

[image: cover]

Contents

Cover

Title Page

Copyright

Dedication

About the Authors

Acknowledgments

Introduction

Section I: Why Every Business in the World Can Produce Software in 30 Days

You are probably frustrated with your software organization. You would like it to be quicker, more flexible, understand your needs better, and help you become more profitable. We look at why you are frustrated and how to fix the problem.

Chapter 1: The Crisis in Software: The Wrong Process Produces the Wrong Results

Many software organizations follow a development process that guarantees waste, uncontrolled risk, unpredictability, surprises, and low value. We will investigate why this process was chosen, how it guarantees failure, and look and some organizations that have recovered from it.

Case Study: The FBI's Sentinel Project

The Wrong Approach: Predictive Processes

The Wrong Results: Project Failure

Case Study: Parametric Technology Corporation

Summary

Chapter 2: Scrum: The Right Process Produces the Right Results

There is a process that is appropriate for software development. When you get your developers to use it, you will immediately gain productivity, quality, value, control, predictability, and satisfaction. We look at how this happens in this chapter.

Empiricism in Action

Does Empiricism Resolve Our Problems?

People Practices Stemming from Empiricism

Even When We Know Better

Agility

Summary

Chapter 3: Try It Yourself: The Pilot

You have read our assertion that there is a better way for you to get software developed for you. However, a lot of people have made assertions and taken a lot of your money in the past, with little or no improvement. In this chapter we show you how to prove that our approach works for no money.

Empiricism Is Used Elsewhere in the Organization

An Example Pilot to Model

Team Members May Work in Ways That Are New to Them

Summary

Chapter 4: What Can I Do?

You learned how to do better and you've tried it yourself. You like the results and you know what to tell the software organization to do. In this chapter, we look at what you can do to help what you experience in the pilot project succeed.

Practice the Art of the Possible

Demand Transparency and Create an Environment for It to Flourish

Count on Your People to Do More

Help People Relax Their Desire for Certainty

Summary

Section II: How to Produce Software in 30 Days

Having better software developed for your needs is not so much hard as it is different from what you are used to. In this section, we look at a progressively beneficial set of approaches to get you from where you are now to organizational agility.

Chapter 5: Getting Started with Scrum

Our secret sauce for improving your benefits from software is called “Scrum.” Yes, this is the rugby event that keeps the ball moving down the field. We'll discuss Scrum, how it works, and why it works in this chapter.

Form the Scrum Team and Plan the Sprint

Sprint to Value

Conduct the Sprint Review

Conduct the Sprint Retrospective

Continue Sprinting

Summary

Chapter 6: Scrum at the Project Level

Most persistent improvement in software development starts at the project level. You can use Scrum to further prove its utility, or on critically important initiative that must succeed. We'll explore what you can tell your developers to do after reading this chapter.

Bottom-Up and Stealth Scrum

Benefits and Discoveries

Managing the Work: Burndown Charts

Don't Ignore On Complexity—Always Keep Your Eyes Open

Sprint Length

The Next Chapter

Chapter 7: Develop a Scrum Capability

Success often breeds success. As more software initiatives using Scrum succeed, more people will want to get on the wagon. Rather than changing the entire organization, let's look at how we can set up a software development universe separate from the disappointing, existing department. You can increasingly reap benefits here on an increasing number of projects and releases.

The Studio Is a Learning Organization

The Studio Manager

Training and Terms of Use

Studio Facilities

Change and Conundrum

Managing by the Numbers

Metrics Depend on Transparency

A Done, Complete Increment of Functionality

An Analogy

Eliminating Technical Debt to Get Ready-to-Use Increments

Origins of Sin

Summary

Chapter 8: Scrum at the Enterprise Level

Scrum at a project or release level provides initiative level agility, the ability to rapidly respond to opportunities or rise to challenges. To gain the most significant benefits, Scrum's empirical approach to software development must be fit into the organization as a whole. We'll look at how to do this, and why some approaches are short-lived and others persist.

Profound but Transient Change

Profound and Persistent Change

Carbonite Transforms and Persists

How Carbonite Broke the Mold

Results

Two Nonnegotiable Elements for Any Scrum Adoption

Chapter 9: Enterprise Transformation: Profound and Persistent Change

You want to make your organization leaner, more efficient, and agile on your watch. Even more, you want these benefits and their underlying causes to persist and become the organizational culture. We'll look at an enterprise change approach for achieving this in this chapter.

The Enterprise Transformation Project

Getting Ready

Start the Transformation Project

Communicate the Vision and Strategy

Expand throughout the Organization

Achieve Impact

Measure, Assess, and Consolidate Gains

Embed, Expand, and Persist

Summary

Chapter 10: Scrumming Scrum

We devised Scrum for complex problem solving, like software development. We found Scrum a useful technique for managing organizational change, also a complex problem. The same benefits of transparency, waste removal, risk control, and predictability occurred. We'll look at this use of Scrum in this chapter.

SeaChange International Scrums Itself with Scrum

How SeaChange Broke the Mold

Results

Iron Mountain Spreads Scrum

Transformation Teams

Summary

Appendix 1: Terminology

We slowly and progressively introduced some new terminology. This appendix is your reference for those terms.

Appendix 2: The Scrum Guide

Read the canonical guide to Scrum, its roles, artifacts, and events. This is the bible of Scrum.

Table of Contents

Article I. Purpose of the Scrum Guide

Article II. Scrum Overview

Article III. Scrum Theory

Article IV. Scrum

Article V. The Scrum Team

Article VI. Scrum Events

Article VII. Scrum Artifacts

Article VIII. Definition of “Done”

Article IX. Conclusion

Article X. Acknowledgements

Appendix 3: A Playbook for Achieving Enterprise Agility

This appendix presents a more detailed plan for enterprise change, as discussed in Chapter 10.

Table of Contents

1.1 Introduction

1.2 Overview of Scrum and Software Agility

1.3 Preparing for Scrum

1.4 A Playbook for Adopting Scrum

1.5 Organizational Impediments to Adopting Scrum

1.6 Scaling Scrum

1.7 Summary

Index

[image: Title Page]

Copyright © 2012 by Ken Schwaber and Jeff Sutherland. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Schwaber, Ken.

Software in 30 days: how Agile managers beat the odds, delight their customers, and leave competitors in the dust/Ken Schwaber, Jeff Sutherland.

p. cm.

Includes index.

ISBN 978-1-118-20666-9 (pbk.); ISBN 978-1-118-22854-8 (ebk); ISBN 978-1-118-24090-8 (ebk);

ISBN 978-1-118-26574-1 (ebk)

1. Agile software development. 2. Scrum (Computer software development) 3. Computer software–Development. I. Sutherland, Jeffrey Victor. II. Title. III. Title: Software in thirty days.

QA76.76.D47S3223 2012

005.1–dc23

2011050969

To Ikujiro Nonaka, Babatunde A. Ogunnaike, and

Hirotaka Takeuchi for their inspiration and guidance.

About the Authors

Jeff Sutherland and Ken Schwaber are the creators of Scrum, a software development process that delivers software functionality in 30-day increments. Scrum was born when Jeff and Ken presented a paper at the OOPSLA conference in Austin, Texas, in August 1995. This paper, “Scrum Development Process,” was the result of their collaboration prior to that point. The works of H. Takeuchio and I. Nonaka in their seminal works on lean knowledge creation, bottom-up intelligence, and teamwork had profoundly influenced Jeff. Babatunde Ogunnnike had profoundly influenced Ken in his work on industrial process control and the applicability of complexity theory and empiricism to software development.

In addition to being Scrum's creators, Jeff and Ken have also served as its wards. With their guidance, Scrum has evolved over time; more recently, they have developed ways to speed up Scrum's systematic evolution based on community experience and input. In “The Scrum Guide,” found in Appendix 2 of this book, Jeff and Ken offer the complete definition of Scrum.

Dr. Jeff Sutherland is the chief executive officer of Scrum Inc., in Cambridge, Massachusetts, offering training, guidance, and coaching to companies across the globe. Jeff is a distinguished graduate of the United States Military Academy and a Top Gun of his USAF RF-4C Aircraft Commander class. Jeff has advanced degrees from Stanford University and a PhD from the University of Colorado School of Medicine. He is also a senior advisor to OpenView Venture Partners, helping them implement Scrum and agile practices in all their portfolio companies. Jeff has extended and enhanced Scrum at many software companies and information technology (IT) organizations over the years.

Ken Schwaber is a software development professional, having spent the past 40 years of his life as a programmer, analyst, consultant, product manager, and business owner. Early in his career, Ken tried unsuccessfully to make waterfall software projects successful; he later developed an alternative to waterfall. Ken has spent the past 20 years developing Scrum and working with organizations around world to help them take advantage of it. Ken is one of the original signatories of the Agile Manifesto and the founder of the Agile Alliance and the Scrum Alliance. He is currently working to improve the software profession through Scrum.org. Ken and his wife, Christina, live in the Boston area. He is a graduate of the United States Merchant Marine Academy and has completed additional study in computer science at the University of Chicago and in business at the University of California at Los Angeles Anderson School of Management.

Acknowledgments

This book would not be what it is without the excellent copyediting of Arlette Ballew, the overall direction of Richard Narramore, and the laser focus of Carey Armstrong.

Introduction

We, Jeff and Ken, have been in the software industry, collectively, for 70 years. We have been software developers, managers in IT organizations and software product companies, and owners of both product companies and service organizations. More than 20 years ago, we created a process that lets organizations deliver software better. Since then, we have helped hundreds of organizations do the same. Our work has spread further than we have ever imagined possible, being put to use by millions of people. We are humbled by the extent of its adoption, and we are awed by the feats people have accomplished using it.

This is not the first book we have written on the topic of building software. It is, however, the first book we have written for people who do not themselves build software. This book is instead for leaders within organizations that depend on software for their survival and competitiveness. It is for leaders within organizations that can benefit from developing software rapidly, incrementally, and with the best return on investment possible. It is for leaders who face business and technological complexity that has made the delivery of software difficult. We have written this book so that these leaders can help their organizations achieve these goals, enhance their internal capabilities, improve their product offerings, and more.

This book is for chief executive officers (CEOs), executives, and senior managers who need their organizations to deliver better software in less time, with lower cost, greater predictability, and lower risk. For this audience, we have a message: You may have had negative experiences with software development in the past, but the industry has turned a corner. The software profession has radically improved its methods and its results. The uncertainty, risk, and waste to which you are accustomed are no longer par for the course. We have worked with many software organizations that have already turned the corner; we want to help you do so, too.

In this book, we show you how to create business value using a process that delivers complete pieces of software functionality at least every 30 days. This book will show you how you can prioritize the functionality you want and have it delivered á la carte. It will show you how to gain transparency not only into business value, by tracking functionality delivered against functionality desired, but also into the health of the software development process and your organization as a whole. The tools in this book will help you work with your software organization to get up to speed with modern practices and begin to deliver the results you've been expecting all along.

This is software in 30 days.

Section I

Why Every Business in the World Can Produce Software in 30 Days

Chapter 1

The Crisis in Software: The Wrong Process Produces the Wrong Results

Your organization—whether business, governmental, or nonprofit—likely needs to be able to create value by building, customizing, and using software. Without software, your ability to achieve your goals as a business leader is inherently limited, if not impossible. But despite this need, software development has historically been an unreliable, costly, error-prone endeavor.1 This leaves you in a pickle: You need software, but you can't get what you need, when you need it, at a cost that is acceptable, at a level of quality the makes it usable.

Indeed, the Standish Group's 2011 CHAOS Report found that more than half of software projects conducted between 2002 and 2010 were either described as challenged or complete failures; just 37 percent were classified as successful (Figure 1.1) The Standish Group modestly defined a successful project as delivering all the requested functionality, on the expected date, for the planned cost. The ability to accommodate changes, the ability to manage risks, or the inherent value of the software weren't considered.

Figure 1.1 Traditional Software Development Is Risky
[image: img]

The chances that a software project will be successful are not good. If you are trying to accomplish something critical that involves developing of software, you are probably worried. The software industry has failed you by being slow, expensive, and unpredictable. If software weren't so important, you would probably stop investing in software altogether.

You are not alone. Many others are in the same boat. For example, the Federal Bureau of Investigation's (FBI) Sentinel project recently ran into trouble. The FBI turned Sentinel around using the insights and processes described in this book.

The information here concerning Sentinel comes from the Department of Justice Inspector General reports, and it is publicly available. Before you dismiss this as a corner case, a particularity of government work, think about this: If a large government agency can radically improve how it builds software, then so can your organization.

Case Study: The FBI's Sentinel Project

Every FBI investigation has a case file that contains all of the records that were either created or obtained as part of an investigation. In 2003, the FBI decided to digitize cases and automate the related processes. . .Agents would then rapidly compare cases and discover connections between them. The name of the project was Sentinel.

In March 2006, the FBI initiated development of Sentinel, targeting an end-user base of more than 30,000 FBI agents, analysts, and administrative employees. Original estimates for Sentinel were $451 million to develop and deploy by December 2009. According to the FBI's original plan, Sentinel was to be developed in four phases. The FBI contracted the work to Lockheed Martin. Lockheed Martin proposed using a traditional software development process.

But by August 2010, the FBI had spent $405 million of the $451 million Sentinel budget but delivered the functionality for only two of Sentinel's four phases. Although these deliverables did improve the FBI's case management system, they did not deliver much of the value that was originally envisioned. Because of the cost and timeline overages, the FBI issued a stop-work order in July 2010 that directed Lockheed Martin to halt all work on the two remaining phases of Sentinel.

To this point, the FBI had been using a traditional development process, and it now chose to adopt a new approach to see if it could obtain better results. We developed this new process, called Scrum, in the early 1990s. The same Standish Group CHAOS Report that classified just 37 percent of projects as successful demonstrated how different the results of a traditional approach are versus those of using an agile, or Scrum, approach (Figure 1.2); specifically, it noted that whereas only 14 percent of traditional projects succeeded, a full 42 percent of projects using an agile approach achieved success. We argue that in addition to the Standish Group's traditional definitions of success, these projects also enabled greater responsiveness to changing customer needs, allowed for better risk mitigation, and ultimately delivered better-quality software.

Figure 1.2 Agile Projects Are 3 times as Successful
[image: img]

By 2009, the FBI recruited a new chief information officer (CIO) and chief technology officer (CTO) with experience managing organizations that built software using our approach. They decided to see if this more agile approach could help the FBI. In 2010, the CTO told the Department of Justice that he was going to change the approach for Sentinel. He asserted that this new approach would streamline decision-making processes and allow the FBI to deliver Sentinel within budget. The FBI told the Inspector General at the Department of Justice that it believed it would be able to complete Sentinel with the remaining Sentinel budget and within 12 months of recommencing. An audit conducted by Mitre had previously concluded that the FBI would need an additional $35 million and six more years if it had continued with its traditional approach.

The FBI moved the entire Sentinel project to the basement of the FBI building in Washington, DC, and reduced the Sentinel staff from 400 to 45 people, 15 of whom were programmers. The CTO ran the project himself, managing toward a goal of delivering some of Sentinel's functionality every 30 days. Each increment of functionality had to meet all of the final functional and nonfunctional requirements—this was no “first draft” software. Every three months, the FBI would deploy the features that had been built in the preceding three iterations into a field pilot.

By November 2011, within a year of restarting with the new approach, all phases of Sentinel had been completed. The software was deployed to a pilot group of FBI locations, and remaining offices are scheduled to see deployment by June, 2012. The FBI was able to complete Sentinel for $30 million dollars within 12-months, a cost savings of more than 90 percent.

The people at the FBI worked hard on the first few phases of Sentinel, but their approach to software held them back. After the FBI shifted its approach to the one we lay out in this book, they worked just as hard as before, but they were rewarded with vastly superior results. If an organization like the FBI can do this, why can't yours?

The Wrong Approach: Predictive Processes

The process that the FBI originally used for Sentinel was what we refer to as a predictive, or sequential design, process. In fact, until 2005, the majority of software projects used predictive processes. Don't get us wrong; there are certainly circumstances in which predictive processes are more appropriate and could be successful. These circumstances, however, were the exception rather than the rule. If one can establish a complete vision, define all of the requirements of the vision, and then devise the detailed plan to turn the requirements into the vision, then a predictive process will work. But any deviation from the original vision, requirements, or plan creates great project risk. And with business needs and technology changing as rapidly as they do, it is rare that these elements can actually remain static. As a result, and as the Standish Group has reported, 86 percent of the software projects that use predictive processes are not successful. In fact, we consider the use of predictive processes to be the most common cause of problems in software projects.

The organizations that we work with have typically been struggling to increase the success rates for their software projects. They seek our help because they fear that their software organizations are spinning out of control. Their existing process has failed them, and they do not know of an alternative. Their problems with software development create a tremendous amount of waste for their organization, yet they persist because they are dependent on software to remain competitive.

Here is how the executives and managers typically describe the problems they are facing:

1. Releases take longer and longer. “Each release is taking more time, effort, and cost to get delivered to its customer(s). Several years ago, a release might have taken 18 months. That same release now takes us 24 months to develop, package, and deploy. Even then, a release is stressful and requires significant effort. We keep spending more but are getting less and less.”

2. Release schedules slip. “Commitments are made to customers and prospects. Those customers or potential customers are preparing major business initiatives that depend on our release schedule. They need our release, with the functionality we promised, at the exact point in time we promised to deliver it. We usually let them down at the last moment. Their plans are thrown into disarray, and they lose money and credibility with their customers. We may not get more business from them; they will obviously not act as good references for us; and they may start looking for other vendors.”

3. Stabilization at end of the release takes longer and longer. “We got really firm with the development organization. We set firm, inflexible dates that they had to be done by. They met these dates by the end of what they call ‘code complete’ or a ‘code freeze.’ But the software was unusable. It didn't do what was needed, it didn't perform as required, and it did all of that badly. We couldn't even ship it as a ‘beta release’ so we could get feedback from a small sample of customers. The defects were so profound that our beta customers refused to participate. We needed another nine months to ship the release, and even then it was shaky and required a lot of hand-holding and apologies.”

4. Planning takes too long and doesn't get it right. “We figured the releases were taking too long and then slipping because we didn't plan well enough at the start of the work. We didn't get our requirements firmed up and fully developed, and our estimates included more guesses than they should have. To rectify this, we now spend more time planning. New ideas keep coming up. As people review the plans, they find parts that need to be reworked or clarified. We are now spending much more time planning than we used to, but our schedule slips and stabilization periods are still extensive and awful. Despite our significant efforts, changes still come up during development that weren't and couldn't be foreseen during planning.”

5. Changes are hard to introduce mid-release. “The current process cannot accommodate change. We spent a lot of time planning everything at the beginning, and all the needed work is predicated on the plan. But often something critical has to be included, or a new feature has to be added to close a sale. To incorporate this change, we have to adjust all the work that we have already done to accommodate it. This is very difficult because it is hard to understand the ripple effects of changes in software. Even when it is important, it feels like the amount of time that it takes to fit it in is often a hundred times greater than if we had known of it when we started. But what can we do? If the change doesn't make it into this project or release, it may have to wait up to two more years to be included in the next release.”

6. Quality is deteriorating. “We know that we shouldn't pressure the developers to get what was planned and changed out on time, but our business is hurting from the planning, slippage, and change problems. We tell the developers to toughen up and get it out on schedule with everything we planned. Every time we do that the developers accommodate us by cutting the quality of the software or the testing of its suitability. The result is so bad that we either go back into the stabilization phase or we ship an organizational embarrassment.”

7. Death marches are hurting morale. “We are treating people in a way we would like not to. However, we have commitments and a business to run, so everyone on the project works weekends and long days. Their families and their health suffer. As a consequence, we have trouble recruiting top developers and we lose our best developers to other organizations. Our existing staff is so demoralized that its productivity is slipping despite the increase in hours.”

These examples are enough to discourage any executive or manager. Despite 20 years of herculean efforts and massive expenditures in software, by the early 1990s little progress had been made in ensuring the successful outcome of software projects. The process we will describe to you in this book tackles these problems head on.

The Wrong Results: Project Failure

Your use of the traditional, or predictive, software development process is the root cause underlying so many software project failures. The predictive process, also called waterfall, depends on the accuracy of the project plan and its unswerving execution. It depends on:

1. Requirements. not changing and being completely understood. Any changes in requirements would change the plan, requiring alterations to the plan that create massive ripple effects and frequently rendering already completed work useless. Unfortunately, more than 35 percent of all requirements change during a typical software project. Business customers struggle to fully define these requirements, but the ever-changing marketplace, their incomplete understanding of what they need, and the difficulty of fully describing the anticipated system until it is done make requirement changes inevitable.

2. Technology. working without any problems. All of the technology the software uses has to perform reliably and as initially planned. Unfortunately, the project frequently incorporates technologies planners haven't used in the past—either singularly or in combination, or for the same purposes. What's more, technology standards sometimes change during the course of the project.

3. People. being as predictable and reliable as machines. The plan calls for a specific network of tasks to be completed, each task requiring a defined number of hours from a specifically skilled resource that is given specific well-defined inputs. Unfortunately, the network of tasks starts wobbling whenever requirements change. Even more problematic, people are not machines! People have their good and bad days, different skill levels, and different attitudes and intelligence. Tasks ended up being executed in a very different way than predicted.

The software development industry understands these difficulties and for years has tried to address them by stepping up its planning efforts. Project planning could take as long as the actual development of the software. Massive amounts of work went into gathering requirements, defining architecture, and detailing work plans.

But all of that work was useful only if the plan was based on accurate information that did not change over time. This method is effective when work is well understood and relatively stable and the plan can consequently remain unchanged. When this is not the case, however, the predictive process fails. It is not constructed to cope with the unknown and the unexpected; it is constructed to optimize problems of constraint.

Many traditional manufacturers successfully employ the predictive process model. The payoff for all this upfront work is the repeated execution of the plan, creating car after car or toaster after toaster. There is no similar payoff in software, as a software development plan is executed only once. The very thing that made predictive processes suitable for manufacturing, where a single process cycle will create high volumes of products, make it ill suited for software, where a single process cycle will create just one product.

The Stacey Graph is a useful tool for assessing the certainty or predictability of work.2 The Stacey Graph measures the certainty versus the unpredictability of various dimensions of work and categorizes where the work falls. We used it to model the three dimensions of software development: requirements, technology, and people, as described in Figure 1.3.

Figure 1.3 The Stacey Graph
[image: img]

We can plot software development projects as follows:

[image: img] Requirements: Close to certain with no risk of change, to far from certain, with vague, emergent descriptions and many expected changes.

[image: img] Technology: Well known and understood, to far from certain, with development and operational technology usually consisting of multiple products interacting through interfaces at different levels of software development and release.

[image: img] People: Known and constant, with a small number of people on a single team, to software projects involving more than four or five people, often hundreds, who are constantly changing. People by themselves have opinions, attitudes, and moods. Working in groups or teams, the interactions and unpredictability of their work is significant.

Using the Stacey Graph, we can see that software development projects are at least complex and sometimes chaotic. The predictive process, on which waterfall and traditional software development is based, is applicable only for simple, repeatable work. You can determine whether the right process is being used for your work by the yield rate, the degree of success. If a predictive process were appropriate for software projects, the yield rate (or successful project completion rate) would be very high—about 99.99 percent. However, the Standish report discussed earlier measures a software development yield rate of 14 percent using predictive processes. Most businesses could not survive such a low yield rate. Imagine if General Motors scrapped every seventh car that it built—that's the effect of a 14 percent yield rate.

The predictive process is inappropriate for problems involving software development. Software development is complex, not simple. We assert that the decision to base software development projects on the predictive process was what led us to failure. Our proof lies in the increased yield rate of software development projects when Scrum is employed.

People sometimes equate construction or bridge building with software development. Engineering disciplines, such as bridge construction, fall somewhere between simple and complex on the Stacey Graph. Standardization renders this work only complicated. There are three forms of standardization. Firstly, there are Newtonian laws explaining how physical objects interact. Secondly, standardized materials such as wood beams, metal struts, and fasteners, with standard sizes and known characteristics are employed.. Thirdly, there are standards for all types of construction that are written into codes and inspected for by authorities. None of these things exists in software; what's more, as long as the software industry continues to evolve as rapidly as it has, this is unlikely to change.

Case Study: Parametric Technology Corporation

Parametric Technology Corporation (PTC) is a global firm with 5,000 employees that develops product life cycle management products. These products, which grew out of CAD/CAM (computer-aided design/computer-aided manufacturing) systems, help some of the world's largest engineering organizations—Raytheon, BAE Systems, and Airbus, to name a few—to manage the development of massive systems such as the Airbus A380. They do so this in part by tracking the configuration of all the parts, assemblies, and subassemblies.

In 2005, PTC was suffering from all of the symptoms of predictive software development processes:

1. Releases took longer and longer. Releases had crept from 18 months to 24 months, and it looked like the current release was going to take longer.

2. Release schedules were slipping. Slips from the initial schedule were up to nine months, and these occurred bit by bit. Customers that relied on the timely delivery of critical functionality were unhappy.

3. Stabilization at end of the release took longer and longer. Stabilization was behind at least two-thirds of the slips.

4. Planning took too long and didn't get it right. Up to six months was spent planning each release, and even then the plan was wrong and would often have to be changed.

5. Changes were hard to introduce mid-release. It was hard to tell if the slips, stabilization, and quality problems were due to changes once the project started, but there were certainly a lot of necessary changes.

6. Quality was deteriorating. This was both a serious and increasing problem.

7. Death marches were hurting morale. PTC was having trouble recruiting quality people.

PTC's development organization employed a waterfall process, and to make it work better, they had tried to button down on requirements. Requirements were compiled into an exhaustive functional specification document. Only when the requirements were finalized were they shared with the development organization. In the meantime, the developers didn't have much to do. They either fixed bugs or sometimes left PTC out of pure boredom. The quality staff wasn't allowed to start any testing until the product was fully complete, so it had less time to do its work. Working under release date pressure, the quality team was forced to release products with insufficient testing.

Jane Wachutka was the new vice president for product development of PTC's Windchill product. As a new employee, she tried the PTC way of waterfall, and she found that all of the usual problems occurred. At her previous job, she had employed many nonwaterfall techniques similar to those that helped the FBI succeed with the Sentinel project. With this approach, a project consists of one or more iterations of work, each no more than 30 days long. Many small teams of developers selected high-value requirements each iteration and turned them into an increment of usable software. All the increments of the teams were integrated into one complete and usable increment. In each subsequent iteration, another increment of software was developed and added to the prior increments.

Brian Shepherd, PTC's executive vice president for product development, was skeptical when Jane advocated this new process for building the software in 2007. If he allowed her to do so, she committed to being able to get the programmers started sooner, improving programmer retention rates, engaging the quality group sooner, and not releasing products until they were fully tested and of sufficient quality. Jane stressed that the functional specifications could be imperfect because the product management group would get to see and use parts of the product frequently during the development cycle and give feedback. Brian agreed to proceed with a new process—an agile process called Scrum. He warned Jane, though, “Don't screw it up.”

When Jane first told her employees about the new way they were going to develop software, they were skeptical. The individual members of the development teams, in particular, were slow to buy into it. They still struggled to be perfect at each step of development, making sure they were doing exactly what others wanted. However, as they gained some experience in using the new process, the product managers no longer struggled to complete perfect functional specifications before handoff to development; they let the functional specifications emerge throughout the release. Because PTC now developed complete functionality within 30 days, its developers were able to directly collaborate with customers within any appropriate iteration of development. The developers gained insights into the requirements and how they could be best implemented. Customers noticed the differences and began working with development teams during each iteration. The proud customers helped author the functionality and got exactly what they wanted.

The product management team had a rolling three-, two-, and one-year set of requirements. Three years out was the vision, with a description of high-level capabilities. A more detailed picture of which releases would deliver the vision was available for the two-year time frame. For the current year, 30-day iterations were defined for most of the first six months, and there was a road map of goals for the next six months. Each year's set of requirements had more detail than its predecessor. The developers worked on the one-year set of requirements. They called and worked with PTC customers to work out the details. The entire organization had become a think tank of creativity and productivity.

Within two years, all of Jane's commitments to Brian had been met. Jane's organization was releasing software every 12 months, down from previous release times that exceeded 24 months. The product was of high quality. By 2011, PTC had changed. It had become a transparent organization, both within and to its customers. Surprises rarely happened; customers knew what to expect and when. Defects were low and trending to zero by 2012. New features, user interfaces, and workflow capabilities had been added. The product had been overhauled to make it secure from external threats. Finally, the budget and staffing were both down by more than 10 percent. Brian Shepherd had a new facility built for the software product organization. The space reflected the transparency critical to the new process: Everyone was in an open space, with no offices. All walls were glass.

Recently, Jim Heppelmann, the chief executive officer (CEO) of PTC, listened as his managers positioned themselves for increases in their annual budgets. Finally, he stopped the discussion and asked everyone to thank Jane's organization for reducing costs while improving quality and increasing functionality. Because of them, he said, he could share the savings with others parts of the organization.

In one instance, Jane and Jim were on a conference call to a company in Israel that was evaluating PTC's products. Jane told the CEO that Raytheon was using PTC's products worldwide and she urged him to contact Raytheon's executives. She knew that they were not only impressed with PTC's products; they were thrilled that PTC's new process removed surprises. They were able to collaborate and adjust their schedules in real time with PTC. They were so impressed that they were adopting PTC's way of developing software. Jim jumped in. He told the prospect that Jane had forgotten to mention the last release. It was the best-looking product PTC had ever shipped, primarily because Jane had changed the process.

Summary

Software development has in the past been prone to failure. The root cause of this failure is the use of predictive processes for complex work. When we shift to Scrum, an empirical process, the software project success rate increases dramatically.

It is possible to get software features ready to use in 30 days—or less. Don't let your developers tell you otherwise, because hundreds of thousands of software developers have been doing this since the early 2000s. A software product may still be big, but it can still be built in small pieces, one by one, 30 days at a time.

Notes

1. April 11, 2005, Forrester Report “Corporate Software Development Fails to Satisfy on Speed or Quality.” Corporate development shops continue to disappoint: A fall 2004 Forrester survey of 692 technology influencers—those who hold the information technology (IT) purse strings—indicated that nearly one-third are dissatisfied with the time it takes their development shops to deliver custom applications, and the same proportion is disappointed by the quality of the apps that are ultimately delivered. One-fifth of respondents are unhappy on both counts.

2. R. Stacey, Complexity and Emergence in Organizations (London: Routledge, 2001).

Chapter 2

Scrum: The Right Process Produces the Right Results

In the last chapter, we found that an empirical process is the correct process for software development. Now, let's see how empiricism works and how we can develop software using it. We'll explore empiricism through the lens of the agile software development process we have developed over the years, which is called Scrum.

Empiricism in Action

In an empirical process, information is gained by observation, rather than prediction. We also know empirical processes are best for complex problems, where there is more that we do not know than we do know. The two requirements in those situations, for an empirical process to work, are the following:

1. Inspection and adaptation: We must frequently inspect where we are so that we can adapt our next steps to optimize the results. The frequency of the inspection and adaptation depends on how much risk we want to take. The greater the unknown, the more quickly we can go off target. The more we go off target, the greater the waste to reorient us, undo the useless work, and start again.

2. Transparency: When we make an inspection, we must be able to assess what we are seeing in the same terms as our goal. If our goal is to develop a system with some features and functionality, then we have to inspect something that is a feature, function, or a discrete subset of either.

If we were using a predictive process, we would lay out the requirements for software that might take years to develop. But we know that with software, too much risk can accrue during such a long time period and too much waste is involved if we plan for a project of such long duration. Instead, we use a shorter frequency, typically 30 days or less. (We'll discuss later on the value of shorter frequency.) At the end of the first 30 days, we inspect the results and determine what we should do next to achieve our vision, adapting our course as necessary.

Before we start developing software, we need to have an idea, a vision of some way in which we can create value with software. We think we know how to run an operation more effectively, or we think we know how to create software that others will find valuable. We can describe some aspects of what the software needs to do and the requirements that it must satisfy very clearly. Many other aspects of the software are less clear, and we can leave them undefined until later. What we know ranges from the critically important and well understood to the possibly relevant and only vaguely understood.

We create a list of our ideas, which we call a backlog of requirements (Figure 2.1). We order the product backlog of work so that the most critical requirements are at the top of the list. The backlog is an ever-changing list of our ideas for this software; we can add, modify, or delete items from it whenever we want.

Figure 2.1 Backlog of Requirements Organized by Business Operation
[image: img]

First, we need to ascertain whether our idea is workable. Can we develop something within 30 days (or less) that is useful and justifies further work on the software?

We meet with a small team of software developers. We share our vision and initial requirements with them. We collaborate with them and flesh out the most important requirements. Although the entire system may be extensive, we only focus on just enough to see what is possible and if we want to proceed. We'd also like to get a first look at a usable part of our vision.

We ask the development team how many of the requirements it thinks it can turn into working, completed functionality within the upcoming 30 days. We start with the most important items first, but the team may have ideas that need to be included, such as software stability. We talk about these requirements and then help the development team think through the best way to develop them. Although we aren't software developers like the team members, we can choose between alternatives and clarify matters for them.

Let's create some definitions for what we have described:

[image: img] Iteration. Iterating is the act of repeating a series of steps or a process, usually with the aim of approaching a desired goal or result. Each repetition of the process is also called an iteration, and the results of one iteration are used as the starting point for the next. For you, the first 30 days is the first iteration.

[image: img] Frequency. This refers to the length of the iteration. Frequent iterations control risks by continually inspecting progress to ensure that waste doesn't occur and control is maintained. Optimal frequency is never less than a week or more than a month.

[image: img] Increment. An increment is a piece of the whole that increases over time. The functional result of an iteration of the development process is called an increment. Increments build up, iteration by iteration, until we have a valuable system.

[image: img] Transparency. The increment must be completely done and usable, with no work remaining. Incomplete work or prototypes are opaque because we have no idea how complete they are and how much work remains to complete them.

[image: img] Iterative incremental. This is a way of developing software through a sequence of iterations, each of which generates a complete increment of functionality that builds on all previous increments. Iterations continue until a goal is reached and value is optimized.

We start the first iteration. The development team turns our requirements into an increment of functionality. Each iteration starts with planning, then the team develops what was planned, and then everyone inspects the resulting increment of software.

Figure 2.2 One Iteration Produces One Transparent Increment
[image: img]

To develop a system that meets our needs and vision, there may be a few or numerous iterations. Each iteration is time boxed; that is, we always allocate and use the complete iteration without changing its length. Each iteration creates an increment of potentially usable software (Figure 2.2). The functionality is complete, with no work left undone. The result of one iteration is used as the starting point for the next iteration.

At the end of each iteration, we can direct the development team to go in a different direction from what we may have initially conceived. In fact, the likelihood of this happening is high. Initially, we have a vision or an opportunity that we want to take advantage of. We have a development team create a software application that addresses a highly important aspect of this. We look at the increment. Then we start thinking about how we will use it. We start thinking about what we could add to the increment to make it more useful. In some disciplines, this is referred to as mid-course correction. It occurs with each iteration.

Each increment we have developed while in pursuit of our vision spurs us to think of more creative or specific ways to realize the vision. It may provoke a dialog between the development team and us. We might collaborate about how we can get the most value from the next iteration and what we want done in it. We can embrace change.

We may find that our vision is not realistic. The technology may not be ready for prime time, we may not like the results, or we may find that the cost will be too high. Depending on our finding, we may stop at this point. We spend no more money until we find a more feasible vision. Successful projects include those that do not waste money.

Sometimes one iteration is enough to develop something we can start using while we direct the development team to develop more functionality. We can build more capabilities and functionality, iteration by iteration, as we take advantage of the opportunity more fully. Each increment piggybacks on the previous ones. When the result of the development team's work is deemed right, we release the software for people to start using. Figure 2.3 illustrates several iterations.

Figure 2.3 Several Iterations Generate an Increment of Additive Functionality
[image: img]

We have devised an empirical process for software development. We make decisions about what to do next at the end of each iteration, always keeping our vision in mind. We review what was developed. We can extrapolate the probable cost and delivery date to see if we want to proceed. We call this an iterative incremental process. It is a foundation of the Scrum process. We have described how it works and why it might be called software in 30 days. Now let's see if this process solves the problems that we found with the waterfall, or predictive, process. Let's see if this process solves those and even other problems.

Does Empiricism Resolve Our Problems?

Does our empirical solution solve the waterfall problems? Let's evaluate it against the pain points we observed in waterfall:

[image: img] Waterfall problem 1: Releases take longer and longer. Our releases will consist of a stack of integrated increments, developed sequentially, iteration after iteration. We can stop iterating whenever we want. We can stop when we have maximized our value, especially since we found that more than half of software is rarely or never used. We can also just stop and release when a date or budget is reached. We will have accumulated valuable increments to implement.

[image: img] Waterfall problem 2: Release schedules slip. Our release schedule cannot slip more than 30 days, since that is the maximum length of one iteration. We ship the accumulated increments when we reach the date. We do not allocate iterations to build low-value functionality, allowing us to release a completed system much earlier than usual. Using traditional software development, less than 50 percent of the functionality is frequently used. We do not develop this functionality.

[image: img] Waterfall problem 3: Stabilization at the end of the release takes longer and longer. Each iteration generates a complete, ready-to-use, completely done increment of functionality. Each following increment is integrated with all previous iteration's increments, so it also is complete and ready to use. There is no stabilization to be done prior to release since all work has already been done.

[image: img] Waterfall problem 4: Planning takes too long and doesn't get it right. Initial planning is reduced to setting a goal and determining high-value capabilities, functionality, and features that are needed to reach the goal. The anticipated date and cost are then forecast. Planning prior to the first iteration is usually 20 percent of what we used to spend for waterfall, or predictive, projects. We plan the requirements for each iteration in detail only immediately prior to starting the iteration. This iteration planning is called just-in-time planning, and the requirements are said to be emergent as we inspect results and adapt the best requirements for the next iteration.

[image: img] Waterfall problem 5: Changes are hard to introduce mid-release. There is no mid-release in an incremental iterative project. Requirements can emerge and be requested prior to any iteration, with minimal overhead.

[image: img] Waterfall problem 6: Quality is deteriorating. Every iteration's increment is complete and ready to use. Its quality is already built in. Each subsequent increment is also added with fit-for-purpose quality. There is no rushed stabilization period at the end of a project when quality might be compromised to satisfy a date commitment. The work is already done.

[image: img] Waterfall problem 7: Death marches are hurting morale. The end of release stabilization has been eliminated, along with the death march of overtime and weekend work that it causes.

As you can see, iterative incremental development based on empirical process control addresses the problems that used to haunt software development. To meet the needs of any organization, though, we have to know how to manage these projects. This is covered next, and in more detail in Chapter 6.

The work can be managed using just three variables. First are (A) requirements, the functionality that will deliver the envisioned software. Second is (B) time, which for now we measure in units of 30 days. Third is (C) work completed, which is measured in usable pieces of functionality delivered, or the amount of (A) done in any 30-day time period, and cumulatively.

You can create a chart to manage the project, as follows:

1. Requirements backlog is on the y-axis, or vertical axis. The effort to meet each requirement is sized. Let's assume we have five requirements. They are 2, 3, 5, 3, and 8 units of effort to do. They create a stack of work on the y-axis that is 21 units of work high. The units are ordered by sequence in which you want them turned into usable functionality. Let's say the order, top down, is 2, 3, 5, 3, and 8 still.

2. Time is on the x-axis, or horizontal axis. The units are 30-day periods of time, the iteration length.

3. We anticipate based on past experience with the development team that they will complete five units of work every iteration. We will find out the team's actual productivity once we start, but this is a forecast based on yesterday's weather. We thus anticipate completing twenty units of work in the first four iterations (5, 5, 5, 5), and the last piece of work in the fifth and last iteration.

4. The amount of work completed and functionality ready to use is calculated at the end of each iteration. We are planning that the first two requirements, which are 2 and 3 units of work, will be completed in the first iteration. We anticipate completing the next piece of functionality, whose size is 5, in the second iteration. By this time, we usually have changed our minds about what to do next. We have seen the first two increments, and we often find unexpected or modified requirements for the next iteration. If not, we proceed as planned. However, the plan and upcoming requirements may change without penalty at the end of any iteration. Increments' size is measured in the same units as the requirements on the y-axis.

5. The development team created 3, 5, and 5 units of functionality in the first three periods of time. The resulting chart is shown in Figure 2.4.

Figure 2.4 Work Burndown
[image: img]

The plan, or forecast, at the start of the work shows you starting with 21 units of work. Five are anticipated to be completed every iteration. We plot that accordingly. The forecast line on the chart plans all functionality to be complete and ready to use soon in the fifth iteration.

The actual requirements completed show 3 units of work done in the first iteration, with 5, and 5 more units of work completed in the second and third itererations. We plotted this progress above on the actual plot line. If we create a trend line from this work, it appears that all work will be complete by the middle, not the start, of the fifth iteration. However, that is a projection, not a certainty. Empiricism means that we will not be sure of how much work can be done until it is done. In the first iteration we had anticipated 5 units of work. Only 3 were done. The technology was shakier than anticipated, one of our requirements wasn't clear, and one of the developers was sick for several days. We inspected our progress at the end of the first iteration. We decided that the return on investment was still good. We felt that the problems in the first iteration probably weren't going to recur. Based on these calculations, we risked funding another iteration. This inspection and adaptation occurs at the end of each iteration.

Empiricism supports the following:

1. Management: You know exactly how many and which requirements you have completed and which are ready for use at the end of each iteration. You can make future projections based on past progress and assess the probable completion date. You make the projection knowing that this may change at the end of the next iteration.

2. Control: If the information reflects completion later than desired, you can reduce the size or amount of remaining functionality to be done. For instance, at the end of the second iteration, with 13 units of requirements still to be done, you could have reduced the scope of the remaining requirements to 10 units. If the development team continued with 5 units of requirements in each of the next two iterations, the functionality would be complete at the end of the fourth iteration.

3. Predictability: The forecast could be wrong. Completion would be several weeks later than anticipated. The likelihood of this happening could be suspected after the first iteration, made probable after the second iteration, and made most likely by the end of the third iteration. Everyone who was going to use the functionality could have started adjusting his or her schedule in synch. Similarly, the budget could have been revised and approved early.

4. Risk management: The development team completed only 2 units of functionality in each of the first three iterations. At the end of the third iteration, a forecast would indicate that completion wouldn't occur until the middle of the tenth iteration. If the initial budget had been $100,000, the new forecast would have predicted an overrun of $150,000. If the return on the investment of $250,000 were inadequate, the project could be cancelled after the third iteration.

People Practices Stemming from Empiricism

Because the empirical approach provides visibility into what works and what doesn't work, we rapidly learned and codified a set of best practices for this style of development. These practices came in part from principles in academia, but they also came from the on-the-ground practice of teams in action.

Overall, we have found that small teams of software developers best perform iterative incremental work. Teams typically should consist of no more than nine people and no fewer than three people. Together, the team must have all the skills necessary to turn your requirements into increment of functionality that realize your vision. Depending on the type of software the software developers are building, the developers on the team should have skills that include programming, testing, design, analysis, documentation, architecture, or more. The team attributes we want to engender through team structure, practices, and norms are productivity, quality, creativity, and continuous improvement.

Our insights into the most effective software teams draw heavily on the work of Takeuchi and Nonaka, who studied the team process at Harvard University.1 They observed the behaviors of autonomous teams motivated by a higher purpose, engaged in cross learning, and working in short iterations. The intense collaboration of these teams facilitated a knowledge generation cycle that led to innovation, faster time to market, and higher quality. The teams reminded them of the game of rugby, so they called this style of project management Scrum, for when the game is restarted after the ball has gone out of play.

Based on our learning from Takeuchi and Nonaka, we developed the following people practices to complement the structure of an empirical software development process. These practices all lead to high-performance teams that exhibit creativity, quality, productivity, and morale:

[image: img] Respect for the individual worker: In some companies workers are treated like children, their ideas diminished, and told what to do every moment of the day. In order for people to be excited and engaged with their work, their environment has to be one of encouragement and respect. Scrum is designed to ensure that workers are treated with respect and admiration. We were not the first to think of the ideas and practices used in Scrum. Most are industry best practices. However, Jeff really focused on the “people” aspect of software development in the Scrum environment.

[image: img] Built-in instability: The development process begins with top management setting aggressive, broad goals or strategic direction. It does not hand off a clear product or work plan but gives the development team a wide measure of freedom. Setting challenging requirements creates a dynamic tension within the team.

[image: img] Self-organizing project teams: The team itself decides how to meet management's demanding goals. The idea is to force the team not to rely on outside guidance, but to organize and manage itself. Self-organization is evident when the team exhibits three conditions: autonomy, self-transcendence, and cross-fertilization. Autonomy is there because management is limited to providing guidance, money, and support. It seldom intervenes. In a way, management acts like a venture capitalist; they open their purses and keep their mouths shut. Teams constantly strive to do things better. It is an unending search for the limit of performance.

[image: img] Cross-fertilization: Colocated, cross-functional teams foster high performance, quality, and creativity. Team members work collaboratively, and the lines between specialties start to blur. In fact, some companies mandate that every team member have two specialties (for example, coding in more than one language and testing) and two domains (for example, design and marketing). The intense interaction of the individuals begins to develop a pulse or tempo for the team. The heartbeat of innovation and performance emerges.

[image: img] Overlapping development phases: By avoiding linear sequencing of work, the team is able to absorb the “vibration” or “noise” generated by blocks in the development process. When a bottleneck appears, the team does not come to a sudden halt; it works around the problem. Overlapping phases do away with the traditional notion of division of labor. Not only does this approach yield speed and flexibility, but the shared responsibility and cooperation stimulate involvement and commitment, as well as sensitivity to market conditions. The downside is managing an intensive process that requires visibility, communication, tension, and even conflict.

[image: img] Multilevel and multifunctional learning: Learning in the team takes on multiple dimensions. At 3M, for example, engineers are encouraged to use 15 percent of their company time to pursue their dreams. If a team is blocked at Honda, its members may be sent to Europe to “look around and see what is happening there.” The idea is that learning often takes place in non-obvious ways and places, and most importantly, it comes from personal initiative fostered and guided by management.

[image: img] Subtle control: Although project development teams are on their own, they are not uncontrolled. The emphasis is on self-control, and enough checkpoints are established to prevent instability, ambiguity, and tension from turning into chaos. Control through peer pressure and “control by love” are the basis of subtle control. The dynamic flow of the team surfaces the tacit (unconscious) knowledge of the group and creates explicit knowledge in the form of software. This dynamic flow emerges only in an environment of caring created by management. Team leaders are carefully selected, and teams are balanced by changing people to help introduce the right dynamic and ensure that people get along and can work together. There needs to be a set of shared values. Incentives need to be team based. Mistakes are anticipated and tolerated.

[image: img] Transfer of learning: Knowledge generation within the team is not enough to be successful in the market. That hard-won knowledge needs to be shared throughout the company. A company may seed new teams with experienced people. Project activities discovered at work are moved across the company as standard practices. At the same time, unlearning is as important as learning. The market changes quickly, and old ways may no longer work. Management makes new demands that clearly cannot be met by old ways of doing things.

We have found that the following practices also enhance software development:

[image: img] People: People are most productive when they manage themselves. People take their commitment more seriously than other people's commitment for them. People have many creative moments during downtime. People always do the best they can. And under pressure to work harder, people automatically and increasingly reduce quality.

[image: img] People in teams: Teams and people do their best work when they aren't interrupted. Teams improve most when they solve their own problems. And broadband, face-to-face communication is the most productive way for teams to work together.

[image: img] Team composition: Teams are more productive than the same number of individuals. Products are more robust when a team has all of the cross-functional skills focused on the work. Changes in team composition often lower productivity for a time.

Even When We Know Better

Although the predictive, or waterfall, process is in trouble, many people and organizations continue to try to make it work. We met the chief technology officer (CTO) of Marks and Spencer, a UK retailer, and his staff in 2005 to discuss empiricism and Scrum. He had just upgraded his entire development organizations process, acquiring the entire suite of methodologies, tools, training, and implementation services from PricewaterhouseCoopers (PWC), an international consultancy. The PWC approach was predictive, or waterfall.

But he was curious and wanted to understand empiricism. It sounded familiar. As we explained the process to him, he became visibly excited. He broke in to tell us that his organization used empiricism. Whenever one of their large development projects, using the PWC approach, got in trouble, they would halt. They would then use this approach to get it back on track, or sometimes even to finish it. He said this was their “ace in the hole,” meaning their trick that would get them out of tough spots.

We asked him what he did after the empirical approach got him out of the hole. Without considering the irony, he told us that they then went back to using the approved PWC approach. Knowing how to do things didn't mean that they were allowed to do so unless it was an emergency.

Agility

As our world becomes more complex, there are many more opportunities for businesses and organizations. The dream of every entrepreneur and businessperson with an entrepreneur's heart is to take advantage of an opportunity—to find out what is possible, what the costs might be, and what risks are to anticipate. When risks are tolerable, entrepreneurs want to proceed step by step, as fast as they can go, to capture opportunities. However, as much as we want to control risks, things quickly can get out of control. Daring caution or cautious daring is desirable. We termed the ability to take advantage of opportunities agility. Agility is a measure of one's ability to successfully take advantage of an opportunity. We can turn on a dime, immediately launch bold initiatives, and manage our risks. We can make our competitors weep when they wake up in the morning, and we can please our newly found customers.

Agility is the ability to take advantage of opportunities or to rise to meet challenges with calculated risk. It is the most significant competitive advantage today. We create this advantage and control our risks by limiting all our projects to 30 days or less.

In this way, we get to try ideas without regretting pursuing them. We know early on if they are too costly, unrealistic, or impossible, and we stop them before more money is spent.

Summary

We need to be able to take advantage of opportunities and respond effectively to challenges. We need to be able to explore many ideas, change our minds, and let the best solution emerge. If you see an opportunity or want to mount an initiative, you can not only achieve your goals but also hone them in order to deliver only the most valuable functionality. With more control and a faster, less risky process, you can get something off the ground within 30 days and continue to improve it.

Empirical software development, employing iterative incremental practices, has been around for more than 20 years. Using it, you can create tight control over risk with time-limited increments of software. It provides transparency through the delivery of complete increments of business functionality every 30 days (or less) so that waste can be eliminated. It creates the agility or flexibility to tweak the application to better meet emerging requirements and thereby increases applicability significantly. We no longer worry about the progress of our software development work. We no longer worry about meeting our commitments. We no longer worry about having to ask for increased budgets. We no longer have to depend on abstractions of progress, such as Gantt charts and prototypes. We know exactly where we are in terms of value and schedule at least every 30 days.

Note

1. H. Takeuchi and I. Nonaka, “The New New Product Development Game,” Harvard Business Review (Jan–Feb 1986).

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/c07/c07f010.gif
Flanned
Release
Data

Defects

OEBPS/images/c07/c07f011.gif
‘Work in Absolute Units

‘Accumulating Technical Debt

2388888388

04

234567809101112
Months

= Reported Work
Remaining

e Accumulating Undone
Work

OEBPS/images/c07/c07f008.gif
increments
= Release

Product Sprint 3
Backlog

OEBPS/images/c07/c07f009.gif
‘Work in Absolute Effort

40 1

T
20—
0 —————

P

Predicted versus Actual Burndown

Months

—Actual Burndown

= Planned Burdown

OEBPS/images/c10/c10f001.gif

OEBPS/images/9781118206669.jpg
A radical approach to getting IT projects done faster & cheaper than anyone thinks possible

How Agile Managers
Beat the Odds, Delight

Their Customers,

and Leave
Competitors

in the Dust

KEN SCHWABER and JEFF SUTHERLAND
Creators of SCRUM

OEBPS/images/c07/c07f007.gif
Work In absolute effort
c38888838

1

‘Work Burndown Chart

e Total remaining effort

23456780910
Months

OEBPS/images/c07/c07f005.gif
p———

=== Value

OEBPS/images/c07/c07f006.gif
Studio #of
Quarter Productivity Value Return Projects
1 2 30 1 1

2 5 35))

3 7 42 8 8

4 B a8 12 12
5 10 54 20 20
6 11 60 40 40

7 12 66 70 120
B 13 68 70 260
9 14 68 70 560

OEBPS/images/c06/c06f005.gif

OEBPS/images/c06/c06f006.gif
Sprint Timefor | Total Sprint | Increased
Length Sprint Mesting Cost
Mestings Days
0days | 2days 2days
2 weeks 3.6 days 10,700
1 week 6 days 40,000

OEBPS/images/c06/c06f004.gif
200

150

100

Product Backlog Effort

Expected Starting Work

Revised Net Baseline

OEBPS/images/c07/c07f003.gif

OEBPS/images/c07/c07f004.gif
——Quality

= = = Productivit

TS T T T T T T T
PR A

OEBPS/images/c07/c07f001.gif
1. Every project will adhere to Scrum processes and its principles of empiricism, bottom-
upintelligence, and self-organization.

2. Every project will have a Scrum Development Team with a Product Owner,

Scrum Master; and no more than nine developers.

3. The Scrum Master must be experienced in managing Scrum projects.

To the extent that he or she is not, the person will accept guidance from Studio Scrum
coaches.

4. The Product Owner will actively work with the team to formulate requirements,

inspect increments, and empirically adapt in order to optimize project-
value and achieve its vision or purpose. Thisis & hands-on role.

5. The Scrum (development) Team will consist of software developers with allthe skills
needed to create an increment of potentially usable functionality, based on the Product
Owner's requirements.

6. Throughout the project, previous reporting relationships will be held in abeyance.

7. Eachincrement will conform to the Scrum definitions of “transparent” and:
“complete.”

8. The Scrum Team will use modem engineering practices and tools provided by the
Studio and will receive training in how to use them, if necessary.

9. The project will conform to the standards of the organization and o the policies,
procedures, and standards of the Studio.

10, To the greatest exteat possible, the Scrum Team will be collocated within the Studio.
‘The members will work fulltime on the project.

11, The Scrum Team willtake advantage of the Studio’s metrics o assist it in managing

its work.

12. The Scrum Team members will paricipate in adding to the Studio’s body of
knowledge based on their expericnces in working on the project.

Tagreeto the Tems of Use set forth above.

Signed Date

OEBPS/images/c07/c07f002.gif
‘Motivation

People are most productive when they manage
their own work.

Motivation People take their commitments more seriously than-
other people’s commitments for them.

Motivation People have many creative moments when they arc
not actively working.

‘Motivation People always do the best they can.

Motivation Under pressure to "work Barder,” peoplc;
‘especially software developers, automatically and-
increasingly reduce the quality of their work.

Teams “Teams are more productive thah the same number.
of individuals working alone.

Teams Products are more robust when a team has the
cross-functional skills to see the product from
‘many perspectives, including support,
maintenance, development, quality, marketabiliy,
andusability.

Teams Changes in team composition Tower productivity
foratime.

Performance “Teams and people G0 their best work when they are
not interrupted.

Performance “Teams improve most when they solve their own.
problems, leaning as they do so.

Performance Face-10-face, open communications are the best

‘way for teams to communicate.

OEBPS/images/title_page.jpg
SOF | -
R

How Agile Managers
Beat the Odds, Delight
Their Customers,
and Leave
Competitors
In the Dust

KEN SCHWABER and JEFF SUTHERLAND

®

WILEY
John Wiley & Sons, Inc.

OEBPS/images/c06/c06f002.gif
—— Series 1; Start;

Forecast

140

= Series 1; Sprint

15120

~—— Series 1; Sprint

Uhits bf Réquirements

OEBPS/images/c06/c06f003.gif
160
140 T—tO——tetO—tet0—140

t
r———
g 120
> 100
g
3 80— eo—
@ 0 —
3 Expected Starting Work
3 ow——————0
- ——Actual Work Remaining
& 20

Expected Starting Work

Actual Work Remaining 140

OEBPS/images/c05/c05f002.gif
\ \ (%‘Z‘L&m

¥ ﬂph

Sprint
Planning

Retrospective

‘Source: Gunther Verheyen / Capgemini 2011

OEBPS/images/c06/c06f001.gif
Managing Work

—— Series 1; Star;

140
— Series 1; Spiint

1120

~—— Series 1; Sprint

2,80

Units of Réquirements.

~— Series 1; Sprint

3,40

Time in Sprints

OEBPS/images/c01/c01f003.gif
Requirements

Far from
Agreement

Close to

Agreement

Complicated

Close to
Certainty

Complicated

Technology

Far from
Certainty

OEBPS/images/c02/c02f001.gif
Partial Product Backlog for Bank

Line of
Business | Operation | Product Activity
Trust
Corporate
Banking
Consumer
Banking Teller Morigage
Savings Deposits
Withdrawals
Checking
Platform IRA Fiing Status
401K Personal Information
Mortgage Location
Personal Loan
Savings

Checking

Product Backlog

ttem Prty | Size

Customer can make
a deposit across

accounts 33
Customer can

perform deposit

themseives using new
automated teller

terminal P

13

21

OEBPS/images/c02/c02f004.gif
t + t
2 3 4
Time
in 30 day increments

Requirements

OEBPS/images/c05/c05f001.gif

OEBPS/images/c02/c02f002.gif
Requirements to

be developed S
U Increment

Keration

OEBPS/images/c02/c02f003.gif
Iteration 1

3increments
=release

Iteration 2

——0
Backlog of lteration 3
Requirements

OEBPS/images/b03/bapp03f001.gif
(oy 24 Scrum:
\ lours) 15 minute daily meeting
Team members respond o basics:

S——— 1. What did you do since last scrum meeting?
i \ 2.1Do you have any obstacles?
Sprint Backlog Backlog seems 30 day 3. What will you do before next meeting?

Featires cssned 10y onded by seam Sprint

CPose=———<> D

New functionality is
Product Backlog demonstrated at the
prioritized product features end of Sprint
desired by the customer

OEBPS/images/b02/nfg001.gif

OEBPS/images/b03/bapp03f003.gif
Release 1

| Month 1| Month 2 | Month3 |
TEN i oy
:@j‘ G
! ”""\1)3 2o (ae)
IO L L

System Team j

Team/Subsystem A

Team/Subsystem &
Team/Subsystem C

OEBPS/images/b03/bapp03f002.gif
Month 1! Month2 ! Month 3

Release 1

systemTeam [—

Team/Subsystem A

Team/Subsystem B

Team/subsysem ¢ (s sl o

OEBPS/images/c01/c01f001.gif
CHAOS RESOLUTION

[successful

M Faied

Challenged

42%

Project resolution
from 2010 CHAOS
Research

OEBPS/images/b03/bapp03f004.gif
Daily Serum
Meeting /“\

Product Backlog

* Functional Requirements

» Non-functional
Requirements

* Infrastructure/Tooling
Requirements

every 24

\ hours l!

OEBPS/images/c01/c01f002.gif
CHAOS RESOLUTION BY STYLE

UERELYE. (E 2 The charts show classic

CHAOS resolution resuits
of waterfall versus the
agile process from

the CHAOS project

database from

. Successful 2002 to 2010.
Challenged

57% 2%

B e

OEBPS/images/ring.gif

OEBPS/images/box.gif

