

[image: cover]

Contents

Chapter 1: Introducing R: What It Is and How to Get It

Getting the Hang of R

The R Website

Downloading and Installing R from CRAN

Running the R Program

Finding Your Way with R

Getting Help via the CRAN Website and the Internet

The Help Command in R

Anatomy of a Help Item in R

Command Packages

Standard Command Packages

What Extra Packages Can Do for You

How to Get Extra Packages of R Commands

Running and Manipulating Packages

Summary

Chapter 2: Starting Out: Becoming Familiar with R

Some Simple Math

Use R Like a Calculator

Storing the Results of Calculations

Reading and Getting Data into R

Using the combine Command for Making Data

Using the scan Command for Making Data

Reading Bigger Data Files

Viewing Named Objects

Viewing Previously Loaded Named-Objects

Removing Objects from R

Types of Data Items

Number Data

Text Items

Converting Between Number and Text Data

The Structure of Data Items

Vector Items

Data Frames

Matrix Objects

List Objects

Examining Data Structure

Working with History Commands

Using History Files

Editing History Files

Saving Your Work in R

Saving the Workspace on Exit

Saving Data Files to Disk

Reading Data Files from Disk

Saving Data to Disk as Text Files

Summary

Chapter 3: Starting Out: Working With Objects

Manipulating Objects

Manipulating Vectors

Manipulating Matrix and Data Frames

Manipulating Lists

Viewing Objects within Objects

Looking Inside Complicated Data Objects

Opening Complicated Data Objects

Quick Looks at Complicated Data Objects

Viewing and Setting Names

Rotating Data Tables

Constructing Data Objects

Making Lists

Making Data Frames

Making Matrix Objects

Re-ordering Data Frames and Matrix Objects

Forms of Data Objects: Testing and Converting

Testing to See What Type of Object You Have

Converting from One Object Form to Another

Summary

Chapter 4: Data: Descriptive Statistics and Tabulation

Summary Commands

Summarizing Samples

Summary Statistics for Vectors

Cumulative Statistics

Summary Statistics for Data Frames

Summary Statistics for Matrix Objects

Summary Statistics for Lists

Summary Tables

Making Contingency Tables

Selecting Parts of a Table Object

Converting an Object into a Table

Testing for Table Objects

Complex (Flat) Tables

Testing “Flat” Table Objects

Summary Commands for Tables

Cross Tabulation

Summary

Chapter 5: Data: Distribution

Looking at the Distribution of Data

Stem and Leaf Plot

Histograms

Density Function

Types of Data Distribution

The Shapiro-Wilk Test for Normality

The Kolmogorov-Smirnov Test

Quantile-Quantile Plots

Summary

Chapter 6: Simple Hypothesis Testing

 Using the Student’s t-test

Two-Sample t-Test with Unequal Variance

Two-Sample t-Test with Equal Variance

One-Sample t-Testing

Using Directional Hypotheses

Formula Syntax and Subsetting Samples in the t-Test

The Wilcoxon U-Test (Mann-Whitney)

Two-Sample U-Test

One-Sample U-Test

Using Directional Hypotheses

Formula Syntax and Subsetting Samples in the U-test

Paired t- and U-Tests

Correlation and Covariance

Simple Correlation

Covariance

Significance Testing in Correlation Tests

Formula Syntax

Tests for Association

Multiple Categories: Chi-Squared Tests

Single Category: Goodness of Fit Tests

Summary

Chapter 7: Introduction to Graphical Analysis

Box-whisker Plots

Basic Boxplots

Customizing Boxplots

Horizontal Boxplots

Scatter Plots

Basic Scatter Plots

Adding Axis Labels

Plotting Symbols

Setting Axis Limits

Using Formula Syntax

Adding Lines of Best-Fit to Scatter Plots

Pairs Plots (Multiple Correlation Plots)

Line Charts

Line Charts Using Numeric Data

Line Charts Using Categorical Data

Pie Charts

Cleveland Dot Charts

Bar Charts

Single-Category Bar Charts

Multiple Category Bar Charts

Horizontal Bars

Bar Charts from Summary Data

Copy Graphics to Other Applications

Use Copy/Paste to Copy Graphs

Save a Graphic to Disk

Summary

Chapter 8: Formula Notation and Complex Statistics

Examples of Using Formula Syntax for Basic Tests

Formula Notation in Graphics

Analysis of Variance (ANOVA)

One-Way ANOVA

Simple Post-hoc Testing

Extracting Means from aov() Models

Two-Way ANOVA

Extracting Means and Summary Statistics

Interaction Plots

More Complex ANOVA Models

Other Options for aov()

Summary

Chapter 9: Manipulating Data and Extracting Components

Creating Data for Complex Analysis

Data Frames

Matrix Objects

Creating and Setting Factor Data

Making Replicate Treatment Factors

Adding Rows or Columns

Summarizing Data

Simple Column and Row Summaries

Complex Summary Functions

Summary

Chapter 10: Regression (Linear Modeling)

Simple Linear Regression

Linear Model Results Objects

Similarity between lm() and aov()

Multiple Regression

Formulae and Linear Models

Model Building

Curvilinear Regression

Logarithmic Regression

Polynomial Regression

Plotting Linear Models and Curve Fitting

Best-Fit Lines

Confidence Intervals on Fitted Lines

Summarizing Regression Models

Diagnostic Plots

Summary of Fit

Summary

Chapter 11: More About Graphs

Adding Elements to Existing Plots

Error Bars

Adding Legends to Graphs

Adding Text to Graphs

Adding Points to an Existing Graph

Adding Various Sorts of Lines to Graphs

Matrix Plots (Multiple Series on One Graph)

Multiple Plots in One Window

Splitting the Plot Window into Equal Sections

Splitting the Plot Window into Unequal Sections

Exporting Graphs

Using Copy and Paste to Move a Graph

Saving a Graph to a File

Using the Device Driver to Save a Graph to Disk

Summary

Chapter 12: Writing Your Own Scripts: Beginning to Program

Copy and Paste Scripts

Make Your Own Help File as Plain Text

Using Annotations with the # Character

Creating Simple Functions

One-Line Functions

Using Default Values in Functions

Simple Customized Functions with Multiple Lines

Storing Customized Functions

Making Source Code

Displaying the Results of Customized Functions and Scripts

Displaying Messages as Part of Script Output

Summary

Appendix: Answers to Exercises

Chapter 1

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Exercise 5 Solution

Chapter 2

Exercise 1 Solution

Exercise 2 Solution

Chapter 3

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Chapter 4

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Chapter 5

Exercise 1 Solution

Exercise 2 Solution

Chapter 6

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Exercise 5 Solution

Chapter 7

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Exercise 5 Solution

Chapter 8

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Exercise 5 Solution

Chapter 9

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Exercise 5 Solution

Chapter 10

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Exercise 5 Solution

Chapter 11

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Chapter 12

Exercise 1 Solution

Exercise 2 Solution

Exercise 3 Solution

Exercise 4 Solution

Exercise 5 Solution

Introduction

Chapter 1

Introducing R: What It Is and How to Get It

What you will learn in this chapter:

	Discovering what R is

	How to get the R program

	How to install R on your computer

	How to start running the R program

	How to use the help system and find help from other sources

	How to get additional libraries of commands

R is more than just a program that does statistics. It is a sophisticated computer language and environment for statistical computing and graphics. R is available from the R-Project for Statistical Computing website (www.r-project.org), and following is some of its introductory material:

R is an open-source (GPL) statistical environment modeled after S and S-Plus. The S language was developed in the late 1980s at AT&T labs. The R project was started by Robert Gentleman and Ross Ihaka (hence the name, R) of the Statistics Department of the University of Auckland in 1995. It has quickly gained a widespread audience. It is currently maintained by the R core-development team, a hard-working, international team of volunteer developers. The R project webpage is the main site for information on R. At this site are directions for obtaining the software, accompanying packages, and other sources of documentation.

R is a powerful statistical program but it is first and foremost a programming language. Many routines have been written for R by people all over the world and made freely available from the R project website as “packages.” However, the basic installation (for Linux, Windows or Mac) contains a powerful set of tools for most purposes.

Because R is a computer language, it functions slightly differently from most of the programs that users are familiar with. You have to type in commands, which are evaluated by the program and then executed. This sounds a bit daunting to many users, but the R language is easy to pick up and a lot of help is available. It is possible to copy and paste in commands from other applications (for example: word processors, spreadsheets, or web browsers) and this facility is very useful, especially if you keep notes as you learn. Additionally, the Windows and Macintosh versions of R have a graphical user interface (GUI) that can help with some of the basic tasks.

[image: warning.eps]

WARNING

Beware when copying and pasting commands into R from other applications; R can’t handle certain auto formatting characters such as en-dashes or smart quotes.

R can deal with a huge variety of mathematical and statistical tasks, and many users find that the basic installation of the program does everything they need. However, many specialized routines have been written by other users and these libraries of additional tools are available from the R website. If you need to undertake a particular type of analysis, there is a very good chance that someone before you also wanted to do that very thing and has written a package that you can download to allow you to do it.

R is open source, which means that it is continually being reviewed and improved. R runs on most computers—installations are available for Windows, Macintosh, and Linux. It also has good interoperability, so if you work on one computer and switch to another you can take your work with you.

R handles complex statistical approaches as easily as more simple ones. Therefore once you know the basics of the R language, you can tackle complex analyses as easily as simple ones (as usual it is the interpretation of results that can be the really hard bit).

Getting the Hang of R

R is unlike most current computer programs in that you must type commands into the console window to carry out most tasks you require. Throughout the text, the use of these commands is illustrated, which is indeed the point of the book.

Where a command is illustrated in its basic form, you will see a fixed width font to mimic the R display like so:

help.start()

When the use of a particular command is illustrated, you will see the user-typed input illustrated by beginning the lines with the > character, which mimics the cursor line in the R console window like so:

> data1 = c(3, 5, 7, 5, 3, 2, 6, 8, 5, 6, 9)

Lines of text resulting from your actions are shown without the cursor character, once again mimicking the output that you would see from R itself:

> data1
 [1] 3 5 7 5 3 2 6 8 5 6 9

So, in the preceding example the first line was typed by the user and resulted in the output shown in the second line. Keep these conventions in mind as you are reading this chapter and they will come into play as soon as you have R installed and are ready to begin using it!

The R Website

The R website at www.r-project.org is a good place to visit to obtain the R program. It is also a good place to look for help items and general documentation as well as additional libraries of routines. If you use Windows or a Mac, you will need to visit the site to download the R program and install it. You can also find installation files for many Linux versions on the R website.

The R website is split into several parts; links to each section are on the main page of the site. The two most useful for beginners are the Documentation and Download sections.

Figure 1-1

[image: c01f001.tif]

In the Documentation section (see Figure 1-1) a Manuals link takes you to many documents contributed to the site by various users. Most of these are in HTML and PDF format. You can access these and a variety of help guides under Manuals Contributed Documentation. These are especially useful for helping the new user to get started. Additionally, a large FAQ section takes you to a list that can help you find answers to many question you might have. There is also a Wiki, and although this is still a work in progress, it is a good place to look for information on installing R on Linux systems.

In the Downloads section you will find the links from which you can download R. The following section goes into more detail on how to do this.

Downloading and Installing R from CRAN

The Comprehensive R Archive Network (CRAN) is a network of websites that host the R program and that mirror the original R website. The benefit of having this network of websites is improved download speeds. For all intents and purposes, CRAN is the R website and holds downloads (including old versions of software) and documentation (e.g. manuals, FAQs). When you perform searches for R-related topics on the internet, adding CRAN (or R) to your search terms increases your results. To get started downloading R, you’ll want to perform the following steps:

1. Visit the main R web page (www.r-project.org); you see a Getting Started box with a link to download R (see Figure 1-2). Click that link and you are directed to select a local CRAN mirror site from which to download R.

Figure 1-2

[image: c01f002.tif]

2. The starting page of the CRAN website appears once you have selected your preferred mirror site. This page has a Software section on the left with several links. Choose the R Binaries link to install R on your computer (see Figure 1-3). You can also click the link to Packages, which contains libraries of additional routines. However, you can install these from within R so you can just ignore the Packages link for now. The Other link goes to a page that lists software available on CRAN other than the R base distribution and regular contributed extension packages. This link is also unnecessary for right now and can be ignored as well.

Figure 1-3

[image: c01f003.tif]

3. Once you click the R Binaries link you move to a simple directory containing folders for a variety of operating system (see Figure 1-4). Select the appropriate operating system on which you will be downloading R and follow the link to a page containing more information and the installation files that you require.

Figure 1-4

[image: c01f004.tif]

The details for individual operating systems vary, so the following sections are split into instructions for each of Windows, Macintosh, and Linux.

Installing R on Your Windows Computer

The install files for Windows come bundled in an .exe file, which you can download from the windows folder (refer to Figure 1-4). Downloading the .exe file is straightforward (see Figure 1-5), and you can install R simply by double-clicking the file once it is on your computer.

Figure 1-5

[image: c01f005.tif]

Run the installer with all the default settings and when it is done you will have R installed.

Versions of Windows post XP require some of additional steps to make R work properly. For Vista or later you need to alter the properties of the R program so that it runs with Administrator privileges. To do so, follow these steps:

1. Click the Windows button (this used to be labeled Start).

2. Select Programs.

3. Choose the R folder.

4. Right-click the R program icon to see an options menu (see Figure 1-6).

Figure 1-6

[image: c01f006.tif]

5. Select Properties from the menu. You will then see a new options window.

6. Under the Compatibility tab, tick the box in the Privilege Level section (see Figure 1-7) and click OK.

Figure 1-7

[image: c01f007.tif]

7. Run R by clicking the Programs menu, shortcut, or quick-launch icon like any other program. If the User Account Control window appears (see Figure 1-8), select Yes and R runs as normal.

Figure 1-8

[image: c01f008.tif]

Now R is set to run with administrator access and will function correctly. This is important, as you see later. R will save your data items and a history of the commands you used to the disk and it cannot do this without the appropriate access level.

Installing R on Your Macintosh Computer

The install files for OS X come bundled in a DMG file, which you can download from the macosx folder (refer to Figure 1-4).

Figure 1-9

[image: c01f009.tif]

Once the file has downloaded it may open as a disk image or not (depending how your system is set up). Once the DMG file opens you can double-click the installer file and installation will proceed (see Figure 1-9). Installation is fairly simple and no special options are required. Once installed, you can run R from Applications and place it in the dock like any other program.

Installing R on Your Linux Computer

If you are using a Linux OS, R runs through the Terminal program. Downloadable install files are available for many Linux systems on the R website (see Figure 1-10). The website also contains instructions for installation on several versions of Linux. Many Linux systems also support a direct installation via the Terminal.

Figure 1-10

[image: c01f010.tif]

The major Linux systems allow you to install the R program directly from the Terminal, and R files are kept as part of their software repositories. These repositories are not always very up-to-date however, so if you want to install the very latest version of R, look on the CRAN website for instructions and an appropriate install file. The exact command to install direct from the Terminal varies slightly from system to system, but you will not go far wrong if you open the Terminal and type R into it. If R is not installed (the most likely scenario), the Terminal may well give you the command you need to get it (see Figure 1-11)!

Figure 1-11

[image: c01f011.tif]

In general, a command along the following lines will usually do the trick:

sudo apt-get install r-base-core

In Ubuntu 10.10, for example, this installs everything you need to get started. In other systems you may need two elements to install, like so:

sudo apt-get install r-base r-base-dev

The basic R program and its components are built from the r-base part. For many purposes this is enough, but to gain access to additional libraries of routines the r-base-dev part is needed. Once you run these commands you will connect to the Internet and the appropriate files will be downloaded and installed.

Once R is installed it can be run through the Terminal program, which is found in the Accessories part of the Applications menu. In Linux there is no GUI, so all the commands must be typed into the Terminal window.

Running the R Program

Once R is installed you can run it in a variety of ways:

	In Windows the program works like any other—you may have a desktop shortcut, a quick launch icon, or simply get to it via the Start button and the regular program list.

	On a Macintosh the program is located in the Applications folder and you can drag this to the dock to create a launcher or create an alias in the usual manner.

	On Linux the program is launched via the Terminal program, which is located in the Accessories section of the Applications menu.

Once the R program starts up you are presented with the main input window and a short introductory message that appears a little different on each OS:

	In Windows a few menus are available at the top as shown in Figure 1-12.

Figure 1-12

[image: c01f012.tif]

	On the Macintosh OS X, the welcome message is the same (see Figure 1-13). In this case you also have some menus available and they are broadly similar to those in the Windows version. You also see a few icons; these enable you to perform a few tasks but are not especially useful. Under these icons is a search box, which is useful as an alternative to typing in help commands (you look at getting help shortly).

Figure 1-13

[image: c01f013.tif]

	In Linux systems there are no icons and the menu items you see relate to the Terminal program rather than R itself (see Figure 1-14).

Figure 1-14

[image: c01f014.tif]

R is a computer language, and like any other language you must learn the vocabulary and the grammar to make yourself understood and to carry out the tasks you want. Getting to know where help is available is a good starting point, and that is the subject of the next section.

Finding Your Way with R

Finding help when you are starting out can be a daunting prospect. A lot of material is available for help with R and tracking down the useful information can take a while. (Of course, this book is a good starting point!) In the following sections you see the most efficient ways to access some of the help that is available, including how to access additional libraries that you can use to deal with the tasks you have.

Getting Help via the CRAN Website and the Internet

The R website is a good place to find material that supports your learning of R. Under the Manuals link are several manuals available in HTML or as PDF. You’ll also find some useful beginner’s guides in the Contributed Documentation section. Different authors take different approaches, and you may find one suits you better than another. Try a few and see how you get on. Additionally, preferences will change as your command of the system develops. There is also a Wiki on the R website that is a good reference forum, which is continually updated.

[image: note.eps]

NOTE

Remember that if you are searching for a few ideas on the internet, you can add the word CRAN to your search terms in your favorite search engine (adding R is also useful). This will generally come up with plenty of options.

The Help Command in R

R contains a lot of built-in help, and how this is displayed varies according to which OS you are using and the options (if any) that you set. The basic command to bring up help is:

help(topic)

Simply replace topic with the name of the item you want help on. You can also save a bit of typing by prefacing the topic with a question mark, like so:

?topic

You can also access the help system via your web browser by typing:

help.start()

This brings up the top-level index page where you can use the Search Engine & Keywords hyperlink to find what you need. This works for all the different operating systems. Of course, you need to know what command you are looking for to begin with. If you are not quite sure, you can use the following command:

apropos(‘partword’)

This searches through the help files for matches to the word you typed, you replace ‘partword’ with the text you want to search for. Note that unlike the previous help() command you do need the quotes (single or double quotes are fine as long as they match).

Help for Windows Users

The Windows default help generally works fine (see Figure 1-15), but the Index and Search tabs only work within the section you are in, and it is not possible to get to the top level in the search hierarchy. If you return to the main command window and type in another help command, a new window opens so it is not possible to scroll back through entries unless they are in the same section.

Figure 1-15

[image: c01f015.tif]

Once you are done with your help window, you can close it by clicking the red X button.

Help for Macintosh Users

In OS X the default help appears in a separate window as HTML text (see Figure 1-16). The help window acts like a browser and you can use the arrow buttons to return to previous topics if you follow hyperlinks. You can also type search terms into the search box.

Scrolling to the foot of the help entry enables you to jump to the index for that section (Figure 1-17). Once at the index you can jump further up the hierarchy to reach other items.

The top level you can reach is identical to the HTML version of the help that you get if you type the help.start() command (see Figure 1-18), except that it is in a dedicated help window rather than your browser.

Figure 1-16

[image: c01f016.tif]

Figure 1-17

[image: c01f017.tif]

Figure 1-18

[image: c01f018.tif]

Once you are finished you can close the window in the usual manner by clicking the red button. If you return to the main command window and type another help item, the original window alters to display the new help. You can return to the previous entries using the arrow buttons at the top of the help window.

Help for Linux Users

Help in Linux is displayed by default as plain text and appears in the Terminal window, temporarily blotting out what was displayed previously (see Figure 1-19).

Figure 1-19

[image: c01f019.tif]

Once the topic is displayed you can scroll down (and back up) using the down and up arrows. When you are finished, hit the Q key and return to the Terminal window.

Help For All Users

A good way to explore the help features of R however, and the way that is universal to all OS is to use the HTML version of the system. Although at this point you will not really know any R commands, it is a useful time to look at a specific command to illustrate the help feature. In this example you look at the mean() command. As you may guess, this determines the arithmetic mean of a set of numbers. Try the following:

1. First, type in the following command:
help.start()

2. This brings up the main help pages in your default browser. Click the Packages link and then click the base link. Navigate your way down to the mean() command and look at the entry there.

3. Navigate back to the first page and use the Search Engine link to search for the mean command. You will see several entries, depending on which additional packages are installed.

4. Select the base::mean entry in this case, which brings up help for the command to determine the arithmetic mean.

Anatomy of a Help Item in R

Knowing how to get the most out of the help files is very handy and a good way to learn more about R and how it works. Take a look at a specific example of a help window here using the mean() command again. You start by bringing up the help item for this command. You can type one of the following:

help(mean)
?mean

Alternatively, you might have used the HTML help and put this into the search box. In any event you will get a help entry that looks like Figure 1-20. The entry begins with the name of the command, followed by the name of the package in curly brackets where the command is found.

Figure 1-20

[image: c01f020.tif]

In Figure 1-20 you see mean{base}. This tells you that the mean() command is found in the base package. This entry becomes more useful when you come to use commands and routines that are not part of the standard installation of R, which you will look at shortly.

At the top of your help entry you also see a title and a brief description of what the command does. The next part tells you how to use the command in detail (see Figure 1-21) and the syntax (that is, how to write out the command). The syntax is important because you need to ensure that when you type something, R “knows” exactly what you want to do.

Figure 1-21

[image: c01f021.tif]

The help entry shows what arguments are required as part of the command (think of them as additional instructions) and gives a bit of explanation. The bottom part of a help entry typically gives some references (see Figure 1-22) and some other related commands. In Windows or Macintosh, these are hyperlinks so you can click them and jump to their help entries. In Linux the help is plain text so there are no hyperlinks. If, however, you used help.start() and brought up the HTML help system in your web browser, the hyperlinks do appear.

Figure 1-22

[image: c01f022.tif]

At the very end you see some examples of how to use the command “in action.” These examples can be copied to the clipboard and pasted into the main command console so you can see what they do. Sometimes these examples can be a bit tricky to interpret, but as you learn more about R you will be able to decipher how they work and what they do more easily. The example of the mean() command is simple, but even this might seem a bit daunting at this stage!

The first line of the examples in Figure 1-22 is creating a series of numbers so that you have something to make a mean of. Here R makes an item called x, which comprises the values 0 to 10 with a 50 at the end. The next line uses the mean command in its simplest form and generates a standard mean from the x item. The result is called xm. The third line takes the result of your mean (xm) and also makes a new mean using the trim argument. Try typing the commands from the example in the help entry yourself or copy and paste from R. The commands look like this:

> x <- c(0:10, 50)
> xm <- mean(x)
> c(xm, mean(x, trim = 0.10))

You should see two values as the result:

[1] 8.75 5.50

The first (8.75) is the mean of the series of values and the second (5.50) is the trimmed mean, a way of knocking off extreme values.

The final example line takes a trimmed mean (a bit more trim, using a larger trim value of 0.2 rather than the 0.1 used before) of an example data set called USArrests. R contains a lot of built-in example data; these data are often used for examples and you can access them yourself quite easily. To see what the USArrests data looks like type:

USArrests

Note that R is case sensitive and that you need to type the name exactly as it appears here. By opening a simple help entry, reading through it carefully, and looking at the examples, you can learn a lot about how R works and what you are able to do with it.

Command Packages

The R program is built from a series of modules, called packages. These packages are libraries of commands that undertake various functions. When you first start R several packages are loaded on your computer and become ready for use. You can see what is available by using the search() command like so:

> search()
 [1] ".GlobalEnv" "tools:RGUI" "package:stats" "package:graphics"
 [5] "package:grDevices" "package:utils" "package:datasets" "package:methods"
 [9] "Autoloads" "package:base"

Here you can see, for example, no less than seven packages; these are loaded and start to carry out the most basic and important functions in R. Learning how to deal with these packages is useful, because you may want to add extra analytical routines to your installation of R to extend its capabilities.

Standard Command Packages

When you use the search() command you can see what packages are loaded and ready for use. You can see, for example, the graphics package, which carries out many of the routines required to create graphs.

Several other packages are ready-installed but not automatically loaded and immediately available. For example, the splines package contains routines for smoothing curves, but is not automatically loaded. To see what packages are available you can type:

installed.packages()

The output can be quite long, especially if you have downloaded additional packages to your version of R. Running and manipulating packages is examined shortly, but first you should read the next section where you will consider additional packages and what they might do for you.

What Extra Packages Can Do for You

The basic installation of R provides a wealth of commands that carry out many of the tasks that you might need. However, it cannot do everything—there may well be occasions when you need to run a particular type of analysis and the commands you need are not available. Because of the way R is put together it is possible to create specialist libraries of commands that can be bolted on whenever required. Many such packages are available from the CRAN website.

If you need to conduct a particular analysis and find that the basic installation of R does not have appropriate commands available, there is every chance that someone before you has come across the same problem. The CRAN website contains more than 2,600 additional packages that are available to carry out many extra “things” that were not included in the basic installation of R.

You can see an entire list of these additional packages by going to the CRAN website and clicking the Packages hyperlink. There are a lot, so browsing by name is going to take quite a while. One way to see what types of thing are available is to use the CRAN Task Views link. This enables you to browse by topic and highlights the sorts of thing that you may want to do and shows the specific packages that are available. In this way you can target the types of package most relevant to your needs.

At time of writing 28 Task Views were available. The subjects are listed in Table 1-1.

Table 1-1: Task Views and Their Uses

	Title
	Uses

	Bayesian
	Bayesian Inference

	ChemPhys
	Chemometrics and Computational Physics

	ClinicalTrials
	Clinical Trial Design, Monitoring, and Analysis

	Cluster
	Cluster Analysis & Finite Mixture Models

	Distributions
	Probability Distributions

	Econometrics
	Computational Econometrics

	Environmetrics
	Analysis of Ecological and Environmental Data

	ExperimentalDesign
	Design of Experiments (DoE) & Analysis of Experimental Data

	Finance
	Empirical Finance

	Genetics
	Statistical Genetics

	Graphics
	Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization

	gR
	gRaphical Models in R

	HighPerformanceComputing
	High-Performance and Parallel Computing with R

	MachineLearning
	Machine Learning & Statistical Learning

	MedicalImaging
	Medical Image Analysis

	Multivariate
	Multivariate Statistics

	NaturalLanguageProcessing
	Natural Language Processing

	OfficialStatistics
	Official Statistics & Survey Methodology

	Optimization
	Optimization and Mathematical Programming

	Pharmacokinetics
	Analysis of Pharmacokinetic Data

	Phylogenetics
	Phylogenetics, Especially Comparative Methods

	Psychometrics
	Psychometric Models and Methods

	ReproducibleResearch
	Reproducible Research

	Robust
	Robust Statistical Methods

	SocialSciences
	Statistics for the Social Sciences

	Spatial
	Analysis of Spatial Data

	Survival
	Survival Analysis

	TimeSeries
	Time Series Analysis

Alternatively, you can search the Internet for your topic and you will likely find quite a few hits that mention appropriate R packages.

How to Get Extra Packages of R Commands

The easiest way to get these packages installed is to do it from within R itself. Windows and Macintosh have menu items that will assist this process. In Linux you must type in a command directly. You can also use this command in Windows or Macintosh. The next few sections look at each OS in turn.

How to Install Extra Packages for Windows Users

In Windows you can use the Packages menu. You have several options, but Install Package(s) is the one you will want most often. After you have selected a local mirror site you are presented with a list of available binary packages from which you can choose the ones you require (see Figure 1-23).

Figure 1-23

[image: c01f023.tif]

Once you have selected the packages you require, click OK at the bottom and the packages will be downloaded and installed directly into R.

If you have acquired package files directly from the Internet (usually as .zip), you can use the Install Package(s) from Local Zip Files option in the Packages menu. This allows you to select the files you want, and once again the packages are unzipped and installed right into R.

How to Install Extra Packages for Macintosh Users

In OS X navigate to the Packages & Data menu and select the Package Installer option. This brings up a window where you can select the package(s) that you want to install (see Figure 1-24). The window initially appears blank and you can click the Get List button to acquire the list from your selected source, which by default is the CRAN list of binary packages (those compiled and ready to go).

Figure 1-24

[image: c01f024.tif]

The next task is to select the package(s) you require and click the Install Selected button. (You can select multiple items using Cmd+click, Shift+click, and so on). It is simplest to locate the new packages in the default location (at the system level), where they are then available for all users. Once you click the Install Selected button, the selected packages are downloaded and installed into R.

It is also possible to download packages using your web browser and install the archive files. Usually the CRAN packages come as .tgz files. To manage the installation of these files, use the same window as before (refer to Figure 1-24) but this time alter the Packages Repository so that it reads Local Binary Package rather than the current CRAN (binaries). The page will remain blank because R will not know where to look for the file(s), so you need to click the Install button and then select the file(s) you require.

How to Install Extra Packages for Linux Users

In Linux systems there is no GUI and therefore no ready menu for you to use. You need to type a command into the console window to install any packages that you want. These commands will also work in Windows or Macintosh versions. You can view a list of available packages quite easily using the following command:

install.packages()

Note that you end the command with parentheses. This command brings up a window allowing you to select your location and then displays the list of available packages from the CRAN system. You can select these packages by clicking each one you want. They remain selected until you click them again, as shown in Figure 1-25.

Figure 1-25

[image: c01f025.tif]

Once you have selected what you want, click OK and the packages are retrieved. Unlike Windows or OS X the packages are source files and are “built” once they are downloaded. For all practical purposes, when you click OK the packages are installed for you and are ready to use (you just have to wait while the packages are compiled and built).

If you know the name of a package you can install it directly by adding its name into the parentheses of the command like so:

install.packages(‘ade4’)

This gets the ade4 package from the CRAN repository and downloads and installs it for you. Note that the name of the package you require must be in quotes; single or double quotes are fine as long as they are not mixed.

You can install many possible packages of commands. For example, try the following command:

install.packages(“gdata”)

This starts the process of installing the gdata library to your computer. First you will be asked to select the local mirror site—select something near to your geographic location and the appropriate files will be downloaded and installed into your system. The gdata package provides various programming tools for data manipulation, you can find out more by typing help(gdata).

[image: note.eps]

NOTE

In the text you will see references to library and package. These terms are interchangeable. Think of a package as being the bundle of code that you download and a library as being what you get when you make the code available for use in R.

Running and Manipulating Packages

Once you have some packages installed you need to be able to access the new commands available in these packages. The packages are not automatically ready for use and you must load them to make the library of code routines available for use.

You can see which packages are loaded and running using the following command:

search()

If you do this before you load any additional packages, you will see the core form of the R basic distribution. The following resulted from the search() command on a Mac OS X with R version 2.7.1 installed:

> search()
 [1] ".GlobalEnv" "tools:RGUI" "package:stats"
 [4] "package:graphics" "package:grDevices" "package:utils"
 [7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

You can see that the basic R program is actually comprised of several smaller units, no less than seven packages in this case. By default the new packages are not automatically ready for use but need to be loaded.

Loading Packages

It is simple to load packages as required. Start by issuing the following command:

library(package)

The library() command retrieves the appropriate package and makes its contents available for you (think of it as adding to your library of available commands). Note that you do not need to put the package name in quotes. Most authors try hard to avoid using names for commands that exist in other packages. However, some duplication is unavoidable. If you load a library that contains a command with a duplicate name, you are given a brief message to this effect. The new command is the one that works and the older version is temporarily unavailable.

You can see what packages are installed using the following command:

installed.packages()

If you have downloaded a lot of packages, this display can be quite extensive. As well as additional packages, the display lists the basic parts of the R distribution.

Windows-Specific Package Commands

In Windows you can see what packages are available to be used by selecting Load Package from the Packages menu. This brings up a simple list, from which you can select a package to load (see Figure 1-26).

Figure 1-26

[image: c01f026.tif]

If you want to load a package, select one (or more) and click OK, otherwise you can simply use the list to view items you have downloaded and then click the Cancel button.

Macintosh-Specific Package Commands

In Macintosh OS you can use the Package Manager option in the Packages & Data menu (see Figure 1-27). This brings up a window that lists all the packages downloaded and available for use.

If you click a package name you gain access to the help for that package, so you are able to explore the commands without loading the library. If you decide to load a particular package (or more than one), you can check the box in the Status column. You can also unload a package which is discussed in the next section.

Figure 1-27

[image: c01f027.tif]

Removing or Unloading Packages

If you have loaded some packages and want to remove one, perhaps to free up an overwritten command, you can use the detach() command like so:

detach(package:name)

You simply replace the name part with the name of the package that you want to remove. Once removed, a package is not totally gone; you can still use the library() command to get it back when required.

Summary

	The Comprehensive R Archive Network (CRAN) is available via www.r-project.org. This is the place to get software and related documentation.

	You use R by typing commands into the console window.

	In Windows and Macintosh the GUI provides some additional menu items.

	R has an extensive help system, which you can access via the help() command. The help.start() command opens the help system in a web browser.

	Adding CRAN to a web search often brings up useful entries when searching for information.

	You can obtain many additional packages of commands and you can install these additional packages using the install.packages() command.

Exercises

You can find answers to these exercises in Appendix A.

1. Try installing the coin library from within R—note that this will load some additional libraries too.

2. Load the coin library of commands and check to see what commands are available in this library.

3. Load the MASS library (it is already installed) and find help about the bcv command.

4. Check to see which libraries of commands are loaded and ready for use.

5. Clear out the coin library that you loaded earlier.

What You Learned in this Chapter

	Topic
	Key Points

	Obtaining R
	The website www.r-project.org is the home of the Comprehensive R Archive Network (CRAN) and is the source of software and documentation.

	Installing R
	The R website contains specific installers for the main operating systems. In Linux, R can often be installed from the command line in the Terminal.

	Running R
	R is driven by typing commands into the console window. Windows and Macintosh operating systems have additional menus. In Linux, R is driven via the Terminal and there are no menus.

	The Help System
	R contains extensive documentation, which can be accessed by various commands.

	help(command)?command
	Brings up a help entry for the specified command.

	help.start()
	Opens the help system in the system default browser.

	apropos(“partword”)
	Shows all the commands that contain the “partword”.

	Additional packages of R commands
	R is built from various modules called packages. Additional packages provide extra commands for specific purposes. These packages are found on the website and can be managed using various commands. In Windows and Macintosh the GUI also has menus that help with package management.

	install.packages(“pkg”)
	Installs a library (package) of commands from the CRAN website.

	installed.packages()
	Shows a list of the packages that are installed.

	library(pkg)
	Loads a package of commands, making them available for use (the package must already be installed).

	search()
	Shows a list of packages (and other objects) that are loaded and available for use.

	detach(package:name)
	Makes a package unavailable for use. Replace name with the package name to be detached. The named package will now not show up when the search() command is used.

Chapter 2

Starting Out: Becoming Familiar with R

What you will learn in this chapter:

	How to use R for simple math

	How to store results of calculations for future use

	How to create data objects from the keyboard, clipboard, or external data files

	How to see the objects that are ready for use

	How to look at the different types of data objects

	How to make different types of data objects

	How to save your work

	How to use previous commands in the history

So far you have learned how to obtain and install R, and how to bring up elements of the help system. As you have seen, R is a language and the majority of tasks require you to type commands directly into the input window. Like any language you need to learn a vocabulary of terms as well as the grammar that joins the words and makes sense of them. In this chapter you learn some of the basics that underpin the R language. You begin by using R as a simple calculator. Then you learn how to store the results of calculations for future use. In most cases, you will want to create and use complex data items, and you learn about the different kinds of data objects that R recognizes.

Some Simple Math

R can be used like a calculator and indeed one of its principal uses is to undertake complex mathematical and statistical calculations. R can perform simple calculations as well as more complex ones. This section deals with some of R’s commonly used mathematical functions. Learning how to carry out some of these simple operations will give you practice at using R and typing simple commands.

Use R Like a Calculator

You can think of R as a big calculator; it will perform many complicated calculations but generally, these are made up of smaller elements. To see how you can use R in this way, start by typing in some simple math:

> 3 + 9 + 12 -7
[1] 17

The first line shows what you typed: a few numbers with some simple addition and subtraction. The next line shows you the result (17). You also see that this line begins with [1] rather than the > cursor. R is telling you that the first element of the answer is 17. At the moment this does not seem very useful, but the usefulness becomes clearer later when the answers become longer. For the remainder of this book, the text will mimic R and display examples using the > cursor to indicate which lines are typed by the user; lines beginning with anything else are produced by R.

Now make the math a bit more complicated:

> 12 + 17/2 -3/4 * 2.5
[1] 18.625

To make sense of what was typed, R uses the standard rules and takes the multiplication and division parts first, and then does the additions and subtractions. If parentheses are used you can get a quite different result:

> (12 + 17/2 -3/4) * 2.5
[1] 49.375

Here R evaluates the part(s) in the parentheses first, taking the divisions before the addition and subtraction. Lastly, the result from the brackets is been multiplied by 2.5 to give the final result. It is important to remember this simple order when doing long calculations!

[image: note.eps]

NOTE

R ignores spaces, so when you type your math expressions there is no need to include them. In practice however, it is helpful use them because it makes the commands easier to read and you are less likely to make a mistake.

Many mathematical operations can be performed in R. In Table 2-1 you can see a few of the more useful mathematical operators.

Table 2-1: Some of the Mathematical Operations Available in R

	Command/Operation
	Explanation

	+ - / * ()
	Standard math characters to add, subtract, divide, and multiply, as well as parentheses.

	pi
	The value of pi (π), which is approximately 3.142.

	x^y
	The value of x is raised to the power of y, that is, xy.

	sqrt(x)
	The square root of x.

	abs(x)
	The absolute value of x.

	factorial(x)
	The factorial of x.

	log(x, base = n)
	The logarithm of x using base = n (natural log if none specified).

	log10(x)log2(x)
	Logarithms of x to the base of 10 or 2.

	exp(x)
	The exponent of x.

	cos(x)sin(x)tan(x)acos(x)asin(x)atan(x)
	Trigonometric functions for cosine, sine, tangent, arccosine, arcsine, and arctangent, respectively. In radians.

Some of the mathematical operators can be typed in by themselves—for example, + - * ^ but others require one or more additional instructions. The log() command, for example, requires one or two instructions, the first being the number you want to evaluate and the second being the base of the log you require. If you type in only a single instruction, R assumes that you require the natural log of the value you specified. In the following activity you have the opportunity to try out some of the math and gain a feel for typing commands into the R console window.

Try It Out: Type Some Math

Perform the following steps to practice using some math in R.

1. Type in the following math command using the value of π:
> pi * 2^3 – sqrt(4)

2. Now try using the abs() command with some math:
> abs(12-17*2/3-9)

3. Now type a simple factorial:
> factorial(4)

4. Next, try typing the following logarithms (all give the same answer because they are different forms of the same thing):
> log(2, 10)
> log(2, base = 10)
> log10(2)

5. Now type in a natural log:
> log(2)

6. Follow up by typing the exponent:
> exp(0.6931472)

7. Type in a logarithm again:
> log10(2)

8. Reverse the logarithm like so:
> 10^0.30103

9. Now try some trigonometry:
> sin(45 * pi / 180)

10. Finally, try reversing the trigonometry from step 9:
asin(0.7071068) * 180 / pi

How It Works

The first three examples are fairly simple math. The pi part is simply a standard variable (π ≈ 3.142), and the sqrt() part is a command that determines the square root of whatever is in the following parentheses. The 2^3 part is equivalent to 23, which you cannot type directly because R uses plain text. Similarly, the abs() and factorial() commands perform their brand of math on the contents of the parentheses.

The log() command gives you the natural log as default unless you specify the base required as an additional instruction. For convenience, R provides two alternative commands, log10() and log2(), which allow you to specify base 10 or 2 more simply. Here you used three versions of the log() command to achieve the same results (0.30103). The next logarithm commands you used illustrated how to “reverse” natural and regular bases.

Finally, you evaluated the sine of 45. However, because R uses radians rather than degrees you had to multiply the angle in degrees by π divided by 180 to obtain the correct result. You determined the arcsine of 0.707, essentially reversing the process from before. However, R works in radians so you multiplied the result by 180 divided by π to get an answer in degrees.

Now that you have the idea about using some simple math you need to look at how you can store the results of calculations for later use.

Storing the Results of Calculations

Once you have performed a calculation you can save the result for use in some later calculation. The way to do this is to give the result a name. R uses named objects extensively and understanding these objects is vital to working with R. To make a result object you simply type a name followed by an equals sign, and then anything after the = will be evaluated and stored as your result. The formula should look like this:

object.name = mathematical.expression

The following example makes a simple result object from some mathematical expressions; the result can be recalled later:

> ans1 = 23 + 14/2 - 18 + (7 * pi/2)

Here R is instructed to create an item called ans1 and to make this from the result of the calculation that follows the = sign. Note that if you carry out this command you will not see a result. You are telling R to create the item from the calculation but not to display it. To get the result you simply type the name of the item you just created:

> ans1
[1] 22.99557

You can create as many items as you like (although eventually you would fill up the memory of your computer); here is another example:

> ans2 = 13 + 11 + (17 - 4/7)

Now you have two results, ans1 and ans2. You can use these like any other value in further calculations. For example:

> ans1 + ans2 / 2
[1] 43.20986
> ans3 = ans2 + 9 - 2 + pi

In these examples the = sign is used. This is perfectly logical but R allows you an alternative. In older versions of R and in most of the help examples you will see that the = sign is rarely used and a sort of arrow is used instead. For example:

> ans4 <- 3 + 5
> ans5 <- ans1 * ans2

Here two new result objects are created (ans4 and ans5) from the expressions to the right of the “arrow.” This is more flexible than the = sign because you can reverse the direction of the arrow:

> ans3 + pi / ans4 -> ans6

If the regular = sign was used instead in this example, you would get an error.

The results you have created so far are simple values that have resulted from various mathematical operations. These result objects are revisited later in the chapter. The “Making Named Objects” section provides a look at listing the objects created as well as some rules for object names. Most often you will have sets of data to examine; these will comprise more complicated sets of numbers. Being able to create more complex data is covered in the next section.

Reading and Getting Data into R

So far you have looked at some simple math. More often you will have sets of data to examine (that is, samples) and will want to create more complex series of numbers to work on. You cannot perform any analyses if you do not have any data so getting data into R is a very important task. This next section focuses on ways to create these complex samples and get data into R, where you are able to undertake further analyses.

Using the combine Command for Making Data

The simplest way to create a sample is to use the c() command. You can think of this as short for combine or concatenate, which is essentially what it does. The command takes the following form:

c(item.1, item.2, item.3, item.n)

Everything in the parentheses is joined up to make a single item. More usually you will assign the joined-up items to a named object:

sample.name = c(item.1, item.2, item.3, item.n)

This is much like you did when making simple result objects, except now your sample objects consist of several bits rather than a single value.

Entering Numerical Items as Data

Numerical data do not need any special treatment; you simply type the values, separated by commas, into the c() command.

In the following example, imagine that you have collected some data (a sample) and now want to get the values into R:

>data1 = c(3, 5, 7, 5, 3, 2, 6, 8, 5, 6, 9)

Now just create a new object to hold your data and then type the values into the parentheses. The values are separated using commas.

The “result” is not automatically displayed; to see the data you must type its name:

> data1
 [1] 3 5 7 5 3 2 6 8 5 6 9

Previously the named objects contained single values (the result of some mathematical calculation). Here the named object data1 contains several values, forming a sample. The [1] at the beginning shows you that the line begins with the first item (the number 3). When you get larger samples and more values, the display may well take up more than one line of the display, and R provides a number at the beginning of each row so you can see “how far along” you are. In the following example you can see that there are 41 values in the sample:

 [1] 582 132 716 515 158 80 757 529 335 497 3369 746 201 277 593
[16] 361 905 1513 744 507 622 347 244 116 463 453 751 540 1950 520
[31] 179 624 448 844 1233 176 308 299 531 71 717

The second row starts with [16], which tells you that the first value in that row is the 16th in the sample. This simple index system makes it a bit easier to pick out specific items.

You can incorporate existing data objects with values to make new ones simply by incorporating them as if they were values themselves (which of course they are). In this example you take the numerical sample that you made earlier and incorporate it into a larger sample:

> data1
 [1] 3 5 7 5 3 2 6 8 5 6 9
> data2 = c(data1, 4, 5, 7, 3, 4)
> data2
 [1] 3 5 7 5 3 2 6 8 5 6 9 4 5 7 3 4

Here you take your first data1 object and add some extra values to create a new (larger) sample. In this case you create a new item called data2, but you can overwrite the original as part of the process:

> data1 = c(6, 7, 6, 4, 8, data1)
> data1
 [1] 6 7 6 4 8 3 5 7 5 3 2 6 8 5 6 9

Now adding extra values at the beginning has modified the original sample.

Entering Text Items as Data

If the data you require are not numerical, you simply use quotes to differentiate them from numbers. There is no difference between using single and double quotes; R converts them all to double. You can use either or both as long as the surrounding quotes for any single item match, as shown in the following:

our.text = c(“item1”, “item2”, ‘item3’)

In practice though, it is a good habit to stick to one sort of quote; single quote marks are easier to type.

The following example shows a simple text sample comprising of days of the week:

> day1 = c('Mon', 'Tue', 'Wed', 'Thu')
> day1
[1] "Mon" "Tue" "Wed" "Thu"

You can combine other text objects in the same way as you did for the numeric objects previously, like so:

> day1 = c(day1, 'Fri')
> day1
[1] "Mon" "Tue" "Wed" "Thu" "Fri"

If you mix text and numbers, the entire data object becomes a text variable and the numbers are converted to text, shown in the following. You can see that the items are text because R encloses each item in quotes:

> mix = c(data1, day1)
> mix
 [1] "3" "5" "7" "5" "3" "2" "6" "8" "5" "6" "9" "Mon"
[13] "Tue" "Wed" "Thu" "Fri"

The c() command used in the previous example is a quick way of getting a series of values stored in a data object. This command is useful when you don’t have very large samples, but it can be a bit tedious when a lot of typing is involved. Other methods of getting data into R exist, which are examined in the next section.

Using the scan Command for Making Data

When using the c() command, typing all those commas to separate the values can be a bit tedious. You can use another command, scan(), to do a similar job. Unlike the c() command you do not insert the values in the parentheses but use empty parentheses. The command then prompts you to enter your data. You generally begin by assigning a name to hold the resulting data like so:

our.data = scan()

Once you press the Enter key you will be prompted to enter your data. The following activity illustrates this process.

Try It Out: Use scan() to Make Numerical Data

Perform the following steps to practice storing data using the scan() command.

1. Begin the data entry process with the scan() command:
> data3 = scan()

2. Now type some numerical values, separated by spaces, as follows:
1: 6 7 8 7 6 3 8 9 10 7

3. Now press the Enter key and type some more numbers on the fresh line:
11: 6 9

4. Press the Enter key once again to create a new line:
13:

5. Press the Enter key once more to finish the data entry:
13:
Read 12 items

6. Type the name of the object:
> data3
 [1] 6 7 8 7 6 3 8 9 10 7 6 9

How It Works

The initial command creates a new data object (called data3 in this case) and initiates the data entry process. You do not type any data at this stage but you do need the parentheses; in this way R knows that the word scan is a command and not a data item. Once you press the Enter key R shows a 1: and waits for you to enter data. The data can now be typed in with only spaces to separate them.

When you press the Enter key R displays 11:, indicating that the next item you type is the eleventh. You can now type more values on the new line. Once the Enter key is pressed the cursor moves to a new line once more. This time the row begins with 13:, which indicates that you have typed in twelve values so far and that the next one would be the thirteenth. The data entry process is finished by pressing Enter on the blank line; R then reminds you how many data items were typed in as part of this scan() command, in this case twelve. The data that were entered are not displayed, so to see what data you have entered, simply type the data object’s name (data3 in this case).

Entering Text as Data

You can enter text using the scan() command, but if you simply enter your items in quotes you will get an error message. You need to modify the command slightly like so:

scan(what = 'character')

You must tell R to expect that the items typed in are characters, not numbers; to do this you add the what = ‘character’ part in the parentheses. Note that character is in quotes. Once the command runs it operates in an identical manner as before.

In the following example a simple data item is created containing text stating the days of the week:

> day2 = scan(what = 'character')
1: Mon Tue Wed
4: Thu
5:
Read 4 items

Note that quotes are not needed for the entered data. R is expecting the entered data to be text so the quotes can be left out. Typing the name of the object you just created displays the data, and you can see that they are indeed text items and the quotes are there:

> day2
[1] "Mon" "Tue" "Wed" "Thu"

Using the Clipboard to Make Data

The scan() command is easier to use than the c() command because it does not require commas. The command can also be used in conjunction with the clipboard, which is quite useful for entering data from other programs (for example, a spreadsheet). To use these commands, perform the following steps:

1. If the data are numbers in a spreadsheet, simply type the command in R as usual before switching to the spreadsheet containing the data.

2. Highlight the necessary cells in the spreadsheet and copy them to the clipboard.

3. Return to R and paste the data from the clipboard into R. As usual, R waits until a blank line is entered before ending the data entry so you can continue to copy and paste more data as required.

4. Once you are finished, enter a blank line to complete data entry.

If the data are text, you add the what = ‘character’ instruction to the scan() command as before.

At this point, if you can open the file in a spreadsheet, proceed with the aforementioned four steps. If the file opens in a text editor or word processor, you must look to see how the data items are separated before continuing.

If the data are separated with simple spaces, you can simply copy and paste. If the data are separated with some other character, you need to tell R which character is used as the separator. For example, a common file type is CSV (comma-separated values), which uses commas to separate the data items. To tell R you are using this separator, simply add an extra part to your command like so:

scan(sep = ‘,’)

In this example R is told to expect a comma; note that you need to enclose the separator in quotes. Here are some comma-separated numerical data:

23,17,12.5,11,17,12,14.5,9
11,9,12.5,14.5,17,8,21

To get these into R, use the scan() command like so:

> data4 = scan(sep = ',')
1: 23,17,12.5,11,17,12,14.5,9
9: 11,9,12.5,14.5,17,8,21
16:
Read 15 items
> data4
 [1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

Note that you have to press the Enter key to finish the data entry. Note also that some of the original data had decimal points (for example, 14.5); R appends decimals to all the data so that they all have the same level of precision. If your data are separated by tab stops you can use “\t” to tell R that this is the case.

If the data are text, you simply add what = ‘character’ and proceed as before. Here are some text data contained in a CSV text file:

"Jan","Feb","Mar","Apr","May","Jun"
"Jul","Aug","Sep","Oct","Nov","Dec"

To get these data entered into R, perform the following steps:

1. Open the data file; in this case it has opened in a text editor and we see the quotes and the comma separators.

2. Highlight the data required.

3. Copy to the clipboard.

4. Switch to R and type in the scan() command.

5. Paste the contents of the clipboard.

6. Press Enter on a blank line to end the data entry (this means that you have to press Enter twice, once after the paste operation and once on the blank line).

7. Type the name of the data object created to view the entered data.

The set of operations appears as follows:

> data5 = scan(sep = ',', what = 'char')
1: "Jan","Feb","Mar","Apr","May","Jun"
7: "Jul","Aug","Sep","Oct","Nov","Dec"
13:
Read 12 items
> data5
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

[image: note.eps]

NOTE

Note that char is typed rather than character. Many R commands will accept abbreviations. In general as long as an instruction is unambiguous then R will work out what you want.

In this example both sep = and what = instructions are used. Additionally, the scan() command allows you to create data items from the keyboard or from clipboard entries, thus enabling you to move data from other applications quite easily. It is also possible to get the scan() command to read a file directly as described in the following section.

Reading a File of Data from a Disk

To read a file with the scan() command you simply add file = ‘filename’ to the command. For example:

> data6 = scan(file = 'test data.txt')
Read 15 items
> data6
 [1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

In this example the data file is called test data.txt, which is plain text, and the numerical values are separated by spaces. Note that the filename must be enclosed in quotes (single or double). Of course you can use the what = and sep = instructions as appropriate.

R looks for your data file in the default directory. You can find the default directory by using the getwd() command like so:

> getwd()
[1] "C:/Documents and Settings/Administrator/My Documents"

> getwd()
[1] "/Users/markgardener"

> getwd()
[1] "/home/mark"

The first example shows the default for a Windows XP machine, the second example is for a Macintosh OS X system, and the final example is for Linux (Ubuntu 10.10).

[image: note.eps]

NOTE

The directories listed are separated by forward slashes; the backslash character is not used.

If your file is somewhere else you must type its name and location in full. The location is relative to the default directory; in the preceding example the file was on the desktop so the command ought to have been:

> data6 = scan(file = 'Desktop/test data.txt')

The filename and directories are all case sensitive. You can also type in a URL and link to a file over the Internet directly; once again the full URL is required.

It may be easier to point permanently at a directory so that the files can be loaded simply by typing their names. You can alter the working directory using the setwd() command:

setwd('pathname')

When using this command, replace the pathname part with the location of your target directory. The location is always relative to the current working directory, so to set to my Desktop I used the following:

> setwd('Desktop')
> getwd()
[1] "/Users/markgardener/Desktop"

To step up one level you can type the following:

setwd('..')

You can look at a directory and see which files/folders are within it using the dir() or list.files() command:

dir()
list.files()

The default is to show the files and folders in the current working directory, but you can type in a path (in single quote marks) to list files in any directory. For example:

dir('Desktop')
dir('Documents')
dir('Documents/Excel files')

Note that the listing is in alphabetical order; files are shown with their extensions and folders simply display the name. If you have files that do not have extensions (for example: .txt, .doc), it is harder to work out which are folders and which are files. Invisible files are not shown by default, but you can choose to see them by adding an extra instruction to the command like so:

dir(all.files = TRUE)

In Windows and Macintosh OS there is an alternative method that enables you to select a file. You can include the instruction file.choose() as part of your scan() command. This opens a browser-type window where you can navigate to and select the file you want to read:

> data7 = scan(file.choose())
Read 15 items
> data7
 [1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

In the preceding example the target file was a plain text file with numerical data separated by spaces. If you have text or the items are separated by other characters, you use the what = and sep = instructions as appropriate, like so:

> data8 = scan(file.choose(), what = 'char', sep = ',')
Read 12 items
> data8
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

In this example, the target file contained the month data that you met previously; the file was a CSV file where the names of the months (text labels) were separated with commas.

[image: note.eps]

NOTE

Using the file.choose() instruction does not work on Linux operating systems.

The file.choose() instruction is useful because you can select files from different directories without having to alter the working directory or type the names in full.

So far the data items that you have created are simple; they contain either a single value (the result of a mathematical calculation) or several items. A list of data items is called a vector. If you only have a single value, your vector contains only one item, that is, it has a length of 1. If you have multiple values, your vector is longer. When you display the list R provides an index to help you see how many items there are and how far along any particular item is. Think of a vector as a one-dimensional data object; most of the time you will deal with larger datasets than single vectors of values.

Reading Bigger Data Files

The scan() command is helpful to read a simple vector. More often though, you will have complicated data files that contain multiple items (in other words two-dimensional items containing both rows and columns). Although it is possible to enter large amounts of data directly into R, it is more likely that you will have your data stored in a spreadsheet. When you are sent data items, the spreadsheet is also the most likely format you will receive. R provides the means to read data that is stored in a range of text formats, all of which the spreadsheet is able to create.

The read.csv() Command

In most cases you will have prepared data in a spreadsheet. Your dataset could be quite large and it would be tedious to use the clipboard. When you have more complex data it is better to use a new command—read.csv():

read.csv()

As you might expect, this looks for a CSV file and reads the enclosed data into R. You can add a variety of additional instructions to the command. For example:

read.csv(file, sep = ',', header = TRUE, row.names)

You can replace the file with any filename as before. By default the separator is set to a comma but you can alter this if you need to. This command expects the data to be in columns, and for each column to have a helpful name. The instruction header = TRUE, the default, reads the first row of the CSV file and sets this as a name for each column. You can override this with header = FALSE. The row.names part allows you to specify row names for the data; generally this will be a column in the dataset (the first one is most usual and sensible). You can set the row names to be one of the columns by setting row.names = n, where n is the column number.

[image: note.eps]

NOTE

In Windows or Macintosh you can replace the filename with a command, file.choose(); you do not need to type anything into the parentheses. This will open a browser-like window and allow you to select the file you require.

Some simple example data are shown in Table 2-2. Here you can see two columns; each one is a variable. The first column is labeled abund; this is the abundance of some water-living organism. The second column is labeled flow and represents the flow of water where the organism was found.

Table 2-2: Simple Data From a Two Column Spreadsheet

	abund
	flow

	9
	2

	25
	3

	15
	5

	2
	9

	14
	14

	25
	24

	24
	29

	47
	34

In this case there are only two columns and it would not take too long to use the scan() command to transfer the data into R. However, it makes sense to keep the two columns together and import them to R as a single entity. To do so, perform the following steps:

1. If you have a file saved in a proprietary format (for example, XLS), save the data as a CSV file instead.

2. Now assign the file a sensible name and use the read.csv() command as follows:
> fw = read.csv(file.choose())

3. Select the file from the browser window. If you are using Linux, the filename must be typed in full. Because the read.csv() command is expecting the data to be separated with commas, you do not need to specify that. The data has headings and because this is also the default, you do not need to tell R anything else.

4. To see the data, type its name like so:
> fw
 abund flow
1 9 2
2 25 3
3 15 5
4 2 9
5 14 14
6 25 24
7 24 29
8 47 34

You can see that each row is labeled with a simple index number; these have no great relevance but can be useful when there are a lot of data.

In the general, the read.csv() command is pretty useful because the CSV format is most easily produced by a wide variety of computer programs, spreadsheets, and is eminently portable. Using CSV means that you have fewer options to type into R and consequently less typing.

Alternative Commands for Reading Data in R

There are many other formats besides CSV in which data can exist and in which other characters, including spaces and tabs, can separate data. Consequently, the read.table() command is actually the basic R command for reading data. It enables you to read most formats of plain-text data. However, R provides variants of the command with certain defaults to make it easier when specifying some common data formats, like read.csv() for CSV files. Since most data is CSV though, the read.csv()is the most useful of these variants. But you may run into alternative formats, and the following list outlines the basic read.table() as well as other commands you can use to read various types of data:

	In the following example the data are separated by simple spaces. The read.table() command is a more generalized command and you could use this at any time to read your data. In this case you have to specify the additional instructions explicitly. The defaults are set to header = FALSE, sep = “ “ (a single space), and dec = “.”, for example.
data1 data2 data3
1 2 4
4 5 3
3 4 5
3 6 6
4 5 9

> my.ssv = read.table(file.choose(), header = TRUE)
> my.ssv = read.csv(file.choose(), sep = ' ')

	The next example shows data separated by tabs. If you have tab-separated values you can use the read.delim() command. In this command R assumes that you still have column heading names but this time the separator instruction is set to sep = “\t” (a tab character) by default:
data1 data2 data3
1 2 4
4 5 3
3 4 5
3 6 6
4 5 9

> my.tsv = read.delim(file.choose())
> my.tsv = read.csv(file.choose(), sep = '\t')
> my.tsv = read.table(file.choose(), header = TRUE, sep = '\t')

	The next example also shows data separated by tabs. In some countries the decimal point character is not a period but a comma, and a semicolon often separates data values. If you have a file like this you can use another variant, read.csv2(). Here the defaults are set to sep = “;”, header = TRUE, and dec = “,”.
day data1 data2 data3
mon 1 2 4
tue 4 5 3
wed 3 4 5
thu 3 6 6
fri 4 5 9

> my.list = read.delim(file.choose(), row.names = 1)
> my.list = read.csv(file.choose(), row.names = 1, sep = '\t')
> my.list = read.table(file.choose(), row.names = 1, header = TRUE,
 sep = '\t')

[image: note.eps]

NOTE

It is best to keep data names brief. R will accept the letters a–z and A–Z as well as the numbers 0–9, but the only other characters allowed are the period and the underscore. Names are case sensitive and must not begin with a number.

[image: note.eps]

NOTE

If you want to use the read.csv() command to read in a tab-separated file this is fine, but you need to remember to tell R the separator character (‘\t’) explicitly.

These commands essentially all perform the same function; the differences lie in the defaults. Regardless of which method you choose, getting data into R is a fundamental operation; you cannot do anything without having the data first. Bear the following checklist in mind when looking to get data from disk:

1. Check the format of the data file and note the separator character.

2. Look to see if columns are labeled.

3. Use the appropriate read.xxx() command to get your data into R. The read.csv() command is the most useful and has the fewest additional instructions to type.

4. You can use the file.choose() instruction to save typing the filename in full unless you are using a Linux computer.

5. Make sure the name you select for your data is short but meaningful; this cuts down on typing and helps you to find it later.

6. If your data has row names use the row.names = instruction to point to the column in the file that contains them.

Missing Values in Data Files

In the examples you have seen so far the samples in the data files have all been the same length. In the real world samples are often of unequal size. The following example contains two samples, one called mow and one called unmow. The mow sample contains five values, whereas the unmow sample contains only four values. When these data are read into R from a spreadsheet or text file, the program recognizes that you have multiple columns of data and sets them out accordingly. R makes your data into a neat rectangular item and fills in any gaps with NA.

[image: note.eps]

NOTE

IThe NA item is a special object in its own right and you can think of this as “Not Applicable” or “Not Available.”

In the following example the data were stored in a CSV file and were read into R with the read.csv() command:

> grass = read.csv(file.choose())
> grass
 mow unmow
1 12 8
2 15 9
3 17 7
4 11 9
5 15 NA

Here the data have been called grass and you can see that R has filled in the gap using NA. R always pads out the shorter samples using NA to produce a rectangular object. This is called a data frame. The data frame is an important kind of R object because it is used so often in statistical data manipulation and is how you generally have data in spreadsheets.

Although the NA can be dealt with fairly easily you should strive to create data frames that do not contain them if at all possible. In the following example the data have been rearranged. There are still two columns, but the first contains all the values and the second contains a name that relates to one of the previous column headings:

 species cut
1 12 mow
2 15 mow
3 17 mow
4 11 mow
5 15 mow
6 8 unmow
7 9 unmow
8 7 unmow
9 9 unmow

You can see that the label in the second column corresponds to a value in the first column. The first five items relate to the previous mow sample and the next four belong to the unmow sample. In statistical parlance the species column is called the response variable and the cut column is the predictor variable (or predictor factor).

R recognizes NA as a special kind of data object. It is important to know when your data contains NA items and what to do when you encounter them.

Viewing Named Objects

So far you have seen examples of creating data objects from some simple math and from reading in data files. In a general way you “make” new items by providing a name followed by the instruction that creates it. R is object oriented, which means that it expects to find named things to deal with in some way. For example, if you are conducting an experiment and collecting data from several samples, you want to create several named data objects in R in order to work on them and do your analyses later on.

As a reminder, the following examples show a few of the different ways you have seen thus far to create named items:

answer1 = 23 + 17/2 + pi/4
my.data = read.csv(file.choose())
sample1 = c(2, 5, 7, 3, 9, 4, 5)

Now it is time to learn how to view these items in R and remove them as necessary. The following sections cover these topics.

Viewing Previously Loaded Named-Objects

Once you have made a few objects and have them stored in R, you might forget what you have previously loaded as time goes on. You need a way to see what R objects are available; to do this you use the ls() command like so:

ls()

Viewing All Objects

The ls() command lists all the named items that you have available. You can also use the objects() command; (this is identical in function but slightly longer to type!) The result of either command is to list the objects stored in R at the current moment:

> ls()
[1] "answer1" "my.data" "sample1"

This example contains three objects. The objects are listed in alphabetical order (with all the uppercase before the lowercase); if you have a lot of objects, the display will run to more lines like so:

 [1] "A" "A.r" "B" "CI"
 [5] "CI.1" "CI.dn" "CI.up" "Ell.F"
 [9] "F" "F1" "area" "az"
 [13] "bare" "beetle.cca" "beta" "bf"
 [17] "bf.beta" "bf.lm" "biol" "biol.cca"
 [21] "biomass" "bird" "bp" "bs"
 [25] "bss" "but" "but.lm" "c3"

Here there are 28 objects. At the beginning of each new row the display shows you an index number relating to “how far along” the list of items you are. For example the bare data object is the 13th item along (alphabetically). If you do not have any named objects at all, you get the following “result”:

> ls()
character(0)

Viewing Only Matching Names

You may want to limit the display to objects with certain names; this is especially helpful if you have a lot of data already in R. You can limit the display by giving R a search pattern to match. For example:

> ls(pattern = 'b')
 [1] "bare" "beetle.cca" "beta" "bf" "bf.beta"
 [6] "bf.lm" "biol" "biol.cca" "biomass" "bird"
[11] "bp" "bs" "bss" "but" "but.lm"
[16] "cbh" "cbh.glm" "cbh.sf" "food.b" "nectar.b"
[21] "pred.prob" "prob2odd" "tab.est" "tab1" "tab2"

Here the pattern looks for everything containing a “b”. This is pretty broad so you can refine it by adding more characters:

> ls(pattern = 'be')
[1] "beetle.cca" "beta" "bf.beta"

Now the pattern picks up objects with “be” in the name. If you want to search for objects beginning with a certain letter you use the ^ character like so:

> ls(pattern = '^b')
 [1] "bare" "beetle.cca" "beta" "bf" "bf.beta"
 [6] "bf.lm" "biol" "biol.cca" "biomass" "bird"
[11] "bp" "bs" "bss" "but" "but.lm"

Compare the following search listings. In the first case the pattern matches objects beginning with “be” but in the second case the letters are enclosed in square brackets:

> ls(pattern = '^be')
[1] "beetle.cca" "beta"

> ls(pattern = '^[be]')
 [1] "bare" "beetle.cca" "beta" "bf" "bf.beta"
 [6] "bf.lm" "biol" "biol.cca" "biomass" "bird"
[11] "bp" "bs" "bss" "but" "but.lm"
[16] "eF" "eF2" "env"

The effect of the square brackets is to isolate the letters; each is treated as a separate item, hence objects beginning with “b” or “e” are matched. You can receive the same result using a slightly different approach as well:

ls(pattern = '^b|^e')

The vertical brace (sometimes called a pipe) character stands for or, that is, you want to search for objects beginning with “b” or beginning with “e”.

To find objects ending with a specific character you use a dollar sign at the end like so:

> ls(pattern = 'm$')
 [1] "bf.lm" "but.lm" "cbh.glm" "dep.pm"
 [5] "dm" "frit.glm" "frit.lm" "frit.sum"
 [9] "hlm" "mf.lm" "mr.lm" "n.glm"
[13] "newt.glm" "newt.test.glm" "sales.lm" "sm"
[17] "t.glm" "test.glm" "test.lm" "test1.glm"
[21] "tt.glm" "worm.pm"

You can use the period as a wildcard and R will match any character:

> ls(pattern = 'a.e')
[1] "area" "bare" "date" "sales" "sales.frame"
[6] "sales.lm" "sales.ts" "water"

> ls(pattern = 'a..e')
[1] "tab.est" "treatment"

In the first example a single wildcard was used but in the second there are two. This pattern matching uses more or less the same conventions as standard Regular Expressions, which are found in many programs. The ones demonstrated here are only a few of the array of options available. You can use help(regex) in R to see much more detail.

Removing Objects from R

You can remove objects from memory and therefore permanently delete them using the rm() or remove() commands. To remove objects you can simply list them in the parentheses of the command:

rm(list)
remove(list)

You can type the names of the objects separated by commas. For example:

>rm(answer1, my.data, sample1)

This removes the objects answer1, my.data, and sample1 from the workspace. You can use the ls() command to produce a list, which will then be deleted. You need to include the instruction list in the command like so:

>rm(list = ls(pattern = '^b'))

Here the ls() command is used to search for objects beginning with “b” and remove them.

[image: warning.eps]

WARNING

Use the rm()command with caution; R doesn’t give you a warning before it removes the data you indicate, it simply removes it after receiving the command.

Spring Cleaning with rm()

At times it’s important to do some spring cleaning and remove everything. You can use the rm() command like so:

rm(list = ls())

In Windows or Macintosh OS you can use one of the menu commands to achieve the same result.

In Windows, select the Misc menu and then Remove All Objects. In OS X, use the Workspace menu and select Clear Workspace. In both cases you do get a warning and a chance to change your mind.

Types of Data Items

So far you have seen how to create some simple mathematical results, how to create simple samples, and how to read in more complex data containing multiple columns. Now is a good time to look at the types of data items that you may come across. Your data items can exist in one of two forms: numbers or text values. R regards these as numeric or character.

Number Data

Plain values that are whole numbers are integer values, whereas values that contain decimals are numeric. The distinction is fairly minor, but if you have a list of values that contain both integers and decimals, R will regard the entire sample as numeric.

> data3
 [1] 6 7 8 7 6 3 8 9 10 7 6 9
> data7
 [1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

In the first example the values are all whole numbers. In the second example some of them have decimal places, but R appends decimals to all of the data to achieve an equal level of precision; in this case they all have at least one decimal place.

Text Items

If you do not have numbers, you must have text. R recognizes two sorts of text data items. You can think of the first kind as plain text labels; R calls these character values.

> data8
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

These items display as plain text and have the quote marks to remind you. However, another type of non-numeric data is called a factor:

> cut
[1] mow mow mow mow mow unmow unmow unmow unmow
Levels: mow unmow

Here the data are text but they are not in quotes. When they are displayed the text appears plain without quote marks, but with an additional line showing you how many different things there are in this list. Recall the data that you met previously:

> grass
 species cut
1 12 mow
2 15 mow
3 17 mow
4 11 mow
5 15 mow
6 8 unmow
7 9 unmow
8 7 unmow
9 9 unmow

When R reads the data from the data file it assumes that the text column corresponds to the numeric column and sets the text to a factor rather than as a character. In most instances this is what you want for statistical analyses. However, you can elect to read any column as plain text using the as.is = instruction. To do this for the previous mowing data, for example, you would type:

grass2 = read.csv(file.choose(), as.is = 2)

Here you tell R that the second column in your data file is to be regarded as plain text rather than a factor.

Converting Between Number and Text Data

You can shift between the two kinds of text quite easily. The following example begins with data that is a factor. The as.character() command is used to convert to plain text. Then the plain text is converted back to a factor using the as.factor() command:

> cut
[1] mow mow mow mow mow unmow unmow unmow unmow
Levels: mow unmow
> cut2 = as.character(cut)
> cut2
[1] "mow" "mow" "mow" "mow" "mow" "unmow" "unmow" "unmow" "unmow"
> cut3 = as.factor(cut2)
> cut3
[1] mow mow mow mow mow unmow unmow unmow unmow
Levels: mow unmow

In this case new data objects were created but the original object could be overwritten with the new one.

You can do a similar thing with numbers. If you begin with data that contain decimals, that is, numeric, you can convert to integers using the as.integer() command. You can convert integer values to numeric using the as.numeric() command:

> data7
[1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0
> data7i = as.integer(data7)
> data7i
 [1] 23 17 12 11 17 12 14 9 11 9 12 14 17 8 21
> data7n = as.numeric(data7i)
> data7n
 [1] 23 17 12 11 17 12 14 9 11 9 12 14 17 8 21

[image: warning.eps]

WARNING

Once the decimal places have been lost you cannot re-create them so the information is lost.

You can also convert numbers to text using as.character():

> data7c = as.character(data7)
> data7c
 [1] "23" "17" "12.5" "11" "17" "12" "14.5" "9" "11" "9" "12.5"
[12] "14.5" "17" "8" "21"

You can also try converting text into numbers like so:

> data7nt = as.numeric(data7c)
> data7nt
 [1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

This works out fine if the text is sensible; in the preceding example the text values were originally numbers. Now see what happens if you try this on a factor:

> cut
[1] mow mow mow mow mow unmow unmow unmow unmow

> cut.n = as.numeric(cut)
> cut.n
[1] 1 1 1 1 1 2 2 2 2

Here you get a surprising (but potentially useful) result; the numbers relate directly to the different factors that you have. If you try to convert something that really is not going to work, R gives a warning like so:

> data8
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
> data8n = as.numeric(data8)
Warning message:
NAs introduced by coercion
> data8n
 [1] NA NA NA NA NA NA NA NA NA NA NA NA

In this case the data is plain text and cannot be forced into any sensible number, so you end up with a string of NAs. If you were to convert the plain text to a factor first and then to a number, that would be a different story:

> data8c = as.numeric(as.factor(data8))
> data8c
 [1] 5 4 8 1 9 7 6 2 12 11 10 3

Here one command is nested inside the other. R evaluated the as.factor() part first and then converted that into numbers. You started with twelve months and can see that they have been assigned numbers; notice how R has indexed them alphabetically.

The Structure of Data Items

The data that you have can exist in a variety of forms (or structures). For example, you may have many individual samples, each item being a separate entity. On the other hand, you may have complicated data—the results of surveys, for example—that each contain several columns of values. R recognizes several forms of data and these forms each have their own particular uses. This section focuses on these different forms of data.

Your data can exist as numerical or character data as you saw in the previous section. However, these data items can also be constructed and put together in a variety of ways. This section looks at these different structures: vector, matrix, data frame, and list.

Vector Items

So far you have met two kinds of data: vectors and data frames. A vector can be thought of as a one-dimensional object. You created vectors containing a single item from some mathematical operations; you also created vectors by making simple samples of values and text. Here are two simple vectors:

> data8
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
> data7
 [1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

The first one is a vector of text values; the second is a vector of numeric values. You could also have a vector of factors—the cut object from earlier is an example of a factor vector:

> cut
[1] mow mow mow mow mow unmow unmow unmow unmow
Levels: mow unmow

Data Frames

You have also already met the data frame. A data frame is a two-dimensional object, that is, it has rows and columns. R treats the columns as separate samples or variables, and the rows represent the replicates or observations. All data frames are rectangular and R will pad out any “short” columns using NA.

Here is a simple example that you met previously. There are two columns; one represents a sample called mow and contains five replicates/observations. The second column is called unmow and contains four observations:

> grass
 mow unmow
1 12 8
2 15 9
3 17 7
4 11 9
5 15 NA

Each column can be a separate type of data; in the following example the data are reorganized so that the first is numeric and the second is a factor:

> grass
 species cut
1 12 mow
2 15 mow
3 17 mow
4 11 mow
5 15 mow
6 8 unmow
7 9 unmow
8 7 unmow
9 9 unmow

The second form of the data frame is most useful, especially for statistical analyses. This is because there are no NA items.

Matrix Objects

A matrix is a two-dimensional data object. At first glance a matrix looks just like a data frame:

> bird
 Garden Hedgerow Parkland Pasture Woodland
Blackbird 47 10 40 2 2
Chaffinch 19 3 5 0 2
Great Tit 50 0 10 7 0
House Sparrow 46 16 8 4 0
Robin 9 3 0 0 2
Song Thrush 4 0 6 0 0

In this example you can see some observations of a variety of common birds and the habitat in which they were observed. The matrix has rows and columns just like a data frame but the object is handled differently, and some commands require a matrix to operate on rather than a data frame. Unlike a data frame, a matrix cannot contain mixed data; all the columns must be the same type, that is, all numeric or all character. A matrix can consist of a single row or a single column and so can also appear just like a vector object. You learn how to tell which is which shortly.

List Objects

A list is a series of items bundled together to form a single object. In the following example the grass data you met previously has been made into a list:

> grass.l
$mow
[1] 12 15 17 11 15

$unmow
[1] 8 9 7 9

When you look at it you see each vector listed separately along with its name, which is prefixed with a dollar sign. This example list is very simple and contains only two vectors. A list could be constructed from objects of various sorts, and you might have, for example, a matrix, a data frame, and several vectors containing a mixture of numbers and characters. The list is a flexible object but also harder to deal with, as you will find out in due course.

Examining Data Structure

As you collect and work on new data you will inevitably build a collection of items. Different kinds of analysis will require different approaches, and you will need to examine a data object in order to work out what kind it is so that you can determine the best strategy for dealing with it.

The vector is the smallest unit in the data structure. When you start to bundle vectors together you make more complex items. The complex item you make can be a data frame, a matrix, or a list.

You need a way to tell which form your data are in. If you look at a particular object, you can get a clue; a simple vector will be a one-dimensional set of characters or numbers. A data frame or a matrix will have a rectangular two-dimensional structure. A list will appear as a series of separately named vectors; each name starts with a dollar sign ($). The difficulty is differentiating between the matrix and the data frame. You can use the str() command to examine the structure of an object like so:

> str(grass)
'data.frame': 9 obs. of 2 variables:
 $ species: int 12 15 17 11 15 8 9 7 9
 $ cut : Factor w/ 2 levels "mow","unmow": 1 1 1 1 1 2 2 2 2

In this example you see that the data object (grass) is a data frame with two columns. The first is named species and is an integer, whilst the second is named cut and is a factor.

If the object were a list, the str() command would produce something like the following:

> str(grass.l)
List of 2
 $ mow : int [1:5] 12 15 17 11 15
 $ unmow: int [1:4] 8 9 7 9

Here you can see that your object is a list comprising two vectors of numbers. The list is helpful for occasions where you have objects of varying length that you want to tie together. The data frame requires objects to be of the same length and pads out to a rectangular shape using NA. The data frame is a powerful object because it can hold mixed items, so you can have a column of numbers followed by a column of factors. The matrix, on the other hand, is comprised of a rectangular (two-dimensional) block of one kind of object. So, you can have a numerical matrix or a character matrix, but not a mixture.

Now let’s examine the bird matrix that you met previously. If you apply the str() command to the matrix you get something like the following:

> str(bird)
 int [1:6, 1:5] 47 19 50 46 9 4 10 3 0 16 ...
 - attr(*, "dimnames")=List of 2
 ..$: chr [1:6] "Blackbird" "Chaffinch " "Great Tit" "House Sparrow " ...
 ..$: chr [1:5] "Garden" "Hedgerow" "Parkland" "Pasture" ...

The result of the command does not say that the item is a matrix explicitly. You can see that the type of data contained in the matrix is listed first; in this case the data are integer numbers. Then you see the row and column names listed.

You can also look at all the named objects you have at once using the ls.str() command. However, this can lead to quite lengthy output if you have many objects. You can use the pattern = instruction to narrow down your focus in the same way you met previously using the ls() command. For example:

ls.str(pattern = 'data')

This lists all the objects with “data” in their name and shows you the structure of each.

You can obtain information about the type of object by using the class() command. This gives you the class of object, so, for example, if you examined some of the data from the current examples you get the following:

> class(grass.l)
[1] "list"

> class(grass)
[1] "data.frame"

> class(bird)
[1] "matrix"

These examples show that you are dealing with a list, a data frame, and a matrix, respectively. If you examine a simple vector object, you get the class of data. For example:

> class(month)
[1] "character"

> class(mow)
[1] "integer"

Here you can see that the month data are text (that is, characters) and the mow data are integers (that is, numbers).

Later in section “Constructing Data Objects” you learn how to create each particular type of object and how to convert from one to the other. Before you get there you will discover more about the R interface next.

Working with History Commands

When using R you have to be prepared to undertake a bit of typing. However, you can save yourself a lot of time by using the built-in history. Everything you type from the keyboard is potentially stored in a history file. You can access the previous command history by using the arrows on the keyboard. The up arrow scrolls back through the list of previous lines of the history. The down arrow moves forward. Once you reach a line that you want to repeat you can simply hit the Enter key. Alternatively, you can use the left and right arrows to move into the line; you can then edit the command. You can also click on the line you have reached and edit from there.

[image: note.eps]

NOTE

You can copy and paste text to and from any application. This means that you could copy commands from R into a word processor where you can keep them for another time. You could copy text from a previous command and paste it into the current line. This allows you great flexibility; you might use this facility to build up a library of useful commands that you can call on when needed to save you typing. You might also use this to create your own help file by keeping notes alongside each command.

Using History Files

The history of previous commands is saved to disk each time you quit R (provided you say “yes” when asked if you want to save the workspace). You can access this list of commands in one of several ways according to which computer OS you are using. These access methods are outlined in the following sections.

Viewing the Previous Command History

You can view the current list of history items using the history() command like so:

> history(max.show = 25)

In Windows or Macintosh this opens up a new window that displays the contents of the current history. The text can be copied to the clipboard.

On Linux you get a list of the items in the main console window. The list can be scrolled using the arrow keys and text can be copied to the clipboard. When you are done, press the Q key to return to the main console window.

The max.show part of the command instructs R to display up to a certain number of items; the default is set to 25.

> history()

Saving and Recalling Lists of Commands

You can save the current history set to a disk file using the savehistory() command. Conversely, you can load a list of instructions from a file using loadhistory(). The basic forms of the commands are like so:

savehistory(file = '.Rhistory')
loadhistory(file = '.Rhistory')

You must specify the filename in quotes; the default name is blank followed by the .Rhistory extension. The file location is relative to the working directory (remember the getwd() command). In Windows you can also use the File menu to bring up Load History or Save History options.

Alternative History Commands in Macintosh OS

In Macintosh OS X the history items can be accessed and manipulated in an additional alternative fashion. The toolbar contains an icon that opens out a sidebar. This sidebar contains a list of the history items as shown in Figure 2-1.

At the foot of the sidebar are buttons that allow the loading or saving of history files. Any item can be pasted into the R console window by double clicking it.

You can still use the loadhistory(), savehistory(), and history() commands as described previously.

Figure 2-1

[image: c02f001.tif]

Editing History Files

The history files are saved on disk as plain text. This means that you can open them in any word processor and edit/manipulate them how you like. The history files saved by default have the .Rhistory extension. The files are stored in the default working directory unless you specified otherwise during the save operation. You can find out what the default directory is using the getwd() command described earlier.

When you save a history file and give it a name it becomes visible to the OS and to you in the file browser. The default history file has a name starting with a period and this makes it invisible in normal circumstances. The method you use to view these invisible files depends on the OS you are using.

In Macintosh you can check/alter the default history file by going to the Preferences menu. In Windows and Linux you must use a command like the following:

Sys.setenv('R_HISTFILE' = 'myhistory.Rhistory')

You place the filename you require in quotes, remembering that the file will be saved in the default directory.

The history file does not grow infinitely; the number of entries is capped. You can set the limit from the preferences in Macintosh OS X, but in Windows or Linux you must use something along the following lines:

Sys.setenv('R_HISTSIZE' = 512)

Unfortunately these commands only work while R is running and are “forgotten” when you quit. To make them permanent you need to get these commands to run automatically each time R is started. To do this search your home directory for a file called .Rprofile; it will be a hidden file. If this file does not exist, you can create one in a text editor and add the lines you require. These will be run when R opens.

You can check what the defaults for the history file and its size are by using the following commands, which work for all operating systems:

> Sys.getenv('R_HISTFILE')
 R_HISTFILE
"myhistory.Rhistory"
> Sys.getenv('R_HISTSIZE')
R_HISTSIZE
 "512"

If the default has not altered from the original, you will see a pair of quote marks. In practice there is little point altering the default history file. It is, however, useful to be able to save or load a set of commands as was described earlier (in the section “Saving and Recalling Lists of Commands”).

Saving Your Work in R

Once you begin working with R and creating named objects you will have a mixture of data items and results. You will want to save these to disk in order to work on them later or perhaps to share with others. You can use several methods to save your work. This section describes the most popular ones, including saving upon exit, saving to a disk, and saving to a text file.

Saving the Workspace on Exit

When you quit R, a message appears asking if you want to save the workspace image; it is a good habit to say yes. When you do, R saves all the objects currently in memory to the default workspace file (in your default working directory). The history items are also saved to their separate file.

This is a good way to keep all that you have been working on together so you can pick up where you left off. However, you can also save various objects to disk, either individually or in groups. This is especially useful if you are working on several projects and want to send data to a colleague or simply to keep items in separate places.

Saving Data Files to Disk

It is not really convenient to quit R every time you want to save your work to disk. Sometimes, if you are working on several items or projects at a time you may even want to save these separately. Fortunately, R provides a solution; you can save individual objects, or indeed all the objects, to disk at any time using the save() command.

Save Named Objects

The save() command operates like so:

save(list, file = 'filename')

You need to specify a filename and it must be in quotes. The file will be saved to the current working directory by default. The list instruction can be in one of two forms: you can simply type the names of the objects you want to save separated with commas or you can link to a list of names created by some other means. Look at the examples that follow:

> save(bf, bf.lm, bf.beta, file = 'Desktop/butterfly.RData')
> save(list = ls(pattern = '^bf'), file = 'Desktop/butterfly.RData')

In the first case three objects were specified (bf, bf.lm, and bf.beta), and in the second example the ls() command was used to create a list of objects beginning with bf. In both cases, the output file was saved to the Desktop folder rather than the default.

Note that if you link to a list you must put the list instruction in the command explicitly, like so:

> mylist = c('bf', 'bf.beta', 'bf.lm')
> save(list = mylist, file = 'Desktop/butterfly.RData')

In this case the first command makes a simple list called mylist, which contains the names of the objects. The second command saves the objects to disk. Note also that the filename is completed by giving it an .RData extension; this is the preferred extension for saved data.

If you try to read an .RData file with a word processor, you will see a load of gibberish; data saved using the save() command is encoded. You are able to write files in a more generalized format using the write() command, as you see shortly.

Save Everything

If you want to save all the objects in memory, but there are a lot of them, it would be quite tedious to type all their names. R provides you with two alternative options:

save(list = ls(all=TRUE), file = 'filename')
save.image(file = 'filename')

In the first case everything is specified using the ls() command. The second example is a special command that allows you to save everything with a bit less typing. This is essentially what happens when you are asked to save the workspace when you quit R. If you do not specify a filename, the default is used; the filename defaults to “.RData”.

In both Windows and Macintosh OS X you can manipulate the workspace using the menu options. In Windows these are found under the File menu; in OS X they are in the Workspace menu.

[image: note.eps]

NOTE

In Windows and Macintosh operating systems when you double-click on an .Rdata file, R will open and load the data. If R was not open already, the only data in its memory when it does open will be the data you clicked. If R was already open, the data will be added to those items already in memory. When you exit R the workspace will be saved to the same file you opened (assuming you say “yes” when prompted), so it is easy to keep projects separate.

Reading Data Files from Disk

When you save a file to disk, R saves the data in a binary format. This means that the file cannot be read by a regular word processor or text editor. You can read one of these binary files from within R using the load() command:

load(file = ‘filename.Rdata’)

You need to put the filename in quotes (single or double, as long as the pair match) and remember to include the extension. The usual extension to use is .Rdata. If the file is not in your working directory the full path must be entered (all in the quotes). Alternatively, you can use the file.choose() instruction and select your file if you are using Windows or Macintosh operating systems.

load(file = file.choose())

Once the file is read, any data objects that were saved in it are available and can be seen by using the ls() command.

It is also possible to load binary data items directly from your operating system by double-clicking the file you want. In Windows and Macintosh systems the .Rdata file extension should automatically become associated with R when you install the program. This is a useful way to open R because the only data that is loaded will be the data within the .Rdata file.

[image: note.eps]

NOTE

Keeping track of your data objects is an important discipline, and you should check regularly what data objects you have in R and ensure that important items are saved to disk.

Creating data objects and transferring them to and from disk are really important activities. You will need to save data to disk in order to share with colleagues or simply to archive the data and keep your projects separate. In the following activity you get a chance to practice creating a simple data item, save it to disk, and reload it.

Try It Out: Save and Read a Binary Data File to and from Disk

In this activity you create a simple data object and save it to disk. Then you remove it and load the saved version from the disk.

1. To start with you should look to see what data objects you already have:
> ls()

2. Now you can create a simple data object; anything will do, but follow the example to create a simple numerical vector:
> savedata = c(9, 2, 4, 6, 5, 7, 9, 2, 1, 1, 7)

3. You can see that your new data object exists by typing its name or by using the ls() command:
> savedata
 [1] 9 2 4 6 5 7 9 2 1 1 7

4. Now save your new data object to a file:
> save(savedata, file = ‘savedata test.Rdata’)

5. Next, remove it from R using the rm() command:
> rm(savedata)

6. You can check that the object is gone by typing its name or using the ls() command. Once you are convinced that the data is really gone you can use the load() command to read the file from disk:
> load(file = ‘savedata test.Rdata’)

7. Alternatively you can use file.choose() as the filename and select the file from the browser (this does not work in Linux):
> load(file = file.choose())

8. Check that the data has been loaded by typing its name or using the ls() command once again:
> savedata
[1] 9 2 4 6 5 7 9 2 1 1 7

How It Works

You started by checking to see what named objects you already have using the ls() command, because you do not want to overwrite an existing object. The c() command is a simple way to construct a short numerical vector. The save() command writes objects to disk while the load() command reads them in. In this case you removed the original data object using the rm() command so that you could check that your load() command worked correctly.

[image: warning.eps]

WARNING

If you create a new object that has the same name as an existing object, the new one will overwrite the old and you will not get a warning. So, it is a good idea to check what object names exist with an ls() command.

Saving Data to Disk as Text Files

Saving your data in “R format” is extremely useful, especially if you are working on multiple projects; you are able to keep things separate. R maintains everything in memory though so if you have a very large amount of data, performance could suffer. In addition, there may well be times when you want to be able to save data items in a more universal format: for example, CSV or tab-delimited text. This can be useful to share data with colleagues who do not have R or to use for other purposes. For these reasons, it is available to save your data to disk as a text file instead of saving it to disk as a binary (R format) coded file.

Previously you met the read.table() and read.csv() commands (refer to the section “Reading Bigger Data Files”), which were used to transfer data into R. You can transfer data out of R using the write.table(), write.csv(), and cat() commands.

The command you use depends on what it is you want to save to disk. If you have a single vector of values you use write() or cat(); if you have a multiple column item containing several variables, you use write.table() or write.csv().

Writing Vector Objects to Disk

If you have a vector, you can use the write() command. The basic form of the command is the following:

write(x, file = "data", ncolumns = if(is.character(x)) 1 else 5, sep = " ")

This looks a bit complicated because the ncolumns = part contains a conditional statement. This is because the if() statement creates a file with multiple columns according to the type of data. If the data are text, a single column is created. If the data are numeric, five columns are created (you can alter the number of columns). The items are separated by a space by default; you can change this by altering the sep = instruction. For example, the following code snippet contains a list of numbers. The write() command sees that these are numeric and creates five columns by default. The data are separated with commas.

> data7
 [1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0
> write(data7, file = 'Desktop/data7.txt', sep = ',')

The resulting file looks like the following if viewed in a basic text editor:

23,17,12.5,11,17
12,14.5,9,11,9
12.5,14.5,17,8,21

If you want to create a single column you set the ncolumns = instruction to 1. If you want to create a single row you need to know how many items there are and set the number of columns to this value. You can do this automatically like so:

> write(data7, file = 'Desktop/data7.txt', sep = ',', ncolumns = length(data7))

Here a command called length() was used, which determines how “long” the vector of data is. The resulting file looks like the following:

23,17,12.5,11,17,12,14.5,9,11,9,12.5,14.5,17,8,21

A quicker way to achieve this result is to use the cat() command. Think of this as short for catalogue; just “print” the object and send it to a file.

> cat(data7, file = 'Desktop/data7.txt')

In this instance the separator is left as a space (the default) and the data values are written as a simple row of numbers.

Writing Matrix and Data Frame Objects to Disk

If you have a matrix object or a data frame, you need to use the write.table() command. The basic command has various instructions that can be set as follows:

write.table(mydata, file = 'filename', row.names = TRUE, sep = ' ', col.names = TRUE)

You replace the mydata part with the data item you want to write to disk. The filename needs to be in quotes and its location is relative to the current working directory. Each row of data is given an index number; most of the time you do not want to save this index to a file, so you need to alter the instruction to row.names = FALSE. If you want to make a file with columns separated by tabs, you put ‘\t’ in the sep = instruction. You can also specify the decimal point character using the dec = instruction.

If you want to make a CSV file, you could use the alternative write.csv() command. This is essentially the same but the default settings are slightly different:

write.csv(mydata, file = 'filename', row.names = TRUE, sep = ',', col.names = TRUE)

The write.table() and write.csv() commands are most useful to save complex data items that contain multiple columns, such as you would expect to see in a spreadsheet. If you have a complex item like a matrix or a data frame object, this is the command you should use. List objects are also complex items, but they require special handling, as you see next.

Writing List Objects to Disk

Lists can be quite untidy and contain multiple items of varying sorts. Running an analytical command and storing the “result” generally creates a list, but you can also make a list as a way to tie together data items.

You can produce a text representation of the list using the dput() command and you can recall it using the dget() command. The two commands are simple:

dput(object, file = ““)
dget(file)

The following example shows a simple list. Here it is simply two numerical vectors but it could be a lot more complex:

> grass.l
$mow
[1] 12 15 17 11 15

$unmow
[1] 8 9 7 9

> dput(grass.l, file = 'Desktop/grass.txt')

The resulting file looks like this:

structure(list(mow = c(12L, 15L, 17L, 11L, 15L), unmow = c(8L,
9L, 7L, 9L)), .Names = c("mow", "unmow"))

This is not exactly what you would want in a spreadsheet, but it is the best you can do without pulling out the bits you want and re-arranging them. You can recall the list using dget(); in the following example a new object is created from the file using this command:

grass.list = dget(file = 'Desktop/grass.txt')

The dput() command attempts to write an ASCII representation of your object to disk so that it can be recalled using the dget() command. The process does not always work smoothly. In general, data objects that are lists are recalled successfully but results of analyses are not. What generally happens is that the list object is reconstructed successfully, but certain attributes are lost. If your object is data this is not a problem, but if your result is a linear regression, for example, you may not be able to carry out some of the further commands that you may have wanted.

If you have complex results it is better to save them as .Rdata objects. If you want to use the text of a result you can easily copy it from the R console window and paste it into another program.

Converting List Objects to Data Frames

If you have a fairly simple list, perhaps containing several numerical samples, you can manipulate the list to produce a data frame and then save that to a text file.

Here is a simple list comprising of four numerical samples; you have met them all before:

> my.list
$mow
[1] 12 15 17 11 15

$unmow
[1] 8 9 7 9

$data3
 [1] 6 7 8 7 6 3 8 9 10 7 6 9

$data7
 [1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

Remember that you can check the structure of your object using the str() command like so:

> str(my.list)
List of 4
 $ mow : int [1:5] 12 15 17 11 15
 $ unmow: int [1:4] 8 9 7 9
 $ data3: num [1:12] 6 7 8 7 6 3 8 9 10 7 ...
 $ data7: num [1:15] 23 17 12.5 11 17 12 14.5 9 11 9 ...

Because they are all numbers you could create a data frame that contained two columns, one for the actual numbers and one for the name of the sample each value relates to. To do this, you can use the stack() command like so:

> my.stack = stack(my.list)

This creates a two-column data frame:

 values ind
1 12 mow
2 15 mow
3 17 mow
4 11 mow
5 15 mow
6 8 unmow
7 9 unmow
8 7 unmow
9 9 unmow
10 6 data3
11 7 data3
12 8 data3
...

Not all of the data are shown here for brevity (try it out on your own and you will see the entire display). Notice that the column headings are values and ind. You can easily rename them to anything you like using the names() command:

> names(my.stack) = c('numbers', 'sample')

Here the first column is changed to numbers and the second column is now called sample. You simply use the c() command to give the names you require.

To get back to the list from this new two-column data frame, you use the unstack() command like so:

> unstack(my.stack)
$data3
[1] 6 7 8 7 6 3 8 9 10 7 6 9

$data7
[1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

$mow
[1] 12 15 17 11 15

$unmow
[1] 8 9 7 9

This pulls the data apart back to its component samples, but you still need to create the list that “ties” the objects together. You do this like so:

> my.new.list = as.list(unstack(my.stack))

In other words, you use the as.list() command to make the list from the unstacked data frame!

If you have several data vectors and want to create a list from them (rather than from a data frame like the preceding example), you use the as.list() command and give the object names that you want to include in the list:

> my.list = as.list(mow, unmow, data3, data7)

However, this does not name the individual parts of the list (unlike the previous example where you had a data frame), so you need to add names afterwards like so:

> names(my.list) = c('mow', 'unmow', 'data3', 'data7')

You can also use the list() command to do the same job, and in most ways they are identical.

Summary

	R can function as a simple calculator and the basic mathematical operators (for example, + - / *) can be used to perform math.

	You can store results of calculations for later use simply by typing a name to hold the result; the calculation then follows an = sign.

	You can create data objects from the keyboard, clipboard, or external data files using c(), scan(), and read.csv() commands.

	You can list objects that are ready for use using the ls() command and you can remove (delete) objects using the rm() command.

	There are different types of data, numerical and character. Data can exist in one of several forms; vectors are one-dimensional: matrixes and data frames are two-dimensional. List objects are loose collections of other objects.

	You can cycle through previous commands in the history using the up and down arrows. You can also save lists of commands to a file.

	You can write data from R to disk and save your work using the save() command. Other commands allow all items to be saved at once or for CSV files to be written.

Exercises

You can find answers to these exercises in Appendix A.

1. You have the results of a simple experiment to look at the visitation of various bee species to different plants. The number of bees observed was as follows:
Buff tail: 10 1 37 5 12
Garden bee: 8 3 19 6 4
Red tail: 18 9 1 2 4
Honeybee: 12 13 16 9 10
Carder bee: 8 27 6 32 23

Make five simple numeric vectors of these data.

2. You created five vectors of data in Exercise 1. Look at the list of objects that you have in R right now and try to generate a listing that includes only the items you created from the previous example.

A. Save all the items you just created to a disk file in your working directory.

B. Now remove all the vectors that you just made.

C. Now recall the vectors from disk.

What You Learned in This Chapter

	Topic
	Key Points

	Simple math:

+ - / * ^ log() cos() acos() abs() sqrt() pi() factorial()
	R can perform like a regular calculator and there are a range of mathematical operators and functions that can be used. Use help(Arithmetic) in R to get more information.

	Assigning object names:

Object.name = calculation

Object.name <- calculation

calculation -> Object.name
	Results of calculations can be stored as named objects. The = and <- symbols enable you to create an object from the result of the following calculation (in other words, you assign from right to left). The -> symbol enables you to assign the results of a calculation to a named object (that is, you assign from left to right).

	Object names for example:

data1

Data1

data.1
	Objects are allowed names using all the letters a–z and uppercase A–Z as well as the numbers 0–9. A name must begin with a letter. The only punctuation mark allowed is a period. Names are case sensitive.

	Making data:

object.name = c(x, y, z)
	The c() command allows the concatenation of several items. It can be used to create data samples, for example.

	Making data:

object.name = scan()
	The scan() command allows data items to be entered from the keyboard, clipboard, or a simple text file.

	Making data:

object.name = read.table(file =)
	The read.table() command allows a text file to be read from disk. The resulting object is a data frame with columns of equal length; short columns are padded out with NA.The read.csv() command is a special case of the command with defaults set for CSV files.

	Listing objects:

ls(pattern = regex)rm(item1, item2, …)
	The ls() command lists all the objects currently in memory. The rm() command removes objects (thereby deleting them). The list can use a regular expression and refine the result by listing only certain names.

	Data type:

numerical (numeric, integer)character (factor, character)
	Data can be in one of two major types, numerical for numbers or character for text. Number data can be integer or numeric. Text data can be classed as factor or character. The latter is a general type and items are shown enclosed in quotes. Factor data are text but not quoted.

	Data form:

vectordata framematrixlist
	Data can be in one of several forms. A one-dimensional structure is a vector. Data in 2D form can be a data frame or a matrix. In a matrix all the data of the same type. A data frame can contain mixtures of data (for example, numeric and factor). Missing values and “short” columns are padded with NA. A list object is a collection of other objects and can contain items of different lengths and types.

	History commands:

history()loadhistory()savehistory()
	Previously executed commands can be viewed using the up and down arrow keys. The entire history can be viewed using the history() command and files of commands can be loaded from or saved to disk.

	Saving and loading data:

save(x, y, z, …, file =)save.image(file =)write(x, file =)write.csv(data, file =)load(file =)
	When closing R all data can be saved to the default .RData file. The save() command can be used to save one or more objects to a file. The save.image() command can be used to save all objects to a file. The resulting files can be recalled using the load() command.A plain text representation of a data object can be saved to disk using the write() or write.csv() commands.

	Finding data on disk:

dir()getwd() setwd()file.choose()
	The dir() command allows the listing of files stored on disk. The working directory is where files are looked for and stored to by default. The location of the current working directory can be ascertained using getwd(). The working directory can be set to a new location using the setwd() command. Filenames must be specified explicitly but on Windows and Mac systems file.choose() can be used in place of a name, allowing a file to be selected by the user.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/image_fi/164303c01/c01f028_fmt.jpg
606 R Package Installer

Packages Repository

CRAN (binaries) =)
 Binary Format Packages Q- Package Search

Package Installed Version Repository Version
aaMl 10-1 10-1
abind 11-0 11-0
Acceptancesampling 10-0 10-0
accuracy 129 129
acepack 13-22 13-22
actuar 0.9-7 10-0
ada 20-1 20-1
adabag 11 11
adapt 10-4 10-4
AdaptFit 02-1 02-1
aded 14-9 14-9
ade4TGUI 0.2-2 0.2-3
adegenet 12-0 12-1
adehabitat 171 173
adimpro 063.1 07.1
adk 10 10
adlift 0.9-2 0.9-5
AdMit 1-00.02 1-00.02

Install Location

@ At System Level (in R framework) Install Selected

O At User Level

O In Other Location (Will Be Asked Upon Installation)

O As defined by .libPaths(Update All

) instal dependencies

OEBPS/image_fi/164303c11/c11f008_fmt.jpg
110

x

mtext(side = 3, line = 2, font = 2, cex = 1.2)
mtext(side = 3, line = 1, font = 2)

o mtextiside = 3, ne = =2, font = 4, cex = 0.8) °
°
o
P o
s 5
bed o I
T 2
i o
3 <
£ i
N o g
LL 2
<48 o 3
3 E
g o
E
o~ °
mtext(side =1, line = 1)

OEBPS/image_fi/164303c10/c10f003_fmt.jpg
growth

o
o o
w
°
o
w0
10 20 30 40

nutrient

OEBPS/image_fi/164303c01/c01f001_fmt.jpg

OEBPS/image_fi/164303c05/c05f001_fmt.jpg
Frequency

Histogram of data2

~

data2

OEBPS/image_fi/164303c07/c07f009_fmt.jpg
40

Q o
@ &

Junodgmy

o
°

15 20 25 30 35

10

fw$speed

OEBPS/image_fi/164303c10/c10f011_fmt.jpg
Length

Fitted Values

22

24

OEBPS/image_fi/164303c07/c07f035_fmt.jpg
509

40 1

30

20

Total birds counted

H,IJ-‘ 0

Garden

Hedgerow

Parkland Pasture Woodland
Habitat

OEBPS/image_fi/164303c07/c07f019_fmt.jpg
Apr

OEBPS/image_fi/book_art/cover.gif
Beginning

The Statistical Programming Language

Dr. Mark Gardener

OEBPS/image_fi/164303c07/c07f027_fmt.jpg
Garden
Song Thrush
Robin

House Sparrow
Great Tit
Chaffinch
Blackbird

Hedgerow
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Parkland
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Pasture
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Woodland
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Bird species and Habitat

Grouping = mean

10

20 30
Bird abundance

40 50

OEBPS/image_fi/164303c08/c08f005_fmt.jpg
mean of height

40+

35

30

254

20

2 -

sativa vulgaris

plant

OEBPS/image_fi/164303c11/c11f018_fmt.jpg
plot2

plot1

o o
o o
oo 2 -
oo
oo Q 2
000 o oo bt
o 2 « o
& 3 S
2 3 o o °
< 2
° 8 oo
o o o
oo
° 2
= °
o oo °
° o I8 °
o o
vz Tz oz 8 9 v vz z o0z 8 9 w
wbua whua
B B
° © ° oo o o
°
°
o
°
¢ e 2a ©
.8 8 2 o o
° °
o o o o
Lo s ° o
o, o g
o ° o o
o o o
o o 0o
3
vz Tz 0z 8 9 w vz Zz 0z 8 9 v

yibuay ybuey

20 25 30

NO3

15

10

20 25
Speed

15

10

OEBPS/image_fi/164303c07/c07f010_fmt.jpg
OLAXOV K44 KVHOAS® e OIOAY/

012345678 91 11213141516 17 18 19 20 2122232425

OEBPS/image_fi/164303c11/c11f014_fmt.jpg
—--Sine

Sine and Cosine functions

* Cosine

S0 00

uopoung

S0~

ol

OEBPS/image_fi/164303c07/c07f015_fmt.jpg
10 15 20 25

-
2%
o o 3
B ° L
& wp o [0 ano
o 3 % o [
Length | £ °° o 0 [
° S
0% o o o I
o °
A o
8 b
25
° °
0° o o 0%
20 8 o ©
ol 008 o Speed ECHI
S 8%
o0 o 40
0 %° o)
10 00’ °a PR
s
5%
g A
0% oo o
o 28 NO3
o 8%
0° o [
o

1416 182022 2

10 1.5 2025 3.0

24
22
20
18
16
"

10

OEBPS/image_fi/164303c07/c07f029_fmt.jpg
Jan Feb Mar Apr May Jun Jul

Aug Sep Oct Nov Dec

OEBPS/image_fi/164303c07/c07f002_fmt.jpg

OEBPS/image_fi/164303c10/c10f005_fmt.jpg
Length

100

OEBPS/image_fi/164303c05/c05f003_fmt.jpg
Density

0307

0.20 4

0.15

0104

0.05 4

0.00

5 6
Size class for data2

OEBPS/image_fi/164303c11/c11f006_fmt.jpg
Count pg ot
20

Superscript
and
Subscript

30

35

OEBPS/image_fi/164303c07/c07f033_fmt.jpg
Invertebrate Count

40

30

: I III

5]

Taw Torridge Ouse lyn Brook Ditch Fal

OEBPS/image_fi/164303c01/c01f024_fmt.jpg
066 R Package Installer

Packages Repository

CRAN (binaries) S]

¥/ Binary Format Packages Q- Package Search
Package installed Version Repository Version

2aMl 10-1 10-1
abind 11-0 11-0 o
AcceptanceSampling 1.0-0 1.0-0
accuracy 1.29 1.29
acepack 13-22 13-22
actuar 09-7 1.0-0
ada 20-1 20-1
adabag a5 a5
adapt 10-4 1.0-4
AdaptFit 02-1 02-1
aded 1.4-9 1.4-9
adedTKGUI 02-2 023
adegenet 1.2-0 12-1
adehabitat 171 173
adimpro 063.1 07.1
adk 10 10
adiift 09-2 09-5
AdMit 1-00.02 1-00.02 ¥
nstal Location

© s S v n R amewor0

£) install dependencies

O In Other Location (Will Be Asked Upon Installation)

O s defined by bpacs0

OEBPS/image_fi/164303c07/c07f020_fmt.jpg

OEBPS/image_fi/book_art/badvert.gif
Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

Read thousands of books for free online with this 15-day trial offer.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get

 Access to hundreds of expert-led instructional
videos on today’s hottest topics.

* Sample code to help accelerate a wide variety
of software projects

« Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

* Mobile access using any device with a browser

* Rough Cuts pre-published manuscripts

g Langia5¢

START YOUR FREE TRIAL TODAY!

Visit www.safaribooksonline.com/wrox48 to gt sarted

sl o new subscbrs oy, Dt sgies o the
S braryand i ol for st 12 conscute martly
ling s Sfr iy s ot i n 3l couties,

Safari’ st veer

Beatsonine” Now you know:

OEBPS/image_fi/164303c01/c01f018_fmt.jpg
[=] & o search

Statistical Data Analysis

Manuals

An Introduction to R The R Language Definition
Witing R Extensions R Installation and Administration
R Data Import/Export R Internals

Reference
Packages Search Engine & Keywords
Miscellaneous Material

Authors
Frequently Asked Questions

OEBPS/image_fi/164303c01/c01f005_fmt.jpg
R-2.12.0 for Windows (32/64 bit)

Download R 2.12.0 for Windows (37 megabytes, 32/64 bit)

Installation and other instructions
New features in this version: Windows specific, all platforms.

OEBPS/image_fi/164303c01/c01f011_fmt.jpg
mark@mark-Paralle(s-Virtual-Platform: ~
File Edit View Search Terminal Help
mark@nark-Parallels-virtual-Platform:~$ R

The program 'R* is currently not installed. You can install it by typing:
sudo apt-get install r-base-core
markemark-Parallels-Virtual-Platform:~$ ||

OEBPS/image_fi/book_art/warning_fmt.gif

OEBPS/image_fi/164303c07/c07f017_fmt.jpg

OEBPS/image_fi/164303c07/c07f004_fmt.jpg
Value

40

R
304 3
204
10
1 p——
count speed

Variable

OEBPS/image_fi/164303c11/c11f012_fmt.jpg
speed

OEBPS/image_fi/book_art/titlepage.gif
BEGINNING
R

THE STATISTICAL PROGRAMMING LANGUAGE

Mark Gardener

WILEY
John Wiley & Sons, Inc.

OEBPS/image_fi/164303c05/c05f005_fmt.jpg
Density

Histogram of data2

data2

OEBPS/image_fi/164303c11/c11f011_fmt.jpg
-0~ Stonefly
--e Mayfly

<3

sz

oz gl

souepunqy

ol

Speed

OEBPS/image_fi/164303c11/c11f020_fmt.jpg
oo
o oo
o o 8
°
o oo
o
o B
co0 o
o
°
o o c
s
< 84 o
5 oo 3
2 5 8 3
o
o o
0o
o
8 o
°s o
o
° o oo
° B
o
8
w @ o 8 9w w @ oz 8 9 w

yibuey

Wbuey

80

70

60

50

a0

Algae

OEBPS/image_fi/164303c01/c01f015_fmt.jpg
read table(utls)

Data Input

Description

Reads afle intable format and creates a data frame from i, with cases corresponding to nes and
vasiables to feld i the le.

Usage

read.cable(tile, header = FALSE, sep = ™7, quoce = "
dec © 7., rov.names, col.names,
as.is = tstringsasFactors,
nalscrings = "MA", colClasses = A, nous = -1,
skip = 0, check.naves = TRUE, £i11 = tblank.lines.skip,
strip.uhite = FALSE, blank.lines.skip = TRUE,
coment..char = "7,
allovEscapes = FALSE, flush = FALSE,
stringsisFactors = dataulc.stringsAsFactors(),
encoding = "unknown”)

OEBPS/image_fi/164303c01/c01f007_fmt.jpg
Secuty | Detals
Generl | Shotat

fyou have problems with this program and t worked corectly on
n eatier version of Windows, select the compatbilty mods that
matches that cater version.

Help me choose the settings
Compatibity mode:

OEBPS/image_fi/164303c07/c07f014_fmt.jpg
10 15 20 25 10 15202530
i > 202530
B % L
o o 0° o 8 %% 22
& o o °woo So %o o
0% 3 o 0 %% |
Length | B oo S0 0% 2 [
° s 3
ol o 0y © oo
3 X ° ot
25 °
% oo by oo || o ¢
o o o o
15 ° % on g, °|| Bo of
o °° 00| 0 %0° o % o°
10 o o o @ o] lo oo
o8 IS
N & 8o %0 °0 @
Algae ° ®
°© °© ° %0 ° o"e 50
0°% o° °% f30
= R
o o
o | o o0 %
07 o oo NO3 ec°°3%
So 80 8%F o
° o " ®
d
o o
0% ©, I X ® oo®° [200
° 8 B & o 8° o8 %o L
8o o o °° o e38 BOD
0570 o o o0 40 g o
0900, || o o0 63| |0 © o 100
dJ b o 50
u 18 22 30 50 70 50100 200

OEBPS/image_fi/164303ffirs/ffirsuf001_fmt.jpg

OEBPS/image_fi/164303c01/c01f030_fmt.jpg
Select one:

B
lboct
s
custer
lcadetools
datasets.
foreign
lraphics
aDevices
laid
[Kernsmacth
lattice
ass
Imethods
s
et
rpart
spatial
spines
stats
statsa.
Jsurvval
e
tools

uts

=)

OEBPS/image_fi/164303c07/c07f006_fmt.jpg
unmow -

mow -

12

species richness

OEBPS/image_fi/164303c07/c07f031_fmt.jpg
Rainfall cm

54
64
44
24

Jan Feb Mar Apr May Jun Jul
Month

Aug Sep Oct Nov Dec

OEBPS/image_fi/164303c10/c10f009_fmt.jpg
200

150
BOD

100

50

OEBPS/image_fi/164303c01/c01f013_fmt.jpg
R File Edit Format Workspace Packages&Data Misc Window Help
066 R Console

eRrux 68O &

Q

R version 2.7.1 (2008-06-23)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ‘license()' or ‘licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
“citation()' on how to cite R or R packages in publications.
Type 'demo()’ for some demos, 'help()' for on-line help, or
| "help.start()* for an HTML browser interface to help.
Type 'qO" to quit R.

[Workspace restored from /Users/markgardener/.RData]

OEBPS/image_fi/164303c07/c07f023_fmt.jpg

OEBPS/image_fi/164303c11/c11f005_fmt.jpg
50

40

30

20

10

B Blackbird

I Chaffinch

D ereat Tit

[House Sparrow
[Robin

O Song Thrush

[ol wo

Garden

Hedgerow

Parkland Pasture ‘Woodland

OEBPS/image_fi/164303c01/c01f021_fmt.jpg
mean(x, trim = 0, na.rm = FALSE, ...

Arguments

% AnR object. Currently there are methods for numeric data frames, numeric vectors and dates. A complex
vector is allowed for exim = 0, only.

trin the fraction (0 to 0.5) of observations to be trimmed from ach end of x before the mean is computed.
Values of trim outside that range are taken as the nearest endpoint.

na.rma logical value indicating whether n values should be stripped before the computation proceeds.
further arguments passed to or from other methods.

For a data frame, a named vector with the appropriate method being applied column by column.
If txim is zero (the defaul), the arithmetic mean of the values in x is computed, as a numeric or complex vector 0
ength one. If x is not logical (coerced to numeric), integer, numeric or complex, A is retmed, with a waming.

OEBPS/image_fi/164303c11/c11f001_fmt.jpg
12

10

Grass

Heath

Arable

OEBPS/image_fi/164303c11/c11f022_fmt.jpg
sanse

Scatter plot

OEBPS/image_fi/164303c08/c08f002_fmt.jpg
95% family-wise confidence level

—_—
—_—
—_—
—_—
—_—
—_—
s _—
7] e
£l T T T T T
£ 0 -30 20 -10 0 10
H Differences in mean levels of plant:water

OEBPS/image_fi/164303c05/c05f007_fmt.jpg
Normal Q-Q Plot

oooo

oo

o

Theoretical Quantiles

OEBPS/image_fi/164303c01/c01f026_fmt.jpg
Select one

B
lboct
s
custer
lcadetools
datasets
foreign
lraphics
aDevices
lid
[Kernsmacth
lattice
ass
Imethods
s
et
rpart
spatial
spines
stats
statsa.
survval
et
tools

uts

=)

OEBPS/image_fi/164303c01/c01f009_fmt.jpg
Rmpkg

L Double-click to install

OEBPS/image_fi/164303c07/c07f038_fmt.jpg
Habitat
Parkland

Woodland

Pasture

Hedgerow

Garden

@ song Thrush

=
[Robin
; [House Sparrow
O Great Tit
[Chaffinch
- M Blackbird
-]
j—
:I:I
1
]
: 0 20 0 2 50 60

Bird count

OEBPS/image_fi/164303c07/c07f025_fmt.jpg
Blackbird
Woodland
Pasture
Parkland
Hedgerow
Garden

Chaffinch
Woodland
Pasture
Parkland
Hedgerow
Garden

Great Tit
Woodland
Pasture
Parkland
Hedgerow
Garden

House Sparrow
Woodland
Pasture
Parkland
Hedgerow
Garden

Robin
Woodland
Pasture
Parkland
Hedgerow
Garden

song Thrush
Woodland
Pasture
Parkland
Hedgerow
Garden

OEBPS/image_fi/164303c10/c10f007_fmt.jpg
light

ST

o14

punqe

OEBPS/image_fi/164303c07/c07f012_fmt.jpg
501

40

Apkep jo Junod

10

Speed m/s

OEBPS/image_fi/164303c05/c05f009_fmt.jpg
00

oo

© © < o«

(2 ‘G ‘0g)wous

data2

OEBPS/image_fi/164303c01/c01f002_fmt.jpg
Getting Started:

« Risa free software environment for statistical computing and graphics. It compiles and runs on a wide
variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN
miror.

o If you have questions about R like how to download and install the software, or what the license terms are,
please read our answers to frequently asked questions before you send an email.

OEBPS/image_fi/book_art/download_fmt.gif
Y

Available fo
downaad or
Wrox com.

OEBPS/image_fi/164303c07/c07f008_fmt.jpg
Habitat

Health -

Grass -

Arable -

10 15 20

Butterfly Count

OEBPS/image_fi/164303c11/c11f003_fmt.jpg
Butterfly abaundance

—

!
i
g
|
N
N
.
Grass Heath Arable

Site - Habitat

OEBPS/image_fi/164303c11/c11f016_fmt.jpg
speed

OEBPS/image_fi/book_art/bobad_connect.gif
Programmer to Programmei

Connect with Wrox.

Participate

Take an active role online by participating
in our P2P forums @ p2p.wrox.com

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community

Sign up for our free monthly newsletter
at newsletterwrox.com

Wrox.com
Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

Contact Us.

User Group Program
Become a member and take advantage of all
the benefits.

Wrox on Eu
Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

A facebook |

Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well

as upcoming programmer conferernces
and user group events

We love feedback! Have a book idea? Need community support?

Let us know by e-mailing wrox-partnerwithus@wrox.com

OEBPS/image_fi/164303c07/c07f026_fmt.jpg
Garden
Song Thrush
Robin

House Sparrow
Great Tit
Chaffinch
Blackbird

Hedgerow
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Parkland
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Pasture
Song Thrush
Rol
House Sparrow
Great Tit
Chaffinch
Blackbird

Woodland
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

o 10 20 30 a0 50

Bird counts.

OEBPS/image_fi/book_art/note_fmt.gif

OEBPS/image_fi/164303c01/c01f019_fmt.jpg
File Edit View Search Terminal Help
read. table package:utils R Documentation

Data Input
Description

Reads a file in table format and creates a data frame from it,
with cases corresponding to lines and variables to fields in the
file.

Usag

read. table(file, header = FALSE, sep = "*, quote
dec = *.", row.names, col.names,
as.is = IstringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = tblank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment .char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = ", encoding = "unknown")

read.csv(file, header = TRUE, sep = *,", quote="\"", dec
ill'= TRUE, comment.char="", ...)

read.csv2(file, header = TRUE, sej + quote="\"", dec="
fill = TRUE, comment.char="", ...)

read.delin(file, header = TRUE, sep = "\t", quote=

OEBPS/image_fi/164303c08/c08f004_fmt.jpg
mean of height

mean of height

plant
=== vulgaris
— sativa

sativa

vulgaris

OEBPS/image_fi/164303c07/c07f018_fmt.jpg
Rainfall cm

Jan Feb Mar

Apr

May Jun Jul
Month

Aug Sep Oct Nov Dec

OEBPS/image_fi/164303c11/c11f017_fmt.jpg
-0~ Stonefly
«-2++ Mayfly

Speed

o€

sz oz s o S

Juno> sjeiqapsAUl

OEBPS/image_fi/164303c11/c11f015_fmt.jpg
Function

2.06x-0.04x2 -2

10

20 30

40

50

OEBPS/image_fi/164303c11/c11f009_fmt.jpg
o
o
< 2
y
B=y
~ -
%
2 4 10

1:10

OEBPS/image_fi/164303c10/c10f002_fmt.jpg
35

juno>

speed

OEBPS/image_fi/164303c07/c07f001_fmt.jpg

OEBPS/image_fi/164303c08/c08f006_fmt.jpg
Mean plant height cm

Interaction plot

40

35

30

254

20 4

-

sativa

vulgaris
Plant treatment

OEBPS/image_fi/164303c01/c01f029_fmt.jpg
Packages

[pbc
labind
lacceptancesampling
laccLma
laccuracy
lacepack
laCGH.Spline
lactuar

B

ladabag
laDaccH
ladaptrit
ladaptivetau
ladaptTest
ladea
ladedTkGUI
ladegenet
ladehabitat
ladephylo
lADGofTest
ladimpro
ladk

ladlift

ladmit

oK Ccancel

OEBPS/image_fi/164303c05/c05f002_fmt.jpg
Density

0.25 7

0.20

Histogram of data2

0154

0.10

0.05

0.00

OEBPS/image_fi/164303c07/c07f036_fmt.jpg
“Total birds counted

W

0

20

Biacksics
Bcnatinen
BoweaTt
@House Spariow
Ootin

OSong Thush

OEBPS/image_fi/164303c10/c10f010_fmt.jpg
Residuals vs Fitted Normal @-Q

“© ~
12,
“ 0% od% 20
°
3
g
3o
3
]
]
T
a
R
1 16 18 20 22 24 ~2 -1 o 1 2
Fitted values Theoretical Quantities.
Scale-Location Residuals vs Leverage o
<
= 70 T -
A o N ed>§},2 . : o, o1 120
e ° 3 -1 b
3 o 3 H °
[° o g |
o T
B ° 3 3 |
g s S ° of & - ° °
23 2 74}
C e . : g
3 o ' I+~ Cooks distance
“ 16 18 20 22 24 000 005 010 015 0200 ° 025

Fitted values Leverage

OEBPS/image_fi/164303c01/c01f012_fmt.jpg
I R Console
Flo Edt Msc Packages Hep

R version 2.8.1 (2008-12-22)
Copyright (C] 2008 The R Foundation for Statistical Computing
ISEN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO VARRANTY.
You are velcome to redistribute it under certain conditions.
Type 'license(]' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type ‘contributors()' for wore information and

‘citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTHL browser interface to help.

Type 'af)’ to quit R.

[Previously saved workspace restored]

M

OEBPS/image_fi/164303c07/c07f032_fmt.jpg
Frequency

30

25

20

15

10

05

0.0

5 6 7

Numeric category

OEBPS/image_fi/164303c01/c01f017_fmt.jpg
scan, type . convert, read. fut for reading fixed width formatted input; urite. table; data. frame.

lcount.. £ie1ds can be useful to determine problems with reading files which result in reports of
incorrect record lengths.

[Package utils version 2.7.1 Index]

OEBPS/image_fi/164303c01/c01f025_fmt.jpg

OEBPS/image_fi/164303c01/c01f004_fmt.jpg
a Parent Director:

. linux/ 23-Jan-2008 18:47
. macos/ 19-Apr-2005 08:45
. macosx/ 19-0ct-2010 03:27
- solaris/ 25-Jun-2008 11:30
. windows/ 08-Dec-2010 14:26
. windows64/ 02-Apr-2010 17:44

Apache/2.2.0 (Linux/SUSE) Server at www.stats.bris.ac.uk Port 80

OEBPS/image_fi/164303c07/c07f040_fmt.jpg
I~ R Graphics: Device 2 (ACTIVE)
Fistory_Resize
Wetafie
Postscript
POF.
Pra.
e
TIFF,

Copy to the clpboard
print. L

close Device

Jpeg

OEBPS/image_fi/164303c07/c07f028_fmt.jpg

OEBPS/image_fi/164303c11/c11f013_fmt.jpg
abund

Fitted polynomial regression

light

OEBPS/image_fi/164303c11/c11f019_fmt.jpg
oo

plot1
o
o

vz zz oz 8 9
yibuey

150 200
BOD

100

50

plot 4

vz zz oz 8
wbuet

9 #

30

25

20

15

10

NO3

OEBPS/image_fi/164303c05/c05f004_fmt.jpg
density.default(x = data2)

0.15 4

0.05

0.00 4

4 6 8
N = 16 Bandwidth = 0.9644

10

OEBPS/image_fi/164303c07/c07f003_fmt.jpg
Value

o
404

N

304 3

204
10

1 p——

count speed

Variable

OEBPS/image_fi/164303c07/c07f016_fmt.jpg
1400

1200

1000

800

600

1880

1900

1920

Time

1940

1960

OEBPS/image_fi/164303c10/c10f004_fmt.jpg
light

ST

o14

punqe

OEBPS/image_fi/164303c01/c01f010_fmt.jpg
Index of /R/bin/linux

Name Last modified Size Description

a Parent Directo

. debian/ 18-0ct-2010 17:16
. redhat/ 25-Nov-2009 17:01
. suse/ 18-Dec-2009 10:11
. ubuntu/ 11-0Oct-2010 06:06

Apache/2.2.0 (Linux/SUSE) Server at www.stats.bris.ac.uk Port 80

OEBPS/image_fi/164303c11/c11f007_fmt.jpg
110

- +
+Right of point (pos = 4)
Above point (pos = 3)

©- +

Left of point (pos = 2) +
< Centered-on point

o

Under point (pos =1)

~ +
2 4 6 8 10

OEBPS/image_fi/164303c01/c01f023_fmt.jpg
Packages

OEBPS/image_fi/164303c07/c07f034_fmt.jpg
150 1

Garden

Hedgerow

Parkland

Pasture

‘Woodland

OEBPS/image_fi/164303c07/c07f021_fmt.jpg

OEBPS/image_fi/164303c02/c02f001_fmt.jpg
R_File Edit Format Workspace Packages & Data Misc Window Help

R version 2.7.1 (2008-06-23)
Copyrignt (€)'2008 The R Foundation for Statistical Computing
ISEN 3-900051-07-0

R is free softmare and cones with ABSOLUTELY NO WARRANTY.

You are elcone to redistribute it under certain conditions.

Type “License()* or ‘licence()" for distribution details.
Natural language support but runing in an English locale

R is a collaborative project with nany contributors.

Type *contributors()® for more inforaation and

“cltation()’ on how to cite R or R packages in publications.

Type “deno()! for some deos, "help()" for on-Line help, o

“help.start()" for an HTML browser interface to help.

Type 60" to quit .

[Morkspace restored from /Users/markgardener/.R0ata]

Commanas
stpattern = ms)
Istpatter = ms)
Istpatter = miS)
Istpattern = smiS)
Istpattern = Tamis)
Is(pattern = Tom]s)
Istpattern = TA-Z))

i
i o
i gt -
o
=)
e
< g)
o
e [
R
ooy) (e)

OEBPS/image_fi/164303c10/c10f008_fmt.jpg
light

74

(014

punqe

OEBPS/image_fi/164303c01/c01f006_fmt.jpg
| 2 Windows Anytime Upgrade

58 Windows Fax and s

@ Windows Media Ce

3 Windows Media Pa

| €] Windows Update

2 winzip

- 105 Viewer
Administrative Tool
Games
Maintenance
Microsoft Ofice
Microsoft Visual Stu
Morill Firefox
OpenOificeorg 3.1
PC Tools AntVinus
Picasa3
R
§ R2101 Help

R r2101

19 Uninstll R 2101

Back

L]

L]

Open
Run 2 administrator
Troubleshoot compatibily
Openfie focation

WinZip

P to Taskbar

Pin o Stat Menu
Restoreprevious versions
Sendto

a

Copy

Detete

Rename

Properties

Default Programs

Help and Support

OEBPS/image_fi/164303c01/c01f031_fmt.jpg
006 R Package Manager

<Back Fwd > Refresh List

Stas Package Descrption

8 notloaded JAER | Applied EconometricswithR 1
AlS Tools to look at the data (‘Ad Inidicia Spectata’) 0
ALS multivariate curve resolution alternating least squares (MCR-ALS)
AMORE A MORE flexible neural network package
ARES Allelic richness estimation, with extrapolation beyond the sample size
AcceptanceSamplir Creation and evaluation of Acceptance Sampling Plans
AdMit Adaptive Mixture of Student-t distribut
AdaptFit Adaptive Semiparametic Regression
AlgDesign AlgDesign
Amelia Amelia II: A Program for Missing Data
AnalyzeFMRI Functions for analysis of fMRI datasets stored in the ANALYZE or NIFT
ArDec e series autoregressive decomposition
BARD Better Automated ReDistricting
BAYSTAR On Bayesian analysis of Threshold autoregressive model (BAYSTAR)
88 Solving and optimizing large-scale nonlinear systems
BCE Bayesian composition estimator: estimating sample (taxonomic) comg
BHH2 Useful Functions for Box, Hunter and Hunter II k3

Applied Econometrics with R

DO

Documentation for package ‘AER’ version 0.9-0

Help Pages

EG KLMN

OEBPS/image_fi/164303c07/c07f013_fmt.jpg
40

35

30

count

OEBPS/image_fi/164303c01/c01f014_fmt.jpg
mark@mark-Parallels-Virtual Platrorms=
File Edit View Search Terminal Help
mark@mark-Parallels-Virtual-Platform:~$ R

R version 2.11.1 (2016-05-31)
Copyright (C) 2010 The R Foundation for Statistical Computing
ISBN 3-900051-67-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ‘license()' or *licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type *contributors()' for more information and
‘citation()* on how to cite R or R packages in publications.

Type ‘demo()' for some demos, 'help()' for on-line help, or
“help.start()* for an HTHL browser interface to help.
Type 'q()' to quit R.

[Previously saved workspace restored]

>1

OEBPS/image_fi/164303c07/c07f005_fmt.jpg
species richness

16

14

124

10

—

mow

unmow

cutting treatment

OEBPS/image_fi/164303c07/c07f039_fmt.jpg
n Measurement

140 4

120 4

100 -

80

60

404

20

Length

Speed

Algae

NO3

BOD

OEBPS/image_fi/164303c11/c11f002_fmt.jpg
12

10

Grass

Heath

Arable

OEBPS/image_fi/164303c01/c01f022_fmt.jpg
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
See Also

lueighted.mean, mean.POSIXct

Examples

x <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)

base version 2.7.1 Index]

OEBPS/image_fi/164303c07/c07f022_fmt.jpg
Chaffinch

Blackbird

Song
Thrush

House Sparrow

OEBPS/image_fi/164303c11/c11f010_fmt.jpg
Abundance

© Stonefly
© Mayfly

Speed

OEBPS/image_fi/164303c01/c01f016_fmt.jpg
G il Search

read table {utils}

Data Input

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to lines and
variables to fields in the file.

usage

read.table(file, header = FALSE, sep = "", quote =
dec = ".", row.names, col.names,
as.is = lstringshsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, £ill = Iblank.line:
strip.uhite = FALSE, blank.lines.skip = TRUE,
comment .char = "#",
allowEscapes = FALSE, flush = FALSE
stringsAsFactors = default.stringshsFactors(),
encoding = "unknown")

OEBPS/image_fi/164303c05/c05f006_fmt.jpg
Density

Comparing two distributions

0.15 4

0104

0.05 4

0.00 4
=2

4 6
Data2 size classes

OEBPS/image_fi/164303c01/c01f008_fmt.jpg
Program name: Rgui.exe
Publisher: Unknown

File origin: Hard drive on this computer

- [

Change when these notifications appear

OEBPS/image_fi/164303c08/c08f001_fmt.jpg
Height

40

301

20

= E3
—

= -

sativa.hi vulgaris.hi sativa.lo vulgaris.lo sativa.mid vulgaris.mid
Interaction

OEBPS/image_fi/164303c07/c07f007_fmt.jpg
r <}

20

unod Aseung

Health Arable

Grass

Habitat

OEBPS/image_fi/164303c10/c10f001_fmt.jpg
oz

juno>

35

speed

OEBPS/image_fi/164303c10/c10f006_fmt.jpg
Length

OEBPS/image_fi/164303c05/c05f008_fmt.jpg
Quantiles for data2

0-Q plot of example data

Theoretical

OEBPS/image_fi/164303c01/c01f003_fmt.jpg
[Software

OEBPS/image_fi/164303c07/c07f011_fmt.jpg
501

40

Apkep jo Junod

10

Speed m/s

OEBPS/image_fi/164303c01/c01f020_fmt.jpg
Arithmetic Mean

OEBPS/image_fi/164303c07/c07f024_fmt.jpg
Garden

Song Thrush
Robin

House Sparrow
Great Tit
Chaffinch
Blackbird

Hedgerow
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Parkland
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Pasture
Song Thrush
Robin
House Sparrow
Great Tit
Chaffinch
Blackbird

Woodland

Song Thrush
Robin

House Sparrow
Great Tit
Chaffinch
Blackbird

0 10 20 30 40 50

OEBPS/image_fi/164303c07/c07f037_fmt.jpg
Total birds counted

50

40 1

30

20

104

O Garden

O Hedgerow
O Parkland
M Pasture

B Woodland

1%.n|

Blackbird

Chaffinch

GreatTit House Sparrow Robin Song Thrush

Bird species

OEBPS/image_fi/164303c11/c11f004_fmt.jpg
50

40

30

20

10

B Blackbird

H Chaffinch
Dereat Tit

O House Sparrow
ORobin

O Song Thrush

J ol wo

Garden

Hedgerow

Parkland Pasture ‘Woodland|

OEBPS/image_fi/164303c08/c08f003_fmt.jpg
95% family-wise confidence level

vulgaris:lo-sativa:lo -
sativa:mid-sativa:lo 4
vulgaris:mid-sativa:lo {
vulgaris:hi-sativa:lo -
sative
sativa:mid-vulgaris:lo -
ulgaris:mid-vulgaris:lo
vulgaris:hi-vulgaris:lo
sativa:hi-vulgaris:lo -
vulgaris:mid-sativa:mid -
vulgaris:hi-sativa:mid o

i-sativa:lo -

sativa:hi-sativa:mid o
ulgaris:hi-vulgaris:mid -
sativa:hi-vulgaris:mid 4

sativa:hi-vulgaris:hi -|

P I

10 20 30 40
Differences in mean levels of plant:water

OEBPS/image_fi/164303c11/c11f021_fmt.jpg
20 25 30

NO3

15

10

20 25
Speed

15

10

o
o o o
o
°
° °
°
°
<
° ° 8 3 o °
] 3 o o o
© oo
oe) o o
o °
°
°
° °
°
o o ©)
o vz zz oz 8 9
- 2 g
3 oo 8 sy
Ed o
o
B
o o
o °
oo oo
S o
°o o -) ©
PO i o o
° °
o o
° °
o o
o o o
o
3 o 0o
vz zz oz 8 9 H vz Tz oz 8 9 H

ybua ybuay

OEBPS/image_fi/164303c01/c01f027_fmt.jpg
R Package Manager

Refresh L
Description
| Applied EconometricswithR __________ ___________
Tools to look at the data (‘Ad Inidicia Spectata) 0
multivariate curve resolution alternating least squares (MCR-ALS)
A MORE flexible neural network package
Allelic richness estimation, with extrapolation beyond the sample size
AcceptanceSamplir Creation and evaluation of Acceptance Sampling Plans
AdMit Adaptive Mixture of Student-t di
AdaptFit Adaptive Semiparametic Regression
AlgDesign AlgDesign
Amelia Amelia II: A Program for Missing Data
AnalyzeFMRI Functions for analysis of fMRI datasets stored in the ANALYZE or NIFT
ArDec e series autoregressive decomposition
BARD Better Automated ReDistricting
BAYSTAR On Bayesian analysis of Threshold autoregressive model (BAYSTAR)
88 Solving and optimizing large-scale nonlinear systems
Bayesian composition estimator: estimating sample (taxonomic) comg
Useful Functions for Box, Hunter and Hunter II v

Applied Econometrics with R

)

Documentation for package ‘AER’ version 0.9-0

Help Pages

EG KLMN yw

OEBPS/image_fi/164303c07/c07f030_fmt.jpg
Rainfall cm

" Jan Feb Mar Apr May Jun Jul
Month

Aug Sep Oct Nov Dec

