

 [image:]

 Python® For Dummies®

 by Stef Maruch and Aahz Maruch

 [image:]

 Python® For Dummies®

 Published by
Wiley Publishing, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

 Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

 Published by Wiley Publishing, Inc., Indianapolis, Indiana

 Published simultaneously in Canada

 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

 Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

 LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

 For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

 For technical support, please visit www.wiley.com/techsupport.

 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

 Library of Congress Control Number: 2006924031

 ISBN-13: 978-0-471-77864-6

 ISBN-10: 0-471-77864-8

 Manufactured in the United States of America

 10 9 8 7 6 5 4 3 2 1

 1O/ST/QY/QW/IN

 [image:]

 About the Authors

 Stef Maruch
 got her hands on an original 128K Mac in 1984 and has been writing about computers ever since. She has over fifteen years’ experience in instructional design, writing, and editing end-user computer manuals, including tutorials and user’s guides for Apple Newton, HyperCard and HyperTalk, and DVD Studio Pro.

 Aahz Maruch
 is a writer, trainer, and consultant who has been using Python for more than seven years. He has been using computers professionally for 20 years, and his background includes stints of high-end tech support, systems administration, and programming. Aahz is currently working as a programmer for a company with a Web-based application.

 The authors can be reached at authors@pythonfood.com.

 Dedication

 Stef:
 I dedicate this book to my parents, Don and Betty Jones. You have always believed in me, even at times when I was quite improbable.

 Aahz:
 I dedicate this book to the Python community. I hated programming until I learned Python (yes, for more than 20 years). I hope this book brings the joy of Python to many people.

 This book is also dedicated to the Flying Spaghetti Monster.

 Authors’ Acknowledgments

 Many people have helped us and supported us in writing this book. There are too many to mention all of them by name, so we want to start by thanking all the people we don’t name here — all the family and friends and community who have sustained us.

 Paula Anderson, Naomi Tilsen, Joyce Wermont, and Maggie Young provided much appreciated emotional support.

 Thanks to our editors at Wiley:

 	[image: bullet]	Acquisition editors Terri Varveris, Tiffany Franklin, and Kyle Looper, who shepherded these first-time For Dummies authors with just the right balance of patience and whip-cracking.

 	[image: bullet]	Project editor Pat O’Brien, who provided invaluable assistance in e-mails that were often time-stamped with hours well past the time any less- dedicated person would have been in bed.

 	[image: bullet]	Copy editor Andy Hollandbeck, who improved the book with his keen grasp of the beginner’s mind, light-hearted prose, and Monty Python quotations.

 High praise also to the production staff at Wiley, who are doing such great work with an extraordinarily complex and flexible book design.

 Our technical editor, David Goodger, vastly improved our book with his edits and suggestions.

 We feel fortunate to have our agents, David Fugate, who supported us expertly and patiently through the lengthy acquisition process, and Carole McClendon, who provided support at a critical juncture. Thanks also to the efficient staff at Waterside Productions.

 Many people gave us advice and help while we were writing:

 	[image: bullet]	Don and Betty Jones provided invaluable advice from the point of view of programming beginners

 	[image: bullet]	Aahz’s coworkers at Printra (http://printra.net/), especially Tony Lownds

 The community of Python programmers on comp.lang.python and tutor@python.org not only helped Stef learn Python but also tirelessly work every day to promote Python and help make it accessible. This book wouldn’t be possible without them.

 The folks who maintain www.python.org and run the Python Software Foundation provide a critical service without which Python would be poorer.

 Millions of people volunteer their time and efforts to make the Open Source movement a powerful force for good in the computer industry.

 We also want to thank each other. Living together and writing a book is stressful, but we’re glad we did this.

 And, of course, none of it would be possible without Guido.

 Publisher’s Acknowledgments

 We’re proud of this book; please send us your comments through our online registration form located at www.dummies.com/register/.

 Some of the people who helped bring this book to market include the following:

 Acquisitions, Editorial, and Media Development

 Project Editor:
 Pat O’Brien

 Acquisitions Editor:
 Kyle Looper

 Copy Editor:
 Andy Hollandbeck

 Technical Editor:
 David Goodger

 Editorial Manager:
 Kevin Kirschner

 Media Development Specialists:
 Angela Denny, Kate Jenkins, Steven Kudirka, Kit Malone

 Media Development Coordinator:
 Laura Atkinson

 Media Project Supervisor:
 Laura Moss

 Media Development Manager:
 Laura VanWinkle

 Editorial Assistant:
 Amanda Foxworth

 Sr. Editorial Assistant:
 Cherie Case

 Cartoons:
 Rich Tennant (www.the5thwave.com)

 Composition Services

 Project Coordinator:
 Tera Knapp

 Layout and Graphics:
 Claudia Bell, Denny Hager, Jake Mansfield, Barbara Moore, Barry Offringa, Heather Ryan

 Proofreaders:
 Laura Albert, Susan Moritz, Techbooks

 Indexer:
 Techbooks

 Publishing and Editorial for Technology Dummies

 Richard Swadley,
 Vice President and Executive Group Publisher

 Andy Cummings,
 Vice President and Publisher

 Mary Bednarek,
 Executive Acquisitions Director

 Mary C. Corder,
 Editorial Director

 Publishing for Consumer Dummies

 Diane Graves Steele,
 Vice President and Publisher

 Joyce Pepple,
 Acquisitions Director

 Composition Services

 Gerry Fahey,
 Vice President of Production Services

 Debbie Stailey,
 Director of Composition Services

 Contents

 Title

 Introduction

 About This Book

 Conventions Used in This Book

 Foolish Assumptions

 How This Book Is Organized

 Icons Used in This Book

 Where to Go from Here

 Part I : Getting Started

 Chapter 1: Introducing Python

 The Right Tool for the Job

 Cooking Up Programs

 Chapter 2: Getting Your Hands on the Keyboard: Using Help, Interactive Mode, and IDLE

 Two Ways to Interact with Python

 Going One-on-One in Interactive Mode

 Getting Help

 Using Scripts and Modules

 IDLE Musings

 Chapter 3: Basic Elements and Syntax

 Making Names and Storing Values

 Data Type Does Matter

 Operators Are Standing By

 If We May Comment . . .

 Oopsies! Understanding Error Messages

 Deciphering Code Blocks

 Chapter 4: Grand Tour of the Python Language

 The spider.py Program

 Examining a Python Program

 Using Building Blocks

 Chapter 5: Working Like a Programmer

 The Three Ds

 Maintaining Your Programs

 Good Program Design Practices

 Debugging Strategies

 Part II : Building Blocks

 Chapter 6: So This String Walks into a Bar

 Stringing Them Along

 Cat’s Cradle: Indexing and Slicing

 Interpolating Between the Lines

 Unraveling Unicode

 Chapter 7: Counting Your Way to Fun and Profit

 Integrating Integers

 Floating Along

 Imagining Complex Numbers

 Using Math Modules

 Turning Python into a Calculator with decimal

 Chapter 8: Processing Lists and Tuples

 Introducing Lists and Tuples

 Manipulating Sequence Objects

 Listcraft: Methods, Indexes, and Slices

 Steering Clear of List Gotcha’s

 Building Lists, Stacks, and Queues

 Taking Tuples in Hand

 Chapter 9: Diving into Dictionaries

 Defining the Dictionary

 Doodling Around with Dicts

 Building Dictionaries

 When Only a Dict Will Do

 Setting Them Up

 Part III : Structures

 Chapter 10: Staying in Control

 Things to Know about Control Structures

 All about Conditions and Comparisons

 Feeling Iffy

 Staying in the Loop

 Choosing Your Loop

 Loopy Statements and Functions

 Chapter 11: Fun with Functions

 I Love Chunky Code

 Argument Clinic: Passing Data

 What’s in a Namespace

 Chapter 12: Building Applications with Modules and Packages

 Modular Living: Storing Your Code in Files

 Wrapping It Up in a Package

 Chapter 13: Getting Classy

 Alley-OOP! Some Object-Oriented Programming Concepts

 Now Class, for Instance . . .

 Making and Calling Classes

 Getting Inside the Factory: How Class and Instance Namespaces Interact

 Class and Instance Conventions

 Inheriting the Farm: Overriding and Extending Classes

 When to Go to Class

 Chapter 14: Introducing New-Style Classes

 An Object’s Object: Intro to New-Style Classes

 New Improved Class Features

 Island of Dr. MRO

 Exploding Your Head with Metaclasses

 Chapter 15: Feeling Exceptional

 All about Special Handling

 Trying Things Out

 Raising Your Code to New Levels

 Making Your Program Exceptional

 Chapter 16: Tackling Some Advanced Features

 What’s That Idiom?

 What to Do Next: Iterators and Generators

 Expression and Comprehension: Listcomps and Genexps

 With What, Your Bare Hands? (The Power of ‘with’ Statements)

 Making Exceptions for Yourself

 Under One Condition

 Decorating Your Code

 Focusing on Functions

 Part IV : Libraries

 Chapter 17: Using Python’s Primary Services

 Python: Batteries Included

 You Get All This! — The __builtin__ Module

 But Wait, There’s More — The sys Module

 Solving OS Incompatibility — The os and subprocess Modules

 Staying on Time with the datetime and time Modules

 Checking with the doctest Module

 Keeping Track with the logging Module

 Chapter 18: Processing Text

 A Million Ways to re, You Know That There Are

 Strings Disguised as Files

 Paragraph Dumplings: Filling and Wrapping Text

 Chapter 19: Digging into Disk Data

 Shell Game: Copying and Moving Files

 Zipping and Unzipping

 Sussing Out SQL Databases

 Pickling Your Data (And Relishing the Outcome)

 Using shelve with DBM-style databases

 Chapter 20: Accessing the Internet

 Downloading Web Data

 Taming the Wild URL

 Getting Hip with Hypertext

 The Great XML

 MIME-ing Success: Managing E-Mail Messages

 Simply SMTP

 CGI: Gateway to the Web

 Part V : The Part of Tens

 Chapter 21: Ten Critical Python Idioms

 Collecting Globs and Globs of Files

 Rolling Dice and Shuffling Cards

 Uniquely Ordered Lists

 Reversing Your Way to Success

 Exceptional Type-Testing

 Classes Just for Data

 Getting Close Enough with difflib

 DSU! DSU! Rah rah DSU!

 Simplifying Choices Using Dicts

 Singles Going Steady

 Chapter 22: Ten Great Resources

 The Mothership: www.python.org

 The comp.lang.python Newsgroup

 Cheese Shop: Online Collection of Python Modules

 Random Access Reference at wiki.python.org

 The Python Cookbook Web Site

 The Latest News

 Being a PUG-nosed PIGgie: Local User Groups

 Part VI : Appendixes

 Appendix A: Getting and Installing Python

 Operating Systems

 Using Embedded Python

 Appendix B: Python Version Differences

 Python 2.5

 Python 2.4

 Python 2.3

 Python 2.2

 Python 2.1

 Python 2.0

 Introduction

 Congratulations! You’re ready to discover the easiest-to-read powerful programming language — or maybe the most powerful, easy-to-read programming language. That’s Python, of course.

 With Python For Dummies
 , you can ferret out just a little or a lot. And with Python, you can write a little program that picks a random quote from a file, or you can write a set of programs that runs a complex business.

 This book is for you whether you’re a student, you’re a hobbyist, you need to understand more about what your programmer co-workers are talking about, or you’re taking the first steps on a new career path.

 Python For Dummies
 gives you everything you need to get to an advanced-beginner level of Python programming. And it points you to other resources so you can take your Python programming skills even further.

 About This Book

 Python For Dummies
 is a reference book, which means you can read it in any order, and you don’t have to read every chapter or section. However, to some extent, later chapters about more complex Python features rely on information introduced in earlier chapters. So if you don’t understand something you see in a later chapter, go to Chapter 3, or go to the chapter on that feature to find out more. You can also look in the index to find a term or feature you want to know more about.

 Conventions Used in This Book

 This book contains Python code examples. All code examples are in monospaced font
 so they are easy to recognize. Anything that you need to type is also indicated in monospaced font
 so you know exactly which commas should be typed and which commas are part of the surrounding sentence.

 Python interactive mode examples include this prompt: >>>
 . If you don’t see the prompt, you can assume the code was written in a text editor.

 Foolish Assumptions

 We make the following assumptions about readers of this book:

 	[image: bullet]	You know how to use your computer and its operating system.

 		It’s helpful but not necessary to know how to set environment variables on your computer. It’s also helpful to have a Web browser with access to the Internet.

 	[image: bullet]	You have and know how to use a text editor that can produce plain ASCII text or files that end with the .txt extension.

 		If you don’t have a text editor that can do this, we include instructions for setting up Python’s IDLE programming environment to work with the examples in this book.

 	[image: bullet]	You have had a minimal amount of exposure to programming.

 		We really do mean minimal. If you had a programming class in high school, or wrote a few BASIC programs at one time, or even if you have used HTML tags, that counts.

 		If you have absolutely no experience with programming, you can still find out plenty from this book, but we recommend that you also look at a book or Web tutorial designed to introduce programming to beginners. You’ll benefit from the extended explanations of some concepts that we don’t have the space to discuss in detail here.

 	[image: bullet]	You might have done some programming in another language.

 		Programming knowledge is not required for this book, but people who have programmed in other languages have their own sets of issues when transitioning to Python, and we provide some material for such people.

 	[image: bullet]	You know little to nothing about Python.

 		If you know Python, this book will still be helpful as a reference or a source of tips and tricks you may not be aware of.

 How This Book Is Organized

 This book gives you an overview of Python; the lowdown about all of its major parts, structures, and libraries; and a glimpse into some more advanced features. You also find out where to go to discover more.

 Part I: Getting Started

 In this part, we introduce Python and situate it among the myriad other programming languages available. Python is good for some things and not for others; you find out which is which. We provide a hands-on introduction to some of Python’s abilities, using its helpful interactive mode and its IDLE programming environment. We briefly describe each of Python’s basic building blocks and show how all these blocks come together by dissecting a working program. We sketch an overview of how professional programmers design programs and debug code and show you how to put these practices to work to make your own programming life easier.

 Part II: Building Blocks

 Python has six basic data types and many ways to work with each of them. In this part, we describe how to work with strings (chunks of text), numbers, lists and tuples (both of which store multiple data elements), dictionaries (which associate one element with another), and sets (which always contain unique elements, never duplicates).

 Part III: Structures

 Python code usually comes in chunks, both small and big, and each chunk does a particular thing. This part also includes a brief introduction to some advanced features and the new features of Python 2.5.

 Part IV: Libraries

 Python comes with everything you need to write a very powerful program, and other people have already solved lots of programming conundrums for you. Its libraries include primary services such as communication with the operating system, text processing tools, various ways of reading and writing information to disk, and Internet access methods.

 Part V: The Part of Tens

 All For Dummies
 books include The Part of Tens. In this part, we give you ten useful but not-so-obvious programming idioms and ten resources where you can find out more about Python.

 Part VI: Appendixes

 Here you find instructions on how to install Python and its documentation, as well as a list of new features introduced with each new version of Python since 2.0.

 Icons Used in This Book

 Icons appear throughout the book to indicate special material. Here’s what they mean:

 [image: Tip]

 	A Tip explains how to do something a little bit more easily and efficiently.

 [image: Warning(bomb)]

 	A Warning gives you a heads-up about tricky stuff or common mistakes that might cause data loss or some other sort of headache. It’s best to read Warnings to make sure a tricky feature doesn’t “getcha.”

 [image: TechnicalStuff]

 	A Technical Stuff icon flags text that’s of interest to readers who like to know about the inner workings or history of a subject. You don’t need to read Technical Stuff material. After you’ve internalized a little about a subject, reading this text might help you understand it from a different angle.

 [image: Remember]

 	Remember icons highlight important concepts or pieces of information to keep in mind.

 Where to Go from Here

 If you want an overview of Python’s history and what it can do, go to Chap- ter 1. If you’re new to Python and want to start working with it right away, go to Chapter 2. If you want a brief overview of all of Python’s building blocks, go to Chapter 3. If you know some Python and you want a refresher or additional info on some of its tools, go to the specific chapters you’re interested in.

 Part I

 Getting Started

 [image:]

 In this part . . .

 You get an overview of the Python programming language, an introduction to its interactive and developer environment, and a walkthrough of the building blocks that make up Python programs.

 Chapter 1 describes the history of Python and all the exciting things it’s being used for today. You find out why computers are both the fastest and dumbest things around. Best of all, you discover why it’s called Python
 anyway.

 Chapter 2 lets you talk to Python via its interactive mode and IDLE environment. You write a few basic programs and find out how to get Python to carry out commands for you, how to get Python to tell you things, and how to import tools that let you do even more.

 Chapter 3 introduces you to Python’s data types and code blocks, the chunks you use to build programs.

 Chapter 4 shows you a working program. You see how all the chunks of a Python program talk to each other, and you find out something about the design philosophies behind Python programs.

 Chapter 5 lets you try on a programmer’s hat to understand how programmers work and why they make the design decisions they do. (Unfortunately, it doesn’t explain the relevance of caffeinated sodas to this process — you’ll have to figure that out for yourself.) There’s also a very useful section on strategies for debugging programs, which is a huge part of every programmer’s job.

 Chapter 1

 Introducing Python

 In This Chapter

 [image: bullet]	The history of Python

 [image: bullet]	What people use Python for

 [image: bullet]	Useful concepts for Python programming

 Welcome to Python! If you’re the type of person who wants to know what you’re getting into, this chapter is for you. We give you a quick history of Python and its community of developers. You find out what Python is and isn’t good for (the “is” section is much longer than the “isn’t” section) and the most important principles of good Python programming. If you’re new to programming, you’ll see how it’s very similar to a task you’re probably familiar with.

 The Right Tool for the Job

 Python is a general-purpose, high-level language that can be extended and embedded (included in applications as a tool for writing macros). That makes Python a smart choice for many programming problems, both small and large, and not so good for a couple of computing tasks.

 Good uses of Python

 Python is ideal for projects that require quick development. It supports multiple programming philosophies, so it’s good for programs that require flexibility. The many packages and modules already written for Python provide versatility and save you time.

 The story of Python

 Guido van Rossum created Python and is affectionately bestowed with the title “Benevolent Dictator For Life” by the Python community. In the late 1980s, Guido liked features of several programming languages, but none of them had all the features he wanted. Specifically, he wanted a language that had the following features:

 	[image: bullet]	Scripting language: A script is a program that controls other programs. Scripting languages are good for quick development and prototyping because they’re good at passing messages from one component to another and at handling fiddly stuff like memory management so that the programmer doesn’t have to. Python has grown beyond scripting languages, which are used mostly for small applications. The Python community prefers to call Python a dynamic programming language.

 	[image: bullet]	Indentation for statement grouping: Python specifies that several statements are part of a single group by indenting them. The indented group is called a code block. Other languages use different syntax or punctuation for statement grouping. For example, the C programming language uses { to begin an instruction and } to end it. Indentation is considered good practice in other languages also, but Python was one of the first to enforce indentation. Indentation makes code easier to read, and code blocks set off with indentation have fewer begin/end words and punctuation to accidentally leave out (which means fewer bugs).

 	[image: bullet]	High-level data types: Computers store everything in 1s and 0s, but humans need to work with data in more complex forms, such as text. A language that supports such complex data is said to have high-level data types. A high-level data type is easy to manipulate. For example, Python strings can be searched, sliced, joined, split, set to upper- or lowercase, or have white space removed. High-level data types in Python, such as lists and dicts (which can store other data types), encompass much more functionality than in other languages.

 	[image: bullet]	Extensibility: An extensible programming language can be added to. These languages are very powerful because additions make them suitable for multiple applications and operating systems. Extensions can add data types or concepts, modules, and plug-ins. Python is extensible in several ways. A core group of programmers works on modifying and improving the language, while hundreds of other programmers write modules for specific purposes.

 	[image: bullet]	Interpreted: Interpreted languages run directly from source code that humans generate (whereas programs written in compiled languages, like C++, must be translated to machine code before they can run). Interpreted languages run more slowly because the translation takes place on the fly, but development and debugging is faster because you don’t have to wait for the compiler. Interpreted languages are easier to run on multiple operating systems. In the case of Python, it’s easy to write code that works on multiple operating systems — with no need to make modifications.

 		People argue over whether Python is an interpreted or compiled language. Although Python works like an interpreted language in many ways, its code is compiled before execution (like Java), and many of its capabilities run at full machine speed because they’re written in C — leaving you free to focus on making your application work.

 Guido began writing Python during his Christmas vacation in 1989, and over the next year, he added to the program based on feedback from colleagues. He released it to the public in February 1991 by posting to the Usenet system of newsgroups. In Guido’s words: “The rest is in the Misc/HISTORY file.”

 Fast development

 High-level features make Python a wise alternative for prototyping and fast development of complex applications:

 	[image: bullet]	Python is interpreted, so writing working programs and fixing mistakes in programs is fast.

 [image: TechnicalStuff]

 		Programs written in interpreted languages can be tested as soon as they’re written, without waiting for the code to compile.

 	[image: bullet]	Python takes care of such fiddly details as memory management behind the scenes.

 	[image: bullet]	Python has debugging features built in.

 [image: Remember]

 	All these features make Python a good language for

 	[image: bullet]	Off-the-cuff, quick programming

 	[image: bullet]	Prototyping (sketching the design basics of complex programs, or testing particular solutions)

 	[image: bullet]	Applications that change, build on themselves, and add new features frequently

 Programming styles

 Python is a multi-paradigm
 language (meaning it supports more than one style or philosophy of programming). This makes it good for applications that benefit from a flexible approach to programming. Python includes tools for the following paradigms:

 	[image: bullet]	Object-oriented programming (OOP for short) is one of the popular programming styles that Python supports. OOP breaks up code into individual units that pass messages back and forth.

 [image: Tip]

 		Object-oriented programming is good for applications that have multiple parts that need to communicate with each other.

 	[image: bullet]	Python has features in common with the following languages. If you know these languages, you’ll find features in Python that you are familiar with, making Python easier to learn:

 	•	Java: An object-oriented language especially for applications used over networks

 	•	Perl: A procedural language used for text manipulation, system administration, Web development, and network programming

 	•	Tcl: Used for rapid prototyping, scripting, GUIs, and testing

 	•	Scheme: A functional programming language (a language that focuses on performing actions and calculations by using functions.

 		For more about functions, see Chapter 11, and for an intro to functional programming, see Chapter 16.)

 [image: Remember]

 	Python For Dummies
 includes a brief introduction to object-oriented programming (Chapter 13), an overview of using Python for Web development (Chap- ter 20), and tips for scripting and testing.

 Versatility

 Python modules
 (collections of features for performing tasks) let Python work with

 	[image: bullet]	Multiple operating systems and user interfaces

 [image: Tip]

 		With Python For Dummies, you can write and run programs on Windows, Mac, and Unix (including Linux). Python programmers have also written code for other operating systems, from cell phones to supercomputers.

 	[image: bullet]	Special kinds of data (such as images and sound)

 Python comes with dozens of built-in modules. New modules can be written in either Python or C/C++.

 Companies that use Python

 The main portal to Python and the Python community is www.python.org. This portal contains a page that lists some companies that use Python, including

 	[image: bullet]	Yahoo! (for Yahoo! Maps)

 	[image: bullet]	Google (for its spider and search engine)

 	[image: bullet]	Linux Weekly News (published by using a Web application written in Python)

 	[image: bullet]	Industrial Light & Magic (used in the production of special effects for such movies as The Phantom Menace and The Mummy Returns).

 Other commercial uses include financial applications, educational software, games, and business software.

 Convenience

 Most programming languages offer convenience features, but none boast the combination of convenience and power that Python offers:

 	[image: bullet]	Python can be embedded in other applications and used for creating macros. For example, Python is embedded in Paint Shop Pro 8 and later versions as a scripting language.

 	[image: bullet]	Python is free for anyone to use and distribute (commercially or non-commercially), so any individual or company can use it without paying license fees.

 	[image: bullet]	Python has powerful text manipulation and search features for applications that process a lot of text information.

 	[image: bullet]	You can build large applications with Python, even though it doesn’t check programs before they run. In technical terms, Python doesn’t have compile-time checking. Python supports large programs by connecting multiple modules together and bundling them into packages. Each module can be built and tested separately.

 	[image: bullet]	Python includes support for testing and error-checking both of individual modules and of whole programs.

 Sometimes, Python isn’t so hot

 Python by itself isn’t best for applications that need to interface closely with the computer’s hardware because

 	[image: bullet]	Python is an interpreted language.

 		Interpreted languages are slower than compiled languages.

 	[image: bullet]	Python is a high-level language
 that uses many layers to communicate with the computer’s hardware and operating system.

 [image: Remember]

 	Python might not be the best choice for building the following types of applications and systems:

 	[image: bullet]	Graphics-intensive applications, such as action games

 		But some games use Python because specialized modules can be written to interface with hardware. The pygame module is one such package. (Modern computers are extremely fast, which means it’s more important to be able to write clean code quickly than to get maximum speed out of the software, except for the most graphics-intensive games.)

 	[image: bullet]	The foundations of an operating system

 The Python developer community

 Python has attracted many users who collectively make up a community that

 	[image: bullet]	Promotes Python

 	[image: bullet]	Discusses and implements improvements to the language

 	[image: bullet]	Supports newcomers

 	[image: bullet]	Encourages standards and conventions that improve Python’s usability and readability

 	[image: bullet]	Values simplicity and fun (after all, Python was named after Monty Python, the British comedy troupe)

 The Python community has created words to describe its philosophy:

 		Pythonic identifies code that meets the following criteria:

 	[image: bullet]	It includes interfaces or features that work well with Python.

 	[image: bullet]	It makes good use of Python idioms (standard ways of performing tasks) and shows understanding of the language.

 		Unpythonic code is roughly translated from other languages instead of following Python’s philosophy.

 		Pythonistas are knowledgeable users of Python (especially users who promote the language).

 Cooking Up Programs

 Writing programs is a little bit like working with recipes. For example, you can

 	[image: bullet]	Write a recipe to make bread from scratch.

 		In Python, you can build a program from scratch, writing all your own code and using only Python’s basic built-in functions.

 	[image: bullet]	Use the product of one recipe in another recipe (for example, a recipe for turkey stuffing uses bread as an ingredient).

 		After you write program that performs a basic task, you can insert it into other programs the same way you add any ingredient to a recipe.

 	[image: bullet]	Buy premade bread.

 		Python comes with many modules, which are sets of programs other people have written that you can plug into your program, just like you can buy bread at the store without baking it yourself.

 Python’s even better than bread because most Python modules are free!

 When you write a program, you are telling the computer to do something. Python For Dummies
 gives you step-by-step instructions that help you understand how to write the way a computer “thinks.”

 [image: Remember]

 	Unlike you, computers are pretty stupid. They can do only a few things. All the actions that humans make them do are the result of the computer’s doing those few things over and over, in different combinations, very quickly.

 Training your assistant

 Imagine that you’re a baker, and you have taken on an apprentice baker who is as stupid as a computer. If you want to show your baker how to make bread from scratch, you need to start with very basic steps. You’ve already started by putting warm water and sugar in a small bowl. Then you and the apprentice have this conversation:

 You: “Add a package of yeast.”

 Apprentice: “I can’t find a package of yeast.”

 You: “The refrigerator is over there. Inside the refrigerator is a little package labeled Yeast. Go get it.”

 The apprentice gets the package and says, “Now what?”

 You: “Put the package in the bowl.”

 The apprentice puts the package in the bowl.

 You: “Hey! Open the package first!”

 By now you might doubt the wisdom of hiring an apprentice baker who needs to be told things that seem completely obvious to you. But if you persevere, you’ll come out ahead. If this apprentice is like a computer, then after finally figuring out how to bake bread in your kitchen, your new baker will be able to prepare 100 loaves a minute!

 Combining ingredients

 When your apprentice baker knows all the procedures involved in baking bread, such as finding the ingredients on the shelves, finding the pots and pans, mixing ingredients, and operating the oven, you can assign other tasks that use those same procedures. Baking bread involves combining ingredients in a bowl, so if you need to combine ingredients for another recipe, the apprentice already knows how to do that. So when you want to explain how to make cookies, you can now say “combine sugar, flour, and butter in a bowl” without explaining where to find the bowls or the sugar.

 [image: Remember]

 	In Python, after you’ve written a program to do something, you can import it into another program. So the more you work with Python, the faster you’ll be able to write programs.

 Chapter 2

 Getting Your Hands on the Keyboard: Using Help, Interactive Mode, and IDLE

 In This Chapter

 [image: bullet]	Seeing two ways to work with Python

 [image: bullet]	Checking out the help system

 [image: bullet]	Getting interactive

 [image: bullet]	Writing your own scripts and modules

 [image: bullet]	Going native with Python’s own programming environment

 Even if you haven’t used Python or another programming language before, it’s easy to get up and running with Python. You don’t even have to know how to write a complete program because you can run Python in interactive mode. In interactive mode, you can tell Python what to do one instruction at a time, or you can write small portions of code to see how Python handles them. In this way you can learn by doing, trying things out at your own pace.

 If you’ve worked with other programming languages, you’re probably eager to get into the workings of Python and see how it compares. This chapter introduces you to some of the tools you’ll use as you develop Python programs, as well as some of Python’s basic syntax.

 Ready for a full-on development experience? Or just curious what a debugger
 is? Then go on to the “IDLE Musings” section about Python’s very own development environment, IDLE (Integrated DeveLopment Environment). This comprehensive set of tools supports you when you are writing, testing, and finding or fixing mistakes in programs.

 [image: Tip]

 	In most of this book, you read and experiment on your own; it’s structured so that you can pick up information without reading sequentially. However, if you’re new to programming, you might find it useful to read all of this chapter and try some examples before going on to the rest of the book. In the following sections, you get a good “hands-on” foundation with Python’s interpreter, which will make you more comfortable when you move on to writing your own programs.

 [image: Tip]

 	If you want to get an overview of Python’s features, jump ahead to Chapter 3. We’ll be waiting for you here when you want to find out more about interactive mode or the IDLE editor/debugger.

 If you need to install Python, Appendix A has the instructions.

 Two Ways to Interact with Python

 One of the reasons Python is easy to use is that it comes with tools that help you design, write, and debug your programs.

 This chapter describes two of these tools:

 	[image: bullet]	Interactive mode: In interactive mode, you type instructions to Python one line at a time — much the same way that an operating system (shell) accepts instructions from a command line. You can also write short multiline programs or import code from text files or from Python’s built-in modules. Interactive mode includes extensive help, too. With interactive mode, you can explore Python’s abilities.

 	[image: bullet]	IDLE: The IDLE development environment includes Python’s interactive mode and more — tools for writing and running programs and for keeping track of names.

 		IDLE is written in Python and shows off Python’s considerable abilities.

 Going One-on-One in Interactive Mode

 You can do most anything in interactive mode that you can do in a Python program — even write multiline programs. Think of interactive mode as

 	[image: bullet]	A sandbox for experimenting safely with Python

 	[image: bullet]	A tutor

 	[image: bullet]	A tool to find and fix problems (bugs) in your programs

 [image: Warning(bomb)]

 	You can’t save what you type in interactive mode. If you want to keep a copy of what you wrote, save your code and results in a file on your computer.

 You can use interactive mode as a calculator. You can manipulate text and make assignments in interactive mode. Finally, you can import modules, functions, or parts of a longer program and test them. These features can help you

 	[image: bullet]	Experiment with Python objects without writing long programs.

 	[image: bullet]	Debug programs by importing parts of your program one at a time.

 Starting interactive mode

 To start Python’s interactive mode, follow these steps:

 	
 1.	
 Open a command window.

 	•	If you’re using Mac OS X, open the Terminal application and select File
 ⇒New Shell.

 	•	If you’re using Windows, open the Command Prompt window.

 	•	If you’re using UNIX, either open a new shell window or just type in your existing shell window.

 	
 2.	
 Type python.

 		When Python opens, you see the text shown in Figure 2-1.

 	

 Figure 2-1: Python’s interactive mode in a Terminal window.

 	
 [image: Figure 2-1: Python’s interactive mode in a Terminal window.]

 When Python’s interactive mode starts up, it tells you what version is running, the date the version was released, and a few hints about what to do next. Then it displays the Python prompt: >>>

 Why computers are always saying “Hello, World!”

 “Hello, World” programs are a computer programming tradition. According to the free Inter-net encyclopedia Wikipedia (http:// wikipedia.org), the first instance of a computer program that printed “Hello, World” occurred in 1973, in a book called A Tutorial Introduction to the Language B, by Brian Kernighan. Since then, a “Hello, World!” program has been written for almost every computer language. Wikipedia lists more than 170 “Hello, World!” programs written in languages from 4GL and ActionScript to UNIX shell and XUL.

 One reason that “Hello, World” programs are popular is that a program that prints a single statement is usually the shortest working program in a language.

 	[image: bullet]	In Python, the shortest working program is one line long.

 	[image: bullet]	In Java, the program is five lines long.

 Aren’t you glad you’re using Python?

 Following the rules of engagement

 The basic method for working with interactive mode is simply this:

 	
 1.	
 Type a statement or expression.

 	
 2.	
 Press the Return or Enter key.

 When you press Return, Python interprets your input and responds if what you typed calls for a response or if the interpreter doesn’t understand what you typed.

 In the following example, the statement tells Python to print a string. Because the statement doesn’t specify where to print the string, Python prints it to the screen (the default behavior in interactive mode).

 >>> print “Hello, World!”

 Hello, World!

 This statement is a whole Python program! Pretty simple, eh? When you use interactive mode, Python processes each line of code you type as soon as you press Return (unless it sees that you are writing a multiline chunk of code), and the results appear underneath.

 Seeing information about a Python object

 In interactive mode, there are two ways to see information about an object:

 	[image: bullet]	Type the object (or its name) and press Return.

 	[image: bullet]	Type the print command and the object (or its name) and press Return.

 What you see depends on what the object is.

 	[image: bullet]	With some data types (integers and lists, for example), the two methods of seeing the value give the same result — as in this example, in which the name stores a list:

 >>> x = [3,2]

 >>> x

 [3, 2]

 >>> print x

 [3, 2]

 	[image: bullet]	With strings, the result of typing print name and pressing Return is slightly different from the result you get by typing name and pressing Return. When you just type name and press Return, the value is surrounded by quotation marks, but when you type print name and press Return, there are no quotation marks. (To find out why, see the sidebar, “Representing data”.)

 		This example shows the difference between using just the name and using the print statement with the name:

 >>> x = “mystring”

 >>> x

 ‘mystring’

 >>> print x

 mystring

 	[image: bullet]	When the name refers to a code block (for example, a function, module, or class instance), looking at the name shows you information such as the kind of data, the name, and the storage location.

 		This example creates a class called Message and displays information about the class:

 >>> class Message:

 ... pass

 ...

 >>> Message

 <class __main__.Message at 0x58db0>

 >>> print Message

 __main__.Message

 Representing data

 Why do you sometimes see different results when you type name and when you type print name? Just typing name and pressing Return is a shortcut for using the function repr() to display the result, whereas the print command uses the function str() to display the result.

 In technical terms, when you type an object name, literal, expression, or statement and press Return, Python evaluates the object. That is, Python runs the code and returns/displays the result.

 According to Python’s built-in documentation, the function str() returns a “nice” string representation of an object. The function repr() returns the “canonical” string representation of the object. Here’s the difference between a “nice” and a “canonical” representation of a floating point number:

 >>> 3.2 # canonical

 3.2000000000000002

 >>> str(3.2) # nice

 ‘3.2’

 >>> repr(3.2) # canonical

 ‘3.2000000000000002’

 >>> print 3.2 # nice

 3.2

 The canonical representation usually tries to be a chunk of text that, when pasted into the interpreter, re-creates the object. This example shows how:

 >>> mytuple = (3, 4)

 >>> mylist = [1, “2”, mytuple]

 >>> print repr(mylist)

 [1, ‘2’, (3, 4)]

 >>> mylist == [1, ‘2’, (3, 4)]

 True

 (Note that some objects, such as files, can’t be re-created by repr(). You can still use the output of repr() as debugging info when working with such objects.)

 Here’s an example of what str() and repr() return when you give them a class as an argument:

 >>> class Message:

 ... pass

 ...

 >>> str(Message)

 ‘__main__.Message’

 >>> repr(Message)

 ‘<class __main__.Message at 0x58e40>’

 Seeing the result of the last expression

 When you type an expression by itself in interactive mode, or when Python returns an expression as a result of something you typed, Python also stores the value of the expression in a special name: _
 (an underscore character). This name is available only in interactive mode. To see the value stored, type _
 .

 >>> “Hello, World!”

 ‘Hello, World!’

 >>> _

 ‘Hello, World!’

 [image: TechnicalStuff]

 	Note that _
 doesn’t store the results of any statements
 (assignments such as x=25
 or commands such as print
). In the following example, _
 continues to hold the value of the expression even after a statement was typed:

 >>> “Hello, Nurse!”

 ‘Hello, Nurse!’

 >>> x = 35

 >>> _

 ‘Hello, Nurse!’

 [image: Warning(bomb)]

 	Don’t rely on _
 in long segments of code. The value stored in _
 may change unexpectedly if you aren’t paying close attention to the difference between statements and expressions.

 Manipulating strings and lists

 You can use Python’s interactive mode to see a few of the interesting tricks Python can do with string and list data. (We cover strings and lists in Chap- ters 6 and 8.)

 Of printing, commas, and space

 When you want to print several strings, or a string and the value of a name, you can use a comma to stand for a single space in the printed output. The following example shows the comma in action:

 >>> y = “The meaning of Life, the Universe, and Everything is”

 >>> x = 42

 >>> print y, x

 The meaning of Life, the Universe, and Everything is 42

 Measuring and splitting strings

 The function len()
 returns the length of a string, as illustrated here:

 >>> x = “supercalifragilisticexpialidocious”

 >>> len(x)

 34

 [image: Remember]

 	len()
 works with other sequence data types, too — for example, if you give it a list as an argument, it returns the number of items in the list.

 The method split()
 breaks a string into separate words and returns a list of the words, like this:

 >>> x = “This is an ex-parrot!”

 >>> x.split()

 [‘This’, ‘is’, ‘an’, ‘ex-parrot!’]

 [image: TechnicalStuff]

 	The split()
 method actually breaks a string wherever it finds white space, so sometimes it doesn’t break the string where you expect — for example:

 >>> ‘one and/or two’.split()

 [‘one’, ‘and/or’, ‘two’]

 Using interactive mode as a calculator

 The Python interpreter can be used like a calculator. If you just want to do simple calculations, you can type numbers and operators and press Return to see the result, as in the following example:

 >>> (1 + 3) * (2 + 2)

 16

 >>> 1 + 3 * 2 + 2

 9

 [image: Warning(bomb)]

 	Don’t use an equals sign (=
) when doing calculations like these. In Python, an equals sign gives a name to a value. If you use =
 to try to get the result of a calculation, Python gives you an error message:

 >>> 1 + 3 * 2 + 2 =

 File “<stdin>”, line 1

 1 + 3 * 2 + 2 =

 ^

 SyntaxError: invalid syntax

 You can also use names to do math in the Python interpreter. This is easier when doing calculations with several steps, like the following:

 >>> x = 1 + 3

 >>> y = 2 + 2

 >>> x * y

 16

 [image: Warning(bomb)]

 	If you type all whole numbers (integers) when you’re doing arithmetic, Python returns the result in integers. If you want precise results in calculations involving division, be sure that at least one of the numbers in a calculation is a decimal number, or type the statement from __future__ import division
 before doing your calculations. Doing the latter imports the true division feature from a special module called __future__
 , which contains improvements that will be automatically activated in later versions of Python. To find out more about using Python to do division, see Chapter 7.

 These examples show how to get correct division results:

 >>> 1 3/3 # That can’t be right.

 4

 >>> 13.0/3 # That’s more like it.

 4.333333333333333

 >>> from __future__ import division

 >>> 1 3/3

 4.333333333333333

 Working with built-in functions

 In addition to the standard arithmetic operators such as +
 and *
 , you have access to a number of math functions and other functions built into the Python interpreter, and more such functions are available in the math
 module.

 [image: Remember]

 	Functions
 are pieces of code that

 	[image: bullet]	Carry out specific operations.

 	[image: bullet]	Return the results of those operations.

 To work with a function, you need to call
 it, and you usually need to pass it one or more arguments
 — data you want it to act on. You call a function by adding parentheses at the end of the function name. Any arguments you pass to the function go inside the parentheses.

 Getting help on a function

 To get help on built-in functions, type help with the name of the function in parentheses.

 The help usually tells you how many arguments the function takes. If an argument is in square brackets ([]), it’s an optional argument. If you leave out an optional argument, a default value is used.

 The help for round(), displayed here, shows that round() takes one required argument and one optional argument (the number of digits to the right of the decimal point, which defaults to 0):

 >>> help(round)

 Help on built-in function round:

 round(...)

 round(number[, ndigits]) -> floating point number

 Round a number to a given precision in decimal digits (default 0 digits).

 This always returns a floating point number. Precision may be negative.

 The following examples call a built-in function named round()
 , which takes a decimal (or floating point) number as an argument. It rounds off the number to the nearest whole number and returns the result.

 >>> round(9.9)

 10.0

 >>> round(9.3)

 9.0

 Examining names

 When working in interactive mode, you sometimes need to be reminded what names you’ve given to objects. The dir()
 function, which is built into interactive mode, lists the names (such as names of data objects, module names, and function names) that are stored in the interactive mode’s namespace
 at any particular point in your coding session. (Namespace
 is a Python term for a list of names that a particular part of a program knows about.)

 [image: Tip]

 	You can also use the dir()
 function to examine the contents of modules.

 Examining the namespace

 The following example shows what happens when you start Python’s interactive mode (so you have not defined anything yet), use dir()
 to see what is defined, and then give a value to a name and use dir()
 again:

 % python

 Python 2.5b1 (r25b1:47038M, Jun 20 2006, 16:17:55)

 >>> dir()

 [‘__builtins__’, ‘__doc__’, ‘__name__’]

 >>> too_many_cats = “Impossible!”

 >>> dir()

 [‘__builtins__’, ‘__doc__’, ‘__name__’, ‘too_many_cats’]

 After you give a value the name too_many_cats
 , the namespace remembers that name and gives you the value if you ask for it, like this:

 >>> too_many_cats

 ‘Impossible!’

 Examining a module

 The __builtins__
 module defines some exceptions (error-handling code), functions, and constants. To see what’s in the __builtins__
 module, simply type dir(__builtins__)
 .

 There are a lot of things in that __builtins__
 module! The following example shows the contents of the credits
 constant
 for Python 2.5. (A constant, like a name, stores data, but the data inside a constant shouldn’t be changed.)

 >>> credits

 Thanks to CWI, CNRI, BeOpen.com, Zope Corporation and a cast of thousands

 for supporting Python development. See www.python.org for more information.

 The capitalized names in the __builtins__ module are exceptions
 , messages that Python sends when it encounters errors and other unusual conditions. These are all part of a module called exceptions
 , which you can see if you type one of the names into interactive mode:

 >>> ArithmeticError

 <type ‘exceptions.ArithmeticError’>

 Writing multiline programs in interactive mode

 You can write multiline programs or parts of programs in interactive mode. However, note that interactive mode doesn’t let you save your work, so you might also want to save the code in a text file.

 The following example program prints some kilometer/mile conversions. Here’s how it looks when typed into a text editor. (If you don’t understand everything the code does, don’t worry. String formatting is explained in Chapter 6.)

 for miles in range(10, 70, 10):

 km = miles * 1.609

 print “%d miles --> %3.2f kilometers” % (miles, km)

 Note that some lines are indented. Indentation is very important in Python because it’s how Python tells when you are using a code block (several lines of code that are grouped together). Four spaces is standard for one level of indentation (the lines starting with km
 and print
), eight spaces for two levels, and so on.

 Here’s how the same program looks when you start to type it in interactive mode. When you press Return after the first line, the interpreter recognizes that you’re writing a code block and displays a continuation prompt: ...
 (three dots). Even though you see a continuation prompt, you still need to indent the lines that are part of the code block, so don’t forget to add four spaces before starting the km
 assignment and the print
 statement.

 >>> for miles in range(10, 70, 10):

 ... km = miles * 1.609

 ... print “%d miles --> %3.2f kilometers” % (miles, km)

 ...

 [image: Tip]

 	Okay, we admit it: We sometimes make our thumbs happier by adding only two spaces when we’re working in interactive mode. For actual programs that others might see, though, it’s a Good Idea to use four spaces.

 When you are finished with the code block, you press Return at the continuation prompt without typing anything. The interpreter runs the code, which gives this result:

 10 miles --> 16.09 kilometers

 20 miles --> 32.18 kilometers

 30 miles --> 48.27 kilometers

 40 miles --> 64.36 kilometers

 50 miles --> 80.45 kilometers

 60 miles --> 96.54 kilometers

 When you run a code block in interactive mode, the names you’ve defined in the namespace retain the values they were given last.

 >>> print km

 96.54

 >>> print miles

 60

 Quitting interactive mode

 To exit Python’s interactive mode, press Control-D (on Mac or UNIX) or Ctrl-Z (on Windows).

 If you type quit
 , Python reminds you what to do, like this:

 >>> quit

 ‘Use Ctrl-D (i.e. EOF) to exit.’

 [image: Tip]

 	If you have Python 2.5, you can still use Control-D or Control-Z (depending on your operating system) to quit, or you can type quit()
 or exit()
 (both work on all operating systems). The reminder if you type quit
 without the parentheses is a little different (this is the reminder on UNIX):

 >>> quit

 Use quit() or Ctrl-D (i.e. EOF) to exit

 When you exit interactive mode, you return to the command prompt of your Terminal window or Command Prompt window.

 [image: Warning(bomb)]

 	When you quit the Python interpreter, all the values you’ve given names disappear. If you want to keep your work, copy any code you want to save into a text file.

 Getting Help

 Beyond Python For Dummies,
 many other sources of Python help are available to you. One of the most complete sources is Python’s built-in help system.

 [image: Tip]

 	The help built into Python assumes that you have some knowledge of programming and about Python. If you’re new to programming, some of the help topics might look pretty daunting. But after you get a handle on some of the terminology, it gets easier!

 Help in interactive mode

 You can access Python’s help system from interactive mode. There are two ways to use help.

 Entering the help program

 You can run the help system as a separate program inside the Python interactive mode environment. The help system has its own prompt. To go into help mode, follow these steps:

 	
 1.	
 Type
 help()
 at the Python prompt.

 		The help program opens, and you see a welcome message and some suggested topics. Then it displays the help prompt:

 help>

 	
 2.	
 Type the name of an item you want to know about.

 		For example, you can get help about the list data type and its methods:

 help> list

 	
 3.	
 To quit help mode, type
 quit
 at the help mode prompt.

 		When you quit help, you go back to Python’s interactive mode, and you see the Python prompt again:

 >>>

 Using help without leaving interactive mode

 You can also use help to get a tip about a particular item without leaving interactive mode. To get help about a particular item, follow these steps:

 	
 1.	
 At the Python prompt, type
 help
 followed by the name of the item you want to find out about in parentheses.

 		For example, to get help about the list data type, type

 >>> help(list)

 		If the information is less than one screenful, you go back to the interactive mode prompt automatically.

 		If there’s more information, follow Step 2.

 	
 2.	
 If the information is longer than one screen, press the spacebar to see more.

 		When you finishe, type q to go back to the interactive mode prompt.

 [image: Tip]

 	Some installations of Python — for example, the installation on Mac OS X 10.3 (Panther) or 10.4 (Tiger) — don’t come with all the Python help installed. If you see a message in the help program that documentation cannot be found, you can install the documentation (follow steps 1–3 in the next section, “Getting help in a Web browser”) and tell Python where to look for it. One way to do this, if you’re using Mac OS X or UNIX, is to set the PYTHONDOCS
 environment variable
 to the folder path containing the documentation. The way you do this depends on which UNIX shell (operating system) you are using. Here’s how you do it in Mac OS X’s Terminal window, using the default bash shell (replace the path with the correct path for your docs):

 export PYTHONDOCS=/Library/PythonDocs

 Getting help in a Web browser

 If you want to keep Python documentation open in a separate window while you work, you’re in luck. The Python documentation is in HTML format, so you can keep it open in a Web browser window.

 Follow these steps to keep the Python documentation readily available for your use:

 	
 1.	
 Open your Web browser.

 	
 2.	
 Type
 www.python.org/doc/
 in your browser’s address box and press Return.

 		This Web site archives documentation for every version of Python that has been released. The documentation for the most recent version is available at www.python.org/doc/current/.

 	
 3.	
 Follow the online instructions to download the correct version of the help files.

 	
 4.	
 Make a bookmark in your Web browser to the location of the downloaded help files.

 		Doing this sets up the Python documentation so you can access it quickly.

 	
 5.	
 To open the help files in your Web browser while you’re working with Python, just select the help file bookmark from your Web browser’s bookmark list.

 Using Scripts and Modules

 Because Python’s interactive mode doesn’t save any of your work when you quit, you’ll want to store your important work in text files. Text files that contain Python code are called scripts
 (if they are whole programs) or modules
 (if they contain chunks of code meant to be imported into other programs).

 Both scripts and modules end with the suffix .py
 .

 [image: TechnicalStuff]

 	Actually, the distinction between scripts and modules is fuzzier than that because some modules include code that lets them stand on their own or that gives information about their status . . . and some programs can be imported as modules.

 Running a script from the command line

 When you run a Python script from the command line of your shell or Terminal program, it behaves like other programs you run from the command line — when it’s finished running, you get another command prompt. To run a script from the command line (indicated by the command prompt %
), type python
 and the name of the script, like this:

 % python script.py

 If you run a script from the command line, you use the -i
 modifier to tell Python to go into interactive mode after you run it. To create a script and run it interactively on a command line, follow these steps:

 	
 1.	
 Use a text editor to write your script.

 		For example, you might type the following in a text editor:

 print “testing how scripts and interactive mode communicate”

 x = 500

 print “The value of x is “, x

 	
 2.	
 Save your script and give it a name.

 [image: Remember]

 		Use the .py suffix for the name.

 		Our script is called tinyscript.py.

 	
 3.	
 To run the script from the command line, type
 python -i
 followed by the name of the script (including the
 .py
 suffix).

 		When you run the script, Python executes its code and then enters interactive mode (you can tell because you see the >>> prompt).

 % python -i tinyscript.py

 testing how scripts and interactive mode communicate

 The value of x is 500

 >>>

 		The names that are part of tinyscript.py are now available in interactive mode. To test this, type dir() and print the value of any of your script’s names.

 >>> dir()

 [‘__builtins__’, ‘__doc__’, ‘__file__’, ‘__name__’, ‘x’]

 >>> print x

 500

 Importing a module in interactive mode

 Modules
 are text files containing Python code that’s designed to be used inside another program. To work with a module, you need to import
 it. When you import the module, Python runs the module’s code and stores the module’s name in the namespace.

 There are two ways to import modules: You can import the module name
 or you can import one or more of the names defined inside the module.

 The following examples import the module tinymodule.py
 , which includes the following function:

 def tinyfunction(x):

 print “testing how modules and interactive mode communicate”

 print “You passed me the parameter”, x

 z = x**2

 print x, “squared is”, z

 return z

 Importing by name

 Importing a module by name stores the module name in the namespace. But it does not directly import any names that are defined in the module.

 To import a module by name, type import
 followed by the name of the module without
 the .py
 suffix, like this:

 >>> import tinymodule

 To make sure that the module’s name has been imported, type dir()
 .

 >>> dir()

 [‘__builtins__’, ‘__doc__’, ‘__name__’, ‘tinymodule’]

 To use an item inside a module you’ve imported by name, you need to tell Python both the module name and the name of the item. (The items inside modules are collectively called attributes
 of the module.) This is similar to handing someone a book and telling them to find a chapter inside it.

 To access an attribute of a module, type the module name, a dot, and the attribute name.

 In this example, we call the tinyfunction()
 attribute in the tinymodule
 module, and we give a name to its result. This causes Python to run the code in the function. Here’s the result:

 >>> x = tinymodule.tinyfunction(2)

 testing how modules and interactive mode communicate

 you passed me the parameter 2

 2 squared is 4

 The tinyfunction()
 function also returns a value. To see it, we print the name we gave to the function:

 >>> print x

 4

 Importing items from inside a module

 Importing items from inside a module stores their names in the namespace, which gives you direct access to the items — you don’t have to type the module name to use them. But this method doesn’t store the name of the module
 in the namespace.

 To import the function that’s inside tinymodule
 , type this:

 >>> from tinymodule import tinyfunction

 To check what’s stored in the namespace, type dir()
 .
 Note:

 If you didn’t quit Python after doing the example in the previous section, “Importing by name,” you might see other names as well when you type dir()
 .

 >>> dir()

 [‘__builtins__’, ‘__doc__’, ‘__name__’, ‘tinyfunction’]

 [image: Tip]

 	Importing a module by name is the recommended way of getting access to a module and its functions. Although importing items from inside a module is useful in some situations, this can cause problems if the items have the same names as other items you’re working with.

 Using Python’s standard modules in interactive mode

 Python comes with dozens of modules that add functionality when you want it but stay out of your way when you don’t.

 Listing Python’s modules

 To see the list of built-in modules, follow these steps:

 	
 1.	
 In Python interactive mode, type
 help()
 and press Return to start the help utility.

 	
 2.	
 At the
 help>
 prompt, type
 modules
 , like this:

 help> modules

 Please wait a moment while I gather a list of all available modules...

 Why modularizing is a good idea

 Why doesn’t Python automatically import all of its built-in modules? First of all, importing all of its modules would take a LOOOONG time. Second, if it did, there would be thousands of names stored in the namespace, and you wouldn’t be able to give those names to your own data — or if you did use them, you might get unexpected results. Because you need to import modules, stuff you don’t use stays out of your way, like storing your winter clothes in the attic until October.

 Whoa! That’s a lot of modules. But don’t worry. You can drive a car without knowing exactly how everything under the hood works, and the same goes for working with Python. Python For Dummies
 explains the workings of many of Python’s modules and shows you where to go to discover more about the rest.

 [image: Tip]

 	The list of modules differs depending on your version of Python, your operating system, and the third-party modules that may have been installed for Python.

 Listing the contents of an imported module

 The names inside a module might include value assignments, other modules that the module imports, functions, classes, and so on.

 To see the names that belong to a module you’ve imported — either a .py
 file you wrote yourself or one of Python’s modules — type dir()
 with the name of the module inside the parentheses. For example, to import the math
 module that comes with Python and list its functions, follow these steps:

 	
 1.	
 At the Python prompt, type
 import math
 .

 	
 2.	
 To list the names (functions and constants) that the
 math
 module defines, type
 dir(math)
 .

 		Python displays the contents of the math module.

 Getting interactive help for a module’s functions

 The help information for a large module can be many pages long. If you know the function you want, here’s how to get help for that function specifically:

 	
 1.	
 Make sure the module has been imported.

 	
 2.	
 Type
 help(module_name.function_name)
 .

 		Be sure to include the parentheses and the dot between the module name and the function name.

 This example shows the help for one of the functions in the math
 module:

 >>> help(math.pow)

 Help on built-in function pow in module math:

 pow(...)

 pow(x,y)

 Return x**y (x to the power of y).

 IDLE Musings

 IDLE stands for Interactive DeveLopment Environment.
 (Other computer languages have such environments too, but they’re usually called IDEs. Python’s is called IDLE after Eric Idle of Monty Python fame.) IDLE is an editing program written entirely in Python by Guido van Rossum.

 [image: TechnicalStuff]

 	IDLE is installed when you install any recent version of Python, but it doesn’t always come with versions of Python that are preinstalled on your computer, such as with the Mac OS X. You can find instructions for installing Python in Appendix A.

 Opening IDLE

 When you open IDLE, you see a window called Python Shell, as shown in Figure 2-2. Depending on your version of IDLE, you might also see other windows; you can safely ignore them for now.

 	

 Figure 2-2: IDLE’s Python Shell window on Mac OS.

 	
 [image: Figure 2-2: IDLE’s Python Shell window on Mac OS.]

 The Python Shell window runs in interactive mode; it displays the Python prompt, >>>
 .

 Typing statements and programs in the Python Shell

 Interactive mode in IDLE works much the same as interactive mode in a shell window running Python. Here are some differences:

 	[image: bullet]	The code you type is colorized to make it easier to distinguish one part of a statement from another.

 	[image: bullet]	When you write multiline statements, IDLE does not display the
 ...
 continuation prompt.

 	[image: bullet]	IDLE automatically indents lines for you.

 Figure 2-3 shows IDLE’s Python Shell window with the miles/kilometers conversion program we introduce in the section, “Writing multiline programs in interactive mode,” earlier in this chapter (colorizing is not shown — it’s a black-and-white book!).

 	

 Figure 2-3: A program and its result in IDLE’s Python Shell window on Mac OS.

 	
 [image: Figure 2-3: A program and its result in IDLE’s Python Shell window on Mac OS.]

 Getting more help for IDLE

 IDLE also has built-in help — look in the Help menu.

 A good “getting started” Web page for a recent version of IDLE is here:

 http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro

 The following pages have additional documentation that you’ll find useful, but they are based on earlier versions:

 	[image: bullet]	www.ai.uga.edu/mc/idle/index.html (based on IDLE 1.0.2)

 	[image: bullet]	www.python.org/idle/doc (based on IDLE 0.5)

 Clever Python Shell features

 Here are a couple of time-saving features of IDLE’s Python Shell:

 	[image: bullet]	Putting your insertion point or cursor in a line of code and pressing Enter inserts a copy of the code on a new line for editing.

 	[image: bullet]	Typing the opening parenthesis for a function call or method call pops up a small box with a helpful tip or a list of expected arguments.

 Writing and editing code with IDLE’s text editor

 IDLE includes a text editor for opening, editing, and creating modules and scripts. Here are some of its key features:

 	[image: bullet]	To open a new text editing window, choose
 File
 ⇒New Window.

 	[image: bullet]	To open an existing module or script for editing, choose File
 ⇒Open.

 	[image: bullet]	The Format menu available when you’re working in the text editing window contains Python-specific formatting commands such as Indent Region.

 	[image: bullet]	To run a program or module, make sure it is open in the text editor and choose
 Run
 ⇒Run Module (on some versions, the command is File
 ⇒Run Script).

 		The Python Shell restarts (clearing any names that it was storing from the previous session) and Python executes the code.

 Briefly meet a few other IDLE commands

 IDLE has Find commands (in the Find menu or Edit menu) to search for text in the frontmost IDLE window. It also has a Find in Files command that searches all files in the Python search path or a subset of those files.

 With the Path Browser (available from the File menu), you can examine and open any Python code that is in the Python path. (The Path Browser is shown in Figure 2-4.) To navigate the path, click the +
 buttons to expand a folder. To open a .py
 file in the text editor, double-click it. To highlight a class or method in the .py
 file, double-click it in the Path Browser.

 	

 Figure 2-4: The IDLE Path Browser.

 	
 [image: Figure 2-4: The IDLE Path Browser.]

 Debugging in IDLE

 When you run code in IDLE’s interactive mode, it informs you of errors the same way you’ve seen when using interactive mode in a Terminal or shell window.

 When you run code from the text editor, IDLE also informs you of errors. Depending on the kind of error and on your version of IDLE, the error message appears in a dialog box or in the Python Shell window.

 You can use the IDLE debugger to step through your program in various ways and display the values of names. The IDLE debugger is shown in Figure 2-5.

 [image: Warning(bomb)]

 	On the Mac OS, the IDLE debugger that comes with Python 2.4 and earlier has a bug(!). When you open the debugger window, you must immediately resize it; otherwise, IDLE will hang.

 	

 Figure 2-5: The IDLE debugger at work.

 	
 [image: Figure 2-5: The IDLE debugger at work.]

 Chapter 3

 Basic Elements and Syntax

 In This Chapter

 [image: bullet]	Wading through some Python terminology

 [image: bullet]	Finding out about Python building blocks

 [image: bullet]	Getting used to Python syntax

 This chapter briefly introduces some of the bits and pieces that make up the Python programming language. You find out about names and the differences between statements and expressions. We introduce several types of data and operators that work on these data types. We also explain how to include documentation in your program as well as how to understand error messages Python might give you. Finally, you get a taste of various kinds of control structures, loops, and other code blocks available in Python.

 Making Names and Storing Values

 In most programming languages, there are ways to associate a name or variable with a value. Here’s an example of such a statement in Python:

 num = 45

 Many programming languages call a statement such as num = 45
 “assigning a value to a variable.” But Python doesn’t really have variables (you don’t need to know why), so this book uses the term name
 instead of variable.

 [image: TechnicalStuff]

 	In Python, a name refers
 to an object. A name is actually a label for a memory location in the computer that stores something — a value, a chunk of code, or any sort of thing Python understands. All these “things” — anything that’s stored in a memory location — are called objects
 in Python. Therefore, Python programmers often say that when you enter a statement such as x = 5
 in Python, you are binding a name
 (x
) to an object
 (5
). You can have multiple names for the same object.

 The =
 symbol (a single equals sign) tells Python to associate a name with a value. When making an assignment, the name is always on the left, and the value is on the right, as in this example:

 myname = “myvalue”

 When you’ve given a name to a value, the name stands in for the value when you are writing code. For example, if you’ve already created the assignment myname = “myvalue”
 , the following two statements do the same thing — they assign the name mynewname
 to the value “myvalue”
 :

 mynewname = “myvalue”

 mynewname = myname

 There are other ways to give a name to a value. For example, you can give a name to the result of a calculation or the information that a function returns. The def
 statement (which defines a function) and the class
 statement (which defines a class) also create names.

 Naming rules

 You can use any names you want, as long as they follow these rules:

 	[image: bullet]	Names must start with either a letter or an underscore character (
 _
).

 	[image: bullet]	You can’t use any of Python’s reserved words or keywords.

 		These are words that have specific meanings to Python, such as if (which begins an if statement).

 	[image: bullet]	Names are case-sensitive.
 num is different from NUM and nUm.

 	[image: bullet]	By convention, most Python programmers use lowercase for names that stand for values. They use other rules for names that stand for functions and classes — you can find out more about these conventions in later chapters.

 	[image: bullet]	It’s a Good Idea to use meaningful names. If you name everything with a single letter, for example, you may have trouble remembering what the name stands for later.

 [image: TechnicalStuff]

 Statements and expressions: Seeing the difference

 Python code consists of statements and expressions. Knowing these terms isn’t essential to writing basic code, but sometimes they help you to understand an error in your code (for example, you can’t use a statement where an expression is required).

 A literal is a chunk of text in a Python program that specifies the value for one of the basic Python data types (such as a string or number). When you run your program, Python creates an object with the literal’s value.

 A statement is like a command — it tells Python to do something. For example, the statement x = 25 tells Python to give the name x to the value 25, and print x tells Python to display the value of x.

 An expression is one or more operations that produce a result. The operations can involve names, operators, literals, and function or method calls.

 It’s easiest to show the difference between expressions and statements by example. Note in these examples that when you enter an expression in the interpreter, the interpreter prints it, but when you enter a statement (which doesn’t create any output — except for print statements), nothing visible happens:

 >>> “monty python” # This is an expression and a literal.

 ‘monty python’

 >>> x = 25 # This is a statement. 25 is a literal.

 >>> x # This is an expression.

 25

 >>> 2 in [1, 2, 3] # This is also an expression.

 True

 >>> def foo(): # This is a statement.

 ... return 1 # return is a statement; 1 is an expression.

 ...

 >>> foo() # foo is a name; foo() is an expression.

 1

 Note that Python allows you to put multiple statements on a line by separating each statement with a semicolon, but you should avoid this because it makes programs less readable:

 >>> x = 1; y = 2

 >>> x, y

 (1, 2)

 Data Type Does Matter

 When you write computer programs, you usually want to give the computer information (data) and have it do things with the data and give you results. Programming languages like Python have several data types
 that you do different things with.

 You decide which data type to use depending on what you want to do. For example, if you want to do mathematical calculations, you might choose a number data type.

 The following list briefly introduces some of Python’s data types:

 	[image: bullet]	Numbers are for data that you want to do math with.

 	[image: bullet]	Strings are for text characters and for binary data.

 	[image: bullet]	Sequences are for lists of related data that you might want to sort, merge, and so on.

 	[image: bullet]	Dictionaries are collections of data that associate a unique key with each value.

 	[image: bullet]	Sets are for doing set operations (finding the intersection, difference, and so on) with multiple values.

 	[image: bullet]	Files are for data that is or will be stored as a document on a computer.

 Numeric data

 Python has four built-in numeric data types, as shown in Table 3-1.

 Table 3-1	Python’s Built-In Numeric Data Types

 	Type (keyword)	
 	Example	
 	Used for . . .

 	Plain integers (int) and 	
 	7	
 	Whole numbers (long

 	long integers (long)	
 	6666666666L	

 	
 integers are very large

 	
 	
 	whole numbers.)

 	Floating point numbers 	
 	1.1714285714285713	
 	Real numbers

 	(float)
 	
 	

 	Complex numbers 	
 	(3+4j)	
 	Imaginary numbers

 	(complex)
 	
 	

 	Decimal numbers 	
 	decimal.Decimal(“181.2”)	
 	Calculations requiring

 	(decimal.Decimal)	
 		
 	decimal arithmetic

 Except when you’re doing division with integers or using the decimal
 module (see Chapter 7), you don’t have to worry about what kind of number data type you’re using. Python converts numbers into compatible types automatically. For example, if you multiply an integer and a floating point number, Python automatically gives the answer as a floating point number:

 >>> x = 5

 >>> y = 1.5

 >>> x * y

 7.5

 For more information about numbers and number data types, see Chapter 7.

 Sequential data

 Sequential data types contain multiple pieces of data, each of which is numbered, or indexed.
 Each piece of data inside a sequence is called an element.

 [image: Remember]

 	The cool thing about sequential data types is that you can manipulate the whole sequence, chunks of the sequence, or individual elements inside the sequence.

 Three sequential data types are built into Python:

 	[image: bullet]	Lists can store multiple kinds of data (both text and numbers, for example). You can change elements inside a list, and you can organize the data in various ways (for example, by sorting).

 	[image: bullet]	Tuples, like lists, can include different kinds of data, but they can’t be changed. In Python terminology, they are immutable.

 	[image: bullet]	Strings store text or binary data. Strings are immutable (like tuples).

 Table 3-2 introduces Python’s built-in sequential data types.

[image: Table 3-2]

 To see the data type of a Python object, use the type()
 function, like this:

 >>> type(‘foo’)

 <type ‘str’>

 Dictionaries

 Python’s dictionary (its keyword is dict
) is a data type that stores multiple data items (elements
) of different types. In a dictionary, each element is associated with a unique key,
 which is a value of any immutable type. When you use a dict, you use the key to return the element associated with the key.

 You use a dictionary when you want to store and retrieve items by using a key that doesn’t change and when you don’t care in what order Python stores the items. (In dictionaries, elements aren’t numbered.)

 [image: Tip]

 	Here’s what a Python dictionary is not: A Python dictionary bears only a small resemblance to the kind of dictionary that contains words and their definitions. In Python, a dictionary is more like a list of employees and their employee numbers. Because each employee number is unique, you can look up that employee by typing his or her number.

 [image: Remember]

 	Dictionaries are mutable, like lists, but their keys are immutable.

 Here is an example of a dictionary with two key:value pairs:

 swallow_velocity = {“european” : “47”, “african” : “69”}

 You can find out much more about using dictionaries in Chapter 9.

 Sets

 A set stores multiple items, which can be of different types, but each item in a set must be unique. You can use Python sets to find unions, intersections, differences, and so on — just like the sets that probably annoyed you in school.

 One use for sets is when you have repetitious data and you want to ignore the repetition. For example, imagine that you have an address database and you want to find out which cities are represented, but you don’t need to know how many times each city appears in the database. A set will list each city in the database only once.

 The syntax for a set is a little different from the syntax of the other data types described in this section. You use the word set
 followed by a name (or a group of elements) in parentheses. Here is a set that finds each unique element in a list. You’ll notice that the elements are out of order in the set. That’s because Python doesn’t store set elements in alphanumeric order (the same is true for dicts):

 >>> mylist = [‘spam’, ‘lovely’, ‘spam’, ‘glorious’, ‘spam’]

 >>> set(mylist)

 set([‘lovely’, ‘glorious’, ‘spam’])

 Files

 Python uses the file
 data type to work with files on your computer or on the Internet. Note that the file
 type is not the same as the actual file. The file
 type is Python’s internal representation
 of a computer or Internet file.

 [image: Remember]

 	Before Python can work with an existing file or a new file, you need to open the file inside Python.

 This example opens a file called myfile
 :

 open(“myfile”)

 You can do a lot with files in Python. Check out Part IV to find out more.

 Data types have methods

 In Python, each data type has built-in actions associated with it, which let you do various things with the data. These actions are called methods.
 Methods are tailored to work efficiently with their particular data types.

 Calling a method — An example

 Here’s an example of how you use, or call,
 a method on a piece of data. Strings (text characters inside quotation marks) come with a method called upper()
 , which makes all the characters uppercase. To use the upper()
 method on a string, follow these steps:

 	
 1.	
 Give a name to the string, like this:

 >>> zed = “lowercase string”

 	
 2.	
 Type the name, a dot, the method name, and a set of parentheses.

 		This example changes the zed string’s characters to uppercase:

 >>> zed.upper()

 ‘LOWERCASE STRING’

 [image: TechnicalStuff]

 	Incidentally, you can also use methods with values that haven’t been given names. For example, the code “hi”.upper()
 gives the result ‘HI’
 . One method that’s commonly used this way is the string method join()
 , which combines strings. Most of the time, however, it’s good practice to give names to values before using methods on them.

 Passing information to a method

 The parentheses at the end of a method — for example, upper()
 — tell Python to perform the action associated with the method (that is, to call
 the method).

 [image: Tip]

 	If you forget the parentheses, Python gives you some information about the method object instead, as in this example:

 >>> ‘mystring’.upper

 <built-in method upper of str object at 0x82071a0>

 The parentheses have another use, too. When calling some methods, you sometimes need to include additional information about how the method should act. You put this information (also called the argument
) inside the parentheses. This is called passing data
 (or passing an argument
) to the method.

 For example, here’s how you would use a list method called append()
 to get Python to add an item to a list:

 	
 1.	
 Give a name to a list with several text strings like this:

 >>> shopping_list = [‘eggs’, ‘bacon’, ‘spam’]

 	
 2.	
 To add an item to the
 shopping_list
 list, type the list name, a dot, the method name, and a new item inside parentheses, like this:

 >>> shopping_list.append(‘butter’)

 		You can type the list name again to see the new contents of the list:

 >>> shopping_list

 [‘eggs’, ‘bacon’, ‘spam’, ‘butter’]

 Operators Are Standing By

 Operators are another tool for working with data. You’ll recognize arithmetic symbols such as +
 and /
 for addition and division, but Python also comes with operators that cut up text, check whether two objects have the same value, and so on. This section introduces several kinds of Python operators:

 	[image: bullet]	Arithmetic: The math symbols we’re all familiar with as well as some less-well-known ones.

 	[image: bullet]	Comparison: These operators tell you which of several things is bigger.

 	[image: bullet]	Logical or Boolean: These operators test whether things are true or false.

 	[image: bullet]	Conditional: This operator allows you to choose one of two values based on a logical test.

 Arithmetic operators

 Python understands a variety of math symbols. Here are a few of them:

 	[image: bullet]	Plus (+): Addition

 	[image: bullet]	Parentheses (()): Grouping

 	[image: bullet]	Asterisk (*): Multiplication

 	[image: bullet]	Double asterisk (**): Exponentiation (x to the power of y)

 [image: Tip]

 	Some of these operators also work on data types other than numbers, but they may work differently. For example, +
 adds two numbers (2 + 2
 gives the result 4
), but it concatenates strings (‘2’ + ‘2’
 gives the result ‘22’
). You can’t use an operator with two incompatible data types. For example, if you try to use +
 with an integer and a string, Python returns an error.

 We discuss arithmetic operators in greater detail in Chapter 7.

 Comparison operators

 Comparison operators test the relative sizes of two pieces of data and give either True
 or False
 as the result. The symbols for these operators are as follows:

 	[image: bullet]	less than (<)

 	[image: bullet]	greater than (>)

 	[image: bullet]	equal to (==)

 	[image: bullet]	not equal to (!= or <>)

 You can use comparison operators by themselves or in combination. For example, you can test whether something is less than or equal to something else by using the operator <=
 .

 [image: Remember]

 	You use ==
 (two =
 symbols) to test whether something is “equal to” something else. A single =
 symbol gives a name to a value.

 You know about comparing the sizes of numbers — for example, 3 > 2
 . But Python can compare values of most other data types, too. (There are a few types you can’t compare, such as complex numbers.) When you compare items by using these operators, the result is either True
 or False
 (except or some special data types in third-party modules). Here are a couple of examples:

 	[image: bullet]	Strings are compared using alphabetical order, but all capital letters come before (are smaller than) all lowercase letters.

 >>> ‘a’ < ‘b’

 True

 >>> ‘Z’ < ‘a’

 True

 	[image: bullet]	Each item in a list or tuple is compared against the item with the same index number in the other list or tuple.

 >>> [1] < [2]

 True

 		Also, lists and tuples are compared by length.

 >>> [1, 2, 3] > [1, 2]

 True

 Boolean operators

 Python has three operators that test whether expressions are true or false. These are called Boolean operators
 (you might also see them referred to as logical operators
).

 The Boolean operators work as follows:

 	[image: bullet]	and stops testing when it encounters a false condition.

 	[image: bullet]	or stops testing when it encounters a true condition.

 		Python tests an expression with and and or operators from left to right and returns the last value tested. (These operators don’t return True and False unless the expressions themselves use comparison operators.)

 >>> ‘1’ and 1 and ‘one’

 ‘one’

 >>> ‘1’ or 1 or ‘one’

 ‘1’

 >>> (2 < 3) or (5 > 6)

 True

 	[image: bullet]	not returns True if the expression is false and False if the expression is true.

 >>> not ‘one’

 False

 		(Stuff like this is why your grammar teacher told you to avoid double negatives.)

 [image: Tip]

 	In Python, false
 has a special meaning. It refers to anything that is zero or “empty.” For example, the number 0 is false, and so is a string with no characters (‘’
) and a list with no elements ([]
). You usually use Boolean operators to test for “emptiness.”

 For more information about Boolean operators, see Chapter 10.

 Conditional operations

 Conditional expressions are new in Python 2.5. They use this form:

 X if C else Y

 They work like this: First, C is evaluated. If C is true, then X is evaluated to give the result. Otherwise, Y is evaluated to give the result.

 This example prints ‘bar’
 because False
 evaluates as false:

 >>> print ‘foo’ if False else ‘bar’

 ‘bar’

 For more information on conditional expressions, see Chapter 16.

 Order, please!

 You probably remember from math class that when you do arithmetic, multiplication takes place before addition (for example, 3 + 2 × 5 = 13 because 2 × 5 is evaluated first). Likewise, operations in Python happen in a specific order, which is called operator precedence.
 As in arithmetic, operations in parentheses come first.

 Table 3-3 describes operator precedence in Python. Operators in higher rows are evaluated before operators in lower rows. If multiple operators appear in a single cell in the table, that means they are equal in precedence and are evaluated from left to right when they appear in an expression.

 Table 3-3	Operator Precedence

 	Symbol	
 	Type of operator
 	

 	
 (a,b), [a,b], {a:b}	

 	
 Creation of tuples (via the comma
 	

 	
 	operator), lists, and dictionaries
 	

 	
 s[i], s[i:j], s[i:j:k]	

 	
 Index and slice operations (on
 	

 	
 	sequence data types); brackets are
 	

 	
 	also used to select mapping elements
 	

 	
 f(...) 	

 	Function calls
 	

 	
 x**y 	

 	Exponentiation (evaluated right to left)
 	

 	
 x*y, x/y, x//y, x%y	

 	
 Multiplication, division, integer division,
 	

 	
 	modulo (remainder)
 	

 	
 x+y, x-y	

 	Addition, subtraction
 	

 	
 x<y, x<=y, x>y, x>=y, x==y, x!=y	

 	Comparison and equality
 	

 	
 x is y, x is not y	

 	Identity
 	

 	
 x in y, x not in y 	

 	Membership
 	

 	
 not x 	

 	Logical negation
 	

 	
 x and y 	

 	Logical and
 	

 	
 x or y 	

 	Logical or
 	

 	
 if/else	

 	Conditional expression
 	

 Special powers of the = symbol

 The =
 symbol might look like an operator, but in Python, it isn’t. The =
 sign is used for assignment
 — associating a value with a name.

 [image: Remember]

 	In Python, don’t use =
 to get the result of arithmetic operations in the way you do when you use a calculator. Python stores the results of such calculations automatically. Also, don’t use =
 to test whether one thing is the same as another (for that, you use ==
 or is
).

 If We May Comment . . .

 Python, like almost all programming languages, lets you add comments
 to your program. Comments are text in your program that the Python interpreter ignores. Why would you want to add stuff that the computer ignores? Comments help other people understand how the program works. They also let you decipher your own code six months later!

 To add a comment to your program, type #
 (a pound sign) and then type your comment.

 You can type #
 either at the beginning of a line of code or after the code. If you write a comment that spans more than one line, use #
 at the beginning of each line.

 The example below shows comments in action:

 # These are lines from Monty Python’s “Parrot Sketch”.

 live_parrot = “‘E’s pinin’ for the fjords!” # Michael Palin

 dead_parrot = “Bereft of life, ‘e rests in peace!” # John Cleese

 It pays to be conventional

 Python programmers have conventions for how they add comments to their programs. The conventions make the comments and code easier to read by other programmers.

 Here are some of the guidelines for comments:

 	[image: bullet]	Keep lines to fewer than 80 characters.

 		(This convention applies to the whole program, not just the comments.)

 	[image: bullet]	Indent comments the same amount the code is indented.

 		For more information on indenting, see “Deciphering Code Blocks,” later in this chapter.

 	[image: bullet]	Use inline comments (comments that come after a line of code) sparingly, and only to explain things that aren’t clear from reading the code.

 The most important convention for comments is this one from the Style Guide for Python Code (www.python.org/dev/peps/pep-0008
):

 Comments that contradict the code are worse than no comments. Always make a priority of keeping the comments up-to-date when the code changes!

 Documenting your program

 Python supports a special kind of comment called a docstring.

 As with other comments, you use docstrings to help others understand your code. What’s different about docstrings is that they work with Python’s help utility so that someone can figure out what your code does without having to look at the actual file.

 A docstring is always the first line in a function. It can be more than one line if you begin and end it with three quotation marks. Here’s an example docstring for a function we made up called printme()
 :

 def printme(me):

 “””

 Prints its argument.

 “””

 Here’s what you see if you ask for help on the printme()
 function:

 >>> help(printme)

 Help on function printme in module __main__:

 printme(me)

 Prints its argument

 For detailed instructions on writing docstrings, see Chapter 11.

 Oopsies! Understanding Error Messages

 When Python finds syntax mistakes or other errors in your code, it gives you error messages to help you figure out what the problem is. For example, you get this error message when you try to use an equals sign (=
) to do an arithmetic calculation:

 >>> 5 - 6 =

 File “<stdin>”, line 1

 5 - 6 =

 ^

 SyntaxError: invalid syntax

 The messages differ depending on the type of error but usually include these types of information:

 	[image: bullet]	The filename

 [image: Remember]

 		When you work in interactive mode, the file is always “<stdin>”.

 	[image: bullet]	The line of code where Python first figured out there was an error

 	[image: bullet]	The kind of error

 For a syntax error, a caret (^
) points to the problem character (or to the place where the interpreter first figured out there was a problem).

 Some error messages include information about the conditions in which the error occurred (this is called traceback
 information). The message you get when you try to divide by zero is an example:

 >>> x = 0

 >>> 9 / x

 Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 ZeroDivisionError: integer division or modulo by zero

 Deciphering Code Blocks

 In Python, you can write chunks of code, or code blocks,
 that perform a single function or group together several related tasks. We discuss the several kinds of code blocks and how to write them in the following sections.

 The big deal about indentation

 In many programming languages, you’re encouraged — but not required — to indent a chunk of code that works as a unit. Some programmers are notoriously lazy about making their code readable to humans, and that means programs in those languages may not include indentation.

 In Python, however, indentation is built into the interpreter. Code that’s part of a block must be indented, or else you get an error message. This is one of the features that makes Python especially readable.

 Indentation is so important to Python that Pythonistas printed up a T-shirt:

 Python:

 programming

 the way

 Guido

 indented it

 Code block syntax

 There are two simple syntax rules to remember about code blocks:

 	[image: bullet]	The code on the first line of a code block always ends with a colon (:).

 	[image: bullet]	The code underneath the first line of a code block is indented.

 Python programmers almost always use four spaces for the first level of indentation, eight spaces for the next level (a code block nested inside another code block), and so on.

 The indentation must be the same for every line of a block. You get an IndentationError
 message if you use, for example, four spaces on one line of a block and three spaces on another line in the same block.

 Basic code blocks: Control structures and loops

 Basic code blocks in Python begin by testing whether a condition or expression is true. Python carries out instructions depending on the result of the test.

 In the following sections, we introduce several kinds of control structures and loops and provide an example of each. Don’t worry if you don’t understand every bit of the code in the examples right now; it’s explained in more detail in Chapter 10.

 If statements

 An if
 statement carries out one or more tests in a specified order. The first line always begins with if
 ; subsequent tests begin with elif
 (which stands for “else if”), and you can add an else
 clause that runs if all the tests fail.

 Here’s an example of an if
 statement that includes an else
 clause. The else:
 line is not indented under the if:
 line because it’s part of the structure of the if
 statement, as opposed to being one of the blocks inside the statement:

 if statement == “We’re fresh out of red Leicester, sir”:

 response = “Oh, never mind, how are you on Tilset?”

 elif statement == “We have Camembert, yessir”:

 response = “Fetch hither the fromage de la Belle France!”

 else:

 response = “I’m going to have to shoot you.”

 For loops

 A for
 loop repeats a block of instructions, usually a specific number of times.

 This example takes each item in little_list
 one at a time and prints it.

 >>> little_list = [‘the’, ‘quick’, ‘brown’, ‘fox’]

 >>> for the_item in little_list:

 ... print the_item, “*”,

 ...

 the * quick * brown * fox *

 Check out Chapter 10 for the lowdown on for
 loops.

 While loops

 A while
 loop repeats an instruction as long as a particular condition is true.

 The following example code prints a number as long as the countdown value is greater than zero. It also subtracts 1 from the countdown value each time around the loop.

 countdown = 10

 while countdown:

 print countdown,

 countdown -= 1

 print “blastoff!”

 Here’s what it prints:

 10 9 8 7 6 5 4 3 2 1 blastoff!

 Try statements

 A try
 clause attempts to run some code. It is accompanied by one of the following:

 	[image: bullet]	One or more except clauses (which catch errors raised in the try block)

 		A try/except statement can also have an optional else clause.

 	[image: bullet]	A finally clause

 		This clause runs automatically after the try clause and re-raises any errors.

 [image: Tip]

 	Starting in Python 2.5, a try
 clause can have all the above elements at once: try
 , except
 , else
 , and finally
 .

 Here’s a try
 statement that receives some input, does one thing if the input is an integer, and does another thing if it isn’t:

 user_input = raw_input(“Enter an integer: “)

 try:

 number = int(user_input)

 print “You entered”, number

 except ValueError:

 print “Integers, please!”

 With blocks

 The with
 statement (new in Python 2.5) executes a block in a particular context
 . This is an advanced feature that we discuss in Chapter 16.

 Code blocks that create a namespace

 Some Python code blocks set up a special area to store the names they know about. (Names
 are labels for areas of computer storage that hold particular values or other objects.) These areas are called namespaces.

 Each namespace is self-contained, so names from different parts of a program don’t bump into each other. This feature lets Python programmers create modular code that can be extended in many different directions without having to worry about whether their new code uses the same names as code in other blocks, modules, or programs.

 Several kinds of code blocks create namespaces. Here is a brief introduction to some of them.

 Functions

 A function is like a blender or a bread maker. You put data into it, it does things with the information, and it returns a result.

 Here is a small function (you may note there are no spaces at the end of the text strings. The comma stands for a single space):

 >>> def myfunction(x):

 ... y = x**x

 ... print x, “raised to the power of”, x, “is”, y

 ... return y

 ...

 And here’s how you might call it.

 >>> result = myfunction(5)

 5 raised to the power of 5 is 3125

 >>> result

 3125

 Modules

 A module
 is a text file that can contain any kind of Python code, but a module usually organizes tools that work in a particular way. Sometimes it also includes names that store particular values. You can make a module available to another program by importing
 it.

 [image: TechnicalStuff]

 	Modules are the key to Python’s portability and power. Python itself is made up of modules.

 For example, Python has a math
 module that includes a number of specialized mathematical tools, and it also defines some names, including pi
 . Here’s how you import it:

 >>> import math

 Here’s how you access the name pi
 that it defines:

 >>> math.pi

 3.1415926535897931

 This book covers many of the important modules that come with Python. For instructions on viewing the list of modules that Python comes with, see Chapter 2.

 Classes

 A class is similar to both a factory and a blueprint in that it makes copies of itself — but the copies are what do the actual work. Here is an example of a class:

 class SayMyName:

 def __init__(self, myname):

 self.myname = myname

 def say(self):

 print “Hello, my name is”, self.myname

 You use a class to create objects called instances
 that can do specific things. This code creates an instance of the SayMyName
 class:

 name1 = SayMyName(“Aahz”)

 An instance has access to the class’s methods
 (which are just functions attached to a class). This code applies the say()
 method to the name1
 instance:

 >>> name1.say()

 Hello, my name is Aahz

 Classes are useful because they can combine both data and methods that operate on that data. Python’s data types — lists, strings, and so on — are based on classes.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

Images/hearts.jpg

Images/macapple.jpg

Images/clubs.jpg

Images/fingerpoint.jpg

Images/diamonds.jpg

Images/frown.jpg

Images/spades.jpg

Images/tomato.jpg

Images/9780471778648-tb0302.jpg
Table 3-2 Python’s Built-in Sequence Data Types

Type (Name) Kind Example Used for...
str (String) Immutable x="“monty Storing text
python”
tuple Immutable x=("a", Storing a set of items you want
(Tuple) 2,"33") fast accessto
list (List) Mutable x=[here’, Storing a set of items you want
‘is’, 'my’, to be able to change readily

‘list’, 47]

Images/maccmd.jpg

Images/smile.jpg

Images/arrow.jpg

Images/check.jpg

Images/turnover.jpg

Images/checkbox.jpg

Images/checkmark.jpg

Images/arrow.png

Images/check.png

Images/downarrow.jpg

Images/1_0471778648.jpg
Python

Covers basic
concepts, installation,
building blocks,

and more

N\
N

Images/TechnicalStuff.jpg
i

Images/Tip.jpg

Images/Remember.jpg

Images/Warning(bomb).jpg

Images/778648 fgCN05.jpg
The 5“1 Wave By Rich Tennant
ORUTENNNT

the ram you need.”

Images/778648 fgCN06.jpg
The 5th Wave By Rich Tennant

[ORICHTENNANT

Images/778648 fgCN03.jpg
The 5th Wave By Rich Tennant
(CRCHTENNANT

BN

N

=
T

“We’re here to clean the code.”

Images/778648 fgCN04.jpg
The 5th Wave By Rich Tennant
|eRictTEnNanT

My job consists
of worKing with
the kKernel

Images/778648 fg1102.jpg
Global name assignment

a_book="man’s best friend”

Global name referenced locally

print “inside of THIS dog.
a book is still”, a_book

Images/778648 fg1701.jpg
Log all messages of “debug” level or higher

logging.basicConfig(level=logging.DEBUG,
format="%(asctime)s %(levelnames)s %(message)s’,
filename="/tmp/myapp.log’,
filemod e='w’) Specify a file to write logging
messages to and prepare the

Print the log message string using the file for writing

following format: %(asctime) specifies
a date and time format,

%(levelname) specifies a priority level,
%(message) specifies a message, ‘s’
specifies a string format.

Images/778648 fgCN01.jpg
The 5th Wave By Rich Tennant
ORiaTENNANT

“The engineers lived on Jolt and cheese sticks
putbing this product together, but i€ gyou
wanbed to just use ‘cola and cheese sticks’
in the Users Documentation, that’s okay

too. We're pretty loose around here.”

Images/778648 fgCN02.jpg
The 5th Wave By Rich Tennant
ORIATENNANT
\\@

“Ms. Gre’osl(g, tell ’o]r\e emplogees ’oheg can have
internet games on their computers again.”

Images/778648 fgAA01.jpg
Python 2.5b1 Setup X]

Customize Python 2.5b1

Select the way you want features to be installed.
Click on the icons in the tree below to change the way
features will be installed.

53~ | Register Extensions
2| Td/Tk

2+| Documentation
=~ Utiity Scripts

53~ Test sLite

Python Interpreter and Libraries

p U t h n This feature requires 14MB on your hard drive. It
has 5 of 5 subfeatures selected. The subfeatures
require 17MB on your hard drive.

r
windows

[Disk Usage] [Advanced <Back][Next> | [Cancel

Images/778648 fgAA02.jpg
.j IDLE.app

Images/778648 fg0203.jpg
IDLE 1.2bl
>>> for miles in range(10, 70, 10):
km = miles * 1.609
print "$d miles --> 33.2f kilometers" % (miles, km)

10 miles --> 16.09 kilometers
20 miles --> 32.18 kilometers
30 miles --> 48.27 kilometers
40 miles --> 64.36 kilometers
50 miles --> 80.45 kilometers
60 miles --> 96.54 kilometers

Images/778648 fg0202.jpg
000 Python Shell

Python 2.5bl (r25b1:47038M, Jun 20 2006, 16:17:55)
[GCC 4.0.1 (Apple Computer, Inc. build 5341)] on darwin
Type "copyright"”, "credits" or "license()" for more information.

Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external
interface and no data is sent to or received from the Internet.

IDLE 1.2bl
>>>

Images/WileyTitlePageLogo.jpg
WILEY
Wiley Publishing, Inc.

Images/778648 fg0205.jpg
IDLE 1.2bl
>>> def foo(x):

for i in x:

>>>
[DEB!

iy

print i,

UG ON]
>>> foo('hiya kitty')
h a

000 Debug Control

— —— —— —— ¥ Stack [Source
Step)(Over)(Out)(Quit) -,
@ERES " ¥ Locals ¥ Globals

<pyshell#3>:3: foo()

bdb'.run(), line 366: exec cmd in globals, locals
'__main__".<module>(), line 1: foo(’hiya kitty")

Locals
i
5 hiya kitty
Globals
__builtins__ <module '__builtin__' (built-in)>
__doc__ None
__name__ —Main_’

foo <function foo at 0x11b7270>

Images/778648 fg0204.jpg
Path Browser

£

1 /Library/Fi ks /Pyth
1 bsddb: package
compiler: package
ctypes: package
curses: package
distutils: package
email: package
mime: package
—-init__.py
application.py
audio.py
base.py
image.py
message.py

rk/Versions/2.5/lib/python2.5 0

N4

‘4

Y s 218

Images/778648 fg0601.jpg
Indexes, counting from right to left
0o -8 -7 -6 -5 -4 -3 -2 -1
Indexes, counting from left to right

0 1 2 3 4 5 6 7 8

w H

—_
t+
=
()
=
1)

/O 1 2 3 4 5 6 7 8 9
Slice indexes, counting from left to right S1ice indexes, jiiififgfjﬁgm right to left

0 =8 =7 =6 =5 =& =3 =2 =1

//////'[: :]\\\\\

Beginning of sequence End of sequence

Images/778648 fg0401.jpg
if _name_ == '_main_' :
startURL — sys_argv[1]
spider = Spider{startURL}

spider.runf}
for URL in sorted{spider.URLs
prin

or
}:

output file
screen

URLs 9
(set)

Links_to_process
(Tist)

Class Spider:

def_init_(self, startURL
| — self.URLs=set{}

self.URLs.add{startURL}
self.include=startURL

self._1inks_to_process={startURL}

if log is None: /
self.log=1og_stdout

else:
self.log=1og

lTog=None):

def To

def get_page(url,log):
try:

page=ur11ib2.urlopen(url)
except ur11ib2.URLError:
Tog("Error retrieving:" + url)
body=page.read{}
page.closef}
return body

def runf{self}:
while self._links_to_process:
url=self. 1inks_to_process.pop{}
self.log{"Retrieving:" + url

self.process_pagelurl} <—7 |
def url_in_site(self, Tink)

return link.startswith{self.include]

def find_Tinks(html):
writer=formatter.OumbWriter{StrinIO{]
f=formatter.AbstractFormatter{writer}
parser=html1ib.HTMLParser{f}
parser.feed{html}
parser.closef}
return parser.anchorlist

def process_page(self, url): =

html get_page{url,self.log}

for Tink in find_Tinks{html}:

link = urlparse.urljoin{url,link}
self.log{"Checking:" + 1ink}

if 1ink not in self.URLs and self.url_in_site(1ink}:
self.URLs.add{1ink}
self._links_to_process.append{1ink}

g_stdout(msg):
print msg

Images/778648 fg1101.jpg
Global name assignment

a_book="man’s best friend”

Local name assignment

a_/book:"too dark to read”

Images/uparrow.jpg

Images/WileycopyrightLogo.jpg

Images/778648 fg0201.jpg
@00 Terminal

Last login: Sun Jun 25 14:20:24 on ttyp2
Welcome to Darwin!

tpython

Python 2.5bl (r25b1:47038M, Jun 20 2006, 16:17:55)

[GCC 4.0.1 (Apple Computer, Inc. build 5341)) on darwin

Type "help”, "copyright", "credits" or "license" for more information.

>>> D

