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To Nina, Alexander, and Daniel

Preface


Throughout a long career as a statistician, I have frequently found myself wrestling, in one way or another, with issues of bias and causation. As a methodologist, researcher, consultant, or expert witness, I have had to propose, justify, or criticize many varieties of causal statements. My training in mathematics and statistics prepared me well to deal with many aspects of the diverse, and occasionally bizarre, problems I have chanced to encounter. However, the statistical theory I studied in graduate school did not deal explicitly with the subject of causal inference, except within the narrow confines of randomized experimentation.

When I entered the “real world” of statistical research and consulting, the problems I regularly faced were not amenable to strict experimental control. They typically involved causal effects on human health and behavior in the presence of observational data subject to many possible sources of bias. To attack these problems, I needed analytic weapons that were not in my statistical arsenal. Little by little, I found myself being transformed into a practitioner of some dark art that involved statistics, but that drew as well on intuition, logic, and common sense.

The nature of this evolution can be best illustrated by an anecdote. The first legal case in which I provided statistical expertise was an employment discrimination lawsuit against a Boston-based Fortune 500 company. The plaintiffs were convinced that black workers were being systematically prevented from rising to higher-level positions within the manufacturing division of the company. A young associate in a large Boston law firm representing the plaintiffs had somehow been referred to me. Knowing next to nothing about the industry or the relevant employment law, I peppered this attorney with questions of all sorts. Eventually, I even got around to requesting some data from the company’s human resources department. I dutifully subjected the data to various standard analyses, searching for an effect of race on promotion rates, but came up empty. Despite repeated failures, I harbored a nagging suspicion that something important had been overlooked.

I began to scrutinize listings of the data, trying to discern some hidden pattern behind the numbers. Preliminary ideas led to further questions and to discussions with some of the plaintiffs. This interactive process yielded a more refined understanding of personnel decision making at the company. Eventually, it became clear to me what was “really” going on. Up to a certain level in the hierarchy of positions, there was virtually no relationship between race and promotion. But for a particular level midway up the organizational ladder, very few workers were being promoted from within the company when openings arose. Rather, these particular jobs were being filled primarily through outside hires, and almost always by white applicants. Moreover, these external candidates were sometimes less qualified than the internally available workers. We came to call this peculiar dynamic “the bottleneck.”

This subtle pattern, once recognized, was supported anecdotally in several ways. The statistical data, coupled with qualitative supporting information, was eventually presented to the defendant company’s attorneys. The response to our demonstration of the bottleneck phenomenon was dramatic: a sudden interest in negotiation after many months of intransigence. Within weeks, a settlement of the case was forged.

The methods of data analysis I had employed in this instance did not conform to any textbook methods I had been taught. Indeed, I felt a bit guilty that the actual statistical techniques were quite simple and did not require any advanced mathematical knowledge. Moreover, the intensive “data dredging” in which I had engaged was highly unorthodox. But the results made perfect sense! Besides leading to a practical solution, the answer was intellectually satisfying, connecting all the dots of a previously inexplicable data pattern.

The kinds of data analyses that have proved most useful in my work have often displayed this same quality of making sense in a way that is intuitive and logically compelling. This plausibility derives not only from statistical criteria, such as levels of significance, but also from broader considerations that are harder to articulate. I have come to believe that statisticians tend to be uncomfortable with causal inference in part because the issues cannot be settled with technical skill alone. Substantive knowledge and expert judgment are also necessary, in ways that are often difficult to quantify. Thus, at least until very recently, statisticians have been content to cede most methodological questions related to bias and causation to other academic disciplines. This situation has certainly started to change for the better. However, it remains unclear how far the statistical profession is prepared to stretch to meet the real challenges of causal puzzles.

When I began writing this book, I envisioned something much less ambitious than this effort has turned out to be. Fortunately, I was foolish enough to rush in where others apparently feared to tread, not realizing that I would be drawn into the subject so deeply. Rather than a “handy reference” on the types of bias, with some causal modeling framework in the background, the tail (causation) has come to wag the dog (bias). It seems to me that to really understand bias, a clear counterfactual framework for formulating the issues is necessary. This framework provides the foundation upon which potential solutions, whether quantitative or qualitative, may rest.

This book is intended primarily for practicing researchers and methodologists, and for students with a reasonably solid grounding in basic statistics and research methods. The mathematics used involves nothing beyond elementary algebra and basic statistics and probability theory. The few more complicated derivations are relegated to appendices that will be of interest only to the more mathematically sophisticated. The main value of the book is conceptual, not technical. The purpose of the mathematical models is to provide insight, rather than methods, although some methods have been and can be built upon the conceptual foundations.

I have provided very little detail on the traditional statistical methods that address problems of random variability. When conducting actual research, these problems need to be addressed in tandem with those related to bias. In reading this book, it may be helpful to imagine that we are dealing with extremely large samples in which random variability can be ignored. Of course, in reality, finite-sampling issues are usually very important. Much of the recent research by statisticians pertaining to causal inference concentrates on estimating causal effects based on finite samples. The statistical principles and methods they apply are well established and have been expounded in numerous texts. My subject is the poor stepchild of statistics: systematic error that cannot be cured by obtaining a large-enough sample.

This book was not written specifically as a textbook. However, it may be found useful as a central or secondary resource in a graduate-level research methods course in epidemiology or the social sciences. I believe that much of the material is best learned in the context of real research. So, teachers may wish to supplement the limited set of examples in the book with articles and reports relevant to their particular interests and areas of application. Some teachers may find it useful to treat this book as a reference for selected topics, or to approach the topics covered in a different order than I have presented them. This is certainly their prerogative, but I would caution that material in later chapters depends strongly on concepts and terminology introduced earlier.

Chapter 1 provides an introduction to the problems considered, and brief summaries of six “case studies” that are referenced throughout the book. Chapter 2 discusses the counterfactual framework for causal inference, and some important concepts and terminology pertaining to bias and causation. Chapter 3 contains a brief exposition of several methodological issues that are central to the difficulties posed by bias. Chapter 4 summarizes the various types of bias as viewed in the biomedical and the social sciences. These four chapters form an extended introduction and review of the issues addressed in the remainder of the text.

Chapter 5 deals with the problem of selection bias—a term used in different ways, and a source of considerable confusion. Selection bias is approached from the perspective of traditional statistical modeling as well as from a causal modeling viewpoint. Chapters 6 and 7 both focus on the problem of confounding. Chapter 6 lays out the various ways in which this central, but enigmatic, concept has been defined. Chapter 7 offers an explanation of confounding that is based on the causal (counterfactual) framework. Chapter 8 discusses intermediate causal factors, which can engender bias even in a randomized controlled trial. Chapter 9 considers the topic of information bias, the distortion of a causal effect that can result when the exposure and/or the outcome is measured with error. Chapters 5 through 9 are the most challenging, both conceptually and mathematically.

Chapters 10 and 11 are more practical and less technical than the preceding four chapters. Chapter 10 offers a preliminary organization of bias sources. I define a source of bias as a real-world condition that affects a comparative study and can lead to bias. I define and describe 20 general sources of bias. This list includes, at a high level of generality, most of the common sources of bias that arise in practice. Finally, Chapter 11 considers the different ways in which we can attempt to cope with bias. I argue that the standard statistical paradigm is most appropriate for a narrow (albeit important) range of problems related to bias and causation. There is a vast uncharted territory of research problems for which this paradigm is impractical, and sometimes even inappropriate.

In this sense, I am a pessimist when it comes to the ability of standard approaches, and highly sophisticated mathematical extensions of them, to solve the problems of causal inference. I believe that a broader paradigm for data analysis is needed, one that focuses much more on individual variability and that meshes qualitative and quantitative sources of information more effectively. I am most definitely an optimist, however, about the enormous potential of research to improve human health and well-being.

I would like to acknowledge the contributions, direct and indirect, of many colleagues and friends with whom I have been privileged to work. Many of you have helped to shape my thinking during the course of our collaborations on various projects over the years. In this regard, I highlight especially the following (in alphabetical order): Tony Bryk, Xiu Chen, Richard Derrig, Mike Dolan, Eric Garnick, Mike Grossman, Vanessa Hayden, Peter Höfler, Jarvis Kellogg, Eric Kraus, Tom Marx, Mike Meyer, Bruce Parker, Victor Pontes, Sam Ratick, David Rogosa, Peter Rousmaniere, David Schwartz, and Terry Tivnan.

I offer my sincere thanks for important direct contributions to this book by several individuals. Richard Derrig and Jarvis Kellogg participated in several discussions that helped to sharpen my focus and improve the presentation of ideas. Vanessa Hayden and Victor Pontes provided insightful feedback as early versions of the causal model presented in this book were being hatched, and collaborated as coauthors on an article that introduced the basic conceptual framework. Jay Kadane and Dave Sackett reviewed early drafts of several chapters and made many valuable comments. Tom Marx and Terry Tivnan deserve special commendations for plowing through the entire manuscript and offering their helpful (and always tactful) editorial and substantive suggestions. My editor at Wiley, Steve Quigley, was enormously helpful at all stages of the process. His practical advice at critical junctures, delivered with wry, self-effacing humor, was just what I needed to see this project through to completion.

Finally, I wish to acknowledge the support and encouragement supplied by many family members, including my sons, Alex and Dan, my sister, Sally Goldberg, and my sisters-in-law, Barbara Irving and Abigail Natenshon. Alex also skillfully translated my rough drafts of the pie-chart graphs into electronic form. Finally, my deepest sense of gratitude goes to my wife, Nina, who has always given me the confidence to trust my instincts, and the courage to pursue my dreams.
Herbert I. Weisberg

Needham, Massachusetts

 March 2010

CHAPTER 1
 What Is Bias?


Two Red Sox fans were discussing the finer points of baseball strategy one day while driving to Fenway Park in Boston. Burt had read a statistical study about the effectiveness of the sacrifice bunt. In this maneuver, the batter tries to advance a base-runner from first to second base by tapping the ball a few feet in front of home plate. He is willing to be thrown out at first base in exchange for helping the runner to reach second base safely. The data in the study revealed that a runner on first base scored less frequently when the batter attempted to bunt. This implied, Burt insisted, that a batter should never attempt to sacrifice. Harry disagreed. Situations in which managers called for a sacrifice bunt, he argued, were not the same as those in which batters were allowed to swing away. Somehow, Harry knew intuitively that he was right and that some deeper principle of logic was involved, but he was never able to convince his friend.

Burt was unaware that by comparing the frequency of scoring between two different sets of at-bats, he was making a biased comparison. A lower success rate observed after attempting to bunt than when “swinging away” would not necessarily mean that bunting always, or even sometimes, causes a decrease in the probability of scoring the runner. Perhaps less proficient batters often bunt, whereas stronger hitters nearly always swing away. Then the success rate of the bunters would have been lower even if they had not bunted. So, was the lower observed success rate really caused by bunting?

The remainder of this book focuses on more consequential (and often controversial) analyses of causation that arise in many scientific contexts. In particular, we will concentrate on the problem of trying to reach a valid conclusion about some factor that might affect human health, behavior, or well-being. Sometimes we will denote this causal factor as F. For example, F might be an innovative educational program, and the outcome of interest some measure of academic achievement. Mathematically, we will treat F as an indicator variable, with F = 1 if the causal factor is present and F = 0 if it is not.

This introductory chapter defines the problem of bias in a general sense. Bias is intrinsically a problem related to causality. We explain how traditional statistical methods are severely limited as a way to address causality in general, and questions related to bias in particular. Consequently, a new approach to data analysis is needed. Subsequent chapters describe a theoretical framework within which such a “new paradigm” has begun to evolve. For concreteness, this chapter includes six illustrative case studies that motivate and provide context for the ideas developed throughout the book.

1.1  APPLES AND ORANGES

Typically, the scientific community weighs the evidence provided by one or more comparative studies in order to decide whether a causal relationship between F and the outcome exists and to measure the strength of this effect. A comparative study examines some relevant aspect of a specified population of individuals. The aim is to ascertain whether and how a particular characteristic of individuals in the population (e.g., academic achievement) tends to respond when the factor is introduced, either deliberately (intervention) or unintentionally (risk factor). To provide statistical evidence, the study obtains data on individuals under two alternative conditions: exposure to the factor and nonexposure. Of course, the actual sets of individuals in the two groups being compared will differ. So, the critical question becomes whether the two study groups are sufficiently similar for the comparison to be interpreted as a causal effect of the factor, not as an “apples-to-oranges” comparison.

In a comparative study, a difference between groups that is not attributable to the factor under study can result from either random or systematic variability. Random variability can occur for a variety of reasons, but does not tend to favor the exposed or unexposed group. In large groups, these random variations tend to even out. If we imagine the size of the groups to increase without limit, the error in estimating the causal effect eventually becomes negligible. Moreover, in smaller groups, the amount of variability can at least be calculated and taken into account. Therefore, uncertainty related to random variability can be “managed” through statistical methods based on probability theory. These methods (significance testing, confidence intervals, regression modeling, Bayesian posterior distributions, etc.) represent the principal triumph of twentieth-century statistical theory.

Our focus in this book will be on the ways in which a comparison can be systematically (i.e., nonrandomly) distorted. An estimated effect that deviates systematically from the actual causal effect of interest is said to be biased. Unlike random variability, bias is a structural tendency that does not balance out, even with extremely large study groups. Unlike random error, bias cannot be reduced by increasing the sample size. In our baseball example, effects of random variation could be virtually eliminated if many thousands of at-bats were included in the analysis. We could therefore obtain a very precise answer to the question of whether runners tend to score less often after a bunt or not. But this information by itself would be of little practical value to a baseball manager, who wants to know when calling for a sacrifice will have a causal effect on the chances of scoring a run.

Throughout this book, the term bias will mean the extent to which a particular measure of a causal effect has been systematically distorted. Forms of bias that fall under this umbrella derive from shortcomings of research design, implementation, and analysis, and they can thus be considered methodological biases. To say that a particular study is biased is to assert that the research methods employed have resulted in systematic error in the estimation of a causal effect. Systematic error, or nonrandom error, is inherent in the research process itself. The magnitude and direction of bias do not depend on random variation across the particular sample of subjects included in the study.

When scientists refer to research bias, they generally mean methodological bias. However, discussions of bias are sometimes confusing because this term also has several other connotations. To a mathematical statistician, bias is a technical property of an estimate. An estimate of some parameter, such as the mean of a given population, is biased if the estimate “on average” deviates from the true value of the parameter. To a social scientist, bias may pertain to aspects of human behavior or psychology. Do certain individuals or groups tend to think or act in a predetermined manner in a specified situation? In addition, bias may suggest a negative or prejudicial attitude toward a particular group or ideology. As used throughout this book, bias is only incidentally related to any of these other interpretations.

Because they result from systematic and not random distortion, methodological biases are generally not amenable to correction by mathematical formulas. An understanding of potential biases in practice requires not only quantitative sophistication, but also a solid grounding in the relevant scientific context. The topic of bias resides in a kind of no-man’s-land between the discipline of statistics and the various scientific fields in which research takes place. This orphan status may help to explain why a comprehensive theory of bias has yet to emerge.

1.2  STATISTICS VS. CAUSATION

We have defined bias as a systematic error in estimating a causal effect based on statistical data. Attempts to estimate causal effects represent one of the most common, and arguably the most important, application of statistical methods. However, statistical theory, at least until quite recently, has been almost exclusively concerned with the implications of random error. As a result, classical statistical methods are applicable to a very narrow range of problems related to causal inference. Indeed, it is a universal mantra that statistical association, or correlation, does not necessarily imply causation. To the layperson, it must seem odd that statistics has so little to offer for learning about causal effects. To explain this irony, we must understand the primary problem that statistical methods were originally designed to address.

Classical statistical methods were devised primarily to deal with uncertainty that arises from the limited nature of the available data. Intuitively, it was recognized long ago that a small set of observations of some quantity was generally less reliable as a guide to action than a larger sample. For instance, a farmer might wish to learn how many apples he could expect to obtain from his orchard in a typical year, or perhaps in relation to factors such as rainfall and soil quality. Having data from many farms would provide much better information than relying on only a few. But better in what sense and by how much? The genius of modern statistical theory lies largely in its conceptual framework for formalizing and answering such questions.

Central to this conceptualization was the idea that the set of units in hand (e.g., apple orchards) could be imagined to comprise a representative “sample” randomly drawn from a much larger (virtually infinite) population of units. In principle, this hypothetical infinite population would include all of the units that could potentially have been observed, whether or not they were actually observed in the available sample. Furthermore, this population is assumed to possess a particular distribution of characteristics that can be described by the values of different variables (yield per acre, soil conditions, moisture, wind, etc.). This distribution essentially describes the proportions (or probabilities) of various possible values of the variables. The aim of statistical inference then becomes to describe the parameters (e.g., mean, median, variance, correlation) pertaining to this hypothetical population’s distribution. For example, the farmer might wish to know the average yield of apples per acre and how this yield relates to the amount of rainfall during the growing season.

This statistical paradigm has by now become so familiar that it is hard to appreciate that it embodies certain assumptions about the world. First and foremost, there is the mental construct of a hypothetical infinite population. Moreover, the distribution of variables is often assumed to have a particular mathematical form, such as the (Gaussian) “normal” distribution. Buried even deeper, however, is another critical assumption: the probability distribution is regarded as stable, reflecting a fixed set of underlying conditions. Chance and uncertainty enter through the (assumed) process of randomly sampling from the population. However, because this variability is now subject to well- established mathematical rules of probability theory, a world of statistical inference opens up. For instance, the uncertainty associated with a small-sample estimate can be expressed as a confidence interval or a Bayesian posterior distribution. As long as the statistical model of the world remains fixed, inferences based on probability theory will be valid.

In particular, the implicit supposition of a stable universe allows the possibility of making accurate predictions. Our farmer may measure various conditions early in the growing season and then try to predict what his yield is likely to be. If relevant circumstances remain stable, and if he has a substantial database of prior observations, he can make a reliable forecast. This could be accomplished by effectively conditioning on the measured values he has observed. Suppose that the farmer magically knew the full distribution of yields per acre for the hypothetical apple-orchard population. Then he could identify all orchards that have approximately the same characteristics as his own. He could, for example, compute the average yield per acre for this subgroup of the population. That would be a logical value to predict for his current crop. In general, using these conditional probabilities is the basic idea underlying many sophisticated techniques for prediction. But the stability of the population distribution is what makes reliable prediction based on conditioning possible.

Now let us consider the problem of causal inference. Causal inference is also about making predictions. However, causation is not concerned primarily with random variation under a stable set of circumstances. Rather, causation pertains to what systematic alteration would occur if the circumstances were to change in a specified manner. For example, our farmer might be deciding whether to introduce an irrigation system. He wants to know what change in yield this innovation would cause. In effect, he envisions two hypothetical populations: one without irrigation and one with irrigation. The (causal) parameter of interest would then become the difference between the average yields produced in these two populations.

To answer causal questions, the classical statistical machinery just described is still necessary to cope with random variability. However, the strategy of conditioning is not adequate for causal inference. Conditioning for prediction depends on a stable set of circumstances, but analysis of causation entails consideration of a real or hypothetical modification of at least one important circumstance. Consequently, conditional probabilities within a fixed population cannot tell us what would happen under such alteration. For that, we must carry out (or at least envision) a manipulation of the circumstances. Classical statistical methods address random variation by invoking a stable hypothetical infinite population consisting of all units that might have been observed, whether or not they actually were observed. Similarly, causal inference requires a way to conceptualize what might have been observed under different specified circumstances. This central concept will be elaborated at length in Chapter 2. The key point for now is that the stable population assumed by traditional statistical methods can only reveal how various factors are associated, but it does not by itself disclose how a change in one factor would produce changes in some other factor of interest.

Bias in comparative studies has traditionally been either ignored by statisticians or addressed solely within the classical statistical framework. The result has been a failure to develop data-analytic methods capable of dealing appropriately with this pervasive methodological problem. Consequently, a conceptual framework for causal thinking that extends classical statistical theory is necessary to obtain a deeper understanding of bias. Such a causal framework has been evolving for roughly the past 30 years and has provided many of the building blocks needed for understanding the nature and sources of bias. A goal of this book is to draw together and elaborate those strands of this causal theory that pertain to the problem of bias in comparative studies.

Unlike some applications of this new theory, our primary goal is not to “solve” the problem of bias by offering more complicated or mathematically sophisticated statistical methods. Indeed, comprehending the nature and sources of bias can help to clarify why improved technology based on ever more complex mathematical analysis can be counterproductive. More mathematically “advanced” methods can even become an impediment to insight, because they remove the data analyst further from direct contact with the data. Consequently, the analyst may be forced to accept on faith that the assumptions underlying the statistical model are consistent with the data.

We will take the position that the sort of data-analytic tools required are those that will facilitate the exercise of logic and scientific judgment to reach conclusions that are supported by the weight of available evidence. Such methods typically cannot provide the degree of certainty or quantification familiar to us in managing random variability via standard statistical techniques. The successful development and application of causal knowledge ultimately depend on cultivation of sound scientific judgment, as well as basic mathematical facility, to discover what is likely, though by no means certain, to be true and real:

A scientist’s actions are guided, not determined, by what has been derived from theory or established by experiment, as is his advice to others. The judgment with which isolated results are put together to guide action or advice in the usual situation, which is too complex for guidance to be deduced from available knowledge, will often be a mixture of individual and collective judgments, but judgment will play a crucial role. Scientists know that they will sometimes be wrong; they try not to err too often, but they accept some insecurity as the price of wider scope. Data analysts must do the same. 
(Tukey, 1962, 9)

1.3  BIAS IN THE REAL WORLD

Statistics textbooks present mathematical techniques that can be applied in a variety of scientific areas. These statistical tools are almost exclusively devoted to the management of uncertainty attributable to random variability. It is therefore quite natural to consider these techniques in the abstract, with only minimal reference to the details of their application. A thorough knowledge of the context in which a particular procedure will be applied is not essential to understanding how and why it works. Training in the application of statistical methods is relegated largely to the various academic disciplines (epidemiology, economics, psychology, etc.) in which substantive scientific issues arise.

When dealing with the subject of bias, on the other hand, neatly severing theory from practice is not feasible. Certain general principles can be abstracted from the scientific context, but the motivation for these ideas cannot be grasped fully in the abstract. The relevant intellectual framework for thinking about bias has evolved primarily in the natural course of scientific research, and secondarily in generalizations made by philosophers of science observing this research. In particular, the concept of causality will be central to our discussion of bias throughout this book. Causal analysis would ideally be grounded in extensive background knowledge. For example, two anthropologists arguing about the effect of a certain cultural practice in various societies would share a foundation of theory and information necessary for a meaningful interchange. Obviously, we cannot hope to approach such a breadth and depth of contextual understanding. On the other hand, a theory of bias divorced completely from concrete scientific issues in the real world would be hopelessly sterile.

To partially address this conundrum, we present in this chapter a set of case histories. Each of these describes an actual study, or set of studies, to which we can refer later when discussing various sources of bias. The narratives offered here are necessarily somewhat sketchy. We attempt to highlight the main aspects of the research sufficiently to provide the reader with a tangible feel for the methodological challenges in making causal inferences. In selecting these case histories, several criteria have been taken into account. Each example pertains to an issue that was (or still is) considered to be important and subject to substantial uncertainty and disagreement. The range of these cases in terms of research design and subject matter is quite broad. Epidemiology, clinical trials, and social science research are all represented. Each of these narratives highlights a particular pivotal article or report that was central to the controversy. Most important, this set of studies allows us to illustrate a wide range of biases that either were or could have been considered by the investigators.

Throughout the book, we will draw upon these studies to provide context for various points, often introducing hypothetical elements. For instance, we may suggest a possible distorting influence that could theoretically have affected the study, even though there is no actual evidence to indicate that such a source of bias actually existed. When such liberties have been taken with the facts, the fictitious aspects will be noted. More substantive discussion of possible conclusions regarding the issues will be deferred to the final chapter.

The narratives presented here are intended in part to illustrate why statistical methods fail to address fully the range of methodological concerns related to bias and causation. Classical statistical methods are designed to provide answers to specific questions. Is this new medication superior to the standard treatment for a certain disease? Will this new educational approach improve academic performance? But the questions of practical interest are often much more particular, subtle, and complex. A practitioner may need to decide whether to try a new drug on her patient. A teacher may need to decide whether the new educational approach will work in her classroom. These practitioners may be interested in what is known about the possible causal effects (both beneficial and adverse) of these interventions for different kinds of individuals. Their decisions ultimately must be based on all the available evidence, both statistical and nonstatistical, that they can bring to bear, filtered through years of practical experience. For this purpose, they need information that is quantitative and rigorous, but also open-ended enough to connect with their richer base of qualitative knowledge in fruitful ways. To develop such information may call for a new analytic paradigm that is both more tolerant of ambiguity and more respectful of subject-matter knowledge.

Recently, there has been an explosion of interest in causal analysis within the field of statistics. This represents a very positive development, but there is a danger that causal inference will be reduced to just another mathematical–statistical technology. It would be regrettable if causal models were judged narrowly by their ability to solve statistical problems in the ways such problems have conventionally been formulated.

But paradigm debates are not really about relative problem-solving ability, though for good reasons they are usually couched in those terms. Instead, the issue is which paradigm should in the future guide research on problems many of which neither competitor can yet claim to resolve completely. A decision between alternate ways of practicing science is called for, and in the circumstances that decision must be based less on past achievement than on future promise. The man who embraces a new paradigm at an early stage must often do so in defiance of the evidence provided by problem-solving. He must, that is, have faith that the new paradigm will succeed with the many large problems that confront it, knowing only that the older paradigm has failed with a few. A decision of that kind can only be made on faith. 
(Kuhn, 1962, 156–157)

This book was motivated by faith that a new paradigm for dealing with bias is possible, based on a deeper understanding of causality. This new paradigm will not reject the existing paradigm, but will define its limits, identifying the research questions for which it is not applicable. This new paradigm may provide some improved solutions to conventional problems, but its larger value will be in daring to pose and address novel questions. For example, traditional approaches concentrate almost exclusively on average effects, ignoring a largely unmet need to tailor effective interventions to individual characteristics and conditions. Causal theory has the potential to offer a proper language within which useful answers can be articulated, although the form of these answers may appear unfamiliar—and lacking the mathematical precision to which statisticians have become accustomed.

Evaluating the Efficacy of Antityphoid Vaccine

In a classic article, epidemiologist Mervyn Susser (1977) discussed the need for sound judgment grounded in subject-matter expertise to augment statistical analysis. The article referred to several historical examples, including one of the earliest uses of statistical analysis to evaluate the efficacy of a new medical treatment. The story begins in England in 1896, when Dr. Almroth Wright developed a vaccine to prevent typhoid fever. After several tests of the new vaccine among volunteers in the British Army, the Medical Advisory Office to the War Office was attempting to decide whether the army ought to adopt routine vaccination as a general policy. To aid in making this decision, the available data were submitted to Karl Pearson, the most eminent statistical expert of his day.

Pearson’s analysis of the data led him to conclude that efficacy had not been firmly established; his published report suggested that more research was needed (Pearson, 1904). Wright took issue with Pearson’s report in an accompanying editorial, and a heated debate in the pages of the British Medical Journal ensued. For a variety of reasons that went beyond the purely scientific issues, Wright “won” the debate and a policy of vaccination was adopted. However, a program of continued research was implemented, as Pearson had recommended. The results were summarized by Leishman, a colleague of Wright who directed the follow-up program (Leishman, 1910). The analysis appeared to provide strong support for the decision to implement inoculation in all units being sent overseas. Shortly after Leishman’s data were released, the vaccine was adopted for routine use by the British, French, and American militaries. An article appearing in the New York Times hailed the success chronicled by Leishman as a triumph of modern medical science and its heroic practitioners:

Trained scientists have labored weary hours without number in their laboratories bending over their microscopes and watching their test tubes to attain the golden truth. The result has been victory, a new triumph in the domain of medicine. It has not only been proved, say its champions that typhoid fever can be prevented by vaccination by anti-typhoid serum, but they claim immunity already has been conferred upon thousands and thousands of persons—soldiers chiefly—in this and other lands. 
(New York Times, June 5, 1910)

The data upon which the dispute between Pearson and Wright was based are presented in Tables 1.1 and 1.2, which we have adapted from Susser’s summary (Susser, 1977). Table 1.1 speaks to the possible prophylactic effect of the vaccine. In each of the cohorts, the rate at which typhoid fever was contracted was lower among those inoculated with the vaccine than among those who were not. However, the magnitude of the rates and the difference between the two groups varied widely. Table 1.2 pertains to the question of whether the vaccine lowered mortality among those who contracted the disease. Here again, the mortality rates vary across cohorts. With one exception (Ladysmith garrison) the rates are lower in the inoculated group. Leishman’s data are not presented here but show a similar and even stronger pattern of apparent effectiveness.

Table 1.1 Prophylactic Effect of Antityphoid Vaccinea

[image: c01t0101wre]
aAdapted from Susser (1977).

Table 1.2 Effect on Mortality of Antityphoid Vaccinea

[image: c01t0101wrz]
aAdapted from Susser (1977).

Our main purpose in presenting this data will be to consider possible sources of bias and the extent to which these biases may have compromised the studies. One obvious concern was that the various substudies all relied on data from soldiers who had volunteered for the experimental inoculation. Another pertained to the potential lack of reliability in diagnosis of typhoid fever at that time. Furthermore, the medical officers assigned to monitor the results were aware of whether a patient was or was not inoculated. In addition, the specificity of the treatment was subject to uncertainty about inoculation histories and lack of quality control in manufacturing the vaccine. Also, because soldiers were often transferred into or out of units, obtaining a valid count to use for a denominator in calculating the rates in particular units was complicated. Moreover, recording of the duration of exposure was also untrustworthy, because exposure status (inoculated or not) was recorded as of the end of the observation period. Finally, it is possible that the apparent effectiveness of the vaccine was attributable to other changes in personal hygiene or the water supply that were occurring at the same time (Cockburn, 1955).

With all these potential problems, most of which were recognized at the time, the true value of Wright’s typhoid vaccine was far from certain. However, the public seemed to regard the matter as case closed. Major F. F. Russell of the Medical Corps of the U.S. Army speaking at Johns Hopkins was quoted at length in the New York Times article:

Among the exposed regiments who had been inoculated with the vaccine in use at present there were 3.7 cases per 1,000 against 32.8 per 1,000 among the untreated. … The observation of this group of 12,000 men covers a period of over three years, and no more perfect or convincing statistics are needed to show the value of this method of prophylaxis. 
(As quoted in the New York Times, June 5, 1910)

A more sober and professional statistical analysis several years later came to a similar conclusion, while recognizing the methodological limitations of the existing data (Greenwood and Yule, 1915).

Despite whatever lingering doubts may have existed in the scientific community, Wright’s antityphoid vaccine with various refinements remained in use without benefit of a controlled clinical trial for five decades. Considerable observational data accumulated attesting to reductions in typhoid incidence throughout the world that appeared to result from vaccination. Then in the 1950s the discovery of the antibiotic chloromycetin made possible a randomized test of typhoid vaccine, because those assigned to the control group who contracted typhoid fever could be cured. Fortunately, the vaccine was able to satisfy the more rigorous testing needed to receive the stamp of modern scientific validation (Cvjetanovic, 1957).

Racial Disparities in Death Sentencing

The death penalty is one of the most controversial issues related to the U.S. criminal justice system. In Furman v. Georgia, decided in 1972, the U.S. Supreme Court ruled essentially that the death penalty was being administered in a way that was arbitrary, capricious, and based on impermissible factors. Although not rejecting its use globally, the Court effectively set a higher standard for the manner in which death penalties could be imposed. The Furman decision led to reforms by many states aimed at avoiding the completely unstructured sentencing statutes that the Supreme Court had ruled unconstitutional (Baldus et al., 1990).

Since the Furman decision, lawyers seeking to overturn death penalty convictions have often argued that the decisions were disproportionate and/or discriminatory. Disproportionate would mean that the severity of the sentence was out of proportion to that received by other similarly situated defendants. Discriminatory would mean that the conviction and/or sentencing were tainted by impermissible factors, such as race or socioeconomic status. Many critics of the death penalty believed that judicial systems post-Furman remained permeated by racial discrimination and lack of proportionality in sentencing. Against this backdrop, David Baldus and his colleagues undertook two major interrelated studies of capital punishment in Georgia during the years 1973–1980. Their main purposes were to estimate the extent of disproportionality and of racial discrimination in death-penalty decision making. These studies have been described in detail in a book titled Equal Justice and the Death Penalty (Baldus et al., 1990).

The second and larger of the studies was called the Charging and Sentencing Study (CSS). The CSS included 1066 cases from both the pre-Furman and post-Furman periods. These cases comprised a stratified random sample from a total of 2484 defendants “arrested and charged with homicide who were subsequently convicted of murder or voluntary manslaughter.” Among the cases sampled, 127 resulted in a death penalty. For each of the 1066 cases, a wide array of variables was collected pertaining to five stages of the charging and sentencing process:
	Grand-jury indictment decisions
	Prosecutorial plea-bargaining decisions
	Jury guilt-trial decisions
	Prosecutorial decisions to seek a death penalty after conviction
	Jury penalty-trial sentencing decisions


Broadly speaking, the degree of discretion exercised by the decision-makers becomes more structured and constrained as a case moves through the process.

If the guilt trial results in a conviction for capital murder, the prosecutor must decide whether to seek the death penalty. Statutory criteria for potential death-eligibility are spelled out in general terms, but they must be interpreted by the prosecutor. If she believes that the death penalty is warranted, a second and entirely separate penalty trial will be held. The sole issue is to determine whether a death penalty should be imposed. To reach this decision, the penalty-trial jury is instructed to weigh specific aggravating and mitigating circumstances. To impose the death penalty, the jury must find at least one of the statutory aggravating factors. However, the jury is also permitted to consider any potentially mitigating factors.

One motive for undertaking the CSS was its potential use by attorneys representing convicted killer Warren McCleskey. McCleskey’s death sentence had been imposed after his conviction for murdering a police officer named Frank Schlatt. In 1980, when the CSS study was first being considered, McCleskey’s appeal was working its way through the Georgia legal system. An important basis for the appeal was McCleskey’s assertion that the decision was tainted by racial discrimination; he was black and the victim white. Previous research in Georgia and elsewhere had suggested that both the race of the defendant and the race of the victim might play a role in death-sentencing decisions. A main goal of the CSS was to establish the extent to which death-sentencing decisions in Georgia had been influenced by race.

Based on their extensive database of cases in Georgia, Baldus and his team performed a variety of statistical analyses aimed at assessing possible discrimination. Their book presents the data and analyses, along with details of their presentation in federal district court, and eventually to the U.S. Supreme Court. The book also deals extensively with various methodological issues raised during the appeals process and provides the authors’ views on the validity of various criticisms. Rarely has a statistical study been subjected to so much scrutiny and with so much potentially at stake. Because issues of potential bias were dissected in great depth from both a statistical and a legal perspective, this case is highly instructive.

The basic data at issue can be summarized very simply. Table 1.3 shows the results of sentencing decisions in Georgia for cases in the post-Furman period (Baldus et al., 1990, 315). The unadjusted rates reveal some striking racial disparities, especially with respect to the victim’s race. These rates were then adjusted in a variety of ways to account for the circumstances of the cases, especially as these pertained to the “moral culpability” of the defendant. One statistical model that was highlighted in court relied on a logistic regression that included 39 independent variables. This “core model” contained variables that both statistically and theoretically “appeared to exercise the greatest influence in determining which defendants indicted for murder would actually receive a death sentence.” The coefficient (odds ratio) for the race-of-victim variable in this model was 4.3 and had a p-value of 0.005 (Baldus et al., 1990, 326).

Table 1.3 Sentencing by Race of Defendant and Victima
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aAdapted from Baldus et al. (1990).
As powerful as this statistical evidence appears to be, it did not carry the day. Eventually, the U.S. Supreme Court on April 22, 1987, in a 5–4 decision failed to overturn McCleskey’s sentence. A part of the reasoning articulated by several of the justices was related to the appropriateness of any statistical argument. However, many specific criticisms of the methodology were also raised. In two long methodological appendices, the CSS investigators thoughtfully addressed these and other issues.

In terms of bias, there were three main areas of potential concern. One area related to the way that cases in the CSS had been selected. Only defendants convicted of voluntary murder were included, leaving out other potential death-penalty candidates whose cases reached other dispositions. Therefore, the potential for selection bias in estimating racial effects existed. A second problem related to the measurement of the culpability measures being used as covariates in the model. There were several aspects of the judicial system that made accurate and consistent data collection difficult. By far the most complex issue, however, related to the adequacy of the covariates collected, extensive as they were, to rule out other confounding factors. Was the observed difference in sentences truly the result of the victim’s race, or alternatively of some other factors that were not measured but were correlated with race?

In Mr. McCleskey’s case, further appeals on his behalf were put forward based on nonstatistical evidentiary grounds. To settle these, the case was eventually heard again by the Supreme Court. In the end, on September 26, 1991, Warren McCleskey was executed. In a New York Times editorial run 3 days later, the fourfold disparity estimated by David Baldus and his colleagues was prominently mentioned (New York Times, 1991).

Evaluation of Employment Training Programs

In the United States during the 1970s political support for government- sponsored social interventions to eliminate poverty and social inequity was strong. A number of major experimental educational and social programs were initiated, and the methodology of program evaluation became a major preoccupation of social scientists. The great majority of such government-sponsored efforts were observational (i.e., did not involve random assignment to different types of programs). Rather, subjects were assigned either to the innovative program being evaluated or to a more conventional control program according to some known criteria. For example, the program might be offered to those satisfying some needs-based eligibility criterion. Because this assignment mechanism was deliberate rather than random, the groups assigned to the different programs might be different in important respects.

In general, randomized experiments were not considered feasible in social program evaluation for a variety of ethical and practical reasons. However, a fortuitous exception to this limitation occurred in the area of worker training programs. The National Supported Work Demonstration (NSW) aimed to assist disadvantaged workers to enter the labor market successfully by providing work experience and counseling in a sheltered work environment (Dickinson and Maynard, 1981; Masters and Maynard, 1981). The target population for the NSW was composed of two main subgroups: women in the Aid to Families with Dependent Children (AFDC) program, and men who were high-school dropouts and often had a background that included drug addiction and criminal activity. Unlike most other government programs, individuals were selected for the available slots randomly from among a pool of qualified applicants, and the candidates who were not chosen became the controls.

Data related to annual income and various related socioeconomic and demographic individual characteristics were collected at baseline and at three follow-up points over 36 months. The postprogram income after 36 months was the primary outcome variable for the NSW. The official report of the study’s findings found a very small impact of the NSW on the male participants and a fairly substantial improvement in earnings for the AFDC women (Manpower Demonstration Research Corporation, 1983). Because of the randomized design, these results were widely viewed as authoritative. Although there were some issues related to retention and compliance of participants that needed to be addressed, the statistical analysis was relatively straightforward. In contrast to the situation with other employment and training programs, no complex adjustments to deal with potential differences between the subjects who received the intervention and those who did not were necessary.

The existence of such a “gold standard” was viewed as a golden opportunity by econometrician Robert LaLonde. He wondered what would have been concluded if the NSW had relied on the more common quasi-experimental approach. To simulate such observational results, he created several different comparison groups based on available survey data. He then applied several alternative statistical techniques to obtain estimates based on these comparisons. Each of these statistical adjustments was based on a somewhat different mathematical model. LaLonde was primarily interested in whether any of the nonexperimental approaches could faithfully reproduce the “true” experimental findings. In addition, LaLonde asked whether it would be possible to discern bias in an observational study based on its own data, without reference to the gold standard. Specifically, would some violation of the adjustment model’s assumptions be apparent to tip the researcher off that a problem existed? LaLonde’s answers to these questions were published in an article that shook the econometric world:

This study shows that many of the econometric procedures and comparison groups used to evaluate employment and training programs would not have yielded accurate or precise estimates of the impact of the National Supported Work Program. The econometric estimates often differ significantly from the experimental results. Moreover, even when the econometric estimates pass conventional specification tests, they still fail to replicate the experimentally determined results. Even though I was unable to evaluate all nonexperimental methods, this evidence suggests that policymakers should be aware that the available nonexperimental evaluations of employment and training programs may contain large and unknown biases from specification errors. 
(LaLonde, 1986, 617)

LaLonde’s results, along with similar findings by Fraker and Maynard (1987), were hailed by methodologists who were strong advocates of randomized experiments (Burtless and Orr, 1986; Barnow, 1987). On the other hand, some econometricians and statisticians continued to defend nonexperimental studies as both necessary and viable (see Heckman and Hotz, 1989, with discussion; Heckman and Smith, 1995). In particular, James Heckman and his colleagues performed their own reanalyses of the NSW data and came up with estimates closer to those in the original randomized study. Their statistical models were selected based on the ability to pass certain tests of the model’s assumptions. According to Heckman and Hotz, models that were not ruled out by these “specification tests” tended to perform quite well.

The debate over the ability of such specification tests to identify valid estimates in observational studies continues to this day. For example, Dehejia and Wahba (1999) have attacked the NSW problem from the perspective of propensity-score analysis (Rosenbaum and Rubin, 1983b). The merits of this relatively new approach have been debated (Smith and Todd, 2005a,b; Dehejia, 2005). How this controversy will ultimately play out is uncertain. What seems clear, however, is that proponents of observational research have been put on the defensive by those who argue that only true randomized experiments can yield reliable evidence of causality.

Phenylpropanolamine and Hemorrhagic Stroke

Phenylpropanolamine (PPA) was a component of many popular cold and cough medicines available over-the-counter prior to the year 2000. It was also used as an appetite suppressant. In several decades of use, few serious side effects had been observed. However, starting in the 1980s sporadic reports of hemorrhagic stroke (bleeding in the brain), particularly in young women, began to emerge. Epidemiologic evidence of a causal relationship was quite tenuous, but concerns persisted. By 1992, the Food and Drug Administration (FDA) decided to commission a large-scale case–control study to determine whether PPA was in fact implicated as a risk factor for hemorrhagic stroke.

The study, conducted by a team of researchers at Yale University, began in 1994 and was expected to require four years to complete. Results of the Yale Hemorrhagic Stroke Project (HSP) were reported to the FDA on May 10, 2000, and eventually published on December 21, 2000, in the New England Journal of Medicine (Kernan et al., 2000). The authors concluded that “phenylpropanolamine in appetite suppressants, and possibly in cold and cough remedies, is an independent risk factor for hemorrhagic stroke in women.” The FDA indicated an intention to reclassify the drug as being unsafe for over-the-counter use and urged manufacturers to withdraw it from the market. All of the PPA producers agreed to this FDA request and made plans to transition to other medications for use in cold and cough products. Unfortunately for the manufacturers, the story did not end there, as a flood of lawsuits followed, brought by people who suffered strokes they believed were caused by PPA.

During the ensuing litigation, the HSP study’s findings were hotly contested by the contending parties. Medical and epidemiological experts were retained by both sides. Experts brought in by the plaintiffs extolled the virtues of the HSP study as a model of scientific rigor. Experts for the defendant companies raised many serious methodological criticisms. As a result, the court records contain a wealth of information that sheds light on potential biases. To understand why the study was so controversial, it will be useful to describe briefly the study’s design and the specific results obtained.

Because hemorrhagic stroke is such a rare event in young adults, it would be difficult to study its occurrence prospectively, waiting for a sufficient volume of cases to accumulate. So, the Yale investigators decided to conduct a “case–control” study. A case–control study is essentially run in reverse. The study starts by collecting a group of patients who have experienced the outcome event (e.g., hemorrhagic stroke) and then looks backward to identify factors that appear to be responsible. Loosely speaking, the method proceeds by comparing the rate of exposure to a particular risk factor (e.g., PPA) among the cases and among a group of noncases. If exposure is more prevalent among cases than among noncases, the risk factor may be a cause of the event. A more rigorous discussion of the case–control methodology will be presented in Chapter 4.

The HSP study enrolled 702 men and women 18–49 years of age who were recruited at 43 U.S. hospitals and had experienced a hemorrhagic stroke within 30 days prior to enrollment. For each of these cases, two control subjects were identified through the use of random-digit telephone dialing. Each of the two controls was matched with the corresponding case based on telephone exchange, race, sex, and age. For each case, the “focal time” was defined as the calendar day and time believed to mark the onset of the stroke-related symptoms. A focal time for each control was defined as the same day-of-week and time-of-day as the focal time of the matched case. Interviews of controls were conducted within 7 days of this focal time. Case and control interviews employed a structured questionnaire to obtain demographic, clinical, behavioral, and pharmaceutical data. Exposure to PPA was defined as use of a product containing PPA on the day of the stroke (prior to the event) or on any of the previous 3 days.

The analyses were performed using a technique called conditional logistic model for matched sets. This approach attempted to adjust for several other variables, in addition to the matching variables. The final model included an adjustment for hypertension, smoking status, and education. These factors were considered because each was believed to be associated with the occurrence of hemorrhagic stroke, either as a direct cause (hypertension, smoking) or indirectly as a surrogate for other unknown causal factors (education). Therefore, the statistical relationship between exposure and being a case of hemorrhagic stroke might be related to these “confounding factors” rather than a causal effect of PPA.

The analysis performed on the HSP data resulted in an estimated odds ratio (OR) of 1.49, with a p-value of 0.17. An odds ratio is a measure of effect that is roughly equivalent to the ratio of event rates with and without exposure. Thus, the study estimated a 49% increase in the frequency of hemorrhagic strokes attributable to PPA. However, the significance level of 0.17 was above the conventional 0.05 criterion commonly applied. The estimated odds ratio of 1.98 for women only was barely significant (p = 0.05), and the OR of 0.62 for men was not significant (p = 0.41).

For use of PPA in appetite suppressants, however, the HSP reported a whopping OR value of 16.58 (p = 0.02), among women (there was no male exposure to appetite suppressants), but based on only six exposed cases vs. one exposed control. Furthermore, a secondary analysis based on “first use” of PPA resulted in an odds ratio of 3.13 for women (p = 0.08). Here first use was defined as use of PPA within 24 hours of focal time, but no prior use within the past 2 weeks.

The HSP investigators read these results to suggest a causal association between PPA and hemorrhagic stroke in young women. Their report also acknowledged several possible sources of bias, and discussed measures taken that were believed to have minimized any problems. Confounding could have affected the estimated OR values, despite attempts to identify and correct for important confounding variables. Publicity about PPA might have influenced referral and diagnosis patterns: physicians could have preferentially identified as cases those who were thought to have consumed PPA (selection bias); case subjects could have had either clearer or less accurate memories of events just prior to the index date (recall bias). Finally, the report mentioned temporal-precedence bias, which can occur “when exposure is counted although the exposure occurs after the onset of the disease under study, often in response to disease symptoms” (Kernan et al., 2000). This concern was raised by awareness of a phenomenon known as sentinel headaches in which a transient headache may herald the onset of a stroke that is not recognized for hours, or even days. As a result, an individual who had used PPA after the sentinel headache but before the index date would be incorrectly regarded as exposed.

In the course of the litigation that followed, biostatistical experts retained by the PPA manufacturers raised these and several other potential biases as reasons to doubt the HSP conclusions (e.g., Weisberg, 2004). Some of their arguments are discussed later in this book to illustrate how various sources of bias can arise in a case–control study. In the majority of trials, the drug companies prevailed, deterring some plaintiffs from pursuing cases and motivating many others to settle for relatively modest amounts (Frankel, 2006). In the end, we will probably never know whether PPA really was responsible for causing strokes, as its removal from the market has made this question moot.

Postmenopausal Hormone Replacement Therapy and Cardiovascular Risk

Prior to 2002, estrogen supplementation was being used routinely by millions of postmenopausal women to control vasomotor symptoms (hot flashes, night sweats) and by many in the hope of reaping a variety of health benefits. The most common formulation of replacement hormones used in the United States consisted of conjugated equine estrogen, possibly in conjunction with progestin. Simplistically, because declining hormone levels were a natural concomitant of aging, replacement of the lost estrogen seemed to many women a logical step to help retain health and vitality. During the 1980s and 1990s a large number of observational studies appeared to confirm that hormone replacement therapy (HRT) did indeed provide a number of health benefits, in addition to generally effective relief of vasomotor symptoms. This “wonder drug” seemed to reduce the risk of osteoporosis, fractures, and cardiovascular disease and possibly even to slow progression toward dementia; the only known serious adverse effect was a possible slight increase in breast cancer. On balance, the profile of risks and benefits was generally considered quite favorable by hard-headed scientists as well as more subjective enthusiasts.

The only fly in this promising ointment was the lack of definitive evidence from randomized controlled trials. Skeptics argued that the observational data reflected potentially serious methodological weaknesses. Most significant was the suspected lack of comparability between women who were using HRT and those who were not; the HRT users appeared to be generally healthier and better educated than nonusers. Attempts were made in various ways to control for this healthy-user effect, but the success of these statistical adjustments was uncertain. To obtain more definitive answers, several large-scale randomized controlled trials were implemented during the 1990s. The focus of these efforts was on a range of health endpoints thought to be influenced by hormone levels. Of particular interest were cardiovascular outcomes, considered to be a major potential benefit of HRT.

In 1998, the results of a major clinical trial with a primary focus on cardiovascular disease were published (Hulley et al., 1998). The Heart and Estrogen/Progestin Replacement Study (HERS) was intended to evaluate HRT for secondary prevention in a cohort of postmenopausal women who had previous coronary heart disease (CHD). The main endpoint was occurrence of a serious CHD event (myocardial infarction or sudden death). The results were disappointing, as no overall difference between the treated and untreated groups emerged. Then in 2002, a much-anticipated randomized study of HRT for primary prevention of CHD yielded even more disturbing news. The Women’s Health Initiative (WHI) study showed that in a large cohort of healthy postmenopausal women, HRT was associated with a modest increase in CHD events (relative risk of 1.29 overall), as well as elevated risk of breast cancer and stroke (Writing Group for the Women’s Health Initiative Investigators, 2002). Although the study demonstrated that some beneficial effects accrued for other endpoints, the apparent harm caused by HRT for these serious adverse events clearly tilted the risk–benefit balance against routine use of HRT.

Other randomized studies, including a multiyear extension of HERS called HERS-II (Hulley et al., 2002) seemed generally to confirm the results of HERS and WHI that suggest either a neutral (e.g., Grady et al., 2002; Pentti et al., 2006) or harmful (Vickers et al., 2007) effect of HRT on CHD. The 180-degree turn between the observational studies and randomized experiments has created confusion among researchers and distress among women and their physicians. Hormone replacement therapy is still recommended for short-term relief of vasomotor symptoms, but not as a long-term regimen to promote good health. For the scientific community, it has been especially unsettling that observational studies seemed so convincing a few years ago, but apparently got the story completely wrong! Or did they? A variety of possible explanations have been offered by biostatisticians and clinical researchers.

Most of this methodological soul-searching accepts that the observational designs were flawed and tries to understand exactly why in order to avoid similar mistakes in the future. However, a substantial minority of methodologists refuse to accept the results of the randomized trials as gospel (e.g., Machens and Schmidt-Gollwitzer, 2003; Naftolin et al., 2004). These skeptics point to a number of methodological problems with the clinical trials. In particular, the possibility of selection bias has been suggested, based on the inclusion in both HERS and WHI of primarily older women who had not previously used HRT and were many years beyond menopause (Naftolin et al., 2004; van der Schouw and Grobbee, 2005). Other aspects of the eligibility criteria and screening process for entry into the trial may also have resulted in an unusual study population (Michels, 2003). Furthermore, it has been suggested that the particular hormone regimen (type and dose) utilized in HERS and WHI may not have been optimal, at least not for all women, and possibly different from that usually received in routine practice (Grodstein et al., 2003; Hoffman and Zup, 2003; Garbe and Suissa, 2004). So, it is possible that the restrictions imposed by the trials in order to enhance internal validity may have engendered a lack of external validity.

Although at present the pendulum has swung strongly away from long-term use of HRT, especially for cardioprotective purposes, there remains much uncertainty. Many still believe that HRT in some form can play a valuable role for some women under certain circumstances. The biological processes leading to CHD are complex, and the impact of hormonal supplementation may be highly variable across different individuals. If so, the challenge is not to determine simply whether or not to use HRT but when and for whom, and in what manner to apply this approach. A recent reanalysis of the WHI represents a potentially important step in this direction. This study found that, for relatively younger women within 10 years of menopause, the risk of CHD events was actually reduced (Roussouw et al., 2007). This finding reinforces the idea that HRT is safe for short-term use by newly menopausal women to relieve vasomotor symptoms.

Much of the recent research and controversy about HRT concerns the extent to which specific HRT formulations can safely provide health benefits, as well as alleviation of discomfort, to specific subgroups of women. For example, it has been hypothesized that women with more severe menopausal complaints may be those for whom HRT would tend to be most beneficial (van der Schouw and Grobbee, 2005). Identifying this or other markers of substantial benefit and low risk would be extremely helpful in practice and might reconcile apparently conflicting results of observational and controlled studies. Clinical research is also progressing with respect to various novel preparations that may provide the benefits of HRT without the alleged side effects of the conventional estrogen and estrogen/progestin regimens. For example, the synthetic steroid tibolone (Tib) that is used in Europe but not approved in the United States has shown promise in small-scale trials (Koh et al., 2005).

Finally, the idea of so-called bioidentical hormones has great appeal to many women. Bioidentical preparations are derived from plant extracts that have been chemically modified to be indistinguishable from hormones produced naturally in the body. These products are generally compounded by pharmacists who are not subject to FDA manufacturing regulations. Therefore, practices employed in compounding can vary widely. Some pharmacists customize prescriptions based on saliva tests or blood serum levels. The use of bioidentical hormone therapy is controversial. Advocates are swayed by the rationale that these products are “natural” and tuned to individual characteristics. They push for additional research, while being encouraged by the very limited scientific evidence available (e.g., Moskowitz, 2006). The medical research community, on the other hand, seems generally much more skeptical. Scientists tend to emphasize the lack of controlled trials, as well as the essential similarity of bioidentical and “synthetic” hormonal products (Fugh-Berman and Bythrow, 2007).

The hormonal changes that occur during and after menopause have profound and complex implications, but it has become clear that modifying or regulating these changes safely is not a simple matter. For biostatisticians, the efforts to understand when, how, and for whom HRT can be beneficial will continue to shed valuable light on the relative strengths and weaknesses of controlled trials and observational studies. From a methodological perspective, the impact of the WHI study on epidemiologists was similar to the impact of LaLonde’s study on econometricians and other social scientists. The apparent reversal of what seemed a well-established body of knowledge shook the faith of many in the reliability of observational studies.

Antidepressants and Adolescent Suicide

During the 1990s a new generation of medications became widely available to treat major depression (MD) and anxiety disorders. Most of these new antidepressant drugs were in a class known as selective serotonin reuptake inhibitors (SSRIs). Initially, these new drugs were considered effective and safe, leading to rapidly expanding use that was thought by some to have played a role in observed decreases in population suicide rates (Olfson et al., 2003). However, some concerns began to surface in case reports and one clinical trial that these drugs might actually prompt suicidal thoughts and behavior in some patients, particularly adolescents. The existence of such an effect would be ironic, as suicidal tendencies can be a concomitant of MD that antidepressants are intended to treat. However, the emerging evidence was deemed sufficient by late 2003 to result in warnings by several European regulatory agencies. Then in October 2004 the U.S. Food and Drug Administration (FDA) delivered a coup de grace by ordering pharmaceutical companies to add a “black box” warning regarding possible risk of suicidality to the labeling of all antidepressants prescribed for pediatric use.

The FDA action was based primarily on a meta-analysis conducted to summarize the available evidence from randomized placebo-controlled trials on the risk of suicidality in adolescents who used modern antidepressants (U.S. Food and Drug Administration, 2006; Hammad et al. 2006a,b). A meta-analysis is a type of study that produces an overall estimate of treatment effect by combining the results of several individual studies. Based on 24 clinical trials, the FDA meta-analysis found an approximate doubling of risk apparently attributable to the use of new-generation antidepressants. The regulatory actions by both U.S. and European authorities during 2003 and 2004 precipitated a rapid decline in prescriptions for these medications (Wheeler et al., 2009). The impact of this decrease on suicide rates is not yet clear, and the meaning of the available data is being debated (e.g., Leslie et al., 2005; Dubicka et al., 2006; Bridge et al., 2007). Psychiatric professionals are uncertain about the true balance of risks and benefits associated with the use of antidepressants. All agree that additional research is needed to better understand the circumstances, if any, when antidepressants may do more harm than good.

Much of the uncertainty derives from the limitations of the studies upon which the regulatory bodies based their decisions. In particular, the FDA meta-analysis has had great influence and been subject to much discussion. The major strength of this study is that it is based on placebo-controlled randomized trials, generally considered to be the gold standard of clinical research. However, a number of methodological problems have been pointed out by those who remain unconvinced that SSRIs and other antidepressants increase suicide risk. Some of these problems pertain to the paucity of relevant data in the clinical trials. Fortunately, there were no actual suicides in any of these study populations. So, the analyses of “suicidality” were based on indirect measures of relatively rare serious adverse events that reflected “suicidal behavior or ideation” as judged by a panel of experts (Hammad et al., 2006a,b). However, most of the trials were of short duration (4–16 weeks), so that even using this indirect proxy endpoint, very few events occurred.

Besides the small numbers of events in the clinical trials, there were two major potential sources of bias. First, the relationship between suicidality as measured in the studies and actual potential for self-harm is unclear. There was potential for inter-rater disagreement among the expert ratings of the adverse events. Second, the evidence contained in adverse-event reports might not have been adequate to allow accurate prediction of real suicidal intent.

An even more vexing issue pertains to the selection of study samples. Nearly all of the clinical trials on antidepressant use for adolescents attempted to exclude individuals who appeared at high prior risk for suicide. Several reviewers have noted that such screening could have affected the generalizability of the results (Dubicka and Goodyer, 2005; Greenhouse et al., 2008; Weisberg et al., 2009). Specifically, it is plausible that the observed relative risk was inflated by excluding some of those most likely to benefit from treatment with antidepressants. If so, it is conceivable that the regulatory actions may have been counterproductive by discouraging use of products that, properly monitored, could exert a net beneficial effect. From a methodological perspective, this situation highlights the difficult realities that arise in evaluating many complex interventions. Randomized controlled trials are geared primarily to establishing an overall or average treatment effect. When the effect on individuals can vary, perhaps even in direction as well as size, this overall effect can be misleading. Understanding when, how, and for whom antidepressants should be prescribed will require years to unravel. As in the HRT situation, there is much grist here for the methodological mills to grind.

GUIDEPOST 1

This chapter has introduced the topic of bias in comparative studies and presented several case studies that illustrate both the importance and the difficulties inherent in causal inference. These examples were presented against a backdrop of introductory ideas that emphasized the limitations of classical statistical theory for causal inference. We suggested that methods for dealing with bias must be built upon a deep understanding of the real problems posed by attempting to estimate causal effects. Out of such understanding, a new paradigm may emerge that draws on statistical theory but expands beyond its borders to better connect with subject-matter knowledge and clinical insight.

In the next chapter, we explain in more detail the theoretical basis for recent developments related to analysis of causation in comparative studies. The basic concepts of counterfactuals and potential outcomes are defined. The central idea of viewing human populations as collections of “response patterns” is introduced and illustrated with a simple hypothetical example. This idea then leads to a notion of “exchangeability” that, at least conceptually, solves the “apples and oranges” dilemma.


CHAPTER 2
 Causality and Comparative Studies


Virtually any statistical analysis of practical importance is potentially susceptible to various forms of bias. Therefore, it might be supposed that biased comparisons would be of central interest to statisticians and other research methodologists. In fact, the field of statistics has traditionally treated bias more as a minor annoyance than a topic worthy of serious academic consideration. In scientific articles, discussion of possible bias is often relegated to a few paragraphs on the “limitations” of the study. These afterthoughts often have a perfunctory quality; they seem intended more to deflect criticism than to invite a serious evaluation of the study’s validity.

Why has the subject of bias received so little attention by statisticians? Perhaps the main reason is that any meaningful discussion of bias in comparative studies cannot avoid dealing with the core concept of causality. Unlike ordinary statistical concepts, bias pertains explicitly to the causal nature of things. The existence of bias cannot be determined by mere calculation; it depends as well on the interpretation of the data in light of some causal theory. Thus, bias has become an “inconvenient truth” for the almost strictly mathematical discipline that statistics has become.

2.1  BIAS AND CAUSATION

As we suggested in Chapter 1, the field of statistics has long regarded causality as lying outside the bounds of its scientific mandate. Statistics deals with empirical quantities and with the strengths of interrelationships among measurable variables. Thus, measures of association, such as correlation and regression coefficients, are of interest. The only exceptions apply when experimental control of treatment allocation is feasible, as in a randomized experiment. However, we will see that these techniques do not really deal with the issue of causation directly. Rather, they cleverly sidestep this issue by creating special situations in which bias can be avoided. In this way, a causal effect can be estimated without having to worry about what this effect really means.

To assess whether an observed effect reflects causation or mere coincidence entails considerations beyond the purview of purely mathematical analysis. External information derived from background knowledge, intuition, or theory may be required to identify relationships that a scientist would normally describe as causal. Because these sources of information possess varying degrees of credibility and subjectivity, statisticians are generally reluctant to consider them, preferring to rely exclusively on observed data within the study at hand (and if possible on experimental manipulation). Many statisticians regard causality to be a quasi-scientific notion that is not amenable to rigorous mathematical analysis.

Throughout the 19th and most of the 20th centuries, the mathematics and conceptual apparatus of probability and statistics became ever richer, while the causal ideas that drove much of that development remained tacit, informal, and obscure. Kolmogorov’s axioms may be seen in retrospect as the completion of that tendency; all connection between probability and causal ideas is lost. No wonder, perhaps, that many statisticians since have treated ideas of causation as an embarrassing metaphysical entanglement, even while routinely practicing causal analysis without naming it. 
(Glymour, 1998, 1513)

Rejecting causality as a useful concept within mainstream statistical theory can be viewed as part of a broader phenomenon. The modern statistical paradigm came to maturity during an era in which logical positivism dominated the philosophy of science. Positivistic thought focuses on the description of observable, and presumably objective, facts and patterns, distrusting all metaphysical speculation. Classical statistical methodology, with its emphasis on observable distributions and stable relationships evolved naturally out of this worldview.

The straitjacket imposed on scientific thought by positivism has left statisticians struggling to improvise methods for analysis of causation that do not explicitly deal with the concept of causality. These attempts have foundered on the essential limitation of positivistic thought:

There is a curious misconception that somehow the mathematical mysteries of Statistics help Positivism to evade its proper limitation to the observed past. But statistics tell you nothing about the future unless you make the assumption of the permanence of statistical form. For example, in order to use statistics for prediction, assumptions are wanted as to the stability of the mean, the mode, the probable error, and the symmetry or skewness of the statistical expression of functional correlation. 
(Whitehead, 1933, 126)

As a result, statistical thinking about causal questions has until recent decades been stunted. In particular, the concept of bias within statistics has been reduced to a mathematical formalism that is entirely devoid of causal content. Yet the obvious question for any comparative study remains: what does an observed difference between two groups really mean?

The answer to such a question usually depends on considerations that reach beyond the available data. The existence of bias must be judged in the context of a broader conceptualization of reality, and “metaphysical entanglements” are thus inevitable. Unlike error related to random variability, bias cannot be assessed without external knowledge of the world. Reliance on this imperfect knowledge may have risks, but failure to apply the knowledge can have even greater risks.

The point is that speculative extension beyond direct observation spells some trust in metaphysics, however vaguely these metaphysical notions may be entertained in explicit thought. Our metaphysical knowledge is slight, superficial, incomplete. Thus errors creep in. But, such as it is, metaphysical understanding guides imagination and justifies purpose. 
(Whitehead, 1933, 128)

Pure empiricism tries to avoid all risk of serious error by focusing on what can be analyzed with mathematical precision. Thus, sources of bias that cannot be reduced to mathematical expression pose a dilemma: admitting their existence would be an acknowledgment of failure. The goal of research design and analysis is understood to be the complete elimination of bias. This objective can sometimes be attained through experimental design but can never be absolutely assured when experimental control is absent. So in the vast majority of studies, there is no practical way to justify validity, other than to rationalize that bias is negligible. Is it really surprising that so little academic attention has been paid to understanding exactly how bias can and often does affect causal inferences?

2.2  CAUSALITY AND COUNTERFACTUALS

What exactly do we mean by a cause? The meaning of causality has been an object of philosophical inquiry for centuries. Although it is not necessary for a practicing researcher to wade deeply into these philosophical waters, a basic conceptual framework for causal thinking is essential. Statistics has been applied to help elicit causal relationships in many areas of research. At some level, the ideas presented in this book are applicable to all areas of scientific research in which statistical methods are used. However, the focus of this book is on research that involves human subjects. The examples used to illustrate various types of bias are drawn from the biomedical and social sciences. The types of bias considered are primarily those that affect studies of human health and behavior.

In recent years a new paradigm for thinking about causal effects in the biomedical and social sciences has emerged. Attempts to deal with causality in these areas have led to the development of a widely accepted conceptual framework for causal analysis. This approach is generally known as counterfactual analysis, or sometimes as the theory of potential outcomes (Rubin, 1974). Throughout this book, the term “causal” will implicitly refer to this counterfactual–potential outcomes framework. For example, a causal model will mean a statistical model based on counterfactual concepts.

The philosophical roots of counterfactual analysis have been traced back to the eighteenth century. David Hume focused attention on the alternative events that would have occurred in the absence of a specific cause. He is famously quoted as proposing that:

We may define a cause to be an object, followed by another … where, if the first object had not been, the second had never existed. 
(Hume, 1748, 115)

In other words, an event A is a cause of an event B if “occurrence of A was necessary for occurrence of B under the observed background circumstances” (Greenland, Robins, and Pearl, 1999). This conception envisions a hypothetical scenario that is identical in all relevant respects to what took place, except for the occurrence of A. Let us suppose that, in this alternate reality, B would not have occurred. Instead, some other outcome, which we can call not-B, would have occurred. Then, because the only difference between the actual and alternate realities was that A in fact did occur, A can be considered a cause of B. The event not-B is a counterfactual because it is contrary to what actually happened. It is a potential outcome in the sense that it would have occurred if event A had not.

Note that we did not say that A was the cause of B, because there may have been other events present in the “observed background circumstances” that were also required to bring about event B. For example, advanced age is evidently a cause of cardiovascular disease. However, there are many other contributing factors (e.g., smoking history, cholesterol levels, hypertension, obesity) that together determine whether and when a heart attack or stroke will actually occur. This book focuses on issues of bias and causation for a single factor. We will often refer to this factor of interest as a risk factor, although the outcome event is not necessarily something undesirable. In the biological and social sciences, it is almost never possible to completely isolate this risk factor from the context in which it is embedded. Researchers must often pretend that it is possible to “hold everything else constant” while observing the effect of modifying a specified factor. But it is dangerous to forget that ceteris paribus is at best a useful approximation.

John Stuart Mill is often cited as the first to propose a concept of causation that recognizes the role of multiple factors working in concert to produce a given outcome (Mill, 1874). Nearly a century later, philosopher J. L. Mackie introduced a refinement of these ideas that has become very influential among social scientists (Mackie, 1965; 1974). Mackie stated that a causal factor is a condition that is an insufficient but necessary component of an unnecessary but sufficient condition. He abbreviated this formulation to the acronym INUS. An INUS is one of a constellation of conditions that together always result in the outcome event. Because the INUS is necessary but does not by itself bring about the event, it is insufficient but necessary (IN-). Because the constellation need not be unique, it is unnecessary but sufficient (-US).

Epidemiologist Kenneth Rothman independently derived essentially the same concept in the context of epidemiology (Rothman, 1976). Rothman represented graphically the various conditions that could jointly precipitate an event (e.g., disease) in a specific individual as sectors of a pie chart. Each of these conditions he called a component cause of the event. The combined effect of all the component causes is a sufficient cause. Consequently Rothman’s model is usually called the sufficient component cause (SCC) model. Figure 2.1 is a schematic diagram similar in essence to that in Rothman’s original exposition of the SCC model.

Figure 2.1. Illustration of Rothman’s SCC model: three sufficient causes, each with three component causes.
[image: c02f001]


In this diagram, each number denotes a component cause necessary for one or more of the three sufficient causes. A sufficient cause need not be unique; there could be multiple pie charts that would represent combinations of conditions giving rise to the event. Furthermore, a particular component cause might be a constituent of more than one sufficient cause. If a component cause appears in all possible sufficient causes, then it can be considered a necessary cause for the event to occur. In the illustration, component 3 would be necessary, because it is a part of all three sufficient causes.

As a (grossly oversimplified) concrete example, suppose that five factors determine whether a particular individual dies from an influenza epidemic:

Factor 1:  Not inoculated with seasonal flu vaccine

Factor 2:  Age over 75

Factor 3:  Exposed to the virus causing the epidemic

Factor 4:  No access to medical care

Factor 5:  Weakened immune system


Suppose that Fig. 2.1 represents this imaginary situation. Then there would be three possible scenarios in which this person would die. All three sufficient causes require exposure to the flu virus (Factor 3). However, there are three possible pairs of additional component causes that could occur in conjunction with Factor 3 to form a sufficient cause. For example, the first sufficient cause would include being over 75 and not being inoculated.

Note that each pie chart represents a set of circumstances that pertain to a particular individual. Thus, Rothman’s SCC model explicitly represented causation for an individual. The component causes are conceived as individual characteristics that could potentially be switched on or off. The values at which these switches are set determine whether or not the outcome event actually occurs. Such an idea is impossible to represent within the traditional statistical framework, because only the individual’s realized outcome is considered. The concept of latent causal factors can illuminate many causal issues that are obscured within the traditional statistical framework (Rothman and Greenland, 2005).

For our purposes, it will be convenient to adapt the SCC model, so that it can be more easily connected to counterfactual ideas. We will first define the state of the world heuristically as the complete set of all conditions that can potentially influence the value of an outcome event. This state reflects the values of all factors that together determine the outcome value. In the SCC model, a factor is a component cause that is either present or absent. Similarly, the outcome either occurs or does not occur. For illustrative purposes, we will retain these simplifications. However, the basic logic extends to situations in which the factors and outcomes assume many possible values. A factor is said to potentially influence the value of the outcome if altering its value would change the outcome value under at least one possible state of the world. Such a factor can be called a relevant factor.

Now, let us assume that the sectors of a single pie chart can stand for the entire state of the world, with all the relevant factors explicitly represented. Note that these factors could be aspects of the society or the physical environment, as well as individual characteristics. In effect, we collapse the component causes included in different sufficient causes into a single pie chart. For simplicity, we will always include five sectors in our diagrams. Furthermore, instead of assuming that all factors in the chart are present, as in Fig. 2.1, we allow each such factor to either be present or absent. If the factor is present, we will display its identifying number in the corresponding sector of the pie chart. If the component is absent, we will leave the corresponding sector blank. In this conception, the outcome is determined by the pattern of presence and absence of the relevant conditions, which we will term the causal configuration. Finally, if a particular configuration of factors causes the outcome event, then the pie chart will be shaded, but if it does not, the pie chart will remain unshaded.

Figure 2.2 displays two possible configurations. The pie chart on the left represents a situation in which Factors 1, 2, 3, and 5 are present, but Factor 4 is absent. The shading indicates that the outcome event occurs. In this case, both the first and third sufficient causes shown in Fig. 2.1 would be fulfilled. In terms of our artificial influenza epidemic, this person would not be vaccinated and would be over age 75, be exposed to the virus, and have weakened immunity. On the other hand, the right-hand pie chart is not shaded, because none of the three sufficient causes is present.

Figure 2.2. Causal model: Two individuals, each with a causal configuration comprising the values of five causal factors. The outcome event occurs for one of them (indicated by shading) but not for the other.
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To illustrate the counterfactual concept of causality, suppose in our hypothetical example that all five relevant factors (1, 2, 3, 4, and 5) are present for a particular person. This causal configuration causes the event to occur, as represented in Fig. 2.3 Now suppose we ask the following counterfactual question: what would have happened with Factor 1 absent, but everything else in this scenario remaining fixed? By “everything else” we mean the values of all other factors besides Factor 1. The constellation of factor values besides the causal factor(s) of interest will be called the causal context. With the causal context portrayed in Fig. 2.3, the outcome event would have occurred even without Factor 1, because Factors 3, 4, and 5 were present. This situation is illustrated in Fig. 2.4. Because the event would have resulted anyway, Factor 1 would not be construed as a “cause” of the event. More precisely, the causal effect of Factor 1 would have been the null effect (no difference).

Figure 2.3. An individual with all five causal factors present. This particular causal configuration causes the outcome event to occur, as indicated by the shading.
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Figure 2.4. An individual for whom the outcome event occurs (indicated by shading) whether or not Factor 1 is present. Therefore, Factor 1 has no causal effect for this individual.
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Alternatively, suppose that the causal context for Factor 1 consisted of Factors 2 and 3 only. In this case, without Factor 1 the event would not have happened. So, given this causal context (i.e., presence of Factors 2 and 3, but not 4 and 5) the outcome event would have occurred if and only if Factor 1 also occurred. In this sense, Factor 1 was truly a cause of the event. This situation is portrayed in Fig. 2.5.

Figure 2.5. An individual for whom the outcome event occurs if and only if Factor 1 occurs. Therefore, Factor 1 is a cause of the event for this individual.
[image: c02f005]

Two important points emerge from this discussion. First, the causal effect of a given factor on a particular individual depends on her particular background conditions. In general, it is not meaningful to define a causal effect in the abstract, without reference to the causal context. Second, the causal effect of a given factor can vary across individuals, because the causal context depends on individual characteristics and circumstances.

Some methodologists have gone so far as to assert that estimating a general causal effect is nearly always a gross simplification and thus misleading:

I consider it pointless to speak of causes when all that can be validly meant by reference to a cause in a particular instance is that, on one trial of a partially specified manipulation t under conditions A, B, and C along with other conditions not named, Phenomenon P was observed. To introduce the word cause seems pointless. 
(Cronbach, 1982, 137)

In context, Cronbach’s extreme position was apparently intended as a counterweight to a widespread view among methodologists that evaluations of educational and social programs should focus primarily on “main effects” and that “interactions” with background conditions were less likely to occur (e.g., Campbell, 1969). He argued cogently that, in the setting of educational program evaluation, there is usually no logical or empirical justification for assuming that individuals and background circumstances are homogeneous. Consequently, causal effects are more likely to be highly variable.

2.3  WHY COUNTERFACTUALS?

The counterfactual approach provides a clear and coherent way to think about a variety of important concepts related to causation. In particular, a counterfactual framework will allow us to distinguish between the causal effect of some factor and an empirical effect that can potentially be measured. The empirical effect is the effect that would be observed in a particular study if an effectively infinite sample could be obtained. We distinguish the empirical effect from the observed effect to emphasize that the issues discussed relate exclusively to systematic error, as opposed to the random error that can arise because of finite samples. The observed effect reflects the impact of both random variation and bias.

The goal of a comparative study is to estimate an empirical effect that faithfully represents an underlying causal effect. Methodological bias is the discrepancy between such an empirical effect and the causal effect of interest. Our definition of bias as the difference between an empirical effect and the corresponding causal effect is deliberately narrow. Contrast this definition with that given in A Dictionary of Epidemiology:

Deviation of results or inferences from the truth, or processes leading to such deviation. Any trend in the collection, analysis, interpretation, publication or review of data that can lead to conclusions that are systematically different from the truth. 
(Last, 2001, 14)

A general definition like this would include many aspects of research design and analysis that extend beyond our core concerns about causal validity. The main purpose of this book is to help researchers understand, identify, and deal with the various kinds of bias that can undermine causal inferences. To accomplish this objective, we will employ counterfactual analysis primarily as a conceptual tool to sharpen our thinking about bias.

The presentation in this book tries to steer a middle course between two methodological extremes. On the one hand, a counterfactual perspective sometimes refers to a general philosophy or language for scientific inquiry. This “softer” application of counterfactual methodology tends to be more conceptual and qualitative, a form of “scientific common sense” (Phillips and Goodman, 2006). On the other hand, a more quantitative form of counterfactual analysis may apply sophisticated mathematical techniques, such as structural equation models, to work out the details of a complex causal nexus among variables of interest. When it comes to understanding bias in comparative studies, counterfactual thinking offers much more than common sense, but usually much less than precise mathematical answers.

The approach adopted throughout this book is to utilize basic algebra and statistical concepts as devices to help methodologists formulate (and sometimes answer) questions that arise in practice. For example, every researcher is aware that allowing individuals to choose whether to participate in a treatment group or a control group is a recipe for bias. But exactly why and in what sense is this true? Are there circumstances in which such a design will not produce bias? When can the extent of possible bias be estimated? Counterfactual concepts provide a useful “language” in which such questions can be discussed.

The counterfactual perspective is not a unique conceptual framework for addressing such questions meaningfully. There are certainly others. Although counterfactual thinking has become extremely popular recently, it is by no means universally accepted by philosophers of science or research methodologists. Energetic debate about the merits of the approach persists (Holland, 1986, with discussion; Dawid, 2000, with discussion; Maldonado and Greenland, 2002, with discussion). It might well have been possible to write a book about methodological bias grounded in a different conceptualization of causal effects (Shafer, 1996; Dawid, 2000). But so far at least, counterfactual analysis is distinguished by the extent to which it has been usefully applied in biomedical and social sciences. For the problems posed by comparative studies, counterfactual thinking has made major contributions.

2.4  CAUSAL EFFECTS

This book deals with studies in which statistical analysis can be used to estimate causal relationships. Such studies attempt to measure the changes in a specific outcome that would be caused by manipulating (perhaps hypothetically) some preceding factor. For example, if elderly nursing-home residents are inoculated with a newly developed vaccine, how much will the rate of influenza decrease? To study this kind of question, a researcher must find a way to compare what happens to groups of different individuals (or the same individuals at different times) under alternative specified conditions. If we design this comparison appropriately, it can reveal something useful about the causal effect of interest. If we design the comparison badly, the resulting empirical effect will be misleading. Suppose we decide to compare the influenza rate for a group of elderly patients given the vaccine with the rate for a similar group who were not. Under what conditions will this comparative study yield meaningful and useful results? To what extent might the results of this comparison be misleading? How could we conduct analyses that adjust for any existing bias? Trying to address such questions is essentially the subject matter of this book.

We have defined bias as the difference between an empirical effect and a causal effect. To be more precise, we introduce some standard terminology to describe comparative studies. For simplicity, we assume that a study is concerned with the causal effect of a single factor (treatment, risk factor, program, intervention) and a single well-specified variable potentially affected by this factor (outcome, response, endpoint). Our objective is to determine the causal effect of this factor on the outcome. If the factor of interest is operative for a certain individual, we will say that she has been exposed to the factor. More generally, exposure can be framed in terms of a scale, with varying levels of exposure, possibly even on a continuum. For simplicity, we will consider the exposure status for any individual to have only two possible values: exposed and unexposed.

In many contexts, an exposed individual is said to experience the treatment and an unexposed to experience a control condition. The terms “treatment” and “control” derive from the early development of statistical analysis in the context of controlled experimentation on agricultural treatments (e.g., insecticides, herbicides, seed types, fertilizers). Alternatively, the exposed group may receive the treatment and the unexposed group an alternative treatment, or comparator. Sometimes, particularly in a medical context, the groups being compared are said to receive alternative treatment modalities. In the social sciences, the terms intervention and program often take the place of treatment. Context-specific terminology can be awkward when discussing general methodological issues that cut across different areas of application. The more neutral term “exposure” will usually be adopted throughout this book. Furthermore, we will generally refer to the two groups being compared as the study groups.

What exactly do we mean by the causal effect of an exposure? The traditional statistical perspective offers no simple answer. Statisticians deal with measures of association in a specified population. Is lung cancer associated with smoking cigarettes? An observed relationship of this kind may be accorded a causal interpretation only if certain conditions are believed to hold. Generally speaking, the association is said to be causal if alternative (noncausal) explanations can be dismissed from consideration. The process of adducing evidence to rule out all other possible reasons for the observed association can be complex and contentious, as it was for many years with smoking and cancer.

From this traditional statistical perspective, the concept of causation is conceptually secondary to that of association. (The terms correlation and dependence are also commonly used to describe statistical association, although each has a more specific technical meaning as well.) Modern statistical theory, since the early days of Karl Pearson and his disciples, has nearly expunged the word “cause” from its vocabulary (Pearson, 1900). Causation is discussed elliptically if at all; statisticians typically employ circumlocutions such as “independent risk factor” or “explanatory variable” to avoid causal language. One important consequence is that the causal effect applicable to a particular individual cannot be formalized. From the usual statistical perspective, the primary realities are variables and populations.

In contrast, counterfactual analysis posits a meaningful causal effect for each individual. Before a research study has been implemented, each individual in the study population is imagined to possess two potential outcomes. One of these will actually be realized in the study; the other will be counterfactual. For example, imagine that we are evaluating a new program of tutoring for the mathematics portion of the Scholastic Aptitude Test (SAT). Jane Smith’s score if she is assigned to the intervention (New Program) is one potential outcome (say 640) and her score if assigned to the traditional approach (Old Program) is another potential outcome (say 600). This pair of potential outcomes has been termed the response pattern (Greenland and Poole, 1988). Jane’s response pattern can be written as (640, 600).

The New Program received by Jane can be considered a causal factor contributing to the determination of her outcome score. However, we would have no easy way to represent graphically the entire range of values that can be assumed by potential outcomes. (For the SAT there are 61 possible scores, ranging from 200 to 800 in increments of 10.) In principle, we could extend the model to accommodate such a numerical outcome by using different gradations of shading and/or color to represent various outcome scores. Obviously, such an approach would not be practical. Therefore, when considering a numerical outcome, we will utilize algebra rather than a graphic visualization. Furthermore, we will for now suppress the possible dependence of the potential outcomes on the causal context.

Let ViE designate the potential outcome value when subject i in a study is exposed, and ViU the outcome if she is unexposed. For individual i, the exposure has no causal effect if ViE = ViU. However, if ViE ≠ ViU under the study conditions, then exposure causes a change in the observed outcome value from ViU to ViE.. It might be tempting to jump to the conclusion that the causal effect for an individual is ViE − ViU. Indeed, this is one way to define an individual causal effect, but we could also define it as some other mathematical function, such as ViE/ViU or ln(ViE) − ln(ViU). Most generally, we define the causal effect as the response pattern (ViE, ViU). A particular mathematical “difference” between the values of ViE and ViU is just one manifestation of this underlying causal effect.

From the counterfactual perspective, the response pattern for a given individual contains all the information that is relevant to any conceivable causal inference. The distribution of response patterns for the individuals in a given population represents the full causal effect of the exposure on that population. If we knew the response patterns, we would “see” what would happen to each individual under alternative scenarios, such as being exposed and unexposed. We would then be in a position akin to that experienced by the three-dimensional being who visits the two-dimensional world of Flatland in Edwin Abbott’s popular allegory (Abbott, 1884). Stepping out of ordinary reality into the extra dimension of “potentiality” would allow direct observation of potential outcomes, and therefore of causation. Of course, we have no means of witnessing the response patterns. How then can causal effects be made visible?

Mainstream statistical theory has almost nothing to say about individual causal effects. Classical statistical theory shifts attention away from individuals and onto a population (actual or hypothetical) of which the individual is assumed to be representative. Probability distributions of variables that describe important individual characteristics are of central importance. Any individual is typically regarded as a “random” observation whose value for any variable is a “deviation” from, or “error” around, the average in the population.

Concentrating on parameters of probability distributions was undeniably a huge step forward in the development of modern statistical inference. Within this framework, the elaborate machinery of statistical methods for managing random error grew to maturity. Meanwhile, causal inference withered on the vine. Causation became viewed as an outmoded relic of a prescientific era. Ignored in this evolution of statistical theory was the irony that the “hypothetical infinite” populations commonly assumed by statisticians as the source of observed samples are no less imaginary or mystical than the potential outcomes for which causal models are frequently criticized.

Potential outcomes are “real” in the same sense as hypothetical infinite populations. Both are valuable conceptual devices. Imagining that a set of observations was drawn at random from a probability distribution, such as the normal distribution, places the data in a useful perspective. A particular data set is seen as one of many that could potentially have arisen. Thus, the assumed probability distribution can be viewed as a counterfactual model for analyzing random variability. In a similar way, potential outcomes facilitate thinking about systematic variability. Both statistical inference and causal analysis require consideration of what might have been but was not. Hypothetical infinite populations describe counterfactuals under random sampling from a fixed population under stable circumstances. Potential outcomes describe counterfactuals for a fixed individual when one or more specified circumstances change. Data analysis must ideally take proper account of both these important sources of variability.

Formulating problems in terms of potential outcomes facilitates clear thinking about research design and analysis. Especially important, we can discuss causation at the level of the individual. Ideally, research would allow us to measure the actual response pattern that is applicable to each individual. For example, a clinical trial of some new medication might yield a set of detailed instructions on how to tailor the timing and dosage of a particular drug to a patient’s specific characteristics and circumstances. Eventually, the detailed understanding of the human genome may lead to advances in personalized medicine that approach this ideal.

For now, such fine-grained inferences remain in the realm of science fiction. Moreover, individualization in the social sciences may seem an even more remote possibility. In practice, most studies currently aim to generate an unbiased estimate of an aggregate causal effect. Does the Head Start program increase future academic achievement in school for disadvantaged children? Does treatment with a statin drug reduce the incidence of myocardial infarction in middle-aged women with elevated lipids? Can exposure to second-hand smoke cause asthma in young children?

In effect, these studies attempt to estimate some useful measure of the typical (often average) effect in a target population. As mentioned previously, the ideal object of inquiry is the entire distribution of response patterns in the population. Knowledge of the response-pattern distribution would allow us to calculate any possible measure of causal effect. For example, we could determine what proportion of individuals with any specified characteristics do better when exposed than when unexposed, and by how much. For concreteness, let us consider a class (Class A) of 10 high school students about to begin the hypothetical new tutoring program (New Program) to improve their SAT math scores. Their potential outcomes are shown in Table 2.1.

Table 2.1 SAT Tutoring Experiment: Class A

	Student	New Program	Old Program
	A1	570	520
	A2	480	480
	A3	800	600
	A4	640	600
	A5	680	700
	A6	780	660
	A7	600	550
	A8	560	480
	A9	590	540
	A10	670	570
	Mean	637	570
	Median	620	560
	% 600+	60%	40%


Table 2.1 displays three possible measures of causal effect. Note that the average score for the students in Class A with the New Program is 637, and the average with the Old Program would be 570. So, one way to express the causal effect would be as a 67-point average increase. However, an alternative measure would be the 60-point increase in the median, or perhaps the increase of 20% in the number of students who achieve a score of at least 600 points. There are limitless additional possibilities, each of which represents a specific way of summarizing the underlying distribution of response patterns for the students in Class A.

In general, let us define VE to be a random variable defined over the study population. This variable assumes the value ViE if individual i is exposed (E). Let us define VU as the corresponding random variable if he is unexposed (U). For simplicity of presentation, we will in some contexts use VE also to represent the distribution of the variable VE. In our example, VE stands for both the vector of ten scores in the first column of Table 2.1, and the variable that has these values. In general, we define a causal effect as a “difference” denoted by D(VE, VU).

For example, suppose we want to know the median improvement in SAT score attributable to the New Program vs. the Old Program. If we could somehow determine the full distribution of response patterns, this parameter would be computable. One possible approach would be to find matched pairs of students who appear very similar on relevant characteristics. Then one of the students in each pair could receive the New Program and the other could receive the Old Program. The observed difference between the two after the tutoring programs would be an estimate of the program’s effect for each individual in the New Program. Of course, such a study might be criticized, because there is no guarantee that the two paired students really were similar. There are usually many possible differences between individuals, so that their causal contexts are far from identical. An observed difference between outcomes for two different individuals can almost never be safely assumed to represent the difference for the same individual under two different conditions. As a result, measuring an effect such as the median improvement, which depends on observing individual effects, is rarely feasible.

Alternatively, suppose we define D(VE, VU) as the difference of the medians, rather than the median of individual differences. That is, we would calculate the median of VE and the median of VU and find the difference between them. For example, the difference of median SAT scores shown in Table 2.1 would be 60 points. This approach depends only on the marginal distributions of VE and VU. It is not necessary to know the individual response patterns, which depend on the more complete joint distributions. As we will see, this is a major advantage. Indeed, effect measures that depend only on the marginal distributions of VE and VU are virtually the only ones ever employed. By far the most common effect measure is the difference of averages. We will denote the average (mean) of VE by μVE and the average of VU by μVU. In this case, D(VE, VU) becomes simply μVE − μVU.

2.5  EMPIRICAL EFFECTS

So far, we have formalized various concepts related to the true, but unattainable, causal effect. Now we venture into the world of actual research. In the real world, we cannot simultaneously assign both E and U to every member of the study population. For each subject in a study, only one of the two potential outcomes can be observed. This methodological conundrum has been called the fundamental problem of causal inference (Holland, 1986). On the one hand, therefore, we can think of a true causal effect as a platonic ideal that is never actualized. On the other hand, scientists are often able to estimate causal effects by applying principles of experimental design and analysis to fashion appropriate comparative studies.

Suppose we calculate the mean (or some other parameter) for a group of subjects who are exposed and a “control” group who are unexposed. How can we be certain that the observed difference is attributable to the exposure of interest rather than to some preexisting differences between the two study groups? In an intuitive sense, we want assurance that the two groups being compared are equivalent in all relevant respects. In that way, any observed difference will depend only on the different modalities assigned to the two groups. However, the phrase “equivalent in all relevant respects” is too vague to be very helpful. We have expressed the causal effect as D(VE, VU), the true effect of the program in the population under study. Because, for each individual, only one of ViE and ViU is ever observable, it is not obvious how D(VE, VU) might be estimated. It seems sensible to assume that a comparison of the exposed and unexposed groups could somehow be useful, but we require a logical connection between our empirical study data and the unobservable causal effect. Understanding the nature of this potential link is the key to solving the fundamental problem of causal inference.

In our tutoring example, suppose that we decide to compare the results for Class A with those obtained by another Class B that receives the Old Program. Table 2.2 displays the hypothetical set of potential outcomes for Class B. The study will compare the actual outcomes in the New Program column of Table 2.1 with the actual outcomes in the Old Program column of Table 2.2. The results of this comparison are displayed in Table 2.3. The observed difference of the means is 25 points. However, from Table 2.1 we know that the causal effect for the students in Class A is really 67 points. In an actual study, the observed difference would be affected by both random and systematic variability. As explained previously, we are pretending that the random error does not exist, so this observed effect is interpreted as the true difference between the two classes being compared. This difference is what we have termed the empirical effect.

Table 2.2 SAT Tutoring Experiment: Class B

	Student	New Program	Old Program
	B1	610	500
	B2	670	520
	B3	540	570
	B4	690	600
	B5	720	700
	B6	740	670
	B7	770	620
	B8	650	560
	B9	690	610
	B10	800	770
	Mean	688	612
	Median	690	605
	% 600+	90%	60%


Table 2.3 SAT Tutoring Experiment: A vs. B

	 	New Program	Old Program
	 	570	500
	 	480	520
	 	800	570
	 	640	600
	 	680	700
	 	780	670
	 	600	620
	 	560	560
	 	590	610
	 	670	770
	Mean	637	612
	Median	620	605
	% 600+	60%	60%


In our example, the empirical effect is biased because the potential outcomes for Class B under the Old Program did not result in a mean of 570. If they had, the mean for Class B could have been substituted for the unobserved mean of Class A under the Old Program. In this special situation we would say that Class B is partially exchangeable with Class A (Greenland and Robins, 1986). For the two groups to be completely exchangeable, we would need to be able to reverse the process as well, so that the potential outcomes for Class A under the Old Program could serve as a substitute for the potential outcomes of Class B under the New Program. In that way, we could estimate the causal effects for both classes.

Note that if we had complete exchangeability, the mean values for the potential outcomes of the classes would be the same. Therefore, the causal effects (as measured by the difference of means) would be the same for the two classes. Also, under complete exchangeability it would not matter which class actually received the New Program and which received the Old Program. We could exchange the roles of the two groups without affecting the resulting empirical effect. This situation is illustrated in Tables 2.4 and 2.5. Exchange­ability in this sense is one way to express what we mean by saying that the study groups are “equivalent in all relevant respects.” But it is not at all obvious how we would know whether such exchangeability can be assumed. Furthermore, this definition of exchangeability only expresses the idea of equivalence between groups in a very limited sense of mean-exchangeability. For example, Table 2.5 shows that the difference of medians is 45 instead of the corresponding causal effect of 60.

Table 2.4 SAT Tutoring Experiment: Class B1

	Student	New Program	Old Program
	B1	580	550
	B2	500	520
	B3	800	640
	B4	620	600
	B5	680	680
	B6	780	660
	B7	590	580
	B8	570	430
	B9	540	470
	B10	710	570
	Mean	637	570
	Median	605	575
	% 600+	50%	40%


Table 2.5 SAT Tutoring Experiment: A vs. B1

	 	New Program	Old Program
	 	570	550
	 	480	520
	 	800	640
	 	640	600
	 	680	680
	 	780	660
	 	600	580
	 	560	430
	 	590	470
	 	670	570
	Mean	637	570
	Median	620	575
	% 600+	60%	40%


A more intuitive notion of equivalence between study groups might be reflected by the situation exhibited in Tables 2.6 and 2.7. Here the entire (marginal) distribution of potential outcomes under either tutoring program in Class B2 is identical to the corresponding distribution in Class A. In this case, any empirical effect that can be measured will be identical to the corresponding causal effect. For example, the difference of means, difference of medians, and difference of percentages above 600 points all have the correct (causal) values. Of course, as explained in the previous section, we could not estimate the mean individual effect. That would require a way to observe the distribution of response patterns (i.e., the joint distribution of the potential outcomes).

Table 2.6 SAT Tutoring Experiment: Class B2

	Student	New Program	Old Program
	B1	640	600
	B2	560	570
	B3	480	480
	B4	600	700
	B5	670	480
	B6	570	520
	B7	680	550
	B8	800	540
	B9	590	600
	B10	780	660
	Mean	637	570
	Median	620	560
	% 600+	60%	40%


Table 2.7 SAT Tutoring Experiment: A vs. B2

	 	New Program	Old Program
	 	570	600
	 	480	570
	 	800	480
	 	640	700
	 	680	480
	 	780	520
	 	600	550
	 	560	540
	 	590	600
	 	670	660
	Mean	637	570
	Median	620	560
	% 600+	60%	40%


Although exchangeability in the sense exemplified by either Class B1 or Class B2 is theoretically appealing, how could we obtain information to decide whether such exchangeability is plausible? Any intuition or knowledge we may possess about group formation pertains to which types of individuals are assigned to each study group. But we have noted that with respect to causal effects, the only relevant characteristics of individuals are their response patterns. Therefore, the critical question becomes whether the assignment process is related to response patterns in such a way that the response-pattern distributions are identical (apart from sampling variation) in the two groups.

If these distributions differ in some way, then there exists a potential for bias. As seen in the tutoring example, whether bias actually occurs depends on the specific nature of the difference between the groups and on the particular effect measure chosen. It is certainly possible that the empirical effect will fortuitously have the correct value even if the response-pattern distributions in the treatment groups happen to be different. But it is hard to imagine how we could ever discern that such measure-specific exchangeability is present. In the broadest sense, two study groups can be deemed exchangeable if and only if they have identical distributions of response patterns. This concept of exchangeability has been tremendously influential since its introduction (in a somewhat different form and terminology) by statisticians Paul Rosenbaum and Donald Rubin (Rosenbaum and Rubin, 1983a). Unless otherwise indicated, exchangeability throughout this book will refer to this definition.

Tables 2.8 and 2.9 illustrate exchangeability in this sense of identical response-pattern distributions. Note that in terms of response patterns, the students in Class B3 are identical as a group to those in Class A. Unfortunately, there is no way to pair a student in Class A (say A1) to her counterpart in Class B3 (B8). So, we still cannot identify the causal effects for any individual students. More generally, let (WE, WU) represent the response-pattern distribution in the group of individuals assigned to E and (ZE, ZU) the corresponding distribution in the group assigned to U. These distributions depend on exactly how the two study groups are selected. In the study, WE and ZU are observable, but ZE and WU are not. If exchangeability holds, then the distributions represented by (WE, WU) and (ZE, ZU) are identical to each other and therefore also to the overall distribution (VE, VU) in the study population. Thus, we can utilize WE and ZU as substitutes to be exchanged for VE and VU, respectively.

Table 2.8 SAT Tutoring Experiment: Class B3

	Student	New Program	Old Program
	B1	590	540
	B2	780	660
	B3	680	700
	B4	480	480
	B5	670	570
	B6	600	550
	B7	640	600
	B8	570	520
	B9	800	600
	B10	560	480
	Mean	637	570
	Median	620	560
	% 600+	60%	40%


Table 2.9 SAT Tutoring Experiment: A vs. B3

	 	New Program	Old Program
	 	570	600
	 	480	570
	 	800	480
	 	640	700
	 	680	480
	 	780	520
	 	600	550
	 	560	540
	 	590	600
	 	670	660
	Mean	637	570
	Median	620	560
	% 600+	60%	40%

How can we guarantee that such exchangeability holds? Sir R. A. Fisher, widely regarded as the founder of modern statistical theory, recognized that the only surefire method was to assign subjects to study groups randomly (Fisher, 1925). Randomization was originally implemented by methods similar to tossing a coin. Later, tables of random number sequences were generated and published for use by study designers, and today “pseudorandom” numbers can be easily generated using computer algorithms. Although randomization is a powerful tool, it is only applicable when experimental manipulation of subjects is feasible. We cannot, for example, test the effect of cigarette smoking by forcing a random subset of potential experimental subjects to take up smoking. Furthermore, randomization only assures exchangeability in a probabilistic sense, an ideal that is approached in very large samples.

Comparative studies that do not involve control of assignment to comparison groups by randomization are usually termed observational studies. If the observational study involves an intervention that is manipulated by the researcher, it is sometimes called a quasi-experiment. This terminology highlights the idea that a quasi-experiment incorporates some elements of statistical control but falls short of the degree of validity provided by a randomized experiment. An observational study in which the exposure is a factor that is not governed by the researcher is sometimes called a correlational study or natural experiment (Shadish et al., 2002). In the social sciences, methodological issues related to quasi-experiments have been analyzed extensively in the context of program evaluation. In social science research, different types of bias are often described as threats to validity (Campbell and Stanley, 1963; Cook and Campbell, 1979).

In an observational study, the study groups being compared are generally not exchangeable. Observational studies are therefore much more susceptible to various forms of bias than are randomized studies. Observational studies have traditionally been regarded by research methodologists as much inferior to randomized experiments. In the absence of random assignment, the burden of proof about the exchangeability assumption is on the data analyst. Several kinds of evidence can be brought to bear in reaching a conclusion regarding exchangeability. Sometimes information about the actual process of forming the study groups is available. More often, judgments about exchangeability are based on analyses of differences in the distributions of various measurable characteristics (covariates) between the groups.

To appraise the magnitude of possible bias requires more than a general assessment of whether exchangeability holds. Informed speculation about the specific ways in which the study groups may depart from exchangeability is necessary. In some cases, it will be possible to compensate for lack of exchangeability through analytic strategies. When multiple studies of the same intervention or risk factor are available, the pattern of results across studies may help to reveal the nature and extent of bias and suggest possible corrections. The counterfactual perspective can be helpful in clarifying the methodological issues that must be addressed and suggesting fruitful approaches.

Assessing the potential for bias in an actual study involves familiarity with the various sources of bias that may apply. There are many specific aspects of a study’s context, design, or implementation that can lead to bias. For example, allowing volunteers to self-select for participation in a social intervention is an obvious source of bias. Discussions of many specific sources appear scattered throughout the methodological literature. The definitions and terminology used to describe these various sources are inconsistent and often confusing. In this book, the counterfactual framework is used to help organize and understand these sources of bias according to their essential features.

This book draws heavily on a base of knowledge that has evolved over approximately the past 30 years. The basic concepts of counterfactual analysis have been widely disseminated throughout the academic literature. These theoretical developments in causal analysis provide a powerful lens through which to view bias, especially in observational research. But this conceptual clarification has so far had little practical impact on how most methodologists and research practitioners deal with bias. One purpose of this book is to help link these new concepts to the realities “on the ground” faced by research practitioners and professionals who apply the results of comparative studies.

GUIDEPOST 2

This chapter has introduced several fundamental themes that will reverberate throughout this book. An explicit framework for addressing causation is central to the understanding of bias in comparative studies. The counterfactual perspective, especially as expressed in the idea of potential outcomes, has proven useful as a basis for theoretical discussions of causal effects. These concepts lead naturally to the centrality of the individual response pattern. A causal effect can be defined as a summary of the distribution of response patterns. Bias is defined as the difference between the empirical effect that would actually be approached by the study in large samples, and the causal effect. A critical requirement for unbiased causal inference is that the study groups be exchangeable, in the sense of having the same distributions of response patterns.

In the next chapter, we consider a number of major issues that pertain to bias. These issues have been discussed extensively in the methodological literature but have given rise to much confusion. The purpose of Chapter 3 is to describe the general nature of these issues, to show why clarification is needed, and to hint at how an explicit causal model can help to address these issues more appropriately.
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