

[image: cover.eps]

iPhone® and iPad™ Game Development For Dummies®

Table of Contents

Introduction

About This Book

Conventions Used in This Book

Foolish Assumptions

How This Book Is Organized

Part I: Getting Started

Part II: Traffic, The Game

Part III: The Social Aspects

Part IV: The iPad

Part V: The Part of Tens

Icons Used in This Book

Where to Go from Here

	Part I: Getting Started

Chapter 1 : Building Great iOS Games

Figuring Out What a User Wants from an iPhone Game

Establishing a Game Developer Mindset

Noting the Features of Good Games

Device-guided design

Incorporating the fun

Designing a Good Game

Beginning with an idea

Making the idea fun, feasible, and unique

Evolving the Game

Prototyping on paper

Distilling the ingredients of fun

Applying Sid Meier’s Rule of Halves

What’s Next

Chapter 2: Becoming an iPhone Developer

Becoming a Registered iPhone Developer

Exploring the iPhone Dev Center

Looking forward to using the SDK

Resources on the iPhone Dev Center

Downloading the SDK

Joining the iPhone Developer Program

Getting Ready for the SDK

Chapter 3: Your First Date with the SDK

Developing with the SDK

Creating Your Project

Exploring Your Project

Building and Running Your Application

Working with the iPhone Simulator

Imitating hardware interaction

Emulating gestures

Uninstalling applications and resetting your device

Customizing Xcode

Using Interface Builder

	Part II: Traffic, The Game

Chapter 4: How iOS Games Work

Using Frameworks

Using Design Patterns

The Model-View-Controller (MVC) pattern

The MVC in action

Working with Windows and Views

Looking out the window

Admiring the view

Exploring the kinds of views you use

Controlling View Controllers

Adding Your Own Application’s Behavior

The Delegation pattern

The Target-Action pattern

Moving Ahead with Your Game

Chapter 5: Building the User Interface

Building the Main Screen

Opening the project

Creating the first screen

Making the buttons look fancy

Adding Icons and Launch Screens

Adding the icon

Adding the launch screen

Renaming the view controller

Chapter 6: Making Objects Appear and Move

Drawing with Views

How Drawing Works on iOS

Building the Traffic View Controller

Properties

Actions and outlets

Setting up the animations

Creating Cars for the Game

Adding an image view subclass

Adding the car to the view

Using Core Animation to Animate Buttons

Understanding layers

Working with CAKeyframeAnimation

Making the buttons bounce

Chapter 7: The Life Cycle of an iOS Game

Starting with the Main Nib File

Initialization

Event processing

Termination

Considering Other Runtime Issues

Responding to interruptions

Managing memory on the iPhone

Dealing with Touch Input

The long and storied life of a UITouch

The stages of a touch

Responding to Gestures

Processing Touches

Chapter 8: Creating the Game Architecture

Putting on Your Architect’s Hat

View controllers, screens, and features

Game loops

Timers and frame rates

Game objects and your app

Designing the Screen Flow

The main menu

The game screen

The pause screen

The game over screen

The high scores screen

The settings screen

Chapter 9: Creating the Game Controller

Creating the Traffic Controller Files

Registering Cars

Creating the Game Timer

Setting up the View Controller

Keeping Track of the Clock

Creating Cars from Lanes

Registering lanes

Updating the Vehicle class

Creating new cars

Moving Cars Around

Updating car positions

Moving between lanes

Removing Cars from the Game Board

Earning More Time

Detecting Collisions

Updating the Counter

Pausing the Game

Creating the Paused View

Pausing

Making the Game End

Creating the game over view

Handling the Game Over event

Chapter 10: Using the Debugger

Figuring Out What Debugger Can Help You Do

Using the Debugger

Debugging your project

Using the Debugger window

Using Breakpoints

Using the Static Analyzer

Chapter 11: Keeping Score in Your Game

Score-Keeping in Traffic

Saving Scores

Storing files in chroot jails

File formats

Storing the Scores

Creating the scores list

Loading the scores list

Working with Scores

Adding scores to the list

Keeping score in TrafficController

Displaying the High Scores List

Creating the scores screen

Making scores visible to the player

Chapter 12: Storing User Preferences

Designing Settings

Figuring out what settings to add

Giving the user control(s)

Getting Familiar with NSUserDefaults

Providing default values

Reading settings

Writing settings

Building Custom Settings Interfaces

Using controls

Exploring the Target-Action pattern

Building Settings in Traffic

Adding the variables

Loading the default settings

Saving the settings on exit

Constructing the view controller

Building the Settings Interface

Building the interface

Coding the SettingsViewController Class

Connecting all of the code

Chapter 13: Death, Taxes, and iOS Provisioning

How the Process Works

The Distribution process

The Development process

Provisioning Your Device for Development

Getting your Development Provisioning Profile and iPhone Development Certificate

Provisioning Your Application for the App Store

Getting Your Content in the App Store via iTunes Connect

Manage Users

Contract, Tax & Banking Information

Uploading your information

What you need to get your game into the App Store

Avoiding the App Store Rejection Slip

Now What?

Chapter 14: Giving Your Game Music and Sound

Recognizing the Purpose of Sound in a Game

What music does

What sound effects do

Understanding Playback on iOS

Uncompressed audio

Compressed audio

Media playback on iOS

Playing Background Music

AVAudioPlayer

Loading the content

Playing Sound Effects

Audio ToolBox and system sounds

Playing background audio

Part III: The Social Aspects

Chapter 15: Building Multiplayer Gameswith Game Kit

Understanding the Basics of Game Kit

Designing a Multiplayer Version of a Single-Player Game

Competitive multiplayer

Cooperative multiplayer

Picking the paradigm

Communicating between players

Updating the interface

Setting Up the Session

Adding the framework to the project

Adding the button

Starting the session

Testing your game on multiple devices

Enabling In-Game Communication

Archiving objects

Constructing the message’s NSData object

Handling interruptions

Sending Extra Time

Chapter 16: Game, Meet Facebook

Looking at Facebook

Exploring the Uses of Facebook

Working with Facebook

Obtaining the Facebook SDK

Facebook sessions and permissions

Adding the Facebook iOS SDK to your project

Setting up the application delegate

Connecting to Facebook

Checking for Permission

Logging into Facebook

Posting to Facebook

Creating the interface

Posting an update

Testing Everything

Improving the User Experience

Disabling the buttons

Showing activity

Chapter 17: External Displays

Doubling the Fun with an External Display

Looking at Screens, Windows, and Views

Detecting extra displays

Differentiating among screens

Running different screen modes

Using the extra display

Adapting Your Game

Creating the window

Sending the output

Chapter 18: iAd

Using iAd

Joining the iAd Network

ADBannerView

Implementing iAd

Conform to My Protocol, Baby

	Part IV: The iPad

Chapter 19: The World of the iPad

Introducing the iPad

Discovering the New Rules for iPad Apps

Multiple orientations

More room for hands

Two people, one device

Adapting Traffic for the iPad

Transitioning the project

Deciding how to transition

Resizing the views and menus

Managing multiple targets

High-resolution Screens

The Retina display

Adding a better default image

Chapter 20: Adding Multiple Lanes for the iPad

Designing Game Play for a Larger Screen

Creating Additional Lanes and Multidirectional Cars

Adding extra lanes

Creating cars

Chapter 21: Using Gesture Recognizers

Understanding Gestures

Detecting gestures

Exploring the states of a gesture recognizer

Separating gesture detection from action

Adding the Gesture Recognizer Code to Your Game

Adding the view

Responding to the gesture

Slowing down time

Chapter 22: Setting Up OpenGL

“Behold, the Third Dimension!”

Working with 3D space

A history lesson

Tiny graphics powerhouses

How OpenGL Works

Contexts

Primitives

Vertices

Rasterizing

Buffers

Shaders

Drawing stuff on the screen

OpenGL objects, names, and binding

Using OpenGL in iOS

Core Animation layers

EAGLContext, a fountain of mysteries

Displaying the frame buffer

Setting Up OpenGL for Traffic

Setting up the view

Creating the 3D view

What are these “buffers” of which you speak?

Creating the OpenGL context

Preparing the buffers

Rendering the ‘scene’

Chapter 23: Drawing with OpenGL

The Background Scene

The goal

Setting up the background rendering

Writing Fragment and Vertex Shaders

Uniforms, varyings, and attributes — oh my!

The vertex shader

The fragment shader

Tying it all together

Drawing the Scene

Setting up the vertex arrays

Drawing the scene

Chapter 24: Texturing with OpenGL

Figuring Out How Textures Work

Compressing Textures

Loading Textures

Updating the Shaders

Drawing the Texture

Making the Road Move

Chapter 25: Kicking Up Your Game a Notch

Accessing the iPod Library

Media items, media pickers, and music players

Importing the framework

Adding the user interface

Detecting Shakes

Detecting shake events

Clearing the screen

	Part V: The Part of Tens

Chapter 26: Ten Differences between the iPhone and the iPad

The iPad Is Social

The iPhone Is Personal

The iPad Offers More Direct Control

You Can Play the iPad Really Loud

iPhone Users Often Wear Headphones

Games Can’t Always Be Easily Scaled from iPad to iPhone

Users Expect More from an iPad Game

The iPhone Is Used in High-Distraction Environments

Users Spend More Time Playing iPad Games

The iPhone Is Highly Portable and Moveable

Chapter 27: Ten Ways to Market Your Game

FriendTube, Tweetfeed, YouFace: Engage with Social Media

Give Away Your Game

Get Your Game Reviewed

Create a Press Kit

Use Push Notifications

Offer In App Purchase

Solicit iTunes App Store Reviews

Watch Your Sales Closely

Use Analytics

Make Your Web Site Awesome

Chapter 28: Ten Insanely Great Games

Canabalt

Flight Control

Plants vs. Zombies

Ramp Champ

DoodleJump

Frenzic

Pocket God

Words With Friends

Chopper (and Chopper 2)

Tap Tap Radiation

						iPhone® & iPad™ Game Development For Dummies®

							by Neal Goldstein, Paris Buttfield-Addison, and Jon Manning

				
			
				[image: WileyTitlePageLogo.eps]
			

			iPhone® & iPad™ Game Development For Dummies®

				Published by
Wiley Publishing, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

				Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

				Published simultaneously in Canada

				No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

				Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

				Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

				For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

				For technical support, please visit www.wiley.com/techsupport.

				Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

				Library of Congress Control Number: 2010937820

				ISBN: 978-0-470-59910-5

				Manufactured in the United States of America

				10 9 8 7 6 5 4 3 2 1

				
								
				[image: WileycopyrightLogo.eps]

				

				About the Authors

				Neal Goldstein is a recognized leader in making state-of-the-art, cutting-edge technologies practical for commercial and enterprise development. He was one of the first technologists to work with commercial developers at firms such as Apple Computer, Lucasfilm, and Microsoft to develop commercial applications using object-based programming technologies. He was a pioneer in moving that approach into the corporate world for developers at Liberty Mutual Insurance, USWest (now Verizon), National Car Rental, EDS, and Continental Airlines, showing them how object-oriented programming could solve enterprise-wide problems. His book (with Jeff Alger) on object-oriented development, Developing Object-Oriented Software for the Macintosh (Addison Wesley), introduced the idea of scenarios and patterns to developers. He was an early advocate of the Microsoft .NET framework, and he successfully introduced it into many enterprises, including Charles Schwab. He was one of the earliest developers of Service Oriented Architecture (SOA), and as Senior Vice President of Advanced Technology and the Chief Architect at Charles Schwab, he built an integrated SOA solution that spanned the enterprise, from desktop PCs to servers to complex network mainframes. (He holds three patents as a result.) As one of IBM’s largest customers, he introduced the folks at IBM to SOA at the enterprise level and encouraged them to head in that direction.

				He is currently passionate about the real value mobile devices can provide and has eight applications in the App Store. These include a series of Travel Photo Guides (http://travelphotoguides.com) developed with his partners at mobilefortytwo and a Digital Field Guides series (http://lp.wileypub.com/DestinationDFGiPhoneApp) developed in partnership with John Wiley & Sons. He also has a cool little, free app — Expense Calendar — that allows you to keep track of things like expenses, mileage, and time by adding them to your calendar.

				Along with those apps, he has written several books on iPhone programming, including iPhone Application Development For Dummies (both editions) and Objective-C For Dummies, and he coauthored (with Tony Bove) iPhone Application Development All-In-One For Dummies and iPad Application Development For Dummies. He is also the coauthor (with Jon Manning and Paris Buttfield-Addison) of a forthcoming book on using the Unity platform for game development.

				Because you can never tell what he’ll be up to next, check regularly at his Web site: www.nealgoldstein.com. You can also check out his Facebook page at www.facebook.com/nealgoldsteinbooks and follow him on Twitter at www.twitter.com/nealgoldstein.

				Jon Manning has a collection of careers, which he swaps out as necessary: He’s co-founder of Secret Lab (the world’s most dangerous mobile games startup), a Senior Software Engineer at Meebo, Inc. (where he builds mobile apps that reach a stupidly huge number of people), and a Graduate Researcher in Human-Computer Interaction at the University of Tasmania in Australia (a land of computers and kangaroos). When he isn’t working on apps or books, he’s working on adding more letters to the end of his name. He spends nowhere near enough time around cats. You can find Jon online at www.desplesda.net and on Twitter at www.twitter.com/desplesda.

				Paris Buttfield-Addison wears many hats: He’s co-founder of Secret Lab (www.secretlab.com.au), author, educator, and Product Manager (Mobile) at Meebo, Inc., one of the Web’s fastest growing consumer Internet companies (www.meebo.com). Paris has degrees in HCI, computer science, and medieval and modern history. He enjoys designing, producing, and building awesome experiences for mobile devices. Through some miracle of time management, he is also a Graduate Researcher in information management at the University of Tasmania, Australia. You can find Paris on the Web at www.paris.id.au and on Twitter at www.twitter.com/parisba.

				Dedication

				Neal Goldstein: To my children Evan and Sarah, and all my personal and artist friends who have kept me centered on the (real) world outside of writing and technology. But most of all, to my wife Linda, who is everything that I ever hoped for and more than I deserve. Yes, Sam . . . the light at the end of the tunnel is not a freight train.

				Jon Manning: To my family, for introducing me to this whole “computers” thing.

				Paris Buttfield-Addison: To my mother and father, for all the usual things — everything.

				Authors' Acknowledgments

				There is no better acquisitions editor than Katie Feltman, who did a superb job of keeping us on track and doing whatever she needed to do to us to stay focused on writing. Linda Morris did a great job in the early stages of the project, and project editor Pat O’Brien made sure all the parts were pulled together. Also thanks to copy editor Jen Riggs and technical editor Erick Tejkowski for helping us make things clearer. Thanks again to our agent Carole Jelen for her continued work and support in putting together these projects.

				Publisher’s Acknowledgments

				We’re proud of this book; please send us your comments through our online registration form located at www.dummies.com/register/.

				Some of the people who helped bring this book to market include the following:

				Acquisitions, Editorial, and Media Development

				Project Editor: Pat O’Brien

				Acquisitions Editor: Katie Feltman

				Copy Editor: Jen Riggs

				Technical Editor: Erick Tejkowski

				Editorial Manager: Kevin Kirschner

				Media Development Assistant Project Manager: Jenny Swisher

				Media Development Associate Producers: Josh Frank, Marilyn Hummel, Douglas Kuhn, and Shawn Patrick

				Editorial Assistant: Amanda Graham

				Sr. Editorial Assistant: Cherie Case

				Cartoons: Rich Tennant (www.the5thwave.com)

				Composition Services

				Project Coordinator: Sheree Montgomery

				Layout and Graphics: Timothy C. Detrick, Joyce Haughey, Andrea Hornberger

				Proofreaders: Laura Albert, Shannon Ramsey

				Indexer: BIM Indexing & Proofreading Services

				Publishing and Editorial for Technology Dummies

				Richard Swadley, Vice President and Executive Group Publisher

				Andy Cummings, Vice President and Publisher

				Mary Bednarek, Executive Acquisitions Director

				Mary C. Corder, Editorial Director

				Publishing for Consumer Dummies

				Diane Graves Steele, Vice President and Publisher

				Composition Services

				Debbie Stailey, Director of Composition Services

			
		
			
				Introduction

				On September 1, 2010, Steve Jobs took the stage in San Francisco to announce the latest and greatest iPod. During his speech, he gloated an astonishing statistic that Apple has 50 percent of the mobile gaming market; he followed up with the even more astonishing statistic that the iPod touch alone outsells both Nintendo’s mobile products and Sony’s mobile products — combined.

				We don’t really need to say any more than that to convince you that developing games for Apple’s mobile platforms is worthwhile! We probably will though.

				As you continue to explore the iOS as a gaming platform, you’ll be amazed at the possibilities for simple, quick attention-grabbing games that last for mere moments of time. The iPhone and iPad are, in addition to being useful and powerful mobile computers, the most interesting gaming devices in recent memory. The combination of powerful hardware, a decent display, permanent Internet connectivity, and an enormous user base (120 million iOS devices as of late 2010) makes it possible to create a class of games for mobile users that were once possible only on desktop PCs. But not only that — Apple’s App Store provides a direct sales and distribution channel to potential users that really can’t be beaten.

				The iPhone and iPad, and iOS in general, are game changers for the world of game development. Never before has it been so easy for an individual, or a small group, to build a game that can be distributed to the world. One of the hallmarks of a great iOS game is that it leverages the unique hardware and operating system (iOS) that Apple produces for an extremely polished and consistent, yet unique, experience. The iOS Software Development Kit (SDK), which you use to develop iOS games, includes tools such as OpenGL ES, which makes the type of 3D graphics that would’ve never been possible on a mobile device, dare we say it, simple. The frameworks supplied in the SDK are especially rich and mature. All you really have to do is add your game’s user interface and game play mechanics to the framework, and then poof . . . an instant game. Well, sort of — but we help you through the patches that are a bit more challenging, as we guide you along the way to making an awesome game.

				If you’re familiar with older versions of the SDK, you’re in for a pleasant surprise: SDK version 4.1, which includes Xcode 3.2.3, is a lot, lot better and easier to use. This book is based on iOS 4.1 for iPhone and iOS 3.2 for iPad (the latest versions at the time of writing) and Xcode 3.2.3.

				If this seems too good to be true, well, okay, it is, sort of. What’s really hard, after you figure out the language and framework, is how to create a program structure for an iOS. Although there are lots of resources, the problem is exactly that: There are lots of resources — as in thousands of pages of documentation! You may get through a small fraction of the documentation before you just can’t take it anymore and plunge right into coding. Naturally enough, you’ll have a few false starts and blind alleys until you find your way, but we predict that after reading this book, it’s (pretty much) smooth sailing.

				About This Book

				iPhone & iPad Game Development For Dummies is a beginner’s guide to developing games for the iPhone, iPod touch, and iPad, which all run Apple’s iOS. And not only do you not need any iPad (or iPhone) development experience to get started, but you also don’t need any Macintosh development experience either. We expect you to come as a blank slate, ready to be filled with useful information and new ways to do things.

				The iOS devices allow you to build truly innovative, simple, and clever games that can reach a wider audience than was ever possible for independently developed games in the past. And because you can also start small and create fun, simple games that entertain the player, it’s relatively easy to transform yourself from “you know nothing” into a game developer who, though not (yet) a superstar, can still crank out quite a respectable game.

				The iPhone and iPad devices can be home to some pretty fancy games as well — so we take you on a journey through building not just a simple game but also a souped up version for the iPad that uses OpenGL ES (a 3D graphics system that we cover in Chapter 22) so that you know the ropes for developing your own game.

				This book distills the hundreds (or even thousands) of pages of Apple documentation, not to mention our own game and app development experiences, into only what’s necessary to start developing real, fun games. But this is no recipe book that leaves it up to you to put it all together; rather, we take you through the frameworks and iOS architecture in a way that gives you a solid foundation in how games really work on the iPhone, iPad, and iPod touch. This book acts as a roadmap to expand your knowledge as you need to.

				This book is a multiple-course banquet, intended to make you feel satisfied (and really full) at the end.

				Conventions Used in This Book

				This book guides you through the process of building iOS games. Throughout, you use the provided iOS framework classes for iOS (and create new ones, of course) and code them using the Objective-C programming language.

				Code examples in this book appear in a monofont so they stand out a bit better. That means the code you see looks like this:

				#import <UIKit/ UIKit.h>

				Objective-C is based on C, which (we want to remind you) is case-sensitive, so please enter the code that appears in this book exactly as it appears in the text. This book also uses the standard Objective-C naming conventions — for example, class names always start with a capital letter, and the names of methods and instance variables always start with a lowercase letter.

				All URLs in this book appear in a monofont as well:

				www.nealgoldstein.com

				If you’re ever uncertain about anything in the code, you can always look at the source code on the Internet at www.nealgoldstein.com or www.traffic.secretlab.com.au. (You can grab the same material from the For Dummies Web site at www.dummies.com/go/PONIES.) From time to time, we provide updates for the code there and post other things you might find useful. Neal also offers insights about everything from developing apps to the future of mobile devices and applications at www.nealgoldstein.com. Secret Lab also posts articles and notes on game design and development at www.secretlab.com.au.

				Foolish Assumptions

				To begin creating your iOS games, you need an Intel-based Macintosh computer with the latest version of the Mac OS on it. (No, you can’t program iPhone applications on the iPad!) You also need to download the iOS SDK — which is free — but you have to become a Registered iOS Developer before you can do that. (Don’t worry; we show you how in Chapter 2.) And, oh yeah, you need an iPhone or iPod touch (or an iPad if that’s your target device). You don’t run your game on them right away — you use the Simulator that Apple provides with the iOS SDK during the initial stages of development — but at some point, you need to test your application on a real, live iOS device.

				This book assumes that you have some programming knowledge and that you have at least a passing acquaintance with object-oriented programming, using some variant of the C language (such as C++, C#, or even Objective-C). If not, we point out some resources that can help you get up to speed (including Neal’s book, Objective-C For Dummies). The examples in this book focus on the frameworks that come with the SDK; the code is pretty simple (usually) and straightforward. (We don’t use this book as a platform to dazzle you with fancy coding techniques.)

				This book also assumes that you’re familiar with the iPhone and iPad, and that you’ve at least explored Apple’s included applications to get a good working sense of the iOS look, feel, and style. Browse the App Store to see the kinds of games available there, and maybe even download a few free ones (as if we could stop you).

				How This Book Is Organized

				iPhone & iPad Game Development For Dummies has five main parts, which we explain in more detail in the following sections.

				Part I: Getting Started

				Part I introduces you to the iOS game development world. You find out what makes a great iOS game, and how to exploit the iPhone, iPod touch, and iPad’s best features to create a compelling and fun gaming experience. You also discover how to sign up for the iOS Developer Program and become an official developer so that you can distribute your games through the App Store. You also explore the components of the iOS SDK, such as Xcode (the Apple development environment) and Interface Builder.

				Part II: Traffic, The Game

				In this part, you find out how iPhone games work, and we explain how to use the frameworks that form the raw material of any iOS app to assemble the user interface of our example game, Traffic, and to move things around on the screen. We also reveal design patterns that you need to adopt to make use of the iOS SDK. Part II also describes how to debug your games, provision your work for testing on real devices (and for distribution to the App Store), and play music and sounds.

				Part III: The Social Aspects

				Part III is deceptively short but intensely illuminating. These four chapters describe integrating more social technologies with your game, including Apple’s Game Kit framework for wireless networking among people on multiple devices, Facebook for posting social updates, and external display support for making your game have more of a party atmosphere.

				Part IV: The iPad

				With the basics behind you and a good understanding of the iPhone game architecture under your belt, it’s time to talk about money and the iPad. In this part, we discuss Apple’s iAd for generating revenue through the sale of advertising displayed in your game. Part IV also covers the theoretical and practical aspects of upsizing your game to the world of high-resolution and technologies introduced with the iPhone 4 and the iPad, such as gesture recognizers. We dip a toe in the world of OpenGL ES (Apple’s fast 3D graphics library) and speed up the world of Traffic with some new effects and features for the iPad version.

				Part V: The Part of Tens

				Part V consists of some tips to help you avoid figuring out everything the hard way. We talk about some key differences to consider when designing games for the iPad and iPhone, discuss some marketing tips to help get you on the road to App Store success, and showcase our ten favorite games to be inspired by.

				Icons Used in This Book

				[image: tip.eps]This icon indicates a useful point that you shouldn’t skip.

				[image: remember.eps]This icon represents a friendly reminder. We describe a vital point here that you should keep in mind while proceeding through a particular section of the chapter.

				[image: technicalstuff.eps]This icon signifies that the accompanying explanation may be informative (dare we say, interesting?), but it isn’t essential to understanding game development. Feel free to skip past these tidbits if you want.

				[image: warning_bomb.eps]This icon alerts you to potential problems that you may encounter along the way. Read and obey these blurbs to avoid trouble.

				Where to Go from Here

				Dive into the exciting world of iOS game development! If you’re nervous, take heart: The iOS is still so new and such rich territory for developers to mine, that no company or individual has a lock on innovating with it. Your idea just might be the exciting game that everyone’s waiting for.

				Don’t forget to check out our Web sites at www.nealgoldstein.com, www.secretlab.com.au, and www.traffic.secretlab.com.au or www.dummies.com/go/iphoneipadgameprogramming.

				Now, get ready to have some fun building games!

				Please note that some special symbols used in this eBook may not display properly on all eReader devices. If you have trouble determining any symbol, please call Wiley Product Technical Support at 800-762-2974. Outside of the United States, please call 317-572-3993. You can also contact Wiley Product Technical Support at www.wiley.com/techsupport.

			

		

	
		
				
					Part I

					Getting Started

				
					[image: 599105-pp0101.eps]
				

					In this part . . .

					You say you want a revolution? Well, here’s the plan: This part explains what you need to know to get started on the Great iOS Game Design and Development Trek. After reading this part, you can evaluate your idea for an iOS game application, see how it stacks up, and figure out what you have to do to transform it into something that knocks your users’ socks off.

					You have to register as an Apple developer if you want to get the Software Development Kit (SDK) and all the other goodies that Apple provides for developers — and of course, that means agreeing to a confidentiality agreement. And if you actually want to run your application on a real iOS device, you have to join the iOS Developer Program. This part gets you through these processes and introduces you to the SDK. Here’s a breakdown of the chapters in this part:

					 Chapter 1 describes the features of iOS devices and the elements that make a great game. You find out how to exploit the platform’s features and embrace its limitations. You also discover how to design with both while keeping user expectations in mind.

					 Chapter 2 gets you into the Apple developer village. You find out how to register as a developer, join the program, explore the developer center on the Web, and download the SDK.

					 Chapter 3 goes into more detail about the SDK itself. You find out all about Xcode and Interface Builder, how to start a game project from a template, how to build and run a game, and how to customize Xcode to your liking.

			

		

	
		
			
				Chapter 1

				Building Great iOS Games

				In This Chapter

				Getting your mind on the game developer track

				Discovering the features that make for a good game

				Figuring out your game concept

				Fine-tuning the possibilities in your game design

				Just as you find with any type of app, the range of games available for the iPhone (and iPad) is huge. They range from games that are expected to be chart busters from the beginning (the games produced by giant studios, such as Electronic Arts) to games made by individuals in their spare time that become huge hits (for example, Trism and Flight Control).

				So, as a soon-to-be iPhone and iPad game creator, you need to find your slot in the range of games. As the authors of this book, we help you do that. In this chapter, we tell you how to get into the game developer mindset, determine what makes a good game, initiate a game concept, and then design the game to fully develop that concept.

				When we started writing this book, we spent a lot of time figuring out the best way to showcase iOS game development. After much deliberation, we decided to showcase a complete game, dubbed Traffic, from start to finish. The alternative was to merely show you how to build pieces that could be useful in the development of a game. Instead, we chose to build a commercial-quality game step by step, demonstrating all the concepts and knowledge you need to build an amazing, real game of your own.

				Enjoy!

				iPhone, iPads, iDon’tKnows

				The iPad, Apple’s new computer, is fresh out of the factories and being bought by the millions. The iPad has been (somewhat unfairly) described as a “giant iPhone,” which is inaccurate from a user experience point of view but rather accurate from a technical point of view.

				Both the iPad and the iPhone run the same operating system — iOS. This means that 95 percent of the skills you pick up by reading this book apply to the iPad as much as they do to the iPhone. When we talk about iOS, or iOS devices, we’re talking about the iPhone, the iPod touch, and the iPad.

				Because these devices are so similar, whenever we refer to development on the iPhone, we also talk about development on the iPad as well.

				Parts I, II, and III of this book discuss the development of the game for both the iPhone and the iPad. Part IV has more focus on the iPad and discusses the changes that you need to make so your game is the best it can be on the iPad.

				Figuring Out What a User Wants from an iPhone Game

				Think about a typical weekday — it’s 8 a.m., and you’re waiting for your train. You’re bored. You’ve already checked your e-mail more times than is healthy, you’ve checked Twitter and told the world that your train is late, and you’ve checked the latest news headlines in your favorite news application. And you’re still bored.

				If only you had a game to pass the time! If you’re using an iPhone, you probably do. You take your iPhone out of your pocket and touch the icon of your current favorite game to ease your boredom for a moment. Sixty seconds later, your bus arrives. You instantly snap out of the pocket-sized game world you were absorbed in, push your iPhone’s Home button, and get on the bus.

				On the train, you take a seat and pull your iPhone back out. Touching the icon of your favorite game again, you ease right back into play at exactly the same point you left off before you got on the train. Ten minutes later, your train pulls up at your stop, and you hit the Home button, pop the iPhone into your pocket, and head into work.

				Why does all this matter? This scenario reflects the way most people play the best of the games available on the iPhone. They want to be able to listen to their music while they play, and they don’t want the game to demand so much of them that they’ll miss their train, or worse.

				[image: remember.eps] People play their iPhone games in potentially loud, bright, and distracting environments while they wait for something else to happen or while they talk to people. They play them for a minute or two before switching to something else, and they expect their iPhone to know what they were up to when they finally come back to the game.

				Establishing a Game Developer Mindset

				Why develop iPhone and iPad games? Because you can. Because it’s time. And most of all, because it’s fun! Developing a game that can potentially reach an audience in the millions is a hugely rewarding experience no matter how you look at it. Here’s what makes developing games so much fun:

				iOS games are usually small and conceptually simple to understand. As with iPhone apps, a single developer, or maybe one with a partner and some graphics support, can do them. You don’t need an enormous team with hordes of people, managers, and paperwork to create something rich and compelling. You have the power to create something that can reach millions, and you can do it from your own home.

				Games on the iPhone and iPad are focused and clean. The games get straight to the point of what makes them fun and help the users to dive in and out with ease. They’re simple but not simplistic. This makes the design and implementation much easier and faster.

				The popularity of the iOS platforms (that is, the iPhone and the iPad) makes getting your work into the hands of users easier than ever. Getting your game onto a mobile device used to mean negotiating a deal with a publisher; these days, it’s as simple as signing up online with Apple.

				[image: tip.eps]Before we talk about how to design your games, it’s worth pointing out the single most valuable piece of advice one iOS game developer can give another: Play other people’s games!

				The more you play iOS games, the better you understand them. The better you understand them, the better your own games become. When you play, if you try to determine how the game actually works, you often strike inspiration. Many games appear simple on the surface, but if you delve deeper beneath the interface by paying closer attention to how you interact with the game and what the game presents to you in return, you reveal much hidden complexity in the way the game is constructed.

				Discovering how others have built their games while you play them is the best way (other than reading this book) to develop your game building skills and gain a better understanding of what makes a great game tick.

				Noting the Features of Good Games

				Figure 1-1 shows the final version of the Traffic game you develop throughout this book. The concept for this game came to us after we noticed the popularity of simple puzzle games, line-drawing games, and solid (but simple), smartly presented game designs in the App Store.

				
					Figure 1-1: The Traffic game you build in this book.

				

				[image: 599105-fg0101.eps]

				How complex is the Traffic game? Not very. After you figure out how the game works in your head, and on paper, the actual programming doesn’t take very long. Developing Traffic took us a little more than two months, working on and off.

				Good iOS games share characteristics with good iOS applications of any kind. Before you jump in and design and build your game, make sure that you recognize these characteristics and incorporate them in your creation. We don’t use all these characteristics in the Traffic game because it doesn’t make any sense to simply cram ideas and features into a game in the spirit of embracing a platform. Judicious picking and choosing is essential to building a great game. In the next sections, we go over some of the most important.

				Device-guided design

				One of the keys to creating a great iOS application is to take advantage of the functionality that the device offers. In the case of a new platform (such as the iPhone 4 and the iPad), capitalizing on the new possibilities is especially important — especially when the application is a game!

				Games are often expected to push the limits of a platform. When your game can easily incorporate new iOS (or hardware) functionality, new frontiers of game design and innovation open before you. These elements of iOS functionality — and how they relate to games — are as follows:

				Accessing the Internet: Allowing your games to offer users the ability to post their high scores to social networking sites, such as Facebook, or quickly and easily download new levels or content packs for your games is not just a good idea, it’s essential. Word of your game spreads faster as users share their scores and favorite levels via their Facebook or Twitter pages. Your users also feel more connected and invested in your game because they’re sharing it with their friends! By providing access to extra content stored online, your game’s initial download size can also be made quite small.

				 We cover making your game into a social beast in Chapter 16.

				Detecting the location of the user: Using the iPhone’s built-in location services, you can determine the device’s current location or even be notified when that location changes. In the context of gaming, location has a variety of potential uses — though many of them aren’t obvious. For example, you could create a location-based game in which the player’s location influences the game.

				Pac-Manhattan, a 2004 research project into location-aware games, had players running around the streets of New York carrying bulky GPS devices and re-creating a game of the arcade classic Pac-Man. Six years later, you have all the power of that hardware in your users’ pockets.

				Tracking motion and orientation: The iPhone and iPad contain three accelerometers and a compass (and the iPhone 4 adds a gyroscope), which help you detect very small changes in movement. You can use these features to detect when the user turns the device from vertical to horizontal. In the case of iPhone games, you’re probably more interested in subtle movements, such as tilting.

				Cro-Mag Rally, by Pangea Software, features a unique racing experience in which the user holds the iPhone like a steering wheel and turns it to drive the car. There are also a number of dexterity-based games in which the player must roll a ball around an obstacle course, such as Super Monkey Ball and Labyrinth. Traffic makes use of the accelerometer to detect the user shaking the device; you can read about how to add the feature to the game in Chapter 25.

				Tracking multiple screen touches: Because people use their fingers, rather than a mouse, to select and manipulate objects on the iPhone screen, take advantage of the fact that people have more than one finger! The iPhone can detect up to five individual fingers on the screen at any one time and lets you determine when people perform gestures with their fingers on the screen. The iPad can detect up to 11 individual touches on the screen simultaneously. (That’s ten fingers plus your nose! We checked, using Jon’s nose.)

				[image: remember.eps] In games, gestures allow your players to have a very fluid and natural source of input to your game world. Flicking, pinching, and scrolling are very natural-feeling things to do in the iOS. If your game takes advantage of them, your users will notice, and they’ll already know how to perform the most basic inputs to your game without needing a tutorial.

				Playing audio and video: The iOS makes playing and including audio and video in your application easy. You can play sound effects or take advantage of the multichannel audio and mixing capabilities available. You can also play back many standard movie file formats, configure the aspect ratio, and specify whether the controls are displayed.

				 Of course, no game would be complete without a solid set of sound effects and a catchy theme tune! The iOS makes it easy to add these things as well as tweak the more complex and optional aspects of them, should the need arise.

				Accessing the user’s music library: The iOS also makes gaining access to your user’s songs, audio books, and audio podcasts very simple. You don’t have to restrict your users to your game’s theme music, but can allow them to pick and choose a custom playlist from their own library (or even assemble an entirely new playlist on the fly). This deceptively simple offering can help make your users feel more at home while playing your game and often entices them back to play more.

				Accessing simple, ad hoc, location-based networking: Specifically designed with games in mind, Apple’s Game Kit allows you to create ad hoc Bluetooth networks among multiple iOS devices without the need for relatively complex Bluetooth pairing. This means your games can provide users with a very simple-to-activate multiplayer functionality, with the only requirement that they must be in proximity to another iPhone or iPad user running your game.

				Incorporating the fun

				Games need to be fun. When developing any game, examine several core principles of making the playing experience fun. There isn’t a secret formula for games, but instilling and maximizing fun makes a better game for your users:

				Happy players feel in control. A lot of the fun in computer games is found in the pleasure of taking and manipulating the game world.

				 • In first-person shooter games (combat-based games in which you have direct control over the way you move and the direction you look in), this manipulation takes the form of running around and shooting things. The player has control over what lives or dies in the game world but needs to be mindful of the dangers present in that world.

				 • In strategy games, the player manipulates the world by sending units out to do battle, but also needs to be mindful of how and where to allocate these resources.

				 In either case, a good game gives the players the feeling of control by reacting quickly to their input in a way that reflects what the player wants.

				Happy players get surprised. A game that’s exactly the same every time has no replay value. A game in which you can anticipate enemy behavior after only a few seconds gets boring very fast. And so, another important component of a good game’s fun factor is the amount that it surprises the player.

				[image: remember.eps]An acceptable definition of fun itself could be pleasure with surprises.

				 By combining the pleasure of being in control with an element of random chance, you can ensure that your game is neither too predictable nor too random.

				Happy players find patterns. As people play a good game, certain patterns of behavior emerge in the way they play. For example, in first-person shooters, the best players sidestep around corners, rather than turn around them, because sidestepping means that they can immediately aim and shoot at any threat around the corner. Clever game developers notice these patterns of play and find ways to improve the player’s experience of them.

				Designing a Good Game

				Although jumping straight into code and getting down to building a game is exciting, clear and concise design is incredibly important in game development (perhaps even more so than it is to application development). Designing a game is a very rewarding experience. Although the frameworks and tools provided by Apple’s iOS Software Development Kit (SDK) are vital to the process of building an iPhone or iPad game, knowing what you’re going to build before you touch the SDK is just as vital.

				Beginning with an idea

				Game designs don’t just spring into existence, fully formed. Game design is an organic process involving writing, reading, examining, rewriting, and updating. Go through the process of constructing an idea several times before you settle upon one.

				[image: remember.eps]A game concept starts to feel complete when it has the following:

				 A description of the basic mechanics of the idea (how the game should play out and the basic actions that the player takes while playing)

				 A basic story describing the motivation for the game play

				 A flow (a basic game play description)

				 Conceptual notes on graphics, feel, and audio

				 Some examples of typical user interactions

				So, how do you get these elements of your game concept in place? Well, the process somewhat depends on your game, and we can’t really give you a blanket solution that works every time. But we can walk you through the steps of defining the elements as we did for the Traffic game. This process offers an understanding of the design decisions required and one method for arriving at them.

				Making the idea fun, feasible, and unique

				The idea for Traffic came from staring at the traffic passing and thinking, “That would make a fun game . . .” Of course, an iPhone game based on realistic simulation of traffic patterns wouldn’t be too fun or accessible, so we had to pare down the idea to something that would work on the device. Line-drawing games have shown great longevity as popular titles at the App Store, so we approached the Traffic design with the idea that it’d be a line-drawing game.

				In line-drawing games, the player sees an overall view of a scene and uses the iPhone’s touchscreen to score points by drawing lines from one object to another (or a goal object). The genre has exploded in popularity, and you find many different variations on the general idea. Some great examples of line-drawing games that carry off the concept well are Flight Control, by Firemint, and Harbor Master, by Imangi Studios.

				We didn’t want Traffic to be just another line-drawing game, so we brainstormed further — striking upon the idea of a three-lane traffic system with different colored cars. As shown in Figure 1-2, the idea evolved over time, starting at a line-drawing game and ending at a traffic-swiping game. (We discuss how we evolved the game for the iPad in Chapter 19.)

				
					Figure 1-2: The evolution of the game from paper sketches.

				

				[image: 599105-fg0102.eps]

				Evolving the Game

				No game idea comes fully formed, and it’s important to try several approaches to a game concept before you commit your time to actual development. To do this, you must reduce the cost of throwing away ideas. And you’ll throw away plenty of ideas. Trust us on that. One of the cheapest ways to try out ideas is to do so on paper.

				Prototyping on paper

				You may laugh, but drawing your game on paper (as shown in Figure 1-2) is one of the most important things you can do to make sure you’re building a truly great game. So, how do you draw your game without feeling like a fool? And how do you make sure what you’re drawing is useful?

				To effectively prototype your game on paper, you need a few things; all are very cheap and easy to acquire. Here’s the list.

				Lots of pencils, of various grades

				Some paper

				Some friends to “play” your paper game

				Patience, a good idea, and a sense of humor

				After you collect what you need, sit down and think about the flow of your game. Think about even the most mundane things, such as menus and the game’s launch. Here’s the paper-prototyping process that you use to design the game flow, its mechanics, and its look and feel:

				 1. Think about your game as a series of interconnected boxes of functionality and then draw those boxes and connections.

				 Start at the highest level you can go and distill the representation to the basic set of game functions you need to implement.

				 As shown in Figure 1-3, making decisions about the flow of your game early is important.

				
					Figure 1-3: The flow of the Traffic screens.

				

				[image: 599105-fg0103.eps]

				 2. Draw the game board, and then add lines and arrows to show how objects move onscreen, as shown in Figure 1-4.

				 The simple act of drawing how game objects move and how they react to the user helps solidify how you see the game. These movements and reactions are the game mechanics. When designing your game’s mechanics, consider how to keep the players busy without causing undue frustration.

				[image: remember.eps] In general, giving the players the ability to do more means that the game maintains the player’s interest. This is critical for games because if the player gets bored at any stage, the Home button is inches away from her fingers. Your game needs to be fun, intuitive, and exciting from the moment you launch the application.

				
					Figure 1-4: Sketches of the game’s movement mechanics.

				

				[image: 599105-fg0104.eps]

				 3. Add the elements of style, color, and smaller graphical details that establish the look and feel for your game.

				 Figure 1-5 shows the finished visual prototype of the game’s main menu.

				 Ask yourself questions like the following, and create your look and feel accordingly. Do you want your game to look:

				 • Simple or complex?

				 • Realistic or cartoony?

				 • Serious or funny?

				 • Bright and cheerful, or dark and brooding?

				[image: tip.eps] Consider the amount of development time you have to invest (making the game art look realistic takes a large amount of time). Additionally, players expect things that look realistic to behave in realistic ways (which also takes time to code). In most games, the game designer is forced to make a trade-off over realism and fun, and we suggest that you err on the side of fun.

				See the sidebar, “Moving through Traffic,” nearby in this chapter, for some of the thought process we used to design the mechanics and look and feel for the Traffic game.

				Moving through Traffic

				The process of prototyping your game on paper gives you a great opportunity to think through how you want the game to work before you commit anything to code. Here are some of the thoughts we had while designing Traffic:

				Originally, we saw the game mechanics as being a choice among cars driving forward, cars turning, and the player directing traffic. However, this simply wasn’t fun enough — more than half the cars didn’t need to do anything to win points.

				There wasn’t enough to indicate which cars should go where. We thought about adding blinking indicator lights on the cars but didn’t feel that these would be visible enough.

				By adapting the game into three lanes going forward, we could have more cars onscreen at once without overloading the player in terms of the possibility of having them crash. This, in turn, allowed the player to concentrate on managing more cars.

				We decided on a simple, brightly colored theme and designed every aspect of the game’s look around that. The buttons would be reminiscent of traffic lights, the cars would be seen from the top-down, and we’d keep the amount of clutter onscreen to a minimum.

				
					Figure 1-5: The initial prototype of the main menu.

				

				[image: 599105-fg0105.eps]

				Distilling the ingredients of fun

				There’s no secret formula, ingredient, or blueprint for making your games fun. The hints and tips in this section help, but ultimately the only way to make a game fun is to tweak it until it’s right.

				Most players find games fun if they feel in control, can establish some patterns of play, and find that they’re occasionally surprised by some element of the game. When you design a game, think through how to accomplish these characteristics of fun.

				Giving a player control

				When designing a game experience, figure out what the player controls. If an aspect of the game isn’t controlled by the player, ask yourself whether the player could control it, even indirectly — and if he can’t, would the game work without it?

				Giving the player control can be a complex process and can take a lot of development time to fully implement. However, you can “cheat” in a couple ways and still have the player feel like she controls more than she actually does. For example, in the role-playing game Mass Effect, players can choose the flow of conversations by selecting the next line that they wish to say. However, having every conversation branch into every choice is simply too many options for the game developers to cover, but reducing the number of choices reduces the amount of control that they wanted the players to have.

				The solution that the Mass Effect developers chose is quite elegant and simple: Instead of showing the exact line that the player’s character would say, the game shows the intent of the next line. When the player chooses an intent, the line that their character would speak would be close to, but not quite, the text that the player chose.

				The upshot of all this was that the developers could re-use lines of dialogue for different intents shown onscreen. By creating the illusion of choice, the player feels more involved; but in reality, the game developers didn’t have to do any more work than they needed to.

				Surprising a player

				One simple way to add surprise is by adding random events to your game design. The venerable game Missile Command has a very simple rule set: Missiles fall from the sky, and the player must shoot them down. The fun comes from the random speed and direction that missiles fall. Players don’t have infinite ammunition and can’t afford to recklessly shoot everywhere, in hopes of getting every missile at once. The challenge (and surprise for the player) becomes anticipating where and how the missiles fall.

				Encouraging patterns of play

				Play your game (and have others play it) enough that you can pick out patterns of play. Then build responses to these patterns by adding a slight tilt to the screen, highlighting screen areas, adding subtle animations, and so on to make the player feel like his character is more involved in the game action. The effect is subtle but noticeable, and the game plays better for it.

				A great example of one of these patterns is a side-scrolling game based on jump mechanics (think Super Mario Brothers, by Nintendo). After a certain amount of time playing, people become used to timing jumps as well as combining running and jumping. Observe this when you test your game with others; you can reward skilled jumping and running combinations, and work out new ways to test these skills.

				[image: tip.eps]If your game is so eclectic that your players can’t find any patterns to improve their game with, take that as a signal that you need to add a little more structure to the game.

				Applying Sid Meier’s Rule of Halves

				A lot of games rely on the finely tuned parameters, such as the speed of cars, the strengths of enemies, and the amount of ammo in your gun. These parameters often need to be just right — if they’re not, the game feels wrong in difficult-to-define ways.

				When trying to tune a game, the logical choice is to make small changes until it’s right. Unfortunately, that’s not possible when hundreds of factors are involved in a game — it’d simply take too much time. Thankfully, there’s a solution.

				Sid Meier, the legendary developer of such classics as Civilization, has a simple rule for tuning a game’s parameters. If a parameter doesn’t feel just right, either double it or cut it in half. If a car moves too fast, reduce its speed by half. If the gun feels too weak, double the amount of damage it does.

				The point isn’t that these new values are magically correct; in fact, you’re likely to overshoot by a wide margin. The point is to narrow down the range of things to check. If your car is now too slow, change its speed to somewhere between its old speed and the speed it is now. Repeat this process until your parameters feel right.

				Sid’s rule of halves is quite a bit faster than the alternative, which can often involve plugging random numbers into your game code and seeing what works best; in fact, the math nerds among us will notice that it turns the time needed to figure out the best value from a linear equation to a logarithmic one. There’s no arguing with science, kids.

				[image: remember.eps] Get your game out to other people: Show it to your friends, show it to strangers, and eventually, you need to bite the bullet and ship it. You won’t find better feedback than from a paying customer’s reaction; he won’t pull his punches if he doesn’t have fun with it.

				What’s Next

				We’re sure that you’re raring to go now and just can’t wait to download the SDK from the iPhone developer portal. That’s exactly what each and every one of us did — when we first started development, we were ultra-keen and dived right into the code. Only later did we figure out that we needed to spend a little more time upfront understanding how games and applications work in the iOS environment.

				We ask you to be patient! In Chapter 2, we explain what goes on behind the screen, and then, we promise, it’s time to play in Traffic.

				To make sure you’re ready, head on over to the Web site at http://traffic.secretlab.com.au or www.dummies.com/go/iphoneipadgameprogramming. When you’re there, click the big button that says “Download Resources”. You’ll get a zip file containing the imagery, audio, and other elements you’ll need to build Traffic. Keep it safe and easily accessible, since we’ll be referring to it a lot. The site also contains the latest version of each code listing, so if you get lost or just want to copy and paste the code instead of retyping it, make sure you grab that, too.

			

		

	
		
			
				Chapter 2

				Becoming an iPhone Developer

				In This Chapter

				Registering as a developer

				Exploring the iPhone Dev Center

				Installing the SDK

				Joining the Developer Program

				If you want to develop games for the iPhone and iPad, you have to get involved with (yet another) major corporation and its policies and procedures. Say hello to the iPhone Developer Program. Although Apple’s iOS Software Development Kit (SDK) is free, you have to register as an iOS developer first. That gives you access to all the documentation and other resources found on the iPhone Dev Center Web site. This whole ritual transforms you into a Registered iPhone Developer.

				Becoming a Registered Developer is free, but there’s a catch: If you actually want to run your application on your iPhone or iPad, as opposed to only on the Simulator that comes with the SDK, you have to join the Developer Program. Fortunately, membership in the iPhone Developer Program costs only $99 per year, and you have no choice if you want your application to see the light of day on the iPhone.

				In this chapter, we lead you through the process of becoming a Registered Developer, signing onto — and then exploring — the iPhone Dev Center Web site, downloading the SDK so you can use it, and then (finally) joining the Developer Program.

				[image: remember.eps] What you see when you go through this process may be slightly different from what you see here. Don’t panic. Apple changes the site from time to time. By the time you get this book in your hands, the Web sites will have been updated, and you’ll see iOS SDK 4.1 (or whatever the current version of the SDK is) plastered all over the Web site.

				Becoming a Registered iPhone Developer

				Just having to become a Registered Developer annoys some people. What’s worse, the process itself can be a bit confusing as well. Fear not! Follow these steps, and we get you safely to the end of the road. (If you’ve registered already, skip to the next section, “Exploring the iPhone Dev Center,” where we show what the iPhone Dev Center has available as well as how to download the SDK.) Here’s how to register:

				1. Point your browser to http://developer.apple.com/iphone.

				 This URL takes you to a page similar to the one shown in Figure 2-1. Apple changes this site occasionally, so when you get there, it may look a little different than the figure. You may be tempted by some of the links but hold off. You can’t go far until you log in as a Registered Developer.

				 2. Click the Register link in the top-right corner of the screen.

				 A page appears explaining why you should become a Registered iPhone Developer.

				 3. Click the Get Started button in the top left area of the screen.

				 A page appears asking whether you want to create or use an existing Apple ID.

				
					Figure 2-1: The iPhone Dev Center.

				

				[image: 599105-fg0201.eps]

				[image: tip.eps] You can use your current Apple ID (the same one you use for iTunes or any other Apple Web site) or create a new Apple ID and then log in. We recommend creating a new Apple ID to use specifically for your game development endeavors. This means you can better work with others in the future, without sharing your personal iTunes account.

				 • If you want to use a new Apple ID or if you don’t have an Apple ID, select Create an Apple ID and then click the Continue button. The page, as shown in Figure 2-2, appears.

				 • If you already have an Apple ID you want to use, select Use an Existing Apple ID and then click the Continue button. Log in with your Apple ID and password on the screen that appears. That takes you to Step 4 with some of your information already filled out.

				4. Fill out the personal profile form and then click the Continue button.

				 If you have an Apple ID, most of the form is already filled out.

				[image: tip.eps]You must fill in the country code in the Phone field. For example, if you live in the United States, the country code is 1; for Australians, the country code is 61; and so on.

				5. Complete the professional profile form and then click the Continue button.

				 On this form, you’re asked some basic business questions. After you click the Continue button, you’re taken to a page that asks you to agree to the Registered iPhone Developer Agreement.

				
					Figure 2-2: Creating an Apple ID.

				

				[image: 599105-fg0202.eps]

				 6. Select the confirmation that you have read and agree to be bound by the agreement, and that you’re of legal age; then, click the I Agree button.

				 If you just created your Apple ID, you’re asked for the verification code that was sent to the e-mail address you supplied when you created your Apple ID.

				 If you used your existing Apple ID, skip to Step 8.

				 7. In your e-mail program, open the e-mail from Apple and get the verification code, and then enter the verification code where you left off in the iPhone Dev Center and click the Continue button.

				A page confirming your account is set up and verified appears.

				 8. On the page indicating your account is verified, click the Visit Phone Development Center button.

				 You’re automatically logged in to the iPhone Dev Center, as shown in Figure 2-3.

				You’re now officially a Registered iPhone Developer. The next section shows you what you can do with your new status.

				
					Figure 2-3: Logged in to the iPhone Dev Center.

				

				[image: 599105-fg0203.tif]

				Exploring the iPhone Dev Center

				Later in this section, we talk a little bit about some of the resources available to you in the iPhone Dev Center, but for the moment, we focus on what you’re really after — the iOS SDK 4.1 download that you see when you scroll to the bottom of the iPhone Dev Center page (see Figure 2-4).

				
					Figure 2-4: The area where you’ll download the iOS SDK.

				

				[image: 599105-fg0204.tif]

				The history part

				We’d be remiss if we didn’t make an attempt to explain the differences between the various incarnations of iOS SDK versions. Grab your comfortable sofa, because I’m about to tell you a story. Parts of it may even be true.

				Once upon a time, Apple only had one mobile device platform, which it called iPhone OS. This ran on both the iPod touch and the iPhone, and later on ran on the iPhone 3G and iPhone 3GS. Things were simple and good. As new features got added to the iPhone OS, the version number increased, until Apple had version 3.1.3 running on every device it had ever made.

				Then, Apple secretly developed a tablet, called the iPad. It was developed so secretly that nobody inside Apple apart from the iPad team even knew about it — not even the iPhone OS engineers.

				Now, this iPad device was certainly not a phone. You couldn’t even treat it like a giant iPod touch, since the bigger screen meant that you need to use it differently (more on this in Chapter 19!). This meant that extra features needed to be added to iPhone OS, but the changes had to be added to a separate version of the OS. The iPad developers called this version 3.2, and this iPhone OS 3.2 only ran on the iPad, and not the iPhone.

				When the iPad came out, there were now two different versions of iPhone OS:

				3.1.3, for hand-held devices

				3.2, for the iPad

				For developers, this meant that there were now effectively two different platforms, with different classes and features available. (Apple later realized the absurdity of calling the OS “iPhone OS,” and renamed it iOS.)

				Later, Apple released iOS 4, which ran on everything but the iPad. Apple promised that iOS 4 would run on the iPad by the end of 2010.

				The upshot is that there are two different versions of iOS:

				4, which (currently) runs on the iPhone and iPod touch

				3.2, which runs on the iPad

				Fortunately, the iOS SDK download contains the SDKs for both versions, but you do need to keep in mind the differences between versions and what features and hardware they support!

				Note to self: tell more interesting stories in the future.

				The SDK includes a host of tools for you to develop your application. Here’s a handy list to help you keep them all straight:

				Xcode: This refers to Apple’s complete development environment, which integrates a code editor, a build system, a graphical debugger, and project management. (We introduce you to the code editor’s features in more detail in Chapter 3.)

				Frameworks: The iPhone’s multiple frameworks make it easy to develop apps that can take advantage of all the device’s features. You can think of creating an app as simply adding your application-specific behavior to a framework. The frameworks do all the rest. For example, the UIKit framework provides fundamental code for building your application — the required application behavior, classes for windows, views (including those that display text and Web content), controls, and view controllers. (All the things we cover in Chapter 4, in other words.) The UIKit framework also provides standard interfaces to core location data, the user’s contacts and photo library, accelerometer (movement sensor) data, and the iPhone’s built-in camera.

				 Building a game, however, is a little more complicated. Although you always use the frameworks, you deal with the development environment in a more raw form than you might be used to if you’ve developed an app before. We cover the specifics of building a game around Apple’s frameworks in Chapter 4.

				Interface Builder: We use Interface Builder in Chapter 5 to build the basic user interface for the Traffic game. But Interface Builder is more than your run-of-the-mill program that builds graphical user interfaces. In Chapter 3, we show you how Xcode and Interface Builder work together to give you ways to build (and automatically create at runtime) the user interface — as well as to create objects that provide the infrastructure for your game.

				iPhone Simulator: The Simulator allows you to debug your game and do some other basic testing on your Mac by simulating the iPhone and iPad. The Simulator runs most iPhone and iPad apps, but it doesn’t support some hardware-dependent features. (We give you a rundown on the Simulator in Chapter 4.) A good game is developed about 40–60 percent between the Simulator and a real device, respectively.

				Instruments: The Instruments application lets you measure your application while it runs on a device. This app gives you a number of performance metrics, including those to test memory and network use. The Instruments app also works (in a limited way) on the iPhone Simulator, and you can test some aspects of your design there.

				[image: remember.eps] The iPhone Simulator doesn’t emulate such real-life iPhone and iPad characteristics as CPU speed or memory throughput. If you want to understand how your application performs on the device from a user’s perspective, you have to use the actual device.

				Looking forward to using the SDK

				The tools in the SDK support a development process that most people find comfortable. They allow you to rapidly get the standardized user interface parts of your game up and running to see what the game actually looks like. You can add code a little at a time and then run it after each new addition to see how it works. After the infrastructure of your game works, you then iterate through the game play features, adding logic as needed.

				We take you through this incremental process as we develop the Traffic game; for now, here’s a bird’s-eye view of basic iPhone and iPad application development, one step at a time:

				 1. Start with Xcode.

				 Xcode provides several project templates that you can use to get you off to a fast start. (In Chapter 5, you do just that to get your user interface up and running quickly.)

				 2. Design and create the user interface.

				 Interface Builder has graphic-design tools you can use to create your application’s user interface. This saves a great deal of time and effort. These tools also reduce the amount of code you have to write by creating resource files that your application can then upload automatically.

				[image: remember.eps] If you don’t want to use Interface Builder, you can always build your user interface by scratch, creating each individual piece and linking them all together within your program. Sometimes Interface Builder is the best way to create onscreen elements; sometimes the hands-on approach works better. Game development for the iPhone and iPad strikes an interesting balance between using Interface Builder and hand-coding interface elements because games can’t rely entirely on the standardized pieces of user interface that Apple’s UIKit framework provides. Games are complex beasts that can sometimes entirely rely on custom drawing routines to create the game environment.

				 3. Write the code.

				 The Xcode editor provides several features that help you write code. We run through these features in Chapter 3.

				 4. Build and run your game.

				 You build your game on your computer and run it in the iPhone Simulator application or (provided you’ve joined the Developer Program) on your device. When you develop a game, you spend most of your time running your game on real devices, for a number of reasons that we cover in Chapter 13.

				 5. Test your game.

				 You need to test the functionality of your game as well as response time. One crucial thing you need to test for when building a game (as opposed to an app) is fun. We cover how to do this back in Chapter 1.

				 6. Measure and tune your game’s performance.

				 After your game is running, make sure that it makes optimal use of resources, such as memory and CPU cycles. Creating an efficient game is arguably even more important than creating an efficient app because hiccups in your game’s performance can detract noticeably from potentially fast-paced game play.

				 7. Do the whole process again until your game is done and then submit the app to the App Store.

				Resources on the iPhone Dev Center

				You’re not left on your own when it comes to the steps list in the preceding section. After all, you have us to help you on the way — as well as a heap of information squirreled away in various corners of the iPhone Dev Center. We find the following resources to be especially helpful:

				The Getting Started Videos link: These are relatively light on content, but give you a good introduction to the basics of iOS development.

				The Getting Started Documents link: Think of these documents as an introduction to the materials in the iOS Reference Library. These give you an overview of iPhone development and best practices. To get to the Getting Started documents, click on the Guides link on the left of the page. Included is Learning Objective-C: A Primer. It is an overview of Objective-C and also includes links to Object-Oriented Programming with Objective-C and The Objective-C 2.0 Programming Language (the definitive and rather technical guide to the programming language you’ll be using to write the game). You’ll also find these documents if you search inside Xcode’s documentation.

				[image: tip.eps] If you’ve never programmed in the Objective-C language, you can find some basic information in the iPhone Reference Library. But if you want to really figure out Objective-C as quickly (and painlessly) as possible, go get yourself a copy of Objective-C For Dummies, by Neal Goldstein (Wiley Publishing, Inc.). That book explains everything you need to know to program in Objective-C, and it assumes you have little or no knowledge of programming (it does a great job — take it from us!).

				The iOS Reference Library: This is all the documentation you could ever want (except, of course, the answer to that one question you really need answered at 4 a.m., but that’s the way it goes). To be honest, most of this stuff turns out to be really useful after you have a good handle on what you’re doing.

				[image: tip.eps] As you go through this book, an easier way to access some of this documentation is through Xcode’s Documentation window, which we show you in Chapter 3.

				The Coding How-To’s link: This info tends to be a lot more valuable when you already have something of a knowledge base. It covers specific features of the iOS, and tells you how to implement them — it’s a great reference, but not a good learning tool.

				The Sample Code link: On the one hand, sample code of any kind is always valuable. Most good developers look to these kinds of samples to get started. They take something that closely approximates what they want to do and modify it until it does. When we started iPhone development, no books like this one existed, so much of what we gathered came from looking at the samples and then making some changes to see how things worked. On the other hand, sample code can give you hours of (misguided) pleasure and can be quite the time-waster and task-avoider.

				Apple Developer Forums: You’ll find this link at the top-right of the page when you’re signed in to the dev center. We’d be the first to say that developer forums can be very helpful, but we’d also be the first to admit that they are a great way to avoid doing other things, such as working on the next game. As you scroll through the questions people have, be careful about some of the answers you see. No one validates the information people give, so take the answers with a grain of salt. But take heart: Pretty soon, you can answer some of those questions better than them.

				[image: technicalstuff.eps]You won’t see these forums if you’re signed in with a free membership. We’ll cover how to sign up for the paid membership in the next section of this chapter.

				Downloading the SDK

				Time to download! Make your way to that bottom part of the iPhone Dev Center — the section that has the iOS SDK 4.1 downloads prominently displayed (refer to Figure 2-4).

				Make sure that you’re logged in to the Dev Center before you proceed — if you’re not logged in, these links might not appear as we’ve described them. You can log in by clicking the button at the top-right of the page.

				[image: warning_bomb.eps] By the time you read this book, the SDK may no longer be version 4.1. Download the latest (non-beta, non-prelease) SDK. That way, you get the most stable version to start with. The latest version of the iOS SDK also contains the latest version of the iPad SDK.

				In the past, two downloads were available for the iOS SDK — one for Leopard (Mac OS X 10.5), and one for Snow Leopard (Mac OS X 10.6). These days, however, the latest version of the iOS SDK is compatible only for Snow Leopard. For that reason, this book assumes you’re using Snow Leopard too!

				[image: tip.eps] Underneath the download link is another link to a readme file (Xcode 3.2.4 Read Me). This link leads to a PDF, About Xcode and the iPhone SDK, that tells you everything you need to know (and more) about this version of the SDK. Peruse the PDF at your leisure but don’t get too hung up if something in it baffles you. We explain the things that you actually need to know.

				After perusing About Xcode and the iPhone SDK, click the iPhone SDK you want to download. (Remember: The iOS SDK is on the right side of the Downloads section. The download might not be in exactly the same place when you try it, but a download link displays prominently, no matter what.)

				After you click the link, you can watch the download in Safari’s download window (which is only slightly better than watching paint dry). This could take awhile, so take the time to doodle some game ideas on a piece of paper, like we suggest in Chapter 1.

				When the SDK finishes downloading, the iOS SDK window appears onscreen, complete with an installer and various packages tied to the install process. Double-click the iOS SDK installer and follow the installation instructions. After you do all that, you have your very own iPhone SDK on your hard drive.

				You become intimately acquainted with the iOS SDK during the course of your project, but for now, you still have one more bit of housekeeping to take care of: joining the official iPhone Developer Program. Read on to see how that works. This is the bit where you need to pony up some cash, so dust off your wallet.

				Joining the iPhone Developer Program

				The Simulator that comes standard with the iOS SDK is a great tool for figuring out how to program, but it does have some limitations. For instance, the Simulator doesn’t support some hardware-dependent features, and when testing, it can’t really emulate such everyday iPhone and iPad realities as CPU speed or memory throughput.

				Minor annoyances, you might say. And you might be right, if we were developing business apps and not games! Games really need to be built and tested on real devices during development, not the poor cousin of an iPhone that the Simulator represents. We cover the reasons behind this in Chapter 3. The real issue, therefore, is that just registering as a developer doesn’t get you one very important thing — the ability to actually run your application on your iPhone and iPad, much less to distribute your game through Apple’s iPhone App Store. (Remember that the App Store is the only way for commercial developers to distribute their games to more than a few people.) To run your app on a real iOS device or get a chance to profile your app in the iPhone App store, you have to enroll in either the Standard or Enterprise version of the iPhone Developer Program. There is much speculation behind the reason for this, but the bottom line is that’s simply the way it is. At least (we swiftly note) the program isn’t all that expensive.

				[image: tip.eps] The approval process used to take awhile, and although it’s usually quicker these days, you still can’t run your applications on your iPhone or iPad until you’re approved. Enroll as early as possible.

				Here’s how you get enrolled as a Registered iPhone Developer:

				 1. Go to http://developer.apple.com/iphone/program.

				 The iPhone Developer Program page appears, as shown in Figure 2-5.

				2. Click the Enroll Now button.

				 A new page appears, telling you to choose your program and outlining the details of each developer program, as shown in Figure 2-6.

				[image: remember.eps] The Standard program costs $99. The Enterprise program costs $299 and is designed for companies developing proprietary in-house applications for iPad, iPhone, and iPod touch. To be sure you select the option that meets your needs, give the program details a once-over.

				 3. Click the Continue button.

				 You don’t actually get to choose Standard or Enterprise yet. But you do get an overview of the process and a chance to log in again with your Apple ID and password.

				 4. Log in and click the Continue button.

				 After logging in, you can choose Standard Individual, Standard Company, or Enterprise program. Figure 2-7 shows you the differences among the different options.

				
					Figure 2-5: The iPhone Developer Program overview.

				

				[image: 599105-fg0205.eps]

				
					Figure 2-6: Checking out program details.

				

				[image: 599105-fg0206.tif]

				
					Figure 2-7: Choose your program.

				

				[image: 599105-fg0207.tif]

				 5. Make your choice, and then click the appropriate button (either Individual or Company).

				 The page that appears gives you more information on the option you selected.

				 6. Click the Continue button.

				 Depending on the option you selected, you’re given the opportunity to pay (if you selected Standard Individual), or you’re asked for some more company or enterprise information and then given the chance to pay.

				 Although joining as an individual is easier than joining as a company, there are clearly some advantages to enrolling as a company — for example, you can add team members (something which we discuss in connection with the developer portal in Chapter 13).

				[image: warning_bomb.eps] When you join as an individual, your real name appears when the user buys (or downloads for free) your application in the App Store. If you’re concerned about privacy or if you want to seem “bigger,” the extra work invoked in signing up as a company may be worth it for you. That said, there’s something to be said for appearing “small;” we cover this, and other marketing techniques, in Chapter 27.

				 7. Continue through the process; it is extremely self explanatory from here. All you need to do is provide information when the Web site asks you for it.

				Eventually, you’re accepted in the Developer Program of your choice.

				The next time you log in to the iPhone Dev Center, notice that the page has changed somewhat. As a freshly minted official iPhone developer, you see a page like the one shown in Figure 2-8. You have a new iPhone Developer Program Portal link on the right in the iPhone Developer Program section.

				
					Figure 2-8: The Developer Program Portal link is available.

				

				[image: 599105-fg0208.eps]

				If you click the iPhone Developer Program Portal link, you see all sorts of things you can do as a developer, as shown in Figure 2-9.

				
					Figure 2-9: The iPhone Developer Program Portal.

				

				[image: 599105-fg0209.eps]

				[image: tip.eps] Don’t linger too long at the iPhone Developer Program Portal page, simply because it can be really confusing unless you understand the process. Many a day has gone by where one of us has spent a little too long logged in to the portal and ended the week rocking slowly and sobbing in a corner of the room. We explain this portal — which lets you provision your device, run your application on it, and prepare your creation for distribution to the App Store — in Chapter 13.

				Getting Ready for the SDK

				Don’t despair! (Well, feel free to, but snap out of it as quickly as you can.) We know the process is tedious, but it’s over now. Going through this was definitely the second most annoying part of your journey toward developing software for the iPhone and iPad. The most annoying part is figuring out provisioning — the hoops you have to jump through to actually run your application on a real, tangible, existing iPhone. We take you through the provisioning process in Chapter 13, and frankly, getting that process explained is worth the price of the book.

				In Chapter 3, you use the SDK you just downloaded. We assume that you have some programming knowledge and that you also have some acquaintance with object-oriented programming, with some variant of C, such as C++, C#, and maybe even Objective-C. If those assumptions miss the mark, help us out, okay? Take another look at the “Resources on the iPhone Dev Center” section, earlier in this chapter, for an overview of some of the resources that could help you get up to speed on some programming basics. Or, better yet, (as we already said), get yourself a copy of Objective-C For Dummies, by Neal Goldstein.

				We also assume that you’re familiar with the iPhone (and iPad) itself and that you’ve explored Apple’s included applications to become familiar with the iPhone’s look and feel. You should also have racked up a decent credit card bill from buying games in the App Store — it’s all in the name of research after all. Remember, now these purchases are a business expense, if you’re into that sort of thing!

			

		

	
		
			
				Chapter 3

				Your First Date with the SDK

				In This Chapter

				Developing with the SDK

				Getting a handle on a project

				Compiling an application

				Peeking inside the Simulator

				Working with Xcode

				Checking out the Interface Builder

				By the time you’re through with this book, you’ll probably be sick of hearing it, but the iOS is one of the easiest, most flexible, and potential-filled platforms that you can develop games for. The iPhone is so easy to build things for that it puts the power back in the hands of someone with a good idea, rather than someone with all the money. The iPad is likewise.

				One of the things that really got us excited about iOS initially was how easy it was to develop for it. The Software Development Kit (SDK) comes with so many tools, you’d think developing must be really easy. Well, to be honest, developing is relatively easy.

				In this chapter, we introduce you to the SDK; it’s a low-key, get-acquainted kind of affair, sort of a classy, restrained first date. We show you the real nuts-and-bolts stuff in later chapters, when you actually develop a real game.

				Developing with the SDK

				The SDK supports the kind of development process that’s a breath of fresh air after working with some other platforms: You can develop your applications without tying your brain in knots.

				The development environment allows you to rapidly get a basic user interface up and running. The idea here is to add your code incrementally — step by step — so you can always step back and see how what you just did affected the Big Picture.

				Game development often doesn’t quite follow this process, but your steps in development generally look something like this:

				 1. With Xcode, Apple’s development environment for the OS X operating system, create a project, design the user interface and the game play.

				 2. Write the code for the interface and game logic.

				 3. Build and run your game.

				 4. Test your game (for bugs and for fun).

				 5. Measure and tune your game’s performance (and tweak it for maximum fun).

				 6. Tweak and test until you’re done.

				In this chapter, we start at the very beginning, with the very first step, using Xcode. (Starting with Step 1? What a concept! We’re trendsetters.) The first step of the first step is to create a project.

				Creating Your Project

				To develop an iPhone game, you work in an Xcode project. So, time to fire up one (which will be pretty basic at this stage). To work in an Xcode project:

				1. Launch Xcode.

				 After you download the SDK (see Chapter 2 if you haven’t downloaded it yet), it’s a snap to launch Xcode. By default, Xcode downloads to /Developer/Applications, where you can track it down to launch it.

				[image: tip.eps] Here are a few hints to make Xcode handier and more efficient:

				 • Drag the icon for the Xcode application all the way to the Dock so you can launch it from there. You use Xcode a lot, so launching it from the Dock makes your life easier.

				 • If you’re lazy like us, you could also search for Xcode and launch it with Spotlight, Apple’s built-in Mac OS X-wide search engine.

				 • When you first launch Xcode, the welcome screen, as shown in Figure 3-1, appears. The welcome screen is chock-full of links to the Apple Developer Connection and Xcode documentation. You may want to leave this screen up to make it easier to get to those links, but we usually close it. If you don’t want to be bothered with the welcome screen in the future, deselect the Show at Launch check box.

				 2. Close the welcome screen for now, because you don’t need it.

				
					Figure 3-1: The Xcode welcome screen.

				

				[image: 599105-fg0301.eps]

				3. Choose FileNew Project from the main menu to create a new project.

				[image: tip.eps] You can also just press Shift+Ô+N to create a new project.

				 However you start a new project, you’re greeted by the New Project window, as shown in Figure 3-2. In the New Project window, you get to choose the template you want for your new project. Note that the leftmost pane has two sections: one for the iOS and the other for Mac OS X.

				 4. In the New Project window, click on the Application line under the iOS heading.

				 The main pane of the New Project window refreshes, revealing several choices, as shown in Figure 3-2. Each of these choices is actually a template that, when chosen, generates some code to get you started.

				 5. Select Navigation-Based Application line from the choices displayed and then click the Choose button.

				 A standard save dialog box appears.

				 When you select a template, a brief description of the template displays underneath the main pane. (Figure 3-2 shows a description of the Navigation-Based Application. You can click some of the other template choices to see how they’re described as well. Just be sure to click the Navigation-Based Application template again to get back to it when you’re done exploring.)

				
					Figure 3-2: The New Project window.

				

				[image: 599105-fg0302.eps]

				6. Enter a name for your new project in the Save As field, choose a Save location (the Desktop works just fine), and then click the Save button.

				7. Name your project Traffic.

				You can name your project something else, but pay close attention to changing file and class names elsewhere in the book if you do. The examples throughout this book build on the Traffic game project.

				 After you click Save, Xcode creates the project and opens the Project window — which looks like Figure 3-3.

				
					Figure 3-3: The Traffic Project window.

				

				[image: 599105-fg0303.eps]

				Exploring Your Project

				To develop an iPhone game, you have to work within the context of an Xcode project. You do most of your work on projects using the Project window very much like the one in Figure 3-3. If you have a nice, large monitor, expand the Project window so you can see everything in it as big as life. (This is another great excuse for the business expense of buying an enormous, swish-looking Apple display. Business expense now, remember?)

				[image: tip.eps]Think of the Project window as Command Central for developing your game; it displays and organizes your source files and the other resources needed to build your game.

				If you take another peek at Figure 3-3, you see the following elements of the Xcode window for your project:

				The Groups & Files list: An outline view of everything in your project, containing all your project’s files — source code, frameworks, graphics, and some settings files. You can move files and folders around and add new folders. If you select an item in the Groups & Files list, the contents of the item display in the topmost pane to the right — otherwise known as the Detail view.

				[image: tip.eps] Some of the items in the Groups & Files list are folders whereas others are just icons. Most have a disclosure triangle next to them. Clicking the disclosure triangle to the left of a folder expands the folder to show what’s in it. Click the triangle again to hide what it contains.

				The Detail view: Here you get detailed information about the item you selected in the Groups & Files list.

				The toolbar: Here you can find quick access to the most common Xcode commands. You can customize the toolbar by right-clicking it and choosing Customize Toolbar from the contextual menu that appears. You can also choose ViewCustomize Toolbar. By default, you’ll find the following buttons on the toolbar:

				 • The Build and Run button: Compiles, links, and launches your application.

				 • The Breakpoints button: Turns breakpoints on and off and toggles the Build and Run button to Build and Debug. (We explain this in Chapter 10.)

				 • The Tasks button: Allows you to stop the execution of your program that you’ve built.

				 • The Info button: Opens a window that displays information and settings for your project.

				The status bar: Look here for messages about your project. For example, when you build your project, Xcode updates the status bar to show where you are in the process — and if the process completed successfully.

				The Favorites bar: Works like other Favorites bars you’re familiar with to let you bookmark places in your project.

				[image: tip.eps]This bar isn’t displayed by default; to display it onscreen, choose ViewLayoutShow Favorites Bar from the main menu.

				The Text Editor navigation bar: This navigation bar contains a number of shortcuts, as shown in Figure 3-4. We explain more about them as you use them.

				 • The Bookmarks menu: Create a bookmark by choosing EditAdd to Bookmarks.

				 • The Breakpoints menu: Lists the breakpoints in the current file — we cover breakpoints in Chapter 10.

				 • The Class Hierarchy menu: The superclass of the current class you are working on, the superclass of that superclass (if any), and so on (these show the relationship between each element of your code, which we’ll discuss more later). This allows you to browse through the interrelating files of your project, using their relationship to browse.

				 • The Included Files menu: Lists both the files included by the current file and the files that include the current file.

				 • The Counterpart button: This allows you to switch between header and implementation files.

				The Editor view: Displays a file you’ve selected, in either the Groups & Files list or Detail view. You can also edit your files here, or you can double-click a file in Groups & Files or Detail view to open the file in a separate window.

				 To see how the Editor view works, check out Figure 3-5 in which we clicked the disclosure triangle next to the Classes folder in the Groups & Files list and the RootViewController.h class in the Detail view. You can see the code for the class in the Editor view. (We deleted the comments you normally see when the template creates the classes and files for you.)

				
					Figure 3-4: The Text Editor navigation bar.

				

				[image: 599105-fg0304.tif]

				[image: tip.eps] Clicking the Counterpart button switches you from the header (or interface) file to the implementation file, and vice versa:

				 • Header files define the class’s interface by specifying the class declaration (what it inherits from), instance variables (a variable defined in a class — at runtime, all objects have their own copy), and methods.

				 • The implementation file contains the code for each method.

				 Below the Lock icon is the Split View icon that lets you split the Editor view. This icon enables you to look at the interface and implementation files at the same time, or even the code for two different methods in the same or different classes.

				[image: tip.eps] If you have any questions about what something does, position the mouse pointer above the icon and then a tooltip pops up to explain it.

				
					Figure 3-5: The RootViewController.h file in the Editor view.

				

				[image: 599105-fg0305.eps]

				The first item in the Groups & Files list, as shown in Figure 3-5, is Traffic. This is the container that contains all the source elements for your project, including source code, resource files, graphics, and a number of other pieces that we won’t mention for now but get into in due course. Your project container has five distinct groups (or folders, if you will) — Classes, Other Sources, Resources, Frameworks, and Products. Here’s what gets tossed into each group:

				Classes is where you should place all your code, although you aren’t obliged to. As you can see from Figure 3-5, this project has four distinct source-code files:

				 • TrafficAppDelegate.h

				 • TrafficAppDelegate.m

				 • RootViewController.h

				 • RootViewController.m

				Other Sources is where you typically would find the pre-compiled headers of the frameworks you use, such as Traffic_Prefix.pch and main.m, your application’s main function.

				Resources contains files that are used by your program when it’s running, such as xib files, property lists (which we explain in Chapters 11 and 12), images and other media files, and even some data files.

				 Whenever you choose the Navigation-Based Application template (see Figure 3-2), Xcode also creates the following three files for you:

				 • RootViewController.xib

				 • MainWindow.xib

				 • Traffic-Info.plist

				[image: tip.eps]xib files contain your interface, which you design in the Interface Builder application. We’ll be covering them in this chapter and following chapters. We hope you grow to love xib files as much as we do.

				 You don’t use xib files when building games as much as you do when building apps, because games involve moving around visual elements on screen a lot more than apps usually do.

				[image: tip.eps] If you want to find out everything there is to know about xib files and how exciting they can be, pick up a copy of iPhone Application Development For Dummies, by Neal Goldstein (Wiley Publishing, Inc.) — we hear the author is a pretty cool chap.

				Frameworks are code libraries that act a lot like prefab building blocks for your code edifice. (We talk lots about frameworks in Chapter 14, and talk even more about them in Chapter 15.) By choosing the Navigation-Based Application template, you tell Xcode to add the UIKit framework, Foundation.framework, and CoreGraphics.framework to your project because it expects that you need them in this template.

				[image: tip.eps]You need quite a few frameworks to build the Traffic game. We show you how to add a framework in Chapter 14.

				Products is a bit different from the previous four items in this list: It’s not a source for your application but rather the compiled application itself. The Traffic.app is located here. At this moment in Xcode, this file is listed in red because the file can’t be found (which makes sense because you haven’t built the game yet).

				 When a filename appears in red, Xcode can’t find the underlying physical file.

				[image: technicalstuff.eps]If you happen to open the Traffic folder on your Mac, you don’t see the folders that appear in the Xcode window. That’s because those folders are simply logical groupings that help organize and find what you’re looking for; this list of files can grow to be pretty large, even in a moderate-size project.

				[image: tip.eps]When you have a lot of files, you have better luck finding things if you create subgroups (or even whole new groups) within the Classes group and/or Resources group. (In Xcode, the words “group” and “folder” are largely interchangeable.) Subgroups are useful if you have different sets of images you want to manage, such as those that might belong to your interface and those that belong to your game graphics. You create subgroups (or new groups) in the Groups & Files list by choosing New ProjectNew Group from the main menu. You then can select a file and drag it to a new group or subgroup.

				Building and Running Your Application

				It’s really a blast to see what you get when you build and run a project that you created using a template from the project creation window. Running the application that your project creates is relatively simple:

				 1. Choose Simulator – 4.1 | Debug from the Overview drop-down list in the top-left corner of the Project window to set the active SDK and active build configuration.

				 A build configuration tells Xcode the purpose of the built product. You can choose between

				 • Debug, which has features to help with debugging

				 • Release, which results in smaller and faster binaries

				[image: tip.eps]We use Debug for most of this book, so we recommend you use Debug now. Debug is useful because it is more forgiving to the development process, and provides us with more helpful information as we go.

				 Your build configuration may be chosen already, as shown in Figure 3-6. Here’s what that means:

				 • When you download an SDK, you actually download multiple SDKs — a Simulator SDK and a device SDK for each of the current iOS releases.

				 • For this book, we use the Simulator SDK and iOS 4.1 (and iOS 3.2 for iPad, later on). In Chapter 13, we show you how to switch to the device SDK and download your application to a real-world iPhone or iPad. But before you do that, here’s one catch: You have to be in the iPhone Developer Program to run your application on a device, even on your very own iPhone. We cover how to join the Developer Program back in Chapter 2.

				 2. Choose BuildBuild and Run from the main menu to build and run the application.

				 You can also press Ô+Return or click the Build and Run button in the Project window toolbar.

				 The status bar in the Project window tells you all about the build progress, the build errors like compiler errors or warnings, and whether the build was successful. Figure 3-6 shows that this was a successful build.

				
					Figure 3-6: A successful build.

				

				[image: 599105-fg0306.eps]

				 Because you selected Debug for the active build configuration, the Debugger Console may launch for you, as shown in Figure 3-7, depending on your Xcode preferences. We get to them in a second. (We give you the lowdown on debugging in Chapter 10.) If you don’t see the console, choose RunConsole to display it.

				
					Figure 3-7: The Debugger Console.

				

				[image: 599105-fg0307.eps]

				After the Debugger Console launches in the Simulator, your first application looks a lot like Figure 3-8. You see the status bar and a gray window, but that’s it. (We know . . . this may look even more insipid than the traditional “Hello World,” but we fix that later.) You can also see the Hardware menu, which we explain in the following section.

				
					Figure 3-8: Your first application.

				

				[image: 599105-fg0308.eps]

				Working with the iPhone Simulator

				When you run your application, Xcode installs it on the iPhone Simulator (or a real iOS device if you specified the device as the active SDK) and launches it. By using the iPhone Simulator’s Hardware menu and simulating touches with mouse clicks, the Simulator mimics most of what a user can do on a real iPhone.

				 The simulator has some limitations that we point out in this chapter, including several features that are present on the real device but missing from the simulator. Always test your program on a real device, since the Simulator isn’t enough.

				Imitating hardware interaction

				Use the iPhone Simulator Hardware menu (refer to Figure 3-8) when you want your device to do the following:

				Change devices: Choosing a different device from the HardwareDevice menu allows you to toggle between simulating an iPhone and an iPad. We discuss this more in Chapter 13.

				Change versions: Choosing a different OS version from the HardwareVersion menu allows you to test your game in different versions of the iPhone OS. We also discuss this more in Chapter 13.

				Rotate left: Choosing HardwareRotate Left rotates the Simulator to the left. This enables you to see the Simulator in Landscape mode.

				Rotate right: Choosing HardwareRotate Right rotates the Simulator to the right.

				Use a shake gesture: Choosing HardwareShake Gesture simulates shaking the iPhone.

				Go to the home screen: Choosing HardwareHome does the expected — takes you to the home screen.

				Lock the Simulator (device): Choosing HardwareLock locks the Simulator, allowing you to see what happens when the user presses the Lock button at the top of the iPhone.

				Send the running application low-memory warnings: Choosing HardwareSimulate Memory Warning fakes out your Simulator by sending it a (fake) low-memory warning. We don’t cover this, but it is a great feature for seeing how your game may function in the real world.

				Toggle the status bar between its Normal state and its In Call state: Choose HardwareToggle In-Call Status Bar to check out how your application functions when the iPhone doesn’t answer a call (Normal state) and when it supposedly does answer a call (In Call state).

				 The status bar becomes taller when you’re on a call than when you’re not. Choosing the In Call state shows you how things look when your application is launched while the user is on the phone.

				Simulate a hardware keyboard: Choosing HardwareSimulate Hardware Keyboard tells the simulated device that a hardware (Bluetooth or keyboard dock) keyboard is connected to the device.

				Emulating gestures

				On a real iPhone or iPad, a gesture, such as a tap, drag, or so on, is something you do with your fingers to make something happen in the device. Table 3-1 shows you how to simulate gestures with your mouse and keyboard.

				
					
						
								
								Table 3-1 Gestures in the Simulator

							
						

						
								
								Gesture

							
								
								iPhone Action

							
						

						
								
								Tap

							
								
								Click the mouse.

							
						

						
								
								Touch and hold

							
								
								Hold down the mouse button.

							
						

						
								
								Double tap

							
								
								Double-click the mouse.

							
						

						
								
								Swipe

							
								
								1. Click where you want to start and hold down the mouse button.

								2. Move the mouse in the direction of the swipe and then release the mouse button.

							
						

						
								
								Flick

							
								
								1. Click where you want to start and hold down the mouse button.

								2. Move the mouse quickly in the direction of the flick and then release the mouse button.

							
						

						
								
								Drag

							
								
								1. Click where you want to start and hold down the mouse button.

								2. Move the mouse in the drag direction.

							
						

						
								
								Pinch

							
								
								1. Move the mouse pointer over the place where you want to start.

								2. Hold down the Option key, which makes two circles appear that stand in for your fingers.

								3. Hold down the mouse button and move the circles in or out.

							
						

					
				

				Uninstalling applications and resetting your device

				Uninstall applications on the Simulator the same way you would on the iPhone or iPad, except use your mouse instead of your finger:

				 1. On the home screen, place the pointer over the icon of the application you want to uninstall and hold down the mouse button until the icon wiggles.

				 2. Click the icon’s Close button — the little x that appears in the upper-left corner of the application’s icon.

				 3. Click the Home button (the one with a little square in it, centered below the screen) to stop the icons wiggling.

				Once they’ve stopped wiggling, the application is completely uninstalled.

				Recognizing the Simulator’s limitations

				Running applications in the iPhone Simulator isn’t the same thing as running them in the iPhone. Here’s why:

				The Simulator uses Mac OS X versions of the low-level system frameworks, instead of the actual frameworks that run on the device.

				The Simulator uses the Mac hardware and memory. Your Mac has a lot more memory and processing power than an iPhone, which means that your programs will run a lot faster on the Simulator than they will on the real device. That’s why it’s critically important to run on real iPhones and iPads, because if you don’t, you won’t have a good idea of how your game actually runs. To really determine how your application will perform on an honest-to-goodness iPhone device, you have to run it on a real iPhone device. (Lucky for you, we show you how to do that in Chapter 13.)

				Xcode automatically installs applications in the iPhone Simulator when you build your application with the iPhone Simulator SDK (see Figure 3-8, for example).

				You can’t get Xcode to install applications downloaded from the App Store in the iPhone Simulator. This is because applications from the App Store are built for running on real iOS devices — their internals are completely different to how an app built for the simulator works.

				You can’t fake the iPhone Simulator into testing at multiple geographic locations. The location reported by the CoreLocation framework in the Simulator is fixed at 37.3317° N Latitude and 122.0307° W Longitude. That location just happens to be 1 Infinite Loop, Cupertino, California, 95014. Can you guess which company with a fruit motif lives there?

				The Simulator responds to a maximum of two fingers. If your game’s user interface can respond to touch events involving more than two fingers, test that on an actual device. The actual iPhone device can track 5 fingers on the screen at once, and the iPad can track 11. (Ten fingers plus your nose, perhaps?)

				You can access your computer’s accelerometer (if it has one) through the UIKit framework. Its reading, however, differs from the accelerometer readings on an iPhone (for some technical reasons that we don’t get into). We discuss the accelerometer further in Chapter 25.

				OpenGL ES uses renderers on devices that are very slightly different to those it uses in iPhone Simulator. As a result, a scene on the Simulator and the same scene on a device may not be identical at the pixel level. We cover OpenGL ES in detail in Chapter 22.

				You can also move an application icon by pressing down on it until the icons start wiggling, and dragging it around to where you want it to go.

				[image: tip.eps]To reset the Simulator to the original factory settings — which also removes all the applications you’ve installed — choose iPhone SimulatorReset Content and Settings.

				Customizing Xcode

				Xcode offers options galore. The most important ones for you to consider at this point in your iOS game development careers are to make the debugging console appear when the application is run (which will help you find and fix problems later down the track), and to make Xcode automatically download new documentation as it becomes available — which is important, given how fast iOS development moves!

				 1. With Xcode open, choose XcodePreferences from the main menu and then click the Debugging button in the toolbar.

				 The Xcode Preferences window refreshes to show the various preferences.

				 2. In the On Start drop-down list, choose Show Console, as shown in Figure 3-9, and then click the Apply button.

				
					Figure 3-9: Always show the console.

				

				[image: 599105-fg0309.eps]

				 This automatically opens the Debugger Console after you build your application so that you don’t have to open it to see your game’s text output.

				 3. Click the Building button in the toolbar, as shown in Figure 3-10.

				 4. In the Build Results Window: Open During Builds drop-down list, choose Always, as shown in Figure 3-10, and then click the Apply button.

				 The Build Results window opens (and stays open). Finding and fixing errors is easier this way.

				
					Figure 3-10: Show the Build Results window.

				

				[image: 599105-fg0310.eps]

				 5. Click the Documentation button in the toolbar, as shown in Figure 3-11.

				
					Figure 3-11: Accessing the documentation.

				

				[image: 599105-fg0311.eps]

				 6. Select the Check For and Install Updates Automatically check box, and then click the Check and Install Now button.

				 Xcode checks that your documentation is up-to-date (this also allows you to load and access other documentation).

				 7. Click OK to close the Xcode Preferences window.

				[image: tip.eps] You can also set the tab width and other formatting options in the Indentation section of the Xcode Preferences window. The default is 4.

				You can also have the editor show line numbers. If you click the Test Editing button in the Xcode Preferences toolbar, you can select the Show Line Numbers under Display Options check box. We don’t do this now, but this is very useful in Chapter 10, when we discuss debugging.

				Using Interface Builder

				Interface Builder is a great tool for graphically laying out your user interface by using standard iOS user interface components. You can use Interface Builder to design your game’s main user interface and then save what you’ve done as a resource file, which is then loaded into your game at runtime. Then this resource file is used to automatically create the window, all your views and controls, and some of your application’s other objects (such as view controllers).

				For more on view controllers and other application objects, check out Chapter 4.

				For building games, you don’t use Interface Builder as much as if you were building apps, but it’s critical to the iPhone development process.

				[image: tip.eps]If you don’t want to use Interface Builder, you can also create your objects programmatically — creating views, view controllers, and even things like buttons and labels in your own application code.

				Here’s how to build your basic interface with Interface Builder:

				 1. In your Project window’s Groups & Files list, expand the Resources group.

				 2. Double-click the RootViewController.xib file, as shown in Figure 3-12.

				 Don’t make the mistake of opening the MainWindow.xib. You need the RootViewController.xib file.

				[image: technicalstuff.eps] TrafficAppDelegate is still in the Editor window; that’s okay because you’re set to edit the RootViewController.xib file in Interface Builder, not in Xcode’s Editor window. That’s because double-clicking always opens a file in a new window — this time, the Interface Builder window.

				 Windows appear as they were the last time you left them. If this is the first time you’ve opened Interface Builder, you see three windows that look something like those in Figure 3-13.

				 Not surprisingly, the View window looks exactly as it did in the iPhone Simulator window — as blank as a whiteboard wiped clean.

				
					Figure 3-12: Selecting RootViewController.xib.

				

				[image: 599105-fg0312.eps]

				
					Figure 3-13: The TrafficViewController in Interface Builder.

				

				[image: 599105-fg0313.eps]

				Interface Builder supports two file types:

				nib: An older format, which stored its contents as incomprehensible binary information.

				xib: A newer format, which stores its contents as clean XML code.

				 Functionally, these are both the same — they both are used for storing your application’s interface. The iPhone project templates all use xib files.

				[image: technicalstuff.eps] Although the file extension is now .xib, everyone still calls them nib files. nib and the corresponding file extension .xib are acronyms for NeXT Interface Builder. The Interface Builder application was originally developed at NeXT Computer, whose OpenStep operating system was used as the basis for creating Mac OS X. (Here ends the history lesson!)

				The RootViewController.xib window (the far-left window in Figure 3-13) is the nib’s main window. This window acts as a Table of Contents for the nib file. With the exception of the first two icons (File’s Owner and First Responder), every icon in this window (in this case, there’s only one) represents a single instance of an Objective-C class that is created automatically when this nib file loads.

				Interface Builder doesn’t generate any code that you have to modify or even look at. Instead, it creates freeze-dried Objective-C objects that the nib loading code reconstitutes and turns into real objects at runtime.

				If you take a closer look at the three objects in the RootViewController.xib file window — and if you have a pal who knows the iPhone backward and forward — you’d find out the following about each object:

				The file’s owner proxy object: This is the controller object that is responsible for the contents of the nib file. In this case, the file’s owner object is actually the RootViewController that was created by Xcode and is the primary object you use to implement the application’s functionality. The file’s owner isn’t created from the nib file; it’s created in one of two ways — either from another (previous) nib file or by a programmer who codes it manually.

				[image: technicalstuff.eps] In Interface Builder, you can create connections between the file’s owner and the other interface objects in your nib file.

				First responder proxy object: This object is the object with which the user is currently interacting. For a view, first responder usually starts as the view controller object. If, for example, the user taps a text field to enter some data, the first responder would then become the text field object.

				 Although you use the first responder mechanism quite a bit as you build the Traffic game, you don’t have to do anything to manage it. First Responder is set automatically and is maintained by the UIKit framework.

				View object: The View icon represents an instance of the UIView class. A UIView object is an area that a user can see and interact with. In this application, you have to deal with only one view.

				Take another look at Figure 3-13; notice the other window open besides the main window. Look at the window with View in the title bar. That window is the graphical representation of the View icon. If you close the View window and then double-click the View icon, this window opens again. This is your canvas for creating your user interface: It’s where you drag user interface elements, such as buttons and text fields. These objects come from the Library window (the third window you see in Figure 3-14).

				
					Figure 3-14: The Library window.

				

				[image: 599105-fg0314.eps]

				The Library window contains your palette — the stock Cocoa Touch objects that Interface Builder supports. Dragging an item from the Library window to the View window adds an object of that type to the view.

				[image: tip.eps] You’ll notice that the window shown in Figure 3-13 is shaped like an iPhone screen, which of course won’t work too well when running on an iPad. In Chapter 19, we’ll be adjusting the game’s interface to fit on this larger, differently-shaped screen.

				[image: tip.eps]If you happen to close the Library window, whether by accident or by design, choose ToolsLibrary to get it to reappear. You can also quickly open it by pressing Ô-Shift-L.

			

		

	

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/599105-fg0801_fmt.jpeg
V\ew
‘!

OEBPS/images/599105-fg1807_fmt.jpeg
STATS
SETTINGS

OEBPS/images/599105-fg0510_fmt.jpeg
STATS

OEBPS/images/599105-fg1801_fmt.jpeg
iAd Servers

ADBannerView

O

OEBPS/images/599105-pp0101_fmt.jpeg
The 5™ Wave By Rich Tennant

es, T have experience with nonprofil
organizations. T created an i?ad game
cafled “Deep Sea Oil Drilling Adventure.”

OEBPS/images/599105-fg1605_fmt.jpeg
Connect with Facebook to
interact with your friends in this app and to
share stories on Facebook

OEBPS/images/599105-fg0507_fmt.jpeg

OEBPS/images/599105-pp0401_fmt.jpeg
The 5th Wave By Rich Tennant

W 2 docking sy
~with 3 bedrooms, 2 baths, and a car port.”

OEBPS/images/599105-fg1004_fmt.jpeg
int i;
ik 1/0; 4 Division by zero

OEBPS/images/599105-fg0102_fmt.jpeg

OEBPS/images/599105-fg1013_fmt.jpeg
Q- String Matching

Groups & Files. 3 A Code) A o
[4) TrafficController.n [TrafficAppDelegate.m 3 3
[w] TrafficControlier.m
¥ (3] Game Objects.
ﬂWNtllh
lu] Vehicle.m
:]IJM,h
] Lane.m <y + @ -applicationDidFir : 4.-.c.o.|‘-
\’;-Tw - book ion = [[FBSession sessionForApplicatis|
L] MainMenuViewControlie [facebookSessinn resume] ;
(4] SettingsViewController.
Pty self.twitterUsername = [defaults stringForKey:@"t
ﬂxwm self.twitterPassword = [defaults stringForKey:@"t
(4] TrafficViewController.h
TrafficViewController.m = »
[SccsRdeVewcomToti TrafficViewControllerx anObject =
S —— 4 Unused variable ‘anObject! o
B eg [TrafficViewController alloc];
¥ (11 Other Sources
Traffic_Prefix.pch
il s = (i * DPotential leak of an object allocated on line 86
YellowCar.png | L
Sound and Music
coem - (void) endMultiplayerSession { |
2:32’?“” // terminate the gamekit session, if any
crash.aif | [multiplayerSession disconnectFromAllPeers]; ~
sereech.aif ‘.’ multiplayerSession.available = NO; 5
Musichackmp3 = =

1 D11

OEBPS/images/599105-fg2402_fmt.jpeg

OEBPS/images/599105-fg0304_fmt.jpeg

OEBPS/images/599105-fg1304_fmt.jpeg
iPhone Provisioning Portal login

Please provide your credentials for login to the iPhone Dev Center

Username: [|]

Password:

E Remember Password in Keychain

TS

OEBPS/images/599105-fg0506_fmt.jpeg
[Rounded Rect D]

0.00 [3) 0.00] [3)
5 O]
X Offset Y Offset

(] Highlight Reverses Direction
() Shows Touch On Highlight
g Highlighted Adjusts Image
3 Disabled Adjusts Image

Font Helvetica Bold, 15.0
Line Breaks | Truncate Middle i
Content Edge Inset

0.00) [
Top

0.00| 3]
Left

OEBPS/images/599105-fg1808_fmt.jpeg
NETWORK

& Test Advertisement

@]

OEBPS/images/599105-fg1014_fmt.jpeg
\TrafflcV1ew§Zontrolle r* anObject =
[TrafficViewController allocl;
= Method returns an Objective-C object with a +1 retain count (owning reference)

} = Object allocated on line 86 is no longer referenced after this point and has a retain count of +1 (object leaked)

OEBPS/images/599105-fg1305_fmt.jpeg
v Device
Simulator

Active Configuration
v Debug
Release

Active Target
v oy Traffic

Active Executable
¥ Traffic - Gunther

Active Architecture
v armvé
armv7

B g
W BlueCar.ona L

OEBPS/images/599105-fg0103_fmt.jpeg
Main Menu

Y

4

Game Screen Settings

High Scores

Multiplayer

1

Game Over

Paused

OEBPS/images/599105-fg0501_fmt.jpeg
—————
TRAVVIO

OEBPS/images/599105-fg2003_fmt.jpeg

OEBPS/images/599105-fg0305_fmt.jpeg
TrafficViewController.h
Traffic

Created by Jonathon Manning on 10/07/10.

Copyright __MyCompanyName__ 2010. All rights reserved.

#import <UIKit/UIKit.h>
@interface TrafficViewController : UIViewController {
|

}
@end

OEBPS/images/599105-fg1003_fmt.jpeg

OEBPS/images/599105-fg1501_fmt.jpeg
gy A T r
A ame

SETTINGS
Kl

¥

OEBPS/images/599105-fg2205_fmt.jpeg

OEBPS/images/599105-fg2202_fmt.jpeg

OEBPS/images/599105-fg1202_fmt.jpeg
Choose a template for your new file:

iPhone OS

Cocoa Touch Class

User Interface
Resource Objective-C class Objective-C test UlViewController
Code Signing rocol case class

Mac 0S X

Cocoa Class

Cand C++

User Interface
Resource

Interface Builder Kit

Other
O UITableViewController subclass
) With XIB for user interface
(J size view for iPad

N
IVl.iK UlViewController subclass

An Objective-C class which is a subclass of UlViewController, with an optional header file
which includes the <UIKit/UIKit.h> header. A XIB file containing a view configured for this
View Controller is also included.

(rrovions) o)

OEBPS/images/tip_fmt.jpeg

OEBPS/images/599105-fg0205_fmt.jpeg
/' [1iPhone Developer Program - » (&)

8eno
—

€« 2> C developer.apple.com/programs/iphone/

‘ DeVelOper Technologies Resources

iPhone Developer Program

The fastest path from code to customer.

99/ year

Support Member Center Q

1. Develop 2. Test 3. Distribute
Develop your application with the iPhone Test and debug your code on IPad, Distribute your apps on the App Store
iPhone and iPod touch to finalize your and reach millions of iPad, iPhone, and

SDK and a wealth of technical resources

in the iPhone Dev Center. Learn more » applications. Learn more »

iPod touch users. Learn more »

OEBPS/images/599105-fg0202_fmt.jpeg
Personal Profile Professional Profile Legal Agreement Email Verification

Do you have an existing Apple ID you would like to use?

O Create an Apple 1D L) What is an Apple ID?
If you have not registered as an Apple developer or do not have an iTunes, Apple Online You will use your Apple ID to access
Store or MobileMe account, you will need to create an Apple ID. ::g’:‘:'m:"’ resources, or to

Use an existing Apple ID
If you have already registered as an Apple developer or have an iTunes, Apple Online Store or
MobileMe account, you can use your existing Apple 1D to sign in.

Note: if you intend to enroll in a paid Developer Program for business purposes, you may prefer to
create a new Apple 1D that is dedicated to your business transactions and used for accounting
purposes with Apple. If your Apple ID is associated with an existing iTunes Connect account, please
create a new Apple ID to avoid accounting and reporting issues.

o]

Copyright © 2010 Apple Inc. All rights reserved. Terms of Use | Privacy Policy

OEBPS/images/599105-fg1701_fmt.jpeg

OEBPS/images/technicalstuff_fmt.jpeg

OEBPS/images/599105-fg1606_fmt.jpeg
(i Gorar)
Inputs & Values
A Activity Indicator View - Provides

:~ feedback on the progress of a task or
process of unknown duration.

Library - Cocoa Touch -

< Activity Indicator View
% UlActivityindicatorView

Displays an element that provides user feedback \"
on the progress of a task or process with an !
unknown duration (to show the progress of a task '

() (@ Activity o)

OEBPS/images/599105-fg0404_fmt.jpeg
Controller

Action Method 1
Action Method 2 "apped”

Action Method 3

OEBPS/images/599105-fg0502_fmt.jpeg
<>y

Traffi

@synthesize window;

troller;

#pragna na:
#pragns nrl A»ucnlon lifecycle

N ication +)application

// Override point for customization after app launch

[window addSubview: [navigationController view]];
[window makeKeyAndVisible];

- (v'“) lpp\ kl!lﬂﬂillferlim!ex (UIApplication =)application {
data if approprial

#pragna mark -

OEBPS/images/599105-fg1502_fmt.jpeg
fn0Nn - View

%”(’..s l l

OEBPS/images/599105-fg2701_fmt.jpeg
,/ Firemint (Firemint) on Twitter

€ 9 C © twitter.com/firemint

°
twltter Home Profile Find People Settings Help Sign out

6 Firemint

+ Following @ & Elistsv B~

Also followed by @MrTweet, @_tyrone_, @kylebuttress, and 8 others

@chrisgander it's a press event,
secret Sydney location ;)

Pad in reply to

@Nelsonjeronimo | was on a plane! Again, pls feel free to post
on our (public) support site. Unfortunately can't chat real
time.

4 hot 3 d in reply to Nelsonjer

Just landed in Sydney for Sony PlayStation Move press event.
Looking forward to showing off Flight Control HD!
t 14 ho Twit P

@NelsonJeronimo I'm sorry you're upset. Bit hard to resolve

this over Twitter, but pls feel free to post on

Firemint.com/support! -Alex
it 16 ho 2 Twit C

ad in reply to Ne

Name Firemint

Location Melbourne,
Australia

Web http://www.firemi...
Bio Australian game studio
putting a bit more fun into
your day :) Best known for
Flight Control and Real
Racing. Tweets by Alex.

13 5085 479
following followers ~listed
Tweets 742

Favorites

Lists

@Firemint/games -people
@Firemint/iphone-sites
View all

Actions

block Firemint

report for spam

Following

s ol BB

B

OEBPS/images/cover.jpg
iPhone &iPad

Game Development

OEBPS/images/599105-fg1309_fmt.jpeg
Latest Results | Bylssue | AllMessages ~
© Compile FBLoginButton.m ..in /Users/desplesda/Dropbox /Traffic Code/Chapter 18 - iAd/FBConnect
© Compile FBDialog.m ...in /Users/desplesda/Dropbox/Traffic Code/Chapter 18 - iAd/FBConnect
© Compile FBLoginDialog.m ...in /Users/desplesda/Dropbox/Traffic Code/Chapter 18 - iAd/FBConnect
© Compile B Dialog.m ...in /User: Dropbox/Traffic Code/Chapter 18 - iAd/FBConnect
© Compile ialog.m ...in /U Dropbox/Traffic Code/Chapter 18 - iAd/FBConnect
@ Link /Users/desplesda/Dropbox/Traffic Code/Chapter 18 - iAd/build/Traffic.build/Debug-iphoneos/Traffic.buil...
oc inary build/Debug-iph [Traffic.app/Traffic normal “armvé armv7"
© GenerateDSYMFile build/Debug-iphoneos/Traffic.app.dSYM build/Debug-iphoneos /Traffic.app/Traffic
o ging * n i Profil C961-
© Touch /Users/desplesda/Dropbox/Traffic Code/Chapter 18 - iAd/build/Debug-iphoneos /Traffic.app
o /iPhoneOs. per/SDKs /iPhone0S4.0.

© CodeSign build/Debug-iphoneos Traffic.app

Build Succeeded 30/07/10 9:57 PM
6 warnings

Build succeeded (4 warnings)

OEBPS/images/check.jpg

OEBPS/images/WileycopyrightLogo_fmt.jpeg

OEBPS/images/599105-fg0701_fmt.jpeg
Active

Foreground
Inactive
Backgrounded
Background
Suspended

Not Running | Terminated

OEBPS/images/599105-fg0309_fmt.jpeg
s N B
General Code Sense Building Distributed Builds Debugging Key Bindings TextEditing Fo
. yalr
Fonts and Colors: Symbol Loading Options:
Debugger Console Prompt ™ Load symbols lazily

El Menlo-Bold - 11.0 Disassembly Style:

@ATRT O lIntel

Instruction Pointer Highlight: @

On Star ¥ Do Nothing ™ In-Editor Debugger Controls
Show Console)
GDBLo Show Debugger] Auto Clear Debug Console
= /; Show Console & Debugger B

Show Mini Debugger f

Cheply) (Concel) 0K
y

OEBPS/images/599105-fg0402_fmt.jpeg
View

Window

OEBPS/images/599105-pp0301_fmt.jpeg
iant

By Rich Tenns

The 5t Wave

OEBPS/images/599105-fg1604_fmt.jpeg
[

.l Carrier = 7:18 PM =

Musices .on.
‘ r‘ .4

<fbtln(/ won.

o

£ Connect with Facebook

OEBPS/images/599105-fg1313_fmt.jpeg
& iTunes Connect Jonathon Manning

‘Welcome, Jonathon Manning
ITunes Connect provides tools to help manage your content in the App Store.

The iTunes Connect Mobile (iTC Mobile) app is now available as a free download so you can review your
sales, related trends, and make informed business decisions anywhere on the go. Get the free ITC
Mobile app and start reviewing your sales and related trends for your products on your IPhone today.
For instructions on how to use the app to its full potential see the (Tunes Connect Mobile User Guide.

‘Want to help your chances of being featured on the App Store? The iTunes editorial team is always
looking for apps to highlight. The criteria for an app being featured includes demonstrating technical
excellence as well as having a strong App Store presence. You can improve your app's presence with
engaging screenshots that clearly demonstrate the features and functionality that make your app
unique, as well as with creative large and small icons that are free of any messaging (like “Sale”, "Lite",
or “Free").

You have agreed to the iAd Network Contract. You will be able to view the iAd Network module and set
your ad preferences once you enable at least one application for iAd.

[kl

[P

3

Sales and Trends [H Manage Your Applications
Preview or download your daily and weekly A Add, view, and manage your applications in
sales information here. the iTunes Store.

Contracts, Tax, & Banking Information
Request Contracts and manage your contact,
banking and tax information.

Manage Your In App Purchases
Create and manage In App Purchases for paid
applications.

Financial Reports Request Promotional Codes
View and download your monthly financial Get codes that will give you free downloads of
reports. your applications.

Manage Users Contact Us

Create and manage both iTunes Connect and In Having a problem uploading your application?

App Purchase Test User accounts. Can't find a Finance Report? Use our Contact
Us system to find an answer to your question
or to generate a question to an iTunes Rep

ﬁ Download the Developer Guide. @ FAQs Review our answers to common inquiries.

OEBPS/images/599105-fg0313_fmt.jpeg
000 4 TrafficViewController.xib [=)

@)

Name Type
(. File's Owner TrafficViewController
@ First Responder UlResponder

(L] view Uiview

OEBPS/images/599105-fg1307_fmt.jpeg
@& Developer

Technologies Resources Programs

Support Member Center (Q

iPhone Provisioning Portal

Welcome, Jonathon Manning

Provisioning Portal Go 1o IPhone Dev Center

Home.
Certificates Prepare App App Store Ad Hoc
Devices "
Distribution
App IDs
Provisioning

Distribute Application

@

Upload
App Store

Download

Build &
& Install

Distribu

Share
ertificate i i

Device ID (Ad Hoc only)

AppID

Ad Hoc

The distribution area of the iPhone Provisioning Portal is where you will prepare and learn how to submit your iPhone and/or iPod

touch application for delivery via in-house or Ad Hoc distribution. Only Team Agents are authorized to prepare and submit
applications for distribution.

For Information about distributing your application on the App Store, please see the App Store tab.
Obtaining your iPhone Distribution Certificate
Create and download your IPhone Distribution Provisioning Profile for App Store Distribution

Creating and Downloading a Distribution Provisioning Profile for Ad Hoc Distribution
Building your Application with Xcode for Distribution

Verifying a Successful Distribution Build

OEBPS/images/599105-fg0307_fmt.jpeg
[Session started at 2010-87-10 17:36:37 -0700.]

OEBPS/images/599105-fg1005_fmt.jpeg
Groups & Files
[5] TrafficControlier.h
[w] TrafficControlier.m

¥ (1] Game Objects

(1] Vehicle.h

[w] Vehicle.m

] Lane.h

v Lane.m

View Controllers

[1i] MainMenuViewController

MainMenuViewControllet

[li] SettingsViewController.h

SettingsViewController.n

(1] StatsViewController.h

StatsViewController.m

TrafficViewController.h

TrafficViewController.m

SocialMediaViewControll

[] SocialMediaViewControll

[ii] TrafficAppDelegate.h

TrafficAppDelegate.m

|-
14
v

Qv String Matching

[W TrafficAppDelegate.m

Thread-1-<comapplem.. /@) > 2 % 1 [A] || -Temcppoel.

< | » [TrafficAppDe m:85 ¢ M -applicationDidFini . [, [C. #,] !\

1Tacepo: ESS510N resumej;

self.twitterUsername = [defaults stril
self.twitterPassword = [defaults stril
int i;

i=1/0;

v (] Other Sources

OEBPS/images/599105-fg0207_fmt.jpeg
Are you Enrolling as an Individual or Company?

Individual

Enroll as an Individual if you do not need to add additional
developers to your team. If you are enrolling in the iPhone
Developer Program as an Individual, your name will appear as
the “seller” in the App Store.

Individual Development Only
; You are the sole developer who will be allowed access to

Program resources.

App Store distribution for iPhone

View example

! To enroll as an Individual you will need:
o Credit Card Billing information for identity verification.

Your name will appear as the “seller” in the App Store when
you enroll in the iPhone Developer Program as an Individual.

Company

Enroll as a Company if you would like to add additional
developers to your team. If you are enrolling in the
iPhone Developer Program as a Company, your
‘company name will appear as the “seller” in the App
Store.

Development Team
n You can add additional developers to your team who can
access Program resources.

App Store distribution for iPhone

@ Your company will appear as the “seller" in the App Store
when you enroll in the iPhone Developer Program as a
Company.
View example

] To enroll on behalf of a Company you will need:

« Legal Company/Organization Name.

* The legal authority to bind your company to any legal
agreements that may be presented to you during the
enrollment process or your program year.

 To provide us business documents including, but not limited
to: Articles of Incorporation, Business License, etc. as part of
our identity verification process.

(o)

OEBPS/images/599105-pp0201_fmt.jpeg
The 5t Wave By Rich Tennant
SRermenn

“Other than this litkle glitch with the Iandscape
view, T veally jove mu iPhone.”

OEBPS/images/599105-fg0302_fmt.jpeg
Choose a template for your new project:

Framework & Library
Application Plug-in
System Plug-in
Other

- e

r\awg:(o OpenGL ES
Apvh(M\ n Application

Utility Application View-based
Application

|

Split View-based
Application

b9

Window-based
Application

Tab Bar Application

Product iPhone
™ Use Core Data for storage

This template provides a starting point for a Core Data-based application lml uses a
navigation controller. It provides a user interface with a
display a list of items managed by a fetched results controller.

OEBPS/images/599105-fg0806_fmt.jpeg
TRAVEICO

u/fasw. _on

=

and Lon

”

OEBPS/images/599105-fg1302_fmt.jpeg
[Developer Technologies Resources Programs Support Member Center

iPhone Provisioning Portal Weloseus, Jonathén Mariing

Provisioning Portal

T Welcome to the iPhone Provisioning Portal
T The iPhone Provisioning Portal is designed to take you through the necessary

steps to test your applications on iPhone and iPod touch and prepare them for
App IDs distribution.

Provisioning

Distribution | | Visit the Member Center for Team, Account, and Program info

The new Member Center Is now your destination for:
 Sending invitations to join your development team and editing
existing development team members.
 Requesting or purchasing Technical Support.

* Viewing account information, such as your Team ID, profile,
and Program details.

Visit the Member Center now

| Get your application on an iPhone with the Development
Provisioning Assistant
As a Program Admin, you can use the Development Provisioning
Assistant to create and install a Provisioning Profile and IPhone
Development Certificate needed to build and install appl
developing for iPhone and iPod touch.

ions you're

Go 1o iPhone Dev Center

Portal Resources.

|/ Program user Guide

How-To's

mln"ll NI" Certificate
Ea view

Assigning Devices
@ Viewvideo

Creating your App IDs
B e

Creating Provisioning Profiles
S @ Viewvideo

0 Support Resources

[Tunes Connect Support

Find answers to questions about the
Tunes Connect system, including
uploading your application or finding
a Finance Repor

Technical Sup,

Receive code-level, technical
assistance for your specific
development issue.

Developer Support
Contact us for general inguiries,
including Program questions,
accountssues and change ofconact
inform:

OEBPS/images/599105-fg1806_fmt.jpeg
STATS

SETTINGS

OEBPS/images/599105-fg1901_fmt.jpeg
¥ [Products
(A Traffic.app
Entitlements.plist

¥ (# Executables
< Traffic

¥ () Find Results

» (%] Bookmarks

OEBPS/images/599105-fg0509_fmt.jpeg
TR refxach
) main.m
nllpng
‘RootViewContraller.xib.
NewGar
Trafhc-lnfo.pist i
» @l Frameworks e 4 RootVienControlier
Products Hats.ppd = .
MainMenuienConts
1 Traffic
¥ Find Results 17 Crested by Jonath
» (12 Bookmarks 7" right 2009 __
¢ poeny iy

OEBPS/images/599105-fg0901_fmt.jpeg
File's Owner TrafficViewController
@ First Responder UlResponder
> [View Ulview
Traffic Controller TrafficController

OEBPS/images/599105-fg0804_fmt.jpeg
Game Over View

OEBPS/images/599105-fg1804_fmt.jpeg
iTunes Connect Manage Your Contracts Jonathon Manning

Request New Contracts

Select the agreements which you would like to enter into.

Request
Contract Contract Region Contract Type Legal Entity Name - Legal Entity Address
world IAd Network |

Your Contracts In Effect

Contract Number Contract Region Contract Type Contract Download Contact Info Bank Info Tax Info ‘

MS1431908 All (See Contract) Paid Applications v Edit View/Edit Edit March 07,2010 August 02, 2010
MS1931796 World Free Applications NIA NIA N/A N/A June 10,2010 August 02,2010

 For all developers residing in Canada or registered for Canadian GST/HST, you MUST click here
o For all developers residing in Australia or registered for Australian GST, you MUST click here
« For developers residing outside of Japan who wish to sell applications in Japan, for Japanese tax treaty information, click here

@ = Complete. A green check for Tax Info is NOT an indication that the tax e forms required wtake advantage of tax trates, a5 appicable, have been retumed or received
byb#e r:uummmmuhm-lmnln-muuuhg--u tax treaty rates,

Home | FAQs | Contact Us | Sign Out
Copyright © 2010 Apple Inc. All rights reserved. Terms of Service | Privacy Policy

OEBPS/images/599105-fg0513_fmt.jpeg

OEBPS/images/599105-fg1902_fmt.jpeg
Phone Simulator

TRAFFIEC

SETTINGS

OEBPS/images/599105-fg0602_fmt.jpeg

OEBPS/images/599105-fg0902_fmt.jpeg
=Y

 View

OEBPS/images/599105-fg0504_fmt.jpeg
E Classes = Media
(i Library E

Library - Cocoa Touch - Inputs & Values

Round Rect Button - Intercepts touch
| events and sends an action message to
~——— atarget object when it's tapped.

Library - Cocoa Touch - Windows, Views & Bars

Bar Button Item - Represents an item
on a UlToolbar or UINavigationitem
object.

Flexible Space Bar Button Item -
4 Represents a flexible space item on a
UlToolbar object.

Fixed Space Bar Button Item -

Jrseseenes] Represents a fixed space item on a
UlToolbar object.

" Round Rect Button
UlButton

Implements a button that intercepts touch events ‘A'
and sends an action message to a target object
when it's tapped. You can set the title, image, and | ¥

(%) (Qbutton 0)

OEBPS/images/arrow.jpg

OEBPS/images/599105-fg1011_fmt.jpeg
S T il e m—
0 -[TrafficAppDelegate applicationDid h ¥ Arguments
1 e » self 0x7513fd0
2 _runWithURL W _emd 0x1c6838d
3 -[UlApplication handleEvent:withNewEvent:] » application 0x7119150
4 -(UApplication sendEvent:] | ¥Llocals
5 _UlApplicationHandleEvent » defaults. 0x7147d20
6 PurpleEventCallback " ,"
7 _CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTI 4 » error 0x0 103
8 __ CFRunLoopDoSourcel .Y »paths 0x7148370 1 objects) 4
i
< » [4TrafficAppDelegate.m:83 ¢ [0 -applicationDidFinishLaunching: & [T
self.twitterUsername = [defaults stringForKey:@"twitterUsername
- self.twitterPassword = [defaults stringForKey:@"twitterPassword"];
L3

- (void) endMultiplayerSession {
// terminate the gamekit session, if any
[multiplayerSession disconnectFromAllPeers];
multiplayerSession.available = NO;
[multiplayerSession setDataReceiveHandler: nil withContext: nill;

|

<Y

Vel

OEBPS/images/599105-fg2002_fmt.jpeg

OEBPS/images/599105-fg0105_fmt.jpeg
TRAKVIO

OEBPS/images/599105-fg0203_fmt.jpeg
iPhone Dev Center

Hi, Jonathon Manning My Profile Log out

OEBPS/images/599105-fg2203_fmt.jpeg

OEBPS/images/599105-fg2301_fmt.jpeg
Phone Simulator

P ~N

OEBPS/images/599105-fg1007_fmt.jpeg
hread-1-<comapplem... 3| » 2 ¥ t [§] Wl -
<« | » | [# TrafficAppDeleg @ -applicationDidFinis ion _¢ ’ Yy »
[facebookSession resume]; ool .
~[UlApplication sendEvent:]
self.twitterUsername = [de] -VApplicationHandicEvent
1f.twitterPassword = [de] "Peencaloack
se ® - __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__
__CFRunLoopDoSourcel
int d: __CFRunLoopRun
CFRunLoopRunSpecific
Ll CiRunLoopfuninode sion by ze
~[UlApplication _run]
} UlApplicationMain
main

- (void) endMultiplayerSession {
// terminate the gamekit session, if any
[multiplayerSession disconnectFromAllPeers];
multiplayerSession.available = NO;
[multiplayerSession setDataReceiveHandler: nil withContext: nill;

R, Y P DY S e O TR e L 1 .

OEBPS/images/599105-fg1203_fmt.jpeg
e N - View ~
TRAFFIC

Music: woull
B =

J’oan(l Lon.

OEBPS/images/599105-fg1301_fmt.jpeg
iPhone Developer Program
iPhone Provisioning Portal
iTunes Connect

Apple Developer Forums

Developer Support Center

o © © ©

OEBPS/images/599105-fg1310_fmt.jpeg
[Traffic - Build Results

[Device - 4.0 | Debug | Traffic | J

QD LatestResults | CIETD Bylssue | Al Messages
Build Traffic
Project Traffic | Configuration Debug

v ProcessProductPackaging "/Users/desplesda/Library/MobileDevice/Provisioning Profiles/235CC961-7014-4F95-A2B2-A3D742E334F6.mobilepr.

ProcessProductPackaging "/Users/desplesda/Library/MobileDevice/Provisioning
Profiles/235CC961-7014-4F95-A2B2-A3D742E334F6.mobileprovision” "/Users/
desplesda/Dropbox/Traffic Code/Chapter 18 - iAd/build/Debug-iphoneos/
Traffic.app/embedded.mobileprovision"

cd "/Users/desplesda/Dropbox/Traffic Code/Chapter 18 - iAd"

setenv PATH "/Developer/Platforms/iPhone0S.platform/Developer/usr/bin:/
Developer/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/
bin"

<com. apple.tools.product-pkg-utility> "/Users/desplesda/Library/
MobileDevice/Provisioning Profiles/235CC961-7014-4F95-A2B2-
A3D742E334F6.mobileprovision” -o "/Users/desplesda/Dropbox/Traffic Code/
Chapter 18 - iAd/build/Debug-iphoneos/Traffic.app/
embedded.mobileprovision A

/), Build Succeeded 30/07/10 9:57 PM v

Build succeeded (4 warnings) @Succeeded A4 |

OEBPS/images/599105-fg0310_fmt.jpeg
8 I8 & & o o
General Code Sense Building Distributed Builds Debugging KeyBindings TextEditing Fo
S —— RIS

Place Build Products in:

@ Project directory

O Customized location:
Place Intermediate Build Files in:

@ With build products ‘

O Customized location: (_Choose...
Build Results Window: Build Options:

Open during builds: [Always g ™ Continue building after errors
E Use Predictive Compilation

Close after builds: [Never E

For Unsaved Files:
Ask Before Bul

(Apply) (Cam:el) “
y

OEBPS/images/599105-fg1607_fmt.jpeg
¥ Activity Indicator View

Style Large White B

E Hide When Stopped
() Animating

OEBPS/images/warning_bomb_fmt.jpeg

OEBPS/images/599105-fg0903_fmt.jpeg
lotch to reswne...

OEBPS/images/599105-fg1002_fmt.jpeg
Debugging terminated.

OEBPS/images/599105-fg0512_fmt.jpeg

OEBPS/images/599105-fg1010_fmt.jpeg
Thread-1-<com.apple.main-thread> 3 Variable Value _ Summary
0 -(TrafficAppDelegate applicationDidFinishLs ¥ Arguments m
1 = » self 0x7513fd0
2 _runWithURL L _emd 0Ox1c6838d
3 -[UlApplication handleEvent:withNewEvent:] » application 0x7119150 W
4 -[UlApplication sendEvent:] ¥ Locals
5 _UlApplicationHandleEvent » defaults 0x7147d20
6 PurpleEventCallback o i
7 _CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_} FLNCn 4 »error 0x0 o
8 _CFi v » paths 0x7148370 1 objects v
€ = - \.r‘
ERICEI \7 83+ @ ching: ¢ ™ C. #. ® a
self.twitterUsername = [defaults stringForKey:@"twitterUsername &
- self.twitterPassword = [defaults stringForKey:@"twitterPassword"l;

- (void) endMultiplayerSession {
// terminate the gamekit session, if any
[multiplayerSession disconnectFromAllPeers];
multiplayerSession.available = NO;
[multiplayerSession setDataReceiveHandler: nil withContext: nill;

|

I

te = nil:

GDB: Stopped at breakpoint 2 (hit count : 1) -

OEBPS/images/599105-fg1903_fmt.jpeg
Device
¥ Simulator

Active Configuration

v Debug
Distribution
Release

Active Target

o Traffic
v o Traffic-iPad

Active Executable
Traffic - iPad Simulator 3.2
Traffic - iPhone Simulator 4.0

¥ Traffic-iPad - iPad Simulator 3.2

Active Architecture
v 386

» §& UIKit.framework

OEBPS/images/599105-fg0209_fmt.jpeg
- iPhone Provision

€ 9 € (O developer.apple.com/iphone/manage/overview/index.action

‘ Develo per Technologies Resources Programs

Welcome to the iPhone Provisioning Portal

The iPhone Provisioning Portal is designed to take you through the necessary
steps to test your applications on iPhone and iPod touch and prepare them for
distribution.

Visit the Member Center for Team, Account, and Program info

The new Member Center is now your destination for:
« Sending invitations to join your development team and editing
existing development team members.
* Requesting or purchasing Technical Support.
* Viewing account information, such as your Team ID, profile,
and Program details.

Vist the Member Center now

Get your application on an iPhone with the Development
Provisioning Assistant

As a Program Admin, you can use the Development Provisioning
Assistant to create and install a Provisioning Profile and iPhone
Development Certificate needed to bulld and Install applications you're
developing for IPhone and iPod touch,

Q

hon Manning

Go to iPhone Dev Center

Portal Resources
|5 Program User Guide

How-To's
Obtaining your Certificate
E B Viewvideo

Assigning Devices
B Viewvideo

Creating your App IDs
B g vewviceo

Creating Provisioning Profiles
& @ viewvideo

O Support Resources

ITunes Connect Support
Find answers to questions about the
Tunes Connect system, including
uploading your application or finding
a Finance Report.

Technical Support

Receive code-level, technical
assistance for your specific
development issue.

Developer Support

Contact us for general inquiries,
Including Program questions,
account Issues and change of contact
Information.

OEBPS/images/599105-fg2204_fmt.jpeg

OEBPS/images/WileyTitlePageLogo_fmt.jpeg
%)

ViLEY
Wiley Publishing Inc

OEBPS/images/599105-fg0601_fmt.jpeg
(0'0) X—>

OEBPS/images/599105-fg1601_fmt.jpeg
facebook

Find People and More Home Profile Find Friends Account v

T T ITITITIT IV IV I IV IV I T PP P PPV,

I3 Allow Access?

Allowing Developer access will let it pull your profile information, photos, your
friends' info, and other content that it requires to work.

Developer Fokk
Developer

B o eave Avplication

Facebook © 2010 English (US)

About Advertising Developers Careers Terms « Find Friends Privacy Mobile Help Center

OEBPS/images/599105-fg0204_fmt.jpeg
Downloads

iPhone SDK 4

iPhone SDK 4 includes the Xcode IDE,
iPhone Simulator, and a suite of
additional tools for developing
applications for iPhone, iPad and iPod
touch.

Posted: June 21, 2010
Snow Leopard Build: 10M2262

Snow Leopard Downloads
[@ Xcode 3.2.3 and iPhone SDK 4
Xcode 3.2.3 Readme

Other Downloads
iPhone SDK Agreement
iPhone Configuration Utility

OEBPS/images/599105-fg1008_fmt.jpeg
TrafficAppDelegate applicationDidFin
1 K 0x752ce40
2 -[UlApplication _runWithURL:payload:launchOrientation:statusBar 0Ox1c6838d
3 -[UiApplication handleEvent-withNewEvent:] 0x7502db0
4 -[UlApplication sendEvent:]
5 _UlApplicationHandleEvent 0x7122240
6 PurpleEventCallback | i 0x7122f60
0x0
0x7123090 1 objects

rafficAppDelegate.m:85 ¢ [-applicationDidFinishlaunching: & = i Q.
self.twitterUsername = [defaults stringForKey:@"twitterUsername
self.twitterPassword = [defaults stringForKey:@"twitterPassword"

int i;
i=1/0;

- (void) endMultiplayerSession {
// terminate the gamekit session, if any
[multiplayerSession disconnectFromAllPeers]

OEBPS/images/599105-fg0311_fmt.jpeg
/ & [®

Text Editing Fonts & Colors Indentation File Types Source Trees

¥ Check for and install updates automatically
¥ Apple
iPhone OS 4.0 Library
Mac OS X 10.6 Core Library

Xcode 3.2 Developer Tools Library
L

Add Publisher...

Universal Access:
("] Never use font sizes smaller than: 1 @

Caneel) 0D

OEBPS/images/599105-fg1311_fmt.jpeg
[Device - 4.0 | Debug | Traffic | T...

[Traffic - Build Results

© Touch /Users/desnlesda/Dropboxlef‘ﬁ(Code/Ch-lpter 18 - \Adlbulld/Debug iphoneos /Traffic.app

@ ProcessProductPackaging /Developer/Platforms/iPhoneOS. platform/Developer/SDKs/iPhone0s4.0.sdk/Entitlements.plist build/Traffic.build/Debug-ip
v CodeSign build/Debug-iphoneos/Traffic.app

CodeSign build/Debug-iphoneos/Traffic.app
cd "/Users/desplesda/Dropbox/Traffic Code/Chapter 18 - iAd"
setenv PATH "/Developer/Platforms/iPhone0S.platform/Developer/usr/bin:/

Developer/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/
bin"

setenv _CODESIGN_ALLOCATE_ /Developer/Platforms/iPhone0S.platform/
Developer/usr/bin/codesj

allocate
/usr/bin/codesign -f -s iiPhone DeveloEer: Jonathon Manning (K75AD3QBKL)I
"——resource-rules=/Users/desplesda/Dropbox/Traftic Code/Chapter — 1Ad/
build/Debug-iphoneos/Traffic.app/ResourceRules.plist" --entitlements "/
Users/desplesda/Dropbox/Traffic Code/Chapter 18 - iAd/build/Traffic.build/
Debug-iphoneos/Traffic.build/Traffic.xcent" "/Users/desplesda/Dropbox/
Traffic Code/Chapter 18 - iAd/build/Debug-iphoneos/Traffic.app"

A\ Build Succeeded 30/07/10 9:57 PM
Build succeeded (4 warnings)

.

v

@Succeeded (14

OEBPS/images/599105-fg1602_fmt.jpeg
Back to Developer Home

R My Applicaions

{7} Traffic (beta) il
, | Traffic (beta)
1 ; Directory Status: Not Submitted
" | Once you have completed your application, you may submit it o the Application Directory.
-
Monthly Active Users Application Fans Total Users

0 0 2

ey Advertise
18a60bec0677290e5397286870d6bfS DataStoreAdmin
Application Secret Edit Application Profile
8fb3b8134c91102ac7c5b4476f122ca Edit Settings
Application ID Reset Secret Key
232757341938 Statistics
Contact Email Translations
lab@secretlab.com.au View Application Profile
Support Email
lab@secretlab.com.au
FBML/iframe
iframe
Developer Mode
off

Application Type
Website

Private Install
No

Application Description
Traffic is the game you'll make while reading iPhone Game
Development for Dummies, published by Wiley soon!
Sample Code

Get started quickly with some example code!

Delete Application

OEBPS/images/599105-pp0501_fmt.jpeg
The 5th Wave By Rich Tennant
e =

OEBPS/images/599105-fg1803_fmt.jpeg
Sales and Trends
Preview or download your daily and weekly
sales information here.

< Tax, & Bank <
Request Contracts and manage your contact,
banking and tax information.

View and download your monthly financial
reports.

¥ \T Financial Reports

Manage Users
m Create and manage both iTunes Connect and In
App Purchase Test User accounts.

OEBPS/images/599105-fg0803_fmt.jpeg
- Pause View ~

lotecl to reswne: .-

OEBPS/images/599105-fg1101_fmt.jpeg
- Vi

iew ;:
TRAFFIC

OEBPS/images/599105-fg1009_fmt.jpeg
self. tv
self. tv

OEBPS/images/599105-fg0101_fmt.jpeg
Phone Simulator

OEBPS/images/599105-fg0104_fmt.jpeg
> =
Mo
D

]

(-

iPhone

Traffic iPad vs. iPhone

R G B

A

8

A

AN

!

iPad

= K
@ (<
w <

OEBPS/images/599105-fg1006_fmt.jpeg
TrafficAppDelegate * self 0x752ced0

OEBPS/images/599105-fg0303_fmt.jpeg
Qv String Matching

Traffic_Prefix.pch

TrafficAppDel
TrafficAppDelegate.m

]
TrafficViewController.h

[w] TrafficviewController.m]

%] TrafficViewController.xib L}

§= UiKit.framework L]

[]

=
<] Se=[c.i#.|

No Editor

1

OEBPS/images/599105-fg1306_fmt.jpeg
Can't run “Traffic” on the iPhone
“Gunther”

The iPhone “Gunther” doesn’t have the provisioning
profile with which the application was signed.

Click “Install and Run" to install the provisioning
profile “Team Provisioning Profile: *" on “Gunther”
and continue running “Traffic.app”.

(_ cancel) (Installand Run)

OEBPS/images/599105-fg0401_fmt.jpeg
Controller

.

Traffic

< >
e =0
e

View

OEBPS/images/599105-fg2401_fmt.jpeg
Phone Simulator

(= N

OEBPS/images/599105-fg1312_fmt.jpeg
8o [Traffic - Build Results

 Device - 4.0 | Debug | Traffic | T... *] E] K) v& . Q embedded.mobileprovision
T LatestResults | EISED By Issue AII Messaggs -

Build Traffic
Project Traffic | Configuration Debug

v ProcessProductPackaging "/Users/desplesda/Library/MobileDevice/Provisioning Profiles/235CC961-7014-4F95-A2B2-A3D742E334F6.mobilepr.

ProcessProductPackaging "/Users/desplesda/Library/MobileDevice/Provisioning
Profiles/235CC961-7014— 4F95 AZBZ —A3D742E334F6.mobileprovision" "/Users/
desplesda/Dr.-... er 18 - iAd/build/Debug-iphoneos/
Traffic.app

cd "/Users/desplesda Irop ic Code/Chapter 18 - iAd"

setenv PATH "/Developer/Platforms/iPhone0S.platform/Developer/usr/bin:/
Developer/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/
bin"

<com. apple.tools.product-pkg-utility> "/Users/desplesda/Library/
MobileDevice/Provisioning Profiles/235CC961-7014-4F95-A2B2-
A3D742E334F6.mobileprovision" -o "/Users/desplesda/Dropbox/Traffic Code/
Chapter 18 - iAd/build/Debug-iphoneos/Traffic.app/
embedded.mobileprovision"

/), Build Succeeded 30/07/10 9:57 PM

Build succeeded (4 warnings) @Succeeded A4

OEBPS/images/599105-fg1303_fmt.jpeg
¥ PROJECTS & SOURCES
» (23] KRINK
v DEVICES
B The mewPhone
B waiton

W Joshua Erwin Ongso's iP...

B 5L Development 3G
@ ipHoDD 4.0
[B Mattias iPad
(@ MEEBOPHONE
|l iPhone
Gunther
¥ IPHONE DEVELOPMENT
4 Archived Applications
A Developer Profile
. Device Logs
(] Provisioning Profiles
@ Screenshots
*# Software Images

Summary

Name:

Capacity:

Model:

Serial Number:
ECID:

Identifier:
Software Version:

Gunther

15.33GB

iPhone 3GS

819458G63NP

36406834574
1141468b4f475cd47dd32b12c60e900d94e1de62
4.0 (8A293)

OEBPS/images/599105-fg0603_fmt.jpeg

OEBPS/images/599105-fg0312_fmt.jpeg
Q- String Matching

E] Traffic-Info.plist

' = n >+ t @ W

» [Products % <Noselected symbol> ¢ =, "=, C, #.
» @ Targers
> & Executables TrafficViewController.h
el g Traffic

» (3% Bookmarks
’Escn:.amw, Created by Jonathon Manning on 10/07/10

» (@ Implementation Files Copyright __MyCompanyName__ 2010. All r
» (@l Interface Builder Files

#import <UIKit/UIKit.h>

@interface TrafficViewController : UIViewCo:

OEBPS/images/599105-fg1603_fmt.jpeg
facebook Find People and More

I Create Application Back to My Applications

Essential Information
Application Name Cannot contain Facebook
trademarks or have a name
that can be confused with an
application built by Facebook.
Terms Do you agree to the Facebook Terms?

O Agree @ Disagree

Create Application

OEBPS/images/599105-fg1802_fmt.jpeg
iPod + iTunes

iTunes Connect

Apple ID

Password
|

Forgot Password... -

OEBPS/images/remember_fmt.jpeg

OEBPS/images/599105-fg1805_fmt.jpeg
Your Contracts In Effect

‘Contract Number Contract Region Contract Type Contract Download Contact Info Bank Info Tax Info Effective Date Expiration Date Contract in Effect ‘

MS1431908 All (See Contract) Paid Applications. v Edit View/Edit Edit March 07, 2010 August 02, 2010 o
MS51931796 World Free Applications. N/A N/A N/A N/A June 10, 2010 August 02, 2010]

OEBPS/images/599105-fg0508_fmt.jpeg
New Game

Stats

Settings

OEBPS/images/599105-fg0802_fmt.jpeg
(e ™

Timnees 0 I I

OEBPS/images/599105-fg0208_fmt.jpeg
iPhone Developer Program

iPhone Provisioning Portal
iTunes Connect
Apple Developer Forums

Developer Support Center

!’ Renew Your Program
Your iPhone Developer Program will
expire in 23 days. Don't wait.
Renew your membership now »

OEBPS/images/599105-fg0306_fmt.jpeg
@ Succeeded

OEBPS/images/599105-fg0511_fmt.jpeg
e O View ~

TRANIIO

OEBPS/images/599105-fg0505_fmt.jpeg

OEBPS/images/599105-fg0301_fmt.jpeg
Welcome to Xcode

Version 3.2.3 (1688)

Create a new Xcode project

Start a new software project for Mac OS X or
IPhone OS

Getting started with Xcode
Follow the tutorial to learn how to get productive
quickly with Xcode

Apple Developer Connection
Visit the Mac and iPhone Dev Centers at
developer.apple.com

Recent Projects

Sleep Cycle
~/Desktop/sleep
Traffic
[Third Revision/Chapter 18 - External Displays
iPadVGAOutputTest
~/Downloads
Traffic
ird Revision/Chapter 19 - Gesture Recognisers
Traffic
~/Dropbox/Third Revision/Chapter 18 - iPad
FunRun
~/Desktop/Projects 3
FunRun
~/Desktop/Projects 2

CLSprite

~/Boot Camp Cleanup/More Cleanup/Cleanup
OpenGLTest
~/Desktop

KRINK
~/Dropbox/Proj/krink /KRINK2

sshaw this window when Xcode launches

OEBPS/images/599105-fg0206_fmt.jpeg
Complete your personal profile

(All form fields are required)

Create Apple ID

Desired Apple ID:

Password:
(6-32 characters)

Re-enter Password:
(6-32 characters)

Security Information

Birthday: [Select Month 1) [select Day

Security Question:

Answer:

OEBPS/images/599105-fg2201_fmt.jpeg
Phone Simulator

£ e b

OEBPS/images/599105-fg0503_fmt.jpeg
BEs =1

e Ry
(e) A

OEBPS/images/599105-fg1001_fmt.jpeg
- (void)viewDidUnload {

[self setTitle::@"My view controller"];
® Expected expression before "' token

OEBPS/images/599105-fg0805_fmt.jpeg
- View ~

TRAFILE

OEBPS/images/599105-fg1201_fmt.jpeg

OEBPS/images/599105-fg0201_fmt.jpeg
800,
€ c

[JiPhone Dev Center - Apple 1 x \(Gi)

developer.apple.com/iphone/index.action

[Developer

iPhone Dev Center

Technologles

Resources Programs Support

Member Center Q

Log in to get the most out of the iPhone Dev Center.

Registered Apple Developers can access IPhone SOK 4 for developing IPad, IPhone and IPod touch applications.

Developing for iOS 4

Technical Documentation

™

Getting Started Documents
Developers new to I0S can read about the tools,
frameworks, development best-practices, and
design methods for creating innavative world-
dlass iPhone applications.

iPhone Reference Library

Explore a collection of in-depth technical
documentation, sample code, guides, and
articles for IPhone development categorized by
topic and frameworks.

Q

Featured Content

Start Developing iPad Apps

iPhone Application Programming Guide
iPhone Development Guide

iPhone Human Interface Guidelines
Your First iPhone Application

Learning Objective-C: A Primer

To access iPhone SDK 4 and additional technical resources and information, log in with the Apple ID and password
you used to register as an Apple Developer, or register for free today.

Getting Started Videos
Watch Apple experts discuss everything from

A 4

iPhone SOK 4
Registered Apple Developers can download
iPhone SOK 4, which includes the Xcode IDE,
iPhone Simulator, and a suite of additional tools
for developing applications for IPhone, IPad and
iPod touch.

getting started with iPhone SDK, to the tools and

technologies used to create iPhone applications.

Coding How - To's
Play a movie. Play a sound. Detect motion.

i, Guest Register Log In

iPhone Developer Program

105 4 Readiness Checklist
Learn how to make sure
your agplications are
compatible with 105 4.

Log in

App Store Resource Center
Find detalls on everything
from how to prepare for

Submitting an ap to managing

an app once it's been posted. Log in

News and Announcements

Check out this regularly

updated section for a range of
information including tips on
submitting apps, turnaround time for
app review, and more. Learn more

Already applied to the iPhone
Developer Program? .

Check your enrollment status now v

OEBPS/images/599105-fg2001_fmt.jpeg
PPPPPPP

PPPPPPP

00

IIIII
IIIII

IIIII
IIIII

IIIII
IIIII

OEBPS/images/599105-fg1308_fmt.jpeg
[n ing Profil C961-:
@ Touch /Use's/desplesda/ompboxmamc Code/Chapter 18 - iAd/build/Debug-iphoneos /Traffic.app
o /iPhoneOS. platform /Ds per/ /iPhone054.0.
@ CodeSign bui|d/Debug-ipnoneosrrraiﬁmpp e
Build Succeeded 30/07/10 9:57 PM
} 6 warnings 53

o
Build succeeded (4 warnings) Succeeded £\ 4 é

OEBPS/images/599105-sb2001_fmt.jpeg
360 degrees = 2m radians
90 degrees =m/2 radians

\

OEBPS/images/599105-fg0308_fmt.jpeg
i Carrier = 5:37 PM

OEBPS/images/599105-fg0314_fmt.jpeg
(O Cusses bt)
dl ubrary [}

Ubrary - Cocoa Touch - Controliers

OEBPS/images/599105-fg1012_fmt.jpeg
Q- String Matching

L]
fac ion = [[FBSession sessionForApplicati
[facebookSession resume];

self.twitterUsername = [defaults stringForKey:@"t
self.twitterPassword = [defaults stringForKey:@"t

TrafficViewControllerx anObject =
[TrafficViewController allocl;

- (void) endMultiplayerSession {
// terminate the gamekit session, if any
[multiplayerSession disconnectFromAllPeers];
multiplayerSession.available = NO;
[multiplayerSession setDataReceiveHandle

OEBPS/images/599105-fg0403_fmt.jpeg
M2

STATS

