

[image: cover.eps]

XDA Developers’ Android™ Hacker’s Toolkit

Table of Contents

Introduction

First Things First: What Is XDA?

The Dragons that Lie Ahead

Who This Book Is For

What This Book Covers

How This Book Is Structured

What You Need to Use This Book

Part I: What You Need to Know

	Chapter 1: Android OS Internals: Understanding How Your Device Starts

The Penguin Down Below

How Your Android Device Starts

Bootstrapping

Adding a Custom Bootloader

Understanding the Bootloader Process

Custom Recoveries: The Holy Grail

	Chapter 2: Rooting Your Android Device

Why Should You Root?

Increasing the Service Life of the Device

Fixing OEM Defects

Increasing Capability

Customizing the Device

Backing Up Data

Contact Information

Applications and Their Data

Data on the SD Card

How You Can Root and Leave Your OEM’s Control

OEM Flash Software

Exploits

Native Fastboot Flash

Scripted and One-Click Methods

Rooting Two Devices

Nexus One

HTC Thunderbolt

The Root of It All

	Chapter 3: The Right Tool for the Job

Ready, Set, . . . Wait I Have to Have What?

Connecting a Phone to a Computer

Hacking Tools

USB Cables

USB Debugging

What’s Driving This Thing?

Using the Android Debug Bridge

Checking Device Connectivity

Restarting the ADB Service

Copying Files to and from Your Device

Rebooting a Device

The Power of Fastboot

Unlocking a Device

Updating a Device

Flashing a Device

Rebooting a Device

Harnessing the Power of the Penguin with ADB Shell

File System Navigation

File Management

File Access Permissions

Redirection and Piping

Concatenation

BusyBox: Giving the Penguin Back Its Power

The dd Command

The echo Command

The md5sum Command

	Chapter 4: Rooting and Installing a Custom Recovery

How to Use Exploits

Exploit Scripts

Exploit Applications

Using a Script or Application on a Device

Hacking Utilities

OEM Tools

Developer Utilities

Image Files

Recovery Mode

What Is Recovery Mode?

Make It All So Easy: Get A Custom Recovery!

Using ClockworkMod Recovery

Rebooting the Device

Updating a Device from the SD Card

Resetting a Device to Factory Condition

Wiping the Cache

Installing a Zip File from the SD Card

Backing Up and Restoring a Device

Mounting Partitions and Managing Storage

Advanced Functions

Backup and Disaster Recovery

Precautions for Success and Data Recovery

Backing Up Applications

Backing Up Through a Recovery Process

Backing Up Through an Application

What Happens if It Goes Really Wrong?

	Chapter 5: Theming: Digital Cosmetic Surgery

Changing the Look and Feel of Android

Theming the Launcher

Theming with an Add-on Launcher

Tools Used in Theming

APKManager

Android SDK

Eclipse

A ROM of Your Choice

7-Zip

Paint.NET

Update.zip Creator

Amend2Edify

The Editing Process

Walkthrough for Creating Theme Files

Walkthrough for Creating a Flashable ZIP File

	Chapter 6: You’ve Become Superuser: Now What?

Popular Multi-Device Custom ROMs

CyanogenMod

Android Open Kang Project

VillainROM

Kernel Tweaks

Backlight Notifications

Voodoo Enhancements

Performance and Battery Life Tweaks

Root Applications

SetCPU

Adfree Android

Chainfire 3D

Titanium Backup

Part II: Manufacturer Guidelines and Device-Specific Guides

	Chapter 7: HTC EVO 3D: A Locked Device

Obtaining Temporary Root

Using S-OFF and Permanent Root Requirements

Running the Revolutionary Tool

Installing a Custom Recovery

Installing the Superuser Binary

Installing a SuperUser Application

	Chapter 8: Nexus One: An Unlockable Device

Root Methods Available

Resources Required for this Walkthrough

Walkthrough

Placing the Nexus One in Fastboot Mode

Flashing a Boot Partition

Getting Full Root Access

Installing a Custom Recovery

	Chapter 9: HTC ThunderBolt: A Tightly Locked Device

Root Methods Available

Resources Required for this Walkthrough

Walkthrough

Pushing Files to the Device

Gaining Temporary Root

Checking a File’s MD5 Signature

Writing the Temporary Bootloader

Downgrading the Firmware

Gaining Temporary Root to Unlock the MMC

Rewriting the Bootloader

Upgrading the Firmware

	Chapter 10: Droid Charge: Flashing with ODIN

Resources Required for this Walkthrough

Walkthrough

Connecting the Device to ODIN

Flashing the Device

Troubleshooting

	Chapter 11: Nexus S: An Unlocked Device

Connecting the Device to a PC

Resources Required for this Walkthrough

Walkthrough

Unlocking the Device

Flashing the Device with a Recovery

Flashing the Device with the SuperUser application

	Chapter 12: Motorola Xoom: An Unlocked Honeycomb Tablet

Resources Required for this Walkthrough

Walkthrough

Pushing the Root File to the SD Card

Unlocking the Xoom

Flashing the Device with a Recovery

Flashing the Device with a Universal Root

	Chapter 13: Nook Color: Rooting with a Bootable SD Card

Resources Required for this Walkthrough

Walkthrough

Creating a Bootable SD Card

Booting the Device from the SD Card

Making the Device More Usable

	Appendix A: Setting Up Android SDK and ADB Tools

		
			
				
					XDA Developers’ Android™ Hacker’s Toolkit

					The Complete Guide to Rooting, ROMS and Theming

					Jason Tyler with Will Verduzco

					This work is a co-publication between XDA Developers and John Wiley & Sons, Ltd.

					
						[image: UK_Simply%20wiley_logo.eps]
					

					
						This edition first published 2012

						© 2012 John Wiley and Sons, Ltd.

						
						Registered office

						John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

						
						
						For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

						
						The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

						
						All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

						
						Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

						
						Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

						
						Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley and Sons, Inc. and/ or its affiliates in the United States and/or other countries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Ltd. is not associated with any product or vendor mentioned in the book.

						
						XDA, XDA Developers is a trademark of JB Online Media, LLC

						A catalogue record for this book is available from the British Library.

						
						ISBN 978-1-119-95138-4 (paperback); ISBN 978-1-119-96154-3 (ebook); 978-1-119-96155-0 (ebook); 978-1-119-96156-7 (ebook)

						
						Set in 9.5/11.5 Minion Pro Regular by Indianapolis Composition Services

						
						Printed in the United States by Courier Westford

						
							Publisher’s Acknowledgements

							Some of the people who helped bring this book to market include the following:

							Editorial and Production

							VP Consumer and Technology Publishing Director: Michelle Leete

							Associate Director–Book Content Management: Martin Tribe

							Associate Publisher: Chris Webb

							Assistant Editor: Ellie Scott

							Development Editor: Shena Deuchars

							Copy Editor: Shena Deuchars

							Technical Editor: Akshay Dashrath

							Editorial Manager: Jodi Jensen

							Senior Project Editor: Sara Shlaer

							Editorial Assistant: Leslie Saxman

							Marketing

							Associate Marketing Director: Louise Breinholt

							Senior Marketing Executive: Kate Parrett

							Composition Services

							Compositor: Indianapolis Composition Services

							Proofreader: Linda Seifert

							Indexer: Estalita Slivoskey

							
								About the Authors

								Jason Tyler has been an IT instructor and is currently Director of Technology for Typefrag.com. An avid Android hacker, Jason has been rooting and ROMing every Android phone he can get his hands on since the OG Droid.

								Will Verduzco is a Johns Hopkins University graduate in neuroscience and is now currently studying to become a physician. He is also Portal Administrator for XDA-Developers, and has been addicted to mobile technology since the HTC Wizard. Starting with the Nexus One, however, his gadget love affair has shifted to Google’s little green robot.

							

						

						
					

				

			

		

	
		
			
				Foreword

				The XDA Developers (XDA) website was opened in 2003. Nine years may not seem like that long ago, but Facebook wasn’t even a thing then. The iPhone and the first Android handset weren’t released until 2007. So, in Internet time, XDA is old. In smartphone time, we’re ancient.

				xda-developers.com is a strange URL—not as imaginative, short or catchy as most high-traffic sites. There’s a simple reason for this: the site wasn’t created for you. We never envisioned a smartphone revolution—or ifwe did, we never envisioned that millions would care so much about what was happening on our little developer-focused forum.

				XDA was created for developers and it is still a site for developers. They are incredibly smart, generally selfless, and hard-working individuals who share their creations (for free) with the world. When they see a book like this, they get concerned that their site will be overrun (more than it already is) by “newbs” with annoying questions and demands. They see the title of this book—with that overused “H”-word—and roll their eyes.

				So, why did XDA lend its name to this guide? Honestly? It’s because we can’t stop you all from coming and we’d rather you be a bit better educated when you arrive. People spend more time touching their phones than their spouses and many of those people want their phones to be completely customizable (even as their spouses are generally not). They want to remove restrictions placed on the devices by carriers and OEMs and make the phone theirs.

				This book was written by a member of XDA. His goal was to share his enthusiasm about what he found on the site and across the Internet about the customizability of the Android operating system, to get you just as excited, and to show you the tools you need to put that excitement into action. As with most tech-related books, much of the text herein is outdated by the time it hits the shelves. But that’s OK. Even if the content is slightly stale, even if you don’t have any of the devices listed in the tutorial chapters, we still urge you to read it carefully so that you are better prepared to understand as you explore XDA for your device.

				As a site for developers, XDA’s goal is to make sure you have you respect for all those who have blazed the trail to make all this good stuff possible. We want you to use XDA responsibly—read everything before posting, understand the risks of rooting and customizing your device, and, as you learn, become a helpful, contributing member of the community.

				The XDA Admin Team

			

		

	
		
			
				Introduction

				There’s a reason most Android geeks have such disdain for the other major smartphone operating system. The iPhone shackles the user, with its closed source code and ecosystem ruled with an iron fist. Android, on the other hand, frees developers to tear apart and rebuild nearly every aspect of the user’s experience with the operating system. Beyond the world of developer-created applications (apps), there is a vast universe of deeper customizations—custom kernels and ROMs, themes, CPU overclocks, and more.

				In most cases, these tasks begin with gaining “root” access to your device. The goal of this book is to get you comfortable with the tools and vocabulary of Android hacking, to get you in the “root” mindset, and to point you towards the best online resources for expanding your knowledge even further.

				First Things First: What Is XDA?

				The XDA Developers (XDA) website, at http://www.xda-developers.com, is the largest smartphone community on the Internet. As the name implies, the site—launched in 2003—is a destination for developers. “XDA” was a line of phones based on Windows Mobile that were branded by O2 and developed by a small (at the time) Taiwanese manufacturer called High Tech Computer Corporation (HTC). According to XDA history:

				It was these early O2 XDA devices that the founders of our site thought had much more potential than the sellers O2 and HTC were giving them credit for. With their geeky hats on they cracked them open and began to develop them beyond the standard fairly boring branded versions. To spread the word, they set up a small website and naturally called it xda- developers. In the early days they had less than a dozen members (2003).

				As more and more phones were released, the XDA administrators launched a new forum for each one. The site was built around the spirit of community and cooperation. XDA itself is not an organization of developers. The site is merely a sandbox where developers congregate.

				From those early few members, XDA became known as the go-to source for information on how to make phones do more great stuff and how to fix a phone that was otherwise broken. As more people were attracted to the site, enthusiasts were given a home to share the awesomeness of mobile device development. From that early core of a few dozen enthusiasts, geeks and developers, the XDA website now receives more than ten million visitors per month and thousands of informative posts every day.

				The material in this book draws heavily on the work done by the fantastic community at XDA. The book combines the work of the XDA community, my technical teaching experience, and my work as an Android developer to provide a launching point for the budding Android hacker.

				The XDA forums have become the foremost Internet destination for information about mobile devices: how to fix them, how to hack them and, generally, how to make them better than the manufacturers make them. http://forum.xda-developers.com is laid out in forums dedicated to individual devices. Each forum contains a core group of people who work with and love the device, as well as thousands of helpful individuals on the same journey as you. When you visit XDA, you can use the “Forums” link and navigate through the forums to find your specific device (see Figure 1).

				[image: 9781119951384%20unin01.tif]

				Figure 1: The device-specific forums at http://forum.xda-developers.com

				The Dragons that Lie Ahead

				The freedom offered to you when your device is rooted is liberating. It affords you such wonders as:

				• complete backup of all applications and their data

				• Google Apps, if they were not included with your device

				• overclocking your device (speeding it up to run faster and better)

				• fixing manufacturer issues, such as GPS errors or call dropping

				• wireless tethering to create a quickie “hotspot”

				• completely changing and customizing the device interface.

				All of this and more is available to those who step out on a limb and root their Android device. However, there are two caveats to keep in mind before you get started.

				You should know before you read any further that by even thinking about rooting your device you may have voided your warranty.

				Not really, of course, but attempting any of the customizations that you read about in this book will void your manufacturer’s warranty and any insurance warranty you may have purchased. Manufacturers and mobile service carriers sell millions of devices every week. For every device they sell, they have to support a certain percentage of those devices that are defective. As far as your carrier and OEM are concerned, when you mess with the stuff they have spent millions on making, their responsibility to support you ends.

				There are no exceptions to this rule. Most OEMs, carriers and support companies will instantly reject any sort of support or replacement request when they find the device has had its software, firmware or hardware altered outside normal parameters. Even so-called “developer” devices, such as the Nexus range, cease to be supported when you start developing on them.

				The second big catch is that you can do permanent irreversible damage to your device. In the parlance of the mobile device hacker, this is known as “bricking” because it turns your $400 smartphone into something as useful as a brick. Some of the exploits that are used to gain “root” access are edge-of-the-knife procedures that can completely ruin a device if the tiniest mistake is made.

				Some devices are more robust than others and are less likely to be bricked. The original Motorola Droid from Verizon, for instance, was known for being almost impossible to permanently brick. But even the venerable Droid has been bricked by hasty or extremely adventurous hackers.

				Many of this book’s tutorials, whether to achieve root or other customizations, require you to be familiar with a command prompt window, such as the one shown in Figure 2. If you are a typical Windows user, you probably do not have much experience with the command line. Although you can find shortcuts, scripts, and workarounds, I still recommend you get comfortable with the command line. By the time you make it through Chapter 4, you’ll be a command prompt pro.

				[image: 9781119951384%20unin02.tif]

				Figure 2: The command prompt window

				Most of the steps in this book assume that you have the ability to connect your device to your computer and that your computer has all the drivers it needs to communicate with your device. If you are unsure of this, you may need to read through Appendix A to get your phone connected to your computer. Your best shot at getting your particular device connected to your computer is to do a quick search of the XDA forums to locate the drivers. Don’t do all the hard work of locating the right drivers if one of the wonderful people at XDA has already located them.

				The other dragon that can gobble up the new hacker is that most Android device hacking requires the Software Development Kit (SDK) to be installed on your computer. In Appendix A, I walk you through setting up the Android SDK and point out the few pieces that you actually need for hacking your Android device.

				For many devices, much of the risk has been removed by developers and hackers who have created scripts, one-click methods, and helper tools to root and customize your device. The XDA forums are an awesome community of curious and extremely intelligent people that can get you out of most dead ends when hacking your phone.

				In order to access the wealth of information undoubtedly available for your device, you must first navigate to your device-specific forum. Finding the dedicated forum for your device is a simple task that can be accomplished several ways. While you could comb through the forum index and find your device manually, this can become quite frustrating given the extremely large number of device forums.

				An easier method to find your device-specific forum is to use the “Find Your Device” box in the upper-right hand corner of the screen, see Figure 3 (top). Simply type the name of your device, or even a few letters, and you will be presented with a list of all matching device forums. Alternatively, you can jump to devices from a particular manufacturer by using the “Devices by OS or Manufacturer” drop-down menu at the top center of the page, see Figure 3 (bottom).

				[image: 9781119951384%20unin03.eps]

				Figure 3: Searching for your device by name (top) or by manufacturer (bottom)

				If you decide to continue to root your device, customize it and slip the surly bonds of OEM tyranny, you must proceed at your own risk. You have to accept the very real possibility that you could do your device permanent harm or even brick it. John Wiley & Sons, XDA Developers and I are not responsible if you turn a beautiful shiny Android device into the most expensive paperweight ever.

				You have been warned.

				Who This Book Is For

				This book is for the Android user who wants to get started with hacking Android devices. If you have heard of “rooting” an Android device and wonder what it means and how it is done, then this book is for you. This book is also for the user who wants to get more out of their Android device and increase its life and functionality.

				What This Book Covers

				This book covers general Android knowledge and mobile device concepts. It also includes chapters that give the reader the skills necessary to begin hacking and exploring on their own. It covers installing the tools needed, such as the Android SDK. Later chapters cover the rooting procedures for specific devices. Although devices, and Android itself, change very quickly, reading a walkthrough can prepare you for what you can expect in rooting your device.

				How This Book Is Structured

				This book is divided into two parts. The first part gives a basic overview of Android and the shell. Shell command skills will be the core of your Android-hacking career. The second part gives example walkthroughs on representative devices, from the very tightly locked to the wide open. Some devices from major manufacturers are given a detailed walkthrough to demonstrate how the skills learned earlier can be applied. The appendix walks you through getting your computing environment set up to hack Android.

				What You Need to Use This Book

				You need a PC with Windows (XP or later), a free USB port (USB hubs are not generally recommended), and an Internet connection. You need to be familiar with navigating the XDA forums in order to access the latest updates and information. Android hacking can be done very well from computers running Mac or Linux but this book focuses on the PC user. You need an Android device if you wish to follow along with the examples and tutorial walkthroughs.

			

		

	
		
			
				Part I: What You Need to Know

				Chapter 1: Android OS Internals: Understanding How Your Device Starts

				Chapter 2: Rooting Your Android Device

				Chapter 3: The Right Tool for the Job

				Chapter 4: Rooting and Installing a Custom Recovery

				Chapter 5: Theming: Digital Cosmetic Surgery

				Chapter 6: You’ve Become Superuser: Now What?

			

		

	
		
			
				Chapter 1: Android OS Internals: Understanding How Your Device Starts

				In this chapter:

				•	The penguin down below: the Linux kernel

				•	Bootstrapping: How your device starts

				•	An introduction to custom bootloader and custom recovery processes

				To fully understand the process of rooting your device, gaining the control and power you need to truly customize it, you need to understand a little about how the Android operating system works—how the device goes from being powered off to a fully functioning state. It is in this process that developers usually exploit weaknesses to gain full access to the device. Usually some step in the boot process allows a developer to insert a bit of code or a script, and thus access functionality not intended by the Original Equipment Manufacturer (OEM).

				
					Linux Development and Open Source

					Linux began in 1991 with Linus Torvalds working to make a completely free and open source operating system that could be used by hobbyists, academia and hackers. His operating system has grown to be one of the most powerful and flexible in the world today. From a handful of unknown geeks, the developer base has matured to include thousands of contributors every year. Some of the finest names in computer science and programming work on the development not only of Linux but also of Android.

					Linux remains completely free and completely open source. This allows companies and individuals to have access to the power of computing devices without the complex legal and copyright concerns that come with closed source software.

				

				The Penguin Down Below

				Android is an operating system built on the Linux kernel. Thanks to Google and the Open Handset Alliance, Linux and its penguin mascot have found a home on Android devices. Android is essentially a highly customized distribution of Linux with various tweaks oriented towards mobile devices.

				If you are familiar with the Linux operating system then you are going to feel quite at home with many aspects of the Android operating system. If you are comfortable with any other command-line operating system, such as DOS or the Windows command line, many of your skills there will be useful as well.

				Android is, at its core, an implementation of the Linux operating system. Many of the commands you will be using in hacking an Android device are Linux commands. However, you do not need to be a programmer to become an Android hobbyist or enthusiast. Using the skills taught in this book, you can become adept at exploring and altering your Android device.

				The differences between your Android device and a Linux desktop computer are many. The most striking difference is the way in which your device bootstraps (starts) when you power it on. It is in this start-up process that the hackers and elite developers find the vulnerabilities to exploit. Because Linux has a long history of being the go-to operating system of developers, hobbyists and hackers, there are many programmers and professional experts working on tools that help you with the root process. Most of the “heavy lifting” is done long before the average Android hacker gets access to root on his or her device.

				Although you do not need to be a Linux nerd to root and customize your Android device, being familiar with the Linux command line, and command lines in general, will help you feel more comfortable. For an excellent reference to the Linux command line, check out Linux Command Line and Shell Scripting Bible, 2nd Edition by Richard Blum (Wiley, 2011).

				How Your Android Device Starts

				The Android operating system has a complex and multistage start-up routine. Manufacturers lock the start-up process to protect revenue and maintain control of the device you purchase. The nature of the Android start-up process allows developers and hackers to replace parts of it to achieve full control of an Android device.

				Bootstrapping

				Bootstrapping (or booting) is a term that describes what a computing device does when turned on. It “pulls itself up by its bootstraps.” When you power on an Android device, a tiny piece of code on a memory chip initializes the memory and CPU. Usually the bootstrap code is referred to as the bootloader. The bootloader is different from device to device, although all bootloaders do the same things: they check for hardware features and load the first part of the operating system into the device’s memory.

				The encrypted bootloader is the beginning of all things Android, effectively locking out the user from customizing the firmware and software. Locking the bootloader is the rough equivalent to a computer manufacturer forcing you to use a particular version of Windows, along with a theme of their choosing. The bootloader is the primary point of contention between owners of mobile devices and the original equipment manufacturer (OEM). Many, if not most, OEMs specifically do not want you to have access to that bootloader code. The reasons that OEMs do not want users to have access to this code are varied but fall into the following categories:

				• The cost of honoring warranties: Altering the bootloader code can permanently disable the device. This is problematic for device manufacturers because broken devices are returned to them under warranty. It is difficult to determine if a device is broken because the user did something silly to it or if it is, in fact, defective. This means that the manufacturer may have to replace a device that became defective through no fault of the manufacturer. Replacing defective devices costs money and those costs may be passed on to the consumer.

				• The need to protect carrier agreements: Carriers are paid to pre-install applications from third parties on devices. Many organizations, from car rental companies to streaming video startups, have a mobile application. To get exposure for their products, they pay carriers to include those applications on your device; to ensure that exposure, the carrier blocks the user’s ability to remove the application. After all, it simply wouldn’t do to have Blockbuster pay hundreds of thousands of dollars to have their application on your device only to have you remove it to make room for Angry Birds three minutes after you walk out of the store. Locking the bootloader allows carriers and OEMs to declare some applications as “system” applications. This removes them from typical management tasks, such as deletion or moving them to an SD card.

				• Planned obsolescence: Devices with a very long life are bad for OEMs. The development and release cycle of new mobile devices has become incredibly fast, outpacing even old standards in technology. When a device is released, the device that will obsolete it is often already in production. Android operating system updates have new features and stability that users desire. Because OEMs depend on selling new features and the latest Android operating system, they need consumers to want the newest devices. Allowing consumers to update the operating system and software themselves effectively reduces the need to purchase the latest device from the OEM or carrier.

					In essence, planned obsolescence from the carriers and OEMs is designed to make the consumer spend more money to get the latest Android updates. If you can hack those updates into the perfectly good device you purchased six months earlier, the OEMs lose money.

				When you power on an Android device, the bootloader is the first program code that runs. Bootloading is typically a two-part process, utilizing a primary and a secondary bootloader.

				On most Android devices, the primary bootloader cannot be replaced. This is because the primary bootloader is hardcoded into an application-specific integrated circuit (ASIC) in the device. These hardcoded instructions load the secondary bootloader into memory and tell it where the memory, CPU and operating system are located and how they can be accessed.

				
					Taking Responsibility for Your Hacks

					It is important to note that if you choose to hack your device, you take responsibility for replacing it. It is unfair and unethical to do something silly to your device that disables it and then expect the carrier or OEM to replace it. Good hackers go into their hacks knowing the possible outcomes and willing to take responsibility for their own failures. When it comes to OEM and carrier ill-will towards hackers, ensure you are part of the solution not part of the problem. Never try to return a bricked or disabled device for replacement. Learn how to fix it or take responsibility and replace it.

				

				Adding a Custom Bootloader

				A custom bootloader is a secondary bootloader that allows you to gain access to the file system with more control than you can with an OEM bootloader. Custom bootloaders open up the possibilities of replacing the original operating system files with customizations as varied as a new user interface or a supercharged kernel. Despite the manufacturer’s objections, the hacker’s goal is to interrupt the standard bootloading process and use a custom bootloader that enables hacking of the device.

				Understanding the Bootloader Process

				Your Android device follows certain steps when booting up. The following steps and Figure 1-1 are simplified and made generic to apply to most Android devices.

					1.	Special code in the boot read-only memory (ROM) locates the first-stage bootloader and loads it into memory. The boot ROM is an ASIC that has its code permanently programmed.

					2.	The first-stage bootloader loads the second-stage bootloader after initializing some memory and getting the hardware ready.

						The bootloader checks to see if the security flag is on (S-ON). If it is on, then the bootloader will load only signed (official) kernels. If the security flag is off (S-OFF), then the bootloader no longer checks for signatures. Setting S-OFF also releases other security lock downs, making the entire file system writable and enabling other goodies, such as allowing you to install a custom recovery process on the device.

						This is the step in which you want your custom bootloader to be loaded. The holy grail of hacking a manufacturer’s handset is to load a custom bootloader so that a custom kernel can be loaded.

				[image: 9781119951384-fg0101.eps]

				Figure 1-1: The Android boot process

						Fastboot (see Chapter 3) is a protocol that allows low-level commands to be sent to a device to do such things as write files (such as custom bootloaders, recoveries and ROMs) to the operating system. Most manufacturers, therefore, disable the Fastboot protocol at the factory. Because the second-stage bootloader is the step in the boot process where the Fastboot protocol is enabled or disabled, this part of the code is frequently encrypted or otherwise locked down by OEMs. Some devices, such as Nexus devices and the Xoom, can be unlocked, allowing the Fastboot protocol to be enabled.

					3.	The bootloader loads a Linux kernel and customizations into memory.

						At this point, the bootloader hands off control of the hardware to the Linux kernel. The Linux kernel and any software or firmware customizations are usually all packaged together. On some devices, they are called a ROM. The name ROM is a slight misnomer because NAND storage is not truly read-only. Other devices require custom images (in IMG format) to be written to memory; still others have the kernel package written from an RUU file. However the kernel package is placed on the device, the bootloader must know where it is located and how to hand over the reins to it.

					4.	The last step is the initialization (INIT) process. The INIT process is the mother of all other processes that run on your device. It initializes all of the processes necessary for basic hardware access and device functionality. It also starts up the Dalvik virtual machine processes where most applications are executed.

				Through this whole start-up process, the important thing for you to understand is that most of the hoops you have to jump through when rooting your Android are to achieve one or both of two goals:

				• to set S-OFF, thereby allowing you to load your own custom kernel package

				• to install a custom second-stage bootloader to allow you to ignore the S-ON or S-OFF state and load your own custom kernel package.

				On some devices, neither goal is achievable and you must use workarounds to carry out device customizations. Devices with completely encrypted bootloaders, such as the Milestone and DroidX, can still be customized to some extent. The amount of customization you are able to achieve on these devices is limited and the process is usually a little more complex.

				Custom Recoveries: The Holy Grail

				A recovery is a separate, standalone piece of code on a partition that can be booted in order to update Android and maintain the device. Almost all Android devices have a recovery mode into which they can be booted. One of your goals as an Android hacker is to get a custom recovery onto your device. Custom recoveries allow you to include many extra features, including easy customization and backup.

				A recovery allows you to do useful things such as resetting a device to factory settings, clearing the data cache, and installing an official signed update to the Android operating system. Figure 1-2 shows the Amon Ra recovery screen. Unfortunately, the catch is that the default recovery process for most devices only installs updates to Android that have been signed with the OEM’s digital signature.

				If you can achieve full root and full custom recovery, you can easily change the ROM or firmware package installed on your Android device and create full file system backups, including backing up application data. Developers of custom recovery processes include many options not included in the standard Android boot process. Figure 1-3 shows the screen for the popular ClockworkMod recovery. This recovery gives you the capability of flashing a custom firmware package to your Android device very easily, as well as backing up the firmware, data, and cache and storing them on your SD card.

				[image: 9781119951384-fg0102.tif]

				Figure 1-2: Amon Ra recovery screen

				Which custom recovery you use depends on personal taste and the compatibility of your device. The Amon Ra and ClockworkMod recoveries each work on some devices. The XDA forums are a good resource to see if your device is supported by either of those custom recoveries. Typically, the process of rooting a device includes installing one of these recoveries. If your device is supported by a custom recovery, you should install it immediately after rooting. You can check the developer websites for device support.

				Chapter 4 includes a complete walkthrough for the ClockworkMod recovery.

				[image: 9781119951384-fg0103.tif]

				Figure 1-3: The ClockworkMod recovery screen

			

		

	
		
			
				Chapter 2: Rooting Your Android Device

				In this chapter:

				•	What is rooting?

				•	Why you would want to root your Android device

				•	Backing up data before rooting

				•	Different methods of rooting an Android device

				•	How to gain root permissions on two specific devices

				You have probably heard your local Android geek mention rooting or read on the Web somewhere about rooting an Android device. Rooting may sound magical and mysterious, but it is a fairly simple idea. At its core, rooting gives the owner of a device more control and access.

				The highest level of privilege you can have on a Linux system is to be logged into the device as the root user, sometimes called the superuser. The terms “superuser” and “root” both refer to the same thing.

				
					Why Is It Called “Root”?

					The term root comes from the hierarchical nature of the file system and permissions in UNIX and Linux operating systems. The branches of the file system and users resemble an inverted tree. The root of a file system is the beginning of all the files and directories. The root of the permissions system is the beginning of all permissions and, thereby, the most powerful and privileged.

				

				The root level of permission exists on Linux systems to provide administrative access. Logged in as root, there is little that you cannot do. Root has permission to read and write most places in the file system and change system settings. Because of this, the highest goal for any hacker is to obtain the ability to log into a Linux device as root.

				It is this very high level of privilege that you are seeking when you root an Android device. You need the root level of permission to customize your Android device in many ways.

				Why Should You Root?

				The benefits of rooting your device include saving money, as you extend the life and usefulness of your device, and fixing problems created during development or manufacture. There are also side benefits of adding functionality and removing restrictions imposed by the carrier or original equipment manufacturer (OEM). However, there are inherent risks in using root-level applications, as they are given access to all data from all applications installed on the device. Luckily, this risk can be mitigated by only giving root permissions to trusted applications.

				Increasing the Service Life of the Device

				One of my co-workers purchased one of the first Android devices released, the HTC Dream, also known as the G1. Matt loved the phone, but quickly realized that new versions of Android would run slowly or not at all on his device.

				After the Éclair release of Android, it was simply not in the interest of the OEMs or the carriers to invest in recompiling Android for old hardware and working out all the bugs. Matt’s G1 would eventually get the new version—but not soon enough. Carriers and OEMs would prefer you to purchase a new device with the latest Android version. However, developers in the Android and phone-hacking communities are determined to port new versions of Android to older devices to extend their lives with additional capabilities and features. Developers such as Koushik (Koush) Dutta and other teams working separately and in conjunction have ported new versions of Android to older hardware that OEMs and carriers have long since abandoned and stopped supporting. To install a newer version of Android on older hardware, you need to be rooted and have full file system access.

				That original G1 purchased by Matt is still his everyday phone. Thanks to hackers at XDA and in the Android community, it sports the Froyo release of Android. The G1 was never supposed to have such a long life. Matt would have had to purchase at least two more devices after the G1 to access the manufacturer-supplied features of Android Froyo. Thanks to root access, Matt will be using his G1 for a while to come. (Yep, he is cool like that.)

				Fixing OEM Defects

				As a result of the breakneck pace of mobile device development, far too many Android devices have shipped with some form of defect. Some of the defects are minor, such as dropping calls or writing slowly to the SD card. Other devices have shipped with major functional defects. For example, the Samsung Galaxy S device (known as the Fascinate when sold by Verizon and by other names when sold by other carriers) was designed with pretty curves that forced the GPS antenna into a bad position and caused the default GPS signal computation code to generate no or erroneous location data. An otherwise beautiful and powerful device was given an unnecessary and irritating, if not fatal, flaw.

				The XDA forums and other Android hacking communities usually have a fix for design defects fairly quickly—even though it is difficult, if not impossible, to address a hardware defect with a software fix. However, installing a patch or fix frequently requires system write access, for which you need root permissions. Android users have come to expect that any defect or usage irritation can be fixed or patched by the Android hacker community. It has been said that even OEMs sometimes wait to see how the Android community fixes broken firmware before releasing their own patches.

				
					Android Version Codenames

					The initial release of Android had no name, but subsequent releases have all had a project name at Google. The first Android device to be popularly released was simply called the G1. It ran Android 1.5, known as Donut.

					Someone at Google must have a sweet tooth because every version has been named after some sweet confection, starting with Donut. The subsequent versions have been called Éclair, Froyo, Gingerbread, and Honeycomb (the latter seems to bypass the sweet confections theme and cut straight to the sweet source). The latest version, Android 4.0, is called Ice Cream Sandwich.

				

				Increasing Capability

				Many OEMs build devices with components that have capabilities they never intend to employ. For example, many Android devices have the capability to tune in to FM radio signals but that feature was never enabled and applications were not created for radio tuning. As a result of the work of the Android development community, the Nexus One gained both an FM radio and the ability to record in 720p resolution.

				Overclocking

				Almost every Android device has a CPU that can run at speeds faster than those enabled by the OEM. The CPUs are often clocked down to enhance battery life or reduce the possibility of heat issues. As distributed, the Xoom runs at 1 GHz, but it can be made to run safely and stably at 1.4 or 1.5 GHz. This gives an incredible performance boost to an already great device. Many other Android devices can have their CPU speed upgraded, giving faster performance and greater capability to the user. Speeding up the CPU is called overclocking and is a good reason to root your Android device.

				Creating a Portable Hotspot

				Many carriers produce devices that provide a wireless connection point (a “portable hotspot”) to which you can connect, just as you would to any Wi-Fi hotspot. Such devices enable you to carry a hotspot around with you. A portable hotspot sends data over the cell network in the same way as your phone. There is little functional difference between your mobile device requesting Internet data and a portable hotspot requesting data from the Internet. Hotspots frequently cost as much as a smartphone and require an expensive data connection package in addition to what you already pay to access the same data on your Android device.

				Rooting your Android device enables you to use your phone as a portable hotspot device. It is valuable to be able to create a temporary hotspot in an emergency or for a traveling business person to be able to do so regularly. Since you pay for data from your carrier, how you access that data should be your choice. Most OEMs disable this feature on your Android device unless you purchase an expensive hotspot package, and carriers have a vested interest in you purchasing more devices and more data plans. It’s worth noting that, more often than not, using your phone as a hotspot violates the terms of service with your carrier, so tread carefully.

				Customizing the Device

				Although perhaps not the most compelling factor, the desire to have complete power over the look and feel of your device is frequently the first reason for a hacker to want to root a device. Unless you have the power to write to any portion of the file system, your customizations will be temporary or limited in scope.

				Once you have installed a custom recovery, you can write complete file system portions, including portions that are usually completely unchangeable. Installing customized firmware usually involves flashing a firmware or kernel package that includes user interface images and layouts, scripts, application packages, and much more. The time required to create these customizations would prevent most people from doing it. However, dedicated developers spend the long, geeky hours necessary to change the default firmware and release it as a ROM or other firmware package that enables rooted users to flash a large group of customizations all at once. Many developers release or announce new ROM packages on the XDA forums.

				
					Overclocking a Device

					Overclocking is a term that means “giving more speed.” It comes from the technical idea that a computer’s speed is based on “clock cycles” measured in hertz. Speeds of 500 MHz, 800 MHz and 1 GHz are measurements of how many clock cycles a processor goes through in a millisecond. Overclocking means forcing a chip to run at a clock speed that is higher than its native, or set, speed. This usually means increasing the voltage to the chip, which results in using more battery power, generating more heat and, most importantly, providing more speed to the device user.

					The drawbacks of overclocking are that the increased heat and drop in battery life may reduce the life of the device. Manufacturers spend months perfecting the right frequency for the hardware based on the placement of chips, lifespan required, heat dissipation, and so on.

				

				Backing Up Data

				Most user data is safe from the destructive actions taken during rooting. However, applications and application data are removed by rooting or unlocking a device. For example, using the Fastboot OEM unlock described in Chapter 3 results in all of the /data partition being wiped. It is important to back up important data and assume that you will lose all data when hacking.

				After you have succeeded in rooting your device, backing up the entire Android file system becomes very easy and provides great peace of mind when you change devices or customize a device. A rooted device can either perform a complete NANDroid backup, if it has a custom recovery, or a more finely tuned application-specific backup, using a program such as Titanium Backup.

				Contact Information

				Google keeps all of your Android phone and email contact information in its data cloud (that is, the information is stored on Google’s servers). When you activate a phone with your login information, it pulls all of your stored contacts back to the phone. As long as you do not specifically create a contact that is stored only on the phone, Android devices automatically synchronize all contacts to the Google servers and you need never fear losing contact data.

				
					Booting from an SD Card

					Some Android devices, such as the Nook Color and WonderMedia tablets, require a custom SD card for rooting. A special file system and update script is written to an SD card using a PC. The SD card is then inserted into the device and the device is rebooted. The device boots from the SD card and flashes custom firmware and bootloaders.

					If you find out from the XDA forum that your device needs to boot from an SD card, it is best to use a separate SD card on which you have not stored data. Most methods of making an SD card bootable will completely erase the data from it.

				

				Often, rooting a phone or Android device sets the phone back to factory defaults, resulting in data (including contact information) being wiped from the phone. This means that you need to sign in to your Google account and let it synchronize all of your information. Many one-click root methods that run an exploit on your device will not wipe your data, though you should always be paranoid when it comes to backing up.

				Applications and Their Data

				A similar situation exists when it comes to Google Apps Marketplace applications. When you download and install an application, a record that connects your login information with that application is stored on the Google servers. When you reactivate a device with your login information, it synchronizes automatically with the Google Apps Marketplace and automatically installs any missing applications.

				Although applications are restored, any data stored by an application will most likely be lost unless it was specifically backed up or stored to the SD card. On some devices, you also risk losing all user-created data, such as photos and documents. If you have important data that has been created by an application, it’s a good idea to find out how to back up and restore it (look on the XDA forum). It is best to assume that any hacking process will cause all your data to be wiped.

				Data on the SD Card

				Android stores camera pictures and videos on your SD card, and you may want to back those up prior to hacking the device. Data stored on the SD card of an Android device is, typically, safe from rooting activities. However, it’s always a good idea to use the Media Transport Protocol (for most Android 3.0+ devices—USB Mass Storage mode for others) or the ADB PULL command (see Chapter 3) to copy all of the data from your SD card to a backup folder on your computer.

				How You Can Root and Leave Your OEM’s Control

				The process of rooting an Android device varies based on the model of your device. A device that has been available for a while may have multiple rooting methods. In the next section, we walk through the process of rooting with two devices. Chapters 3 and 4 cover most of the common skills and tools needed to obtain root.

				The methods of obtaining root fall into broad categories:

				• OEM flash software for writing firmware

				• exploits

				• native Fastboot flash

				• scripted or automated methods.

				These are very broad and subjective categories that I have created for organization of this section. Many developers will likely take me to task for the categorization of their method or utility.

				You can find out what rooting methods are available by looking in the XDA forum for your specific device. For instance, the rooting information and procedures for my Xoom tablet are located in the Xoom Android Development subforum of the Motorola Xoom forum (http://forum.xda-developers.com/forumdisplay.php?f=948). Most proven root procedures are “stickied” at the top of the list of posts so that they are easy to locate.

				Whether the bootloader or recovery is replaced on your device using flash software, an exploit or the Fastboot protocol, the principle is the same: root permission is the first step toward device customization.

				OEM Flash Software

				On some devices, the first time you acquire root, you must use the native OEM diagnostic or flash software. After flashing the firmware and accessing root, you will usually use a custom recovery for further firmware changes.

				
					Educating Yourself

					It is very important that you read everything that is available about your device. Read the initial root instructions and any stickied posts. Read the entire thread that is connected to your device’s root procedure. Plan to spend a couple of days just reading up on other people’s experiences with rooting, theming and ROMing your device. Most newbie mistakes are easily avoided if you take a long view and have enough patience to read everything available for and about your device. A hacker is a self-educated and very patient animal.

					Because you are accepting all the risk and responsibility for destroying your device or making it better you should think more “marathon” than “sprint” when beginning in the rooting and hacking community. Read a lot and ask questions only after using the search function in the XDA forum.

					In particular, it’s a good idea to know your unbrick options (if there are any) before you attempt to root your device. In the XDA forum, search for the term “unbrick” and your device name.

				

				Root can often only be achieved by flashing a complete signed firmware package with OEM tools. If your device requires an external program (other than the native Android SDK tools—Android Debug Bridge (ADB) and Fastboot) to write the new firmware the first time, then it will need a complete signed firmware package. For example, the first root method available for the Droid 1 involved using Motorola’s RSDLite technician tool to flash a custom bootloader to the boot section of the file system. Similarly, many devices featuring the NVIDIA Tegra 2 processor require the use of NVFlash and Samsung devices often make use of ODIN.

				Sometimes the only way to recover a bricked device is to use OEM flash software.

				The advantages of using OEM flash software are that:

				• It is usually fairly safe and straightforward to attempt.

				• There are relatively few, uncomplicated steps in the process.

				The disadvantages of using OEM flash software are that:

				• It is sometimes difficult to use or understand. At best, the interface is sparse; at worse, it can be in language that you do not understand.

				• OEM debugging software can be difficult to find and keep updated.

				Exploits

				An exploit is a vulnerability (or “crack”) in the operating system that can be exploited by a hacker. Exploits come in many types and formats. For instance, one of the earliest methods for gaining root on the EVO 4G was an exploit of a security vulnerability in the Adobe Flash application.

				In the world of Linux operating systems, hacking through to a useable exploit is part science, part art and a lot of gut instinct built on experience. Finding a vulnerability that can be exploited is the first goal of the developer community when a new device is released. Advanced hackers and geeks race to be the ones to find the crack in the code that can be used to free a locked-down device. Threads exploring possibilities on the XDA forum can stretch to thousands of posts.

				Exploits are some of the most fun and rewarding ways to root your Android device. About halfway through rooting my first HTC Thunderbolt using Scott Walker’s ASH exploit, I remember thinking “Wow, I am really hacking this thing. I feel like an actor in Mission Impossible.” That psneuter exploit written by Scott Walker (scotty2walker to the Android hacker community) is a good example of a simple exploit that was used to do some really cool stuff to get access to root. The psneuter script takes advantage of the fact that the Android Debug Bridge (see Chapter 3), if it cannot determine the S-ON/S-OFF state, assumes S-OFF and defaults to mounting the file system as readable and writable when you launch a remote shell access to an unrooted device. This little exploit can be utilized to write to sections of the file system, such as boot sections and recovery sections, that would otherwise be inaccessible.

				I am not experienced enough and do not have the coding skills to program the psneuter exploit, but Scott Walker released the code to the Android community. As a result, I can use it to free my Android device. I have never had more fun than when participating with the Android community at the XDA forum to hack a new Android device.

				The advantages of using an exploit are that:

				• It can allow access to a tightly locked OEM device.

				• It is fun and makes you feel like a hacker.

				•	It is usually difficult for the OEM to patch and eliminate the exploit.

				• Anyone can do it using the skills outlined in this book.

				The disadvantages of using an exploit are that:

				• It is a complex process that requires knowledge and skill.

				• It is easy to do something incorrectly.

				• There is a high possibility of bricking the device.

				Native Fastboot Flash

				When a device is left unlocked or is unlockable, it can be booted into Fastboot protocol mode to accept Fastboot commands. Fastboot allows you to flash a complete file set or a file system bundled into a single file (known as an “image”) to different areas of the file system, such as boot or system.

				Most first-generation “Google experience” devices, such as the Nexus One, Xoom, and Nexus S, have unlockable bootloaders that allow the security switch (S-OFF) to be turned off, usually via the Fastboot command. However, not all devices support Fastboot natively. In other words, unless the OEM intended you to use Fastboot commands from your PC, you will not be able to do so. The Fastboot command and its capabilities are covered in Chapter 3.

				The advantages of using Fastboot are that:

				• The instructions are simple and fairly easy to follow.

				• It is an easy method with relatively low risk.

				The disadvantages of using Fastboot are that:

				• A limited number of devices support it.

				• Command-line skills are required.

				• Performing a Fastboot OEM unlock will clear the /data partition on the device.

				Scripted and One-Click Methods

				This is a very broad category that includes methods from the very sophisticated, such as the unRevoked root method, to simple ADB scripts. Scripted methods usually involve a lot less user interaction than step-by-step rooting methods that use ADB or OEM tools. As a result, they tend to be easier and more reliable. Custom binary methods, such as unRevoked, rely on a proprietary link across your USB connection or running an application directly on your device. Even so, proprietary methods perform the basic function of replacing the bootloader or recovery process on the file system.

				
					Debate about Scripted and One-Click Roots

					There is an ongoing debate in the Android community about one-click and scripted methods. Some developers fear that OEMs will crack down on these methods. Others argue that making rooting easier lowers the bar: the easier it is, the more people will accidentally brick their devices and attempt to replace them under warranty, causing OEMs to make rooting more difficult in their next release.

				

				The clear advantage of using a scripted or one-click root method is that the process is much easier.

				The disadvantages of using scripted and one-click methods are that:

				• The hacker has less control over the process.

				• The end result is achieved without long periods of frustration.

				• Fewer devices are compatible with these methods.

				Rooting Two Devices

				This section provides a general overview comparing two methods of rooting at two levels of difficulty on two phones. The Nexus One is a developer’s phone; it was designed to be very easy to root and customize, and we use Fastboot to root it. The Thunderbolt is more difficult to root, and we use the psneuter exploit script.

				Don’t worry about any terminology you do not understand. It will become more familiar to you as you proceed.

				Nexus One

				In this section, we unlock and root a Nexus One phone. Google placed a removable lock on the bootloader, so first you have to unlock it using a developer tool called Fastboot. Once unlocked, the device is simple to hack and root. When an OEM allows community unlocking, it makes everything that follows simpler.

					1.	Connect the Nexus One phone to your computer with a USB cable.

					2.	Place the phone in Fastboot mode by booting while holding a combination of keys (the specific combination differs based on your device). Fastboot mode allows the phone to accept commands from the Fastboot protocol.

					3.	From a command shell window on your computer, run the following command to unlock the bootloader:

				fastboot OEM unlock

					4.	Reboot the phone once again into Fastboot mode.

					5.	Run a script to install the “superboot” bootloader on the device.

				At this point, the Nexus One is completely rooted.

				HTC Thunderbolt

				A more difficult root is exemplified by the Thunderbolt from HTC. HTC locked the bootloader and made it very difficult to access the file system as a root user. This overview shows the increased level of complexity that comes with a locked bootloader. It is a high-level view of the steps necessary—see Chapter 9 for the down and dirty details.

					1.	Connect the Thunderbolt to your computer with a USB cable.

					2.	Use the ADB developer tool to push the following items to the SD card:

				• the psneuter exploit script

				• the BusyBox utility

				• a new bootloader image file.

					3.	Use ADB shell commands to change the permissions on the psneuter script and BusyBox so they can be executed.

					4.	Use ADB shell commands to run the psneuter exploit script to gain temporary root access to the system files.

					5.	Use the BusyBox MD5SUM command to make sure the image file is exactly the same as the original from which it was downloaded.

					6.	Use the BusyBox DD command to write the image file to the bootloader section of memory.

					7.	Use ADB shell commands to push a downgrade firmware signed by the OEM to the SD card.

					8.	Force the phone to reboot and install the signed downgrade firmware.

					9.	Use the ADB developer tool to push the following items to the SD card:

				• the psneuter exploit script

				• the BusyBox utility

				• the wpthis script.

					10.	Set the permissions on psneuter and run it to gain ADB shell root access.

					11.	Set permissions on wpthis and run it to gain access to the locked bootloader.

					12.	Use ADB to push a new bootloader image to the SD card.

					13.	Write the new bootloader to the core first-level bootloader.

					14.	Use the BusyBox MD5SUM command to make sure the hash of the new bootloader matches the bootloader image file.

					15.	If the MD5SUM is incorrect, repeat Steps 12–14 until the MD5SUM is correct.

					16.	Push a new unsigned custom system firmware to the SD card.

					17.	Reboot the phone and let the new bootloader load the custom firmware.

				At this point, the Thunderbolt has the S-OFF bootloader. There are then 10 more steps to install the SuperUser application and gain permanent root access. As you can see, rooting a device that has had its bootloader locked by the OEM is significantly more complex than rooting an unlocked device. Hacking a locked device to a free and open device is a rewarding experience that, once accomplished, will have you seeking to root more devices.

				The Root of It All

				Once your device is rooted, it’s really just the beginning. Applying custom firmware, known as a ROM, requires root access. If you want to remove OEM and carrier bloatware, you require root access.

				AT&T previously prevented non-market applications being installed on devices it supplied. Rooting one of these devices allowed users to install non-market and custom applications on an otherwise severely limited phone.

				
					Bloatware

					As mentioned in Chapter 1, carriers and OEMs take money from service vendors or developers to place applications on your Android device. This helps them offset the cost of the device (or boost executive bonuses, depending on your point of view).

					Whatever the reasons these applications are installed, they are permanent when your device is in its unrooted state. You cannot uninstall them or remove them. This is roughly analogous to purchasing a computer that can only have 19 programs installed on it and the manufacturer forces you to have 5 specific programs that you don’t want to use. This bloatware occupies the very limited memory on your device and sometimes runs services you don’t need or want, consuming battery and data storage.

				

				Some low-budget tablets and phones cannot even install applications from the official Google Apps Marketplace. If you root such a device, you can install the Google Apps Marketplace and access all the goodies that more expensive devices can access.

				As you can see, rooting your Android device is the doorway through which you can truly own your device. It eliminates carrier restrictions and removes the limitations that might otherwise force you to upgrade or purchase a different device.

			

		

	

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/9781119951384 fg0405_fmt.png
Nandroid
-Backe

Restore
- Advanced Restore

ClockworkMod Recovery v3.0.0.5
SD Card space free: 5285HB
Backing up boot image. ..
Backing up recovery image...
Backing up system

Backing up data..
Backing up .android_secure.
Backing up cache.

No sd-ext found. Skipping backup of sd-ext.
Generating md5 sum...

Backup complete!

OEBPS/images/9781119951384 fg0801_fmt.png
S ——

OEBPS/images/9781119951384 fgAA02_fmt.png

OEBPS/images/9781119951384 fg0403_fmt.png
Confirm install’
THIS CAN NOT BE UNDONE .

o
Yes - Install /sdcard/update.zip
No
No
No

»

ClockworkMod Recovery v3.0.0.5

OEBPS/images/hearts.jpg

OEBPS/images/uparrow.jpg

OEBPS/images/9781119951384 fg0602_fmt.png
L ““,.ﬂ:‘.‘:..""',
n Ageot Zembies 104 ; .
e

OEBPS/images/arrow.jpg

OEBPS/images/UK_Simply wiley_logo_fmt.png
WWILEY

A John Wiley and Sons, Ltd, Publication

OEBPS/images/fingerpoint.jpg

OEBPS/images/9781119951384 fg0311_fmt.png
-
H
g
H
£

3 root root
1 5ysten cache
2 voot | woot £y
1 voot ot 1 a0 aya kernel/debug
1 tyeten syeten 7
1 voot ‘ot Sefaute.prop
12 voot root ou)
1 voot root ete > ssystensetc
1voot root nit
1voot root init.goldfish.re
1voot root init nahinahi.rc
1 voot root init we
6 root systen ant
100 root root proc
2 voot root oot
2 voot root hin
2 Systen syeten Sd-oxt
1 oot Sdcard -> /mnt/sdcard
16 root root
1 root root systen
1root root ueventd.goldf ish.rc
1root root ueventd nahinahi e
1root root uoventd r
1root root Vendor 5° /systensvendo

OEBPS/images/9781119951384 fg0309_fmt.png

OEBPS/images/9781119951384 fg0401_fmt.png
Your device is already rooted. You can remove
the root using the Un-root button, which will
delete all of the files installed to root your device.
You can also re-root your device if your root is
malfunctioning.

Copyright © 2010 RyanZA

OEBPS/images/9781119951384 fg0702_fmt.png
to Breamvin for their work on 1]

aiting Far device..
Found Soum dewicn: PGR610R Cshooten—i 30.MA00, Andraid: 2.3.3. ROM wemsion: 1.11.651.2

his ic a Dota reloase and reguires a hota roleace key.
osce uisit: heep o revolut ionany is Fax mone informition

ntor bota koy [sorial: HIT6HHRZ1433

OEBPS/images/9781119951384-fg0103_fmt.png
ClockworkMod Recovery v3.0.0.5

-pl-g upd—ate rom sd-card_

wipe data/factory reset
wipe cache partition
install zip from sdcard
backup and restore
mounts and storage
advanced

ClockworkMod Recovery v3.0.0.5

OEBPS/images/9781119951384 fg0304_fmt.png

OEBPS/images/tomato.jpg

OEBPS/images/WileyTitlePageLogo_fmt.jpeg
&)

VALEY
Wiley Publishing, Inc.

OEBPS/images/checkbox.jpg

OEBPS/images/macapple.jpg

OEBPS/images/9781119951384 unin01_fmt.png

OEBPS/images/9781119951384 fg0501_fmt.png
[E Di\Downlosd:

anle-nitro-hd-0.4-final i

Fle Edit Vien Favoriss Tools Help

G o= v

w» = % i

fdd Earsct Tex Copy Move Delete nfo

| 1 D\Donniceds\bernelpantc-nitro-hd-0-finslaip\systemap\

Name St packedSi= Modified Accessed
s screencapture.apk 38309 2038 21202242305
[Setingzsplc 52650 5520610 201202242205
a3 789 21202242306
o TSR D1202.202306
do22s @ 21202247306
785380 61490 01202242306
710 0957 20120224 7306
170360 11020 21202242205
T @ 201202247306
153 170 21202242305
209 28 21202282305
w030 9611 20120224 2306
= vending.apk 3708455 22869 D202282305
5 VideoPlayerapk 2men 154543 201202242306

Rl ——

1 object selected o 70 020224 7206

OEBPS/images/9781119951384-tb0301.png
fable 3-1File information

Pupose Folder User Group Others
Gl 1 2 5 8 9 10
Voe d ‘ . Cw

OEBPS/images/9781119951384-fg0101_fmt.png
J

i

i
H

OEBPS/images/9781119951384 fg0302_fmt.png
& USB debugging connected
Select to disable USB debuggi

© Low on space
Phone storage space is getting low.

UsB debugging connected
elect to disable USB debugging.

Charge only
elect to change USB connection type

OEBPS/images/9781119951384 fg0407_fmt.png
Advanced and Debugging Menu

- Reboot Recovery

- Hipe Dalvik Cache
- Wipe Battery Stats
Report Error

- Partition SD Card
- Fix Permissions

ClockuorkMod Recovery v3.0.0.5
SD Card space fre 5285MB
Backing up boot image. ..
Backing up recovery image...
Backing up system...

Backing up data.

Backing up. -androld secure.
Backing up c

o e P ot Sklpplng backup of sd-ext.
Generating md5 sum.

Backup complete!
Back menu button enabled.

OEBPS/images/9781119951384 fgAA01_fmt.png
e Java SE Downloads Frevsm—"

 NetBeans é*lami * tsenazar

s Java s
v 3 ot sances ns
ooty Ty e e [se—

e [

Qrsun| 8 [@ o SEvowinet. @

OEBPS/images/9781119951384-fg0310_fmt.png
/root}

data

app

steard

framework

OEBPS/images/9781119951384 fg0406_fmt.png
ClockworkMod Recover: VS.ﬁ
SD Card 3285}18

space free:
Backing up boot image. ..
Backing up recovery image...
Backing up system. ..
netperf

OEBPS/images/clubs.jpg

OEBPS/images/9781119951384 fg0601_fmt.png
Chainfire3D Prova3

otcpect et

Reduce texture quality
B T

Unrol textures

Reduce texture size.
e ————

Disable RGBA emu

Disable MapBuffer emu

Useplugin

Hide CFADID

e -

c o o o:23%8

OEBPS/images/9781119951384 fgAA03_fmt.png

OEBPS/images/9781119951384 fg0404_fmt.png
Apply update from .zip file on SD card

choose zip from sdcard
- toggle signature verification
- toggle script asserts

ClockworkMod Recovery v3.0.0.5

OEBPS/images/9781119951384-fg0306_fmt.png
The 50K Fath and name of file that |5 being Location wd temet of e
command seqence. used by the cormmand seqence command soquence

adb push c:\sample.txt /sdcard/sample.txt

OEBPS/images/9781119951384 unin03_fmt.png
xdadevelopers]

o T

St Last st

OEBPS/images/9781119951384 fg1001_fmt.png
=lolx)

0Odin3. [Android + SLP]

e e 2] [C=1 =
r o 5] oI | —
';:mmw ™ orone St Undote L I —

OEBPS/images/checkmark.jpg

OEBPS/images/cover.jpg
|

————
— xdadevelopers —

ANDROID

HACKER'S TOOLKIT

The Complefe Cuide fo Rooting. ROMs and Theming

Jason Tyler with Wil Verduzca

OEBPS/images/9781119951384 fg0402_fmt.png
ClockworkMod Recovery v3.0.0.5

- reboot system now

- apply update from sdcard
- wipe data/factory reset
wipe cache partition

= backup and restore
- mounts and storage
- advanced

»

ClockworkMod Recovery v3.0.0.5

OEBPS/images/check.jpg

OEBPS/images/WileycopyrightLogo_fmt.jpeg

OEBPS/images/frown.jpg

OEBPS/images/9781119951384 fg0308_fmt.png

OEBPS/images/smile.jpg

OEBPS/images/downarrow.jpg

OEBPS/images/9781119951384 fg0307_fmt.png
My openfeint
Documen...

sample2D Sample 3D

Pictures Pictures
tmp sample.txt
su-23.1-

bin-signe.

retroCam...

sample
Music

L

scite.
session

OEBPS/images/9781119951384 fg0502_fmt.png
$8 UpdatezipCreator by benzyniarz1

UpdatezipCreator - welcome
Create your update zip quicly and easiy

Question

Introduce | Fies | Scipt

Push created zip to SD card
Reboot to a recovery afer

@ Do you want to load a default edify script?

(e)]

Edfy CWMv. > 3x)

OEBPS/images/9781119951384 fg0701_fmt.png
to Breamvin for their work on 1]

aiting Far device..
Found Soum dewicn: PGR610R Cshooten—i 30.MA00, Andraid: 2.3.3. ROM wemsion: 1.11.651.2

his ic a Dota reloase and reguires a hota roleace key.
osce uisit: heep o revolut ionany is Fax mone informition

ntor bota koy [sorial: HIT6HHRZ1433

OEBPS/images/9781119951384 unin02_fmt.png
fcrosoft Windous [Uersfon 6.1.76011
opyright Cc> 2009 Microsoft Corporation. ALl rights reserved.

s\indous\systend2>

OEBPS/images/9781119951384 fg0305_fmt.png
R

OEBPS/images/9781119951384 fg0301_fmt.png

OEBPS/images/spades.jpg

OEBPS/images/maccmd.jpg

OEBPS/images/9781119951384 fg0303_fmt.png

OEBPS/images/9781119951384-fg0102_fmt.png
Android system recovery

SB-HS toggle
- Backup/Restore

- Flash zip from sdcard
- Wipe

- Partition sdcard
- Mounts

- Other

- Pouer off

Build : RA-passion-v2.2.1

OEBPS/images/diamonds.jpg

OEBPS/images/turnover.jpg

