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Foreword

Today, equity derivatives are used by hundreds of thousands of people around the world – not only sophisticated investors such as hedge funds, institutional investors, or investment banks, but also private investors. Their popularity is due to the wide array of applications they offer: directional strategies, risk hedging, volatility trading, structured products, to name a few.

This book will be an ideal partner for anyone discovering equity derivatives or who wants to learn more about them. The text is remarkably well structured and accessible, starting with basic concepts and slowly increasing the level of complexity. The problems and accompanying solutions add a lot of insight, and the two new chapters on volatility trading and exotic options are a must-read.

I was very pleased to be asked to write the foreword of this new edition from Sébastien Bossu under the authority of my colleague Philippe Henrotte at HEC Paris. Once again, Sébastien demonstrates his ability to combine his sleek and sharp academic style together with his first-rate practical experience. Along with his constant interaction with many market practitioners, he continues to successfully leverage off his ongoing personal research on some of the most topical pricing and modeling challenges faced by our always-evolving industry.

Olivier Bossard

Senior Managing Director

Head of Derivatives Trading EMEA at Macquarie Bank

Before joining Macquarie, Olivier Bossard has developed from scratch and led over a decade the exceptional growth of Lehman's Structured Products business in Europe. He has twenty years of experience as an exotic option trader, and has also been teaching Financial Engineering at HEC Paris Business School since 1998.





Preface

For this new edition of our 2005 title Finance and Derivatives we have considerably redrafted our text and focused our attention on equity derivatives which is our core area of expertise. There are two new chapters, numerous chapter additions, several new problems with solutions, more figures and illustrations, and more examples. As before our aim is to suit the needs of both professionals and aspiring professionals discovering the field. No prior knowledge in finance is assumed, the only required background is an undergraduate level in mathematics.

The chapters form a sequence of gradual difficulty which we grouped within three parts:


	Part I: Building Blocks (Chapters 1 to 4) covers the fundamental concepts used in quantitative finance: interest rates, the time value of money, bonds and yields, portfolio valuation, risk and return, diversification.

	Part II: First Steps in Equity Derivatives (Chapters 5 to 8) covers forward contracts, options and option strategies, the binomial model, the lognormal model, Monte-Carlo simulations, and dynamic hedging. This part only relies on discrete time concepts in order to remain widely accessible.

	Part III: Advanced Models and Techniques (Chapters 9 to 12) goes one level higher into continuous time finance and covers models for asset prices, stochastic processes and calculus, the Black-Scholes model, volatility trading, exotic derivatives, and advanced models.



Our approach was to focus on the fundamentals while covering a fair amount of practical applications. We endeavored to keep our text as concise and straightforward as possible, leaving non-essential concepts and technical proofs to problems of higher difficulty which are identified with an asterisk (*).

The 2007–2008 financial crisis highlighted the fact that derivatives were often poorly understood. We do not think that the solution is to ban them altogether: when you are in the passenger seat and have just escaped a fatal car crash after speeding, you typically don't get rid of the car. Rather, we believe that more information and training is needed in the field (along with better drivers), and we hope that this new edition will prove useful and insightful to a large audience.

Disclaimer

This is a book about finance intended for professionals and future professionals. We are not trying to sell you any security, or give you any investment advice. The views expressed here are solely ours and do not necessarily reflect those of any entity directly or indirectly related to us. We took great care in proof-reading this book, but we disclaim any responsibility for any remaining errors and any use to which the contents of this book are put.





Addendum: A Path to Economic Renaissance

The following opinion piece only reflects the personal views of the author and does not engage any other contributor to this book.

This new publication provides me with the opportunity to comment on the current economic and cultural climate, which has changed markedly since the last edition. In particular, derivatives came into the spotlight and have been heavily criticized.

I want to emphasize that equity derivatives are not inherently harmful. When used competently, derivatives can reduce risk or, more precisely, they allow investors to select certain types of risks over others. While it is true that credit derivatives compounded losses early on in the recent economic crisis, they are not to be blamed for the culture of “real estate envy”, cheap money and ostentation which then prevailed.

The crisis is far from being fully resolved. There is a distressing gap between the pessimism in mainstream political and management discourse, and the reality in large banks and corporations where profits are close to record highs and executive pay is on the rise.

To paraphrase Ronald Reagan, there is a rising sentiment that our leaders are the problem, not the solution, as expressed by many popular movements such as ‘Occupy Wall Street’. Rather than reshuffling cards in favor of the next generation – a process known as ‘creative destruction’ in Schumpeter's theory – we just seem to be doubling down on the people who failed.

It is urgent, in my opinion, to take actions to increase the circulation of wealth in the economy in order to restore confidence in economic growth and progress. A few years ago, in a joint op-ed article published by a respected French economics newspaper, I proposed to cut on income taxes, which would give a much-needed break to the middle class, and introduce in its place a small annual tax on individual net worth (i.e. assets minus liabilities.) Unfortunately this piece was not published in equivalent newspapers or magazines in the US and the UK, perhaps because it was then perceived as too unorthodox.

Meanwhile, I have been distressed by the flurry of extravagant proposals dominating the media space: salary caps, bans on speculation, bans on derivatives, taxes on financial transactions, to name a few. All these proposals would result in costly bureaucratic rigidities at a time when we need to foster entrepreneurship, mobility and innovation.

The desire to protect consumers is of course legitimate, but the best protection is often provided through transparency. For example, I have suggested that financial retailers clearly break down the price of investments they offer between the present values of their fees and wholesale costs. This would help consumers understand how much of their money is effectually spent on financial assets, and promote competition between providers.

Every financial investment, from buying a house to purchasing Treasury bonds or options, is speculative in nature. Some people manage to get rich very quickly through talent, vision and hard work, and that's admirable. Others manage to stay rich by promoting a culture of entitlement, status quo and cronyism, and we should resist against that.

I have no doubt we will get back on track as soon as the obvious choices are made. On the corporate side, expensive and redundant management layers must be cut in order to make room for new talent. On the political and economic side, we must promote a more equitable circulation of wealth. Above all, we must begin to select leaders not only because of their performance but also based on their ethics, bearing in mind the wisdom of ancient Greek philosophers who held that virtue cannot be taught: either you have it, or you don’t.

Sébastien Bossu, February 2012





Part I

Building Blocks





1

Interest Rate

In this chapter we review the idea of interest rate and the closely related concepts of compounding and discounting.

1-1 Measuring Time

In finance the standard unit of time is the year. But can we safely assume that a year has 365 days? What about the 366 days of a leap year? What fraction of a year does the first six months represent: 0.5, or 181/365 (except, again, for leap years)?

Financial markets have regulations and conventions to answer these questions. The problem is that these conventions tend to vary by country. Worse still, within a given country different conventions may apply to different financial products.

We leave it to readers to become familiar with these day count conventions while in this book we will use the following rule, which professionals call 30/360 (Table 1-1 below). Note that the initial date starts at noon and the final date ends at noon; thus, there is only one whole day between 2 February 2012 and 3 February 2012.

Table 1-1 The 30/360 rule for measuring time




	Rule

	Result

	Example: from 15 January 2012 to 13 March 2015






	1. Count the number of whole years
	Y
	3 (from 15 January 2012 to 15 January 2015)



	2. Count the number of remaining whole months and divide by 12
	M/12
	1/12 (from 15 January 2015 to 15 February 2015)



	3. Count the number of remaining days (the last day of the month counting as the 30th unless it is the final date) and divide by 360
	D/360
	28/360 (under the 30/360 convention there are 16 days from 15 February 2015 to 1 March 2015 at noon and 12 days from 1 March 2015 to 13 March 2015)



	TOTAL
	Y + M/12 + D/360
	3 + 1/12 + 28/360 = 3.161111…




From this rule we obtain the following simplified measures:




	Semester (half year)

	0.5 year



	Quarter (three months)

	0.25 year



	Month

	1/12 year



	Week

	7/360 year



	Day

	1/360 year








In practice…

The Excel function DAYS360(Start_date, End_date) counts the number of days on a 30/360 basis.






1-2 Interest Rate

In business life one can encounter two types of individuals whose interests are by definition opposed to each other:


	Investors, who have money and want to get richer while they remain idle;

	Entrepreneurs, who don't have money but want to become rich using the money of others.



Banks help to reconcile these two interests by acting as intermediaries, placing the money of the investor at the entrepreneur's disposal while taking the risk of bankruptcy (see Figure 1.1). In exchange, the bank demands that the entrepreneur pay interest at regular intervals, which serves to pay for the bank's service and the investor's capital.


Figure 1-1 Banks are intermediaries between investors and entrepreneurs

[image: ch01fig001.eps]


1-2.1 Gross Interest Rate

Consider an investor who deposits $100 and receives a total interest of $12 over 2 years. His gross 2-year interest rate is then 12%. Generally, if I is the total interest paid on a capital K, the gross interest rate over the period in consideration is defined as:

[image: Unnumbered Display Equation]





Examples


	€10 of interest paid over one year on a capital of €200 corresponds to a 5% annual gross interest rate.

	$10 of interest paid every year for five years on a capital of $200 corresponds to a 25% gross interest rate over five years, which is five times the above annual rate.








We must emphasize that an interest rate is meaningless if no time period is specified: a 5% gross interest rate every six months is far more lucrative than every year.

This rate is called ‘gross’ because it does not take into consideration the compounding of interest, which is explained next.

1-2.2 Compounding. Compound Interest Rate

When asked: “How much total interest does one collect after two years if the annual interest rate is 10%?,” a distressing proportion of individuals reply in a single cry: “20%!” However, the correct answer is 21%, because interest generates more interest. In fact, a good capitalist, rather than foolishly spend the 10% interest paid by the bank after the first year, would immediately reinvest it the second year. Therefore, his total capital after one year is 110% of his initial investment on which he receives 10% interest the second year. His gross interest over the 2-year period is thus: 10% + 10% × 110% = 21%.

Generally, starting with initial capital K one may build a compounding table of capital at the end of each interest period (Table 1-2):

Table 1-2 Compounding table of capital K at interest rate r over n periods




	Period

	Capital

	Example: r = 10%






	0
	K

	$2,000



	1
	K(1 + r)
	[image: inline]




	2
	K(1 + r)2

	[image: inline]




	…
	…
	…



	n

	K(1 + r)n

	[image: inline]





From this table we derive a formula for the amount of accumulated interest after n periods:

[image: Unnumbered Display Equation]

We may now define the compound interest rate over n periods corresponding to the total accumulated interest:

[image: Unnumbered Display Equation]

(To avoid confusion we prefer the notation r[n] over rn to indicate compounding over n periods, as rn typically denotes a series of time-dependent variables.)





Example

The total accumulated interest over 3 years on an initial investment of $2,000 at 5% semi-annual gross interest rate is I6 = 2,000 × (1 + 0.05)6 – 2,000 = $680. The compound interest rate over 3 years (6 semesters) is r[6] = 34%.






1-2.3 Conversion Formula

Two compound interest rates over periods τ1 and τ2 are said to be equivalent if they satisfy:

(1-1) [image: Numbered Display Equation] 

Here τ1 and τ2 are measured in years (for instance τ1 = 1.5 represents a year and a half) and [image: inline] are the equivalent interest rates over τ1 and τ2 years respectively.





Example

An investment at 5% semi-annual gross interest rate is equivalent to an investment at a 2-year compound rate of [image: inline].






Equation (1-1) is very useful to convert a compound rate into a different period from the “physical” interest payment period. A good way to remember it is to think that for a given investment all expressions of the form [1 + r[period]]frequency are equal, where frequency is the number of periods per year (the inverse of the period length).

1-2.4 Annualization

Annualization is the process of converting an interest rate into its annual equivalent. This allows one to quickly compare the profitability of investments whose interests are paid out over different periods.





In this book, unless mentioned otherwise, all interest rates are understood to be on an annual basis or annualized. With this convention, the compound interest rate over T years may always be written as:

[image: Unnumbered Display Equation]










Example

The annualized rate equivalent to a 5% semi-annual gross rate is:

[image: Unnumbered Display Equation]

from which we obtain the 2-year compound rate found in the previous example:

[image: Unnumbered Display Equation]






1-3 Discounting

‘Time is money.’ In finance, this principle of the businessman has a very precise meaning: a dollar today is worth more than a dollar tomorrow. Two main reasons may be put forward:


	Interest: one dollar today produces interest between today and tomorrow;

	Inflation: the increase in consumer prices implies that one dollar buys more today than tomorrow.



With this principle in mind the next step is to determine the value today of a dollar tomorrow – or generally the present value of an amount received or paid out in the future.

1-3.1 Present Value

If $100 invested today at 5% annual interest is worth [image: inline] in four years, how much is $100 received in four years worth today? The answer is given by a simple cross-division: [image: inline]. In other words $82.27 invested today at 5% interest rate grows to $100 in four years. This amount is called the present value of $100 received in four years.

Generally, the present value PV of an amount C paid or received in T years is the equivalent amount which, invested today at rate r, grows to C: [image: inline], i.e.:

[image: Unnumbered Display Equation]





Example

A European supermarket customarily pays its suppliers with a 3-month delay. With a 5% interest rate the present value of a delivery today of €1,000,000 worth of goods paid in 3 months is:

[image: Unnumbered Display Equation]

The 3-month payment delay is thus an implicit €12,123 discount, or 1.21%.







Figure 1-2 Compounding and discounting

[image: ch01fig002.eps]


Discounting is the process of computing the present value of various future cash flows. It is a key concept in finance which brings all future amounts to their equivalent value as of today. Figure 1.2 below shows how discounting and compounding are reciprocal processes.

1-3.2 Discount Rate and Required Return

In practice, the choice of the discount rate r is crucial when calculating a present value and depends on each investor's required return. The minimum required return is the interest rate offered by such “infallible” institutions as central banks or government treasury departments.

In the US, the generally accepted benchmark rate is the yield1 of the 10-year Treasury Note. In Europe, the 10-year Gilt (UK), OAT (France), or Bund (Germany) are used, and in Japan the 10-year JGB.

However, an investor who is willing to take more risk should require a higher return and use a higher discount rate r. In investment banking it is not uncommon to use 10% to 20% discount rates when assessing the profitability of such risky investments as financing a film production or providing seed capital to a start-up company.

1-4 Problems

Problem 1: Measuring time Calculate

in years the time that passes between 30 November 2014 and 1 March 2016 on a 30/360 basis. What is the annualized interest rate of an investment at a gross rate of 10% over this period?

Problem 2: Savings account

On 1 January 2012 you deposit €1,000 in a savings account. On 1 January 2013 the bank sends a summary statement indicating that you received €40 of total interest in 2012.


a. What is the gross annual interest rate of this savings account?

b. How much interest will you get in 2013?

c. Assuming interest is calculated and paid every month based on the account balance, how much interest would you have received if you had closed your account on 1 July 2012?


Problem 3: Ten years ago you invested £500 in a savings account. The last bank statement shows a balance of £1,030.52. What will your savings amount to in ten years if the interest rate stays the same?

Problem 4: From Greece with interest

You are a reputed financier and your personal credit allows you to borrow up to $100,000 at a rate of 6.5% (with a little bit of imagination). On 22 September 2011 the interest offered on 1-year “deposits” with the Greek government is 135%, and the exchange rate of one euro is $1.35. Your analysts believe that this exchange rate will remain stable during the coming year. Can you find a way to make money? Analyze your risks.

Problem 5: Sort the interest rates below from most lucrative to least lucrative:


a. 6% per year;

b. 0.5% per month;

c. 30% every five years;

d. 10% the first year then 4% the following two years.


Problem 6: Credit card

You receive a credit card offer with no minimum monthly payment and an annual interest rate of 17%, which is calculated and charged on your balance every month.


a. What is the compound interest rate charged by the credit card company if you pay off your balance after one month? Eighteen months? Five years?

b. Draw the curve of the compound interest rate as a function of time.

c. When will the amount of interest charged exceed the initial balance?


Problem 7*: Continuous interest rate


a. Consider the sequence [image: inline] for [image: inline]. Show that (un) has limit e (Euler's constant: e ≈ 2.71828.) Hint: [image: inline] for small h.

b. If A2 is a savings account with a 5% annual interest rate split into two payments of 2.5% every 6 months, what is the corresponding annualized interest rate r2?

c. Let An be a savings account with an annual interest rate of 5% split into n payments. Find the corresponding annualized interest rate rn as a function of n.

d. Find the limit r of rn as n goes to infinity. How would you interpret the rate r?


Problem 8: Discounting. Using a discount rate of 4% per annum, calculate the present value of:


a. €100,000 in one year?

b. €1,000,000 in ten years?

c. €100,000 ten years ago?


Problem 9: Expected return

After hesitating at length Mr Smith, an accomplished investment banker, eventually renounced an investment project offered at 30 million pounds sterling against a promised payoff of one billion pounds in twenty years’ time. Can you estimate his required return?

Problem 10: Today's value of one dollar tomorrow

On 14 April 2005 the annualized interest rate on an overnight dollar deposit (i.e. between 14 April and 15 April 2005) was 2.77%. Calculate ‘the value today of a dollar tomorrow,’ that is the present value as of 14 April 2005 of one dollar collected on 15 April 2005.

Problem 11: Tuition planning

Mr and Mrs Jones are planning for their ten-year-old daughter Anna's future college education. According to College Board, a nonprofit membership association of more than 3,900 schools, colleges, and universities in the US, tuition at four-year private colleges and universities averaged $27,293 per year in 2010–11. The Jones have $20,000 in available savings and their bank offers a special deposit account with 5% guaranteed interest rate until Anna graduates from high school at the expected age of 18.


a. Assuming no inflation in tuition costs and a $20,000 initial deposit, calculate how much the Joneses must save every year if they wish to cover for Anna's college education in full (room and board excepted)?

b. In 2000–01 college tuition averaged approximately $20,308. Calculate the corresponding annualized inflation rate, and re-answer the previous question taking tuition inflation into account.


Problem 12*: Rule of 72

In 1494, the Italian mathematician Luca Paciola wrote without proof: “In wanting to know for any percentage, in how many years the capital will be doubled, you bring to mind the rule of 72, which you always divide by the interest, and the result is in how many years it will be doubled. Example: When the interest is 6 percent per year, I say that one divides 72 by 6; obtaining 12, and in 12 years the capital will be doubled.” Show that this is approximately correct when the annual interest rate r is small enough. Hint: [image: inline] for small h.

1. See Section 3-3 p.24 for the definition of yield.





2

Classical Investment Rules

In this chapter we review some of the classical rules used by financiers to assess the profitability of investment projects and decide whether or not to implement them.

2-1 Rate of Return. Time of Return

2-1.1 Gross Rate of Return (ROR)

The gross rate of return (ROR, also called return on investment or ROI) on a $1,000 investment generating a total income of $150 over 2 years is simply the ratio 150/1,000 = 15%. The ROR generalizes the concept of interest rate to any type of investment, such as buying a financial security1 or upgrading a factory with new equipment. In general:

[image: Unnumbered Display Equation]

Note that in the case of a financial security such as a corporate stock, the change in price would be treated as earnings. If P0 is the initial price, PT the final price, and the security pays off a revenue R in-between, the gross rate of return over the period [0, T] is:

[image: Unnumbered Display Equation]





Example

ABC Inc.'s stock trades at $100 and analysts predict a $4 dividend per share. If the price of ABC Inc. a year later is $110, the 1-year ROR would be:

[image: Unnumbered Display Equation]






The ROR may be compared to the required return of an investor to decide whether to go ahead with the investment.

2-1.2 Time of Return (TOR)

Assume that our 2-year investment at 15% ROR delivers the same level of profitability over successive 2-year cycles (think of factory equipment which permanently increases productivity). How long must we wait before we get our initial $1,000 expense back? The answer is 1/15% ≈ 6.67 cycles of 2 years, i.e. about 13 years and 4 months, as illustrated in Figure 2-1 below.


Figure 2-1 Time of return and investment cycles

[image: ch02fig002.eps]


This number is sometimes called the time of return or the payback period of an investment:

[image: Unnumbered Display Equation]

The TOR measures the number of periods an investor has to wait until the initial cost is returned to him or her in earnings, assuming the latter remains constant and regular in time.

2-2 Net Present Value (NPV)

The gross rate of return is easy to calculate but only takes one period into consideration. When an investment generates several cash flows at different points in time, it is better to calculate its net present value (NPV). By convention, a positive cash flow corresponds to an in-pocket gain for the investor, and a negative cash flow corresponds to an out-of-pocket expense, as illustrated below:

[image: Unnumbered Table]

Cash flow tables are the bread and butter of financiers and accountants. There is, however, one major difference between the two professions: the accountant contemplates cash flows from the past while the financier fantasizes over future cash flows and entirely disregards past cash flows. This point is important to remember when historical data is provided, or when reasoning forward in time.

Given a cash flow table, the financier's first step is to discount the cash flows and calculate their aggregate present value (see Section 1-3.1 p.7):

[image: Unnumbered Table]

If the investment cost C0 is already known, the net present value is defined as the aggregate present value net of the initial cost:

[image: Unnumbered Table]

There are then three cases:


	NPV > 0: The investment is profitable and may be carried out (as shown in the example).

	NPV < 0: The investment would be at a loss and should be rejected.

	NPV = 0: The investment is neutral (theoretical case).



As always, the problem of selecting the appropriate discount rate is difficult and raises the issue of the investor's required return. Nevertheless the NPV is a better measure of an investment's profitability than the ROR because it takes interest compounding over multiple periods into account. It is the basic investment rule used by professionals.

2-3 Internal Rate of Return (IRR)

We can reverse the problem of selecting the discount rate and calculate instead the internal rate of return r which makes the NPV equal zero, in other words find the indifference point for the investor. In mathematical terms the IRR is the solution r* to the equation r*, i.e.:

[image: Unnumbered Table]





Example

The IRR of the investment given in example is [image:  ]. Using a calculator we may verify that:

[image: Unnumbered Display Equation]

The IRR rule is equivalent to the NPV and must be compared to the investor's required return to decide whether the investment should be accepted or rejected.










In practice…

The Excel functions XNPV and XIRR calculate the NPV and IRR of a cash flow table. You must install the ‘Analysis ToolPack’ add-in to access these functions. Note that these functions do not follow the 30/360 day count convention, which may result in small discrepancies.

[image: Unnumbered Table]






2-4 Other Investment Rules

Many accounting rules are also used in finance to assess the suitability of an investment, especially for corporate stocks. These rules are beyond the scope of this book and we only mention the most prevalent one: the Price-to-Earnings Ratio (PER or P/E), which is simply the TOR for a listed company. It is given as:

[image: Unnumbered Display Equation]





Example

On 31 December 2010, General Motors’ stock price closed at $36.86, while the 2010 earnings per share were $2.88; its PER was thus 36.86/2.88 ≈ 12.8. This means that the stock price is worth nearly 13 years of profits. In other words, a new stockholder would have to wait for 13 years before General Motors’ earnings would pay back his initial investment, assuming they remain constant and are entirely redistributed as dividends.






Figure 2-2 above shows the history of the average PER for two stock indexes: the S&P 500, which includes the largest 500 US companies by market capitalization, and the Nasdaq Composite, which includes 3,000 technology and growth companies. In July 2011, the average PER was about 15 for S&P 500 companies and 24 for Nasdaq companies. Observe how the Nasdaq PER reached unprecedented levels during the Internet bubble in 2000–01.


Figure 2-2 PER of S&P 500 and Nasdaq since 1980

(Source: Bloomberg)

[image: ch02fig003.eps]


Rapidly growing companies have a high PER: they reinvest their profits into their growth and do not redistribute much to stockholders. However, since their stock prices often increase at a faster pace, stockholders have the opportunity to be compensated through capital gains.

Conversely companies which have reached their maximum expansion have a low PER: they do not need to further invest in their activity and therefore redistribute most of their profits to stockholders. Dividends become regular and predictable and the stock price is close to the present value of the dividend flow.

2-5 Further Reading


	On ROR and IRR: Frank J. Fabozzi (2005) The Handbook of Fixed Income Securities 7th Edition, McGraw-Hill Trade: Chapter 6.

	On present value and investment decisions: Stephen A. Ross, Randolph W. Westerfield and Bradford D. Jordan (2008) Fundamentals of Corporate Finance Standard Edition: Chapters 6, 9, and 10.



2-6 Problems

Problem 1: ROR and TOR

What is the annualized rate of return and time of return of:


a. A security purchased at $350 which analysts predict to be worth $400 in eighteen months;

b. A winning lottery ticket purchased for €10 which will redeem €20 in one week;

c. A security purchased for £1,000 which pays £100 in cash next year and whose price is thought to decrease by 5% after this payment;

d. A ‘payday loan’ at the rate of $4 due in a month for every $3 borrowed?


Problem 2: NPV and IRR

You are offered an investment project with the following cash flows:




	t (years)

	2
	4



	Cash flow (% of initial investment)

	−10
	+150





a. Calculate the NPV at 5% and 15% annual discount rates. Briefly comment on your results.

b. Calculate the IRR. You may either use a calculator or analytically solve the IRR equation.

c. What do you think of this investment?


Problem 3: Required return

Mr Smith offers an investment project with the following cash flows:

[image: Unnumbered Table]


a. What maximum price X are you willing to pay for this project if the relevant interest rate offered by the US Treasury is 4% per annum?

b. Where does Mr Smith estimate your required return if X = $15mn?


Problem 4*: Perpetuity, dividends, and stock value


a. Show that for any real number [image:  ].

b. Using a 5% discount rate, determine the present value of a ‘perpetuity’ investment which pays an annual cash flow of $5 forever. What is the IRR if the cost of the perpetuity is $105?

c. At the annual stockholders’ meeting of Sky Inc., a dividend distribution of $3 per share was voted. The CEO also announced that he was committed to increase the dividend by 1.5% every year. Calculate the theoretical value of Sky Inc.'s stock using a 4% annual discount rate.


Problem 5: Return and inflation

An apartment in Paris is listed at €425,000. You reckon that you could rent out the apartment at €1,500 per month for the next 20 years, and that its value in 20 years would be the same or higher.


a. What would your IRR be if there is no real estate inflation? Hint: 1 + x + x2 + [image:  ] + xn = (1 − xn+1)/(1 − x)

b. What would your IRR be if there is a 2.5% annual inflation (monthly rent and resale price)?


Problem 6: Impact of corporate announcement

On 31 December 2011 the stock price of MetroTech SpA is €150 and analysts predict the following earnings per share (EPS) for the next 5 years:

[image: Unnumbered Table]

Analysts also estimate that MetroTech SpA will make no profits after 2016.


a. What is the current PER of MetroTech SpA?

b. What is the value of MetroTech SpA to an investor who requires a 10% annual return?

c. What is the market's expected return on MetroTech SpA?

d. At a press conference, the CEO announces a project which will reduce the 2012 EPS by €5 and then increase future EPS by 10% from 2013 onwards. Can you estimate how the market will react?


1. See Section 3-1.1 p.19 for the definition of a financial security.




3

Fixed Income

In this chapter we introduce financial securities, portfolios, and markets, and then focus on bonds and the yield curve.

3-1 Financial Markets

3-1.1 Securities and Portfolios

A financial security is a legal contract whereby two or more parties agree to exchange future cash flows.





Examples


	A company's stock is a financial security whose cash flows are the dividends.

	A fixed-interest rate loan is a financial security whose cash flows are the interest and principal repayments.








By extension certain assets1 such as commodities and currencies are sometimes assimilated to securities even though there are no cash flows.

A financial portfolio is a collection of financial securities. By convention, a portfolio's cash flow at any given time is the sum of its securities’ cash flows weighted by their quantities, as illustrated in Table 3-1 below.

Table 3-1 Portfolio made of 10,000 units of security A and 5,000 units of security B

[image: Table 3-13]

3-1.2 Value and Price

Price is simply what you pay to own a security. Value is what it is worth to you. Price and value need not be equal.





Example

Mary is the manager of portfolio P shown in Table 3-1 above. Her target yield is 4% per annum. Using this figure as discount rate, she calculates that the portfolio's present value is $3,041,790. Pressed by her boss to sell the portfolio, she arranges an auction. The best buyer's quote is $3,000,000 and she trades at that price.






To present this in more detail:


	The value of a security is a positive or negative amount corresponding to the anticipated change in wealth of its owner. There may be several valuation methods producing different values for the same security. When there is no uncertainty on the cash flows, the standard valuation method is the present value (see Section 1-3.1 p.7 and Section 2-2 p.12).

	The price of a security is the amount of money agreed upon by two parties to trade that security. Typically the buyer pays the price to the seller but it may happen that the seller must pay the buyer in order to get rid of a security with negative value. Note that buyer and seller need not agree on “the” value of the security; and even if they do, nothing forces them to set the price at such value.



Price and value are often used interchangeably. Throughout this book, we have endeavored to maintain the distinction.

3-1.3 Financial Markets and Short-selling

Financial markets are physical or virtual marketplaces where one can buy and sell financial securities. They include organized exchanges (NYSE Euronext, Nasdaq, London Metal Exchange …), as well as all over-the-counter (OTC) interactions taking place outside of exchanges (see Figure 3-1 overleaf).


Figure 3-1 Financial markets include organized exchanges as well as OTC interactions

[image: ch03fig003.eps]


Investors are normally allowed to short-sell securities they do not own.2 This way, market participants may buy and sell securities at any time according to their views, and the law of supply and demand is continuously verified. Note that a short-seller must pay all the security cash flows to the buyer.





Example

After a corporate announcement, Sarah believes that the stock price of Bust Inc. will go down but she does not possess it in inventory. In the market, Bob is showing a bid price which is 5% lower than the last traded price. Sarah decides to short-sell the stock to Bob. Two months later Bust Inc. pays a dividend of 20¢ per share to its stockholders. Since Sarah is still short of the stock at this time she must pay this amount to Bob.






3-1.4 Arbitrage

Whenever an investor may trade securities for a positive profit (either today or at a future date) at strictly no cost and no risk, we say there is an arbitrage opportunity.





Example

Imagine there are two securities on the market both priced at €99: security STEEP, paying off €100 in 6 months, and security CHEAP, paying off €110 in 6 months. We could then make infinite amounts of money by repeatedly buying CHEAP and selling STEEP:




	
	Cash flows




	Transaction

	Today

	6 months later






	Sell STEEP

	+€99
	−€100



	Buy CHEAP

	−€99
	+€110



	Total

	0 (no cost)

	+€10 (positive profit)










Sadly, if unsurprisingly, arbitrage opportunities are extremely rare. This is why financial theory always assumes the absence of arbitrage opportunities. At any rate, an arbitrage opportunity on the market could only exist for a very short period of time: in the above example all rational investors would buy CHEAP and sell STEEP, moving the prices of STEEP down and CHEAP up until the arbitrage disappears.

The no-arbitrage assumption, also called the ‘no-free-lunch rule’ or the ‘law of one price,’ allows us to find rules for the price of certain securities.

3-1.5 Price of a Portfolio

The distinction between value and price applies to portfolios of securities as well. However, under the assumptions of no arbitrage and infinite liquidity,3 the arbitrage price of a portfolio of securities is simply the sum of each security's price multiplied by its respective quantity. Here ‘arbitrage price’ means that trading the portfolio at a different price would lead to an arbitrage opportunity, as illustrated in the example below:





Example

Consider a portfolio P made of 2 units of security A priced at €100 and 1 unit of security B priced at €50, with the following cash flows:

[image: Unnumbered Table]

The arbitrage price of P is €250, as proved below:


	Suppose that P had a market price X > 250. In this case investors could carry out an arbitrage strategy by short-selling P at price X and buying 2 units of A and 1 unit of B for €250. Such a strategy would result in a profit of X – 250 > 0 today without any future cost:



[image: Unnumbered Table]


	Conversely, if we suppose that the market price of P is X < 250, investors could also make an arbitrage by buying P and short-selling 2 units of A and 1 unit of B.



Thus, in the absence of arbitrage opportunities, the market price of P must be €250, which is the weighted sum of the prices of securities A and B.






3-2 Bonds

Bonds are debt securities. The 2007–08 financial crisis abruptly reminded us that when lending money it is crucial to properly assess the borrower's capacity to repay. This is a difficult and widespread issue encompassing many practical areas of finance, from credit cards to mortgages to the funding of old and new businesses.

To keep matters simple we only consider bonds issued by the government and assume that they are default-free. This is already an oversimplification: some governments did default on their bonds in the past (e.g. Argentina in 2002) or are perceived to be more likely to default than others in the future (e.g. Greece vs. Germany in 2010–11).

3-2.1 Treasury Bonds

A treasury bond is a government-issued security with the following characteristics:


	A face value N (also called par amount, principal amount, or sometimes notional amount): the amount borrowed;

	A maturity date T: the date when the principal must be repaid;

	A series of coupons [image:  ] interest amounts paid at dates t1, t2, … , T.



Typically all coupon amounts are equal and expressed as a percentage of the face value, which is conventionally set at 100 if unspecified. Below is what a treasury bond's cash flows look like:

[image: Unnumbered Table]

3-2.2 Zero-Coupon Bonds

Zero-coupon bonds are bonds which pay no coupon: only the principal is repaid at maturity. Short-term bonds whose maturity is less than one year at issuance are usually zero-coupon bonds.

Zero-coupon bonds play an important role in financial theory (see Section 3-4 below).

3-2.3 Bond Markets

Bonds are issued by a government's treasury department through auctions on the primary market at a price close to the par amount N. Once issued they are traded on the secondary market at a fluctuating price. At maturity, bondholders surrender their securities to the issuer who repays the par amount N. At each coupon date (typically at every anniversary of the issue date) coupons are ‘detached’ and bondholders receive the coupon amount from the issuer.

3-3 Yield

Bond analysis essentially deals with two problems:


	Relative value analysis: Compare two bonds whose prices are known;

	Fundamental value analysis: Find the value of a bond whose price is unknown.



The classical approach, still commonly used in practice, relies on the concept of yield to maturity.

3-3.1 Yield to Maturity

Given the price P of a bond one may calculate its internal rate of return (see Section 2-3 p.13) which is called yield to maturity or simply yield. A bond's yield y is thus the solution to the equation:

[image: Unnumbered Display Equation]

Note that when the yield y increases the price P must decrease: ‘when rates go up, prices go down.’





Example

On the European market a 5-year bond with an annual coupon of 5% is priced at €99 while a 3-year bond with an annual coupon of 3% is priced at €95. Even though the 5-year bond is more expensive, its 5.23% yield is higher than the 4.83% yield on the 3-year bond. We may indeed verify that:

[image: Unnumbered Display Equation]

and:

[image: Unnumbered Display Equation]






3-3.2 Yield Curve

Investors tend to prefer short maturity bonds for the following two reasons:

	Lower interest rate risk: The yield of a bond reflects the investor's actual wealth accrual only if




a. the investor is able to reinvest each detached coupon at the same yield, and

b. the investor holds the bond to maturity.
This could happen if the central bank did not change the interest rate, in which case bond yields would be stable over time. Since the central bank does change the interest rate, the price and yield of bonds fluctuate and an investor would normally prefer short-term bonds to avoid being locked up for too long with, e.g. a 4% yield when the interest rate is at, e.g. 8%.




	Lower default risk: Even though governments typically have a low default risk, the probability of default is nevertheless higher for long maturities (e.g. 30 years) than short maturities.



Issuers, on the other hand, tend to prefer long maturities in order to spread their debt over time. This divergence between demand (investors) and supply (issuers) normally results in long-maturity yields being higher than short-term ones. In other words the yield curve (also called the ‘interest rate term structure,’ that is the structure of rates as a function of maturity or ‘term’), usually slopes upward as illustrated in Figure 3-2 below.


Figure 3-2 Yield curve of US government bonds as of 16 May 2011

(Source: Bloomberg)

[image: ch03fig004.eps]


In practice there are three typical shapes of the yield curve:


	Upward sloping: This is the most common case: the longer the maturity the higher the interest rate risk and default risk, which translate into a higher yield.

	Downward sloping: This happens when the market expects rates to decrease in the future.

	Flat: y ≡ r (where r is constant). This is a theoretical case in which all rates are assumed to be the same regardless of maturity.



3-3.3 Approximate Valuation

Using the yield curve one may compute the approximate value [image:  ] of a bond whose price is unknown. To do this:


1. Linearly interpolate the yields of the two bonds whose maturities T1, T2 tightly bound the target maturity T:
[image: Unnumbered Display Equation]


2. Compute the present value of the bond using the interpolated yield [image:  ]:
(3-1) [image: Numbered Display Equation] 







Example

On the European bond market a 5-year bond with 5% annual coupon has a 5.23% yield, and a 3-year bond with 3% annual coupon has a 4.83% yield. The interpolated 4-year yield is thus:


[image: Unnumbered Display Equation]

and the approximate value of a 4-year bond with 7% annual coupon is:

[image: Unnumbered Display Equation]

[image: eps]






3-4 Zero-Coupon Yield Curve. Arbitrage Price

The concept of yield to maturity has only one merit: it makes gullible investors think that bond analysis is easy. We show the limits of this concept with an example.

Consider two bonds A and B both maturing in 2 years and having a $1,000 face value. Bond A pays a $100 coupon every year and bond B pays only one coupon of $1,000 after one year, as shown below:




	Maturity

	1

	2






	Bond A
	100
	1,100



	Bond B
	1,000
	1,000




Suppose that the bond prices are $1,000 for A and $1,735 for B. Which bond should we recommend buying?

The classical approach tells us to compare yields. But here the two bonds have the same yield: yA = yB = 10%. Does this mean that one should be indifferent to buying A or B?

To help answer this question, suppose that a better-informed investor also looks at a zero-coupon bond C maturing in 1 year and priced at $90.91 for $100 face value. While gullible investors ponder over the pros and cons of investing in A or B, the better-informed investor can make infinite amounts of money by repeating the following arbitrage strategy:

[image: Unnumbered Table]

This example shows why there is more to bond analysis than computing a yield to maturity. In fact, arbitrage-free bond analysis relies on the concept of zero-coupon yield.

3-4.1 Zero-Coupon Rate Curve

The zero-coupon rate curve is the arbitrage-free version of the yield curve. In mature markets such as US or French government bonds, the zero-coupon rate curve is directly observable on ‘strips’ which are government-issued zero-coupon bonds. In other markets it can be inferred from standard treasury bonds using the ‘bootstrapping’ method (see Section 3-4.3 below).

Specifically, given a zero-coupon bond with face value N, maturity T, and price P, the zero-coupon rate for maturity T is given as:

[image: Unnumbered Display Equation]





Examples


	The 4-year zero-coupon rate corresponding to a 4-year zero-coupon bond priced at $90 is:

[image: Unnumbered Display Equation]

	On the US bond market the zero-rate curve is directly observable:




Figure 3-3 Zero-coupon rate curve of US government bonds as of 16 May 2011

(Source: Bloomberg)

[image: ch03fig005.eps]







3-4.2 Arbitrage Price of a Bond

Given a zero-coupon rate curve z(t) we can find the arbitrage price P of any bond with face value N, maturity T, and coupons [image:  ] paid at dates t1, t2, … , T:

(3-2) [image: Numbered Display Equation] 





Example

Using the zero-coupon rate curve shown in Figure 3-3 above, the arbitrage price of a 5-year bond with 5% coupon is:

[image: Unnumbered Display Equation]





Equation (3-2) extends the present value formula from Section 2-2 p.12 and generalizes to any fixed income security4 paying a series of n cash flows [image:  ] at future dates t1, t2, [image:  ] , tn:

[image: Unnumbered Display Equation]

The formal proof of this result is based on a decomposition of the security's cash flows into a portfolio of zero-coupon bonds (see Problem 12).

3-4.3 Zero-Coupon Rate Calculation by Inference: the ‘Bootstrapping’ Method

As mentioned in Section 3-4.1 above, we may infer the zero-coupon rates from the prices of standard bonds if we assume that there is no arbitrage opportunity on the bond market. This is done by solving a system of linear equations, provided that all cash flow dates coincide.5 We illustrate this approach known as ‘bootstrapping’ with an example.

Consider three bonds A, B, C with the following cash flows:

[image: Unnumbered Table]

Our aim is to find zero-coupon rates z(1), z(2), z(3) which satisfy:

[image: Unnumbered Display Equation]

Writing [image:  ] we obtain the more familiar system of linear equations:

[image: Unnumbered Display Equation]

whose solution is:

[image: Unnumbered Display Equation]

Note that the ‘discount factors’ x1, x2, x3 are the respective prices of 1-year, 2-year, and 3-year zero-coupons with a face value of 1. Reverting to z through the definition of x we obtain the zero-coupon rates:

[image: Unnumbered Display Equation]

3-5 Further Reading

	On bonds and the yield curve: Frank J. Fabozzi (2005) The Handbook of Fixed Income Securities 7th Edition, McGraw-Hill Trade: Chapters 1, 3, 4, and 5.

	On markets, arbitrage and short selling: John C. Hull (2009) Options, Futures and Other Derivatives 7th Edition, Prentice Hall: Chapters 1 and 5.

	On bonds: Stephen A. Ross, Randolph W. Westerfield, and Bradford D. Jordan (2008) Fundamentals of Corporate Finance Standard Edition: Chapter 7.



3-6 Problems

Problem 1: Yield

Compute the annual yield of the following bonds:


a. Bond A – maturity: 30 years, annual coupon: 5%, price: €100.

b. Bond B – maturity: 2 years, annual coupon: 6%, price: £106.

c. Bond C – maturity: 1 year, zero coupon, price: $95.

d. Bond D – maturity: 13 years, face value: $1,000, semi-annual coupon: $50, price: $1,000.


Problem 2: Yield curve

How would you interpret the shape of the following yield curve in terms of investors’ anticipations of future interest rates?


[image: eps]



Problem 3: True or False?

“On 1 January 2012 the 3-year yield is 4%. I can choose between bond A with 3% coupon and maturity date 15 November 2014, and bond B with 4.5% coupon and maturity date 15 February 2015. I should buy B because its coupon rate is higher than the 4% market yield.”

Problem 4: Maximum return on a bond


a. You just bought a 1-year bond with 4% annual coupon for $98. What is your annual return if you hold the bond to maturity?

b. One month later the yield curve collapses to zero. What is your gross return over 1 month? Is it better than the return found in question (a)?

c. In general, what is the maximum gross return an investor can get on a bond with price P, annual coupon C, and a maturity of T whole years?


Problem 5*: Liquidity and arbitrage price of a portfolio

Explain why the assumption of infinite liquidity is needed to derive the arbitrage price of a portfolio in Section 3-1.5 p.22.

Problem 6: Approximate valuation

Using the yield curve of Figure 3-2 p.25, estimate the value of a bond with 5% annual coupon and maturity 15 May 2022.

Problem 7: Bond arbitrage

On the UK bond market investors can buy and sell:


	Bond A – maturity: 1 year, zero coupon, face value: £100, price: £90

	Bond B – maturity: 2 years, face value: £1,000, annual coupon: £50, price: £945

	Bond C – maturity: 2 years, face value: £1,000, annual coupon: 10%, price: £990



Can you find an arbitrage strategy which has no cost today and will make a profit in 2 years?

Probem 8: Dividend announcement

At the annual stockholders’ meeting of Tankai Corp., a high-tech company headquartered in Tokyo, a dividend distribution of ¥400 per share was voted. The market reacted positively to the news and the stock price is about to close at ¥10,000. The dividend will be paid overnight to every owner of the stock, and the stock price will open the following day at level S.


a. Suppose you know in advance that S > ¥9,600. Find an arbitrage strategy.

b. Suppose you know in advance that S < ¥9,600. Find an arbitrage strategy.

c. What can you conclude?


Problem 9: Arbitrage price

Using the zero-coupon rate curve in Figure 3-3 p.28, calculate the arbitrage price of a 10-year bond with $500 face value and 6% annual coupon.

Problem 10: Zero-coupon bond portfolio

Using the following zero-coupon rate curve, build a bond portfolio which costs nothing and makes $10,000 if all rates go up 25 basis points (i.e. a +0.25% parallel shift). There are several possible answers to this problem.

[image: Unnumbered Table]

Problem 11: Zero-coupon rate curve

On the German bond market investors can buy and sell:


	Bond A – maturity: 1 year, zero coupon, price: €97

	Bond B – maturity: 2 years, fixed annual coupon, yield: 4%, price: €100

	Bond C – maturity: 3 years, annual coupon: 4%, price: €95



Find the 1-, 2-, and 3-year zero-coupon rates.

Problem 12*: Arbitrage price formula

Let A be a financial security that pays 3 annual cash flows F1, F2, F3, and let X, Y, Z be the 1-, 2-, 3-year zero-coupon bonds with face value 1 and prices PX, PY, PZ respectively.


a. Show that the arbitrage price of A is: [image:  ]

b. Compare P with the arbitrage price formula (Equation (3-2) p.28).


Problem 13: Price sensitivity and convexity. It is recommended to use a spreadsheet to solve this problem.

Suppose the US zero-coupon rate curve is given as:

[image: Unnumbered Table]

Consider the following three bonds with face value $100:




	Bond

	Maturity

	Annual Coupon






	X
	4 years
	8%



	Y
	7 years
	9%



	Z
	5 years
	–





a. Calculate the arbitrage price of each bond.

b. The price sensitivity of a bond (also known as the ‘dollar value of one basis point’ or DV01) is defined as the change in price when all rates go up 1 basis point (i.e. a +0.01% parallel shift of the entire zero-coupon rate curve). Compute the price sensitivity of each bond.

c. Calculate the price of each bond in the following scenarios:
i. 10 basis point rate increase (+0.10%);

ii. 1 point rate increase (+1%).


d. Compare your respective answers to question (c) with:
i. 10 times the price sensitivity;

ii. 100 times the price sensitivity.


e. Based on this comparison, do you think that price sensitivity is a good indicator of the interest rate risk which bonds are exposed to?

f. (*) Suppose that the zero-coupon rate curve is flat at rate r. Using a second-order Taylor expansion in r, identify a secondary indicator for the interest rate risk of a bond.


Problem 14: Zero-coupon rate curve and expectations.

The short-term zero-coupon rate curve of the euro zone is given as:

[image: Unnumbered Table]

The current refinancing rate of the European Central Bank (ECB) is at 2.75%. This is the rate at which banks can borrow from the ECB for 2 weeks. The ECB Board of Governors will meet in 2 weeks and potentially decide on a new refinancing rate R.


a. Without making any calculation can you guess if the market expects the ECB to:
i. Lower its rate by 25 bps (i.e. R = 2.5%)?

ii. Leave its rate unchanged (i.e. R = 2.75%)?

iii. Raise its rate by 25 bps (i.e. R = 3%)?

iv. Raise its rate by 50 bps (i.e. R = 3.25%)?

v. Any other scenario?


b. The treasury department at Lezard Brothers, a reputed investment bank, must find €100mn in cash for the coming month. Find two ways to achieve this objective. What are the corresponding borrowing costs?

c. Does your answer to question (b) support or invalidate your answer to question (a)?

d. Fadeberg News, a financial news agency, recently published the following survey of the predictions from leading financial economists at top investment banks:





	Rate R

	Number of predictions






	25 basis point drop
	0



	Unchanged
	3



	25 basis point hike
	21



	50 basis point hike
	6




Based on this survey, Bernard Bull, a trader at Lezard Brothers, thinks that the 1-month zero-coupon rate of 2.92% is overvalued and comes to you, the head of trading at Lezard Brothers, with the following strategy:


	Invest €100mn at 2.92% over one month;

	Borrow €100mn at 2.75% for 2 weeks;

	In 2 weeks, roll over and borrow €100mn at rate R for 2 weeks.



i. Bernard says his strategy is a “fantastic arbitrage opportunity.” Do you agree?

ii. Calculate the profit or loss of this strategy in each of the scenarios in the survey.

iii. Do you give a thumbs up to Bernard? There is no unique answer to this question.



1. See Chapter 4, Footnote 1 for the definition of an asset.

2. In practice, a market participant who is short e.g. 1,000 stocks must immediately borrow them back from other participants on a short-term rolling basis, until he has repurchased the entire lot. This borrowing mechanism has a cost which depends on the quantity of available shares in circulation: the scarcer the security, the higher its borrow cost.

3. A security is liquid if it can be purchased and sold in large quantities without affecting its price. In this book we always assume infinite liquidity; in other words we assume that we can buy and sell any given security in any desired quantity.

4. A fixed income security is any financial security whose cash flows are fixed, i.e. known in advance. A standard bond with predetermined coupons is a fixed income security. A stock is not a fixed income security because it pays variable dividends tied to the company's profits.

5. In practice a variety of fixed income securities are used to determine the zero-coupon curve and their dates rarely match. A linear interpolation between the closest dates is commonly used to circumvent this problem.






End of sample
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Note: formulas at an arbitrary time > 0 are obtained by substituting T — for T.
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