable and navigable data tree, data analysis, graphs and traces, captured SNMP traps, and different MIBs from the different SNMP agents located on the network. 

				The Structure of Management Information (SMI; http://en.wikipedia.org/wiki/Structure_of_Management_Information) is information collected as text files onto which a structure or schema is imposed. What SMI means in practical terms is that if you are using a management console to perform network discovery for devices, then it doesn't matter if the devices you are polling are on the Ethernet network of the management console or on a network of some other kind. Nor does it matter what operating system you are using or what the device is. The information is simple text, and to use it the management console need only be able to parse the information correctly, something that is very easy to achieve.

				Storage networking is a type of heterogeneous networking where storage data is segregated onto a separate network connected with Fibre Channel, while hosts and clients are on a separate Ethernet network. A heterogeneous network is one that supports multiple NOSs on the same network. The two networks are connected through one or more switches so that each network can communicate with devices on each side, and so that storage traffic is separated from data communications. Figure 4.8 shows this type of network.

				 Figure 4.7

				OidView Professional is an SNMP management tool.
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				Cross-Ref

				For more on storage networking, see Chapter 15.

				If you place an SNMP management console on the Ethernet network, it doesn't matter whether the SNMP application software runs on a Windows or a Sun Solaris workstation or server because SMI is agnostic (it doesn't favor a particular NOS). The management console provides what is called out-of-band management for the devices on the Fibre Channel network, which is the in-band network. It is out-of-band because the TCP/IP traffic looks like a different stream from the Fibre Channel data. A management console running software such as StorageWorks from HP can discover both the devices on the Ethernet and storage network at the same time. Not only are switch ports discoverable, but so are Host Bus Adapters (HBAs), as are the intelligent hard drives that are part of storage systems. HBAs are the network interfaces that storage devices connect to. Considering that some storage systems can contain literally hundreds of disk drives, the ability to discover and address each individual disk drive enables very powerful network management tools, such as Storage Resource Management packages, that can reconfigure volumes on the fly. That is the power that SNMP provides to intelligent network software.

				 Figure 4.8

				A Fibre Channel Storage Area Network (SAN) attached to a LAN
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				Windows Management Instrumentation

				Windows Management Instrumentation (WMI) is a Microsoft extension of the Common Information Model (CIM) as exposed through the Web-Based Enterprise Management (WBEM) network management system. WMI creates a repository of data from managed objects and makes this information available to management software through an API, which is an extension of the Windows Driver Model (WDM). WMI is the interface by which the data repository can be queried, and through which commands and configuration settings can be passed to managed network devices on Windows networks. WMI commands can be applied inside a VBScript or Windows PowerShell script, or they can be entered as a command line.

				WMI provides a rich management system that can control a large number of devices and give a detailed description of their current states, but WMI is Windows-specific technology.

				WMI's enterprise management framework can take existing data from SNMP-managed nodes and agents and from any data source that works under the Desktop Management Interface (DMI) standard and make the data available to management software under a uniform access model. A number of Microsoft Office applications, servers, and even the Microsoft Internet Explorer extend the CIM mode to add their information to the CIM data repository that WMI manages as a WMI class with associated properties. WMI's repository has its own namespace and its own query language, which is called the WMI Query Language (WQL). The overall CIM repository contains the namespaces for the Active Directory (RootDirectoryDAP), for SNMP (RootSNMP), and for the Internet Information Services (RootMicrosoftIISv2).

				Here are some of the many things you can do with WMI:

				• Start or stop a process on a network system

				• Restart a remote computer

				• Compile a list of installed applications on a networked system

				• Have a process run at a specified time

				• Query the Windows event logs on a networked system

				Microsoft exposes WMI in the form of a set of providers. As of Windows Server 2008 and Vista, there are around 100 providers that have been published. In addition to the scripting tools previously mentioned, a wide variety of management software can be WMI consumers, including Microsoft System Center Operations Manager, HP OpenView, BMC Software Distributed Systems Management, and others. WMI provides not only an automation interface, but also a .NET management interface, and for older applications, a COM/DCOM interface. Providers can access WMI remotely with DCOM and SOAP and can consume WMI events.

				Mapping

				Network mapping is the automated discovery of systems and the connections between them. Different mapping software packages use different techniques to map a network, but one common technique is to start with each subnet that the software knows about and then PING each of the possible network addresses to see which nodes respond. This process enumerates any device that is currently active on the network and is an active discovery method. You can do this kind of mapping using a utility such as nmap on Linux, Microsoft Windows, Solaris, and BSD, and Mac OS X. nmap (www.nmap.org) runs as a command line utility, but there are several graphical front ends such as Zenmap (http://nmap.org/zenmap/), which is shown in Figure 4.9.

				There will be nodes on the network that may be unavailable at a particular time, and so an active method won't find devices that aren't active. Nor will it find any nodes that aren't on subnets that the mapping software's system knows about. To find more nodes, various passive exploration methods must be used.

				 Figure 4.9

				A Zenmap network scan
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				The problem with active network discovery tools is that many operating systems now come with personal firewalls that block their discovery and prevent their detection. If the system is a laptop, then that system won't always be available for discovery, and so any software that intends to build an accurate network map needs to use both active and passive methods to have any chance of building a complete map. Passive exploration looks in places that store network addresses such as router tables and browse lists to extract endpoints from those sources. By contrast an active exploration would have to discover the devices themselves. Those tables provide information on how to discover the entire network, and they extend the discovery process to the additional subnets, within the number of hops from the network's routers that the system wishes to explore.

				There are several different techniques used to map networks:

				• Active identification of the different points of attachment that devices have on a network.

				• Examining packet routing through the mining of routing tables.

				• Payload inspection to determine the sending system, as well as any intermediate locations that have added addressing to the packets.

				• Mining the data in available Authentication, Authorization, and Accounting (AAA) servers. AAA servers include dial-in, RADIUS, and other remote access servers.

				• Network access credentials. By examining user and machine logins, additional mapping can be accomplished.

				Many software packages can map networks and include the following: SNMPWalk, Cheops, SNMPutil, WhatsUp Gold, and PacketTrap.

				The purpose of network discovery is to map the network; determine what systems, devices, and software are on the network; and improve the network health and security. Network discovery can find unknown systems as well as determine methods for discovering systems on the network that aren't meant to be discovered.

				A network map is able to accumulate all kinds of data. When a system is profiled, it is possible to determine which processor the system has (type and ID), what version of the operating system it has (type and install ID), when it was last patched or upgraded, the specific hard drive (type and ID), and so on, in great detail. This information allows you to create an asset inventory of your entire network that you can use for any purpose. Organizations that have network management systems in place with asset management modules, systems such as LANtastic or Altiris, can produce detailed reports of the nature and location of their assets, which can be invaluable in planning, deployment, and utilization.

				Summary

				In this chapter, you learned about different methods for network discovery and name resolution. These methods are independent of the protocols used, but often determine how protocols are constructed.

				Connections are paths with defined endpoints. Different types of connections can be defined, a combination of physical and virtual paths and endpoints.

				You learned about SNMP and how it is used to store device information and provide that information to other applications. SNMP can not only provide device information but it can also allow an application to send commands and change the configuration and state of devices. With SNMP, you can map networks and do deep asset analysis.

				In the next chapter, you will learn about aspects of network performance related to bandwidth and throughput.

			

		

	
		
			
				Chapter 5: Bandwidth and Throughput

				In This Chapter

				Learn how signals are used to send data


				See how to store and recreate complex data


				Learn how multiple data streams can share the same connection


				Understand resource allocation and traffic control methods

				Information flows over a network as a series of signals. Those signals can represent either analog or digital data. Groups of signals are defined by various standards to represent different types of data. Some groups can be character sets, and some groups might be the various notes of a song or words in a conversation. It is up to various protocols to encode and decode the data, while other protocols are responsible for transporting and controlling the flow of the data. A collection of data represents information. The bandwidth of a network segment, its throughput, and its capacity are described.

				Signals that carry data are transferred in the form of periodic waves. Any periodic function or complex waveform can be described by a Fourier transform, which is a mathematical operation that takes a complex waveform and transforms it into another set of simpler sinusoidal functions and coefficients. This analysis creates a set of terms called harmonics that perform curve fitting. This process is needed to store information and recreate it later.

				A waveform can be recreated by sampling the wave and splitting it into small components. Sampling theory places a limit on the amount of sampling you can do and still obtain useful information.

				Multiple streams of data can be sent over the same network connection using a technique called multiplexing. There are many different forms of multiplexing. Some use time division, others frequency division, and a few use polarization division to separate one data stream from another. Multiplexing must be supported by protocols and is responsible for one network type being different from another.

				Higher-level protocols are used to control the flow of traffic over a network. For IP networks, this is called packet shaping. Traffic control can look at data types, destination, and other factors and change the priority with which data is sent, limit the bandwidth, and perform other actions. The collection of technologies that assign network traffic to network resources is called Quality of Service (QoS).

				Bandwidth and Capacity

				Information is transmitted through a medium such as copper metal in an Ethernet wire by the flow of electrons past a point. The signal is carried by the manner in which the current, the voltage, the frequency, or the phase, or some combination thereof changes periodically with time. It is the variation in the amplitude and/or the frequency of the current that is most often used to turn a signal into data. 

				The signals that flow over a wire are analog signals, even when they encode for digital signals. A system can send a near perfect square wave for a 1-bit value, but noise, signal contention, and many other factors degrade the signal. The receiving system must measure the signals for their periodicity and for the range of values that the bit falls into to determine whether it represents 1 bit.

				Computer networks can use different media to transmit data from point to point. Optical wires transmit light as the signal carrier, Bluetooth and Wi-Fi use radio frequency waves, WIMAX uses microwaves, and so on. The description of the signals is different, but the ideas of bandwidth, throughput, capacity, and other concepts described in this chapter are similar.

				Beads flow through a pipe of syrup

				The Zen master asks you to close your eyes, take a deep breath, and visualize, if you will, beads flowing through a pipe filled with syrup floating in front of you. (This is the networking equivalent of a Lava lamp.)

				Every networked medium has limiting factors that place a ceiling on the bandwidth and capacity of the data flow. If you think of a network connection as a pipe that is filled with some medium (syrup, perhaps) through which some particle or wave flows (the beads), then you can measure the flow of the beads in several important ways that can be used to transmit data that can be interpreted as information. A bead doesn't have enough of a wavelength that it can be measured, but Heisenberg's uncertainty principle defines what that wavelength is. 

				The diameter of the pipe determines the maximum number of beads that can flow past any point at any one time: that is the bandwidth. The pressure of beads applied affects the speed of the beads up to some maximum level above which the technology that you push with can't go faster. The pressure corresponds to the potential energy you are applying; in a wire, pressure corresponds to voltage. The speed of the flowing beads past any given point gives rise to the observation of a flux, which is the amount of beads per unit time. The flux defines the throughput. The corresponding throughput in a wire is the current, which is the number of electrons that pass a point per unit of time.

				Taken together, the maximum bandwidth and throughput represent the amount of beads that the pipe of syrup can carry, which is the capacity of the pipe. Some capacities are practical; the method used to apply pressure just can't go any higher. Other capacities are theoretical; the pipe bursts. Electrically that is equivalent to current flowing through a wire or a transistor creating a defect such as electromigration that destroys the wire or the junction of the transistor that forms a switch. Electromigration results in a hole in the wire as the metal itself moves with the current.

				Because a collection of beads represents information, your data rate corresponds directly with the rate at which the beads flow. The rate of beads depends on the bandwidth of the pipe that feeds the flow. Speeds and feeds are fundamental performance metrics that you use to measure the efficiency of any data network.

				These are simple concepts, but they apply to any network segment. The different factors determine what you can do on a network, how much data can be carried, when there is too much data for the medium to carry, and so on. There isn't enough room to cover all of the physics you need to know in relation to electricity, optics, and radiotelegraphy (radio messenger), but a simple example of signal theory can help you better appreciate the concepts that follow.

				Signaling

				Let's say that you have an electric current traveling down a wire over a certain period of time that you want to use to communicate with. The message is a short one: Save Our Ship, which is transmitted using the acronym S-O-S. You encode the message in Morse code, which means that it consists of three short signals for the letter S (dots) and three long signals for the letter O (dash).

				Encoding a dot corresponds to a signal of 1 (On) for one time period. A dash is a signal of 1 (On) for two consecutive time periods. A signal that is On corresponds to an amplitude between a certain range of values, while an Off signal has an amplitude of between zero and the start of the On range. Figure 5.1 shows the digital SOS signal that you've just constructed. In the real world, signals aren't perfect square waves and there are certain variations in the shape of each signal that are tolerated.

				Figure 5.1 is meant to illustrate some of the complexities of electrical signal. The signal is carried over the time domain, with a periodicity of 8 measured amplitudes (voltage) per cycle. If a time period has an amplitude in the 1 range, it is considered to be ON, and if the amplitude is in the 0 range, it is considered to be OFF. That is the reason why the first S looks different than the second S, but is interpreted as the same data.

				 Figure 5.1

				An idealized SOS digital signal
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				It's easy to represent our SOS as a pictograph, but what if you wanted to be able to mathematically describe the signal so that you could re-create it if you needed to. When Sir Isaac Newton wanted to calculate the area under a curve, he developed calculus to create rectangular slices that he could calculate. The finer the slice, the closer the calculated sum is to the real area. This analysis is called integration, and the mathematical representation used is an integral.

				For a signal with an imposed periodicity (frequency), the problem is somewhat different. You still want to approach the problem by breaking the overall shape into smaller shapes that you can calculate, but here you need periodic time varying function(s) to do so. This is exactly the problem that Joseph Fourier faced when he tried to analyze heat flow. His solution was to break the signal into a large set of increasingly more precise trigonometric functions.

				The process by which the signal is broken apart is called a Fourier analysis, the equations that describe the result are a Fourier transform, and the process by which the signal can be reconstructed is called Fourier synthesis. For data signals of the type you are considering here, the functions used are typically the sine and cosine functions.

				The general form of a 2π periodic Fourier function is:
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				where the frequency f is 1/T, and an and bn are the amplitudes of the nth harmonics. A harmonic of a wave is the frequency of the signal divided by an integer so that the resulting function still retains the same periodicity. The equation above leads to a series of terms based on the value of n. The more terms used in a Fourier series, the closer the curve fits the signal that you are trying to represent. The equation above can be manipulated so that you can solve for the constants for each term you use: an, bn, and so forth individually, but the details are not important for this discussion.

				The result of applying multiple harmonics to fit a square wave is shown in Figure 5.2. The square wave is f(t), and the other two curves approximate the square wave. The coarser curve is the fifth harmonic k = 5, and the finer curve is the fifteenth harmonic k = 15.

				 Figure 5.2

				A Fourier transform curve fitting to a step function for a fifth and fifteenth harmonic
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				Source: http://commons.wikimedia.org/wiki/Image:Square_Wave_Fourier_Series.svg. This image is in the public domain.

				Although the example shown is just one square wave, Fourier analysis can create a representation for a collection of square waves, ramps, or sawtooths, or any other time varying function. You can run a complex audio signal through a Fourier analysis and derive a formula that describes it, or apply Fourier analysis to a spectrum.

				How does this all relate to our SOS signal? The frequency of the signal is the number of cycles per unit time that passes a point in time, that is, f = 1/T. A computer has no way to determine where one cycle begins and another cycle ends, but the computer does have a clock. Data is sent so that each character is represented by a standard bit length value, called a byte. 

				Last time I checked, computers weren't using Morse code; what they do use is one of many character sets based on published standards. One standard is 7-bit ASCII, which can vary by locale; another standard is Unicode. For American and British ASCII character sets, the bit pattern for an S is 1010011, while the bit pattern for an O is 1000011. If your computer communicates in 8-bit bytes, then the signal is padded with zeros so it reaches the required length. In 8-bit representation, S is 01010011 and O is 01000011 — note one zero is padded at the beginning of each 7-bit sequence to make them 8 bits. A Fourier series can define these bytes in the correct sequence. In Figure 5.2, the byte is 8 bits long, adding extra zeros to the S bits in order to bring them up to the length of the O byte.

				A system that uses the amplitude of a signal to encode data is referred to as amplitude modulation. In the radio frequency world, AM is the basis for talk radio. Another method for encoding data is frequency modulation. Frequency modulation in the radio frequency world gives us FM and NPR. The third method used to encode data is called phase modulation. You use a change in the signal's phase to switch a signal on or off. The phase of a wave is the amount of a wave's offset from a reference time.

				Figure 5.3 shows an example of these three different modulation techniques and how they are used to encode data by altering the carrier wave. The first figure for amplitude modulation shows a signal is contained in the amplitude of the wave. As you move left to right, the first maximum would represent a 1 or ON signal, and the minimum part of the wave on the right would be a 0 or OFF signal. As the wave moves off the right hand portion of the figure, it is rising, perhaps indicating that another 1 is next. However, the wave could just as well continue with the low amplitude signal. Amplitude measurements in an amplitude modulation scheme are measured at timed intervals.

				The middle figure for frequency modulation shows a set of transitions which are from left to right: low frequency, high frequency, low frequency, and finally high frequency. As measured periodically this usually represents the pattern: 0, 1, 0, and 1.

				Phase modulation is a little more subtle. In the bottom figure you see two transitions resulting in three different waveforms. The middle waveform is phase modulated, that is offset from the other two waveforms. The transitions of the phases encode the signals that are translated into data.

				 Figure 5.3

				Amplitude, frequency, and phase modulation can all encode data.
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				Bandwidth

				Bandwidth is a term that can have one of several related meanings. In digital communications the bandwidth of any channel, connection, link, or pipe is the amount of data that may be transferred per unit time. This type of bandwidth measures capacity and is sometimes referred to as the available bandwidth. Bandwidth can also measure throughput, which is stated in terms of available bandwidth or capacity.

				In terms of the discussion in this chapter, the bandwidth we are interested in describes the frequency range of signals that are allowed to pass over a circuit usually in terms of cycles per second or hertz. To limit bandwidth, filters may be applied; a low-pass filter limits the low frequencies, and baseband bandwidth is used to define the upper frequency limit.

				The amplitude of a signal corresponds to the voltage, which is another way of describing the electrical “pressure” or potential energy at the point the voltage is measured. As the signal travels down the wire, the signal encounters resistance in the wire, and some of the potential energy is converted to kinetic energy. Heat is produced and the signal strength is degraded. This is one of the reasons why there are length limitations on different types of cables and technologies. Frequency has a direct relationship to energy. The physicist Max Planck found that the energy of a photon could be determined using the following formula:

				E = h n

				where h is Planck's constant and n, or Nu, is the frequency. The higher the frequency, the higher the energy. Planck's law doesn't apply to the energy of electrons in a wire, but the overall effect of energy loss is to diminish the highest-frequency waves first.

				If you analyze signal loss, there is usually a frequency above which the signal drops off rapidly. This is called the cutoff frequency. You can also achieve a cutoff by introducing a low-pass filter in the circuit. Low-pass filters are used to limit the bandwidth of a circuit. A low-pass filter reduces noise in signals and allows higher frequencies to be boosted so that their signal-to-noise ratios are higher and it is easier to send a higher frequency of data over a circuit.

				The impact of a filter that allows only very low frequencies to pass through it is that only the first harmonic term in the Fourier series may pass through the filter. If that is the case, then the signal is quite degraded and becomes unusable. As the filter limit is raised to higher frequencies, more terms in the Fourier series pass through the filter, and the signal more accurately represents the original signal. In Figure 5.4, raising the pass-through frequency would first let the k = 5 term through; raising it some more would let the k = 15 term contribute.

				Noise, resistance, contention, and other factors always place a limit on the frequency of the signal that can pass through the wire. The rate of change per second is called the baud rate. In the examples you've seen so far, the amplitudes were normalized to a value of 1. However, if the voltage were high enough to represent intermediate values, then the baud rate would have to account for voltage changes as well. In a system where the signal is at a voltage that allows two logical values, 1 and 2, to be determined, each signal carries two bits worth of information and the baud rate is twice what it would be for a system of just 1 and 0. 

				Sampling theory

				In the previous sections, you saw how you could take a digital signal and describe it in terms of periodic trigonometric functions, such as sinusoids. You also saw how the signal could encode data (ones and zeros) that could be used to convey information (SOS). The process of splitting up data into bits of information is called sampling, and the number of bits of information per unit time is the sampling rate.

				The information contained within a single data point is a function of the bit space. Let's say that you have a signal that changes color in a periodic way and it is the color value that conveys information. The first system you build changes color from black to white through continuous shades of gray. Because the human mind can only differentiate around 1,000 shades of gray under ideal situations, you decide to store the color value at 256 different levels. That corresponds to an 8-bit data point.

				The second system is a full-color system. To represent a color value in time, you might describe the color using the RGB (Red, Green, and Blue) color space. For each color, you choose a scale of 256 values, just as you did with the grayscale system. Now you have a bit depth that is 256 x 256 x 256 (28 x 28 x 28) or 224. This color space stores approximately 16.8 million color values. You could have used smaller or larger bit depths, and whether you did so would depend upon the purpose you intended to use the data for.

				Sound or music can be sent over a wire and displayed as an analog signal in a waveform. You might ask the question: “How many data samples are required?” The answer again depends upon your intended purpose. For conversations over a telephone, a sampling rate of 8 kHz is sufficient. Higher-quality speech might be recorded at 11 kHz. For music, you might store a signal of lower quality such as AM radio at 22 kHz, while for CD quality, the sampling rate would be 44 kHz.

				Now let's consider the sine wave shown in Figure 5.4. How many samples do you need to take in order to determine its frequency? If you sample at once a cycle, and then try to reconstruct the waveform, what you get is a constant value that defines a line. If you increase the sampling rate to 1.5 samples per cycle, you get a sine wave, but at a lower frequency than the sine wave you are trying to describe. At two samples per cycle, you are finally able to store the frequency rate. To better approximate the waveform, you need to sample at least twice the maximum frequency, but the more samples you take, the closer you are to recreating the original sine wave. At 16 samples per cycle, you are close to recreating the original sine wave.

				Figure 5.4 shows that at twice the rate of the sine wave, you can store the information necessary to define the frequency. This rate is known as the Nyquist rate, and it comes from the 1924 work of Harry Nyquist. He found that you can have a signal with a bounded bandwidth B, and that the signal can be recreated by storing 2B samples per second, which is the Nyquist frequency. The original work was with a low-pass filtered signal over a noiseless channel. The reason why a higher sampling rate is oversampling and yields no additional information is because higher frequencies have already been eliminated when they were filtered out.

				Nyquist's theorem for the relationship of the bandwidth B to the maximum sampling rate R is as follows:

				Rs = 2Blog2 BL

				where BL is the number of values that a bit can have. A voice signal of 262 Hz is C4 or Middle C and is considered the median note of a human voice. The Nyquist theorem calculated that a maximum sampling rate to store this note in digital form (BL = 2) would be 524 bits/s.

				 Figure 5.4

				Sampling a sine curve and the Nyquist sampling rate
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				In 1948 Claude Shannon published a paper that provided a mathematical proof for Nyquist's theorem and went on to extend the concept by showing that you could reconstruct the original signal from 2B samples. Put another way, sending a signal with a baud rate of 2B is the inverse operation of sampling a signal with a frequency of 2B. The resulting theorem is now referred to as the Nyquist-Shannon sampling theorem, and Shannon's work is considered by many scholars as marking the beginning of the field of science known as information theory.

				The sampling theorem applies to a noiseless channel. Most channels do suffer from noise and the noise introduces a certain degree of randomness to the data. The amount of noise in a signal is given by the ratio of the power of the signal to the noise, S/N. Because noise is often a minor component of the signal, it is common to quote the S/N ratio as a function of the common log, 10log10 S/N in units of decibels. An antenna that attenuates the noise of a receiver by 10 dB would reduce the noise in the signal by a factor of 10. A fine stereo cartridge that has a 75 dB S/N ratio would have a signal-to-noise ratio of 750 to 1.

				Shannon went on to establish that you could calculate the maximum sampling rate for a noisy channel by substituting the term 1 + S/N into the Nyquist theorem for the bit level, as follows:

				Rs = Blog2 (1 + S/N)

				The effect of noise comes into play when you are trying to determine the maximum amount of information that a channel can transmit. Consider a channel with a low-pass filter that cuts off all frequencies at about 1000 Hz, and which is subject to Gaussian thermal noise. The S/N ratio is 20 dB; and S/N would be 200/1. Therefore, Rs is calculated to be:

				Rs = 1000 log2 (1 + 200) = 1000 * 5.30 = 5300 bits/s

				This calculation shows that the channel described can transmit signals at a maximum rate of 5300 bits/s, regardless of the sampling rate, under ideal conditions. An important realization is that the amount of information conveyed is much more sensitive to the frequency of the signal than it is to the quality of the signal (S/N).

				Information theory goes on to relate the assignment of values to signals as a form of negative entropy. That is, a logical sequence of bits requires some energy to be in that state instead of being randomly assigned as it would in a thermal state. Therefore, any data claimed above the maximum Shannon sampling rate would be akin to creating energy. As interesting as this idea might be, the point is that this theory establishes a theoretical maximum data rate for any channel.

				Multiplexing

				The process by which a transmission medium can be made to carry two or more signals or data streams is called multiplexing. Conceptually, a multiplexed transmission is carried over a channel, and the path a channel takes from one point to another describes a circuit. Because a wire, fiber, or radio link is a physical connection that is described as a physical circuit, data channels are often referred to as virtual circuits.

				Multiplexing requires a device called a multiplexer (MUX) that is capable of both separating and combining multiple signals or data streams into individual channels. The multiplexer device is actually a combination of a multiplexer that takes multiple inputs and combines them, and a demultiplexer (DEMUX) that separates the signals into components and sends each signal down the appropriate output.

				Previously you learned that there are three different methods used to modulate carrier waves so that they encode data: amplitude modulation, frequency modulation, and phase modulation. Similarly, multiplexers perform time, frequency, or phase division (partitioning) of analog and digital data. These classifications separate one set of computer protocols from another, and one type of computer network from another, in the same way that Linnaean taxonomy allows biologists to separate the tree of life into a hierarchy of domains, then kingdoms, phyla or divisions, families, genera, and species.

				Time Division Multiplexing

				Time-based multiplexing is referred to as Time Division Multiplexing (TDM) and uses time slicing to separate data streams. When different transmitters share the same TDM network, the technology is referred to as Time Division Multiple Access (TDMA).

				TDM sequences analog data using a device called a codec, which samples the data into a stream. At the receiving end, a codec reassembles the data from the slices. You are probably familiar with codecs, as they are used to digitize voice, music, and video, another example of this technology. This kind of sampling is referred to as Pulsed Code Modulation (PCM). Other techniques, such as Pulsed Amplitude Modulation (PAM), Pulsed Width Modulation (PWM), and Pulsed Position Modulation (PPM), are used less frequently than PCM to perform digital modulation.

				TDM uses different techniques to sequence digital data. The system used on T- and E-carrier lines multiplexes a set of channels together, whereas TDM transmits the multiplexed channels as one large frame consisting of multiple channels (25 for T-1) every 125 msec. There are different standards for TDM frame sequences that add control bits either to the end of the channels (common channel signaling) or to the end of the frames (channel associated signaling). Channel signaling uses the same time slicing technique shown in Figure 5.5 for TDM, but instead of sending a sequence of channels, it sends a sequence of frames.

				Cross-Ref

				T- and E-carrier lines are discussed in Chapter 13.

				There are many different methods used to compress digital data that is being time multiplexed; some are industry standards, and others are proprietary. One common technique for compression is called differential pulsed code modulation. This technique evaluates the amplitude of time slices and determines the difference or delta value between that time slice and the next time slice. The codec sends a data stream consisting of the delta values only. You get data compression because the delta is assumed to never go beyond a certain value. When the sound does vary widely between time slices, the compression scheme uses the next time slices to bring the levels in line with the original waveform.

				For example, in a system that stores 256 sound levels, which is 28, you might decide that the levels never change more than 8 levels in any one time slice. Instead of encoding an 8-bit signal, this system would allow you to send only 7 bits of information per slice.

				The technique called delta modulation stores only step changes of 1 in the value as a single bit. Delta modulation requires a very fast sampling rate in order to accurately describe the original waveform. Other more advanced compression schemes use algorithms to do predictive encoding. You can more aggressively compact signals, but there is a cost in data quality or more overhead to process data more quickly.

				Frequency Division Multiplexing

				Frequency-based multiplexing uses signal modulation to separate one signal from another; and is referred to as Frequency Division Multiplexing (FDM). When a single channel is shared between users using FDM the technology is referred to as Frequency Division Multiple Access. FDMA is used to keep radio signals coming from different transmitters apart, and because cellular telephone networks are designed to have overlapping ranges FDMA finds use in cellular networks.

				FDM multiplexing can send either analog or digital data, but as a general rule, it is easier to send digital data over TDM circuits and it is easier to send analog data over FDM circuits. FDM networks are found in wired networks and in microwave technologies. FDM is used on all sorts of wired media, but when frequency modulation is used on fiber-optic lines it is called Wavelength Division Multiplexing (WDM), although they are essentially the same idea. TDM multiplexing is really only practical for carrying digital data.

				Figure 5.5 shows a simple example of TDM and FDM. The channels are indicated by the numbers in the boxes. In TDM, channels pass by oscillating between channel 1 and channel 2. The overall data stream is fully utilized, and consists of consecutive packets filling the channels during each time slice. In FDM, the channels are separated into four separate frequency channels and data is alternately sent over each of them.

				In FDM although there are guard bands between each of the frequencies in the figure, in real life, many transmission schemes crowd channels together so that they overlap a little. There can also be overlap due to the fact that band filters usually create a sharp edge on a channel. The guard bands are represented by the blank spaces between each of the four frequency channels.

				Tip

				In FDM, a group is usually considered to be a 4000 Hz band that includes 500 Hz blank guard bands at the start and end of the group. This corresponds to the bandwidth required to carry voice data. A set of five groups is a supergroup, and a mastergroup is either five or ten supergroups. 

				 Figure 5.5

				A comparison of Time Division Multiplexing versus Frequency Division Multiplexing
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				Other multiplexing technologies

				Because wavelength and frequency are fundamentally related by the speed of light, you might think that FDM would also be used in optical networks. However, for historical reasons, optical networks refer to frequency multiplexing as Wavelength Division Multiplexing (WDM). 

				You can create a WDM link by placing optical fibers on one side of a prism so that different frequency ranges of light travel down different fibers. The other side of the prism would combine the light so that it travels down a shared optic fiber link. Figure 5.6 shows how WDM is achieved using a prism or a diffraction grating.

				Cross-Ref

				Chapter 13 describes the use of multiplexing for internetwork links and the protocols that use those techniques.

				 Figure 5.6

				Wavelength Division Multiplexing beam splitting and recombination
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				You encounter multiplexing techniques that polarize a data stream in some optical networks. Light can be polarized in a number of different ways, but one common technique is to use an Add-Drop Multiplexer (ADM). ADMs typically use a Fabry-Pérot etalon (interferometer) to split or combine light waves. More recent versions of ADMs, called Reconfigurable Optical Add-Drop Multiplexers (ROADMs), have become popular on Metropolitan Area Networks (MANs). Not all optical networks use polarization. The widely used SONET/SDH optical network uses timed pulses of lasers and LEDs to create TDM communications.

				Radio frequency communications can be polarized by passing the data through a phased multi-antenna array to create Multiple-Input and Multiple-Output (MIMO) channels. The signal is recombined at a receiving phased multi-antenna array. This technology is similar to the way RADAR is created. MIMO wireless networks are becoming more popular in home wireless networks in order to create higher throughput connections.

				Note

				Just to make this nomenclature even more confusing, radio frequency multiplexing uses the FDM acronym.

				Other forms of multiplexing exist that are important in areas such as cellular communications. Frequency-hopping spread spectrum (FHSS) radio communications is perhaps the most famous of these methods. This multiplexing technology works by rapidly switching the carrier wave between a number of different frequencies in a pseudorandom sequence. The transmitting device and receiving device are aware of the order and timing and can tune in, but a spread spectrum transmission would simply appear as transient noise to any narrowband receiver that is tuned to any one frequency. This makes FHSS very secure.

				A famous patent in frequency hopping was issued to the composer George Antheil and the actress Hedy Lamarr in 1942 for a system that used a piano roll to switch between 88 different radio frequencies. It was hoped that this system would make it impossible to jam radio-guided torpedoes. The system was never deployed, but became widely known when the Code Division Multiple Access (CDMA) system for cellular networks was developed a decade later.

				Flow Control

				As data flows across a network, there is often a mismatch between the rate at which a system can process data and the rate at which data is being received. These mismatches occur when the receiving system is slower to process and/or cache incoming data than the sending system is at sending the data through the network connection. When the receiving system is the target of data coming in from multiple systems, it's even easier to get a data transfer/processing mismatch. Yet another problem is encountered when a network segment becomes congested, and packets or frames required by the receiving system to reassemble the data cannot be acquired in a timely fashion. The management of data traffic is a problem that is typically addressed in Session layer (Level 3 in the OSI model) protocols using flow control messaging, data caching, session timing schemes, data buffering, and other techniques.

				Network flow control can be implemented by devices referred to as Data Terminal Equipment (DTE), at switches and routers, and at the circuit level using Data Circuit Terminating Equipment (DCE). These devices control the transmission of data by providing a gating function that alters the rates of data flow in one direction or in the opposite direction. A connection must have one of these DTEs or DCEs at each endpoint.

				Modems are devices that suffer from flow control problems. A modem negotiates a connection with another modem, ensuring a certain set of protocols are used for the session, a certain data transfer rate, and so on. Modern high-speed modems, at 56 Kbits/s, transfer data at a rate that exceeds the theoretical Nyquist rate when they operate at full speed. They do so by employing compression and other techniques. Data transfer using modems over phone lines have a theoretical limit of around 56 Kbps (the bandwidth of the DS0 telephone channel), but with compression and error correction it is possible to transfer data at a slightly faster rate if the phone line is sufficiently free of noise. However, phone line quality can vary — often by a large amount — and so some mechanism needs to be employed to signal the current condition of the telephone line and the amount of noise that might be encountered. That mechanism is to go through a handshaking routine where the transfer rate and different protocols are negotiated by both the sending and receiving modem.

				Most modems use two different forms of flow control. The first method is a set of commands called XON/XOFF that are sent from the modem to the computer. The program that your computer is using to communicate with the modem can also send XON/XOFF messages to the modem. This form of flow control is called software flow control (modems can be implemented in software). When a connection is made without a feedback loop like these commands do, it is a form of open-loop flow control. An open-loop flow control mechanism doesn't use communication between the sender and receiver, relying instead on other flow control mechanisms such as resource allocation using resource reservations. You see this type of flow control in ATM networks.

				The second system uses control characters or RS 232 and serial port control lines to send control signals and is called hardware flow control. Common control signals are DTR (Data Terminal Ready), DSR (Data Set Ready), CTS (Clear to Send), and RTS (Request to Send). These are signals that you may see indicated by a set of lights on physical modems. Hardware flow control uses a master/slave relationship. The DTE master sends a signal indicating its condition; then the DCE slave responds. A PC modem connection uses DTR/DSR signals to create a modem session and RTS/CTS signals to control data transfer.

				Flow control is also built directly into important protocols. The Internet Protocol (a Network level protocol in the OSI model or the main protocol at the Internet level in the TCP/IP Internet model) creates IP packets that contain blocks that provide a sequence number for reassembly, blocks that indicate packet priority, and so forth. As packets arrive, messages are sent back to indicate if there are any missing packets that are required, if a packet failed its error check, and if a packet took too long to arrive, and when the data has been reassembled completely then the transfer was received correctly. The use of messaging is a form of closed-loop flow control.

				The IP protocol is not unique in using a messaging system or in signaling the successful transfer of data. The Frame Relay network protocol (a Data Link protocol), which is used to connect LANs to WANs, creates frames that encapsulate data from packets in the form of variable-sized frames. Frame relay technology has no flow control or acknowledgment messaging. However, frame relay networks offer congestion control for incoming connections and guaranteed throughput mechanisms. Two different control bits in the data header tell the sender when there is congestion, and the sending system reads those bits and adjusts the data rate.

				Traffic Engineering

				Traffic engineering describes a set of technologies that are used to control traffic on packet-switched networks such as TCP/IP or the Internet. Among the technologies that are used are packet shaping (where packets are controlled based on their type of content), store and forward technologies (exemplified by the Leaky Bucket Algorithm), and buffering technologies (such as the Token Bucket Algorithm). All of these technologies are flow control methods that are used to enforce different Quality of Service levels that both filter and meter network bandwidth to clients.

				Packet shaping

				A common method that is used to control data rates on a network is called traffic shaping, or on an IP network, it is more frequently called packet shaping.

				Packet shaping isn't just a flow control mechanism that controls data transfer rates. Packets can be categorized on the basis of the protocol they use or the port number that they are destined for. Based on these parameters, rules can be established that alter the way the packets are handled. For example, one ISP examines packets, and if they find that they are BitTorrent packets, they apply a low Quality of Service (QoS) to them and send them down the wire as a trickle. BitTorrent can be easily recognized by the fact that the header begins with the character 19 and a 19-byte handshake string.

				If a packet is analyzed as part of a Voice over IP (VoIP) data stream, then it can be prioritized by an ISP to ensure a certain QoS level. Another ISP (a large phone company, for example) might choose to lower the QoS level so that VoIP doesn't seem as attractive as their phones. This happens to Skype traffic on some networks or to video streaming on networks that are provided by a large cable ISP.

				Packet shaping, like any tool, can be used for good reasons or not-so-good reasons. However, without some form of packet shaping, it would be impossible for large public networks to provide the QoS that their service agreements contractually commit them to.

				On ATM networks, cells are examined using an algorithm called the Generic Cell Rate Algorithm (GCRA) and checked for their compliance to rules that are defined for that particular virtual circuit. A cell is a small, specially formatted packet of data that is transferred on ATM networks and other similar cell relay technologies. Depending upon the arrival rate and variance in that rate, cells are passed through, scheduled, or dropped. GCRA changes the flow control bit settings in the ATM cells to change the data rate. Techniques such as admission control, resource reservation, and rate-based congestion control are used by ATM networks to control traffic flow.

				Cross-Ref

				Cells are described in more detail in Chapter 13.

				Admission control is a mechanism for assigning network bandwidth and latency to different types of traffic entering a network. Resource reservation refers to a system by which network resources are set aside for different application data streams and is commonly used for broadcast technologies. Rate-based congestion control is a technique similar to the traffic light controlled entry lanes on freeways: traffic is allowed onto the network at a steady rate in order to limit network congestion.

				On IP networks, packet shaping examines the headers of packets that are flowing through an IP connection, and if the packets match some criteria that you set a rule for, it executes that rule. Packet shaping can limit the bandwidth allowed to a certain datatype or bound to a certain IP address, which is called bandwidth throttling. Packet shaping can also be used to change the allowed rate of data transfer and to delay or redirect traffic. Traffic policing is differentiated from packet (traffic) shaping in that traffic policing drops packets or marks them.

				As you can imagine, packet shaping is a very popular technology with ISPs, who refer to the technology as network traffic engineering. You can think of packet shaping as a “Quality of Service” technology if you like, and ISPs tend to describe it in those terms.

				Packet shaping is enabled in application software usually running on a network edge device. Some companies, such as Packeteer, offer a PacketShaper appliance. The PacketShaper appliance enforces the various Quality of Service technologies described in the sections on traffic engineering. Packeteer was acquired by Blue Coat Systems in June 2008 (www.bluecoat.com). 

				Leaky Bucket algorithm

				Packet shapers use different methods to store and forward packets. A common scenario places ATM cells or IP packets into a buffer and then uses an algorithm to determine how to transmit them. The buffer, often referred to as a bucket in this technology, may use a delay technique or Leaky Bucket to create a First In First Out mechanism that takes an inflow at a variable rate and then transmits the data at a fixed (usually lower) rate. 

				The effect is similar to having some small holes in the bottom of a bucket and then filling the bucket up with water. A packet shaper can control the size of the “holes” of the bucket, and thus the outgoing rate. If the incoming rate overflows the buffer, then the packets flow over the top of the bucket, and they are discarded. Figure 5.7 shows the concept behind the Leaky Bucket.

				 Figure 5.7

				The Leaky Bucket algorithm provides constant data output.
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				The Leaky Bucket algorithm is simple to implement when the sizes of the incoming packets are constant, the incoming rate is predictable, and the outgoing rate can be efficiently satisfied by the packet size in the bucket. However, in situations where the packet size varies or the incoming rate is bursty (subject to short spurts of high traffic volume), the Leaky Bucket algorithm has a number of inefficiencies, most notably the fact that when high traffic is encountered that is beyond the capacity of the bucket, that extra traffic is discarded. Modifications to the Leaky Bucket that add a byte-counting algorithm improve the Leaky Bucket algorithm's performance.

				Token Bucket algorithm

				A second buffer mechanism used is called a Token Bucket. This packet shaping flow control uses an algorithm that can control how much data is allowed onto the network, and provides the byte-counting capabilities that the Leaky Bucket lacks. The algorithm provides for average and burst transfer rates. Whereas the Leaky Bucket enforces a constant outgoing rate, the Token Bucket allows for more flexibility in the data rate.

				The token mechanism acts as follows: A bucket is filled with tokens, which represent an amount of data that can be sent. When data is removed, the token that corresponds to that amount of data is removed from the bucket. When all tokens are gone, data is not transmitted. If there are enough tokens in the bucket, then the data can be transmitted at a bursty rate. If the bucket is full of tokens, then any additional tokens are discarded. These four scenarios are illustrated in Figure 5.8.

				In this system, a network administrator assigns how many tokens correspond to how many bytes of data. There is a constant rate of new tokens arriving at the bucket, but the bucket has a limited capacity. When a packet arrives of a certain size, the number of tokens required for that size are removed. If a packet arrives and there aren't enough tokens, then the packet is dropped, held in a buffer, or marked and transmitted.

				 Figure 5.8

				The Token Bucket algorithm provides variable data output.
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				Quality of Service

				Quality of Service (QoS) is a form of packet shaping or traffic engineering that guarantees that a certain service will have a certain amount of resources dedicated to it. The classic use of the term QoS is to ensure that an application that is in real time and sensitive to delays is given a certain sized circuit over which it can be transmitted. QoS is especially important for VoIP, streaming media, online multiplayer games, and other such applications. QoS methods are only employed when the network is bandwidth limited or congested. QoS technology is being built into network server operating systems such as Windows servers.

				QoS is not a metric that is used to measure delays, latencies, signal-to-noise ratios, frequency response, and so on, although the QoS agreement can include these requirements. These sorts of metrics are better classified as a Grade of Service (GoS), with QoS reserved for resource access. The two concepts, although related, are often confused.

				As an example of QoS services, let's take a look at how they are implemented using the Asynchronous Transfer Mode (ATM). ATM networks have several categories of service built into that transfer protocol. These categories are built directly into ATM network adapters and ATM switches to service different classes of subscribers.

				Classes of ATM services that are available:

				• Constant Bit Rate (CBR). This category provides no control over traffic flow and no error checking. CBR is used on T1-carrier connections.

				• Unspecified Bit Rate (UBR). This category provides no congestion messaging and sets no flow level. Cells move about the ATM network up to the available capacity. When the capacity is exceeded, cells are discarded; if there is additional capacity, more cells are transferred. Any program that does its own flow control and error checking can use UBR. Typical applications that this category attracts are mail servers (e-mail) and FTP servers (background file transfers).

				• Real Time Variable Bit Rate (RT-VBR). This category is used for applications that deliver data in a form that is non-linear. An example would be videoconferencing, which, due to the way its compression works, creates frames in a non-linear way. RT-VBR ensures that there is enough data to provide the compression algorithm with an adequate queue to run the video smoothly or to ensure that the compression is efficiently used.

				• Non-Real Time Variable Bit Rate (NRT-VBR). Applications that require traffic flow control but can accommodate a certain amount of variability (called jitter) can use this category. Print spooling is an example of an application that can use NRT-VBR.

				• Available Bit Rate (ABR). This level of service allows data to move through the line at a rate that is dependent upon the available bandwidth. It is meant to accommodate bursty traffic and to allow network capacity to be better utilized at times when traffic is low. Web server traffic is an example of an application that can use the ABR service.

				 Network service providers may implement a service such as ABR when they have short periods of high utilization, as it can allow them to avoid building additional capacity when the investment isn't required long term. To implement ABR, a messaging system is implemented that informs sending systems when traffic is high and that they need to throttle their traffic back.

				Table 5.1 summarizes the different capabilities of ATM service categories.
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				These different service categories allow ATM network service providers to create Service Level Agreements (SLAs) with their subscribers that guarantee access to network resources. The contracts contain a traffic description that may specify bandwidth and/or throughput values in a measurable way. Transfer rates may be measured for Sustained Cell Rate (SCR), Peak Cell Rate (PCR), Minimum Cell Rate (MCR), Cell Error Rate (CER), Cell Loss Rate (CLR), Cell Transfer Delay (CTD), Severely Errored Cell Block Ratio (SECBR), Cell Delay Variation Tolerance (CDVT), Cell Delay Variation (CDV), and Cell Misinsertion Rate (CMR). These parameters are measurable and are defined on a connection basis in ATM.

				Summary

				In this chapter, you were introduced to signaling and information theory. These basic concepts are at the heart of why networks do what they do and how different types of networks are different from one another, and they separate what is possible to do on the network from what is impossible.

				Complex data can be described in mathematical terms using techniques such as Fourier analysis. This allows you to store information and recreate the data at a later time. Sampling data provides the means to recreate data. There is a theoretical limit to the amount of sampling that is useful based on the bandwidth of the data.

				Networks create channels that allow data streams to share network segments. Channels are created in a number of different ways, based on time, frequency, and polarity. The process of creating channels is called multiplexing, and when you combine data streams it is called demultiplexing.

				Traffic control, flow control, and congestion control methods allow a network to provide services of different quality levels.

				In the next chapter, you will learn about servers, systems, and appliances. These devices provide the important network services that clients and the network depend on.
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				Chapter 6: Servers and Systems

				In This Chapter

				The most common types of network servers


				The range of network services


				Measuring network performance


				How to model networks and find bottlenecks

				In this chapter, principles relating to servers and services on a network are presented. Different server types are considered, a server being described as a software application that provides a service to other networked systems. Because servers come in all shapes and sizes, a process model for a server system is shown.

				Right-sizing server services by determining capacity and loading is an important part of having a well-functioning network. Different approaches to capacity planning include maintaining excess capacity, adding capacity as required, or matching capacity to demand. Projects that add server capacity to networks are best handled as part of a solution framework in a phased project. Different methodologies that you can use are described in this chapter.

				To improve network performance, you need to be able to define the different levels of service that the network performs. Deconstructing response time into its components, measuring throughput, and defining network reliability, scalability, and other factors allow you to define the performance characteristics of a network.

				In this chapter, you learn about different measurable performance data characteristics that you can use to derive fundamental network relationships. These relationships help you to determine which network resource is the bottleneck that is slowing down system performance, and allow you to eliminate those bottlenecks. Modeling networks is briefly described.

				The chapter ends with a discussion of adding server capacity, by adding either more powerful systems (scale up) or more servers (scale out).

				Network Server Types

				A server is a software program that provides a service to another computer over a network connection. Servers can run on the local system or on a remote system, but the software routine must provide this service to other systems or at least be capable of providing the service. Any service that does not have this shared component is more properly classified as a daemon, which is a local service.

				The use of the word server is applied very loosely in modern computing. A server is also the name given to a computer that has been configured to run a particular shared application or service. To better enable server functions, most modern servers run a server operating system — what I've chosen to call a network operating system in this book. This chapter describes network servers and focuses on the characteristics of shared services and applications.

				Often the network server operating system is simply a special version of the desktop version of the operating system, or to be more precise, the desktop operating system is simply a partially disabled, more general-purpose, performance-crippled version of the server operating system. This has been the case with the Microsoft Windows operating systems since the days of Windows Server/Professional 2000, and subsequent server projects such as Windows Server 2003/XP and Windows Server 2008/Vista have continued down this path. Other operating systems, such as Sun Solaris and versions of Linux, make no specific delineation between clients and servers allowing the power of the hardware and the configuration by the user to enable the required features. 

				Cross-Ref

				Chapter 20 covers network operating systems in more detail.

				Another use of the word server refers to the specific applications that a hardware system runs. A server that hasn't been specifically configured for one application or service function is referred to as a general-purpose server. All other servers are described in terms of the major application function that they provide. The most common network server types found today are:

				• File and print servers. On large networks, file and print servers often represent 25 percent of the servers deployed.

				• Application servers. Application servers include database servers, Web servers, e-mail servers, and so forth. If the application server runs a branded piece of software, most people refer to the server as an Apache server, Oracle server, and so on. Application servers can usually be as much as 25 percent of the server population on enterprise networks.

				• Backup servers. Most people are surprised to learn that backup servers are often the third-largest number of server types in an enterprise deployment. It is common to find that as many as 20 percent of all servers are dedicated backup servers.

				• Network servers. The definition of a network server varies, but if you include services that provide a routing function, system identification such as DNS and DHCP, and similar services, then this class of servers can represent as much as 15 percent of an enterprise network.

				• Domain servers. Domain servers are essential network servers for most large networks, but they represent perhaps 5 percent of deployed servers.

				The percentages mentioned in the bulleted list are based on surveys taken among network administrators across a large population and can vary greatly, depending upon the type of organization and network type. In the list, the total percentage adds up to 90 percent, leaving a category of 10 percent of miscellaneous servers — or simply none of the above.

				The server count, and therefore the percentages assigned to different categories of servers, can often be skewed by the deployment of what have come to be known as server appliances. A server appliance is a server hardware platform that has been specially configured to run an application or service with minimal human operation. A true server appliance (like a toaster) is one where you take it out of the box, plug in a power cord and network connection, turn it on, and forget about it. Examples of server appliances are routers, gateways, firewalls, print servers, Web servers, and others. The key differentiating factor that defines a server appliance, be it an Oracle 8i appliance or Google Search Appliance (www.google.com/enterprise/gsa/), is the ease of use.

				A good example of a network server appliance is the series of DNS/DHCP/FTP/NTP/IPAM/RADIUS server appliances sold by Infoblox (www.infoblox.com). These appliances are security-hardened devices that run a real-time operating system, are zero configuration enabled, and can replace a number of different server types. Figure 6.1 shows the Infoblox-2000 Network Service Appliance.

				 Figure 6.1

				The Infoblox-2000 Network Service Appliance can replace a broad range of network servers.
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				Photo courtesy of Infoblox, Inc.

				Servers come in a wide variety of form factors. Common server hardware form factors are stand-alone pedestal and tower systems, rack-mountable standard-width servers, and system frames into which complete servers mounted on long add-in cards called server blades are placed. You will find servers deployed in just about any form factor you can think of, and technology continues to make even smaller form factors possible.

				Given that computer servers can be emulated in software — their services abstracted so that they can run anywhere and seem to be local, run inside virtual machines, and be made such that resources can be added or removed as needed — the best way to conceptualize a network server is to consider its function and building blocks. An example of the different units required to model a general-purpose server is shown in Figure 6.2. The parameters shown in the model are those that you can measure or derive.

				 Figure 6.2

				An operational model of a network server
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				Figure 6.2 shows the different functional units of a network operating system. In this figure the different subsystems that impact performance are shown. A service request is input from a network client A0 and the network server operates on the service request returning system output X0 with a certain efficiency represented by the system's throughput.

				A service request is added to the Input queue and then submitted to the Central Processing Unit (CPU) for further handling. The Input Queue may have a certain queue length that is a prioritized number of service requests. As service requests are processed, they are removed from the Input Queue. The ability of the CPU to service requests is a function of its speed and the ability to run the operating system(s) and various applications. As requests are processed, instructions may be stored and retrieved from a set of different memory systems: RAM, cache, and disk storage in order of their diminishing speed and increasing capacity (generally speaking).

				Capacity and Loading

				The capacity of a network server is its ability to perform a certain workload. Loading measures that portion of a server's capacity that is currently in use. There are many different ways in which capacity and loading of a server may be measured; some descriptions have a mainly theoretical interest, while other descriptions are purely practical. However, while the concepts may be warm and fuzzy, the impact that server capacity has on your network's performance and your company's bottom line is not. Your ability to understand, measure, and modify the capacity and loading of your network services is a fundamental skill.

				There are different approaches to capacity planning, and in the next section three different approaches are considered. Capacity planning can be proactive, reactive, or analytical. Each approach requires a different mindset and set of actions. I also cover solution frameworks, which take a stepwise approach based on a team structure that forces organizations to confront project plans and sign off on them step by step to combat large project failures.

				Three approaches

				Broadly speaking, there are three different approaches to capacity planning:

				1. Maintain excess capacity at all times.

				2. Add capacity as demand requires.

				3. Match capacity to demand.

				Each of these approaches has its own pluses and minuses, and each makes certain demands on the resources available. A lead strategy, which is the proactive approach where you always have excess capacity for any demand, requires that you either have resources in place or that you have access to resources. Because a lead strategy is wasteful of permanent resources, many networks that employ a lead strategy use a tiered approach where additional resources are brought to bear as needed.

				Networks employ a lead strategy when they anticipate an increase in traffic and it is essential that they be able to react to that change. A general characteristic of a leading strategy is that the business captured is much more valuable than the cost of the resources. For example, a major company such as Amazon must employ a lead strategy, as the ratio of sales dollars to equipment costs is very large.

				The second approach adds resources only when required and is called a reactive or lag strategy. Capacity is added only when the need is demonstrated. The downside to a lag strategy is that a certain amount of traffic will not be satisfied until the extra capacity is brought online. It is a characteristic of a lag strategy that the cost of deploying a network resource is usually larger than the loss associated with the lack of the resource. A lag strategy is a conservative approach, based on different assumptions. When demand is measured, the demand can be described either in terms of an average or mean level of traffic or in terms of the maximum level of traffic seen at peak times.

				One approach is to have enough resources to satisfy the average or mean level of traffic, or perhaps more reasonably, a traffic level of a standard deviation so that only outliers are left unsatisfied. The standard deviation measures the probability distribution of a data set around a mean value. With a low standard deviation, data points cluster closely to the mean; high standard deviation has the data distributed over a large range of values. 

				While a lag strategy is considered conservative, many businesses operate with a lag strategy in order to maximize the use of a particular resource that may be in demand. A good example of this approach is used on packet-switched networks, which is the basis for the Internet and is used by ISPs. The network pipe is a limited resource and the goal of the ISP is to apportion the bandwidth in such a way as to maximize the utilization while promising the highest level of access that can be reasonably expected by a customer. At periods of high utilization, customers are throttled back or access times are increased, but it is rare that a customer experiences an outage. Or so it seems...

				The third approach is the one Goldilocks prefers: “Just Right” or right-sizing the network to demand. This is the analytical approach. Here you modify the amount of system resources in an incremental way so that the network's capacity adapts to changing demand. A match strategy requires the implementation of a feedback loop bringing resources to bear as needed, and perhaps releasing those resources when they are no longer needed.

				Solution frameworks

				It is a sad fact that the majority of all major IT projects fail — and you thought that economics was “the dismal science.” For our purpose, failure may be defined as one of the following:

				• Cost overrun. The project greatly exceeds its initial projected cost due either to specification problems or project creep.

				• Time overrun. The project greatly exceeds its initial projected length before it is deployed or is never deployed.

				• Specification error. The project solves a problem that doesn't exist, or the problem doesn't exist once the project is complete.

				• Resource misallocation. The resources brought to bear are better used elsewhere, perhaps solving one problem while creating more substantial issues.

				• Benign neglect. The project fails because it loses a champion needed to see the project through to completion.

				Network deployment and modification projects are often large projects, and they can suffer from any of the aforementioned defects or any combination thereof. To combat large project failures, there have been several different approaches to managing system development and deployment. These solution frameworks take a stepwise approach based on a team structure that forces organizations to confront project plans and sign off on them step by step. As an example of how you might want to structure a large network project, let's consider two related approaches used in the industry based on focused task groups.

				Perhaps the best known of these solution frameworks was developed by the Office of Government Commerce (OGC) of Great Britain. OGC publishes a set of policy guidelines for managing network information technology resources called the Information Technology Infrastructure Library (ITIL; www.itil-officialsite.com/home/home.asp), which has become widely adopted, particularly in the European Common Market countries. Their methodology has been trademarked.

				ITIL describes how to apply a set of best practices to network service strategies, designs, and operations, as well as how to provide a level of service as conditions evolve. ITIL has been published through three versions, the most recent being version 3.0, published in May 2007 in five volumes:

				1. Service Strategy. A service strategy would include a description of the business, a best practices framework, service management description, key processes, and demand management.

				Tip

				You can lower costs and improve the quality of your project by doing a really thoughtful and detailed project assessment at the beginning of the project. Changes you make later in the project cost exponentially more to fix once the project is under way.

				2. Service Design. This book describes the network system architecture, business rules, and documentation set. A Service Design Package (SDP) includes a service-level management catalog, business continuity plans, network security scheme, key suppliers, and staffing/role assignment.

				3. Service Transition. The service transition referred to is the hand-off of prototype systems to production staff for live operation. This book also describes how to conceptualize new projects that modify the existing levels of service, and how to manage assets and configurations as well as configuration changes. Change management, knowledge management, and product release and deployment are tasked to the team that provides service transitions.

				4. Service Operation. Service operation is described as a set of best practices developed to provide the levels of service that have been placed into the service design. A service operations team provides the day-to-day IT support that working production networks and systems require.

				5. Continual Service Improvement. The CSI program is a proactive approach to improving a production system while in use. A CSI program would collect user input and feed the more valuable suggestions to one of the other teams for implementation into the product or a next version of the product. Other services covered by this team would include staff training, scheduling, role assignment, and reporting.

				The iterative team-based approach used by solution management frameworks is illustrated in Figure 6.3.

				 Figure 6.3

				A team-based approach that iteratively conceptualizes, tests, and deploys solutions has the highest chance of success.
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				In an iterative team approach, the following groups are created and the project proceeds as each group turns over their part of the project to the next group. The groups include:

				• Program Management. This team initiates the project and creates the project goals. Their end product is a project plan.

				• Development. The Development team takes the project plan and reduces it to practice.

				• Test. The developed project is handed off to the Test team in order to determine that the project works according to specification and without error.

				• Release Management. The Test team hands off the project to a Release Management team whose task is to roll the project out to the network.

				• User Experience. A User Experience team works with users to ensure that the project is accepted and works according to user requirements.

				• Product Management. The Product Management team provides end user support once the project is operational.

				Iterative project programs typically include a final analysis of the proposed project and goals with the achieved results by the Program Management team.

				As part of the ITIL program, it is possible to obtain a certification in these methodologies from the ITIL Certification Management Board. The OGC (www.ogc.gov.uk/), IT Service Forum International (itSMF; www.itsmfi.org/), Examination Institute for Information Science (EXIN; www.exin-exams.com/), and Information Systems Examination Board (ISEB; www.bcs.org/) all contribute to these certification exams, with the latter two organizations administering the exams. Qualifications awarded include Foundation, Practitioner, or Manager/Masters of ITIL Service Management, ITIL Application Management, and ICT Infrastructure Management.

				The Microsoft Consulting Group adapted ITIL's team-based approach for use in their major projects. Their success led Microsoft to incorporate this approach into two different methodologies — Microsoft Operations Framework (MOF) and Microsoft Solutions Framework (MSF). With MOF, the goal is to run the network efficiently, while MSF aims to build the network well.

				Microsoft Operations Framework 

				Microsoft describes the Microsoft Operations Framework (MOF; www.microsoft.com/mof/) as a superset of ITIL, but it is probably better described as being a highly adapted version of ITIL. MOF offers operational guides, templates, assessment and support tools, access to white papers, courseware, and case studies. Microsoft also offers services related to MOF. MOF's emphasis is on how to meld people and processes in complex networking environments. MOF guidance tends to consider distributed and heterogeneous networks. MOF runs using the iterative team approach that was described previously.

				Microsoft Solutions Framework 

				Microsoft Solutions Framework (MSF; www.microsoft.com/msf/) offers solutions that the public can download and use. Among the solutions that can be obtained are product or platform deployments or rollouts such as Windows Server, Exchange Server, Visual Studio Team System, Web and E-commerce services, ERP, n-tiered transaction systems, and operation management systems, among others. Perhaps the best representative solution that you can download is the Microsoft Solution Accelerator for Business Desktop Deployment 2007 (BDD; technet.microsoft.com/en-us/library/bb490308.aspx), which is a solution framework that Microsoft distributes for the deployment of Windows Server 2008/Vista. Many of Microsoft's deployment tools are conveniently bundled in the BDD.

				MSF is currently at version 3.0 and includes both Team and Process models; integration into the Microsoft Operations Framework; and project, risk, and readiness management disciplines. When you download one of the business solutions, you will find that it contains a set of guidelines on how to construct different teams and have them interact, what each team's deliverables are, a set of best practices, and a collection of other resources related to the projects being described. The framework presents a set of recipes that you can adapt for your own situation. Figure 6.4 illustrates the relationships between teams and tasks in an MSF solution.

				In Figure 6.4 the project starts in the Envisioning stage and proceeds through Planning, Development, Stabilization, and Deployment phases using groups of the type that was described before for an iterative team approach. Each of the diamonds represents a milestone that is defined in the project plan, which for the inner circle is most often represented by hand-off from one group to the next. The outer circle represents concrete tasks and milestones required by the project.

				The project proceeds clockwise from the top with both the inner stages path and the outer tasks paths synchronized. An MSF solution doesn't require complete hand-off from one group to another. There may be stages during which two or more groups may still be actively working on the project.

				The MSF solution has a set of foundation principles that Microsoft describes as follows:

				• Shared vision. Each team should have a shared vision for their task and for the project as a whole.

				• Accountability and responsibility. Each deliverable should be clearly shared and assigned.

				• Open communication. Keep communication open both inside the group as well as between project teams.

				• Empowerment. Allow team members to take responsibility.

				• Delivery of value. Match a need to a set of deliverables.

				• Quality. Invest in quality, and be quantitative about it. Measure the results.

				• Risk management. Continually monitor risks and be reactive when problems arise.

				• Learning from experience. Completed project steps should be subjected to a post-project review.

				• Being agile. Be open to change based on your experiences.

				 Figure 6.4

				The group-oriented process embodied in the design of a Microsoft Solution Foundations business solution

				[image: 431313-fg0604.eps]

				Figure courtesy of Microsoft, Inc.

				Server and Systems Sizing

				It is essential to understand your servers, services, and systems performance on a quantitative level in order to make good decisions going forward. If the technology is newly deployed, the best approach is to experiment with the system in a testing lab or scenario that provides a realistic diagnostic potential. In some instances, industry benchmarks are constructed using real-world scenarios that may be of use. For example, the Transaction Processing Performance Council's various benchmarks often simulate a real-world scenario such as an E-commerce or data warehousing application. The best metrics are the ones that you develop on your own network using your own systems.

				Defining levels of service

				To quantify system performance, you need to measure the Quality of Service (QoS) levels in these areas: response time, throughput, availability, reliability, scalability, adaptability, and security. Several of these factors that are part of QoS, particularly reliability and adaptability, are intrinsic to the technologies that you choose and often need to be designed into the functional requirements for the network from the beginning. Quality of Service or QoS is essentially defined as providing a measured level of service based on an analytical assessment or performance measurement.

				Response time 

				Response time measures the time it takes for a request to be processed. Measuring the response time is equivalent to determining the rate-limiting step in a chemical mechanism. If you know the rate-limiting step, then you have a measure of the current factor that limits your system performance.

				For a client/server application such as a browser making a request to a Web server, the response time can be broken into application, network, and server responses, as shown in Figure 6.5. In Figure 6.5 a service request is initiated and starts at the client in the outgoing stack at the top left of the figure. Client response times, network response times, and then server response times all contribute to the latency of the process as the request leaves the client and arrives at the server. Once the server has processed the response, it then sends the response out (Server I/O) and the factors involved in the incoming response components begin. The processes proceed from the top-right Outgoing stack to the bottom-right Incoming stack going right to left. Incoming factors include the network response time involved with the server and then client portions of network handling, and finally end when the client can display the result.

				In practice, separating the different components of the response times into times you can measure can be difficult. You might measure the response time as the time between when you press the Enter key or click the OK button and the time the result appears on your screen, or you might measure the network response time as the time it takes for a message such as a PING to be sent to a network node. 

				 Figure 6.5

				The different components of a response time for a client/server interaction
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				Throughput 

				A system's throughput is the number of operations or transactions that can be performed per unit time. When throughput is measured, it is important that the operational characteristics be defined in a meaningful way. Throughput may be quantified using the following formula:

				Throughput = MINIMUM {server capacity, available workload}

				Throughput can vary greatly under conditions of heavy server or network loading from the average or ideal conditions you might encounter or wish to encounter. A typical throughput curve will rise steadily toward 100 percent utilization, at which point the throughput may decrease as a component of the service becomes the gating factor. For example, many systems cache data to enhance performance or extend memory. At high levels of utilization, disk thrashing may begin eliminating the performance enhancement that the cache was designed to offer. Disk thrashing is a condition of low system performance where the system requires an excessive amount of disk I/O (paging) to service requests because the system has no free RAM to store the data that is required by current processes. 

				Throughput metrics include: 

				• millions of instructions per second (MIPS) for CPUs

				• I/O per second (IOPS) and kilobytes transferred per second (Kbits/s) for disk drives

				• packets per second (PPS) or megabytes per second (Mbits/s) for network segments

				• transactions per second for applications

				• page views per second

				• HTTP requests per second, or kilobytes per second (Kbits/s) for Web servers or sites

				• messages per second for an e-mail server

				• searches per second or sessions per second for a database

				Throughput is a measure of a quantity per unit time and is meaningful as long as the quantity and time are comparable. For example, it is unreasonable to compare metrics for an e-mail transfer of 4 K messages versus one that has a megabyte attachment associated with it.

				A well-defined benchmark attempts to correct for these differences by performing a mixture of tasks so that some are performed with low priority, others with high priority, and other factors are varied. For example, the TPC-C V5.10 (www.tpc.org/default.asp) executes a mixture of transactions using a typical Online Transaction Processing (OLTP) order entry system that a wholesale supplier would require, including entering and delivering orders, and monitoring the level of stock at warehouses. The benchmark measures the number of orders of this hypothetical system per minute as expressed in the metric tpmC.

				Caution

				There are lies, damn lies, statistics, and benchmarks. I can't stress enough that a benchmark is only useful when it compares two systems using consistent methodology. A benchmark that measures network performance for small packet transfers will likely be very different from one that measures the performance for large frame transfers. Be vigilant.

				Availability 

				Availability is defined as the fraction of time that a service is available, and is a fundamental network metric for many systems. An online store may seek to have an availability of four nines or 99.99 percent uptime; the system would then be unavailable for over 52 minutes a year. This uptime would be considered to be borderline “mission critical,” but would obviously be inadequate for a system that monitors patients in a critical care facility. Availability is a fundamental network design parameter.

				Reliability 

				Reliability is a measure of the probability that the network will perform correctly over time. Many people fail to differentiate between availability and reliability; although these two concepts are related, they are sufficiently different to consider when designing or upgrading a network. A network can be available and still deliver operations that are not reliable. For example, in a packet-switched network under heavy loading, systems may still be available while an increase in the error rate reduces the network's reliability. As the reliability increases, its rate approaches the availability rate.

				Scalability 

				The term scalability is applied to a system that can add additional load without a degradation of performance. Load can be expressed as the number of users, the number of concurrent sessions, or some other factor. If adding more load changes the performance characteristics of a network (usually in a negative manner), the system is considered to not be scalable at the point at which the impact becomes significant.

				Adaptability 

				Adaptability, defined as the ability of a network to be extended to include other services, is a design consideration when installing or upgrading a network.

				Security 

				Security is a combination of providing data access, maintaining confidentiality, and verifying the actions of systems and users.

				Quantifying performance

				It's good to have a general feeling for the Quality of Service factors that any service installation or upgrade requires; but it is much better to be able to quantify performance using a set of real system metrics to focus in on the tasks required to obtain the desired results. It is considered a best practice to maintain a set of performance logs collected over time in order to determine trends and isolate problems. Analysis of trends allows you to be proactive in upgrading or modifying your network; they allow you to diagnose errors because they serve as baseline measurements, and through event logs they allow you to get detailed information on network conditions.

				The following set of data on resource utilization is useful to monitor:

				• CPU utilization. The average and peak levels of CPU utilization were collected and analyzed to determine trends over time as well as utilization over the typical work week.

				• Memory utilization. The amount of memory in use, the number of page faults, cache performance, and other factors were collected and analyzed.

				• Disk utilization. The size of allocated disk space was tracked, as were factors such as disk IOPS, to determine trends over time and over a typical work week. Different disk structures and types were analyzed, including various types of RAID, dedicated storage arrays, and others.

				• Network utilization. Factors that indicate the level of network performance were collected. These factors include throughput, response times, and collision rates, among others.

				Note

				Modern network operating systems offer a great variety of performance counters. Only a few are typically running in a default system, so if you need additional types of counters, you may need to install them and/or enable them. Many applications, particularly enterprise server applications, come with their own set of counters that are installed as part of the application's installation process. You may want to consult your operating system and application vendor's documentation to determine which additional counters may be available. Be careful in your use of counters, as enabling them may impact the performance that you are trying to measure. This is particularly true of disk counters.

				To obtain this data, different performance counters were turned on at the server, routers, and perhaps at some representative clients. The key observable performance data that you might want to collect is summarized in Table 6.1.
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								Key Measurable Performance Data

							
						

						
								
								Symbol

							
								
								Description

							
						

						
								
								Measured Data (operational variables)

							
						

						
								
								T

							
								
								Time period of observation

							
						

						
								
								K

							
								
								Number of resources used

							
						

						
								
								Bi

							
								
								The time the resource i was busy during T

							
						

						
								
								Ai

							
								
								The total number of service requests that are presented to resource i during period T

							
						

						
								
								A0

							
								
								The total number of service requests (of the type being studied) that were presented to the overall system during T

							
						

						
								
								Ci

							
								
								The total number of returned completed requests from resource i during period T

							
						

						
								
								C0

							
								
								The total number of returned completed requests from the system during period T

							
						

						
								
								Derived Data

							
						

						
								
								Si

							
								
								The mean service time per completion at resource i is: Si = Bi/Ci

							
						

						
								
								Ui

							
								
								The resource utilization of i is: Ui = Bi/T

							
						

						
								
								Xi

							
								
								The throughput of resource i is: Xi = Ci/T

							
						

						
								
								li

							
								
								The arrival rate at resource i is: li = Ai/T

							
						

						
								
								X0

							
								
								The overall system throughput is: X0 = Ci/C0

							
						

						
								
								Vi

							
								
								The average number of visits per request to resource i is: Vi = Ci/C0

							
						

					
				

				Source: Performance by Design, by Daniel A. Menasce, Virgilio A. F. Almeida, and Lawrence W. Dowdy, 2004, Prentice Hall.

				Performance relationships

				Utilization is a key factor in determining the need for additional resources. Once a resource is fully utilized, there is no more capacity available to perform the function (tasks) that the resource is busy doing. Utilization, as you can see in Table 6.2, is defined as Ui = Bi/T. To calculate the average time that resource i took to complete a task, you multiply this equation by Ci/Ci, which yields the following equation:

				Ui = (Bi/Ci) / (T/Ci)

				Then, because Bi/Ci is the average service time Si, and T/Ci is the inverse of the resource throughput Xi, you reduce the equation as follows:

				Ui = Si x Xi

				The relationship derived above is referred to as the Utilization Law, and it states that a resource's utilization rate is the product of the average service time times the throughput. When the completion rate is such that all arrivals are processed during the observation period, Ci = A, then Xi = li and the Utilization Law takes the form:

				Ui = Si x li

				If the resource that you are studying has multiple instances — for example, multiple connections or wires, multiple processors, and so forth — then the Utilization Law accounts for these instances using the following generalization:

				Ui = (Si x Xi)/m

				where m is the number of servers that a resource has.

				A service request almost always requires multiple uses of critical resources. For example, if you make an HTTP request to a Web server, completing the request might require several READs to obtain the data objects necessary for the response. If the data objects are in cache, then the resource being utilized is RAM; if not, then multiple requests may need to be made from disk(s). When a set of requests are made using a resource, you can define a performance factor called a service demand. The service demand Di is the total average time spent by an average request of the type being analyzed for the resource i. The formula for service demand is then:

				Di = (Ui x T)/C0 = Ui/X0

				or alternatively,

				Di = Vi x Si

				This relationship, known as the Service Demand Law, states that the service demand is obtained from the visit count multiplied by the service time, or alternatively, the resource utilization divided by the overall system throughput. For any resource derived from multiple instances, you can generalize the equations to the following:

				Di = Ui,r/X0,r = Vi,r x Si,r

				where r represents the different classes of service demands, each class being computed individually.

				When studying a resource i, you determine that the number of visits to the resource required by the request is 4, and the throughput of the resource is 3.5 requests per second. If this is a disk drive, for example, the 3.5 requests per second are in the form of disk I/O (READ/WRITE) and the units are in IOPS. To relate the resource's throughput Xi to the system's throughput X0, you would use the formula:

				Xi = Vi x X0

				which generalizes to

				Xi,r = Vi,r x X0,r

				This equation is referred to as the Forced Flow Law, and applying this law to our example, the throughput of the disk would then be 3.5 x 4, or 14, IOPS.

				You can relate the average number of requests, the throughput, and the average time of a request using a formula that is called Little's Law, as follows:

				Ai = Xi x Si

				Consider the trivial circumstance where a disk subsystem either has a single request or there is no request at all. In this circumstance, the probability that the request is being serviced is equivalent to the disk subsystem's utilization. When there is no request, the probability is equivalent to the disk subsystem's idle time. The equation above is simply a restatement of the Utilization Law.

				For a situation where there is a request queue and a certain number of active requests on the disk's subsystem, you can formulate the relationship between the queue length and active requests (Ni), the average time of the request (Ri), and the throughput (Xi) as follows:

				Ni = Ri x Xi

				This same equation reshuffled shows that if you know the queue length and the throughput, then you can calculate the response rate as follows:

				Ri = Ni / Xi

				Little's Law can be applied to a broad variety of resources and situations when evaluating system performance. However, there are some limitations that you need to be aware of. For Little's Law to function correctly, requests cannot be created or destroyed in the system. A request in the queue that is processed must at some time be completed by the system. The time that any one request spends in the queue isn't relevant; it can be random, Last In Last Out, First In First Out, or the like, as Little's Law is applied to average values.

				Consider a client server system with multiple (M) clients accessing a server, as illustrated in Figure 6.6. A client is either processing a request or the client is idle. The average number of clients in the request state is Mavg and the average number in the idle state is Navg. Because clients can be in either state, the sum of these two averages equals the number of clients:

				M = Mavg + Navg

				The system shown in Figure 6.6 shows multiple client requests made to a server (the bottom set of multiple arrows on the left) and sent to the server on the right. The average time spent by a client in the idle state (Z) is shown by the bar on the left, and the average server response time (R) is shown by the bar on the right. Little's Law separately states that the average number of clients in the request state is related to the system's throughput (X0) multiplied by the server's response time as follows:

				Mavg = X0 x Z

				which states that the average number of requests per unit time or throughput equals the number of completed requests per unit time or system throughput (X0).

				 Figure 6.6

				A client/server system request/response model
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				Little's Law applied to the server leads to the relationship:

				Navg = X0 x R

				Combining the two expressions leads to the equation called the Interactive Response Time Law:

				R = (M/X0) - Z

				or more generally for a multiple system,

				Rr = (Mr/X0,r) - Zr

				The Interactive Response Time Law then states that the response of the server is equal to the number of clients divided by the throughput minus the idle time.

				Table 6.2 shows the five operational laws that have just been described.
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								Operational Laws

							
						

						
								
								Law 

							
								
								Relationship

							
								
								Description

							
						

						
								
								Utilization Law

							
								
								Ui = Xi x Si = li x Si

							
								
								Relates utilization to throughput and mean request handling time. The last term is true if all inputs are processed.

							
						

						
								
								Forced Flow Law

							
								
								Xi = Vi x X0

							
								
								A resource's throughput is equal to the number of visits (requests) multiplied by the system throughput.

							
						

						
								
								Service Demand Law

							
								
								Di = Vi x Si = Ui/X0

							
								
								A resource demand is related to the number of visits times the average request completion time, or to the resource utilization divided by the system throughput.

							
						

						
								
								Little's Law

							
								
								Ni = Ri x Xi

							
								
								The queue length and active requests is equal to the t average time of the request times the throughput.

							
						

						
								
								Interactive Response Time Law

							
								
								R = (M/X0) - Z

							
								
								In an interactive system, the response rate is equal to the number of clients divided by the system throughput minus the idle time.

							
						

					
				

				Source: Performance by Design, by Daniel A. Menasce, Virgilio A. F. Almeida, and Lawrence W. Dowdy, 2004, Prentice Hall.

				Eliminating bottlenecks

				The whole point of this exercise is to have the highest limit for throughput and the shortest response time possible, within the limits of the technology that you are working in, for any service demand that you are analyzing. To apply the five operational laws discussed previously, you need to be able to isolate the performance characteristics of the resource in question, which in complex network systems can be difficult to do. Still, these equations supply a theoretical framework for performance limits and you need to derive or at least approximate their values in order to input them into any performance model that you want to consider.

				If you had to understand an entire network in order to improve performance, you would be faced with an intractable problem. In almost all cases, though, the performance for any service demand is entirely dependent on one subsystem or factor, and in rare instances perhaps two factors. Any factor that gates performance is called a bottleneck, and the nature of a bottleneck is that it is the system resource that has the highest utilization and lowest response rate, and has reached the limit of its available throughput. The rationale for improving performance is to successively eliminate bottlenecks until you achieve the desired result. For example, if you have a network containing a set of 10Base-T connections and the speed of the network is gated by these connections, then removing the slowest-performing link simply moves the bottleneck down to the next connection. Replacing all the 10Base-T links, however, would remove that class of bottleneck, revealing the next issue in performance, which might be the hubs that you are using.

				Consider four hypothetical resources, A to D, where the utilization and throughput for each have been measured over a range of input. In Figure 6.7, you see a plot of each of these resources mapped over their utilization range. Each of the symbols — plus, triangle, square, and circle — represent measured data points for each of the four resource curves shown. Resources B through D retain spare capacity throughout the input range that was measured. Resource A, however, approaches 100 percent linearly up to a throughput of 7 and greater where it can no longer service the requests efficiently and the curve flattens out. Enhancing the performance of A therefore eliminates this particular bottleneck.

				 Figure 6.7

				A plot of utilization versus throughput for four resources highlights resource A as a bottleneck.
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				Because the Service Demand Law relates resource demand to utilization and throughput, you can use the experimental quantities you measured to calculate the overall resource service demands as follows

				Di,r = Ui,r/X0 = A-DS Ui/X0 = UA/X0 + UB/X0 + UC/X0 + UD/X0

				to obtain the total resource demand of the system based on the overall system throughput that you measure. The resource that is measured to have the highest service demand will have the highest utilization, and vice versa; it is therefore the bottleneck of the system and is governed by the equation:

				X0 = < 1 /(MAX {Di})

				This applies to resource A under heavy load in Figure 6.7, and is referred to as the upper asymptotic bound throughput limit under heavy load.

				Different types of resources have different levels of concern based on the utilization rates. For disk, you might start to monitor any disk system that is 50 percent utilized, worry about any disk that is 70 percent utilized, and worry harder about any disk that is 80 percent utilized. Many disk operations begin to fail when the disk system is more than 85 percent full. This is particularly the case with databases and graphics, which store copies of the entire data set to disk as temporary files.

				You can also consider the number of visits or requests and its relationship to service demand and throughput to make predictions on the nature of the bottleneck resource under light loading, which is a different problem than the one you've just seen for a heavily loaded system. Little's Law is the relationship that provides this connection. In a lightly loaded system with N transactions and no queue, Little's Law predicts that:

				N = X x R > = (KSi=1 Di) x X0

				Rearranging this equation and solving for X0 leads to

				X0 = < N /(KSi=1 Di)

				which is described as the upper asymptotic bound of throughput under light load. If you combine the two upper asymptotic bounds on throughput together in the same equation, you can derive the following relationship:

				X0 = < MIN [(1 / MAX {Di}),(N /(KSi=1 Di))]

				Figure 6.8 illustrates the relationship of the two upper asymptotic bounds on throughput for high and low loading and the impact that upgrading a bottleneck resource has on those relationships. The measured throughput for the original system is shown by the line with plus data points that approaches the heavily loaded system line, which is indicated by the line with triangle data points. In the original system, the throughput can approach this limit. When you upgrade the system and set a new heavily loaded limit line, shown as the line with square data points, the upgraded system can now approach this line as indicated by the upgraded system line with the circle data points.

				A system under light load doesn't suffer from these limitations. In a lightly loaded system, the system can scale linearly. The two lines, the original system under light load with star data points and the upgraded system under light load with pentagon data points, scale throughout their range. The upgrade system is able to scale with a higher slope attaining greater throughput faster. Note, however, that there is a limit to the number of transactions that the lightly loaded system can accommodate and that the original system will support up to only six outstanding transactions while the upgraded system will scale up to nine outstanding transactions in the data queue.

				 Figure 6.8

				Bounding limits under light and heavy loads for an upgraded resource

				[image: 431313-fg0608.eps]

				Network modeling

				The process for modeling a computer network involves determining the different states that the network can be in, their probabilities, and the relationships between each state and other states. Given six states A to F, what are the relative probabilities that a particular state will lead to the other states? This type of modeling is referred to as a Markov model or chain, and defines a stochastic process that conforms to the Markov property limitation. In Markov models, the Markov property is that for any present state, transitions to future states are independent of the past states of the system. That is, the past does not determine the future.

				Note

				The Google PageRank feature is based on a Markov chain.

				To build a Markov model, you can start by considering a random walk through the state space, noting the probabilities at each step. The resulting map or graph is a set of nodes representing each state and relationships between nodes that represent transition probabilities. Consider a packet-switched network with four different routers A to D, each interconnected by network segments. Figure 6.9 shows a Markov model representing the probability that a particular message has for navigating the network. Notice that the probability of leaving any one router is 1.0, and the probability of entering any one router is 1.0. You can determine the sum of the probabilities by adding all of the probabilities of arrows leaving the router and all of the probabilities of arrows entering the router. The arrows represent the next hop in the system.

				 Figure 6.9

				A Markov diagram for four routers on a network

				[image: 431313-fg0609.eps]

				Having established the probabilities for transitions from router to router, you can use the Markov diagram to predict the behavior of this part of the network to solve for problems such as which router or network segment will be used most heavily. To solve these problems, you need to create a set of states to which a Mean Value Analysis (MVA) can be applied. For example, if a path through this router set is described as (Segment 1, Router, Segment 2), then you can fully describe the router space with a set of state transitions as follows:

				(BA, A, AC), (BA, A, AD), (CA, A, AB)...(AD, D, DB), (BD, D, DC), (CD, D, DA)

				Because you know the probability for each network segment, you can assign weights to the states or paths described. Some terms will drop out; other terms will be shown to have higher probabilities. The path vectors would then be written as:

				(0.35 BA, A, 0 AC), (0.35 BA, A, 0.5 AD), (0.4 CA, A, 0.5 AB)...(0.5 AD, D, 0.6 DB), (0 BD, D, 0.1 DC), (0.4 CD, D, 0 DA)

				The terms that are shown as strikeouts in the listing of path vectors are terms that drop out because they have a component that has a zero probability, making that path impossible to follow. Because all of these paths have relative weights, you can add up all of the paths, normalize the values, and obtain solutions to which paths have the highest probability and which router will see the most traffic.

				Markov diagrams have a wide application. You could have chosen a set of disks in a disk array, a set of processors, processors and disks, or any other system you like that is not deterministic. Essentially, you use the Markov diagram to look into the black box that Little's Law abstracts processes into. 

				While Markov models are widely used in many disciplines, they can't be applied to many problems. As mentioned previously, they don't apply to situations where the previous state has an impact on the next state in a system. If one router is significantly slower than the other routers, or if self-loop paths influence the next path chosen, then either those factors must be incorporated into the Markov model or the model will not make accurate predictions. The more factors you add into the model, the more complex the problem becomes, and the more likely it is that the complexity will lead to inaccuracy.

				Another problem with the Markov model is that it makes the assumption that the relative probabilities are fairly weighted. If a router has two paths leading out that have equal probabilities (50 percent) and the first packet out takes path B, then the probability that the next packet will take path A is still 50 percent. The probabilities make no specific demand on the path that the next packet takes, even though the population of probabilities will eventually apply. This is referred to as the exponential assumption, that probabilities are exponentially distributed. As an example of how probability can go awry, consider the fact that in the Super Bowl, the NFC team has won the coin toss the last 10 times. Go figure, the odds of that happening (for a fair coin toss) are 1 in 210 or 0.098 percent, even though every single pick by an NFC team still has only a 50/50 chance of being correctly picked

				To use a Markov model that accounts for a path with two parts, you could decouple the two segments into individual states, each obeying the exponential assumption. This partitioning would then lead to a more accurate but more complex solution.

				In theory, you can construct a Markov model to solve any problem. However, when the number of states rises to a certain level, the equations that solve problems in that state space become computationally onerous and the model no longer can be understood on an intuitive basis. To get around these types of problems, other variations of the Markov models are used, as are other model types. Because the topic of network modeling is more an applied mathematics problem than a networking problem, if you want to read more about performance modeling, you may want to read one of the texts on this area of study.

				Server upgrades

				Let's consider a specific example of how you can use a Markov model to determine how to upgrade a specific network server. If you have a system of domain servers and notice that those servers are beginning to reach high levels of utilization, you might conclude that these servers must be upgraded. Here are some items that you will need to know in order to calculate the impact of upgrading one component versus another server component:

				1. Maximum load. The period of highest workload is Monday mornings from 8:30 to 10:00 with a specific measured load level.

				2. Application characteristics. The application characteristics are crucial in setting RAM requirements, disk sector size, network bandwidth, and other parameters.

				3. Disk performance. When you match the application's I/O pattern to the disk configuration, you are able to improve performance dramatically and lower disk requirements.

				4. Server/storage abstraction. By abstracting server functions from storage functions, the system is made more reliable, flexible, and available.

				5. Network performance. The domain servers generate significant replication traffic that impacts the network, so fewer, more powerful servers are preferred. Replication traffic should occur over dedicated network segments. An availability level of 99.95 percent was deemed satisfactory for this particular network service.

				6. ROI calculation. An understanding of the Return on Investment (ROI) of the upgrade/expansion project is performed to justify the expenditure. ROI forces you to examine factors that you might not normally think about, such as system and software life cycles, and so this is an important step that you don't want to ignore.

				An upsizing project based on these results might have the following phases to it:

				• Historical data analysis

				• Capacity planning

				• System selection and design

				• Testing and fine-tuning

				• Pilot phase

				• Production and rollout

				Based on the results of this study, it was determined that the domain servers should be consolidated and their power increased, and that a dedicated connection should be established between domain servers. The question is, what type of server consolidation is a best fit? Server consolidation can:

				• Scale Out. Increase the processor count by adding more systems

				• Scale Up. Increase the processor count by deploying fewer, but more powerful servers 

				The two approaches have very different effects, both on networked server applications and on the network infrastructure. Figure 6.10 shows Scale Out and Scale Up graphically. When you scale out, once the server capacity is taxed, you just add another server to what is called the “server farm.” When you scale up to a large server and you max out your server capacity, you add additional capacity to any particular application or task by dedicating more processors on the large server to the task at hand. Both approaches have their own set of benefits and penalties.

				 Figure 6.10

				Scale out (left) adds more servers, while scale up (right) adds fewer but more powerful servers.

				[image: 431313-fg0610.eps]

				Scale out can be done incrementally and offers more options in terms of vendors and configuration than scale up does. Scale out is usually less expensive because it relies on replicating commodity equipment to achieve additional scale. From a network perspective, scale out maximizes the number of channels and provides better opportunities for applying technologies such as load balancing and failover. The fact that equipment is less expensive and less reliable is offset by the flexibility that scale out offers. Scale out gives you the benefit of working with smaller server units, and achieves availability through redundancy. As a rule, scale out requires more management than scale up does.

				If you have an application that doesn't create a persistent connection to a server (is stateless), such as a Web service, then that server service is a candidate for server scale out. The large server farms that run Internet sites, terminal server farms, and other similar types of applications are often architected using this approach. Applications that aren't CPU and memory limited, but are bottlenecked in network I/O, lend themselves to server scale out.

				Scale up has its own advantages. When you scale up, you have fewer servers, there are fewer points of failure, and you have a simpler network architecture. This also provides fewer servers to manage, maintain, and upgrade. Large SMP system vendors pay more attention to the quality of their components, are able to run enterprise versions of network operating systems, and offer considerably better support to their customers. Scale up places your eggs into one basket, but a more robust and fault-tolerant basket.

				As a general rule, dense SMP systems that support high processor counts and powerful processors don't usually emphasize network I/O. Applications that benefit from enhanced processing but aren't I/O limited benefit from a scaled-up system. For example, a data warehouse application requires the processing of large data sets, but the reported results require modest network connectivity, and so the application is a good candidate for a scale up approach.

				Summary

				Servers play a central role in networks. They provide the services that other systems need. This chapter focused on how to determine capacity and loading in order to have a well-functioning network. Different project methodologies for adding server capacity were described.

				Performance data allows you to derive fundamental network relationships. These relationships help you to determine which network resource is a bottleneck and allow you to figure out how to remove those bottlenecks. Modeling networks using a Markov model was presented.

				In the next chapter, the concept of a network interface is described. Network interfaces, just like servers, are hardware, software, and a fundamental network component.
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