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Preface

When I first proposed writing a book on FX options, I could not help thinking that the final result would produce in the reader that disappointing, yet typically human, feeling caused by the recognition of what the Qoelet expresses in such a condensed way: “Quod factum est, ipsum est, quod faciendum est: nihil sub sole novum”, which in slightly more modern words, and in accordance with the situation, means “Many books on options have been written in the past and this one is just telling the same old stories everybody knows”. This fear was also sharpened by the fact that some very good books have already been written on the subject, so that just trying to be at the same level would be a titanic task. In this respect, I would like to mention here the excellent book by Uwe Wystup [63], which covers many areas, from pricing to regulation issues.

My scepticism about the likely outcome of my efforts was then partially reduced when, by chance, I read an aphorism of that solitary Colombian thinker (still inexplicably not too much known), Nicolas Davila, in his Escolios a un texto implicito, which stated: “Nobody thinks seriously until he cares about being original”. I started to become aware that actually I did not have to search for new areas to analyse, and that I did not necessarily have to be original about the choice of subjects: “simply”, I had to explore them deeply. Two questions naturally arose in my mind: Do I have the knowledge and expertise to undertake such a thorough inquiry? Besides, and probably more importantly, even if we assume that knowledge and expretise just for the sake of argument, why should I do it?

As far as the first question is concerned, I could not conceitedly say that my expertise derived from theoretical studies or technical skills, or from the fact that I was a smart trader capable of understanding the markets on any occasion, simply because none of that was true. Yet, in the year 2000, when I was working as a market maker on the interest derivatives (caps, floors and swaptions) market in Banca IMI, Milan, I was asked by the two heads of the dealing room to start a desk, market making in FX options. I had no experience in such a market, and nobody who could teach me about how it worked, or had ever worked, in the bank. So I began setting up pricing systems and risk management tools by relying only on my intuition and reasoning. Then, I started to make prices and manage the book, and so started to learn. I learnt in the only way living beings learn on earth, that is: by suffering. In the market-making context suffering means basically two things: losing money in its phenomenal aspect (which mainly concerns the financial institution) and feeling depressed in its psychological aspect (which mainly concerns the trader). Ultimately, I can say I achieved my expertise on FX options by suffering, so that I have no fear in claiming that my knowledge and understanding of FX options is not purely  academic or theoretical, in which case I should admit my manifest inferiority to many people. Alternatively said, my knowledge is entirely due to the principle that the eighteenth-century philosopher Vico stated in his Principi di Scienza Nuova, according to which one really and fully knows something only if he has made it.

As far as the second question is concerned, it is relevant that in the year 2006 I stopped being in charge of the FX options desk in Banca IMI. I can safely say that (to use the scholastic philosopher’s categories) if I was, in a more or less unconscious way, the efficient cause of the FX options desk, I was also, again in a more or less unconscious way, the final cause of it (at least in the way I liked it to operate). After two years I had stopped the market-making activity in FX options, but I did not want to forget and lose for ever all that I had assimilated during those six years. Writing a book is likely the best way to firmly fix all the concepts and the know-how that I absorbed from my experience.

As should be clear from all that has been said above, this book is written from a market-maker perspective and is focused mainly on problems related to pricing and risk management. I prefer to start with a list of what this book is not meant to be: it is not a mathematical finance textbook, although some basic options pricing theory will be presented and in general much mathematical formalism will be used; it is not aimed at showing all the possible structures that can be traded in the FX market, especially with a bank’s customers (corporates, speculators, investors, etc.). Hence, I do not deal with aspects referring to the sell side. As a consequence of the previous point, I will not analyse all the possible existing kinds of contracts. Namely, I will not deal with Asian options, basket options and correlation contracts (range mountain options, for example). These options are typically used to build structured products for investors and they are very common in the equity options market. When currencies are considered as an asset class, then the same kind of options can have them as an underlying. Anyway, many books have been written on how to price such contracts, and how to manage their risk and, although they have their main reference to equities, their result can easily be extended to the FX market. In a few words, this book is not a collection of pricing formulae. Besides, I will not enter into details of the interest rates market and I will not examine how to build a discount factor curve by bootstrap procedures: I assume that we are already provided with discount factors for any maturity, even if I am aware that I am neglecting a very momentous subject, at least at the time of writing.

This book is aimed at examining all the relevant issues a market maker has to cope with, both in terms of pricing different kinds of contracts and managing their related risks. Many details, often overlooked in most textbooks or articles, will be examined explicitly. Actually, they represent the link between the theory and practice, and they have a dramatic impact on the profitability of an FX options desk. I will also provide many examples: since in most cases one must resort to numerical procedures, they will be described step-by-step and then worked out in practice.

After this preliminary warning, an overview of the outline of the book is in order. I will start, in the first chapter, with the basic definitions of the FX market: the definition of pairs and the description of the main contracts are presented. I will also illustrate the main conventions operating amongst professional market makers. The second chapter is devoted to a quick review of the main concepts of the option pricing theory and their application within a Black- Scholes (BS hereon) economy, and then a stochastic volatility environment. I introduce some models that could be implemented to price and manage FX options, although in subsequent chapters I will use only one of them as an example of the alternatives to the BS setting.

Managing the volatility risk is the main task of the options trader, so the entire third chapter is devoted to the effects of volatility on the profits and losses arising from the hedging activity. It is in this regard that the volatility smile is first introduced and examined. The fourth chapter extends the analysis to the building of a consistent volatility smile from a few options’ market prices. Here I take the chance to remember that much of the work related to these topics has been conducted together with Fabio Mercurio, an exceptional colleague from the quantitative department in Banca IMI, and a good friend of mine too: it was a great intellectual pleasure to work with him and I thank him for sharing with me his experience and skills.

The fifth chapter dwells on the pricing of plain vanilla options and digital options, with much attention paid to some details and market conventions whose impact on the pricing is significant. In the sixth chapter barrier options are examined; they probably form the vast majority of the exotic options dealing in the FX market, so that they deserve an in-depth analysis and many tools and methods devised by practitioners will be described. By the same token, in the seventh chapter the other less common exotic options are examined.

The eighth chapter illustrates the tools for monitoring the main risks of an FX options book; besides, it shows and comments at some length on the behaviour, in terms of volatility risks, of the plain vanilla hedging instruments and of the main exotic options. The ninth and final chapter offers a quick analysis of the links among three currencies, and sketches an extension of the methods examined in the previous chapters to the contracts depending on many pairs.

One noteworthy feature of most of the methods and approaches described is that they hinge mainly on the BS model, which is still the main working tool in the market, although its flaws have been identified and discussed abundantly during the last 30 years. The reason for the striking inconsistency between the ascertained deficiencies of the BS model, and its widespread use in the FX market, is not due to the fact that market makers are stupidly stubborn (or, at least, they are not completely stupidly stubborn): on the contrary, they are aware of the risks that the model is not able to consider and include them in the pricing by resorting to sophisticated, yet definitely empirical (mis-)uses of the model, sometimes designed in a very clever way, even if from a theoretical perspective the adopted solutions may make academicians turn their noses up. I would like to define this as a “Dionysian” approach to the problems related to FX options: the complexity and even the inconsistency of the real world is accepted and faced with all the means we have at our disposal, although a reasonable rigour is needed in the choice of them. In contrast, I would see an “Apollonian” approach as aimed at the perfection of the formal theory, at the elegance of the derivation of the results and the beauty of the internal consistency of the models: the fascination for all of these is manifestly congenital to human nature (at least the most noble part of it) but, alas, they are not enough to account for all the noxious details of the real world. As usually happens, a combination of the two approaches, an “Apollonian” vision of a “Dionysian” experience, as someone wrote somewhere, is likely to produce the best results. I believe this is what actually occurs in the FX options market (and in other markets too, to be honest). On the other hand, if they say that options trading is an art, then FX options trading is the Oedipus Rex, or the Sistine Chapel if you prefer visual works.

I do not mean to start from the origin of the universe to thank all the people and events that made possible the writing of this book, but I cannot help mentioning my parents, who wanted me to study at LUISS University in Rome; there I took a degree in Financial Markets’ Economics, under the supervision of Professor Emilio Barone, with a thesis on the pricing of American options. Professor Barone, whose bright mind I admire, was the first to encourage my studies in finance and I was honoured to write with him two articles. I would like to thank all the people who worked with me on the FX options desk in Banca IMI, even if for a short  time: Roberto Binello, Marek Fogiel, Giuseppe Levato, Michele Lanza (who succeeded me as the head of the desk and who contributed greatly to its development), Andrej Mariani, Cristina Castagner and Alessandro Gavazzeni. I would also like to mention my colleagues and friends from the interest rate options desk: Luca Dominici, Stefano De Nuccio, Pierluigi D’Orazio and Davide Moresco. In the same bank I had the lucky chance to work in a stimulating environment with an exceptional quantitative department: besides the already mentioned Fabio Mercurio, I had interesting discussions with Francesco Rapisarda, Andrea Bugin, Damiano Brigo, Giulio Sartorelli and Lorenzo Bisesti. I have to acknowledge also the illuminating talks that I had with my colleagues and friends Cristiano Cosso, Francesco Fede, Raffaele Giura and Sergio Grasso.

Paola Mosconi deserves special thanks for proofreading the manuscript and for suggesting many improvements. The suggestions of anonymous reviewers are greatly acknowledged as well.

Although not directly related to the ideas and concepts discussed in this book, still all my friends in Milan (many of whom I have known since I was at the university) had a more or less hidden role: I would like to thank them for all their support and affection.

Finally, I must thank the last two top managers I had as my bosses in Banca IMI: Andrea Crovetto and Gianluca Cugno, whose decisions, unconsciously and unwittingly according to the utmost perfect heterogenesis of ends, ultimately allowed me to write this book.




Notation and Acronyms

• St : spot price of the exchange rate at time t 
• F (t , T ) : forward price of the exchange rate at time t for a contract expiring at time T 
• rd(t ),[image: 002]: domestic spot rate at time t . It may be continuous, simple or annual compounded according to the context
• rf(t),[image: 003]: foreign spot rate at time t . It may be continuous, simple or annual compounded according to the context
• Pd(t, T) =[image: 004]: domestic zero-coupon bond price expiring at time T prevailing at time t 
• Pf(t,T) =[image: 005]: foreign zero-coupon bond price expiring at time T prevailing at time t 
• Dd (t ) =[image: 006]=[image: 007]: domestic deposit (bank account) accruing interest at the domestic rate r d with initial value in domestic currency units Dd (0) = 1
• Df (t ) =[image: 008]=[image: 009]: foreign deposit (bank account) accruing interest at the foreign rate r f with initial value in foreign currency units Df (0) = 1
• Ht : barrier level at time t 
• τ : time between t and T expressed as a year fraction, i.e. τ =[image: 010]
• T1 , T2 , ..., Ti − 1, Ti : set of maturities
• ςt : instantaneous volatility of exchange rate spot process at time t 
• σ ( K , T ), σ ( K ) : implied volatility to plug into the Bl formula for an option struck at K and expiring in T 
• Q : risk-neutral measure
• QT : forward risk-adjusted measure (the domestic zero-coupon P(t , T ) is the numeraire)
• E [x ] : expected value of x under the physical measure
• EQ [x ] : expected value of x under the risk-neutral measure
• E T [x ] : expected value of x under the forward risk-adjusted measure
• N (µ, σ ) : normal distribution with mean µ and variance σ 
• Φ(x ) : cumulative distribution function of a standard Gaussian distribution calculated in x 
• Wt , Z t : Brownian motions under the real-world measure
• [image: 011] , [image: 012]: Brownian motions under the risk-neutral measure
• O(·) : price of a European contingent claim, such as a plain vanilla European option
• Bl( St , t , T , K , P d (t , T ), P f (t , T ), σ, ω) : price of a plain vanilla European option at time t  and expiring at time T, struck at K and evaluated according to the BS model with a forward price of the exchange rate F (t ; T ), an implied volatility equal to σ and with the price of the  domestic zero-coupon bond equal to P d (t , T ). If the option is a call then ω = 1, if it is a put then ω = −1
• C(·) : price of a plain vanilla European call option. The function’s arguments vary according to the context
• P(·) : price of a plain vanilla European put. The function’s arguments vary according to the context
• p : an option’s premium
• Ɛ(·) : price of a generic exotic option
• B(·) : price of a generic European barrier option, such as an up&out call option
• ƊB (·) : price of a generic European double-barrier option
• KOC : price of a knock-out call option
• KOP : price of a knock-out put option
• KIC : price of a knock-in call option
• KIP : price of a knock-in put option
• UOC : price of an up&out call option
• DOC : price of a down&out call option
• UIC : price of an up&in call option
• DIC : price of a down&in call option
• UOP : price of an up&out put option
• DOP : price of a down&out put option
• UIP : price of an up&in put option
• DIP : price of a down&in put option
• OTH : price of a one-touch option whose nominal amount is paid at the hit of the barrier level
• OTE : price of a one-touch option whose nominal amount is paid at the expiry of the contract
• NT : price of a no-touch option
• DKOC : price of a double-knock-out call option
• DKOP : price of a double-knock-out put option
• DKIC : price of a double-knock-in call option
• DKIP : price of a double-knock-in put option
• DNT : price of a double-no-touch option
• DTE : price of a double-touch option, paid at expiry
• Fw(t , T ) : value of a forward contract (outright) at time t , expiring at time T 
• Fsw(t , T ) : value of an FX swap contract at time t , expiring at time T 
• STDL : ATM straddle, i.e. a trading strategy (structure) involving the buying of a call and of a put struck at the same ATM level
• RR : risk reversal, i.e. a trading strategy (structure) involving the buying of a call against the selling of a put
• VWB : Vega-weighted butterfly, i.e. a trading strategy (structure) involving the buying of a strangle against the selling of an ATM straddle in such an amount as to make the total (BS model) Vega position nil
• stdl : ATM straddle price, in terms of BS implied volatility
• RR : risk reversal, i.e. a trading strategy (structure) involving the buying of a call against the selling of a put
• rr : risk reversal price, in terms of BS implied volatility
• VWB : Vega-weighted butterfly, i.e. a trading strategy (structure) involving the buying of a strangle against the selling of an ATM straddle in such an amount as to make the total (BS model) Vega position nil
• vwb : Vega-weighted butterfly price, in terms BS of implied volatility
• ATM : at-the-money level of the strike price of an option
• OTM : out-of-the-money level of the strike price of an option
• ITM : in-the-money level of the strike price of an option
• SDE : stochastic differential equation
• PDE : partial differential equation
• BS : Black-Scholes
• SV : stochastic volatility
• UV : uncertain volatility
• MIX : lognormal mixture





1

The FX Market

The foreign exchange (FX) market is an OTC market where each participant trades directly with the others; there is no exchange, though we can identify some major geographic trading centres: London (the primary centre, where the primary banks’ market makers are located; its importance has increased in the last few years), New York, Tokyo, Singapore and Sydney. This means that trading activity is carried out 24 hours a day, though in practice during London working hours the market has the most liquidity. Needless to say, the FX market experiences fierce competition amongst participants.

Most trades are currently carried out via interbank platforms (EBS is the most important). Anyway, the major market makers offer Internet platforms to their clients for quick trades and for leaving orders. The Reuters Dealing, which was the main platform in the past, has lately lost much of its pre-eminence. Basically, it is a chat system connecting the participants, capable of recognizing the deal implicit in typical conversations between two professional operators, and transforming it into an automatic confirmation for the transaction. Nowadays, the Reuters Dealing is used mainly by option traders.




1.1 FX RATES AND SPOT CONTRACTS 

Definition 1.1.1. FX rate. An exchange (FX) rate is the price of one currency in terms of another currency; the two currencies make a pair. The pair is denoted by a label, made up of two tags of three characters each: each currency is identified by its tag. The first tag in the exchange rate is the base currency, the second is the numeraire currency. So the FX is the price of the base currency in terms of the numeraire currency.

 

The numeraire currency can be considered as domestic: actually, in what follows we will refer to it as domestic. The base currency can be regarded as an asset whose trading generates profits and/or losses in terms of the domestic currency. In what follows the base currency will also be referred to as the foreign currency. We would like to stress that these denominations are not related to the perspective of the trader, who can actually be located anywhere and for whom the foreign currency may turn out to be indeed the domestic currency, from a “civil” point of view.

 

Example 1.1.1. The euro/US dollar FX rate is identified by the label EURUSD and it denotes how many US dollars are worth 1 euro. The domestic (numeraire) currency is the US dollar and the foreign (base) currency is the euro.

 

For each currency specific market conventions apply, and two of them are also important for the FX market: the settlement date and the day count. The settlement date (or delivery date) is the number of business days needed to actually transfer funds (if any are due) amongst interbank market participants after the closing of a deal; for most currencies it is two business days, but there are exceptions. In the market lore it is commonly referred to as “T + number of days”, where “T” stands for the time (day) when the deal is closed. The day count is the  time factor used to calculate accrued interest between two dates in the money market of the relevant currency; it usually applies for simple compounding. A list of some currencies and their related settlement date and day count conventions is given in Table 1.1.

Table 1.1 Settlement date and day count conventions for some major currencies

[image: 013]

The settlement date and the day count for each currency are useful to price forward (outright) and FX swap contracts. There is a settlement date specific for the spot contract though, and it is the number of days, after the trade date, when the two amounts denominated in the currencies involved are exchanged between the counterparties. The rules to determine the settlement date for a spot contract are a little more complex, since they need the intersection of three calendars: we list them below when we define the spot contract.

The FX rates are expressed as five-digit numbers, with no regard for the number of decimals; the fifth digit is named pip: 100 pips make a figure. As an example, the major FX rates for spot contracts (we will define spot below) as of 29 October 2007 are shown in Figure 1.1. Regular trades are for fixed amounts of the base currency. For example, if a trader asks for a spot price via the Reuters Dealing in the EURUSD, and they write“I Buy (or Sell) 2 mios EURUSD at 1.3597”



this means that the trader buys (or sells) 2 million euros against 2 719 400 US dollars (1.3597 × 2 mios). Clearly, should one need exactly 1 million US dollars, it has to be specified as follows:“I Buy 1 mio USD against EUR at 1.3597”





This means that the trader buys 1 million US dollars against 735 456 euros (1/1.3597 × 1 million). The two contracts closed in the examples are spot and the employed FX rate is also said to be spot. We define the spot contract as follows:

 

Definition 1.1.2. Spot. Two counterparties entering into a spot contract agree to exchange the base currency amounts against an amount of the numeraire currency equal to the spot FX rate. The settlement date is usually two business days after the transaction date (but it depends on the currency).

Figure 1.1 FX rates as of 29 October 2007 (Reproduced with permission)

Source: Bloomberg.

[image: 014]

As mentioned above, the settlement date for a spot contract is set according to specific rules involving three calendars (collapsing to two if the US dollar is one of the currencies of the traded pair). Here they are:1. As a general rule, the settlement date for a spot contract is two business days after the trade date (T + 2), if this date is a business day for each of the two currencies of the pair. If this is not the case, the date is shifted forward until the condition is matched. An exception to this rule is the USDCAD (i.e., the US dollar/Canadian dollar pair), for which the settlement date is one business day after the trade date.
2. The settlement date set as in (1) must also be a business day in the USA, otherwise the date is shifted one day forward and the condition that the new date is a business day for each currency has to be checked again.
3. When the date after the trade date is a holiday in the USA (except for weekends), but not in other countries, then this date is counted as a business day to determine the settlement date. In this case it happens that for two days spot contracts will be settled on the same date, and in the market lore we say that the “settlement date is repeated”.


We provide an example to clarify how to actually apply these rules.

 

Example 1.1.2. Assume we are on Tuesday 20 November 2007; from market calendars it can be seen that Thursday 22 November is a holiday in the USA and Friday 23 November is a holiday in Japan. Consider three currencies: the US dollar, the euro and the yen. We consider the following possible trades with the corresponding settlement dates: • On 20 November we close a spot contract in EURUSD. The settlement date will be  23 November: two business days would imply 22 November, but this is a holiday in the USA, so the settlement date is shifted forward one day, a “good” business day for both currencies. 
• On 21 November we close a spot contract in EURUSD. The settlement date will be  23 November (repeated): the holiday in the USA is one day after the trade and is not a weekend, so it is taken as a business day. 
• On 20 November we close a spot contract in USDJPY. The settlement date will be  26 November: 22 November is a holiday in the USA, so the settlement date is shifted forward one day, but 23 November is a holiday in Japan, so the settlement date is shifted forward to the first available business day, which is Monday 26 November, after the weekend. The same calculation also applies if we traded in EURJPY. 
• On 21 November we close a spot contract in USDJPY. The settlement date will be  26 November: 22 November is a holiday in the USA but it is taken as a business day; anyway, 23 November is a holiday in Japan but it is not counted as a business day, so the settlement date is shifted forward to the first available business day, which is Monday 26  November, after the weekend. 
• On 22 November we close a spot contract in EURUSD; it is a US holiday but we can trade in other countries. The settlement date will be 26 November: 23 November is a “good” business day for both currencies, then there is the weekend, and Monday 26 November is the second business day. 
• On 22 November we close a spot contract in EURJPY. The settlement date will be 27  November: 23 November is a good business day for the euro, but not for the yen, so we skip after the weekend, and Tuesday 27 November is the second business day, “good” for both currencies and the US dollar as well. 



The rules for the calculation of the settlement date are probably the only real market-related technical issue a trader has to know, then they are ready to take part in the fastest game in town.




1.2 OUTRIGHT AND FX SWAP CONTRACTS 

Outright (or forward) contracts are a simple extension of a spot contract, as is manifest from the following definition:

 

Definition 1.2.1. Outright. Two counterparties entering into an outright (or forward) contract agree to exchange, at a given expiry (settlement) date, the base currency amounts against an amount of the numeraire currency equal to the (forward) exchange rate.

 

It is quite easy to see that the outright contract differs from a spot contract only for the settlement date, which is shifted forward in time up to the expiry date in the future. That, however, also implies an FX rate, which the transaction is executed at, different from the spot rate and the problem of its calculation arises. Actually, the calculation of the forward FX price can easily be tackled by means of the following arbitrage strategy:

 

Strategy 1.2.1. Assume that we have an XXXYYY pair and that the spot FX rate is St at time t , whereas F (t , T ) is the forward FX rate for the expiry at time T . At time t , we operate the following: • Borrow one unit of foreign currency XXX. 
• Change one unit of XXX (foreign) against YYY and receive St YYY (domestic) units. 
• Invest St YYY in a domestic deposit. 
• Close an outright contract to change the terminal amount back into XXX, so that we receive  [image: 015]
• Pay back the loan of one YYY plus interest. To avoid arbitrage, the final amount [image: 016]XXX must be equal to the value of the loan of 1 XXX at time T , which can be calculated by adding interest to the notional amount.





This strategy can be translated into formal terms as:[image: 017]

which means that we invest the St YYY units in a deposit traded in the domestic money market, yielding at the end[image: 018](Pd(t,T) is the price of the domestic pure zero-coupon bond), and change then back to XXX currency at the F(t,T) forward rate. This has to be equal to 1 XXX units plus the interest prevailing in the foreign money market ( P f (t , T ) is the price of the foreign pure zero-coupon bond). Hence:(1.1)

[image: 019]

In Chapter 2 we will see an alternative, and more thorough, derivation for the fair price of a forward contract. The FX rate in equation (1.1) is that which makes the value of the outright contract nil at inception, as it has to be since no cash flow from either party is due when the deal is closed.

A strategy can also be operated by borrowing money in the domestic currency, investing it in a foreign deposit and converting it back into domestic currency units by an outright contract. It is easy to see that we come up with the same value of the fair forward price as in equation (1.1), which prevents any arbitrage opportunity.

The careful reader has surely noticed that in Strategy 1.2.1 the prices of pure discount bonds have been used to calculate the present and future value of a given currency amount. Actually, the market practice is to use money market conventions to price the deposits and hence to determine the forward FX rates. The use of pure discount bonds (also known as discount factors) is perfectly consistent with the market methodology as long as they are derived by a  bootstrap procedure from the available market prices of the deposits.

 

Remark 1.2.1. Strategy 1.2.1 is model-independent and operating it carries the forward price F(t,T) at a level consistent with the other market variables (i.e., the FX spot rate and the domestic and foreign interest rates), so any arbitrage opportunity is cleared out. It should be stressed that two main assumptions underpin the strategy: (i) counterparties are not subject to default risk, and (ii) there is no limit to borrowing in the money markets.

Assume that the first assumption does not hold. When we invest the amount denominated in YYY in a deposit yielding domestic interest, we are no longer sure of receiving the amount  [image: 020]at time T to convert back into XXX units since the counterparty, to whom we lent money, may go bankrupt. We could expect to recover a fraction of the notional amount of the deposit, but the strategy is no longer effective anyway. In this case we may have a forward price  F(t,T) trading in the market which is different from that determined univocally by Strategy 1.2.1, and we cannot operate the latter to exploit an arbitrage opportunity, since we would bear a risk of default that is not considered at all.

Assume now that the second assumption does not hold. We could observe a forward price in the market higher than that determined by Strategy 1.2.1, but we are not able to exploit the arbitrage opportunity just because there is a limited amount of lending in the market, so we cannot borrow the amount of one unit of XXX currency to start the strategy.

In reality, both situations can be experienced in the market and actually the risk of default can also strongly affect the amount of money that market operators are willing to lend amongst themselves. Starting from July 2007, a financial environment with a perceived high default risk related to financial institutions and a severe shrinking of the available liquidity has been very common, so that arbitrage opportunities can no longer be fully cleared out by operating the replication Strategy 1.2.1.

 

In the market, outright contracts are quoted in forward points:Fpts(t, T) = F(t, T) − St





Forward points are positive or negative, depending on the interest rate differentials, and they are also a function of the level of the spot rate. They are (algebraically) added to the spot rate when an outright is traded, so as to get the fair forward FX rate. In Figure 1.2, forward points at 6 November 2007 for a three-month delivery are shown - they are the same points used in FX swap contracts, which will be defined below. The base currency is the euro and forward points are referred to each (numeraire) currency listed against the euro: in the column “Arb. rate” the forward implied no-arbitrage rate for the euro is provided and it is derived from the formula to calculate the forward FX rate so as to match the market level of the latter.

Figure 1.2 Forward points at 6 November 2007 (Reproduced with permission)

Source: Bloomberg.

[image: 021]

For the sake of clarity and to show how forward FX rates are actually calculated, we provide the following example:

 

Example 1.2.1. Assume we have the market data as in Figure 1.2. We want to check how the forward points for the EURUSD are calculated. We use formula (1.1) to calculate the forward FX rate, but we apply the money market conventions for capitalization and for discounting (i.e., simple compounding): [image: 022]

where 3 M stands for “three-month expiry”. Hence, the FX swap points are calculated straightforwardly as: Fpts(0,3 M ) = F (0, 3 M ) − S0 = 1.45378 − 1.4522 = 0.00158



so that both the forward FX rate and forward points are verified by what is shown in the figure.

The FX swap is a very popular contract involving a spot and an outright contract:

 

Definition 1.2.2. FX swap. Two counterparties entering into an FX swap contract agree to close a spot deal for a given amount of the base currency, and at the same time they agree to reverse the trade by an outright (forward) with the same base currency amount at a given expiry.

From the definition of an FX swap, the valuation is straightforward: it is the sum of a spot contract and the value of a forward contract. So, we just need the spot rate and the forward points, which are denominated (FX) swap points when referred to such a contract. A typical request by a trader on the Reuters Dealing (which is still one of the main platforms where FX swap contracts can be traded) might be:“I buy and sell back 1 mio EUR against USD in 3 months”





This means that the trader enters into a spot contract buying 1 million euros against US dollars, and then sells them back at the expiry of the FX swap in three months’ time. We use market data provided in the Bloomberg screen shown in Figure 1.2 to see, in practice, how the FX swap contract implied by the request above is quoted and traded. Besides, in the example the difference between a par (alternatively an even) FX swap and a non-par (alternatively an  uneven or split or change) FX swap is stressed.

 

Example 1.2.2. We use the same market data as in Example 1.2.1 and in Figure 1.2. The current value of a 3M FX swap “buy and sell back 1 mio EUR against USD” has to be split  into its domestic (US dollar in our case) and foreign (euro) components: [image: 023]



In the two formulae above we just calculated the present value for all the cash flows provided by the FX swap contract, separately for each of the two currencies involved. An outflow of S0  US dollars against 1 euro at inception and an inflow of F (0,3 M ) on the delivery date against 1 euro again. The two final values are expressed for each leg of the corresponding currency. This is a par FX swap contract, since the notional amount (1 million euros) exchanged at inception via the spot transaction, and the final amount exchanged back at expiry, via the outright transaction, are the same. It is manifest that a par FX swap engenders a position different from  0 in both currencies. Professional market participants prefer to have nil currency exposure (we will see why later), so they prefer to trade non-par FX swaps. In this trade the amount of the base currency exchanged at the forward expiry is modified so as to generate a zero currency exposure. It is easy to see that the amount to be exchanged (so as to have a par FX swap) has to be compounded at the numeraire (foreign) currency interest rate. Hence, if we set the amount of euros to be exchanged on the delivery date equal to (1 + 4.4435%[image: 024]) = 1.0114  instead of 1, we get: [image: 025]

which clearly shows no residual exposure to the FX risk.

The quoted price of an FX swap contract will be simply the forward points. They are related to the FX spot level, to be specified when closing the contract. When uneven FX swaps are traded, the domestic interest rate has to be agreed upon as well.

 

After this short analysis, we are able to sum up the specific features of outright and FX swap contracts:1. An outright contract is exposed to an FX rate risk for the full nominal amount. It also has exposure to interest rates, although this is very small compared to the FX risk.
2. In an FX swap contract the FX rate risk of the spot transaction is almost entirely offset by the outright transaction. In the case of non-par contracts, the FX risk is completely offset, and only a residual exposure to the interest rate risk is left.
3. For the reasons above, outright contracts are mainly traded by speculators and hedgers in the FX market.
4. The FX swap is rather a treasury product, traded in the interbank market to move funds from one currency to another, without any FX risk (for par contracts), and to hedge or get exposure to the interest rate risks in two different currencies. Nonetheless, it is used by options traders to hedge exposure to the domestic and foreign interest rates.


Remark 1.2.2. If we assume that we are working in a world where the occurrence of default of a counterparty is removed, then by standard arbitrage arguments we must impose that the forward points of an outright contract are exactly the same as the swap points of an FX swap contract. Things change if we introduce the chance that market operators can go bankrupt, so that the mechanics of the two contracts imply great differences in their pricing.

We have seen before that the arbitrage argument of the replica Strategy 1.2.1 can no longer be applied when default is taken into account, so that the actual traded forward price can differ substantially from the theoretical arbitrage price, since a trader can suffer a big loss if the counterparty from whom they bought the deposit defaults. Now, we would like to examine whether removing the no-default assumption impacts in the same way both the outright and the FX swap contract.

To this end, consider the case when the FX swap points for a given expiry imply a tradable forwardprice F´(t,T)greater than the theoretical price F(t,T)obtained by formula (1.1). To exploit the possible arbitrage, we could borrow one million units of foreign currency, say the euro, and close an FX swap contract “sell and buy back 1 mio EUR, uneven amount”, similar to that in Example 1.2.2, but with a reverse sign. Basically, we are operating Strategy 1.2.1 with an FX swap, instead of an outright contract. Assume also that, after the deal is struck, our counterparty in the FX swap deal might be subject to default, in which case they will not perform their contractual obligations, so we will not receive back the one million euros times  (1+r fτ), against F´(t,T) million US dollars times (1+r fτ) paid by us. In such an event, we will not have the amount of money we need to pay back our loan in euros, whose value at the end of the contract is equal to (1 + r f τ ) million euros. Nevertheless, we still have the initial exchanged amount in USD, equal to St (the FX spot rate at inception of the contract), and we could use this to pay back our debt. In this case, assuming we have kept the amount in cash, we can convert it back into euros at the terminal FX spot rate ST , which might be lower or higher than St , so that we can end up with a final amount of euros greater or smaller than one million (the euro amount will be St / ST ). The terminal economic result could be a profit or a loss, depending on the level of the FX spot rate ST and on how much we have to pay for the interest on the loan in euros. Nonetheless, we may reasonably expect not to lose as much as one million euros, and the total loss (or even profit) is a function of the volatility of the exchange rate and the time to maturity of the contract.

Assume now that we operated Strategy 1.2.1 with an outright contract. We borrow one million euros, convert it into dollars at St , buy a deposit in dollars, and convert the terminal amount by selling an outright at the rate F´(t , T ). If our counterparty defaults, they will not pay back the amount of money we lent to them (supposing there is no fraction of the notional amount recovered) and we will end up with no money to sell via the outright, so as to convert it into euros and pay back our loan. In this case we are fully exposed to the original amount  of one million euros and we will suffer a loss for sure equal to this amount, plus the interest on the loan.

From the two cases we have described, we can see that the FX swap can be considered as a collateralized loan. The example shows a situation just as if we lent an amount denominated in euros, collateralized by an amount denominated in dollars. Clearly, the collateral is not risk-free, since its value in euros is dependent on the level of the exchange rate, but it is a guarantee that will grant a presumably high recovery rate of the amount lent on the occurrence of default of the counterparty, and we could possibly end up with a profit. In the other case we examined, that is the outright contract, we see that we have no collateral at all as a guarantee against the default of the counterparty, so we are fully exposed to the risk of losing the amount of dollars we lent to them. This loss can be mitigated if we assume that we can recover a fraction of the notional amount we lent, but the recovery will very likely be much smaller than the fraction of notional we can recover via the collateral.

There are two conclusions we can draw: 1. The forward rate F(t,T) determined as in equation (1.1) does not identify the unique arbitrage-free price of an outright contract, if we include the chance of default of the counterparty. 
2. The forward price implied by an FX swap contract can be different from that of an outright contract when default of the counterparty is considered, because Strategy 1.2.1 operated with an FX swap is less risky than the same strategy operated with an outright contract. 





1.3 FX OPTION CONTRACTS 

FX options are no different from the usual options written on any other asset, apart from some slight distinctions in the jargon. The definition of a plain vanilla European option contract is the following:

 

Definition 1.3.1. European plain vanilla FX option contract. Assume we have the pair XXXYYY. Two counterparties entering into a plain vanilla FX option contract agree on the following, according to the type of option traded: • Type XXX call YYY put: the buyer has the right to enter at expiry into a spot contract to buy (sell) the notional amount of the XXX (YYY) currency, at the strike FX rate level K . 
• Type XXX put YYY call: the buyer has the right to enter at expiry into a spot contract to sell (buy) the notional amount of the XXX (YYY) currency, at the strike FX rate level K . 



The spot contract at expiry is settled on the settlement date determined according to the rules for spot transactions. The notional amount N in the XXX base currency is exchanged against N × K units of the numeraire currency. The buyer pays a premium at inception of the contract for their right.

 

The following chapters are devoted to the fair calculation of the premium of an option, the analysis of the risk exposures engendered by trading it, and the possible approaches to hedging these exposures. Clearly, this will be done not only for plain vanilla options, but also for other kinds of options, usually denoted as exotics. A very rough taxonomy for FX options is presented in Table 1.2; this should be considered just as a guide to how the analysis will be organized in what follows. Besides, it is worth noticing that the difference between  first-generation and second-generation exotics is due to the time sequence of their appearance in the market rather than any reference to their complexity.

Table 1.2 Taxonomy of FX options

[image: 026]

It is worth describing in more detail the option contract and the market conventions and practices relating to it.


1.3.1 Exercise 

The exercise normally has to be announced by the option’s buyer at 10:00 AM New York time; options are denominated NY Cut in this case, and they are the standard options traded in the interbank market. The counterparties may also agree on a different time; such as 3:00 PM Tokyo time; in this case we have the Tokyo Cut. The exercise is considered automatic for a given percentage of in-the-moneyness of the options at expiry (e.g., 1.5%), according to the ISDA master agreement signed between two professional counterparties before starting any trading activity between them. In other cases the exercise has to be announced explicitly, although it is market fairness to consider exercised (or abandoned) options manifestly in-the-money (or out-of-the money), even without any call from the option’s buyer.


1.3.2 Expiry date and settlement date 

The expiry date for an option can be any date when at least one marketplace is open, then the settlement date is set according to the settlement rules used for spot contacts. Some market technicalities concern the determination of the expiry and settlement (delivery) dates for what we call canonic or standard dates. In more detail, in the interbank market daily quotes are easily available for standard expiries expressed in terms of time units from the trade date, i.e., overnight, weeks, months and years.

Day periods. Overnight is the simplest case to analyse, since it indicates an expiry for the next available business day, so:1. In normal conditions it is the day after the trade date or after three days in case the trade date is a Friday (due to the weekend).
2. The expiry is shifted forward if the day after the trade date is not a business day all around the world (e.g., 25 December). On the contrary if at least one marketplace is open, then the expiry date is a good one.
3. Once the expiry date is determined, the settlement date is calculated with the rules applied for the spot contract.


If the standard expiry is in terms of number of days (e.g., three days), the same procedure as for overnight applies, with expiry date initially and tentatively set as the number of days specified after the trade date.

Week periods. This case is not very different from the day period one:1. The expiry is set on the same week day (e.g., Tuesday) as the trade date, for the given number of weeks ahead in the future (e.g., 2 for two weeks).
2. At least one marketplace must be open, otherwise the expiry is shifted forward by one day and the open market condition checked again.
3. Once the expiry is determined, the usual rules for the spot contract settlement date apply.


Month and year periods. In these cases a slightly different rule applies, since the spot settlement date corresponding to the trade date is the driver. More specifically:1. One moves ahead in the future by the given number of periods (e.g., 6 for six months), then the same day of the month as the spot settlement date (corresponding to the trade date, in the current month) is taken as the settlement date of the option (e.g., again for six-month expiry, if the trade date is the 13th of the current month and the 15th is the settlement date for a corresponding spot contract, then the 15th day of the sixth month in the future will be the option settlement date). If the settlement date of the future month is not a valid date for the pair involved, then the date is shifted forward until a good date is achieved.
2. If the settlement determined in (1) happens to fall in the month after the one corresponding to the number of periods considered (e.g., the six-month expiry yields a settlement actually falling in the seventh month ahead), then the end-of-month rule applies. From the first settlement date (identified from the spot settlement of the trade date), the date is shifted backward until a valid (for the contract’s pair) settlement date is reached.
3. The expiry can now be calculated by applying backward from the settlement date the rules for a spot contract.
4. The year period is treated with same rules simply by considering the fact that one year equals 12 months.


 

We provide an example to clarify the rules listed above.

 

Example 1.3.1. Assume we trade an option EUR call USD put with expiry in one month. We consider the following cases: • The trade date is 19 October 2007. From the market calendars the spot settlement date for such a trade date can be calculated and set on 23 October so that the settlement of the option has to be set on 23 November (i.e., the same day one month ahead). This date can be a settlement date for the EURUSD pair and the corresponding expiry date is 21  November, since the 22nd is a holiday in the USA but is counted as a business day according to the spot date rules. Actually, we know from Example 1.1.2 that the spot trades dealt on  20 November also imply a settlement date on the 22nd. When the expiry date is calculated  working backward from the settlement, the first possible trade date encountered is taken (i.e., the 21st in this case). 
• The trade date is 19 October 2007. From the market calendars the spot settlement date for such a trade date is 24 October, thus the option’s settlement date is 24 November, which is a Saturday, so it is shifted forward to the first available business day for both currencies: Monday 26 November. Working backward to calculate the expiry date, we would take 22  November but this is a US holiday, so we move one more day backward and set the expiry on the 21st, which agrees with spot settlement rules. 



After analysing the rules for standard expiries, for the sake of completeness we just remark that if a specific date is agreed upon for the expiry (e.g., 7 January 2008), then the standard spot settlement rules apply to calculate the option’s settlement date (9 January, if the contract’s pair is EURUSD).


1.3.3 Premium 

The option’s premium is paid on the spot settlement date corresponding to the trade date. It can be paid in one of either currencies of the underlying pair and it can be expressed in four different ways, which we list below:1. Numeraire currency units ( pnumccy). This is the standard way in which, for some pairs, premiums are expressed for plain vanilla options in the interbank market after the closing of the deal. It is worth noticing also that this is the natural premium one calculates by a pricing formula. The actual premium to pay is calculated by multiplying the currency units times the notional amount (in base currency units): N × pnumccy .
2. Numeraire currency percentage ( pnumeccy% ). This is the standard way in which premiums are expressed and quoted for exotic (one-touch, double-no-touch, etc.) options in the interbank market, when the payout is a numeraire currency amount. It can be calculated by dividing the premium in numeraire currency units by the strike: pnumccy% =[image: 027]× 100. The actual premium to pay is equal to the notional amount in numeraire currency units ( N × K ) times the numeraire currency percentage premium: Nnumccy ×[image: 028].
3. Base currency units ( pbaseccy). This way of quoting may be useful when the numeraire currency amount is fixed for all the options entering into a given strategy (e.g., in an EUR call USD put spread). It can be calculated by dividing the premium in numeraire currency units by the spot FX rate and then by the strike: pbaseccy =[image: 029]. The actual premium to pay is equal to the notional amount, expressed in numeraire currency (that is: N × K ), times the base currency units premium: Nnumccy × pbaseccy .
4. Base currency percentage ( pbaseccy%). This is the standard way in which premiums are expressed and quoted for exotic (barrier) options, and for some pairs also for plain vanilla options, in the interbank market. It can be calculated by dividing the premium in numeraire currency units by the spot FX rate: pbaseccy% =[image: 030]× 100. The actual premium to pay is equal to the notional amount times the base currency percentage premium: N ×[image: 031].


In Table 1.3 we report some market conventions for option premiums; usually, the numeraire currency premium is multiplied by a factor such that it is expressed in terms of pips (see above for the definition of the latter), or as a percentage of either notional rounded to the nearest quarter of 0.01%. We will see later that the way markets quote premiums has an impact on the building of the volatility matrix, so that it is not just a curiosity one may lightly neglect.

Table 1.3 Market conventions for option premiums for some pairs



	Pair	Pnumccy 	Pbaseccy %
	EURUSD	USD pips	
	EURCAD	CAD pips
	EURCHF		EUR %
	EURGBP	GBP pips	
	EURJPY		EUR %
	EURZAR	EUR %
	GBPCHF	GBP %
	GBPJPY	GBP %
	GBPUSD	USD pips	
	USDCAD		USD %
	USDCHF	USD %
	USDJPY	USD %
	USDZAR	USD %


Example 1.3.2. Assume we want to buy 2 000 000 EUR call USD put struck at 1.3500, with a reference EURUSD spot rate equal to 1.2800. The notional amount in USD is 2 000 000 × 1.3500 = 2 700 000. The premium can be quoted in one of the four ways we have examined and we have that:

1. If the premium is in numeraire currency units and it isPUSD = 0.0075 US dollars per one EUR unit of option, we will pay 2 000 000 × 0.0075 = 15 000 USD. 
2. If the quotation is expressed as a numeraire currency percentage, the premium is PUSD% =[image: 032]= 0.5550% (rounded to the nearest quarter of 0.01%) for one USD unit of option dollar, and we pay 0.5550 ×[image: 033]USD (the small difference of 15 000  is due to rounding conventions). 
3. If the quotation is in base currency units, the premium is PEUR =[image: 034]= 0.00435    EUR per one USD unit of option dollar, and we pay.[image: 035]= 11 750 EUR. 
4. Finally, if the premium is expressed as a base currency percentage, it is PEUR% =[image: 036]× 100 = 0.5875% of the EUR notional (rounded to the nearest quarter of 0.01 %) and we pay    0.5875[image: 037]= 11 750 EUR. 

1.3.4 Market standard practices for quoting options 

FX options can be dealt for any expiry and also for any level of strike price. Amongst professionals, options are quoted according to standards: some of them are actually rather clever, and make FX options one of the most efficient OTC derivatives markets.

Let us start with plain vanilla options. Firstly, options are usually quoted for standard dates, although it is possible to ask a market maker for an expiry occurring on any possible date. Secondly, quotations are not in terms of (any of the four above) premiums but in terms of implied volatilities, that is to say, in terms of the volatility parameter to plug into the BS model (given the values of all the other parameters and the level of the FX spot rate, retrievable from the market). Once the deal is closed, the counterparties may agree to actually express the premium in any of the four ways listed above, although the standard way is in numeraire  currency pips ( pnumccy ). Thirdly, strike prices are quoted in terms of the Delta1 of the option: this means that before closing the deal, the strike level is not determined yet in absolute terms. Once the deal is closed, given the level of the FX spot rate and the implied volatility agreed upon (the interest rate levels will be taken from the money market), the strike will be set at a level yielding the BS Delta the two counterparties were dealing. This way of quoting is smart: it allows us not to worry about small movements of the underlying market during the bargaining process, because the absolute strike level will be defined only after the agreement on the price (in terms of implied volatility), so that the trader is sure to trade an option with given features in terms of exposures both to the underlying pair and to the implied volatility.2

If not otherwise specified when asking for a quote, the option is considered to be traded Delta-hedged (“with Delta exchange”), i.e., a spot trade offsetting the BS Delta exposure is closed along the option’s transaction. Usually, for strikes very far OTM with a very tiny premium ( pnumccy ) and a negligible Delta exposure, options are quoted at an absolute level of premium and with no Delta hedge (“without Delta exchange”).

For popular exotic options3 some other conventions are in force for ordinary market activity. For barrier options, contrary to plain vanilla options, when a trader asks for a price, strikes and barrier levels are asked for in absolute terms, by specifying the reference spot FX rate, and also an ATM implied volatility level. The quote will be assumed to be valid for those levels, and it will be provided in terms of the premium as a percentage of the base currency notional. Also, for barrier options it is assumed that the deal includes a Delta-hedge transaction and in most cases a Vega-hedge4 transaction (by dealing a spot contract and an ATM straddle5 to offset the related exposures). The amounts dealt in those transactions are calculated according to the BS model, using as inputs the reference FX spot and implied volatility levels.

Other very common exotics are the bet options,6 i.e., one-touch, no-touch, double-no-touch, double-touch, digitals. They are quoted as a percentage of the notional amount (which is the payout of the bet, usually in base currency), given reference levels of the FX spot and implied volatility. After the agreement on the price, the deal will include the Delta-hedge and Vega-hedge transactions (to be defined according to the BS model).

In the following example we provide some customary conversations between professional traders. We just mean to clarify the conventions we have described above, and are aware that we are anticipating many of the issues that will be investigated in detail in the following chapters. So, the reader should not be worried if they feel somewhat lost.

 

Example 1.3.3. On the Reuters Dealing, which we have already mentioned to be the main trading platform for FX, options are traded via conversations like those below: • Plain vanilla > Please, 3M EUR call USD put 25D, in 30. 
> 7.5 7.7 
> 7.7 pls, spot ref 1.4575. The first trader asks for a price for EUR call USD put expiring in three months with a strike level not yet defined in absolute terms, but referred to in terms of 25% Delta EUR call, with a notional amount of 30 million euros. The second trader quotes a bid/ask in terms of BS implied volatility and the first trader is buying the options paying 7.7% and providing also the FX spot level (set reasonably near to the market level), which will be used to calculate the strike level corresponding to the 25% EUR call, the premium (in USD pips) and will also be the level of the Delta-hedge transaction. In fact, since there was no mention of it in the request for the quote, it is assumed to be included in the deal.




• Barrier option > Please, 6m EUR put USD call 1.4500 RKO 1.3800, spot ref 1.4576, in 50 with VH. 
> 0.20 0.25 
> 0.25 pls. The first trader asks for a quote in an RKO barrier EUR put USD call expiring in six months. The strike (1.4500) and the barrier (1.3800) are specified right from the start of the request. The notional amount is 50 million euros and the asked quote is for a trade including the Vega hedge (“with VH”), besides the Delta hedge. The second trader’s quote is in absolute premiums, in terms of a percentage of the notional amount, so that when the first trade accepts to buy by applying the offer, they will pay 0.25% of 50 million euros.




• Double-no-touch > Please, 1Y EURUSD DNT 1.3500 1.4500, in 1 mio EUR with VH. 
> 20 25 
> 20 pls. The first trader asks for a quote in a double-no-touch expiring in 1Y on the EURUSD pair, with lower range level at 1.3500 and upper range level at 1.4500. The payout is in  1 million euros and the trade will include the Vega hedge. The second trader’s quote is in absolute premium, expressed as a percentage of the payout, so that the first trader will cash in 200 000 euros since they are selling the options by applying the bid (20%).










1.4 MAIN TRADED FX OPTION STRUCTURES 

Although the FX option market is very liquid for options with any kind of strike level and expiry, nonetheless it is possible to identify some structures that are very popular amongst professional market participants. We will understand why later on, when we examine how to manage the volatility risk of an options portfolio, and we will also study the features and behaviour of their risk exposure.

The first structure is the ATM straddle (STDL hereafter): that is, the sum of a (base currency) call and a (base currency) put struck at the at-the-money level. The quotes for this structure on standard expiries are the most liquid ones.

One has to pay some attention when defining the exact strike the market is referring to in trading ATM options, since several definitions exist. The first kind of ATM is the at-the-money spot: in this case, the strike of the option is set equal to the FX spot rate; the expiry is immaterial in determining the strike. The second kind is the ATM forward: the strike is set equal to the forward price of the underlying pair for the same expiry of the option; in this case, we have different ATM strikes for each maturity (recall formula (1.1)). The third kind is the 0 Delta  STDL: the strike is chosen so that, given the expiry, a put and a call have the same Delta but with different signs. This implies that no Delta hedge is needed when trading the straddle. We will see later how to retrieve this strike. The ATM implied volatility quoted in the FX option  market is the one referring to a 0 Delta STDL strike, and hence it is the implied volatility to plug into the BS formula when trading an ATM STDL.

The amount of an ATM STDL is traded as the sum of the (base currency) amounts of two component options.

 

Example 1.4.1. Suppose we want to buy an ATM STDL. On the Reuters Dealing we can ask a broker or a market maker for this structure, and can experience a conversation like the following: > Please, 1M EURUSD ATM straddle in 50. 
> 8.10 8.30 
> 8.30 pls, spot ref 1.4575. 



The first trader asks for an ATM STDL in 50 million EUR, meaning that if the deal is struck they will trade in a straddle made up of 25 million EUR put and 25 million EUR call. The words “ATM straddle” are actually redundant, since “1M in 50” will unequivocally indicate an ATM STDL. The second trader makes a quote and the first trader applies the offer at  8.30%, thus buying the structure, suggesting also the reference level for the FX spot rate at  1.4575, upon which the ATM strike will be set and the premium is calculated by using the dealt implied volatility (8.30%). Clearly, by definition, no Delta hedge will be exchanged since the  STDL will engender no exposure to the FX rate.

 

Besides the ATM STDL, there are at least two other structures frequently traded: they are the 25% Delta risk reversal (RR hereafter) and the 25% Delta Vega-weighted butterfly (VWB  hereafter).7

The RR is a structure set up when one buys a (base currency) call and sells a (base currency) put both featured with a symmetric Delta (long RR), or the reverse (short RR). Delta can be chosen equal to any level, but the 25% is the most liquid one so that the call and the put entering into the RR will have a strike level yielding a 25% Delta, without considering its sign (actually, for puts it will be negative). The RR is quoted as the difference between the two implied volatilities to plug into the BS formula in order to price two legs of the structure, and we indicate this price in volatility as rr. A positive number means that the call is favoured and that its implied volatility is higher than the implied volatility of the put; a negative number implies the opposite. For example, if the three-month 25% Delta rr for the EURUSD pair is −0.5%, then the implied volatility of the EUR call is 0.5% lower than the EUR put (both struck at a level yielding 25% Delta, without considering the sign). At time t , we can write the price (in implied volatility terms) of a 25% Delta RR with maturity in T as:(1.2)

[image: 038]

where σ (t , T ) is the implied volatility at t for an option expiring in T and struck at the level indicated in the subscript.

The amount of an RR is typically denominated in terms of base currency units, and it is referred to the amount of base currency call that will be traded against the equal amount of base currency put.

Example 1.4.2. We present a market conversation to deal a 25 Delta RR:

> Please, usdjpy 6M 25D RR in 100. 
> 1.70 1.80 P 
> 1.70 pls, spot ref 108.35. 
> OK, vols 11.85 10.15 

The first trader asks for a 25 Delta risk reversal in USDJPY, in an amount of 100 million US dollars. If the deal is closed, it will be traded in 100 million USD call JPY put against 100  million USD put JPY call. The second trader makes a quote and the deal is struck because the first trader hits the bid at 1.70%. The rr is favouring the USD put, as indicated by the “P” after the quotes. This is usually disregarded amongst professionals when there is no possibility of misunderstanding (as in this case, where the rr is far from 0 and the market makers are supposed to know what type of options are favoured). The suggestion of the reference for the USDJPY spot rate at 108.35, if accepted, will allow us to determine the strikes corresponding to the 25 Delta USD call and USD put, by also using the two volatilities. These are determined starting from the ATM level dealing in the market when the RR is closed, and then adding half the dealt price of the RR (0.85% in the example) for the USD put since it is favoured, and subtracting half the price for the USD call. Should the USD call be favoured instead of the put, then the addition would be for the call (and the subtraction for the put, clearly). In fact, the second trader suggests 11.85% implied volatility for the USD put and 10.15% for the USD call and from this, we can infer that the ATM volatility is dealing in the market at a mid price of 11.00%.

 

The VWB is the other notable structure: it is built up by selling an ATM STDL and buying a symmetric Delta strangle, if one wishes to be long the VWB. On the contrary, by buying the straddle and selling the strangle, one is short the VWB. The strangle is just the sum of a (base currency) call and put both struck at a level yielding the specified level of Delta (without any consideration of its sign). The 25% Delta is the most traded VWB.

Since the structure, as already mentioned, has to be Vega-weighted and since the Vega of the straddle is greater than the Vega of the strangle, the quantity of the former has to be smaller than the quantity of the latter. Indicating as vwb the butterfly’s price in volatility terms, at time  t we can write the price of a 25% Delta VWB expiring in T as:(1.3)

[image: 039]

This is how quotations for VWB appear in the interbank market.

The amount of the VWB is, as usual, expressed in terms of base currency units and referred to the amount of the ATM STDL (with the same convention as above) that is traded against the Vega-weighted amount of the strangle (whose total is evenly split between the 25 Delta call and the 25 Delta put).

 

Example 1.4.3. Hereafter a conversation is shown between two traders to deal a 25 Delta  VWB: > Pls, EURJPY 1Y 25D fly in 250. 
> 0.275 0.375 
> 0.375 pls, spot ref 158.25. 
> OK, vol for atm 10.90. 



The first line is the request for a quote for a EURJPY 25 Delta VWB (“fly” is the shorthand used for it in conversations) in an amount of 250 million EUR for the ATM STDL. The quote is in the second line and it is the amount that has to be added to the ATM volatility to get the implied volatility for the 25D EUR call and EUR put. The first trader buys the VWB  by applying the offer at 0.375% and suggesting the reference for the FX spot rate EURJPY. So they will buy the strangle and sell the straddle. The second trader indicates the implied volatility they will use to calculate the premium for the ATM STDL and the 25 Delta strangle (with an implied volatility set equal to 10.90% + 0.375% = 11.275%). The strikes will be determined by means of the FX spot rate used as reference and the implied volatilities above. The amount on the strangle will be calculated so that the total Vega of the structure is nil. Assume that 1.5 times the ATM STDL amount is needed for the strangle, hence the first trader buys 375/2 = 187.5 million EUR per leg on the 25 Delta strangle and sells 250/2 = 125  million EUR per leg in the ATM STDL.

 

We will later examine in more detail the RR and VWB: they deserve special attention since they allow us, together with the ATM STDL, to take exposures to the shape of the volatility matrix.




2

Pricing Models for FX Options




2.1 PRINCIPLES OF OPTION PRICING THEORY 

We will shortly review the theory of option pricing with a strict reference to the FX world. First, we introduce a (slightly extended) BS economy, then we relax one of the basic assumptions: we will allow the volatility of the FX rate process to be stochastic. These principles will pave the way to the analysis of some well-known models employed in practice to price FX options.


2.1.1 The Black-Scholes economy 

We work in continuous time and assume that Wt is a standard Brownian motion, and a martingale with respect to a filtered probability space (Ω, Ƒ, F, P ) for the time set [0, ∞). We assume also that the filtration F satisfies the usual conditions,8 and that we have a perfect frictionless market, with one domestic and foreign interest rate (at which interest accrues continuously). In the economy, one risky asset is traded: an FX pair whose price process is the following stochastic differential equation (SDE):(2.1)

[image: 040]

where µt and ςt are time-dependent parameters. A second traded asset is a riskless (domestic) deposit,9 whose price changes according to the following differential equation:(2.2)

[image: 041]

An FX pair can be considered as an asset yielding a continuous cash flow equal to the foreign interest rate. In fact, when a trader buys one unit of a given pair, they sell St quantity of domestic currency: this quantity can be invested in a money market deposit and earn accrued interest at the rate rtf .

We have described a BS economy, since it is basically the same economy assumed by Black and Scholes [9] (apart from time-dependent parameters).

The two assets can be employed in a trading strategy, and we are interested in designing a strategy with the following specific feature:

 

Definition 2.1.1. Self-financing strategy. Assume that we establish a trading strategy by holding, at time 0, the quantity α0 of the risky asset (i.e., the FX pair) and the quantity β0 of the deposit. A trading strategy is defined as self-financing if:

(2.3)

[image: 042]

Equation (2.3) simply states that the total value of the portfolio at time t (left-hand side) equals the sum of (i) the initial value, (ii) all the losses/gains generated by the trading between time  0 and t and (iii) the interest earned on the foreign currency10 (right-hand side). No additional cash flow is injected besides the initial one needed to start up the strategy.

 

We define a new process and, applying Itô’s lemma, we obtain(2.4)

[image: 043]

where[image: 044]The self-financing trading strategy can thus be written:(2.5)

[image: 045]

Suppose we have a claim whose value at time T is VT . If we are able to start up a self-financing Strategy whose terminal value is αTST + βTD[image: 046]= VT, then the claim is defined as redundant  and its value at time 0 must be set to equal the value of the portfolio which must be paid to enter into the strategy. In fact, by a no-arbitrage argument, it is easy to ascertain that a sure profit can be made at time 0 by selling the higher between the claim and the portfolio, and then continuing the self-financing strategy until time T. The terminal value of the portfolio equals that of the claim, so that the liabilities match the assets. We apply this idea to the pricing of a European option O expiring at time T .11 We aim to define a self-financing trading strategy (α, β ) such that:(2.6)

[image: 047]

As above, equation (2.6) simply states that the terminal value of the option equals the terminal value of the portfolio, including the two assets of the strategy carried out. The latter, in turn, is the sum of the initial value of the portfolio and the trading proceeds. By direct application of Itô’s lemma, we have:(2.7)

[image: 048]

where[image: 049]µ,ς O(S τ , τ ) is defined as:(2.8)

[image: 050]

Substitution of equation (2.7) into equation (2.6) yields(2.9)

[image: 051]

 To solve equation (2.9) it suffices to set both integrands equal to zero, by taking α and β as (recalling also the definition of[image: 052]):12 (2.10)

[image: 053]

(2.11)

[image: 054]

Since at any time t we must have that[image: 055], we have that[image: 056]

which, after rearranging, finally yields(2.12)

[image: 057]

Equation (2.12) is the PDE whose solution is the price of the European option, provided suitable terminal and boundary conditions are met. Actually, the self-financing strategy argument can be used for any contingent claim whose terminal value can be set equal to the terminal value of the portfolio of the two basic assets (i.e., for any attainable claim). Each claim is the solution to equation (2.12) with specific terminal and boundary conditions determined by the payoff (possibly not only at expiry, but also occurring during the life of the claim).

The solution to equation (2.12) can also be expressed in terms of an expectation. In fact, by means of the Feynman-Kac formula, we have(2.13)

[image: 058]

Where St is the solution to the SDE (2.1) with[image: 059]. The drift is the continuously compounded domestic interest rate, net of the continuous flow equal to the foreign interest rate, and it is named risk-neutral. Actually, one can calculate the value of a contingent claim (and hence also of a European option) simply by calculating the present expected value (by discounting at the domestic interest rate) of the terminal payoff, which is a function of S. The process commanding the dynamics for S, however, is not the original one but the risk-neutral one. The superscript Q in equation (2.13) means that the expectation has shifted from a real-world measure of probability to a risk-neutral one. This is a valuable result, since one does not have to worry about the actual drift of the underlying asset and can safely determine it with quantities much more easily retrievable from market data, such as interest rates.

We will now try to examine in more depth the link between the self-financing trading strategy and the risk-neutral expected value of the terminal value of the contingent claim. We start by defining the discounted FX rate process[image: 060], whose dynamics by Itô’s  lemma is[image: 061]



If we are able to find a probability measure such that the process in equation (2.1) is a martingale, then we will get the following result:

Proposition 2.1.1. A probability measure Q on (Ω, Ƒ), equivalent to the real-world measure P, is a martingale measure if [image: 062]is a martingale. Besides, under the equivalent martingale measure the discounted process of the self-financing strategy is a martingale. The trading strategy in this case is called admissible.

 

Proof: Let Vt = αt St + βt [image: 063], the value at time t of the strategy involving a position in αt   spot contracts and an amount of βt domestic deposit. Let[image: 064]. By Itô’s lemma:[image: 065]

Hence[image: 066]

which is a martingale from the local martingale property of Itô’s integral.□

If a claim can be replicated via an admissible strategy, then there exists one arbitrage-free price:

 

Proposition 2.1.2. Let [image: 067]T be the value of a European contingent claim that can be replicated via an admissible strategy. Its price at time 0 < t < T, Ot, is given by the risk-neutral expectation of the terminal value: (2.14)

[image: 068]



Proof: Assume Vt is an admissible trading strategy. Then, by definition:[image: 069]

The second equality is derived from Proposition 2.1.1, whereas the others are simply based on the definition of no-arbitrage price.□

From the definition of Dt, it is straightforward to see that equation (2.14) is the same as the Feynman-Kac formula (2.13), thus establishing a link between the two approaches. Now we are left with only one problem: how to calculate an equivalent martingale measure for the FX rate. We can resort to standard results of stochastic calculus, which yield the following:

 

Proposition 2.1.3. Given the BS economy setting, a unique martingale measure for the discounted FX rate exists and is given by the Radon-Nikodym derivative: [image: 070]

Under the probability measure Q, the discounted FX rate process is (2.15)

[image: 071]

i [image: 072]=[image: 073]/ Ϛs]ds is a standard Brownian motion in (Ω, F, Q). Recall FX rate process as ing the definition of [image: 074], by applying Itô’s lemma, we can write the risk-neutral evolution of the (2.16)

[image: 075]

whose solution is (2.17)

[image: 076]



Proof: The proposition is a direct consequence of Girsanov’s theorem.□

To recapitulate the results above: there is a connection between the existence of a self-financing trading strategy, replicating the final value of the contingent claim, and the existence of an equivalent martingale measure. They both guarantee that an arbitrage-free price of the contingent claim is unequivocally determined. That can be calculated as the current value of the related replica strategy, or alternatively as the expected value of the discounted final payoff of the claim, under the risk-neutral probability measure.

 

Example 2.1.1. Forward FX price. A forward contract (outright) has been defined in Chapter 1, and the fair forward FX rate has been derived with standard no-arbitrage arguments. We now aim to obtain the forward price using the tools we have presented above, since a forward contract is a contingent claim ([image: 077]= F).

Let Fw(t , T ) be the value of a forward contract at time t , expiring at T . From the definition of the contract, we have (2.18)

[image: 078]

where F (t , T ) is the forward FX price set at inception of the contract. A self-financing strategy can be established as explained above, and its current value can be determined by solving the PDE (2.12) with the terminal condition expressed in equation (2.18). As an alternative, we may calculate the risk-neutral expected discounted payoff (2.18). We know from the Feynman-Kac formula (2.13) that this is the same as finding the solution of the PDE (2.12): [image: 079]

The last equality follows from the martingale property of S∗ and from the definition of the discounted price. Moreover, from the definition of a pure discount bond it follows that  [image: 080]= Pd (t, T ), considering also that we are working in a deterministic interest rate environment. Finally, we have used P f (t , T ) =[image: 081].

The fair forward price at time t is the value which makes nil the value of the contract (since no cash flow is due at inception by either counterparty): [image: 082]

which clearly agrees with the price we derived in Chapter 1. 


2.1.2 Stochastic volatility economy 

The main flaw of a BS economy concerns the assumption of a deterministic (though possibly time-dependent) instantaneous volatility ςt . We will relax this assumption by assuming the following dynamics for the FX rate process:[image: 083]

where(2.19)

[image: 084]

The Brownian motions Wt and Z t are defined in a probability space (Ω, Ƒ, F, P ) and have cross-variations d 〈W , Z 〉t = ρt d t for some ρt ∈ [−1, 1].

Suppose we want to price, at time t , a contingent claim expiring at T . We try to start a self-financing strategy with terminal value equal to the payoff of the claim, O( ST , ςT , T ), as in equation (2.6). We use once more the process[image: 085]and, by application of Itô’s lemma, we have(2.20)

[image: 086]

where[image: 087]is defined as[image: 088]

Substitution of equation (2.20) into equation (2.6) yields(2.21)

[image: 089]



It is clear that it is not possible to choose α and β such that equation (2.21) can be solved. The replication argument via the self-financing strategy cannot be applied, and the market is defined as incomplete in this case. Moreover, as a consequence of the market incompleteness, there is no unique equivalent martingale measure under which an arbitrage-free price can be calculated. One possible approach to make up for this situation is to assume that an equivalent probability measure Q exists, under which the discounted price[image: 090]is a martingale for some time T . Thus, by an application of Girsanov’s theorem, we have[image: 091]

where[image: 092]

with[image: 093]



The additional term λ(ςt , t )ν (ςt , t ), though a direct aftermath of the application of Girsanov’s theorem, can be chosen in different ways. In practice, it will be specified in such a way that it allows for a convenient treatment of the model one wishes to design. It represents the volatility risk premium. As a result of the assumptions above, we have

 

Proposition 2.1.4. Given a stochastic volatility economy setting, the martingale measure for the discounted FX rate is given by the Radon-Nikodym derivative: (2.22)

[image: 094]

(2.23)

[image: 095]

(2.24)

[image: 096]

Under the probability measure Q the discounted FX rate process, whose solution is (2.25)

[image: 097]

is a martingale.

We can derive the PDE whose solution, provided suitable terminal and boundary conditions are met, is the price of the contingent claim in a stochastic volatility world. In fact, we can still use the Feynman-Kac formula (2.13) for the new risk-neutral process and then infer the PDE, which is(2.26)

[image: 098]




2.1.3 Change of numeraire 

The main point of the theory examined above is to find an equivalent probability measure under which the discounted price of the FX rate (net of the foreign accrued interest) is a martingale. We have implicitly assumed changing the numeraire of the original price and expressing it with respect to another one that, in the specific case, is the domestic deposit. This approach can be extended (and actually, has been, see Geman et al. [31] and Jamshidian [40]) to include any kind of numeraire, so as to make as convenient as possible the pricing of contingent claims according to their distinctive features. The theory of change of numeraire is particularly useful in the interest rate derivatives’ evaluation, but it turns out that we will occasionally resort to it, so it is worth reviewing briefly here. We present the main concepts and results, whereas for a more thorough treatment we refer, for example, to Brigo and Mercurio [14].

As mentioned above, a numeraire can be any traded (non-dividend-paying) asset, and it can be used to normalize the prices of all other assets and contingent claims. The main result,  due to Geman et al. [31], is that any self-financing strategy remains self-financing under any possible numeraire. In fact, if Vt is the value of a self-financing strategy:[image: 099]

implies[image: 100]

so that any attainable claim can be replicated under any numeraire. We then have the following fundamental result:

 

Proposition 2.1.5. If there is a numeraire Q and a related probability measure P Q (equivalent to the real-world measure P ) under which any asset’s price S is a martingale: [image: 101]

then there exists a numeraire asset U and a related probability measure PU (equivalent to the real one P), such that any attainable claim, whose price is O, normalized by U , is a martingale under P U : [image: 102]

The Radon-Nikodym derivative defining the new probability measure P U is [image: 103]



The proof of the proposition is in Geman et al. [31]. As an immediate consequence, a useful formula can be derived, which allows us to compute in a very simple way the drift of any asset shifting from a numeraire Q to another numeraire U :

Proposition 2.1.6. Assume we have two asset prices Q and U , evolving under the probability measure PU according to the SDES [image: 104]

where [image: 105]and [image: 106]are 1 × n vectors, [image: 107]is a standard Brownian motion, and CC’ = ρ . The drift of a claim X is µQ (X ) under the probability measure Q. Moving from the probability measure PQ to the probability measure PU implies a new drift equal to (2.27)

[image: 108]



This formula was derived in Brigo and Mercurio [14], and we refer to them for the complete proof. We would like only to stress that it is a simple and powerful tool that can be employed when it is more convenient to change the numeraire to allow for a less painful achievement of a pricing formula.




2.2 THE BLACK-SCHOLES MODEL 

In Section 2.1 we examined how to evaluate a contingent claim in a BS economy, so here we can provide the pricing formula for FX plain vanilla options derived within that environment. The formula was derived for the first time by Black and Scholes [9], although it was generalized by Merton [51] and this generalization is used to evaluate FX options (actually, just for historical precision’s sake, the application of the BS framework to the FX markets was studied by Garman and Kohlhagen [30]).

Assume that at time t we want to price a European FX option expiring at time T , the spot FX rate being St . By formula (2.14), evaluating the (risk-neutral) present value of the terminal payoff (i.e., max[ ST − K , 0] for a call and max[ K − ST , 0] for a put), we have(2.28)

[image: 109]

where[image: 110]

and Φ(x ) is the normal cumulative distribution function calculated in x .13 We are still working in a deterministic interest rate setting, so that[image: 111]= Pn (t , T ), for n ∈ {d , f }. Formula (2.28) can be used to price call options by setting the parameter ω = 1; if one needs to price a put, then ω = −1. The FX spot rate enters into the formula via the FX forward price (outright):[image: 112]

where the price of the zero-coupon bond maturing at the option’s expiry can be retrieved and calculated from the money market rates. The parameter σ is the implied volatility, and is equal to[image: 113]



It is important because it is a tool to express the market prices of the options, since the BS formula is monotone in σ . In the following chapters much analysis will be devoted to the implied volatility and the implications of market practices related to it. In what follows, to lighten the notation, we will omit the arguments of the Bl function where this can be done with no loss of precision.

Although the BS model suffers many flaws, it is still often used, at least for quoting purposes. In the FX options market, option prices are quoted in terms of implied volatilities. The Delta hedge to be exchanged between counterparties is calculated according to the BS formula, and this is true also for the Vega hedge for exotic options. In many cases, the model is also employed to run the trading books. Thus, we also provide below the derivatives and sensitivities of the BS formula to the relevant variables and parameters (also known as the “Greeks”), since they are commonly used in market activity.


2.2.1 The forward price to use in the formula 

We have seen in Chapter 1, Remark 1.2.2, that when the default risk is taken into account, the forward prices implied by the FX swap prices can be (significantly) different from those implied by the outright contracts and set as in formula (1.1). In this formula we use the zero-coupon prices derived from the deposit interest rates (e.g., Euribor for the EUR, or Libor for the USD), but we should be aware that these rates are referring to a contract by which one party lends an amount of money for a given period to another party, and is fully exposed for the entire amount to the risk of default of the latter. We saw that an FX swap contract can actually be considered as a collateralized loan, by either party, so we can expect that interest rates to set the forward price will be different from those to set the forward price of an outright contract. This reflects the specific (lower) risk borne for default in an FX swap contract.

In the pricing formula (2.28) we have to use the forward price implied by the FX swap contract, since we can use them for hedging purposes (and actually we should use them, since they are less risky than an outright contract). Although it is beyond the scope of this book, we sketch here a method to include the default risk in the analysis and determine the “pure” interest rates and then those related to the FX swap contracts, and which of them we have to input in formula (2.28). We start by assuming the following:• All market operators (i.e., counterparties) have the same probability of default in a given period of time, starting from t and ending at T .
• The loss L {.} borne on the notional amount of the contract is the same for each counterparty, so the recovery rate is R{.} = 1 − L{.} and depends on the currency the notional is denominated in (the subscripts will then be d or f , depending on whether the loss (or recovery) refers to the domestic or the foreign amount).



 

These assumptions are quite reasonable if we consider financial institutions participating in the interbank market as counterparties. We denote by Q(t,T) = E[[image: 114]>T|Ƒt] the survival probability of the generic counterparty at time t up to time T (τt is the default time, which could be time-dependent). The probability of default is simply 1 − Q (t , T ).

We want to determine the fair forward price of an FX swap starting at t and expiring at  T . We just choose to evaluate the present value of the contract in domestic currency units, and sum all the cash flows of the “buy and sell back 1 unit of foreign currency” contract. In calculating the present value of the cash flows, we consider also the default risk related to the counterparty:(2.29)

[image: 115]

Equation (2.29) is the sum of one unit of foreign currency today, plus the expected value at time T of one unit of foreign currency discounted at the risk-free rate (whence the subscript  r f for the zero-coupon price). The expected value at T is in square brackets and is equal to one, weighted by the survival probability, plus the recovery received if the counterparty goes bankrupt, weighted by the default probability. The domestic currency leg’s present value is similarly derived:(2.30)

[image: 116]



The net present value in domestic currency units at time t is(2.31)

[image: 117]

By setting equation (2.31) equal to zero, we have that the forward price of an FX swap contract is(2.32)

[image: 118]



We can draw some conclusions from equation (2.32):1. If the recovery rates are equal for the two counterparties involved, then the forward price has the same value as that determined by just using risk-free zero-coupon bonds. In other words, the default risks of the two counterparties are symmetrical and perfectly counterbalance each other, so that the net result is the same as in an economy with no default risk.
2. The risk-free zero-coupon bonds can be computed by means of the OIS swap rates. The rate underlying these contracts is the overnight interbank rate, which embeds the risk of default for just one day, so that it can safely be neglected and the rate considered risk-free.
3. It is possible to retrieve from market prices the (FX swap) forward prices F(t,T) for different expiries and the risk-free zero-coupon bonds, so that calibrating to all the available prices (under the given assumptions), in theory one could derive the market-implied default probabilities, recovery rates and zero-coupon prices. 

In conclusion, we just apply the following rules to identify the inputs of formula (2.28).




• The forward price is that calculated (in theory) as in formula (2.32) and implied from FX swap prices.
• The discounting (by means of the domestic zero-coupon price outside the square brackets in formula (2.28)) is performed with the zero-coupon prices P d (t , T ) based on the Euribor rates. In this case we are assuming that the default risk borne by the buyer of the option is the same as that for the buyer of a deposit in the interbank market.
• If we think that the default risk is not the same as that of a deposit, then we should use a different interest rate. For example, amongst professional operators (mainly financial institutions), daily or weekly margining agreements, for OTC contracts, are usually active so that the counterparty risk is dramatically, or even totally, removed. So, for options traded in the interbank market, it could be more appropriate to substitute Pd ( t , T ) with[image: 119](t , T ) (where[image: 120](t,T) is extracted from the OIS swap prices) outside the square brackets in formula (2.32).


2.2.2 BS Greeks 

We start with Delta, or the first derivative of the option price with respect to the underlying FX spot rate:(2.33)

[image: 121]

Mathematically speaking, Delta is the ratio of the variation of the price of the option to an infinitesimal variation of the FX spot rate. Financially speaking, Delta is the amount of base  currency units, expressed as a percentage of the (base currency) notional, equivalent to the position in the option. If a trader wants to be hedged against the movements of the underlying FX rate, they have to trade on the market a spot contract with equal amount and opposite sign to Delta.

It is probably worth making some more remarks on the relationships between the base and numeraire currency amounts. Firstly, suppose we are dealing in the XXXYYY pair. It is clear that Δt XXX units (i.e., Delta in equation (2.33)) are worth −Δt St YYY. If a trader wishes to express this as a percentage of the numeraire currency amount, it suffices to divide it by the strike price, i.e., −Δt St / K .

Secondly, in Chapter 1 we listed the different ways to express the premium of an FX option. Market conventions are to have premiums as pnumccy for some pairs and pbaseccy% for others. Delta in equation (2.33) is referred to as the pnumccy case, and determines the amount of the base currency in the hedge FX spot transaction. If premiums are traded as pbaseccy% things change slightly, since now the premium (i.e., the option’s value) to be hedged is in base currency (XXX) units, so that the hedging instrument should no longer be the XXXYYY pair (whose trading generates profits and losses in YYY units) but the reverse YYYXXX pair (whose trading generates profits in XXX units) as we need to cover variations in XXX units. Let S’ = 1/S and assume the premium is pbaseccy%. Delta with respect to S’ is then (recalling also the definition of pbaseccy%):[image: 122]

This quantity indicates how much a trader has to hold in YYY units to hedge the option’s value, 0.01 pbaseccy% . When trading the option, it is a market convention to still express the spot hedge transaction as a percentage of the base (according to the standard quotation of the pair) currency notional, so that we convert the amount above into XXX (clearly reversing the sign also) and finally yield(2.34)

[image: 123]



Hence, if the premium is quoted in pbaseccy%, this amount (divided by 100) is deducted from the standard Delta. This is usually called the premium-included Delta (whence the superscript  pi ). Equation (2.35) can be written explicitly as(2.35)

[image: 124]



Remark 2.2.1. The premium-adjusted Delta is used amongst professionals when the premium is expressed as pbaseccy% to determine the amount of the hedge spot transaction (and the absolute levels of the strike corresponding to Delta, in this case). One may wonder which Delta should be used when rebalancing the hedging after the initial trade. In this case, market conventions can be disregarded and the trader has to consider what they are really trying to hedge. We will make this point clear with the following example.

Suppose we are trading a EURUSD option. We know that the market standard for plain vanilla options is to express the premium as pnumccy so that the exchanged Delta amount will be with no premium adjustment. We also know that all the variations in the option’s value and the terminal payoff (i.e., all the profits and losses) are in the numeraire (domestic)  currency - US dollars. If a trader’s book is revalued in US dollars and its profits and losses are computed in US dollars (as is the case if they are located in the USA), then they can keep on hedging their book according to the standard Delta hedge in equation (2.33), since in this case this is exactly the amount of euros to trade (with opposite sign) to match the changes in option values in US dollars.

If the trader is located in Europe, then their book’s profits and losses are very likely computed in euros, so what they really aim at is hedging the option values converted into euros. Hence, if  bv is the book value in US dollars and S is the EURUSD FX spot rate, bv/S is the book value converted into euros and the Europe-based trader wishes to hedge the changes in the latter amount: ∂ (bv/ S)/∂ S. But this is just what the premium-adjusted Delta in equation (2.35)  measures, and this amount should be used when rebalancing the hedge amount in euros.

In summary, apart from the market standards that will command the initial FX spot amount to trade for hedging, in the running of the book the two different kinds of Delta can be used according to the actual hedging targets of the traders. In the example above, the US-based trader will hedge by the standard Delta’s indications, whereas the Europe-based trader will hedge the premium-adjusted Delta’s suggestions.

Delta is a good approximation for the change of the value only for small movements of the FX spot rate. Gamma (i.e., the second derivative of the option’s price with respect to the underlying price) is used to gauge how much Delta would change according to the FX rate:(2.36)
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with[image: 126]



If the premium is included in Delta, then Gamma is(2.37)
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Usually, Gamma is expressed so as to indicate how much Delta changes given a variation of the FX spot rate. Typically, this will be taken equal to 1%, so we have(2.38)

[image: 128]

which is sometimes referred to as the trader’s Gamma.

Delta and Gamma are tools to hedge exposure to the FX rate changes. In the BS model that should be enough to perfectly match all the sources of risk. In reality, market operators use the BS formula in more elaborate, and somehow inconsistent, ways due to their scepticism about the ability of the model to fully and exhaustively depict the complexity of the true world. That is why traders resort to derivatives with respect to the parameters of formula (2.28) (besides the variable St ), so as to cover the exposure to them although, according to the starting assumptions of the model, they are not variables and should not be hedged at all.

The main source of risk is originated by the volatility. In the BS model it is simply considered a deterministic function of time, but actually implied volatilities change in a manner not  consistent with this hypothesis (without considering at the moment the smile effect that we will introduce later on in the analysis). As such, traders wish to calculate the exposure to the implied volatility by Vega:(2.39)

[image: 129]

The hedging can be carried out via other instruments whose value depends on the implied volatility as well, mainly other options. Nonetheless, since an option’s Vega changes when the implied volatility varies, traders want to estimate the stability of their hedge and they employ Volga, i.e., the derivative of Vega with respect to the implied volatility:(2.40)

[image: 130]

Volga is analogous to Gamma for the volatility (in fact, the name stands for “volatility Gamma”). But there is still another dependence of Vega on market variables; that is, it changes along with the FX spot rate movements. This relationship is measured via Vanna:(2.41)
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When the premium is included in Delta, Vanna is modified as follows:(2.42)

[image: 132]



These three volatility-related derivatives are fundamental tools; their relation to the volatility smile, their use in the volatility plays and their application in the global hedging of an option’s book will be examined in depth in the next chapters.

Another two sensitivities are momentous for risk management: the domestic and foreign Rhos. These are derivatives of the option price with respect to, respectively, the domestic and foreign interest rates:(2.43)
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(2.44)

[image: 134]



It is worth noticing that we have calculated the derivatives with respect to an average rate[image: 135], with c ∈ {d , f }. This is possible since, in the BS model, the interest    rates are deterministic functions of time. The approach is exactly the same as in the implied volatility case, which can be considered as an average instantaneous volatility.


2.2.3 Retrieving implied volatility and strike 

As already mentioned, the BS formula is used as a benchmark in the market to calculate the price of plain vanilla options and to some extent also in trading barrier options. Premiums of European options are generally quoted in terms of implied volatility σ to plug into formula (2.28), but it may happen that we receive a quote in terms of premiums, so one wants to know which is the corresponding implied volatility, all other variables and parameters being fixed at given levels.

Unfortunately, formula (2.28) cannot be inverted to calculate σ analytically, and a numerical procedure must be employed to back it out. A Newton-Raphson or secant method can be implemented, and the result within a given degree of accuracy can be achieved in a few steps. The starting point may be set as follows:14 [image: 136]

where τ = T − t . Alternatively, one may choose the following:15 [image: 137]



In Chapter 1 we mentioned that FX options are usually quoted with reference to a strike level expressed in terms of Delta. Once the option is traded and the FX spot reference rate and the implied volatility are fixed, then the absolute level of the strike can be retrieved by setting(2.45)
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which immediately leads to(2.46)

[image: 139]

where, as usual, ω = 1 (respectively, ω = −1) if a call (put) option is involved, Φ−1 is the inverse of the normal distribution function, and the values σ and[image: 140]are the required inputs. It is worth noticing that Delta enters into the formula as its absolute value.

Formula (2.46) yields the correct result when Delta is the standard one in equation (2.33). If the market quoting conventions imply a premium-included Delta, then one must resort to a numerical, though fast, procedure (based on the Newton-Raphson scheme), since the option  premium entering into Delta is a function of the strike itself. We outline the procedure as follows:

Procedure 2.2.1. To retrieve the strike corresponding to a given level of premium-included Delta[image: 141] =[image: 142]and a given level of volatility [image: 143]: 1. Set the initial strike at a given level K i =[image: 144]for i = 0. This is the value calculated by  equation (2.46). 
2. Calculate the option’s value [image: 145]

and the corresponding Δi (this is the usual Delta and not the premium-included one). 
3. Calculate the option’s premium-adjusted Delta derivatives with respect to the strike. We do this numerically by evaluating the option at a slightly different strike (say 1.01 K i ): [image: 146]

and the corresponding [image: 147]i , so that:16 [image: 148]


4. Calculate the strike K i +1 as [image: 149]


5. Iterate until |K i +1 − K i| < ∈ , where ∈ is a tolerance error parameter. Usually, three iterations are enough to achieve a satisfactory degree of accuracy for practical purposes. 


 

Example 2.2.1. Assume we want to calculate the strike corresponding to the 25D USD put JPY call for six-month expiry (τ =[image: 150]). The spot rate is 103.00 and the implied volatility used is 10.25%. We also set the domestic and foreign discount factors (zero-coupon bonds) equal, respectively, to P d (0, 6 M ) = 0.99482 and P f (0, 6 M ) = 0.98508. The strike is equal to 97.47 if the premium is in JPY units, and 97.22 if it is in USD %, as it actually is according to market conventions.

 

Remark 2.2.2. The inclusion of the premium into Delta has some consequences that are worth considering. In Figure 2.1 we plot the standard BS Delta and the premium-included Delta for a base currency call, with the following data: St = 1.5000, τ = T − t = 0.5, P d (t , T ) = 0.97531, P f (t , T) = 0.98265 and σ = 10%. The figure shows that the premium-included Delta can never be higher than a standard Delta, and some levels are produced by two strikes, since the function is not monotonic. This could engender a problem when running  Procedure 2.2.1, since for some premium-included Delta values it may converge to one of the two possible solutions. Although in mathematical terms this is true, in practice the procedure converges to the one strike that is also accepted in the market as referred to the given level of Delta. In fact, either (i) we search for a level never achieved by the premium-included Delta function (for example, 95% in the figure), so that no strike exists yielding such a value; or   (ii) we search for a value that is in the range of the premium-included Delta function (for example, 75% in the figure). In this case the first guess (the strike corresponding to a standard Delta) is always higher than the solution(s) we are looking for, and the procedure will always stop at the nearest lower level of strike yielding the desired premium-included Delta value. This is the strike accepted in the market and the second (mathematically valid) solution is discarded (actually it is never reached by the procedure, setting the starting value of the strike as prescribed).

Figure 2.1 Standard BS Delta and premium-included Delta for a base currency call option

[image: 151]

When a base currency put option is considered, we have no such problem. Figure 2.2 shows the standard BS Delta and the premium-included Delta for this kind of option, using the same data as above for the base currency call. It is manifest that the monotonic behaviour of both functions poses no ambiguity in the convergence of Procedure 2.2.1.

Figure 2.2 Standard BS Delta and premium-included Delta for a base currency put option
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2.2.4 Some relationships of the BS formula 

There is a simple relationship linking the call and put option, also known as put-call parity:(2.47)

[image: 153]

This can be proved directly by the pricing formula for call and put (2.28), or by a no-arbitrage argument: the put-call parity is model-independent. A similar relationship is the put-call symmetry:17 (2.48)
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This relationship may seem a rather idle mathematical trick, but it can actually be useful in some situations to derive the pricing formula of particular kinds of options and to hedge knock-in options (although under a number of restrictive assumptions), as we will show later on. In fact, in practical applications, it is more effective to employ the following version of the put-call symmetry:(2.49)

[image: 155]

which is a direct consequence of equation (2.48) and of the straightforward manipulation: m ax[ St − K , 0] = K / St max[St 2 / K − St , 0]. The reason why equation (2.49) is much more useful to practitioners is clear: it is possible (although sometimes not easy) to trade an option struck at[image: 156]/K in an amount (K /St ) with an FX spot rate equal to St , whereas it would be impossible to trade it with the FX spot set equal to K (unless K = St ).

A relationship specific to the FX options market is the foreign-domestic symmetry, which is an application of the put-call symmetry:(2.50)

[image: 157]

Financially speaking, two traders trading the same option must agree on the value, even if each one considers the FX rate from their own perspective. For the sake of clarity, consider an FX spot rate St for the pair XXXYYY and an XXX Call YYY Put option struck at K , whose price is pnumccy = B1( St , t , T , K , Pd (t , T ), Pf (t , T ), σ, 1) in YYY units, which can be converted into base currency units, yielding[image: 158]B1( St , t , T , K , Pd (t , T ), Pf (t , T ), σ, 1) XXX. Assume now that a trader is based in the country where the base currency is in use (the foreign country) and that they want to express the FX rate as if the original base currency were the numeraire one. Then they have the FX rate YYYXXX = 1/ St , with the domestic bond now being P f and the foreign bond being Pd . The option above can now be considered a YYY put XXX call struck at 1/K and in an amount equal to K YYY (=1 XXX). The option can be priced by the same σ parameter since the processes of St and 1/St both have the same volatility, thus justifying equation (2.50), because the two prices of the option must be equal under economic and mathematical points of view.

The BS enjoys some other properties that can sometimes be useful. We just focus on a couple of them, which we will make use of in the subsequent analysis. Firstly we notice that  the formula is time-homogeneous, since it depends on time t only via the time to maturity  τ = T − t . Then we have(2.51)
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Secondly, replacing[image: 160],[image: 161], σ and τ with(2.52)
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(2.53)

[image: 163]

(2.54)
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(2.55)
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where ϕ is a strictly positive real number, the option’s price does not change:(2.56)

[image: 166]

where P c(t , T ; ϕ) =[image: 167], for c ∈ {d , f }, is calculated with the rescaled parameters. Differentiating both sides with respect to ϕ and setting ϕ = 1 yields[image: 168]

or equivalently by equation (2.51):(2.57)
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This relationship was derived by Reiss and Wystup [56]. It is quite easy to verify, by direct calculation, that the following interest rate symmetry also holds:(2.58)
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Finally, we derive the Vega-Gamma relationship. From equation (2.12), and substituting the time-dependent interest rates with the average constant ones and the time-dependent instantaneous volatility with the implied volatility (i.e., an average constant parameter also in this case), we have[image: 171]

which can be plugged into equation (2.57) to yield[image: 172]



Rearranging:[image: 173]

and hence, by interest rate symmetry (2.58), we get the Vega-Gamma relationship(2.59)
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Equation (2.59) also holds for any claim with a path-dependent payoff (e.g., barrier options) as long as the interest rates and the volatility are constant.18 For claims with a European payoff the trick of averaging the parameters does not impact on the pricing, so that a time dependency can be allowed. Actually, a further simplification is possible for European claims; in fact it can be checked that[image: 175]

so that equation (2.59) simplifies to(2.60)

[image: 176]



Many other relations for the BS formula can be found. Amongst them we deem rather useful to future analysis what we name the Delta-Vega relationship. In more detail, it can be stated that a call and a put option expiring at the same time T and struck such that the absolute value of Delta is the same for each, also have the same Vega:(2.61)
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Proof: From equation (2.45) we have, for a put option with a given Delta[image: 178], that(2.62)

[image: 179]

or(2.63)

[image: 180]

since ω = −1 for put options. On the other hand, for a call option(2.64)

[image: 181]

 α is the same value in both cases, since ω = −1 for put options and this always makes positive the ratio in the argument of the inverse normal distribution function, a put’s Delta being negative. On the other hand, ω = 1 for call options and it enters into the ratio with Delta always being a positive number. Therefore,[image: 182]and[image: 183]are equal in absolute value and have opposite sign. When plugged into formula (2.39) to calculate Vega, it is straightforward to check that the Delta-Vega relationship holds. □

 

Remark 2.2.3. The Delta-Vega relationship holds only for strike levels entailing equal absolute pure Delta values. This means that when we consider a parity whose conventions provide for a premium-included Delta, equation (2.61) does not hold any more. This also has a practical impact on hedging policies, as we will see later on.




2.3 THE HESTON MODEL 

In Section 2.1 we examined how to extend the BS economy so as to allow for a stochastic instantaneous volatility. This feature will make the model more suitable to fitting market prices that, contrary to the BS assumption, do not exhibit a constant flat implied volatility with respect to strikes for a given expiry, thus implying a (possibly) stochastic instantaneous volatility. The specification of the process (2.19) may be manifold, and we focus on a few options amongst those commonly accepted by practitioners.

Heston [37] suggested a specification of the process (2.19) as follows:(2.65)

[image: 184]

This is a mean-reverting process for the instantaneous variance (ς2) of Cox, Ingersoll and Ross [24]. It prevents negative values and this is a critical feature, since variance cannot be negative by its definition. The instantaneous correlation between the Brownian motion dZt  and that entering into the FX spot process dWt is ρ. If the volatility risk-premium is assumed to be equal to λςt /ν, then the risk-adjusted process for the variance is[image: 185]

We have to impose the constraint 2κθ > ν2 so that the variance process never reaches zero and is always positive. We can apply formula (2.14) and yield the formula to value a call option. Actually, it is not easy to calculate the expected value of the terminal payoff, since the marginal (and also the transition) distribution of the FX spot rate is unknown in the Heston model. Anyway, the characteristic function can be derived and hence - by means of a numerical integration - the probabilities can also be calculated: 19 (2.66)

[image: 186]

where[image: 187]

 [image: 188]

for j = {1, 2} and x = ln S0. The integral to evaluate the probability must be computed numerically. Some attention should be paid to avoiding instabilities: Albrecher et al. [2] show that if d is replaced by d∗ = −d,20 numerical problems are almost entirely solved and the integration procedure is robust. The put options can be priced from equation (2.66) by means of put-call parity (2.47).

The quickest and easiest way to compute sensitivities to the model’s variables is by numerical differentiation. Delta and Gamma are directly comparable to those of the BS model. This is true for the domestic and foreign Rhos as well. Vega, Vanna and Volga have no direct relationships to the Heston model’s sensitivities, although it is possible to find some equivalences. In fact, the Heston model’s parameters depend on the shape of the volatility smile and a link between the latter and the Vega-related Greeks of the BS model can be established. We postpone a more thorough discussion of these issues to Chapters 3 and 4, where the concepts are analysed in more detail. The Heston model is rich enough to capture real-world smiles for one expiry, but it will not in general be able to satisfactorily fit an entire volatility surface with a shape commonly observable in the market. Just to provide some intuition behind the model’s parameters, the term structure of the ATM volatilities is affected by the starting value of the instantaneous variance[image: 189], by the mean reversion speed κ and the long-term variance θ. The volatility of the variance ν commands the curvature of the surface, whereas the correlation between the FX spot rate and the instantaneous variance ρ affects its slope: a positive (negative) value yields positively (negatively) sloping surfaces.


2.3.1 Time-dependent parameters in the Heston model 

As mentioned above, unfortunately the shapes of the volatility surface produced by a constant-parameter Heston model are too regular compared with the real market ones. A possible solution is to enrich the model by allowing for time-dependent parameters.21 Some of the (already poor, actually) analytical tractability gets lost in this case, but the fitting power is greatly strengthened. We will show how to extend the Heston model so as to allow for time-dependent parameters, namely, for piecewise-constant parameters.

We start from the characteristic functions fj embedded in equation (2.66) (the notation is the same as above, and we set t = 0). They too are a solution of equation (2.26); if we assume there are functions of the kind[image: 190]

by direct substitution into equation (2.66) we have[image: 191]

with initial conditions(2.67)
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The solutions are very similar to those shown above for the constant-parameter case. More specifically:(2.68)

[image: 193]

(2.69)

[image: 194]

with(2.70)

[image: 195]

and the rest of the notation is as above. We are now able to calculate Mj and Lj for each interval of time in which the parameters are constant. They will jump to different values in the next interval of time. First, we start by dividing the entire interval τ = T − t into n sub-intervals [t0 = t, t1], ..., [tn-1, tn = T]. In each of these the parameters of the Heston model are constant, but they are different in different sub-intervals. We decide to start from the end of the total interval τ , and we define the first sub-period as [0, τ1], where τk = T − tn—k, for   k = 1, ..., n − 1. For this sub-interval the initial conditions in equation (2.67) are zero, so that the solutions for (2.68) and (2.69) are the same as in the time-constant Heston model provided in equation (2.66). Moving to the next sub-period [τ1, τ2], we use the general solutions in (2.68) and (2.69), by imposing the initial conditions (2.67) to be equal to[image: 196]

where we indicate by L H (τ1 , φ) and MH(τ1, φ) the solutions used in equation (2.66). The same procedure can be applied for each sub-period τk, and we derive the entire set of piecewise-constant parameters. The solution will not be too different from the constant-parameter version of the model, but we are able to significantly enhance its fitting ability.




2.4 THE SABR MODEL 

We assumed in the BS economy above, and then in the extended stochastic volatility economy, a particular kind of evolution for the FX spot rate: the geometric Brownian motion in (2.1). Actually, a more general evolution can be adopted, such as(2.71)
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This is a constant elasticity of variance (CEV) process. For different values of the parameter  β ∈ [0, 1], it encompasses the geometric Brownian motion (β = 1) and a normal model à la  Bachelier (β = 0) as special cases. If we further postulate that the instantaneous volatility process in equation (2.19) is specified by setting φ(ς, t) = 0 and ν(ς, t) = νς, and that the correlation between dWt and dZt is equal to ρ, then we have the so-called SABR model, introduced by Hagan et al. [33].

This model has several interesting features, and it has been used mainly in the interest rate derivatives market (to model swaptions’, caps’ and floors’ smiles), although it can easily be extended to the FX market. Its most interesting property is that, by means of the β parameter, it preserves a basic downward-sloping shape of the volatility smile (as typically observable in the interest rate markets) subsequent to a movement in the underlying asset price, although this is not necessarily a desirable feature in the FX market.

The other parameters, like in the Heston model, affect the curvature of the smile (ν) and the slope of the smile (ρ). It is clear that two parameters (ρ and β) in the SABR model play a similar role, nevertheless, it is possible to disentangle their effects. The β actually affects the smile via the distribution of the asset price it implies: since β ∈ [0, 1], it produces a distribution ranging from the normal one (generating the maximum negative slope for the volatility smile) to the lognormal one (generating a flat smile). The ρ parameter affects the smile via the correlation between the underlying asset and the instantaneous volatility: it can be negative (engendering a negative-sloping smile, adding its effects to those of β) or positive (engendering a positive effect on the slope of the smile, thus mitigating β’s effects and offsetting them).

Amongst the other nice properties of the SABR model, which will be studied to some extent later on, we reckon the availability of a closed-form formula approximation for plain vanilla options. In fact, if we want to price at t an option with expiry at T and struck at K, we can simply use the standard BS model formula (2.28), by plugging in the implied volatility parameter σ = σ(K, T) set as follows:(2.72)
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where[image: 199]



When the option is ATM forward (i.e., struck at the forward price level), equation (2.72)  collapses to the particular case(2.73)
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Also the SABR model, in its constant-parameter version shown above, is in general not rich enough to adequately capture real-world volatility surfaces. Once again, the solution would be to extend the model by introducing time-dependent parameters,22 but we will not present this here, since the SABR model will be used in the following chapters only in a limited way.




2.5 THE MIXTURE APPROACH 

The need for a model capable of capturing the market volatility smile and allowing for analytical tractability has in recent years led to what we name here the mixture approach. It was presented by Brigo and Mercurio [12] and extended by Mercurio [48] and Brigo et al.  [45]. We start by designing the lognormal mixture local volatility (LMLV) model and then present a lognormal mixture uncertain volatility (LMUV) model. We stress the relationships and the differences between them.


2.5.1 The LMLV model 

Assume23 the risk-neutral evolution for the FX rate is that given in equation (2.16), and consider N diffusion processes of the kind(2.74)

[image: 201]

for i = 1, ..., N. The marginal density of the FX spot rate, under the risk-neutral distribution, is determined by the weighted average of the marginal densities associated with the N processes above, with W being a standard Brownian motion under the risk-neutral measure Q. We denote by[image: 202]the density function of the process[image: 203]at time t:[image: 204](x) = d(Q{[image: 205]< x})/dx. We would like to find a local volatility 24 function ς(St, t) associated with the FX spot rate process in equation (2.16), such that the risk-neutral density function Q is(2.75)

[image: 206]

where we set[image: 207]= S0 for each i and λi is a positive constant with[image: 208]λi = 1. By applying the Fokker-Planck equation (satisfied by any density function) to equation (2.75), we get[image: 209]

 which must also be satisfied by each[image: 210]:[image: 211]

From the linearity of the derivative operator, this yields[image: 212]

or equivalently:[image: 213]



The general solution to the last equation is of the kind[image: 214]



The RHS of the equation above tends to zero for x → ∞, so that the LHS must have zero limit as well: this is true only if At = Bt = 0 for any t. Hence, it is straightforward to imply the ς(St, t):(2.76)
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Equation (2.76) defines a class of local volatility functions which are consistent with the assumption that the marginal density Q satisfies equation (2.75), that is to say, it is the mixture of N densities each weighted by λi . If we further specify the diffusion for each S i as[image: 216]

then the marginal density for each Si, conditional on[image: 217]= S0 , is(2.77)

[image: 218]

where[image: 219]

and we have the LMLV model. Applying equation (2.77) to (2.76), we can state the following:

 

Proposition 2.5.1. (Brigo and Mercurio [13]) Let us assume that each ςi is continuous and that there exists an ε > 0 such that ςi (t ) = ς0 > 0, for each t in [0, ε] and i = 1, . . . , N .  Then, if we set (2.78)

[image: 220]

for (x, t ) > (0, 0) and ς (x , t ) = S0 for (x, t ) = (S0, 0), the SDE (2.74) has a unique strong solution whose marginal density is given by the mixture of lognormals (2.79)

[image: 221]



Moreover, for (x , t ) > (0, 0) we have (2.80)

[image: 222]

where [image: 223]

and for each (x , t ) and i , λi ≥ 0 and [image: 224]λi = 1. As a direct consequence: (2.81)

[image: 225]

[image: 226]



The LMLV model is interesting because it allows us to define a local volatility function in principle capable of fitting market prices of options with a virtually infinite number of parameters (in fact, we have not specified the number N of probabilities contributing to the FX marginal distribution function). Besides, the dynamics of the FX spot rate is fully explicit, so that it is possible to resort to Monte Carlo methods to price contingent claims. Finally, the model allows for a simple pricing formula for European-type payoffs, such as European plain vanilla options. To see this, we apply formula (2.14) and get(2.82)

[image: 227]

where Oi denotes the price of the contingent claim associated with the process Si for i = 1, . . . , N . In the lognormal case above, plain vanilla options can be valued by the BS formula, so that the final price will be a weighted (by λi) average of BS premiums:[image: 228]




2.5.2 The LMUV model 

Assume25 the FX spot rate evolves, in the risk-neutral world, according to the following dynamics:(2.83)

[image: 229]

with S(0) = St > 0, and where ς (t ) is a random variable that is independent of W (the usual standard Brownian motion on (Ω,Ƒ , Qw)), ς0 and ε are positive constants, and the risk-neutral drift rate is a deterministic function of time. The random variable ς takes values in a set of N (given) deterministic functions ςi (t ) with real-world probability[image: 230], and ς(t) denotes its generic value We thus have:[image: 231]

where the[image: 232]are strictly positive and add up to one. If Ƒt W is the σ-field generated by W up to time t and Ƒς the σ -field associated with ς(t) then, since W and ς are independent, the underlying filtration Ƒt = Ƒwt ⊗ Ƒς: t ≥ 0. Define Pς as the probability function for the discrete random variable ς , so that Pς (ςi) =[image: 233]; we set Ω = Ωw ⊗ Ως and P = Qw ⊗ Pς. The probability space for the FX is (Ω, ƑT , P ).

The idea underpinning the assumptions above is the following: the FX spot rate process evolves, during an infinitesimal interval of time, according to a geometric Brownian motion as in equation (2.1), with a constant instantaneous volatility ς0. After this period, at time t = ε, the instantaneous volatility can take the value ςi (t ) drawn from a given number N of possible outcomes. From this time on, the FX rate evolves according to a geometric Brownian motion with a deterministic time-dependent instantaneous volatility. Hence the volatility is stochastic, although in the simplest possible way. No specific dynamics is designed for it, but its future values are extracted from a set of N scenarios and afterwards any source of uncertainty related to the volatility is fully removed. Moreover, this removal occurs in an infinitesimal interval after the initial time, so that stochasticity affects the volatility only for a very short period. This idea leads to some nice results, as will soon be evident.

The existence of a risk-neutral probability Q is proved by the following proposition: 

Proposition 2.5.2. (Mercurio [48]) Define a new probability measure on (Ως , Ƒς) such that [image: 234]

where the new probabilities λ are strictly positive and sum to 1. There exists a risk-neutral probability measure Q on (Ω, ƑT), associated with the numeraire [image: 235], (2.84)

[image: 236]

such that the drift of the process in equation (2.83) is µ(t ) = rd(t) − rf(t).

Proof: Under each scenario ςi , S evolves as a geometric Brownian motion with volatility ςi (t). Applying both Girsanov’s theorem and a change of measure for discrete random variables yields that the process[image: 237]is an (ƑT, Q )-martingale; in fact, for each 0 ≤ t < T  [image: 238]

where[image: 239]is a volatility function extracted from the possible outcomes. Besides:[image: 240]

where[image: 241]

□

Finally, by setting ςi (t ) = ς0 for each t ∈ [0, ε] and each i , and once more[image: 242]

we have that the density function for S at time t > ε is(2.85)

[image: 243]



This is a direct consequence of the fact that[image: 244]



It is worth noticing that the marginal probability function of the FX spot rate in the LMUV model is the same as that of the LMLV model, although the starting assumptions of the two models are quite different. This will lead to remarkable differences in the pricing of exotic options, but for plain vanilla options the valuation formulae are exactly the same. In fact, in the LMUV model we also have(2.86)

[image: 245]

which is equal to equation (2.82).


2.5.3 Features of the LMLV and LMUV models and a comparison between them 

The two models we have described above share many nice features that make them suitable for their employment, in a convenient way, in pricing FX options (also of the exotic kind) in a market environment with the presence of a smile for plain vanilla options prices. In fact, these features are:1. Explicit dynamics of the FX spot rate.
2. Explicit marginal densities - they actually turn out to be the same in both models, at the initial time (this point must be stressed).
3. Explicit formulae for European-style payoffs at the initial time - they are also the same, as a direct consequence of the point above.


These features enable an easy calibration to market data, and hence the pricing of more complex derivatives’ payoffs once the model’s parameters are implied. There are two more desirable properties of the LMUV model, which are not shared by the LMLV model but which are very useful in the actual and effective use of the model:1. Analytical tractability is extended at the initial time also to all other kinds of payoffs that have explicit pricing formulae in the BS model.
2. Analytical tractability is preserved after the initial time, since future prices can also be obtained explicitly where that is similarly possible in the BS model.


The last two properties make the LMUV model much more appealing from a practical point of view, since they make possible the use of all the analytical tools developed in the BS environment, simply by applying the usual conditioning on the possible states of the discrete  random variable ς(t) and then averaging over them. In this way we can use the explicit formulae for exotic options available in the BS world. To better understand the importance of this point, one should just consider that in the LMLV model all the analytical tractability gets lost as the FX initial spot rate S0 changes. This means that explicit formulae are no longer available, even for plain vanilla options, and so for the basic Greeks such as Delta and Gamma. On the contrary, in the LMUV model, all analytical tractability is retained for different levels of the FX spot rate and the averaging of the correspondent BS values, under each volatility scenario, can always be performed consistently.

The analogies between the two models, which originate in the common properties observable at the initial time, follow from the fact that the LMLV model is a projection of the LMUV model onto the class of local volatility models.26 Basically, this implies the equivalence of the marginal densities and hence of the pricing formulae for European-style payoffs. Moreover, in both models the FX spot rate is perfectly decorrelated from the (squared) instantaneous volatility.27 This property impacts significantly on the smile’s shape, which can possibly be engendered. In fact, perfect decorrelation between the spot rate and the (squared) volatility only allows for the production of symmetric (in the logarithm of the strike) smile shapes, so that some extensions are needed to accommodate real market conditions where the presence of a skew (asymmetric smile) is usually detectable.

The differences arise from the starting assumptions of the two models. In the LMLV model, the marginal density of the FX spot rate is supposed to be a mixture of basic marginal densities, then a local volatility function of the spot process, consistent with that, is derived. The local volatility function links (in a deterministic fashion) the level of the instantaneous volatility with the level of the FX spot rate and with time. Hence, the instantaneous volatility is stochastic in that the underlying FX spot rate is so, but it has no stochastic process of its own and the only source of randomness, in the model, is given by the spot rate. As a consequence, the model is still complete, in the sense that a self-financing strategy (involving trading the FX spot rate and the bank deposit) can be carried out to perfectly replicate the terminal payoff of the contingent claim.

In contrast, the LMUV model is a true stochastic volatility model, although of the most simple kind. This means that the market is not complete and that a self-financing strategy (involving only the underlying FX rate and a bank deposit) cannot be designed so as to perfectly replicate the contingent claim. Actually, the market can be completed (as in any other stochastic volatility model) via the introduction of another asset (for instance, an option). In fact, this is usually what happens in real market activity, so market incompleteness is not an important issue. All in all, we prefer to use the LMUV model in practice, although it lacks market completeness, for its more extended analytical tractability. We will discuss the choice of model further in Section 2.6. For the moment we just extend the LMUV model so as to make it more suitable and effective to cope with real market conditions.


2.5.4 Extension of the LMUV model 

As mentioned above, the need to extend the LMUV model arises from its inability to generate asymmetric volatility smiles. One possible solution is to shift the Brownian motion dynamics under each volatility scenario. This yields closed-form pricing formulae for plain vanilla options as a displaced BS model, and some exotic options can also be priced explicitly.  Unfortunately, to keep the model analytically tractable, the displacement cannot be chosen arbitrarily, so the fit to market prices is not always satisfactory.

A second approach is to consider a stochastic foreign interest rate.28 This will grant some freedom in the fitting to asymmetric volatility smiles, since the requirement that the expected FX spot rate be equal to the current forward price applies only in the corresponding forward measure, and the constraint is somewhat relaxed. Besides, this extension allows for a different shift associated with different options’ expiries, which should also cater for a better fit.

The simplest way to introduce stochastic interest rates is to assume that the instantaneous domestic and foreign rates rd and rf are known at time 0:[image: 246]and at time  t = ε they are drawn from a discrete number, similar to the instantaneous volatility, so as to produce N scenarios. Thus, the risk-neutral dynamics of the FX spot rate is(2.87)

[image: 247]

where the notation is the same as that used above and (rd, rf, ς) is a random triplet that is independent of W and is drawn from the set of N (given) triplets of deterministic functions:[image: 248]

where the λi are strictly positive and add up to one. The random value of the triplet is drawn at time t = ε. The interpretation of the model is similar to the basic LMUV model: at time 0 the domestic and foreign interest rates and the instantaneous volatility start from a known value, but in the next infinitesimal instant t ∈ [0, ε] they can take the values extracted from one of the N possible triplets. After the triplet manifests, the uncertainty of the model is completely removed, since the dynamics of the FX spot rate is the usual Brownian motion with time-dependent (but not stochastic) parameters.

The extended LMUV model enjoys all the features we have listed above for the basic version, and explicit valuation formulae are still retained everywhere they are available in the corresponding BS model. In fact, for plain vanilla options we have(2.88)

[image: 249]

where[image: 250]



Formula (2.88) applies analogously wherever BS explicit formulae are available. 

The extension is rich enough to capture a wide range of volatility smile shapes that may be found in the market. Actually, for our purposes, we will see that a restricted version of the extension described above can be employed with good results, namely, we allow only the foreign interest rate to be stochastic, whereas the domestic interest rate will be a deterministic function of time as in the BS model. So, at time t = ε, a couplet instead of a triplet will be extracted from the N possible scenarios.




2.6 SOME CONSIDERATIONS ABOUT THE CHOICE OF MODEL 

We have presented above some models to cope with a market environment more complex than that supposed in the BS model, particularly with reference to the presence of a volatility smile. These models can be more or less elegant from a mathematical point of view, they can be more or less realistic about their assumptions regarding the dynamics for the FX spot rate and the instantaneous volatility, and they can be more or less effective in capturing options’ prices trading in the market. Nevertheless, in our opinion (and based also on our experience), we think that any model must satisfy a number of requirements to be really useful in quoting and managing the risk of a portfolio of options. In more depth, a model should:1. Be able to perfectly capture at least the basic market quoted options (the most liquid and actively traded options are usually used for risk management purposes and play an important role also in the pricing of exotic payoffs).29 
2. Be rich enough to be able to also fit small perturbations of the volatility smile for a given expiry, so as to identify a clear hedging policy for the subsequent variations in the portfolio’s value.
3. Have closed-form formulae for at least plain vanilla options, so as to guarantee a fast calibration procedure.
4. Ideally, have closed-form formulae for a wide class of exotic options, more specifically for barrier options. They are likely to make up 90% of the exotic options in the book of a typical market maker and, given the characteristics of the FX market, have to be re-evaluated and their sensitivities computed in the shortest possible time.
5. Allow for the design of efficient numerical procedures to be employed when closed-form formulae are not available.
6. Imply a behaviour of the volatility smile (and, more generally, surface) consistent with what is actually observed in reality.


To our knowledge, the only model fulfilling all the requirements above is the (extended) LMUV, and for this reason we will spend much time in what follows on examining in more detail this model and its implications and presenting some solutions for the implementation of a risk management tool hinging on it.

In the last few years the model has engendered some debate about the reasonability of its starting assumptions and its possible drawbacks. Probably the most heavy criticism of the model was put forward by Piterbarg [53]. He argues that the LMLV is the only consistent model amongst those proposed in a mixture approach, whereas any other model leads to  incorrect pricing of contingent claims except for plain vanilla options.30 We would like to stress here that the LMUV model is not at all perfect, and its basic assumptions are probably the farthest from reality, but we think that more emphasis should be put on the effectiveness of its use in practice instead of pointing out the flaws in the starting assumptions or even its poor mathematical formalism (although it is quite understandable that a financial quant cannot find any great gratification in the design of such a model).

To be clearer, no model is blindly accepted by any market maker to hedge their book. The model is always regarded suspiciously as far as its ability to predict future evolution of market prices, so that in practice not only the sensitivities of the options to the explicit sources of risk (for instance, in the Heston model, the FX spot rate and the instantaneous volatility) will be hedged, but also all the implicit risks (as far as possible) that can be collectively referred to as  model risks.

As an example, if a market maker adopts the Heston model, as a first step they will Delta hedge their book; then they should use an instrument to hedge the exposure of their book to the instantaneous volatility. Actually, if all the parameters of the model (however estimated) are correct and constant, this policy is sufficient to correctly hedge all the exposures. The correctness of the model implies that it produces a given volatility surface now (that should agree as far as possible with market prices, and we assume here it is perfectly fit to them), and correctly predicts its future evolution also in the next instant of time.

In reality, nobody believes that the model is able to correctly predict the evolution of the volatility surface; that is the same as saying that nobody trusts the stability of the parameters over time. Periodically (for example, daily or even more often), parameters have to be re-estimated so as to match market prices again. Should a market maker hedge only along the prescription of the model, they would have unexpected profits or losses arising from the new values of the parameters, which in turn imply values of the plain vanilla options (i.e., of the volatility surface) and of the exotic options different from the ones predicted by the model before the recalibration (we will study these sources of profit and loss in more depth in the next chapter). So, market makers will also hedge against all the variations of the model parameters; that is to say: they hedge against the model risk. Clearly, should this hedge require additional costs to bear, they will be transferred in the pricing of contingent claims.

The considerations above mean that a model is never chosen just because it is believed to correctly predict the future. It is readily admitted that no model can describe the complexity of the real world exhaustively. It will therefore be chosen also on the basis of other criteria, such as those we have listed above, amongst which there will surely be the reasonable (yet not perfectly predicted) implicated evolution of options’ market prices (i.e., of future volatility surfaces). The LMUV can certainly be criticized for many reasons, but the expected future volatility surface is no less reasonable than that implied by a more sophisticated stochastic volatility model such as Heston’s. Although the model assumes that after an infinitesimal time the uncertainty about the instantaneous volatility will be resolved and hence a flat (time-dependent) volatility surface will manifest, nevertheless, at the initial time the expected volatility surface is not at all flat. The Delta hedging suggested by the model is affected by the expected shape of the surface, not by the fact that it is assumed that in fact it will be flat once one of the possible scenarios is determined.

The only difference between a true stochastic volatility model and an LMUV is that in the latter case the hedger is almost completely sure they will have to recalibrate the model after the infinitesimal time elapses (unless one of the flat smile scenarios actually occurs), whereas in the former case one has more chance that the starting configuration of parameters produces a future volatility surface perfectly fitted to the future market surface. But in both cases the profits and losses due to model risk derive from the differences between the expected future option’s prices and the actual market ones (or, alternatively, between the future model’s and market’s volatility surfaces).

We hope we have provided a sound grounding to the adoption of an LMUV model, although it may appear at first sight to be a naive model from a mathematical perspective and completely unreasonable for the starting assumptions. We will see later on that it can be very useful in practice, and its performance in both pricing and hedging FX options is comparable to a true stochastic volatility model such as the Heston model.
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