

[image: cover_image]

Table of Contents

Title Page

Copyright

Dedication

About the Author

About the Technical Editor

Credits

Acknowledgments

Introduction

Who This Book Is For

What This Book Covers

How This Book Is Structured

What You Need to Use This Book

Conventions

Supporting Websites and Code

Errata

p2p.wrox.com

Chapter 1: Drowning in Data, Dying of Thirst for Knowledge

Data Deluge and Informational Overload

What Is SQL?

Let There Be Database!

Summary

Chapter 2: Breaking and Entering: Structured Information

A Really Brief Introduction to Data Modeling

Why Can't Everything Be Text?

It's a Bird, It's a Plane, It's … a NULL!

DDL, DML, and DQL: Components of SQL

Refactoring Database TABLE

Populating a Table with Different Data Types

SELECT Statement Revisited

INSERT, UPDATE, and DELETE Revisited

SQL Operators: Agents of Change

Summary

Chapter 3: A Thing You Can Relate To — Designing a Relational Database

Entities and Attributes Revisited

Am I Normal? Basics of Relational Database Design

Summary

Chapter 4: Overcoming the Limitations of SQL

In Numbers, Strength

Building Character

Date and Time Functions

A Glimpse of Aggregate Functions

Conversion Functions

Miscellaneous Functions

Making the CASE

SQL Procedural Extensions

Summary

Chapter 5: Grouping and Aggregation

Aggregate SQL Functions Revisited

Eliminating Duplicate Data

GROUP BY: Where Your Data Belongs

Summary

Chapter 6: When One Is Not Enough: A Query Within a Query

What You Don't Know Might Help You

Correlated Query

How Deep the Rabbit Hole Goes: Nesting Subqueries

A Subquery or a JOIN?

Summary

Chapter 7: You Broke It; You Fix It: Combining Data Sets

Joins Revisited

State of the UNION

A Point of VIEW

But Wait; There's More!

Summary

Chapter 8: What Else Is There, and Why?

An INDEX for All Seasons

TABLE Revisited

VIEW Revisited

By Any Other Name: Aliases and Synonyms

Auto-Incremented Values

Sequences

Comparing Identity Columns and Sequences

Triggers

One Happy Family: Working in Heterogeneous Environments

Summary

Chapter 9: Optimizing Performance

Database Performance

RDBMS-Specific Optimization

Your DBA Is Your Friend

Summary

Chapter 10: Multiuser Environment

Sessions

Summary

Chapter 11: Working with Unstructured and Semistructured Data

SQL and XML

A Brief Introduction to XML

Summary

Chapter 12: Not by SQL Alone

The Future Is Cloudy

SQL and Business Intelligence

Elementary, my dear Watson!

Column-Oriented DBMS

Object Databases

Object-Relational Mapping Frameworks

Summary

Appendix A: Installing the Library Database

Oracle 10g XE

IBM DB2 9.7 Express-C

Microsoft SQL Server 2008 Express

PostgreSQL 9.0

MySQL 5.1

Microsoft Access 2007/2010

OpenOffice BASE 3.2

Appendix B: Installing RDBMSs Software

Appendix C: Accessing RDBMSs

Oracle

IBM DB2

Microsoft SQL Server 2008

MySQL

PostgreSQL

Microsoft Access 2007/2010

Open Office BASE with HSQLDB

Appendix D: Accessing RDBMSs with the SQuirreL Universal SQL Client

Index

Appendix B: Installing the RDBMSs Software

Installing IBM DB2 9.7 LUW

Installing Oracle 10g Express

Installing Microsoft SQL Server 2008 R2 Express

Installing MySQL 5.1

Installing PostgreSQL 9.0

Appendix C: Accessing RDBMSs

Using Oracle XE Utilities

Using IBM DB2 Utilities

Microsoft SQL Server 2008

MySQL Command Line Client

PostgreSQL

Microsoft Access 2007/2010

OpenOffice BASE with HSQLDB

Appendix D: Accessing RDBMSs with the SQuirreL Universal SQL Client

Installing SQuirreL Universal SQL Client 3.2.0

Uninstalling SQuirreL

Configuring SQuirreL Universal SQL Client

[image: Title Page]

Discovering SQL

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-00267-4

ISBN: 978-1-118-09279-8 (ebk)

ISBN: 978-1-118-09277-4 (ebk)

ISBN: 978-1-118-09278-1 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Control Number: 2011922790

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

To Liana

About the Author

[image: ffirsuf001] Alex Kriegel is an Enterprise Systems Architect for the Oregon Health Authority. He has over 20 years of professional experience designing and developing software, implementing and administering enterprise RDBMS, as well managing software development processes. Alex graduated from National Technical University of Belarus with a Master's of Science in Physics of Metals. He also holds several industry certifications, including PMP from Project Management Institute, TOGAF 8 Certified Practitioner from the Open Architecture Group, Certified Scrum Master from Scrum Alliance, and Microsoft Certified Technology Specialist (MCTS) from Microsoft.

Alex provides online training and consulting services through the www.agilitator.com website.

Alex is author of Microsoft SQL Server 2000 Weekend Crash Course (Wiley, 2001) and a co-author on several other tiles: SQL Bible (Wiley, 2003), SQL Functions (Wrox, 2005), Introduction to Database Management (Wiley, 2007) and SQL Bible, 2nd Edition (Wiley, 2008). His books have been translated into Chinese, Portuguese and Russian.

About the Technical Editor

Boris Trukhnov is a Principal Oracle Engineer for NexGen Data Systems, Inc. He has been working with relational databases (primarily Oracle) since 1994. Boris is an author of several technical books published in US and translated into Portuguese, Chinese, and Russian, including SQL Bible (1st and 2nd editions) and Introduction to Database Management.

Boris's areas of expertise include RAC, ASM, RMAN, performance tuning, database and system architecture, platform migrations, and system upgrades.

Boris is an Oracle 11g Database Administrator Certified Professional (OCP) and Oracle Real Application Clusters Administrator (OCE).

Credits

Executive Editor

Robert Elliott

Project Editor

Christopher J. Rivera

Technical Editor

Boris Trukhnov

Production Editor

Rebecca Anderson

Copy Editor

Nancy Sixsmith

Editorial Director

Robyn B. Siesky

Editorial Manager

Mary Beth Wakefield

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Production Manager

Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katie Crocker

Proofreader

Carrie Hunter, Word One New York

Indexer

Johnna VanHoose Dinse

Cover Designer

Ryan Sneed

Cover Image

© Henry Chaplin / iStockPhoto

Acknowledgments

I would like to thank Robert Elliott, executive editor at Wiley Publishing for the wonderful opportunity to work on this book, and for the patience with which he helped me to navigate the editorial process. His friendly managerial style and valuable insights helped to keep the project on track and on time.

Many thanks to the Wiley Editorial team, especially to my project editor, Christopher Rivera, for the patience and meticulousness in preparing the text for publication. His suggestions and guidance helped to make this book better.

I would like to thank my technical editor and my friend, Boris M. Trukhnov, for the thorough technical editing of the book and his illuminating insights into the subject.

I would like to thank Robert M. Manning for helping with SQuirreL Universal SQL Client introduction (Appendix D) and to the entire SQuirreL development project team for the work that went into delivering this great free open source application.

My thanks go to Dzmitry Aliaksandrau, CCNA, for preparing screenshots for the database products used in the book and help in putting together the presentations. I'd like to thank Andrey Pfliger for help with testing SQL scripts in the book and suggestions on how to make the content more accessible for the readers.

Introduction

THE INFORMATIONAL DELUGE shows no signs of abating. We are inundated with data from the TV, from the Internet, and from advertisements stuffed in our mail boxes, virtual and otherwise. Unfortunately, as the quantity of information increased, its quality declined dramatically: Books were replaced by journals; then magazines; then newspapers; then web pages, blogs, and finally, tweets. The information becomes ever-more voluminous and ever-less trustworthy. Even worse, in the age of the Internet data never really disappears; it keeps accumulating, tucked away in files, logs, and databases. According to Google's former CEO Eric Schmidt, we create as much data in two days as we did from the first written record until 2003 (a date as good as any); this is about five exabytes (that is five billion gigabytes!) of data in just two days, and the pace keeps accelerating.

When electronic data storage became a reality, it brought about its own set of rules: To make sense out of the data, one had to learn the language. Relational database theory was so far the most successful attempt to bring electronic data under control, and it brought Structured Query Language (SQL) to go along with it.

The relational databases and SQL have evolved quite a bit since the 1970s when they made their first appearance, and the concepts embedded into the database SQL might appear counterintuitive to the uninitiated. By unraveling the SQL story, the reader will understand the rationale behind it and will learn to appreciate both the power and the limitations of SQL.

Who This Book Is For

This books starts at the beginning, and no prior knowledge of SQL or relational databases is assumed. Along the way, on a voyage of discovery, you will participate in the creation of the sample database, which not only incorporates all SQL concepts taught in the book but also undergoes several refactoring iterations to introduce data modeling, query tuning and optimization, and set of best practices for everything SQL.

This book is for computer programmers ready to add relational database programming to their skill sets, for the business users who want more power over the data locked away in their databases, and everybody else who might be interested in learning the powerful language, the lingua franca of the relational databases.

Readers with previous database experience might want to skim through the first couple of chapters and delve into more advanced topics, or they might decide to revisit the first principles introduced in these chapters; the choice is yours.

What This Book Covers

The book covers the current release of the SQL Standard, SQL:2008, but it mostly focuses on the practical side of the language, highlighting the differences between particular implementations. It provides examples using SQL implementations in the latest versions of the following modern database systems either available for download as free express editions, or as free open source software. The most popular desktop database packages, Microsoft Access and OpenOffice, are also covered:

	IBM UDB2 9.7

	Oracle 10g

	Microsoft SQL Server 2008/2005/2000

	MySQL 5.1/5.5

	PostgreSQL 9.0

	Microsoft Access 2007/2010

	OpenOffice 3.2 BASE (with embedded HSQLDB)

How This Book Is Structured

The book takes a holistic approach, introducing the reader to the concepts of the relational databases in general, and SQL in particular, by gradually building an understanding of the subject through the iterative process of refactoring the ideas, where each concept introduced at the beginning will be revisited in greater detail later on, illuminating the interconnectedness of the underlying principles.

Chapter 1 introduces the story behind SQL and the relational theory behind it. It is a whirlwind tour in which the basic concepts are introduced; all further chapters build upon it. The distinction between data and information is illuminated, and foundations are laid for further exploration. The chapter gives an overview of the relational database management systems (RDBMSs) used in this book.

We revisit these concepts again in Chapter 2 and add some more. The amorphous data becomes structured as it is being analyzed and conformed to the relational model. The “fridge magnets” paradigm becomes the “chest drawer” one, and then morphs into a bona fide relational database table.

The relational model is further explored in Chapter 3, as we step through the basics of the database design and normalization process. The SQL tools for working with normalized data are introduced. Dynamic SQL makes it appearance in this chapter.

To highlight both the power and limitations of SQL as a set-based language, some of the most popular procedural extensions (such as Oracle's PL/SQL and Microsoft's Transact-SQL) are discussed in Chapter 4. This chapter will also introduce SQL functions as a means of alleviating innate deficiencies of the language when dealing with a record-based logic.

Aggregate data are explored in Chapter 5, summarizing the power and limitations of the approach. The aggregate SQL functions introduced in the previous chapter are taken to the next level to show how SQL works with data stripped of its individuality.

Chapter 6 deals with subqueries when data sets are being staggered, and data discovery is based upon multilevel data filtering, one query providing selection criteria to another. The subqueries are precursors to the more SQL attuned JOIN(s), a recurring theme throughout the book.

The power of SQL comes from its ability to deal with data locked in relational tables. Chapter 7 explores the ways SQL can combine this data into a single data set.

This book introduces basic SQL concepts, opening the door for further exploration, and Chapter 8 lays out the next steps of this voyage, with concepts you might consider to explore further later on.

Chapter 9 deals with performance optimization, describing general approach and best practices in optimizing your queries and database environment.

Chapter 10 discusses how relational databases work in multiuser environments, and what mechanisms were implemented in SQL to deal with concurrent data access.

SQL is all about structure and order — it is Structured Query Language, after all! But the real data comes in every shape and size, and Chapter 11 shows how SQL accommodates semistructured (XML documents), unstructured (text files), and binary (such as pictures and sounds) data.

Chapter 12 briefly discusses the latest developments, such as columnar databases, NoSQL databases, object databases, and service oriented architecture (SOA), and how they relate to SQL.

Appendix A describes, step by step, the procedure for installing the sample Library database and populating it with an initial set of data with specific instructions for each of the seven databases discussed in this book. The SQL scripts for this are available for download from the book's supporting websites.

Appendix B provides step-by-step instructions for installing relational database software packages used in this book.

Appendix C describes facilities provided with each of the respective databases to access, create database objects, and manipulate data stored in the tables.

Appendix D introduces the open source project SQuirreL Universal SQL client that can be used to access every database used in this book via Java Database Connectivity (JDBC) interface. It describes, step by step, the process of setting up and configuring the software.

What You Need to Use This Book

To make the most out of this book, we recommend downloading and installing the relational database software used throughout the book. Most of the software is free or available on a free trial basis. You'll find step-by-step instructions in Appendix B.

Conventions

To help you get the most from the text and keep track of what's happening, we used a number of conventions throughout the book.

Try It Out

Try It Out is an exercise you should work through, following the text in the book.

1. It usually consists of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works

After each Try It Out, the code you typed will be explained in detail.

[image: warning]
Boxes with a warning icon like this one hold important, not-to-be-forgotten information that is directly relevant to the surrounding text.

[image: note]
The pencil icon indicates notes, tips, hints, tricks, or asides to the current discussion.

As for styles in the text:

	We highlight new terms and important words when we introduce them.

	We show keyboard strokes like this: Ctrl+A.

	We show file names, URLs, and code within the text like so: INSERT INTO…SELECT FROM.

We present code in two different ways:

Weuseamonofonttypewithnohighlightingformostcodeexamples.

Weuseboldtoemphasizecodethatisparticularlyimportantinthepresentcontextortoshowchangesfromapreviouscodesnippet.

Supporting Websites and Code

As you work through each chapter, we recommend that you download the SQL scripts to create and populate the database. The code is available at www.wrox.com or at www.agilitator.com. You can use the search box on the website to locate this title. After you have located this book, click the Download Code link to access the files that can be downloaded. You can download the files via HTTP or FTP. All the files are stored as ZIP files.

[image: note]
The ISBN for this book is 978-1-118-00267-4. You may find it easier to search by the ISBN than by the title of the book.

You can also download the code from the main WROX download page: www.wrox.com/dynamic/books/download.aspx. Click the link to the Discovering SQL: A Hands-On Guide for Beginners to access the files that can be downloaded.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or a faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save another reader hours of frustration, and at the same time, you will be helping us provide even higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all errata that have been submitted for this book and posted by Wrox editors. You may also contact the author via e-mail at discovery@agilitator.com. A complete book list, including links to each book's errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don't spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml and complete the form there to send us the error you have found. We'll check the information and, if appropriate, post a message to the book's errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com

For author and peer discussions, join the P2P forums at p2p.wrox.com. The forums are a Web-based system for you to post messages relating to Wrox books and related technologies, and interact with other readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will find a number of different forums that will help you, not only as you read this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you want to provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete the joining process.

[image: note]
You can read messages in the forums without joining P2P, but in order to post your own messages, you must join.

Once you join, you can post new messages and respond to messages that other users post. You can read messages at any time on the Web. If you want to have new messages from a particular forum e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to questions about how the forum software works, as well as many common questions specific to P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Chapter 1

Drowning in Data, Dying of Thirst for Knowledge

Information may be the most valuable commodity in the modern world. It can take many different forms: accounting and payroll information, information about customers and orders, scientific and statistical data, graphics, and multimedia, to mention just a few. We are virtually swamped with data, and we cannot (or at least we'd like to think about it this way) afford to lose it. As a society, we produce and consume ever increasing amounts of information, and database management systems were created to help us cope with informational deluge. These days we simply have too much data to keep storing it in file cabinets or cardboard boxes, and the data might come in all shapes and colors (figuratively speaking). The need to store large collections of persistent data safely, and “slice and dice” it efficiently, from different angles, by multiple users, and update it easily when necessary, is critical for every enterprise.

Besides storing the information, which is what electronic files are for, we need to be able to find it when needed and to filter out what is unnecessary and redundant. With the informational deluge brought about by Internet findability, the data formats have exploded, and most data comes unstructured: pictures, sounds, text, and so on. The approach that served us for decades — shredding data according to some predefined taxonomy — gave in to the greater flexibility of unstructured and semistructured data, and all this can still fit under the umbrella of a database (a broader concept than the “data banks” of the 1970s).

The databases evolved to accommodate all this, and their language, which was designed to work with characters and numbers, evolved along with it. The concept of gathering and organizing data in a database replaced with the concept of a data hub (“I might not have it, but I know where to find it”) with your data at the core, surrounded with ever less related (and less reliable) data at the rim.

When does data transform into information? When it is organized and is given a context. Raw data collection does not give you much. For example, the number 110110 could be a decimal number 54 in binary representation; November 1, 2010, the date of D. Hamilton Jackson Memorial Day commemorating establishment of the first press in the U.S. Virgin Islands; House Committee Report #110 for the 110th U.S. Congress (2007–2008), you get the idea. To transform data into information, you can aggregate the data, add context, cross-reference with other data, and so on. This is as far as databases can take you. The next step, transforming information into knowledge, normally requires human involvement.

Data Deluge and Informational Overload

One of the reasons behind building a database of your information is to filter the information specific to your needs, to separate the wheat from the chaff. Anybody who uses Internet search engines such as Google or Bing can attest that results brought back are far from being unambiguous because the search engine tries to find the best matches in the sea of relevant, tangentially relevant, and absolutely irrelevant information. Your database is created to serve your unique needs: to track your sales, your employees, and your book collection. In doing so, it might reach out and get some additional information (for example, getting a book's information from Amazon.com), but it will be information specific to your particular needs.

Another important aspect of the database is security. How secure do you need your data? Can anybody see it and modify? Does it need to be protected from unauthorized access due to compliance requirements and simply common sense?

Database management systems, otherwise known as DBMSs, answer all these questions, and more.

Database Management Systems (DBMSs)

What makes a database management system a system? It's a package deal: You get managed storage for your data, security, scalability, and facilities to get data in and out, and more. These are things to keep in mind when selecting a DBMS. The following sections describe a few of the factors that you should consider.

Storage Capacity

Will the selected DBMS be sufficient for current and future needs? If you intend to store your favorite recipes or manage your home library, you might decide to use a desktop database such as Microsoft Access. When you need to store terabytes of information (for example, New York Stock Exchange financial transactions for the last 50 years), you should shop for an enterprise class DBMS such as Oracle, Microsoft SQL Server, or IBM DB2.

Number of Users

If you are the only user of your database, you might not need some of the features designed to accommodate concurrent data use in your database. The current version of Microsoft Access, for instance, supports up to 255 concurrent users (in practice, actual numbers will depend on many factors, including network, bandwidths, and processing power). And with advanced clustering technologies, there is theoretically no limit on the number of users in an enterprise DBMS such as Oracle.

Security

How secure do you want your data to be? You might not be overly concerned if your favorite recipes are stolen, but you'd want your banking or health information to be as secure as possible (and there are regulations to mandate certain levels of protection for various kinds of data collected). One of the major differentiators between enterprise class DBMSs and their desktop counterparts is a robust, finely grained security implementation. A simple file that is a Microsoft Access database is more insecure than a server-based IBM DB2 installation with multiple levels of protection.

Performance

How fast does your database need to be? Can you wait minutes for the information to come back, or must you have a subsecond response, as in a stock trading platform? The answers tie into the question about concurrent users and also scalability. Some DBMSs are inherently slower than the others, and should not be deployed in environments they cannot handle.

Scalability

As Yogi Berra used to say, “Predictions are hard, especially about the future.” Databases must be able to accommodate changing business needs. While one cannot anticipate all the changes down the road, one could make an educated guess based upon likely scenarios and industry trends. Your business will change (growths, acquisitions), and your database needs will change with it. You can bet that your data will live longer than the database it lives in. The operating system might change (mainframe, UNIX/Linux, Windows); the programming environments might change (COBOL, C/C++, Java, .Net); regulations might change, but your data must endure, and not entirely for sentimental reasons.

Any of the modern enterprise DBMSs will get a decent score on any of these factors; ultimately, your business needs will dictate the technology choice. Expert advice will be needed for large production deployment, and qualified database administrators to keep your database in the best shape possible. Once you master the language, your data could be transformed into information; it will be up to you to take it to the next level: knowledge.

Costs

Of course, it is important to consider costs associated with installing and operating a database. Vendors might charge hundreds of thousands of dollars for an enterprise class DBMS or it could be had for free as an open source DBMS. Remember: “There ain't no such thing as a free lunch.” An open source DBMS might save you money in upfront costs, but would quickly catch up in expertise, time, tools availability, and maintenance costs later on. The total cost of ownership (TCO) must be considered for every DBMS installation.

Recording Data

As far as recorded history goes, humans kept, well, records. Some philosophers even argue that one of the major differences between humans and animals is the ability to record (and recall) past events.

Oral Records

In all probability, oral records were the first kind of persistent storage that humans mastered. The information was transmitted from generation to generation through painstaking memorization; mnemonic techniques such as melody and rhyming were developed along the way. Information transmitted orally was highly storage-dependent, and could deteriorate (as in a game of Chinese whispers) or disappear altogether after an unfortunate encounter by the bearer with a lion, a shark, or a grizzly bear.

Pictures

Pictures such as petroglyphs or cave paintings were much sturdier and somewhat less dependent on vagaries in an individual's fate. They were recorded on a variety of media: clay, stone, bark, skin; and some have survived to the modern age. Unfortunately, much of the context for these pictures was lost, and their interpretation became a guessing game for the archeologists.

Written Records

The beginning of written records, first pictographs and then hieroglyphs, dates back to around 3000 BC, when the Sumerians invented wedge-shaped writing on clay tablets, or cuneiform. This activity gradually evolved into a number of alphabets, each with its own writing system, some related, some autochthonous. This opened the door to storing textual information in pretty much the same form that we use even now. The medium for the writing records also improved over time: clay, papyrus, calf skin, silk, and paper.

Printed Word

Recording and disseminating the information was a painstakingly manual process. Each record had to be copied by hand, which severely limited access to information. The next step was to automate the process with printing. First came woodblock printing, with the earliest surviving example in China dating back to 220 AD. This sped up the process dramatically; a single woodblock could produce hundreds of copies with relatively little effort. The invention of movable type, first by the Chinese and Koreans (1040 and 1230, respectively) and then by Johannes Gutenberg in 15th century Europe, led to dramatically increased access to information through automated duplication. Still, single storage (book) could only be used by a single user (reader) at a time, and searching was a painstaking manual process, even with invention of indexing systems (a list of keywords linked to the pages where these keywords were used).

All of the Above

Technological advances made it possible to accumulate information in a variety of media (text, pictures, and sounds). Not until electronic data storage was developed did it become possible to store them all together and cross-reference them for later automated retrieval. The data had to be digitized first.

Analog versus Digital Data

Up until the invention of the first computers, most information was created and stored in human-readable format. Various mechanical systems were invented to facilitate storage and retrieval of the information, but the information itself remained analogous: print, painting, and recorded sound. Sounds recorded on LP disks are analog, and sounds recorded on CD are digital. The most dedicated audiophiles claim that a CD is but an approximation of the real sound (and they are correct), but most people do not notice the difference. One cannot deny the convenience afforded by a digital CD (or, better yet, an audio file stored on one's computer).

The idea to represent data in binary format came independently to several people around the world, with MIT engineer Claude Shannon formulating principles of binary computation in 1938, and German scientist Konrad Zuse creating a fully functional binary computer in 1941. It turns out that a binary system is uniquely suited for the electrical signal processing; it was humans' turn to adapt to a machine.

The familiar letters and punctuation were translated into combinations of ones and zeroes, starting with the Extended Binary Coded Decimal Interchange Code (EBCDIC), developed by IBM in the early 1950s; through the American Standard Code for Information Interchange (ASCII) character-encoding scheme introduced in the early 1960s; to the advent of Unicode, which made its debut in 1991. The latter system was designed to accommodate every writing system on Earth, and can currently represent 109,000 characters covering 93 distinct scripts.

While initial efforts were focused on representing characters and numbers, the other types of data were not far behind. Pictures and then sounds became digitized and eventually made their way into databases.

To Store or Not to Store?

In 1956, IBM was selling five megabyte persistent storage drives for a whopping $10,000 per megabyte (no wonder it had to make this agonizing decision to store dates as two digits instead of four; also known as the Y2K problem); this came down to just under $200 per megabyte in 1981 (Morrow Designs). In August 2010, a Western Digital 1 terabyte hard drive was selling for $70, which translates into 122 megabytes per one cent!

When storage was dear, people had to be very selective about what data they wanted to keep; with costs plummeting, we've set our sights on capturing and storing everything.

The Holy Grail of the DBMS for years was to structure and organize data in a format that computers could manipulate; the preferred way was to collect the data and sort it, and then store it in bits and pieces into some sort of a database (it was called a data bank in those days, with policies to match). You had to own all your data. With the proliferation of the Internet, this is no longer the case. Distributed data is now the norm; instead of bringing the data in, you might choose to store information about where the data could be found and leave it at that.

Of course, you may need to keep some of your data closer to the vest (financial data and personal data, for example). Storing the actual data will give you full control of how this data is accessed and modified; this is what databases do best.

With all this dizzying variety of data formats, one needs to make a decision on how this data is to be stored. Despite advances in processing unstructured data, organizing it into taxonomies (a process called data modeling; see Chapters 2 and 3 for more information) has distinct benefits both in speed and flexibility. Breaking your data down into the smallest bits and pieces requires a lot of upfront effort, but it gives you an ability to use it in many more ways than when stored as monolithic blocks. Compare a Lego bricks castle with a premolded plastic castle. The latter stays a castle forever, while the former could be used to build a racing car model, if needed. The tradeoffs between structured and unstructured data (and everything in-between) will be discussed in Chapter 11.

Relational Database Management Systems

This book is about SQL, the language of relational databases, or relational database management systems (RDBMSs). Since the theoretical foundations was laid down in the 1970s by Dr. Codd, quite a few implementations have come into existence, and many more are yet to come.

Many people consider DB2 to be the granddaddy of all databases, given that the very term relational was introduced by IBM researcher Dr. Edgar Frank Codd in 1969, when he published his paper, “Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks” in an IBM research report. This assertion is contested by others who point to Oracle's version 2 commercial release in 1979; Multics Relational Data Store sold by Honeywell Information Systems in 1976; or the Micro DBMS experimental designs (pioneering some of the principles formulated by Dr. Codd two years later) of the University of Michigan from 1968 (the last instance of Micro DBMS in production was decommissioned in 1998). The RDBMS road is marked by a multitude of milestones (and an occasional gravestone) of other RDBMS products, including IBM PRTV (1976); IBM SQL/DS (1980); QBE(1976); Informix (1986); Sybase (1986); Teradata (1979); and Ingres, an open source project that gave inspiration to many other successful systems such as PostgreSQL (1996), Nonstop SQL (1987), and Microsoft SQL Server (1988) — to mention but a few. These systems used different dialects of primordial SQL: SEQUEL, QUEL, Informix-SQL, and so on. It was not until 1987 when the first attempt was made to standardize the language; arguably, the battle is still going on.

The current RDBMS market is split among heavyweight proprietary relational databases Oracle (48 percent), IBM (25 percent), and Microsoft (18 percent); smaller proprietary systems Teradata and Sybase, each with a distant 2 percent; and the other vendors, as well as open source databases, comprising about 10 percent of the total market.

For a sizeable enterprise, selecting a database foundation for their applications is a decision not to be taken lightly. Not only does it cost tens of thousands of dollars in upfront licensing fees for the software, and hundreds of thousands of dollars in maintenance and support fees, but it is also an important factor in determining the overall enterprise architecture that aligns all other investments in software, hardware, and human resources. Although migrating from one RDBMS to another became easier in recent years, still the mere thought of it might give your CFO nightmares.

IBM DB2 LUW

IBM is a long-term front-runner in the RDBMS arena, from the mainframe world with the MVS family of operating systems, to z/OS, and later to UNIX and Windows. The current version is IBM DB2 9.7 LUW (Linux, UNIX, and Windows).

The IBM DB2 9.7 keeps the absolute record in transaction processing speed (see Chapter 9 for more information) and comes in a variety of editions, from Advanced Server Enterprise to a free (albeit limited) DB2 Express-C edition used to run samples provided with this book.

DB2 in its version 9.7 is still only compliant with the ANSI/ISO SQL 92 Entry standard (see later in this chapter) and supports some of the more advanced features from other standards organizations such as the Open Geospatial Consortium, JDBC, X/Open XA, as well as bits and pieces of the latest SQL:2008 Standard. In addition to its own built-in procedural extension language, SQL PL, it also provides support for Oracle's PL/SQL, Java, and even Microsoft's .NET family languages for creating stored procedures (see Chapter 4 for more information).

Oracle

Oracle traces its roots back to the first release of Oracle version 2 in 1979, initially for older VAX/VMS systems, with UNIX support following in 1983. Over the years, it added support for most of the features specified in SQL Standard, culminating in the latest release of Oracle 11g, which claims compliance with the “many features” of the latest release of SQL:2008 Standard.

Oracle holds second place in the high-performance transaction processing benchmarking and is at the center of the company's ecosystem. It is a secure, robust, scalable, high-performance database that has dominated the UNIX market for decades. In addition to SQL support, it comes with a built-in procedural language, PL/SQL (see Chapter 4 for more information on procedural extensions), as well as support for general programming languages such as Java.

At of the time of this writing, the latest version is Oracle 11g; the free express edition is available only for Oracle 10g, which has some limits on the data storage size and number of processors (CPUs) the RDBMS is capable of utilizing. The express edition has full support for all SQL features discussed in this book.

Microsoft SQL Server

SQL Server began as partnership between Sybase, Microsoft, and Ashton-Tate, with the initial idea to adapt existing UNIX-only Sybase SQL Server to then-new IBM operating system OS/2. Ashton-Tate later dropped out of the partnership, and the IBM OS/2 operating system faded into oblivion. Microsoft and Sybase were to share the world, being careful not to step on each other's toes. Microsoft was to develop and support SQL Server on Windows and OS/2, and Sybase was to take over UNIX platforms. The partnership formally ended in 1994, although at its core, Microsoft SQL Server still used fair chunks of Sybase technology. In 1998, beginning with the release of Microsoft SQL Server 7.0, the last traces of Sybase legacy were eliminated, and a brand spanking new RDBMS set out to conquer the world (the Windows world, that is). As of today, Microsoft holds about 20 percent of the RDBMS market, though on Windows it reigns supreme.

The latest version as of this writing is Microsoft SQL Server 2008 Release 2; a limited Express edition available for free that supports all features of SQL covered here.

Microsoft Access

Microsoft Access, known lately as Microsoft Office Access, is a desktop relational database (relatively relational, as some might quip). It purports to be an integrated solution combining elements of a relational database engine, application development infrastructure (complete with built-in programming language and programming model), and reporting platform. Unlike other RDBMSs discussed in the book, this is a file-based database and as such has inherent limitations in performance and scalability. For example, while the latest version theoretically allows for up to 255 concurrent users, in practice anything more than a dozen users slows the performance to a crawl. It also supports only a subset of SQL Standard, as well as a number of features available in its own environment only.

One of the features is linking in tables from remote databases that allow it to be used as an application front end to any ODBC/OLEDB-compliant database.

PostgreSQL

PostgreSQL evolved from a project at the University of California at Berkeley lead by Michael Stonebraker, one of the pioneers of the relational databases theory. The principles that went into the original Ingres project, and its successor PostgreSQL, also found their way into many other RDBMs products such as Sybase, Informix, EnterpriseDB, and Greenplum.

The first version of PostgreSQL (with this exact name) came in 1996; it was released in version 6.0 the next year, and remained an open source project maintained by group of dedicated developers. There are numerous commercial versions of PostgreSQL; most notable is EnterpriseDB, a private company that offers enterprise support (along with variety of proprietary management tools) for the product and has convinced many high-profile customers such as Sony and Vonage to rely on an open source RDBMS for some critical enterprise class applications.

PostgreSQL is arguably the closest in terms of support for the SQL standards in addition to a number of features found nowhere else. Unlike its peers (such as MySQL), it provided referential integrity and transactional support from the beginning. It also comes with built-in support for the PL/pgSQL procedural extension language, as well as the capability to adapt virtually any other language to the same purpose.

MySQL

MySQL was first developed by Michael Widenius and David Axmark back in 1994, with its first release in 1995. It was initially positioned as a lightweight, fast database to serve as the back end for data-driven websites. Even though it was lacking many features of the more mature RDBMS products, it was fast in serving information and “good enough” for many scenarios. (To be really fast, MySQL can bypass referential integrity constraints and ditch transactional support; see Chapters 3 and 10 for additional information.) Plus you could not beat the price; it was free. No wonder it grew up to be the most popular relational database among small- and medium-sized users. There were a number of other free database products on the market that lacked features, near-commercial polish, or both. Not one of the big guys — Oracle, IBM, Microsoft, and Sybase — offered free express versions of their respective RDBMSs back then. MySQL was acquired by Sun Microsystems in 2008, which was subsequently swallowed by Oracle.

Currently, Oracle offers a commercially supported version of MySQL as well as a Community Edition. Following this acquisition, a number of fork versions sprang up, such as MariaDB and Percona Server, committed to maintain free status under the General Public License (GPL), one of the least restrictive open source licenses.

The latest released version of MySQL is 5.5, with version 6 on the horizon. It is multiplatform (Linux/UNIX/Windows), and supports most of the features of SQL:1999; some of the features depend on the selected options (for example, a storage engine).

[image: note]
The storage engine option is a feature unique to MySQL, which allows handling of different table types differently. Each engine comes with unique capabilities and limitations (transactional support, index clustering, storage limits, and so on). A database table could be created with different storage engine options, with the default being MyISAM engine.

HSQLDB and OpenOffice BASE

Hyper Structured Query Language Database (HSQLDB), a relational database management system implemented in the Java programming language, is available as open source under the Berkley Software Distribution (BSD) license (meaning pretty much free for all).

This is a default RDBMS engine shipped with the OpenOffice.org BASE, a desktop database positioned to compete in the same market as Microsoft Access. It is a relational database, robust, versatile, and reasonably fast, and is supported on multiple platforms including Linux, various flavors of UNIX, and Microsoft Windows. It claims to be almost fully compliant with SQL:1992 Standard, which covers most of the SQL subset discussed in this book.

An adaptation of HSQLDB serves as an embedded back end to the OpenOffice.org suite component BASE and became part of the suite starting with version 2.0. Like Microsoft Access, the OpenOffice BASE can connect to a variety of RDBMSs, provided that there is a suitable driver; a number of Java Database Connectivity (JDBC) and ODBC (Open Database Connectivity) drivers are available and ship with the product.

[image: note]
Following Oracle's acquisition of OpenOffice and its uncertain status as an open source project under Oracle's patronage, the OpenOffice.org community decided to start a new project called LibreOffice, with the intent of implementing all the functionality of OpenOffice as free software under the original BSD license.

Relational databases are not the only game in town. Some of the older technologies, seemingly forever defeated by relational database theory, came back, helped by ever faster/cheaper hardware and software innovations. The quest for better performance and ease of creating applications spawned research into columnar and object-oriented databases, frameworks that make the “all data in one bucket” approach workable, domain-specific extensions (such as geodetic data management or multimedia), and various data access mechanisms. We discuss this topic in Chapter 12.

What Is SQL?

Before the advent of commercially available databases, every system in need of persistent storage had no choice but to implement its own, usually in some proprietary file format (binary or text) that only this application could read from and write to. This required every application that used these files to be intimately familiar with the structure of the file, which made switching to a different storage all but impossible. Additionally, you had to learn a vendor-specific access mechanism to be able to use it. Relational model dealt with complexities of data structures, organizing data on logical level, but it had nothing to say about the specifics of storage and retrieval except that it had to be set-based and follow relational algebra rules. Left to their own devices, the early RDBMSs implemented a number of languages, including SEQUEL, developed by Donald D. Chamberlin and Raymond F. Boyce in the early 1970s while working at IBM; and QUEL, the original language of Ingres. Eventually these efforts converged into a workable SQL, the Structured Query Language.

SQL is a RDBMS programming language designed to define relational constructs (such as schemas and tables) and provide data manipulation capabilities. Unlike many programming languages in general use, it does not exist outside the relational model. It cannot create stand-alone programs; it can only be used inside RDBMSs. This is a declarative type of language. It instructs the database about what you want to do, and leaves details of implementation (how to do it) to the RDBMS itself. In Chapter 2, we will go over the elements of the language in detail.

From the very beginning there were different dialects bearing the same SQL name, some of them quite different from each other. This worked for the vendors, as it assured lock-in to specific technology, but it also defied the purpose of creating SQL in the first place.

The SQL Standard

To bring greater conformity among vendors, the American National Standards Institute (ANSI) published its first SQL Standard in 1986 and a second widely adopted standard in 1989. ANSI released updates in 1992, known as SQL92 and SQL2, and again in 1999: SQL99 and SQL3. Each time, ANSI added new features and incorporated new commands and capabilities into the language.

The ANSI standards formalized many SQL behaviors and syntax structures across a variety of products. These standards become even more important as open source database products (such as MySQL, mSQL, and PostgreSQL) grow in popularity and are developed by virtual teams rather than large corporations.

The SQL Standard is now maintained by both ANSI and the International Standards Organization (ISO) as ISO/IEC 9075 standard. The latest released standard is SQL:2008, and work is underway to release the next version of the standard to accommodate new developments in the way RDBMSs collect and disseminate data.

Dialects of SQL

Even with a standard in place, the constantly evolving nature of the SQL Standard has given rise to a number of SQL dialects among the various vendors and products. These dialects most commonly evolved because the user community of a given database vendor required capabilities in the database before the ANSI committee created a standard. Occasionally, though, a new feature is introduced by the academic or research communities due to competitive pressures from competing technologies. For example, many database vendors are augmenting their current programmatic offerings with Java (as is the case with Oracle and Sybase) or .Net (Microsoft's SQL Server Integration Services, embedded common language runtime [CLR]).

Nonetheless, each of these procedural dialects includes conditional processing (such as that controlled through IF … THEN statements), control-of-flow functions (such as WHILE loops), variables, and error handling. Because ANSI had not yet developed a standard for these important features at the time, RDBMS developers and vendors were free to create their own commands and syntax. In fact, some of the earliest vendors from the 1980s have variances in the most fundamental language elements, such as SELECT, because their implementations predate the standards. Some popular dialects of SQL include the following:

	PL/SQL — Found in Oracle. PL/SQL, which stands for Procedural Language/SQL and contains many similarities to the general programming language Ada; IBM DB2 added (limited) support for Oracle's PL/SQL in version 9.5.

	Transact-SQL — Used by both Microsoft SQL Server and Sybase Adaptive Server. As Microsoft and Sybase have moved away from the common platform they shared early in the 1990s, their implementations of Transact-SQL have also diverged, producing two distinct dialects of Transact-SQL.

	SQL PL — IBM DB2's procedural extension for SQL, introduced in version 7.0, provides constructs necessary for implementing control flow logic around traditional SQL queries and operations.

	PL/pgSQL — The name of the SQL dialect and extensions implemented in PostgreSQL. The acronym stands for Procedural Language/postgreSQL.

	MySQL — MySQL has introduced a procedural language into its database in version 5, but there is no official name for it. It is conceivable that with Oracle's acquiring the RDBMS it might introduce PL/SQL as part of the MySQL.

Not the Only Game in Town

Over the years there were many efforts to improve upon SQL and extend it beyond original purpose. With the advent of object-oriented programming, there came demand to store objects in the database; proliferation of Internet and multimedia increased demand for storage, indexing and retrieval of the binary information and XML data, and so on. While SQL standards were keeping pace with these and other demands, some decided to create a better mousetrap and came up with some ingenious ideas. For instance, HTSQL is a language that allows you to query data over Internet HTPP protocol; Datalog was envisioned as a data equivalent of Prolog, an artificial intelligence language; and MUMPS (going back to the 1960s!) mixes and matches procedural and data access elements.

The latest entry came from the NoSQL family of databases that depart from conventional relational database theory and eerily reminds us of a data bucket with key/value indexed storage. We will have a brief discussion about evolution of SQL in the last chapter of this book.

Let There Be Database!

There is a bit of groundwork to be performed before we could submit our SQL statements to RDBMSs. If you have followed the instructions in Appendix B, complemented by the presentation slides on the accompanying book sites (both at www.wrox.com and at www.agilitator.com), you should have an up-and-running one (or all) of the RDBMSs used in this book; alternatively, you should have Microsoft Access or OpenOffice BASE installed. Please refer to Appendix B for step by step installation procedures for the RDBMS, and to Appendix A for instructions on how to install the Library sample database.

[image: note]

The following, with minor modifications, will work in server RDBMSs: Oracle, IBM DB2, Microsoft SQL Server, PostgreSQL, and MySQL. In Microsoft Access and OpenOffice BASE/HSQLDB, you'd need to create a project.

The concept of a database, a logically confined data storage (exemplified by the now rarely used term data bank), managed by a program is rather intuitive. When using a desktop database such as Microsoft Access, your database is a file that Access creates for every new project you start; the server-based RDBMSs use a similar concept, though the details of implementation are much more complex. Fortunately, the declarative nature of SQL hides this complexity. It tells what needs to be done, not how to do it.

In the beginning, there was a database. The database we will use throughout the book will contain all the books we have on the shelves; a book tracking database that stores titles, ISBN numbers, authors, price, and so on — quite helpful in figuring out what you have.

The following statement creates a database named LIBRARY in your RDBMS (as long as it is Microsoft SQL Server, IBM DB2, PostgreSQL and MySQL; things are a bit different with Oracle, which subscribes to a different notion of what is considered a database; see Appendix A for more details).

CREATEDATABASElibrary;

If you have sufficient privileges in the RDBMS instance, the preceding statement will create a database, a logical structure to hold your data, along with all supporting structures, files, and multitudes of other objects necessary for its operations. You need to know nothing about these; all the blanks are filled with default values. Behold the power of a declarative language!

[image: note]
Oracle's syntax would be similar to this:

CREATEUSERlibraryIDENTIFIEDBYdiscover;

With USER being roughly an equivalent of the DATABASE in other RDBMS. A discussion of the similarities and differences between the two are outside scope of this book.

Of course, there is much more to creating a database that would adequately perform in a production environment; there are a myriad of options and tradeoffs to be considered, but the basic data storage will be created and made available to you with these three words.

Once created, a database can be destroyed just as easily, using SQL's DROP statement; you cannot destroy objects that do not exist (and the RDBMS will warn you about it should you attempt to):

DROPDATABASElibrary;

In Oracle, of course, you'd be dropping a USER.

Now the database is gone from your server; in Microsoft Access and OpenOffice BASE, this is equivalent to deleting corresponding files.

[image: note]
Due to certain differences in terms of usage across RDBMSs, the concept of database is different among various proprietary databases. For example, what SQL Server defines as a database is in a way similar to both the SCHEMA and USER in Oracle, but in the context of this book, these differences are not particularly important.

Creating a Table

Now that we have a database, we can use it to create objects in the database, such as a table. A table is place where all your data will be stored, and this is where common sense logic and that of RDBMS begin to diverge.

If your refrigerator is anything like ours, you will have all kind of things held to its surface by magnets, some goofy keepsakes from a trip to a zoo, a calendar sent to you by your friendly insurance agent, your kid's school menu (and school attendance phone line), a shopping list, photos of your dog, photos of your children, the pizza hotline… Think of it as your personal database. You could just stick anything to it: text, pictures, calendars, and what not. In contrast, the RDBMS is much more particular. It will ask you to sort your data according to data types. A detailed discussion of data types will take place later, in Chapter 2. Here, we just stick to the data type most intuitively understood and best dealt with by the RDBMS: the text.

Creating a table is just as easy as creating the database in the previous example, with a minor difference of specifying a name for the table column and its data type:

CREATETABLEmyLibrary(all_my_booksVARCHAR(4000));

The column ALL_MY_BOOKS is defined as a character data type (see Chapter 2 for more information of data types), and it can hold as many as 4,000 characters.

[image: note]
As you might have guessed, there is much more to the CREATE TABLE syntax than the preceding example implies. A full syntax listing all options in any given RDBMS would span more than one page, and mastering these options requires advanced understanding of SQL, for which this book is but a first step.

As you'll see in Chapter 2, a table, once created, can be modified (altered), or dropped from the database altogether. The SQL provides you with full control over the database objects, with power to create, change, and destroy.

Try It Out Creating a Database in Microsoft SQL Server 2008

Creating a database is normally a database administrator's task, especially in a production environment; there are too many options and tradeoffs to consider to leave everything set to the default. For our purposes, we can use the basic syntax, however. There are several ways to create a database in Microsoft SQL Server, and using SQL Server Management Studio Express is arguably the easiest one. Follow these steps:

1. Make sure that you have your SQL Server instance up and running (refer to Appendix B for installation instructions).

2. Start SQL Server Management Studio Express by going to the Microsoft SQL Server 2008 menu option (this exercise assumes that SQL Server is installed on your local computer so you can connect automatically with Windows Authentication).

3. The first screen you see is a prompt to connect to your server. If not already filled by default, select the server type Database Engine, the server name .\SQLEXPRESS (if you followed the instructions in Appendix B; otherwise, select another name from the drop-down box; it only displays instances of SQL Server visible from your computer), and authentication set to Windows Authentication.

4. Click the Connect button.

5. SQL Server Management Studio Express will display a window with several panes; for the purposes of this tutorial, we are only interested in the New Query button located in the upper-left corner of the window, right under the File menu (shown in Figure 1.1). Click the New Query button.

6. A new query window would appear in the middle of the window; this is where you will enter your SQL commands.

7. Type in the SQL statement for creating a database:

CREATEDATABASElibrary;

8. Click the Execute button located on the upper toolbar, as shown in Figure 1.2.

9. Observe the message “Command(s) completed successfully” in the lower pane, Messages tab.

10. Your newly created database will appear on the Databases list in the pane on the left, with the title Object Explorer (see Figure 1.3). Click the plus sign next to the node Databases node.

Figure 1.1

[image: c01f001]

Figure 1.2

[image: c01f002]

Figure 1.3

[image: c01f003]

How It Works

Microsoft SQL Server takes out much of the complexity from creating the database process. Behind the scenes, the SQL Server created several files on the hard drive of your computer (or on an external storage device), created dozens of entries in the Windows registry and the SQL Server–specific configuration files, and created additional supporting objects for the database operations (you can take a look at these by expanding the node LIBRARY in your newly created database).

By omitting all optional configuration options, your database was created using all the default values: storage file names, locations, and initial sizes; collation orders; and so on. While this is not a recipe for creating an optimally performing database (see Chapter 9 for optimization considerations), it will be adequate for the purposes of this book.

Getting the Data In: INSERT Statement

The myLibrary table in our LIBRARY database is now ready to be populated with data, which is a task for the INSERT statement. Since the stated purpose of our database is to keep track of the books, let's insert some data using one of the books we do have on our shelf, SQL Bible. Here is some data.

SQLBiblebyAlexKriegelBorisM.TrukhnovPaperback:888pages

Publisher:Wiley;2edition(April7,2008)Language:English

ISBN-13:978-0470229064

This is a lot of information and all in one long string of characters. The INSERT statement would look like follows:

INSERTINTOmyLibraryVALUES(‘SQLBiblebyAlexKriegelBorisM.TrukhnovPaperback:888pagesPublisher:Wiley;2edition(April7,2008)

Language:EnglishISBN-13:978-0470229064’);

The keywords INSERT, INTO, and VALUES are the elements of the SQL language and together instruct the RDBMS to place the character data (in the parentheses, surrounded by single quotation marks) into the myLibrary table. Note that we did not indicate the column name; first because we have but a single column in which to insert, and second because RDBMS is smart enough to figure out what data goes where by matching a list of values to the implied list of columns. Both parentheses and quotation marks are absolutely necessary: the former signifies a list of data to be inserted, and the latter tells the RDBMS that it is dealing with text (character data type).

In database parlance, we have created a record in the table. There are many more books on the shelf, so how do we enter them? One way would be to add all of them on the same line, creating a huge single record. Although that is possible, within limits, it would be impractical, creating a pile of data not unlike the refrigerator model we discussed earlier: easy to add and difficult to find. Do I hear “multiple records”? Absolutely!

The previous statement could be repeated multiple times with different data until all books are entered into the table; creating a new record every time. Instead of a refrigerator model with all data all in one place, we moved onto “chest drawer model” with every book having a record of its own.

Try It Out Inserting Data into a Column

Make sure you are at the step where you can enter and execute SQL commands. Repeat Steps 1 through 6 of the first Try It Out exercise and then run these statements to insert four records in your single table, single column database:

1. Type in (or download from a website) the following queries:

USElibrary;

INSERTINTOmyLibraryVALUES(‘SQLBiblebyAlexKriegelBorisM.Trukhnov

Paperback:888pagesPublisher:Wiley;2edition(April7,2008)Language:English

ISBN-13:978-0470229064’);

INSERTINTOmyLibraryVALUES(‘MicrosoftSQLServer2000WeekendCrashCourseby

AlexKriegelPaperback:408pagesPublisher:Wiley(October15,2001)

Language:EnglishISBN-13:978-0764548406’);

INSERTINTOmyLibrary(all_my_books)VALUES(‘LettersFromTheEarthbyMarkTwain

Paperback:52pagesPublisher:GreenbookPublications,LLC(June7,2010)

Language:EnglishISBN-13:978-1617430060’);

INSERTINTOmyLibrary(all_my_books)VALUES(‘MindswapbyRobertSheckley

Paperback:224pagesPublisher:OrbBooks(May30,2006)

Language:EnglishISBN-13:978-0765315601’);

2. Click the Execute button located on the upper toolbar, as shown on Figure 1.2.

3. Observe four confirmations “(1 row(s) affected)” in the Messages tab in the lower window.

How It Works

The INSERT statement populates columns in the table by creating a record, a single row of data. The list of columns could be omitted as the list of values corresponds exactly to the list of columns (see later in this chapter for more information). If a column is specified, it has to appear in parentheses without any quotation marks; and the corresponding data goes into the list after the VALUES keyword, in parentheses, with quotation marks around the data to indicate the character nature of the value.

Give Me the World: SELECT Statement

Now that we have our data, we could query it to find out exactly what we have. The SELECT statement will help us to get the data out of the table; all we need is to tell it what table and what column.

SELECTall_my_booksFROMmyLibrary;

While it did produce a list of the books' information, it is far cry from being useful. Let's face it; it is a mess of a data, and the only advantage from being stored in a relational database is that it can be easily recalled, and possibly printed. What about search? To find out whether you have a specific book, you'd have to pull all the records and manually go over each and every one of them! Hardly a result you would expect from a sophisticated piece of software, which is RDBMS.

We need a way to address specific keywords in the records that we store in the table, such as the book title or ISBN number. A standard programming answer to this problem is to parse the record: chop it into pieces and scroll them in a loop looking for a specific one, repeating this process for each record in the table. The SQL cannot do any of this without vendor-specific procedural extensions. This would defy declarative nature of the language and would require intimate understanding of the data structure. Let's take another look at the first record of data we entered:

SQLBiblebyAlexKriegelBorisM.TrukhnovPaperback:888pages

Publisher:Wiley;2edition(April7,2008)Language:English

ISBN-13:978-0470229064

How would you go about chopping the record into chunks? What would be the markers for each, and how do you distinguish a book title from an author? Using a blank space for this purpose would put “SQL” and “Bible” into different buckets while they logically belong together. How do we know that “by” is a preposition, and not part of the author's name? The answer comes from the structured nature of SQL, which is, after all, a structured query language; we need more columns. Splitting the one unwieldy string into semantically coherent data chunks would allow us to address each of them separately as each chunk becomes a column unto its own. Back to the CREATE TABLE (but let's first drop the existing one):

DROPTABLEmyLibrary;

Create a new one according to the epiphany we just had:

CREATETABLEmyLibrary

(

titleVARCHAR(100)

,authorVARCHAR(100)

,author2VARCHAR(100)

,publisherVARCHAR(100)

,pagesINTEGER

,publish_dateVARCHAR(100)

,isbnVARCHAR(100)

,book_languageVARCHAR(100)

)

A single column became eight columns with an opportunity to add a ninth by splitting the authors' first and last names into separate columns (this is part of the data modeling process to be discussed in Chapter 3). For now, we've used the same data type, albeit shortened the number of characters, with a single exception: We made the PAGES column a number for reasons to be explained later in this chapter. You might also consider changing the data type of the column PUBLISH_DATE. Normally, a date behaves differently from a character, and the DBMS offers a date– and time–specific data type.

Now that we don't have to dump all data into the same bucket, we can be much more selective about data types, and use different types for different columns. It is not recommended that you mix up the data types when inserting or updating (see later in this chapter) the columns.

We will revisit data types again later in this chapter, and in more detail in Chapter 2.

[image: note]
You might have noticed that we have two “author” columns in our table now, to accommodate the fact that there are two authors. This raises the question of what to do when there is only one author, or when there are six of them. These questions will be explored in depth in a data modeling session in Chapters 2 and 3; here we just note that unused columns are populated automatically with default values, and if you find yourself needing to add columns to your table often, it might be the time to read about database normalization (see Chapter 3).

Now we need to populate our new table. The process is identical to the one described before, only the VALUES list will be longer as it will contain eight members instead of one. All supplied data must be in single quotes with the exception of the one going to PAGES column; quotes signify character data, absence thereof means numbers:

INSERTINTOmyLibraryVALUES(

‘SQLBible’

,‘AlexKriegel’

,‘BorisM.Trukhnov’

,‘Wiley’

,888

,‘April7,2008’

,‘978-0470229064’

,‘English’);

As long as we keep the order of the values matching the structure of the table exactly, we do not need to spell out the columns, which are the placeholder labels for the data, but if the order is different or if you insert less than a full record (say, three out of eight columns), you must list the matching columns as well:

INSERTINTOmyLibrary(

title

,author

,book_language

,publisher

,pages

,author2

,publish_date

,isbn

)VALUES(

‘SQLBible’

,‘AlexKriegel’

,‘English’

,‘Wiley’

,888

,‘BorisM.Trukhnov’

,‘April7,2008’

,‘978-0470229064’);

Repeat the previous statement with different sets of data for each of the books on the shelf. (Yes, some data entry clerks hate their jobs, too.) Alternatively, you can just download a ready-to-go script from the book's accompanying website, and install it following the instructions in Appendix A. You'll get all you information you need in a structured format, ready to be queried with SQL:

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘MicrosoftSQLServer2000WeekendCrashCourse’,‘AlexKriegel’

,‘English’,‘Wiley’,408,‘October15,2001’,‘978-0764548406’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘Mindswap’,‘RobertSheckley’,‘English’,‘OrbBooks’,224,’May30,

2006‘,’978-0765315601’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘JonathanLivingstonSeagull’,‘RichardBach’,‘English’,‘MacMillan’,

100,‘1972’,‘978-0075119616’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘AShortHistoryofNearlyEverything’,‘BillBryson’

,‘English’,‘Broadway’,624,‘October5,2010’,‘978-0307885159’);

What happens if you omit both the column name and the value? The columns listed in the statement will get populated, but the omitted column would stay empty. To signify this emptiness, the SQL marks it as having NULL value.

In the preceding examples, the values for the AUTHOR2 column will be populated with NULL(s). As you will see in Chapter 2, a NULL has a special meaning in the database, and behaves according to rather specific rules.

[image: note]
To save yourself some typing, you might want download scripts for this chapter from www.wrox.com, or from www.agilitator.com. The installation procedures are described in Appendix A.

Here is a SELECT query that returns all the records you've entered into the myLibrary table:

SELECTtitle

,author

,author2

,publisher

,pages

,publish_date

,isbn

,book_language

)FROMmyLibrary;

Instead of listing all columns, we could have used a handy shortcut provided by SQL, an asterisk symbol (*) that instructs the RDBMS to fetch back all columns.

SELECT*FROMmyLibrary;

The results of this query eerily resemble what we've just discarded for being unstructured, with a minor distinction: The data is displayed in separate columns. It makes all the difference!

First, we can now combine data in any order by just shuffling the columns around or asking for specific columns instead. For example, to produce a list of authors and titles only, we could just execute this query:

SELECTtitle

,author

,author2

)FROMmyLibrary;

Second, and much more important, is the ability to address these columns by name in a WHERE clause. This clause serves as a filter, allowing you to select records that match some specified condition, such as all books written by Alex Kriegel or only these published by Wiley. The syntax of the query is very intuitive, and resembles English:

SELECT*FROMmyLibraryWHEREpublisher = ‘Wiley’;

The results of the query list only records where the value stored in the PUBLISHER column equals ‘Wiley’ (note that the value is also enclosed in single quotes to notify the database that this is a character data type we are comparing).

The WHERE clause allows you to narrow down your search to a specific record or a set of records matching your criteria, as there might be millions of records in your database. This is where power of SQL as a set-based declarative language comes forward. With a simple statement that is not unlike a simple English sentence, you can comb through the records returning only a subset of the result, without worrying how this data is stored, or even where it resides. The previous SELECT statements will return identical results when run in Microsoft Access, Oracle, PostgreSQL, MySQL, SQL Server or IBM DB2.

Another important component of the WHERE clause is the use of operators. The previous query used an equivalence operator, filtering only the records in which the publisher's name equals ‘Wiley’. You could just as easily ask for books that were not published by Wiley using the non-equal operator:

SELECT*FROMmyLibraryWHEREpublisher<>‘Wiley’;

Several operators could be strung together to provide ever more stringent selection criteria using AND and OR logical operators. For instance, to find a book published by Wiley and written by Alex Kriegel, you might use the following query:

SELECT*FROMmyLibrary

WHEREpublisher = ‘Wiley’ANDauthor=‘AlexKriegel’;

The query returned only records satisfying both criteria; using the OR operator would bring back results satisfying either criterion, and not necessarily together. You need to be careful when using operators as they apply Boolean logic to the search conditions, and results might be quite unexpected unless you understand the rules.

The logic of operators will be further explored in Chapter 2, along with syntactical differences among the vendors and precedence rules.

Try It Out Exploring the SELECT Statement

Here, we are going to take SELECT statement for a spin using the Microsoft SQL Server 2008 environment. Repeat Steps 1 through 6 of the first Try It Out exercise to get to the stage where you can enter and execute SQL commands.

1. Type in the following statements to insert data into the table:

USElibrary;

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,

author2,publish_date,isbn)VALUES(‘SQLBible’,‘AlexKriegel’,‘English’,

‘Wiley’,888,‘BorisM.Trukhnov’,‘April7,2008’,‘978-0470229064’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘MicrosoftSQLServer2000WeekendCrashCourse’,‘AlexKriegel’

,‘English’,‘Wiley’,408,‘October15,2001’,‘978-0764548406’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘Mindswap’,‘RobertSheckley',‘English’,'OrbBooks’,224,’May30,

2006‘,‘978-0765315601’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘JonathanLivingstonSeagull’,‘RichardBach’,‘English’,’MacMillan’,

100,‘1972‘,‘978-0075119616’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘AShortHistoryofNearlyEverything’,‘BillBryson’

,‘English’,‘Broadway’,624,‘October5,2010’,‘978-0307885159’);

2. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1.2.

3. Observe five confirmations “(1 row(s) affected)” in the Messages tab in the lower pane window.

4. The following statement will select all rows and all columns from the table (the display of the actual records in these examples are omitted because of space limitations):

SELECT*FROMmyLibrary;

(5row(s)affected)

5. To narrow the search, add a WHERE clause:

SELECT*FROMmyLibrary

WHEREpublisher = ‘Wiley’;

(2row(s)affected)

6. To narrow it even further, specify two filtering criteria in the WHERE clause: only books published by Wiley and only those that have more than 800 pages:

SELECT*FROMmyLibrary

WHEREpublisher = ‘Wiley’andpages>800;

(1row(s)affected)

7. To select only specific columns, execute the following statement:

SELECTtitle,authorFROMmyLibrary

titleauthor

--

SQLBibleAlexKriegel

MicrosoftSQLServer2000WeekendCrashCourseAlexKriegel

MindswapRobertSheckley

JonathanLivingstonSeagullRichardBach

AShortHistoryofNearlyEverythingBillBryson

(5row(s)affected)

How It Works

The inserted data is stored in the table, each chunk in a column of its own, together constituting a record; this allows for addressing specific columns by name when selecting the data.

Step 4 instructs the database engine to return all available records from the myLibrary table; instead of listing all columns in the SELECT list, the query uses the asterisk symbol shortcut.

Steps 5 and 6 progressively narrow the returned result set by adding filtering criteria to the query as part of the WHERE clause; they use SQL operators to specify the equality and “greater than” conditions.

The last step demonstrates the ability to select only specific columns for the records returned and addressing them by name. They appear in the order specified in the query regardless of how they were entered or stored in the table.

Good Riddance: the DELETE Statement

Getting rid of unwanted information is just as important as getting it into the database in the first place. In the case of the Library database, a book might be lost or sold, and there is no need to keep the data any longer. The SQL provides a DELETE statement to deal with the situation. To delete all records from a table, you would use the following statement:

DELETEFROMmyLibrary;

There is no need to use FROM keyword in many RDBMS, just a table name would suffice, but some will insist. Now the records are gone, and you have an empty table in the database that you could populate again using the same INSERT scripts found on www.wrox.com or www.agilitator.com.

The DELETE statement could be much more selective in its approach if used together with WHERE clause you encountered earlier. To delete a specific set of records, you need to specify criteria. The following query will indiscriminately delete all records satisfying the WHERE clause condition:

[image: note]
Can these records be restored? It depends. In order to be able to undo changes made to the data in the RDBMS, you need to perform all operations in the context of a transaction that, at the end, would either commit all the changes (making them permanent) or roll them back (restoring the data to the original state). We will discuss transactional support in Chapter 10.

DELETEFROMmyLibrary

WHEREpublisher = ‘Wiley’;

All Wiley titles will be gone from your table, which might not be quite what you wanted. How do you pinpoint a single record to be removed from possible thousands sitting in your table? You need to specify a set of criteria that uniquely identify this record. Here's an example:

DELETEFROMmyLibrary

WHEREpublisher = ‘Wiley’ANDpages = 888;

You can't get any more unique than this, right? Actually, you can: Although improbable, it is not impossible for a large database to have more than one record satisfying the previous criteria. The better way is to go by ISBN code that is unique:

DELETEFROMmyLibrary

WHEREisbn=‘978-0470229064’;

What do you do when a record does not contain an easily identifiable unique marker? There are several ways to ensure the uniqueness of a record in the table (see Chapters 3 and 8), but here we'll introduce a concept of a special column which purpose, among the others, will be to uniquely identify records in the table (also called PRIMARY KEY by the initiated). Had you numbered the records as you entered them into the table, there would be an easy way to refer to a specific record; and assuming that your special column does not allow duplicate numbers, there would be no ambiguity in your deleting a single record. Unfortunately, this would require changing the table structure again.

Try It Out Deleting Records from a Table

Let's delete some records from a table created in Microsoft SQL Server 2008. Repeat Steps 1 through 6 of the first Try It Out exercise to get to the stage where you can enter and execute SQL commands.

1. The following query blows all records from the myLibrary table:

USElibrary;

DELETEmyLibrary

(5row(s)affected)

2. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1.2.

3. Insert the records anew:

USElibrary;

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,author2

,publish_date,isbn)VALUES(‘SQLBible’,‘AlexKriegel’,‘English’,’Wiley’,888,

‘BorisM.Trukhnov’,‘April7,2008’,‘978-0470229064’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘MicrosoftSQLServer2000WeekendCrashCourse’,‘AlexKriegel’

,‘English’,‘Wiley’,408,‘October15,2001’,‘978-0764548406’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘Mindswap’,‘RobertSheckley',‘English’,'OrbBooks’,224,’May30,

2006‘,‘978-0765315601’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘JonathanLivingstonSeagull’,‘RichardBach’,‘English’,’MacMillan’,

100,‘1972‘,‘978-0075119616’);

INSERTINTOmyLibrary(title,author,book_language,publisher,pages,publish_date,

isbn)VALUES(‘AShortHistoryofNearlyEverything’,‘BillBryson’

,‘English’,‘Broadway’,624,‘October5,2010’,‘978-0307885159’);

4. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1.2.

5. Delete a more selective group of records: all books with the exception of those published by Wiley. Type in the following SQL statement, and click the Execute button:

DELETEmyLibrary

WHEREpublisher<>‘Wiley’;

(3row(s)affected)

How It Works

The SQL command submitted to the database engine instructs it to delete all records from the myLibrary table. Five records disappear from the database. In order to continue, you must reinsert the records so you have some data with which to work.

Step 5 demonstrates that the records could be deleted, selectively based upon conditions specified in the WHERE clause of the query. Only three of the five satisfied the criterion WHERE publisher <> ‘Wiley’ and were deleted.

One way to add a new column to a table would be to drop the entire table and re-create it from scratch with a new column; in fact, this was the only way for many RDBMSs for a long time. Now, we just alter the table to sneak a column in (or remove it, for that matter). While the complete syntax is rather complex and differs significantly from RDBMS to RDBMS, the basic syntax is deceptively simple:

ALTERTABLEmyLibrary

ADDCOLUMNbook_idINTEGER;

This will add an empty column to the myLibrary table of the numeric data type INTEGER. (When it comes to computers, numbers are what they understand best; in fact, the numbers are all they understand.) All human-readable characters, sounds, and pictures are internally represented as long chains of binary numbers: ones and zeroes. To add data to this new column we would have to use the UPDATE statement, the subject of the next section in this chapter.

Some of the DBMSs might have a slightly different syntax for adding columns. For instance, Microsoft SQL Server does not need the keyword COLUMN, inferring what needs to be added from the statement itself, so that the query for SQL Server would look like this:

ALTERTABLEmyLibrary

ADDbook_idINTEGER;

Deleting unwanted columns from the table is just as easy except you have to use DROP statement:

ALTERTABLEmyLibrary

DROPCOLUMNbook_id;

Removing a column requires you to know only its name and that of the table of which it is a part. No data type or any other qualifiers are needed. There are ramifications to be considered when modifying table structure, especially when the table is not empty or columns are being used by some other table in the database. Please see Chapters 2, 7, and 8 for more information.

[image: note]
Notice the distinction between the DELETE and DROP statements: You use DELETE to get rid of the data and you use DROP to destroy database objects such as tables, views, procedures, or the database itself. As you'll learn in Chapter 2, these statements belong to different branches of SQL, data manipulation and data definition languages, respectively.

I Can Fix That: the UPDATE Statement

One of the main benefits of electronic data storage is its flexibility, nothing is written in stone, parchment, or even paper. The data can be created, deleted, or modified at will. So far, you've learned how to get the data in and out, and how to get rid of the data. The UPDATE statement allows you to modify data by changing the existing values for the columns. If you have suddenly discovered that the page number you've entered is wrong, you could fix it by running the following statement:

UPDATEmyLibrarySETpages = 500;

Because the column data type is number (INTEGER), there is no need to enclose 500 in brackets (this is the rule for all numeric data types in all RDBMSs).

The problem with the preceding statement is that the value of 500 will be entered into every record in the table, hardly a result we've intended. Just as with DELETE, we have to be much more selective when modifying the data, updating only the records we want to update, and leaving the rest alone. This is the job for the WHERE clause, and again we need some marker that would uniquely identify a record:

UPDATEmyLibrarySETpages = 500

WHEREisbn=‘978-0470229064’;

If you've discovered that you have more than one column to update for the record, you could add all these to the UPDATE comma-separated list:

UPDATEmyLibrarySET

pages = 500

,title = ‘SQLBible,2ndEdition’

WHEREisbn=‘978-0470229064’;

The UPDATE operation is implemented in such a way as to allow for using the existing data to be used as a filtering criterion. For instance, you could find the book by its title and change the title in the same query:

UPDATEmyLibrarySETtitle = ‘SQLBible,2ndEdition’

WHEREtitle = ‘SQLBible’;

Of course, after the data is changed, the preceding query won't be able to find the same record again using the same WHERE clause criterion. The same principle could be applied when the new data you're supplying includes the exiting data as a component. To add the ‘2nd Edition' qualifier to ‘SQL Bible’ we do not have to supply the whole string, just the second part of it, and use the concatenation operator:

UPDATEmyLibrarySETtitle = title+‘,2ndEdition’

WHEREtitle = ‘SQLBible’;

The preceding syntax with the plus sign (‘+’) as concatenation operator is valid in Microsoft SQL Server only. Oracle and PostgreSQL use the || operator; Microsoft Access uses the ampersand (&); and IBM DB2, MySQL, and HSQLDB prefer to use the SQL function CONCAT. See Chapter 2 for information on SQL operators and SQL functions, respectively.

So far it was implied that columns are being updated with the same data type: characters to characters and numbers to numbers. What happens when you mix the data type and try to insert or update? For example, what would happen if you tried to update a character column with a number? The answer is the same dreaded “it depends.” Some RDBMSs will choke on the incompatible data, and spit out an error message; others will try their best within compatibility limits to convert the data into the data type of the column. The latter modus operandi is known as implicit data type conversion, whose uses and misuses will be discussed in Chapter 2.

Try It Out Modifying Table Structure with the ALTER Statement, and Table Data with the UPDATE Statement

To explore the scenario mentioned earlier, let's add a numeric column to our table and populate it with data in Microsoft SQL Server 2008.

First, we need to make sure we are at the step where we can enter and execute SQL commands. Repeat Steps 1 through 6 of the first Try It Out exercise, repeat the steps to create and populate the myLibrary table as shown in exercises 2 and 3, and then follow these instructions:

1. To add a column to a table, type in the following:

USElibrary;

ALTERTABLEmyLibrary

ADDbook_idINTEGER;

2. Click the Execute button located on the upper toolbar, as shown on Figure 1.2.

3. Observe the message “Command(s) completed successfully” in the lower pane of the Messages tab.

4. Query your table to make sure that the column appears at the end of the data set, and is empty (NULL), as shown in Figure 1.4.

5. Now we need to update the new column because all it contains currently is NULL(s). Delete every statement from the query window and type in the following commands:

USElibrary;

UPDATEmyLibrarySETbk_id = 1WHEREisbn=‘978-0470229064’;

UPDATEmyLibrarySETbk_id = 2WHEREisbn=‘978-0764548406’;

UPDATEmyLibrarySETbk_id = 3WHEREisbn=‘978-0765315601’;

UPDATEmyLibrarySETbk_id = 4WHEREisbn=‘978-0075119616’;

6. Click the Execute button located on the upper toolbar, as shown on Figure 1.2.

7. Observe four confirmations “(1 row(s) affected)” in the Messages tab in the lower pane window.

8. Verify that the data indeed was inserted by executing a SELECT query against the myLibrary table:

USElibrary;

SELECTbk_id,isbnFROMmyLibrary;

bk_idisbn

1978-0470229064

2978-0764548406

3978-0765315601

4978-0075119616

NULL978-0307885159

9. The following statement updates all columns in a single query, effectively replacing record #1:

USElibrary;

UPDATEmyLibrarySET

isbn = ‘978-1617430060’

,pages = 52

,title = ‘LettersFromTheEarth’

,author = ‘MarkTwain’

,author2 = NULL

,publisher = ‘GreenbookPublications,LLC’

,publish_date = ‘June7,2010

WHEREbk_id = 1;

10. Run the SELECT statement from Step 8 to verify the changes:

USElibrary;

SELECTbk_id,isbnFROMmyLibrary;

bk_idisbn

1978-1617430060

2978-0470101865

...

NULL978-0307885159

Figure 1.4

[image: c01f004]

How It Works

The first statement in the batch indicates that the commands are to be executed in the context of the Library database; it only needs to be executed once at the beginning of the session (see Chapter 10 for more information). The ALTER TABLE command adds a column of INTEGER numeric data type to the myLibrary table created in previous exercises; the newly created columns contain only NULL(s) at this point, indicating the absence of any data. The UPDATE statements populate this column for specific records uniquely identified by setting the WHERE clause to filter for the ISBN column in the same table. Without it, the BK_ID column will be updated with the same value for all records.

As you can see from the output produced by the SELECT statement in Step 8, only four records have data in the BK_ID column now; for the rest of the records it is empty.

In Step 9 we are using the UPDATE statement to replace the contents of the entire record, column by column, ending up with a different book in our database. Because the book does not have a co-author, the value is plugged with NULL to indicate absence of any data. Had it been omitted, the column would retain the previous value.

In a multiuser environment, the problems with modifying the data are that somebody else might be reading or modifying it at the same time. This gives rise to a number of potential data integrity problems. The RDBMSs solve this problem with various locking mechanisms discussed in Chapter 10. The trick here is not to overdo it, as locking could potentially slow the database down. A popular open source database (MySQL, for instance) has different storage mechanisms for the databases used mostly to serve the information (SELECT) and those in need of data integrity protection.

Summary

We produce and consume ever-increasing amounts of information, and database management systems were created to help us cope with the informational deluge.

Database management systems (DBMSs) accumulate and manage data in various forms, text, images, and sounds, both structured and unstructured. The underlying format for all electronically stored data is digital. DBMSs built upon the relational model are called RDBMS (Relational Database Management Systems).

The RDBMSs manage both data and access to it, applying security policies, and auditing activity. There is a multitude of databases on the market, from desktop to enterprise class servers, from proprietary to open source. A variety of factors must be considered for each RDBMS package deployment: storage capacity, scalability, security, and costs, to name a few. The most popular enterprise class RDBMS packages include Oracle, IBM DB2, and Microsoft SQL Server; the popular open source contenders are PostgreSQL and MySQL; desktop databases are represented by Microsoft Access and OpenOffice embedded HSQLDB.

The Structured Query Language (SQL) is lingua franca of the relational database management systems (RDBMSs) and has roots in IBM research conducted in the late 1960s. The first attempt to standardize SQL was by the American National Standards Institute (ANSI) in 1986, and the current standard is SQL:2008, endorsed by the International Standards Organization (ISO). Despite the published standard, virtually every RDBMS supports its own dialect of SQL, each being somewhat different in syntax and implementation details. In addition, many RDBMSs support procedural extensions introducing procedural logic in an otherwise set-based declarative language.

For each RDBMS system discussed in the book, the basic element is the table residing in a database. The table organizes data into rows and columns of specific data types; and SQL provides language constructs to insert and manipulate the data trough statements such as INSERT, SELECT, DELETE, and UPDATE.

RDBMSs provide an inherently multiuser environment and facilities to ensure data integrity as different users work with the same data at the same time.

Chapter 2

Breaking and Entering: Structured Information

Let's take a closer look at the whirlwind of concepts introduced in the first chapter: database, database object, table, schema, and instance. Despite being around for a long time, there is still a fair amount of confusion regarding what a relational database management system (RDBMS) is because each one has somewhat different ideas on the subject. Yet you have to have a clear understanding of the concepts behind the terminology. Your data will live inside these objects, tucked into tables, and bound by the rules.

In the broadest terms, a database is a logical abstraction that describes a collection of interrelated objects managed as a unit. This would accommodate Microsoft Access, which for all intents and purposes is a file; and OpenOffice BASE, which is a pass-through to another relational database with an embedded Hyper Structured Query Language Database (HSQLDB) engine as a default. In Microsoft SQL Server, PostgreSQL, and MySQL contexts, a database is a collection of objects under common ownership managed by the software instance; whereas for Oracle, DB2, and DB2 UDB a database is a bunch of files managed by the software. What Microsoft calls database, Oracle refers to as schema; both are almost identical to a user in Oracle's context.

This is the bad news, but there is good news, too. On a fundamental level, we are dealing with physical files and the processes that manage them, and the particulars of them are primarily of concern to the database administrators, not Structured Query Language (SQL) users. When you get to the point when you can submit a SQL statement to the RDBMS, most of these concepts are already implemented, and you are ready to model your data.

A Really Brief Introduction to Data Modeling

According to Wikipedia, data modeling in software engineering is the process of creating a data model by applying formal data model descriptions using data modeling techniques. Well, this is all honky dory, but what does it actually mean? Data modeling is the first step where software abstraction touches the real world. The time has come to translate your idea into the relational system: rows, columns, and relations.

[image: note]
Relations, which make your database relational, will be discussed in the next chapter.

There are three main levels of data modeling: conceptual, logical, and physical. Each layer refers to a degree of elaboration culminating with a model that can be translated into SQL statements and implemented in RDBMS of your choice. Each of the levels deals with certain steps to be taken when defining your database objects. Table 2.1 presents a matrix of the steps for each modeling level.

Table 2.1 Developing Data Model Stages

[image: images/c02tnt001.jpg]

Conceptual Modeling

Conceptual modeling deals with the highest level of abstractions: entities and relationships. Entities refer to the actual physical objects or abstract concepts in your requirements. If you are modeling data for a library, you might think of books, authors, borrowers, and librarians; if you are creating a data model for a bank, your entities would be accounts, clients, money, and so on.

Relationships model the way these entities interact. In the preceding example, a book can have several authors, and a client can have several accounts. While a librarian could potentially relate to an author, it won't be something that you need to track in your database by establishing a relationship between authors and librarians. The relationships are defined through primary and foreign keys, which we'll introduce in the next chapter.

Logical Modeling

Logical modeling is the next step in data modeling. Here you begin by thinking of attributes. Does an author have a name? A date of birth? Does a book have an identification number? A number of pages? The trick is to distinguish between attributes (properties) that you want to track as opposed to those that are irrelevant. What would be the value of recording information about an author's eye color or dieting habits? If information seems to be superfluous to the purpose of your design, ditch it.

Physical Modeling

Physical modeling is the final modeling stage. This is where your abstract ideas gain concreteness. You are getting ready to translate ideas into scripts and implement them in an actual RDBMS of your choice. This is the stage when you define the names for your tables (which might be different from the entities' names), names for your columns, and most importantly, data types. What is a data type? Glad you asked; it is the subject of the next section.

Why Can't Everything Be Text?

RDBMSs were created to store information, and human readable information comes in letters and numbers. You might have heard that computers use nothing but ones and zeroes to represent information. These are the numbers, and they are used to represent letters. So far, so good. What about dates? The date 10112010 would be October 11, 2010 in the United States. For most of Europe it would be November 10, 2010; in China the first four digits might be interpreted as 1011. What about pictures? There are massive amounts of ones and zeroes packed according to specific file formats: JPEG, PNG, BMP, and TIFF, to name a few. How about sounds? I am sure you've heard about WAV and MP3 files. Video? AVI, MPEG, and so on.

To computers, they are all ones and zeroes, but humans need more than that. Humans are programmed (no pun intended!) to deal with different types of information. We “intuitively” can tell an image from a time, a date from text, and sound from a number, so we created computers in our own image and programmed them to treat data types differently.

[image: note]
There is an historical reason for introducing data types to SQL: a dearth of storage space. Some of you might remember the millennium scare, where havoc was to occur because the year was represented by two digits instead of four. By the same token, if the numbers were presented as numbers in binary system, only 2 bytes (16 bits) would be required. If we were to use characters for the same purpose, we would need 6 bytes (3 times as many) to accommodate numbers greater than 9999 (including 1 byte for the plus/minus signs). It does not sound like much these days, but back in the 1970s when the foundations were being laid, it was a huge deal.

Data types also help to tune up database performance. For instance, ubiquitous XML data (see Chapter 11 for more information) can be represented as text. After all, it is text, but text processing is not optimized for the structured nature of the XML documents. With the exception of desktop RDBMSs, every single RDBMS decided to implement a very specific XML data type to address the issue.

Another reason for data types' existence is their role in enforcing domain integrity (discussed in detail in the next chapter). This refers to the ability of a specific data type to enforce constraints. For instance, without a DATE data type, it might be possible to enter a date such as October 48. Trying to insert invalid data into a data type–constrained field would result in an error, such as Microsoft SQL Server's “out-of-range datetime value” error, for example.

Before we can enter the data into our relational database, we have to break the data into pieces of specific data types, such as characters, numbers, and pictures. This information is reconstituted by a client application later on.

Character Data

It is only logical to start with character data; after all, this is what we normally deal with when collecting, transforming, and distributing information.

Fixed Length and Variable Strings

All character strings in SQL can be of fixed length or varying length. The difference is rather simple, but the devil is in the details.

A character string can be defined as a sequence of characters that belong to a predefined character set. A character set is the language your database stores; you might remember specifying collation order or locale during the RDBMS setup process (not Oracle 10g Express, which makes decisions based on your computer settings or when standard installation option was selected). The length of the string is the number of characters in the sequence. So far, so good. As long as everybody uses English, there is no problem, but this is not the case in the modern world. This is where internal representation enters the scene: bits and bytes. A character can be represented by one or more bytes; most of the Latin-based languages fall into the former category, and everybody else is in the latter. Therein lies the problem.

Byte is a computer term for a unit of information storage that consists of 8 bits. Each bit can either be 1 or 0, and the combination of 8 bits allows us to store 256 distinct values (or 256 different characters represented by numbers from 0 to 255), which form the foundation of the American Standard Code for Information Interchange (ASCII) character set. Considering that English contains only 26 characters, 256 looks like a lot, but it's not. We'd need separate holders for uppercase and lowercase letters, punctuation marks, digits, math symbols, unprintable characters for line feed/carriage return, and so on. This barely leaves space for the characters used in other languages based on the Latin alphabet (French with its accent grave, and German with umlauts, for instance), let alone those that aren't. There are about 3,000 different languages in the world, both dead and living; in addition to constructed languages such as J. R. R. Tolkien's Quenya, Sindarin, and Khuzdul with its tengwar and cirth scripts; or Klingon's plqaD script from the fictional Star Trek universe!

While there were attempts to remedy the situation with extended code pages, ultimately the solution came with the introduction of Unicode. It is a standard double-byte character set that assigns a unique number to every single character, so it can represent many more characters than ASCII (the latest count is 109,449 characters that cover 93 scripts). The Unicode standard is the result of development coordinated by a nonprofit organization named the Unicode Consortium. The first version of Unicode, Unicode 1.0, was introduced in 1991, and since then it has been adopted by such industry leaders as Apple, HP, IBM, Microsoft, Oracle, SAP, Sun, Sybase, Unisys, and many others. (The current version, Unicode 6.0, was released in October, 2010.)

[image: note]
Unicode is required by modern standards such as XML, Java, JavaScript, CORBA, WML, and HTML, and is governed by the ISO/IEC10646 standard. It is supported in most operating systems, all modern browsers, major RDBMS vendors, and many other products. The emergence of the Unicode standard and the availability of tools supporting it are among the most significant recent global software technology trends.

SQL “thinks” in characters, but computers count bits and bytes. If you define a string to be of a fixed length, say 10 characters long, the system allocates a certain number of bytes in memory or on a computer hard disk. If your character set is Latin-based, a total of 10 bytes will be allocated for the string, but if you use a double-byte character set, as in Simplified Chinese, 20 bytes will be allocated. It does not matter whether the actual value to be stored in that string is exactly that many bytes, half as many, or just one character long; it will occupy the whole allocated space (unused bytes will be padded with blank characters), so all strings will have exactly the same length.

If you define a string variable as a varying length string with a maximum of 10 characters to store, the behavior will be different. The actual memory or disk space required to hold the value will be allocated dynamically, as needed. Only strings that are 10 characters long will have all 10 characters allocated to them, but if you have a string that is only 2 characters, only 2 bytes of storage will be allocated.

As you can imagine, this flexibility comes with a performance price tag because the RDBMS must perform the additional task of dynamic allocation. A standard piece of advice when you need to squeeze the last drop of performance out of the database is to profile your data and allocate fixed-length strings for values that always come in predefined lengths (for example, Social Security numbers or state codes). Just don't forget to have checks in place for your inserts; an attempt to insert 11 characters into a field defined as CHAR(10) would result in an error. Also, when comparing two character strings, variable-length strings wouldn't care much about trailing blanks but fixed-length strings would.

[image: note]
You might have noticed that in the Library database all string fields in the tables are defined as variable character strings big enough to accommodate most common scenarios. This was a conscious choice in the case of a database that does not have to perform at its peak, queried by thousands of concurrent users. For example:

CREATETABLEauthors(

au_idbigintNOTNULL

au_first_namevarchar(50)NULL

au_middle_namevarchar](50)NULL

au_last_namevarchar](50)NULL

au_notesxmlNULL

)

Here you see one numeric data type (BIGINT), three variable length strings (VARCHARs), and one XML data type. All data types were chosen based on specific business requirements and assumptions about their respective properties. For instance, it was assumed that the author's name would never exceed 50 characters.

The MySQL and PostgreSQL have support for the SQL Standard data types, while OpenOffice BASE/HSQLDB and Microsoft Access dump everything into TEXT, an equivalent of VARCHAR.

Tables 2.2 and 2.3 list the implementation of character data types in selected RDBMSs, including some implementation-specific varieties. You'd be well advised to stick with the standard whenever possible: CHAR and VARCHAR. This will give you some modicum of assurance that your SQL code might be portable across different databases.

[image: note]
Unlike every other RDBMS that has implemented the VARCHAR data type, Oracle has VARCHAR and VARCHAR2. While currently they are synonymous, this behavior will change in the future. Oracle's documentation recommends always using VARCHAR2 for variable length strings, noting that VARCHAR “is scheduled to be redefined as a separate data type used for variable-length character strings compared with different comparison semantics.” It is usually wise taking the vendor at its word.

Table 2.2 Selected Character String Data Types: Oracle, DB2, and SQL Server

[image: images/c02tnt002.jpg]

Table 2.3 Selected Character String Data Types: PostgreSQL, MySQL, MS Access, and HSQLDB

[image: images/c02tnt003.jpg]

Binary Strings

A binary string is a sequence of bytes in the same way that a character string is a sequence of characters, but unlike character strings that usually contain information in the form of text, a binary string is used to hold nontraditional data such as images, audio and video files, program executables, and so on. Binary strings can be used for purposes similar to those of character strings (to store documents in Microsoft Word or Adobe PDF format), but the two data types are not compatible. The difference is like text and a photo of the same text. To keep things separate, in this book we deal only with “real” binary data types, covered later in this chapter. The binary string data types are listed in Table 2.3 as CLOB, NCLOB, DBCLOB, and so on.

Character versus Special Files

It might be a little bit confusing to learn that plain text documents can be stored as character strings and a Word document has to be treated as a binary string. A Word or Adobe PDF file is a text document from a user's point of view, but from a computer storage perspective, it is not. In addition to plain text characters, it contains many special markers and instructions that only MS Word or Adobe Acrobat software can interpret. The same is true for any other special files: bitmaps, spreadsheets, audio and video files, and so forth. You can think of it in this way: a special file (for example, .doc, .xls, .bmp, or .avi) is like a Blu-ray disc for a DVD player, whereas a program (MS Word, Excel, Paint, or Adobe Acrobat) is like a DVD player. You have to have a DVD player to play a disc, and it has to be the right disc. If you try to play a Blu-ray disc in a standard DVD player, it won't work. Just try to open a Word or PDF documents with Notepad, and you will see what we are talking about.

Try It Out Text or Binary?

Let's try to open Microsoft Word or Adobe Acrobat documents with the ubiquitous Notepad program on a Windows machine. The Word files would have a file extension (the last three or four characters in the name of the file, following the dot) of .doc or .docx, depending on the version of software used to create it; Adobe Acrobat files have an extension of .pdf. The basic text editor, Notepad, which has shipped with every Windows computer since time immemorial (Windows 3.1, that is) understands text only, and will interpret anything as a character.

Here are the steps to open a binary file in Notepad on a Windows-based computer.

1. Locate a .doc, .docx, or .pdf file on your computer.

2. Highlight the file by clicking it (single click!).

3. Without moving your mouse, right-click to get the pop-up menu.

4. Navigate to the Open With menu and click Choose Program.

5. Scroll the list of programs to find Notepad and select it with a single click.

6. Make sure that the check box at the bottom of the pop-up window with the caption “Always use the selected program to open this kind of file” is not checked (otherwise, all files with this extension will be opened by Notepad).

7. Click OK.

This is how the first several lines look when a PDF file is opened with Notepad on my computer:

%PDF-1.4%

€ãÏÓ

27670obj<</Linearized1/L448187/O2770/E50012/N58/T392798/H[6931011]>>

Endobj

xref

276719

000000001600000n

How It Works

Because the Adobe Acrobat PDF is a binary file, it contains, in addition to the text, information about fonts, positioning, coloring, and all other formatting. This information is a set of instructions that Adobe Acrobat understands and can interpret to display human readable text and any other objects that might be embedded into the document, such as pictures, diagrams, and so on.

Numeric Data

After the characters come numbers. A number is a number is a number, right? Ugh, no. They come in all shapes and colors, figuratively speaking, split into two broad categories: exact numbers and approximate ones.

Exact Numbers

Exact numbers can either be whole integers (counting pencils, people, or planets) or have decimal points (prices, weights, or percentages). Numbers can be positive and negative; they can have precision and scale. And RDBMSs accommodate them all.

Precision determines the maximum total number of decimal digits that can be stored (both to the left and to the right of the decimal point). Scale specifies the maximum number of decimals allowed. Exact numeric data types are summarized in Tables 2.2, 2.3, 2.4 and 2.5.

[image: note]
The scale and precision for NUMERIC and DECIMAL values often cause confusion. Just remember that precision specifies the maximum number of all digits allowed for a value. For example, suppose that a table has these columns:

field1 — NUMERIC(10,4); can hold up to 999,999.9999

field2 — NUMERIC(10,2); can hold up to 99,999,999.99

field3 — NUMERIC(10,0); can hold up to 9,999,999,999

To determine the maximum number of figures before the decimal point, subtract scale from precision. If you try to insert a value with more figures before the decimal point than the column allows, you will get an error, but values with more decimal points than specified will simply be rounded (the exact behavior depends on implementation).

Table 2.4 Exact Numeric Data Types: Oracle, DB2, and SQL Server

[image: images/c02tnt004.jpg]

Table 2.5 Exact Numeric Data Types: PostgreSQL, MySQL, MS Access, and HSQLDB

[image: images/c02tnt005.jpg]

Approximate Numbers

Approximate numbers are numbers that can't be represented with absolute precision (or don't have a precise value). Approximate numeric data types are summarized in Tables 2.6 and 2.7.

[image: note]
To stand out in the crowd, Oracle offers only one data type, NUMBER, to represent all numeric data for its RDBMS. To comply with SQL Standard, it also has numerous synonyms for it. Behind the scenes, INTEGER and SMALLINT will translate into NUMBER(38); NUMERIC and DECIMAL will be substituted with NUMBER. The NUMBER data type stores zero, positive, and negative fixed and floating-point numbers with magnitudes between 1.0 × 10–130 and 9.9…9 × 10125 with 38 digits of precision. Oracle insists that having one numeric data type for all numeric data does not hurt performance, given the fact that “the space is allocated dynamically.”

Table 2.6 Approximate Numeric Data Types: Oracle, DB2, and SQL Server

[image: images/c02tnt006.jpg]

Table 2.7 Approximate Numeric Data Types: PostgreSQL, MySQL, MS Access, and HSQLDB

[image: images/c02tnt007.jpg]

Each numeric data type has limits, a range of values that it can represent which is pretty consistent across the RDBMS. The value ranges for some common numeric types are presented in Table 2.8.

Table 2.8 Value Ranges for the Numeric Data Types

[image: images/c02tnt008.jpg]

Literals for the Number

Most of the time, the numbers are hidden in the database, neatly tucked away in the bits and bytes the RDBMS allocates for them. Once in awhile, you might need to use numbers as a value inserted in your query, and databases can be very particular in what format you supply them.

Literals for numbers are represented as strings, optionally preceded by plus or minus signs, with an optional decimal part for NUMERIC and DECIMAL data types separated by a dot (.):

123

-34.58

+89.1018

UPDATEbooksSETbk_price = 16.99WHEREbk_id = 8;

Oracle allows the option of enclosing literals in single quotes:

‘123’

‘-888.34’

MS SQL Server has literal formats for MONEY and SMALLMONEY data types represented as strings of numbers with an optional decimal point and prefixed with a currency symbol:

$16

$123456.14

For instance, this syntax will be valid in MS SQL Server and nowhere else:

UPDATEbooksSETbk_price = $16.99WHEREbk_id = 8;

Approximate numbers add scientific notation to represent the numbers in two parts separated by the letter E (either lower- or uppercase). Both parts can include plus or minus; the part number can also include a decimal point:

+1.23E2

-8.745e2

-8.44488E+002

The value of the constant is the product of the first number and the power of 10 specified by the second number.

Once Upon a Time: Date and Time Data Types

Handling dates and times is probably one of the most confusing and inconsistent topics in SQL. Partly this stems from the inconsistency of the human-devised system of tracking day and time. Try to explain this to a Martian: 365 days in a year (except when it's 366) comprising 12 months made of alternating 30 or 31 days, and one month of 28 (except when it is 29), each day consisting of 24 hours, and so on. It's a daunting task, to be sure! The relational databases model the real world, so they had to accommodate this complexity. Accommodate they did, with DATE, TIME and DATETIME data types:

	DATE is a structure that consists of three elements: year, month, and day. The year is a 4-digit number that allows values from 0000 through 9999 (that's right, the year 10,000 problem is looming), the month is a 2-digit element with values from 01 through 12, and the day is another 2-digit figure with a range from 01 through 31. SQL Standard defines the semantics of dates and times using the structure described previously, but implementers are not required to use that approach, provided the implementation produces the same results. One vendor can choose something similar to the preceding structures; others can implement characters, numbers with different scale, and so on.

	TIME consists of hour, minute, and second components. The hour is a number from 00 to 23, the minute is a two-digit number from 00 to 59, and the second is either another integer from 00 to 61 or a decimal number with a minimum scale of 5 and minimum precision of 3 that can hold values from 00.000 to 61.999.

	DATETIME combines both DATE and TIME into a single type with date range from January 1, 1753, through December 31, 9999, and time range of 00:00:00 through 23:59:59:997; the allocated storage is 8 bytes. This data type found in Microsoft SQL Server beginning from version 2005.

The DATE data type behaves differently from implementation to implementation. IBM DB2, for instance, has DATE and TIME data types separately, whereas Oracle and Microsoft SQL Server bundle time into the date field; the OpenOffice BASE built-in HSQLDB database follows the IBM approach, and so on.

Much of the complexity of the date and time handling is hidden by the RDBMS's internal representation; what appears as a familiar string, “October 29, 2010” is stored as a complex data type in which each of the components — months, days, and years — is represented by a DECIMAL, and the entire structure is rolled up into a DATE data type, leaving the RDBMS to handle the details.

The dates and times get into the database as literals (using explicit or implicit conversion) as a return result from a function, or as a conversion. The RDBMSs have implemented a number of SQL functions to help handle this peculiar data type, please refer to Chapter 4 for more information. For instance, to insert today's date into a field defined a DATE data type, the Microsoft SQL Server might use the GetDate() built-in function (there are equivalents across all RDBMSs. Please refer to the Wrox book SQL Functions: Programmers Reference for more information.

INSERTINTObooks(

bk_id

,bk_title

,bk_ISBN

,bk_publisher

,bk_published_year

,bk_price

,bk_page_count

,bk_bought_on

,bk_hard_cover

,bk_cover_pic

,bk_notes)

VALUES

(1

,‘SQLBible’

,‘978-0470229064’

,‘Wiley’

,2008

,39.99

,888

,GetDate()

,0

,NULL

,NULL);

This statement will insert today's date into the BK_BOUGHT_ON field. Substituting the explicit conversion expression CAST(’10-10-2009’ as SMALLDATETIME) or the implicit conversion expression ‘10-10-2009’ would also enter a date into the field. The implicit conversion SQL functions are briefly touched in this chapter and are discussed in greater detail in Chapter 4.

[image: note]
As if there were not enough complexity, there is also an issue with time zones. If both your client and the RDBMS server are located within the same time zone, the date and time will be (in theory, at least) the same, and when your application inserts new records and uses one of the built-in SQL functions to stamp it with today's date, the results are as expected: Today is today for both you and your server. Now, imagine that your RDBMS server is located halfway around the globe. What date will go with your record: yours (8 o'clock in the morning) or your server's (8 o'clock in the afternoon)? The difference might not be only hours but also days and even months. To help with this situation, your RDBMS might provide TIME ZONE, as Oracle does, which would allow your application to use either your SESSION (local time) or the server's own time, as well as specify offsets for both. For information on SESSION, see Chapter 10.

While it might be apparent to humans that some literal strings are veritable dates, computers have no such insight and try to treat anything as a date if so instructed, which, of course, would result in an error. How do you do date data type validation? Microsoft has implemented the ISDate(<literal string>) function that returns either 1 (TRUE) or 0 (FALSE), indicating whether a particular string can be converted into a date data type; none of the other RDBMSs has similar functions (though custom functions can be created).

Once dates are in the database, you need to take extra care manipulating them. For instance, if you compare two dates that have the same day, month, and year component but differ in time they will be evaluated as “not equal.” Be sure to compare apples to apples. There are many date- and time-related functions to help you compare dates, extract date parts, and even do date arithmetic. All this and more is discussed in Chapter 4.

Binary Data

Binary data are for computers to understand and interpret so that humans can understand. Prime examples of binary data are pictures, only your image editor knows how to arrange these ones and zeroes into a picture of your aunt Sally, Adobe Acrobat documents, the contents of a PDF file that were pried open earlier in this chapter, and so on.

There is not much you can do with binary data in SQL besides storing it and retrieving it on demand. To store binary data, the RDBMSs have introduced a number of binary data types that are listed in Chapter 11 (in Table 11). Chapter 11 also explains how to get the binary data in and out of an RDBMS, which is not a trivial task at all.

Table 2.9 presents selected SQL data types from several RDBMSs.

Table 2.9 Most Frequently Used SQL Data Types Combined

[image: images/c02tnt009.jpg]

It's a Bird, It's a Plane, It's … a NULL!

True to its nature, computers need to be told not only when there is data, but also when there isn't. Humans can readily understand that “zero books” and “no books” refer to the same thing; computers will treat the two as different values. A special marker, NULL, was introduced to address the issue.

Much Ado About Nothing

NULL is a special database concept introduced to represent the absence of value, a void. Despite what some RDBMSs might have implemented, a NULL is neither a zero nor an empty string; it is a special value that can be substituted for an actual value for any data type allowed in the column. NULLs are usually used when the value is unknown or meaningless. A NULL value can later be updated with some real data; it can even become a zero or an empty string, but by itself it is neither.

For example, when you buy a new book, you might not have a few particulars such as cover picture or ISBN number. In such situations, the NULL values are appropriate for these fields.

[image: note]
SQL standards explicitly state that each data type should include a NULL value that is neither equal to any other value nor is a data type unto its own, but instead stands for an unknown value. NULL has been implemented by all RDBMSs.

Most of the time, NULL behaves according to its nature, hiding away and pretending to be invisible. Once in awhile, it surfaces to alter the way you are doing your queries forever.

For instance, comparing NULLs is far from obvious. A NULL is never equal to a NULL!

Try It Out Discovering NULLs

NULLS are curious animals, and should be approached cautiously. In this exercise, you will see how NULLs behave in the wild.

1. Open an SQL client of your choice and connect to an RDBMS (we will use the Microsoft SQL Server 2008 Query Analyzer window).

2. To make sure you have NULL values in your table, insert one:

USElibrary;

INSERTINTObooks(bk_id)VALUES(100);

3. Issue a SELECT statement to verify the presence of NULLs:

SELECTbk_id,bk_title,bk_ISBNfrombooksWHEREbk_id = 100;

bk_idbk_titlebk_ISBN

100NULLNULL

4. Now, try to find records that contain NULL in the bk_ISBN field:

SELECTbk_id,bk_title,bk_ISBNfrombooksWHEREbk_ISBN = NULL;

(0row(s)affected)

5. Well, maybe this is the literal; how about records where one NULL field equals another NULL field? Admittedly, this is an improbable query, but still…

SELECTbk_id,bk_title,bk_ISBNfrombooksWHEREbk_ISBN = bk_Title;

(0row(s)affected)

6. A NULL needs a very particular approach; it is not equal, it IS. The following query will do the trick:

SELECTbk_id,bk_title,bk_ISBNfrombooksWHEREbk_ISBNISNULL;

bk_idbk_titlebk_ISBN

100NULLNULL

How It Works

A NULL value in the database represents an absence of any value and can't be compared using standard comparison operators (see more on operators later in this chapter). A special keyword IS was introduced to address the issue (as well as some workarounds, such as MySQL's NULL-safe comparison operator <=>; it is the only reliable way to find NULL values. This behavior is consistent across all RDBMSs.

NULLs can cause you serious troubles if not understood in context of your data. They will play tricks with your aggregate functions queries when you get down to counting and grouping your records (see Chapter 5 for more details).

NULLs can wreak havoc with your arithmetic. For example, suppose you want to calculate the difference between two numeric columns, and one of the columns has a NULL value. The results might surprise you: 19.99 + 0 = 19.99 (as expected), but 19.99+ NULL = NULL. The very same is true for any other mathematical operator (multiplication, division, or subtraction). Whereas division by zero will throw an error, division by NULL will serenely return NULL.

You need to pay attention to NULLs when you manipulate strings. For instance, a simple string concatenation (using a concatenation operator; see the next section for more information) will suddenly return NULL if any of the components is a NULL:

SELECT‘aaa’||‘BBB’ASresultfromdual;--Oracle,DB2,PosgreSQLsyntax

SELECT‘aaa’+‘BBB’ASresult;--MSSQLServer/Accesssyntax

result

aaaBBB

The query predictably returns the “aaaBBB” string as the result, but the simple substitution of NULL for any of the component strings will bring back NULL:

SELECT‘aaa’+NULLASresult;--MSSQLServer/Accesssyntax

result

NULL

This behavior is identical across all RDBMSs, regardless of whether concatenation operators or concatenation functions are used (see Chapter 4 for more information on SQL Functions). To check whether the value is NULL, some RDBMSs supply functions (for example, ISNULL, introduced by SQL Server, or NVL, supplied by Oracle) or the expressions IS NULL and IS NOT NULL.

The NULL swallows anything it contacts, and a special built-in SQL function COALESCE was introduced; it returns the first non-NULL expression from the list of arguments passed in. See Chapter 4 for more information on this (and other functions).

[image: note]
The inability to compare NULLs using the Equals (=) and Not Equal to (<>) comparison operators was not always the default behavior of the SQL. There were times when NULL could be compared this way - in fact, it was the only allowable behavior.

The SQL-92 standard (yes, the 92 stands for the year when it was introduced) required you to use these operators when comparing NULL values. This atavistic behavior still lurks under the polished veneer of a respectable RDBMS. Microsoft SQL Server allows you to specify the SQL-92–compliant behavior of your environment by setting ANSI_NULL parameter ON and return to modern times by switching it OFF. (The ANSI prefix stands for the American National Standards Institute.)

SETANSI_NULLSON

SETANSI_NULLSOFF

None of the Above: More Data Types

There are quite a few data types that we haven't mentioned yet; there are a several dozen different types out there, and vendors come up with new data types all the time. Some of these data types are so RDBMS-specific that they have no meaning outside the context, and some require knowledge of advanced SQL concepts. Yet there are a few which you ought to be aware of: BOOLEAN, BIT, and XML.

BOOLEAN

The staples of binary logic are TRUE and FALSE values. Even though this data type was introduced in SQL standard almost since the beginning, very few RDBMSs implemented it as such. The exceptions are the user-friendly desktop databases, such as Microsoft Access and OpenOffice BASE, which offer intuitive (Yes/No) data types.

MySQL has introduced a BOOLEAN data type that is but a synonym for TINYINT(1), where the value of zero is interpreted as FALSE, and any non-zero value evaluates to TRUE. PostgreSQL implements this data type natively and allows the literal values to be entered as TRUE/FALSE, YES/NO, Y/N, and 1/0 to represent TRUE and FALSE, respectively; it also allows for NULL to be used as a third state value (as discussed later in this chapter).

Oracle, IBM DB2, and Microsoft SQL Server do not have the BOOLEAN data type (even though IBM supports BOOLEAN as the data type for variables declared in custom functions and stored procedures).

BIT

The BIT data type can be either 0 or 1, and as the name suggests, it occupies exactly 1 bit of storage. This can be the underlying data type for the BOOLEAN data type in Microsoft SQL Server, Oracle, and IBM DB2. Using BIT as BOOLEAN requires the interpreting logic to be implemented in the client application.

[image: note]
Here are some examples of RDBMS specific data types: Microsoft SQL Server's SQL_VARIANT and Oracle's ROWID.

The former is supposed to be able to accommodate different data types supported by the SQL Server. Despite this claim to universal data type storage, it has quite a few exceptions, including XML, TEXT, IMAGE, and user-defined data types. The latter, ROWID, is used to store addresses for a physical location on the disk where the record lives. These data types have no direct equivalents anywhere else.

XML Data Type

XML stands for eXtensible Markup Language and is used to construct structured documents that combine both human-readable and machine-readable characteristics. The XML specification is maintained and developed by W3C, the main international standards organization for the World Wide Web. The idea is to present information along with instructions on how this data (or data and metadata, in computer lingo) are to be interpreted. Here's an example of an XML document:

<books>

<book>

<title>DiscoveringSQL</title>

</book>

</books>

Despite its similarity to the more familiar HTML, a markup language used to create web pages, it has a different role. The HTML focuses on presenting the data in some layout; XML is dealing with the data.

The XML data type and its implementations in the RDBMS are discussed in greater detail in Chapter 11.

DDL, DML, and DQL: Components of SQL

While SQL purports to be a single language, it is not. There are subtle distinctions, both within and outside of the language.

By now, it has become abundantly clear that there are several SQL in existence, similar in many ways, but distinct enough to pose problems when moving SQL statements between RDBMSs. In fact, there are distinct areas within the language itself.

When SQL is used to create, modify, or destroy objects within an RDBMS, it puts on its Data Definition Language (DDL) hat. Here you have the CREATE, ALTER, and DROP statements, plus a couple of others.

The Data Manipulation Language (DML) is the domain of INSERT, UPDATE, and DELETE, which you use to manipulate data.

Some bundle the Data Query Language (DQL) into DML, arguing that it also manipulates data. There are merits to this argument, not least that there is but a single member in this category: the SELECT statement.

Additionally, you might hear about the Transaction Control Language (TCL), which includes transaction statements such as COMMIT, ROLLBACK, or SAVEPOINT (see Chapter 10 for more information on transactions); and the Data Control Language (DCL), which deals with GRANT(ing) and REVOKE(ing) privileges to RDBMS objects.

The formal classification does not affect the way you use the language, but it will help you to be better prepared for a discussion with software developers and when taking your SQL mastery to the next level. As a Chinese saying has it, wisdom begins with calling things by their true names.

Refactoring Database TABLE

Now that you know about data types, you need to bring your tables up to standard by identifying which columns can be served better with which data type. The refactoring table does not equal refactoring database design (this will be the subject of the next chapter), but it will prepare you to take this step. All the statements used in this section are DDL statements.

How do you alter the past? One way is to drop everything and start anew. The DML statement DROP will serve the purpose.

DROP TABLE

Once dropped, the table can't be restored unless you were careful enough to drop it as part of the transaction (see Chapter 10 for details on transactional support). Not every RDBMS has transactional support for DDL statements. Microsoft SQL Server, Oracle, and IBM DB2 have it; MySQL and PostgreSQL don't. Neither Microsoft Access nor HSQLDB embedded into OpenOffice BASE has it.

Because a table occupies physical space, it is prudent to remove it. The DROP TABLE statement removes logical objects associated with it, such as INDEX (see Chapter 9 for more details on indices), constraints, and triggers (see Chapter 4). The syntax is virtually identical across all RDBMSs:

DROPTABLE<table_name>;

Sometimes you need to use a fully qualified name, including the table's schema, and you need to have the privileges assigned to you as a user to do so (see Chapter 10 for more information on database privileges).

If a table has referential constraints (explained in detail in Chapter 3), you can't drop such a table without either disabling or dropping the constraints first.

[image: note]
As fragmented as SQL is — and the situation has improved dramatically with SQL Standard's committee work — there are occasional sparks of consistency. CREATE and DROP are two of them; the syntax for creating and destroying all database objects is virtually identical across all RDBMSs — a glimpse of things to come.

CREATE TABLE

Once the table is successfully dropped, you can re-create it with all the changes that you did not put in the first time; you can't create a table with the same name that already exists in the database schema. No overloading here! The basic syntax for creating a table where you supply the table name and list of fields of particular types can quickly grow hairy, stretching across pages with numerous optional clauses.

Most of the time, you just use CREATE TABLE, list the fields (columns), and add constraints (DEFAULTS, CHECK, referential constraints, and so on; see Chapters 3 and 8 for more details). This is how we will continue doing it throughout this book and we'll leave the rest to the DBA to worry about. Here is an example of how a basic table can be created with minimum effort (it uses Microsoft SQL Server data types; you can use other data types suitable for your RDBMS):

CREATETABLEbooks(

bk_idbigint]NOTNULL,

bk_titlevarchar(100)NULL,

bk_ISBNvarchar(50)NULL,

bk_publishervarchar(100)NULL,

bk_published_yearintNULL,

bk_pricesmallmoneyNULL,

bk_page_countintNULL,

bk_bought_onsmalldatetime]NULL,

bk_hard_coverbitNULL,

bk_cover_picvarbinary(max)NULL,

bk_notesxmlNULL)

Note that we have not specified where this table is created, how it will be managed, or what additional constraints for the table might be. These details can seriously affect performance of your database (and will be discussed in Chapter 9).

Important distinctions are the scope and type of table. In many RDBMSs, one is allowed to create permanent as well as temporary tables. The permanent tables are those we've been using so far, while temporary tables, as the name implies, have limited lifespans — usually (but not always) limited to that of the client session (see Chapter 10 for information on sessions). The following statement creates a temporary table in Oracle's syntax (which is representative of most other RDBMSs):

CREATEGLOBALTEMPORARYTABLEtmp_Intermediate

(field1INTEGER

,field2VARCHAR2(20)

);

Microsoft syntax is slightly different:

CREATE#tmp_Intermediate

(field1INTEGER

,field2VARCHAR2(20)

);

The hash sign indicates the fleeting nature of the created table. The table automatically disappears once the user disconnects from the database. A double hash (##) gives the temporary table global scope, meaning that this table is visible to different users, and will disappear once all users disconnect — a subtle but important difference.

Once a temporary table is created, you can use it just as any other table for INSERT, UPDATE, and DELETE. Temporary tables can be used as intermediate storage or a workbench for your results, and are mostly used in stored procedures (see Chapter 4).

Temporary tables have a number of restrictions that do not apply to permanent tables. Full discussion of these nuances is beyond the scope of this book. Temporary tables are defined in SQL Standard, and all RDBMSs offer an ability to create temporary tables, though there are a lot of implementation differences.

ALTER TABLE

Is there a better way to rewrite the past? Indeed, there is: Enter the ALTER statement. Say you've created a table only to discover that you've added a superfluous field, specified a field (column) of the wrong type, or missed the column you need and need to add one. The ALTER statement can take on these jobs, and then some.

[image: note]
SQL Standard does not allow you to use the ALTER statement to change a data type, but it allows you to drop and re-create a field, which amounts to the same thing.

With ALTER, you can change the object by renaming it or changing its RDBMS–specific advanced characteristics (for example, move it to a different TABLESPACE in Oracle):

ALTERTABLEbooksRENAMEtonew_books;

Before renaming a table, you have to understand all the ramifications of the action because other objects might depend on the table (we'll discuss these in subsequent chapters). Once you rename it, all these dependencies will be broken. Not all RDBMSs approach the table-renaming task in the same fashion. While ALTER…RENAME will work with Oracle, PostgreSQL, and MySQL, it will not work in Microsoft products or in BD2 or OpenOffice BASE/HSQLDB.

[image: note]
Microsoft SQL Server uses system stored procedures (see Chapter 4) to rename objects (including tables and columns). This command will do the trick of renaming the BOOKS table into the NEW_BOOKS table:

EXECsp_rename‘books’,‘new_books’

IBM DB2 employs a separate RENAME statement:

RENAMEbooksTOSYSTEMNAMEnew_books

All warnings regarding renaming database objects fully apply here; proceed with extreme caution!

Adding a new column to a table is rather straightforward. The following statement alters the table by adding a column NEW_COLUMN1 of CHAR data type of exactly one character length:

ALTERTABLEbooksADDnew_column1CHAR(1);

This basic syntax is virtually identical across all RDBMSs, including the default COLUMN keyword being optional (with the exception of Microsoft Access and HSQLDB/OpenOffice BASE, which require the COLUMN keyword to be there).

Adding more than one column at a time is also supported:

ALTERTABLEbooksADD

new_column1CHAR(1)

,new_column2INT

,new_column3DATETIME;

If the column you are trying to add already exists, the RDBMS will warn you about it by throwing an error.

Some databases, notably IBM DB2, place additional restrictions on altered tables before you can have access to them. Only specific commands can be issued against the altered table; for example, you can drop or rename it, or alter it some more. To bring the table back online, to be accessible, you must execute the REORG TABLE command to notify the RDBMS that the modifications are all done.

Modifying an existing column is more convoluted, especially if data are already there. With the ALTER statement, you can rename the column, change its data type, or add constraints. For instance, the following syntax is used by different RDBMSs to modify columns:

--Oraclesyntax

--multiplechangesareallowed

ALTERTABLEbooks

MODIFYnew_column1CHAR(2)NOTNULL

,MODIFYnew_column2BIGINT

--IBMDB2syntax

--multiiplechangesareallowed

ALTERTABLEbooks

ALTERCOLUMNnew_column1SETDATATYPECHAR(2)

,ALTERCOLUMNnew_column1SETNOTNULL

,ALTERCOLUMNnew_column2SETDATATYPEBIGINT

--MicrosoftSQlServer2008andMSAccess

--onlyonecolumnatthetimecanbealtered

--cannotberenamedusingALTERstatement

ALTERTABLEbooks

ALTERCOLUMNnew_column1CHAR(2)

ALTERTABLEbooks

ALTERCOLUMNnew_column2BIGINT

--PostgreSQL

ALTERTABLEdistributors

ALTERCOLUMNnew_column1TYPECHAR(2)

,ALTERCOLUMNnew_column2TYPEBIGINT;

ALTERTABLEbooksRENAMECOLUMNnew_colum1TOold_column1;

--MySQL

--onlyonecolumnatthetimecanbealtered

--changingdatatyperequirescolumnnametoappeartwice

--samesyntaxusedtorenamecolumns,CHANGEcouldbesubstitutedforMODIFY

ALTERTABLEbooksCHANGEnew_column2new_column2BIGINT;

ALTERTABLEbooksCHANGEnew_column2old_column2INTEGER;

Some RDBMSs such as Microsoft SQL Server 2008 will not allow you to alter columns of TEXT, NTEXT, and IMAGE data types. Oracle will prevent you from decreasing the size of a character data type (or lower precision, total number of digits, for numeric types) non-empty column, HSQLDB does not support renaming columns at all, and so on.

Getting rid of the objects requires the same universal DROP working in conjunction with ALTER statements; the syntax is surprisingly consistent across all RDBMSs, with minor differences as shown in the following. Some RDBMSs allow you to drop several columns in a single statement; some don't.

--Oraclesyntax

ALTERTABLEbooks

DROP(new_column2,new_column1);

--MicrosoftSQLServer2008andMSAccess

--IBMDB2,PostgreSQLandMySQL

ALTERTABLEbooks

DROPCOLUMNnew_column2;

An RDBMS worth its salt would prevent you from dropping all the columns. An attempt to drop the last column would result in a stern warning: “A table must have at least one data column,” or something similar.

Populating a Table with Different Data Types

Populating a table with different data types is a snap as long as you match the type and supply the expected format: Strings need to be enclosed in single quotes (though some RDBMSs allow you to mix and match), number literals are provided as-is, and so on.

Literal in programming context means “hard-coded value,” and you might have heard that this is a bad word in software development circles. Yet when SQL statements are constructed, prior to being submitted for execution, all the values (with the exception of these supplied by DEFAULT constraints) must be properly formatted literals.

Let's construct an INSERT statement for the BOOKS table:

INSERTINTObooks(

bk_id

,bk_title

,bk_ISBN

,bk_publisher

,bk_published_year

,bk_price

,bk_page_count

,bk_bought_on

,bk_hard_cover

,bk_cover_pic

,bk_notes)

VALUES

(1

,‘SQLBible’

,‘978-0470229064’

,‘Wiley’

,2008

,39.99

,888

,GETDate()

,0

,NULL

,NULL)

A brief examination of the structure should tell you that the only required value you need to supply is BK_ID because it has a NOT NULL constraint on it; everything else can be populated with default NULLs:

INSERTINTObooks(bk_id)VALUES(8)

The preceding statement will insert a new row into the table and leave all fields but one empty, filled with default NULLs signifying absence of any data. Any attempt to insert a new record without involving BK_ID will fail with an error message informing you that the RDBMS can't insert the value NULL into column ‘bk_id', table ‘books’ because the column does not allow NULLs. INSERT fails. The actual wording will vary from RDBMS to RDBMS, but the message is unmistakable: If a field is defined with the NOT NULL constraint, it has to be filled with some value upon INSERT (it can't be updated with NULL value later on, either). We will discuss the statement in greater length later in this chapter.

Character data, numbers, and even dates can be added to your INSERT statements relatively easily as part of your standard SQL. Even XML data, being essentially a string, follows the same rules. Getting binary data into your database is much trickier: You can painstakingly resort to typing in long sequences of binary or hexadecimal codes representing your binary content. Or you can rely on some RDBMS-specific mechanism such as the Microsoft SQL Server OPENROWSET keyword (that allows importing binary files residing on your computer) or FILESTREAM (that allows streaming remote content to populate your binary fields). So far, these efforts remain proprietary and differ greatly among the RDBMSs, even among those supporting this functionality.

The most common way is to use an external client written using some database access mechanism (JDBC, ODBC, or OLEDB) that supports binary data inserts, and, of course, requires custom programming. It essentially does the “painstaking binary typing,” but being done by a machine makes it fast and efficient.

[image: note]
One of the optimization techniques for handling binary data is to leave it outside the RDBMS altogether and only store information on how to find it when requested: a path to a file, a URL to a remote image, and so on.

The methods are described in greater detail in Chapter 11, which deals with unstructured and semistructured data.

Implicit and Explicit Data Conversion

With so many data types flying around, how do we ever get reports out of this thing in normal human readable text? Why, by using conversion, of course!

Conversion is not for humans only; RDBMSs routinely use it when asked to perform tasks where intent is either implied or explicitly stated; thus the conversions are either implicit or explicit, respectively.

An implicit conversion occurs when the RDBMS tries to guess what the purpose of the command was. Suppose that you have decided to concatenate several strings following some of the examples we introduced earlier in this chapter, and the final result is an address, complete with the zip/postal codes and the house number. The following query would get you the desired result:

SELECT‘123’+‘-’+‘152’+‘Avenue,‘+‘09071’

123-152Avenue,09071

So far, so good; a decent although non-existent address. Now, what would happen if we accidentally dropped the hyphen and “Avenue,” the non-numeric values?

SELECT‘123’+‘152’+‘09071’

12315209071

Our intent is still clear. By enclosing every component in single quotes, we convey to the RDBMS our intent to get a character string back, even if it would represent numbers. To give the computer a hint that we want these strings to be treated as numbers, we need to get rid of quotes, at least for one of the components. By making ‘123’ a number by stripping the single quotes around it, the result is quite different:

SELECT123+‘152’+‘09071’

9346

Now the SQL engine realizes that we want to add the numbers, even though some of them are supplied as literal strings, by virtue of having one noncharacter added in the expression: 123. It implicitly converted all the strings into numbers, and added the numbers together.

It gets even more interesting as the RDBMS tries to be even smarter. If we decide to strip it of its character identifiers, the quotes, not from the first or second of the members in the expression but from the last one, ‘09071’, the result will be different yet again:

SELECT‘123’+‘152’+09071

132223

Huh? What happened is the RDBMS engine concatenated the first two members, ‘123’ and ‘152’, into a string ‘123152’, and then implicitly converted it into a number and added as a bona fide number to the last member.

There are limits to the RDBMS‘ guessing power. In order to be implicitly converted, the data types must be of compatible types. The RDBMS can't convert letters into numbers (the word ‘one’ will not be converted to 1); it can't convert dates into numbers and numbers into binary images, and so on. Some RDBMSs are stricter than others in enforcing conversion rules, and some disallow implicit conversions altogether.

The point of the story is that you will be well advised never to rely on implicit conversions, even if your RDBMS allows you to. Always use explicit conversions.

[image: note]
In case you need more convincing not to use implicit conversion in your code, consider the following reasons:

	Negative performance impact: It takes additional processing cycles to second-guess your intentions.

	Implicit conversions rely on additional configuration parameters (for example, a national character set) and might return inconsistent values as a result.

	Being proprietary by definition, implicit conversion algorithms are not guaranteed to work across different versions of the RDBMS or across different RDBMSs at all.

	It is much easier to understand (and maintain) your code when your intentions are stated upfront, without the need to guess them.

Explicit conversion happens when you do not allow the RDBMS to guess your intentions and tell it upfront how you want your data types to be treated. Explicit conversion is accomplished with the help of generic conversion functions such as CAST and CONVERT, introduced in Chapter 4. Both are used to convert one data type to another explicitly, within the bounds of compatibility, of course. Many RDBMSs have additional data type–specific functions that convert everything to characters, numbers, or dates. They are handy shortcuts to a more convoluted (and more powerful) syntax provided by the two conversion functions mentioned previously.

SELECT Statement Revisited

The SELECT statement — along with INSERT, UPDATE, and DELETE — are the four pillars of SQL, and you need to master them to be considered a fluent, if not a native speaker. We discussed this statement briefly in Chapter 1; now let's take a closer look.

Selecting Literals, Functions, and Calculated Columns

There are many things to select from in a database, and tables are not the only game in town. In the examples on implicit data conversion, you've already seen how we can perform arithmetic and strings concatenation using SELECT and literal values (Microsoft SQL Server syntax):

SELECT1+2ASSumOfTwo,‘one’+‘two’ASTwoStrings;

SumOfTwoTwoStrings

3onetwo

Note that because we do not refer to a table (well, Oracle would ask for selecting FROM dual, and IBM insists that such expressions were selected FROM sysibm.sysdummy1); no FROM statement is required.

This also can be expanded to include calculated columns and functions (SQL functions are covered in Chapter 4). If, for instance, you'd need to see how much your books would cost in Japanese Yen, all you have to do is to multiply its price value by the exchange rate:

SELECTbk_price*80.6829ASPriceInYen

FROMbooks;

PriceInYen

3226.50917100

Adding SQL functions to the mix is just as easy, and you get to alias the resulting columns! Using Microsoft SQL Server's built-in GetDate() function (more about functions in Chapter 4), we can get the today's date as result of our SELECT query:

SELECTGetDate()asToday;

Today

2010-10-3118:27:34.450

Setting Vertical Limits

In order to extract data from one or more tables, we use the SELECT statement. We have already seen it in its simplest form:

SELECT*FROM<table>

The preceding statement retrieves all the data from a table. What if we don't want all the data? What if you are only interested in the title and the publisher of all the books in our library?

SELECT allows us to specify what data we want retrieved. Setting vertical limits is easy; just specify the columns from which you want to see data and ignore the rest:

SELECTbk_title,bk_publisherFROMdbo.books;

bk_titlebk_publisher

SQLBibleWiley

SQLBibleWiley

...

SQLFunctionsWrox

The preceding statement will produce a result set with only two columns for all records we have added to the table.

Alias: What's in a Name?

Two different types of folks use databases: those who put them together and those who use them, and they have vastly different objectives. The former strives to create a database that not only satisfies business requirements but is also easy to program and easy to maintain. They will name objects in the database from a developer's point of view: cryptic notations that make programming easier, but might leave the users guessing.

[image: note]
Naming conventions in database programming is a hot topic: Everybody and their cousin seem to have some ideas on how it “should be.” Not long ago, it was customary to code data types into the column names; the rationale was that it would be easy for the programmers to use them if they knew what data type the column was just by looking at it. Modern developer tools made this a somewhat less pressing issue, and readability became more important. Whatever naming convention you've decided to adopt, the important thing is to stick with it for consistency's sake.

The SQL alias feature allows you to put user friendly names to otherwise cryptic programmer argot:

SELECTbk_titleasBook,bk_publisherasPublisherFROMdbo.books

BookPublisher

SQLBibleWiley

...

SQLFunctionsWiley

Now, this looks just a little more civilized. It is called aliasing a column name.

A column is not the only database object that can be aliased in a SELECT statement; we can also alias table names. This would not make much sense if we are selecting from a single table, but we'll give it a try all the same:

SELECTbk_titleasBook,bk_publisherasPublisherFROMdbo.booksb

The benefits of this aliasing will become more obvious when we start SELECTing data from a bunch of different tables in one fell swoop (in a single SELECT statement).

We will discuss various ways to join tables in Chapter 7, but for now let's just see how we can add the authors to the books and publishers to a single result set.

In our database, there are three tables we will need to interrogate at once in order to achieve that:

books

authors

books_authors

We need these separate tables because one book may have several authors, and the same author may have written several books. The relational theory behind this will be explained in Chapter 3, but for now, just accept that in RDBMS lingo this is called a many-to-many relationship between the books and the authors. A separate table is needed to tie together every book to each of its authors and every author to each book.

Our query may now look like this, and don't worry about all the INNER JOINing. Note that we need to repeat the names of the tables over and over again (just to make the point, we have even added them as qualifiers to the field names, which is not necessary here, but may be necessary if several tables happen to have columns with the same name):

SELECT

books.bk_titleASBook

,books.bk_publisherASPublisher

,authors.au_last_nameASAuthor

FROMauthorsINNERJOIN

books_authorsONauthors.au_id = books_authors.au_idINNERJOIN

booksONbooks_authors.bk_id = books.bk_id;

To translate the preceding query into plain English: “For each pair of [book, author] as found in the BOOKS_AUTHORS table, go fetch the corresponding book and publisher from the BOOKS table and the corresponding author from the AUTHORS table.”

Let's see how a bit of aliasing will help us to make it more manageable:

SELECT

b.bk_titleASBook

,b.bk_publisherASPublisher

,a.au_last_nameASAuthor

FROMauthorsaINNERJOIN

books_authorsbaONa.au_id = ba.au_idINNERJOIN

booksbONba.bk_id = b.bk_id;

It looks a lot more compact, not to mention that it saved you a fair amount of typing. Both the column alias and the table alias can (but do not have to) be preceded by AS. In our examples, we used AS with the field name aliases, but not with the table name aliases.

Setting Horizontal Limits

So far, with only a few exceptions, we selected everything the table can furnish. It might be okay for our little library, but as you can imagine, things grow hairy pretty quickly, and issuing indiscriminate SELECTs on a table with a million rows might not be quite as feasible. You must narrow down your search to what you are looking for (or make your best guess).

The WHERE clause provides the needed selectivity. Suppose that we want to retrieve all the books published by a particular publisher. For this purpose, we can use the WHERE keyword. It works like this:

SELECTbk_titleasBook,bk_publisherasPublisherFROMdbo.books

WHEREbk_publisher=‘Wiley’;

Only books published by Wiley will be retrieved. In fact, you don't even need the Publisher column in our result; it will just be Wiley, Wiley, Wiley all the way down. You've successfully filtered out all other records that you don't want at the moment.

In case you don't quite remember the name of the publisher you are interested in, you can use the LIKE operator (discussed later in this chapter):

SELECTbk_titleasBook,bk_publisherasPublisherFROMdbo.books

WHEREbk_publisherLIKE‘W%’;

This query concerns itself with the publisher, whose name starts with a W.

The usefulness of the WHERE clause goes much further than limiting results horizontally; it also is being used to establish relationships when combining data from two or more tables. It is used to JOIN the tables on a set of criteria (as seen a few pages ago, and the full discussion awaits you in Chapter 7).

DISTINCT

Here is another way to whittle down the number of records to a meaningful few. Suppose that we only want to get the list of all the publishers, without their respective books. We can do this as follows:

SELECTbk_publisherasPublisherFROMbooks;

Unfortunately, we are liable to get more than we have bargained for; if a publisher has published 20 different books, the name will be repeated in our result 20 times! Ugh. Let's narrow things down a bit, make things more distinct:

SELECTDISTINCTbk_publisherasPublisherFROMbooks;

Ah, that's better. Now we get a single row for each publisher, no matter how many times it appears in the table books. Note that this time we've asked for the BK_PUBLISHER field only because the DISTINCT keyword applies to a combination of the columns; that is, the entire set must be distinct in the set, and the combination BK_TITLE, BK_PUBLISHER is unique throughout our database:

bk_titlebk_publisher

SQLBibleWiley

Selecting a distinct book title alone will bring us the entire collection (unless you happen to keep multiple records for multiple copies you may have); selecting only publishers will ensure that each publisher appears only once.

What about NULLs? After all, we've just been told that a NULL is never equal to another NULL; surely they must be distinct! Well, for the DISTINCT filter, a NULL is a NULL is a NULL. If you have 20 records and half of them are NULLs, the query asking for distinct values from this column will return but a single NULL. So in the preceding examples with 20 records and 10 of them being NULL, the SELECT DISTINCT will bring 11 distinct records, including one NULL.

Get Organized: Marching Orders

The order in which data is returned to you would most likely reflect the order in which it is stored in the table, and not necessarily the one in which it was entered. Things could get dicey when there was a lot of INSERT and DELETE operations on the table, and some RDBMS impose additional rules. Fortunately, SQL provides the means by which you can organize the data as it's being returned to you by a query.

ORDER BY

This keyword is used to sort the result of a query. In general, the order of rows in the data set produced by a query is undetermined. ORDER BY defines the desired order. The following query lists all the books and their prices, from least to most expensive:

SELECTbk_titleasBook,bk_priceasPriceFROMdbo.books

ORDERBYbk_price

The column that is used to determine the order need not be a part of the result, either. We can rewrite the preceding query to show the books only, without the prices, but still in the least-to-most-expensive order:

SELECTbk_titleasBookFROMdbo.books

ORDERBYbk_price

One or more fields may be specified for the ordering.

SELECTbk_titleasBookFROMdbo.books

ORDERBYbk_published_year,bk_price

The preceding query will produce a list of books in which the oldest-published editions will come first, followed by the newer books. Within each year, the least expensive books will precede the more expensive ones.

ASC and DESC

By default, the order of the returned records is ascending (from A to Z), but modifiers ASC and DESC may be used to define the sorting explicitly. Let's reverse the sorting order of the published year:

SELECTbk_titleasBookFROMdbo.books

ORDERBYbk_published_yearDESC,bk_price

This is identical to…

SELECTbk_titleasBookFROMdbo.books

ORDERBYbk_published_yearDESC,bk_priceASC

In both cases, the new editions will now precede the old, while the expensive books within each year will still appear after the cheaper ones.

TOP and LIMIT

Being able to extract a predefined number of records comes in handy. The TOP keyword is used to limit the number of rows in the data set that results from a query in Microsoft SQL Server and Microsoft Access. Suppose that we are interested only in some recent editions. We can design a query thus:

SELECTTOP5bk_titleasBookFROMdbo.books

ORDERBYbk_published_yearDESC;

This query will give us the first 5 rows of the result. Keep in mind that behind the scenes the rows are first selected and sorted in descending order, and only then will the first five be returned. Ordering the rows in ASC order will bring the first five rows from the top, after they have been sorted in ascending order.

This approach is frequently used to find the row with the ultimate value of some sort (the latest date, the greatest price, the earliest year…). For example, to find the most expensive book ever published by Wiley, we may query as follows:

SELECTTOP1bk_titleasBookFROMdbo.books

WHEREbk_publisher=‘Wiley’

ORDERBYbk_priceDESC;

Unfortunately, the syntax across the RDBMSs varies significantly. Every other RDBMS had its own ideas about how this functionality needed to be implemented before the SQL Standards committee chimed in on the issue in 2008. Here's how the query would look in different RDBMSs:

	Oracle:

SELECTbk_titleasBookFROMdbo.books

WHEREROWNUM<=5

ORDERBYbk_published_yearDESC;

	DB2, PostgreSQL (with some additional keywords):

SELECTbk_titleasBookFROMdbo.books

ORDERBYbk_published_yearDESCFETCHFIRST5ROWSONLY;

	PostgreSQL, MySQL, HSQLDB:

SELECTbk_titleasBookFROMdbo.books

ORDERBYbk_published_yearDESCLIMIT5;

[image: note]
Used in conjunction with ORDER BY, these statements can return either top or bottom records. Other RDBMSs such as PostgreSQL and MySQL offer the ability to offset counts (for example, start with the tenth record from the top):

SELECTbk_titleasBookFROMdbo.books

ORDERBYbk_published_yearDESCOFFSET10FETCH5FIRSTROWSONLY

Incidentally, this corresponds to SQL Standard, introduced in 2008.

INSERT, UPDATE, and DELETE Revisited

While the SELECT statement seems to draw all the attention of the end user, developers responsible for implementing business logic for the applications hold INSERT, UPDATE, and DELETE statements in equal respect. After all, they are concerned with getting the data in, managing it there as long as needed, and retiring it when the need is gone. Proper use of the statements is the hallmarks of a well-behaved database.

INSERT

We used INSERT in Chapter 1 and throughout Chapter 2, but as you have probably guessed, there is more to it.

The classic INSERT requires you to list all columns in the table and supply corresponding values for each column. For instance, the full insert into the BOOKS table might look like this:

INSERTINTObooks

(bk_id

,bk_title

,bk_ISBN

,bk_publisher

,bk_published_year

,bk_price

,bk_page_count

,bk_bought_on

,bk_hard_cover

,bk_cover_pic

,bk_notes)

VALUES

(1

,‘SQLBible’

,‘978-0470229064’

,‘Wiley’

,2008

,39.99

,888

,CAST(‘10-10-2009’assmalldatetime)

,0

,NULL

,NULL)

This is fairly intuitive: a list of columns (in any order), and a matching list of values (in matching order), formatted for appropriate data types (string, numbers, dates), and off we go. The shortened version of the same statement would get rid of the columns list:

INSERTINTObooks

VALUES

(1

,‘SQLBible’

,‘978-0470229064’

,‘Wiley’

,2008

,39.99

,888

,CAST(‘10-10-2009’assmalldatetime)

,0

,NULL

,NULL)

While handy, this syntax imposes two major restrictions: You must list values for all columns in the table and you must supply them in the exact order in which they are listed in the table. Therefore, even though there is but a single column in the entire table that is a required value, you must supply all values for the statement to execute it successfully. When column names are listed, you can decide for yourself which fields you want to populate and which can be left to be filled with DEFAULT values specified in the DDL definition of your table:

INSERTINTObooks

(bk_id

,bk_title

,bk_ISBN)

VALUES

(1

,‘SQLBible’

,‘978-0470229064’);

[image: note]
DEFAULT values are constraints placed upon columns instructing RDBMSs to fill in a predefined value if none was supplied in the INSERT statement. The DEFAULT value might be a literal (hard-coded) value or be defined by a function, and is defined as part of CREATE TABLE statement or added with an ALTER TABLE statement. One of the examples of the DEFAULT value is auto-increment, wherein the value inserted is generated as an increased sequence of numbers (more on auto-increment fields in Chapter 8).

You can decide whether reduced readability, reduced flexibility, and imposed restrictions are worth saving keystrokes typing the full list of columns, but with few exceptions it is the best practice to state your intentions upfront. We recommend using verbose syntax to avoid potential troubles.

The INSERT statement has no use for the WHERE clause. The inserted row just gets appended to the last one in the table, which continues to grow with each insert; you have no control where the new record gets inserted. The workaround for the situation when you need to know the exact logical location in the sequence might be to update with a subsequent insert performed as single transaction (see Chapter 10 for more information).

SELECT INTO

The SELECT statement has a couple more tricks up its sleeve. For instance, it can be used to clone tables. The Microsoft SQL Server SELECT INTO statement allows you to create an exact replica of an existing table, complete with data:

SELECT*INTOold_booksFROMbooks;

The preceding syntax is also supported by PostgreSQL, while Oracle and MySQL offer similar functionality with somewhat different syntax:

INSERTINTOold_booksSELECT*FROMBOOKS;

If the OLD_BOOKS table does not exist, it will be created (and you'll need sufficient privileges to do so; see Chapter 10 for more on privileges). If it does exist, an error will be generated.

These statements, whatever the syntax, can be used with all clauses afforded by SQL. You can limit them both vertically and horizontally by deploying the arsenal of SQL tools described in this chapter and throughout the book (WHERE clause, LIMIT, operators, and so on), or you can specify an impossible condition in the WHERE clause, in which case only the table structure will be copied and no data transferred.

[image: note]
An important distinction between the original and the cloned table is that none of the constraints (with a few exceptions, such as IDENTITY and NOT NULL) will be transferred to the new table. This behavior is RDBMS-dependent and will differ widely among the respective RDBMSs.

There are a few scenarios in which using INSERT is impossible because of constraints placed upon the table. The primary example is tables with referential integrity constraints. A record in the child table can't be inserted unless there is a corresponding record in the parent table already (see Chapter 3 for an explanation of terms and underlying concepts). Another example is an IDENTITY column (a concept in which the RDBMS is instructed to insert sequentially increasing numbers automatically) and the variants of similar constructs across other database systems.

UPDATE

Once the record is in the tables, it can be modified — within reason. The UPDATE statement can change values in the record's columns, but it can't do anything else. The updated values have to be replaced with the same (or compatible) data type; refer to the section on implicit conversion earlier in this chapter.

The basic syntax is identical across the RDBMSs:

UPDATEbooksSETbk_publisher = ‘Wiley’;

Here we are updating the BOOKS table, and setting the value of the BK_PUBLISHER column, whatever it might be, to a literal value. There is only one problem with the statement: All records will be set to “Wiley,” even those published by other guys. Not quite what we wanted, right?

To add more selectivity to the query, you need to use the WHERE clause:

UPDATEbooksSETbk_publisher = ‘Wiley’

WHEREbk_id = 1

Of course, you need to know which BOOK_ID to update. Alternatively, you can use comparison operators (covered later in this chapter) to pinpoint the record. Because we know that SQL Bible was published by Wiley, the following statement will hit the target:

UPDATEbooksSETbk_publisher = ‘Wiley’

WHEREbk_title=‘SQLBible’;

The UPDATE statement enables modifying more than one column at a time; the changes are made to the same record (or respective records). Use the previous query as an example with Microsoft SQL Server syntax and the SQL GetDate()function to update the field with the current date (for more information on SQL functions and their uses, see Chapter 4):

UPDATEbooks

SETbk_publisher = ‘Wiley’,bk_bought_on = GetDate()

WHEREbk_title = ‘SQLBible’;

[image: note]
To modify the preceding query for the RDBMS of your choice, just replace the GetDate() function with the function valid for your particular database: Now() for PostgreSQL, MySQL, HSQLDB, and MS Access; SYSDATE for Oracle; and the CURRENT DATE special register for IBM DB2.

The values in the table can be updated based upon values from some other table (which would require a subquery in the WHERE clause) or it can be calculated on the fly based upon values from the very same one. For instance, if you move from the United States to Canada and want to see the prices of the books you've collected in Canadian dollars instead of American, you can use the SELECT statement to convert them. Multiply each value by the exchange rate (this is the recommended approach because exchange rates fluctuate over time) as follows (note that this assumes that prices are in U.S. dollars to begin with and affects all books in the table):

SELECTbk_titleASTitle

,bk_price*1.01827ASCanadianDollarsPrice

FROMbooks

If you decide to persist this data into the database, you can issue an UPDATE statement:

UPDATEbooksSETbk_price = bk_price*1.01827;

Now all your books are priced in Canadian dollars (with the exchange rate valid on October 10, 2010). Note that we are using the very existing value from the field to calculate the new one — no need to supply the literal value.

Just as some columns can't be INSERTed into, some can't be UPDATEd. These are the usual suspects: constrained columns (identity, primary key, and so on); updating these columns would generate an error.

DELETE

Getting rid of data is easy, just DELETE it. The only question is what to delete. The following statement wipes out the entire table:

DELETEFROM<tablename>;

If you are in a hurry, FROM can also be omitted in some RDBMSs:

DELETE<tablename>;

It looks scary, but keep in mind that DELETE is a DML statement and it can't destroy an object. This is what DROP, a DML counterpart, does best. Not every RDBMS supports this shortcut, so you'll be well advised to use a more readable DELETE FROM syntax.

Deleting the records does not have to be an all-or-nothing process. The approach can be more nuanced when a WHERE clause is deployed, but you need to know what criteria to specify. To delete a specific record, you need to know what identifies it as unique in the entire table (such as PRIMARY KEY; see the next chapter for the definitions). The following statement inserts and deletes a dummy record with ID 1000 and leaves the rest of the values to their defaults:

INSERTINTObooks(bk_id)VALUES(1000)

DELETEFROMbooksWHEREbk_id = 1000;

But trying to remove a record that has references in other tables (for example, BK_I = 1) results in an error. Here is an example of how it might look in Microsoft SQL Server 2008:

DELETEFROMbooksWHEREbk_id = 1;

Msg547,Level16,State0,Line1

TheDELETEstatementconflictedwiththeREFERENCEconstraint“FK_bk_au_books”.

Theconflictoccurredindatabase“library”,table“dbo.books_authors”

,column‘bk_id’.

Thestatementhasbeenterminated.

Had the table been self contained, this statement would have removed the record from the table, but in the relational world, it's a rare table that is an island. Referential constraints make it necessary either to drop the constraint before the deletion or start from “child-most” tables (BOOKS_AUTHORS, SEARCH_BOOKS, and LOCATION), removing the records referring to the BK_ID 1 in the BOOKS table. This behavior is consistent throughout every RDBMS that supports referential integrity constraints (see the next chapter), including all relational databases discussed in this book.

[image: note]
Tracking down all references can be a lengthy and tedious procedure, requiring an intimate knowledge of the data model. To help with the job, some RDBMSs began to offer the ON DELETE CASCADE option as part of their DDL definitions for the FOREIGN KEY constraints (there is also a corresponding ON UPDATE CASCADE option). This functionality is RDBMS-dependent, and using it has lots of conditions attached to it. Please check the vendor's documentation.

When pinpointing a single record, you specify a range and you need to use operators (discussed later in this chapter). For instance, to remove all records in which the bought-on date is earlier than October 29, 2000, you might use the following statement, which also converts a literal string into a DATETIME type of Microsoft SQL Server:

DELETEFROMbooks

WHEREbk_bought_on<CAST(‘October29,2000’ASDATETIME);

All operators are fair game and can be used in any combinations; they will be applied according to the rules of precedence (see later in this chapter for more details).

DELETE can be used on only a single table at a time; you cannot delete from two or more tables in one statement. However, if you ever need to do so, you can use batch grouping to group the statements into a transaction to be executed as a single unit (please see Chapter 10 for more information).

[image: note]
A record in one table can be deleted based upon a value from another table or tables. This requires a subquery to be used in the WHERE clause of the DELETE command (discussed in Chapter 6).

TRUNCATE That Table!

Deleting all data from a table is easy and the TRUNCATE statement makes it even easier! The difference is subtle but crucial. The DELETE statement is monitored (logged) by the RDBMS, and, with a bit of effort, is reversible; the TRUNCATE statement is swift and merciless: The data are blown out without chance of redemption (unless you wrapped the statement in a transaction; see Chapter 10 for more details). Unlike the DELETE statement, if a table has triggers defined for it — special programming modules triggered by events in the table (see Chapter 4 for more details) — they will not be activated.

The basic syntax valid across all RDBMSs in this book is simple. Here's how you truncate a table in one fell swoop:

TRUNCATETABLE<tablename>;

Depending on a particular RDBMS implementation, it can have many optional RDBMS-specific qualifiers that you might have to take into consideration.

[image: note]
Neither OpenOffice BASE's HSQLDB nor Microsoft Access supports the TRUNCATE statement. The trick of using their respective embedded programming languages can accomplish a similar functionality, however.

The statement comes with some strings attached, and the options and restrictions vary across RDBMS implementations. First, TRUNCATE is a solitary affair. Only a single table can be truncated at a time. Because of its totality, you can't use the WHERE clause; it won't do you any good when all rows are removed. Furthermore, a table that has FOREIGN KEY constraints (see the next chapter) can't be truncated in Microsoft SQL Server or Oracle; you have to drop the constraint first. The same action is perfectly valid in PostgreSQL, however, when you add the CASCADE clause to the statement.

SQL Operators: Agents of Change

Operators are fulfilling an important go-between function, connecting data, comparing data, and changing behavior of SQL statements. Operators in SQL are defined as symbols and keywords that are used to specify an action to be performed on one or more expressions called operands (the parts on which the operator operates).

All operators can be split into two broad categories:

	Unary operators — Applied to only one operand at a time; a typical format is <operator><operand>.

	Binary operators — Applied to two operands at a time; they usually appear in the format <operand><operator><operand>.

Arithmetic and String Concatenation Operators

Arithmetic operators, as the name implies, are used for arithmetic computations. The use of the arithmetic operators is very intuitive (elementary school stuff), and they can be used in virtually every clause of the SQL statement. Table 2.10 provides a selected list of arithmetic operators.

Table 2.10 Selected Arithmetic Operators

	Operator
	Description

	+
	Addition: Adds two numbers or (in the case of Microsoft SQL Server) concatenates strings. With this exception, the usage is identical across all three databases. Valid for all RDBMSs.

	-
	Subtraction: Subtracts one numeric value from another. The usage is identical across all RDBMSs. It is also used as a sign identity or unary negation operator.

	*
	Multiplication: Multiplies one number by another. The usage is identical across all RDBMSs.

	/
	Division: Divides one number by another. The usage is identical across all RDBMSs.

The string concatenation operator is a binary operator that glues two character strings together (as we've already seen with NULL examples in the preceding section) and is similar to the addition operator that adds two numbers. String concatenation operators are listed in Table 2.11.

Table 2.11 String Concatenation Operators

	Operator
	Description

	||
	Concatenation operator: Concatenates character strings; valid for Oracle, DB2, PostgreSQL, and HSQLDB (OpenOffice BASE).

	+
	String concatenation operator in Microsoft SQL Server.

	CONCAT
	String concatenation operator (DB2 only): Used as an SQL function in other RDBMSs such as MySQL.

While doing arithmetic in SQL is relatively easy, you must pay attention to the data type used in the operations; for numeric values, that would mean the precision and scale of the result; for datetime, the range of the resulting values; and so on.

Some databases (such as Oracle) will perform implicit conversion (whenever possible) if data types are not compatible with the operator (for example, a string value used with the addition operator); the others will require explicit conversion into a compatible data type to perform an operation.

Comparison Operators

Comparison operators are used to compare two or more values. They are usually found in the WHERE clause of a SELECT statement, although they can be used in any valid SQL expression.

The usage is identical across all three databases except for the nonstandard operators !< and !>.They are recognized by DB2 9.7 and Microsoft SQL Server 2008, but are excluded from every other RDBMS. The nonstandard not equal to operator, !=, can be used in all three dialects; another not equal to operator, ˆ=, is recognized only by Oracle and DB2.

Table 2.12 lists the comparison operators.

Table 2.12 Comparison Operators

	Operator
	Description

	=
	Equals: implemented across all RDBMSs

	>
	Greater than: implemented across all RDBMSs

	<
	Less than: implemented across all RDBMSs

	>=
	Greater than or equal to: implemented across all RDBMSs

	<=
	Less than or equal to: implemented across all RDBMSs

	<>
	Not equal to: implemented across all RDBMSs

	!=
	Not equal to: implemented across all RDBMSs

	ˆ=
	Not equal to: Oracle and DB2 only

	!<
	Not less than: DB2 9.7 and Microsoft SQL Server only

	!>
	Not greater than: DB2 9.7 and Microsoft SQL Server only

Logical Operators

These operators are used to evaluate some set of conditions, and the returned result is always a value of TRUE, FALSE, or “unknown.” Table 2.13 presents full list of SQL logical operators.

[image: note]
Oracle lists logical operators as SQL conditions. It was referred in previous versions as comparison operators or logical operators. DB2 uses the term predicates instead of operators, and so on. Pick your flavor.

Table 2.13 SQL Logical Operators

	Operator
	Action

	ALL
	Evaluates to TRUE if all of a set of comparisons are TRUE.

	AND
	Evaluates to TRUE if both Boolean expressions are TRUE.

Some RDBMSs use && instead of the keyword.

	ANY
	Evaluates to TRUE if any one of a set of comparisons is TRUE.

	BETWEEN
	Evaluates to TRUE if the operand is within a range.

	EXISTS
	Evaluates to TRUE if a subquery contains any rows.

	IN
	Evaluates to TRUE if the operand is equal to one of a list of expressions.

	LIKE
	Evaluates to TRUE if the operand matches a pattern.

	NOT
	Reverses the value of any other Boolean operator.

	OR
	Evaluates to TRUE if either Boolean expression is TRUE.

	SOME
	Evaluates to TRUE if some of a set of comparisons are TRUE; is not supported by HSQLDB (OpenOffice BASE).

ALL

ALL compares a scalar value with a single-column set of values. It is used in conjunction with comparison operators and is sometimes classified as a comparison operator. It returns TRUE when a specified condition is TRUE for all pairs; otherwise, it returns FALSE. An example of its usage is given in Chapter 6.

ANY | SOME

The ANY | SOME operator compares a scalar value with a single-column set of values. The keywords ANY and SOME are completely interchangeable. The operator returns TRUE if a specified condition is valid for any pair; otherwise, it returns FALSE. An example of its usage is given in Chapter 6, dealing with subqueries.

[image: note]
In Microsoft SQL Server and DB2, operators ANY | SOME can be used with a subquery only. Oracle allows them to be used with a list of scalar values. Other RDBMSs do not recognize the SOME keyword.

BETWEEN <expression> AND <expression>

The BETWEEN operator allows for “approximate” matching of the selection criteria. It returns TRUE if the expression evaluates to be greater or equal to the value of the start expression, and is less than or equal to the value of the end expression. Used with negation operator NOT, the expression evaluates to TRUE only when its value is less than that of the start expression or greater than the value of the end expression.

[image: note]
The AND keyword used in conjunction with the BETWEEN operator is not the same as the AND operator explained later in this chapter.

The following query retrieves data about books, specifically book price and book title, from the BOOKS table, where the book price is in the range between $35 and $65:

SELECTbk_id,

bk_titleASTitle,

bk_priceASPrice

FROMbooks

WHEREbk_priceBETWEEN35AND65

bk_idTitlePrice

1SQLBible39.99

2WileyPathways:IntroductiontoDatabaseManagement55.26

10JonathanLivingstonSeagull38.88

Note that the border values are included into the final result set. This operator works identically across all RDBMSs and can be used with a number of different data types: dates, numbers, and strings.

Although the rules for evaluating strings are the same, the produced results might not be as straightforward as those with the numbers because of alphabetical order of evaluation.

Another way to accomplish this task is to extract and compare appropriate substrings from the product description field using a string function, as explained in Chapter 4.

IN

This operator matches any given value to that on the list, either represented by literals, or returned in a subquery. The following query illustrates the usage of the IN operator:

SELECTbk_id,

bk_titleASTitle,

bk_priceASPrice

FROMbooks

WHEREbk_priceIN(26.39,39.99,50,40)

bk_idTitlePrice

6SQLBible39.99

9SQLFunctions26.39

Because we do not have products priced exactly at $40 or $50, only two matching records were returned.

The values on the IN list can be generated dynamically from a subquery (see Chapter 6 for more information).

[image: note]
The data type of the expression evaluated against the list must correspond to the data type of the list values. Some RDBMSs would implicitly convert between compatible data types. For example, Microsoft SQL Server 2008 and Oracle 11g both accept a list similar to 10,15,‘18.24’, 16.03, mixing numbers with strings; whereas DB2 generates an error SQL0415N, SQLSTATE 42825. Check your RDBMS on how it handles this situation.

The operator IN behavior can be emulated (to a certain extent) by using the OR operator. The following query makes the result set identical to that returned by the query using a list of literals:

SELECTbk_id,

bk_titleASTitle,

bk_priceASPrice

FROMbooks

WHEREbk_price = 39.99ORbk_price = 26.39;

bk_idTitlePrice

6SQLBible39.99

9SQLFunctions26.39

Using the NOT operator in conjunction with IN returns all records that are not within the specified list of values, either predefined or generated from a subquery.

EXISTS

The EXISTS operator checks for the existence of any rows with matched values in the subquery. The subquery can query the same table, different table(s), or a combination of both (see Chapter 6). The operator acts identically in all three RDBMS implementations.

The EXISTS usage resembles that of the IN operator (normally used with a correlated query; see Chapter 6 for details).

[image: note]
The EXISTS operator will evaluate to TRUE with any non-empty list of values. For example, the following query returns all records from the table PRODUCT because the subquery always evaluates to TRUE.

Using the operator NOT in conjunction with EXISTS brings in records corresponding to the empty result set of the subquery.

LIKE

The LIKE operator belongs to the “fuzzy logic” domain. It is used any time criteria in the WHERE clause of the SELECT query are only partially known. It utilizes a variety of wildcard characters to specify the missing parts of the value (see Table 2.14). The pattern must follow the LIKE keyword.

Table 2.14 Wildcard Characters Used with the LIKE Operator

	Character
	Description
	Implementation

	%
	Matches any string of zero or more characters
	All RDBMSs

	_ (underscore)
	Matches any single character within a string
	All RDBMSs

	[]
	Matches any single character within the specified range or set of characters
	Microsoft SQL only

	[ˆ]
	Matches any single character not within specified range or set of characters
	Microsoft SQL only

The following query requests information from the BOOKS table of the LIBRARY database, in which the book title (field BK_TITLE) starts with SQL:

SELECTbk_id,

bk_title

FROMbooks

WHEREbk_titleLIKE‘SQL%’

cust_id_ncust_name_s

1SQLBible

4SQLFunctions

Note that blank spaces are considered to be characters for the purpose of the search.

If, for example, we need to refine a search to find a book whose title starts with SQL and has a second part sounding like LE (“Puzzle”? “Bible”?), the following query would help:

SELECTbk_id,

bk_title

FROMbooks

WHEREbk_titleLIKE‘SQL%_ibl%’

bk_idbk_title

1SQLBible

In plain English, this query translates as “All records from the BOOKS table where field BK_TITLE contains the following sequence of characters: The value starts with SQL, followed by an unspecified number of characters and then a blank space. The second part of the value starts with some letter or number followed by the combination IBL; the rest of the characters are unspecified.”

[image: note]
In Microsoft SQL Server (and Sybase), you also can use a matching pattern that specifies a range of characters. Additionally, some RDBMSs have implemented regular expressions for pattern matching, either through custom built-in routines or by allowing creating custom functions with external programming languages such as C# or Java.

The ESCAPE clause in conjunction with the LIKE operator allows wildcard characters to be included in the search string. It allows you to specify an escape character to be used to identify special characters within the search string that should be treated as “regular.” Virtually any character can be designated as an escape character in a query, although caution must be exercised to not use characters that might be encountered in the values themselves (for example, the use of the percent or L as an escape character produces erroneous results). The clause is supported by all three major databases and is part of SQL Standard.

The following example uses an underscore sign (_) as one of the search characters; it queries the INFORMATION_SCHEMA view (see Chapter 10 for more details) in Microsoft SQL Server 2008:

USEmaster

SELECTtable_name,

table_type

FROMINFORMATION_SCHEMA.TABLES

WHEREtable_nameLIKE‘SPT%/_F%’ESCAPE‘/’

table_nametable_type

spt_fallback_dbBASETABLE

spt_fallback_devBASETABLE

spt_fallback_usgBASETABLE

The query requests records from the view where the table name starts with SPT, is followed by an unspecified number of characters, has an underscore _ as part of its name, is followed by F, and ends with an unspecified number of characters. Because the underscore character has a special meaning as a wildcard character, it has to be preceded by the escape character /. As you can see, the set of SP_FALLBACK tables uniquely fits these requirements.

With a bit of practice, you can construct quite sophisticated pattern-matching queries. Here is an example: the query that specifies exactly two characters preceding 8 in the first part of the name, followed by an unspecified number of characters preceding 064 in the second part:

SELECTbk_id

,bk_title

,bk_ISBN

FROMbooks

WHEREbk_ISBNLIKE‘__8%064%’

Note that the percent symbol (%) stands for any character, and that includes blank spaces that might trail the string; including it in your pattern search might help to avoid some surprises.

AND

AND combines two Boolean expressions and returns TRUE when both expressions are true. The following query returns records for the books with price over 20 and which titles start with S:

SELECTbk_id,

bk_titleASTitle,

bk_priceASPrice

FROMbooks

WHEREbk_price>20ANDbk_titleLIKE‘S%’

Only records that answer both criteria are selected, and this explains why no records were found: The book has one and only one price, either/or logic. This query will search for the books priced at $29.99 and have the word Functions anywhere in the title:

SELECTbk_id,

bk_titleASTitle,

bk_priceASPrice

FROMbooks

WHEREbk_price = 26.39ANDbk_titleLIKE‘%Functions%’

When more than one logical operator is used in a statement, AND operators are evaluated first. The order of evaluation can be changed through the use of parentheses, grouping some expressions together.

NOT

This operator negates a Boolean input. It can be used to reverse output of any other logical operator discussed so far in this chapter. The following is a simple example using the IN operator:

SELECTbk_id,

bk_titleASTitle,

bk_priceASPrice

FROMbooks

WHEREbk_priceNOTIN(49.99,26.39,50,40)

The query returned information for the books whose price does not match any on the supplied list: When the IN operator returns TRUE (a match is found), it becomes FALSE and gets excluded while FALSE (records that do not match) is reversed to TRUE, and subsequently gets included into the final result set.

OR

The OR operator combines two conditions according to the rules of Boolean logic.

[image: note]
Even a cursory discussion of the Boolean logic and its applications is outside the range of this book, but you can find more at www.wrox.com, in Wiley's SQL Bible, or at www.agilitator.com.

When more than one logical operator is used in a statement, OR operators are evaluated after AND operators. However, you can change the order of evaluation by using parentheses (an example of the usage of the OR operator is given earlier in this chapter in a paragraph discussing the IN operator). The following query finds records corresponding to either criterion specified in the WHERE clause:

SELECTbk_id,

bk_titleASTitle,

bk_priceASPrice

FROMbooks

WHEREbk_price = 39.99ORbk_price = 26.39;

bk_idTitlePrice

6SQLBible49.99

9SQLFunctions26.39

Assignment Operator

The assignment operator is one of the most intuitive to use. It assigns a value to a variable. The only confusion in using this operator might stem from its overloading. All RDBMSs overload this operator with an additional function: comparison. This is in contrast to some programming languages, such as Java or C# which use single equals for assignment and double for comparison.

The equals operator (=) is used as an assignment in the following SQL query that updates the price (BK_PRICE) column in the table:

UPDATEbooks

SETbk_price = 18.88

WHEREbk_id = 1;

Note that the same operator wearing a different hat (something called overloading in programmer parlance) is used for comparing values (in the WHERE clause) and for assignment (the SET statement).

[image: note]
In some SQL procedural languages, there are distinctions between assignment and comparison operators. Oracle PL/SQL uses := for assignment and = for comparison. Microsoft SQL Server's Transact-SQL uses only one operator for these purposes, =, as does DB2 SQL PL. See Chapter 4 for more information on procedural extensions.

Bitwise Operators

Bitwise operators perform bit operations on integer data types. To understand the results of the bitwise operations, you must understand the basics of Boolean algebra, and this is outside the scope of this book.

[image: note]
Only Microsoft SQL Server provides bitwise operators. The DB2 dialect of SQL does not have bit operation support built into the language, and Oracle 11g has a BITAND function that works identically to SQL Server's bitwise AND.

Bitwise operations are not typical for a high-level, set-based language such as SQL, and one might be hard-pressed to come up with a usage example. One use is as a complex bit mask made for color; after all, RDBMSs now support more than just text and numeric data. Another use of the XOR (exclusive OR) operator is to encrypt data based on some numeric key.

Operator Precedence

Precedence refers to the order in which operators from the same expression are being evaluated. When several operators are used together, the operators with higher precedence are evaluated before those with the lower precedence.

In general, the operators' precedence follow the same rules as in high school math, which might be somewhat counterintuitive, and it can further be changed with addition of parentheses.

The order of precedence is indicated in Table 2.15.

Table 2.15 Operators Precedence

	Operator
	Precedence

	Unary operators, bitwise NOT (Microsoft SQL Server only)
	1

	Multiplication and division
	2

	Addition, subtraction, and concatenation
	3

	Logical comparison operators
	4

	Logical NOT
	5

	Logical AND
	6

	Everything else: OR, LIKE, IN, BETWEEN
	7

The evaluation precedence can dramatically affect results of the query. One of the ways to remember the order of operation is this mnemonic: Please Excuse My Dear Aunt Sally (PEMDAS) — parentheses, exponents, multiplication, division, addition, and subtraction.

Try It Out Demonstrating Order of Precedence

This simple exercise illustrates the importance of operators' precedence order. Let's do some math in SQL:

1. Open your SQL client and establish connection to your RDBMS.

2. Enter the statement (add “FROM dual;” if you use Oracle, or “FROM sysibm.sysdummy1” if you use DB2 9.7, at the end of the SELECT statement):

SELECT10*9-8+7-6/3ASresult

result

87

3. Try changing the order by introducing brackets:

SELECT10*(9-8)+(7-6)/3ASresult

result

10[Lookslikeitwouldbe10+1/3?(thoughcouldberoundedbytheRDBMS).]

How It Works

The order of operations will affect the results of the query because operators are applied in order of precedence. Parentheses break the predefined order and introduce one of their own — expressions in parentheses are evaluated before anything else.

If you compare this with results obtained by running the previous expression through the “standard” calculator just by typing in the numbers and operators as they come, the expression 10*9-8+7-6/3 would evaluate to 27.66. The Microsoft Calc utility supplied with every version of Windows demonstrates this behavior. In Scientific mode, it applies the order of operations rules, but in Standard mode it won't (the modes are toggled through the View menu of the program).

Summary

To construct a relational database, a data modeling process is deployed. It goes through several elaboration phases wherein a conceptual idea is transformed into logical and then physical representations of the data.

The data in the relational database are constrained by data types; each column in the table being one and only one data type. This helps to maintain data integrity by disallowing incompatible data types from entering into the database. RDBMSs perform both implicit and explicit data type conversion when one data type is transformed into another. It is best practice to use explicit data type conversion. A special case of data type is NULL, which signifies absence of data and requires special handling.

The database structure is defined by a subset of the SQL called the Data Definition Language (DDL), while data operations are the domain of the Data Manipulation Language (DML). There are restrictions on the use of each, specific to particular RDBMS implementations. The DDL statements CREATE, ALTER, and DROP can be used to create, alter, or destroy database objects.

The DML includes INSERT, UPDATE, and DELETE statements; while Data Query Language (DQL) includes a single member: SELECT. All these statements can be used with SQL operators, and they employ additional clauses/keywords to limit affected records horizontally, and apply vertical limits through specifying columns.

Although not emphasized in SQL, operators serve their important roles by enabling you to manipulate output and to specify selection criteria and search conditions. Operators are generally uniform across all database vendors, although there are some exceptions. The precedence of operators is an established order in which RDBMSs evaluate expressions that contain more than one operator; it is very important to take into consideration the precedence order. Using parentheses, you can specify custom precedence in an expression (as opposed to the default precedence order).

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/cover_fmt.jpg
Join the disct

A Hands-On Guide for Beginners

Alex Kriegel

OEBPS/images/c08f002.jpg
Field Properties

Field Size Long Integer
Hew Values Inaement

Format

Caption

Indexed s (No Duplicates)
Smart Tags

Text Align General

OEBPS/images/c08f001.jpg
Field Name
¥ ok o

ok_title Text

OEBPS/images/c08f004.jpg

OEBPS/images/c08f003.jpg
Field Name Field Type.
(o [b Sigint [B1GINT]
ok_tte Text [VARCHAR]

OEBPS/images/both01f011.jpg
Configure DB2 instances

R —
The following instances will be created during installation. You can customize the configurations by diding on
the Configure button.
oo et
"

Instance descrption

The defauit nstance, D2, sores eppicaton data.

<weo ([tet>) [o [hee)

OEBPS/images/both01f012.jpg
‘Start copying files and create response file

The D82 Setup wizard has enough nformation to reate th response fie and start copying the program fes.

I you want to review or change any settings, cick 8ack. If you are satsfed with the settngs, type the.
esponse fi name and dick Fineh to begn copyng fles.

Curent setongs:

Product to install: DB2 Express-C - DB2COPY1
Installation type: Typical

DB2 copy name: DB2COPY1

Setas default DB2 copy: Yes

'Setas default IBM database client interface copy: Yes

Selected feature:
DB2 Update Service
Base application development tools
Base client support
Configuration Assistant
Control Center

stk

RN . |

OEBPS/images/both01f013.jpg
Setup is complete

D82 Setup izard has firished copying fies to your computer and has completed

1 the required systen configuraton tasks. Shut down af softnare programs

i the Syt now. e pror s ca hen e restated and 552 v be
ready for use. The nstal og s ocated n

o oo Doamee CoA0RDB2 PG St 50004 1.02.21

2010.1og. Consuit the o fle o ensure that al tasks conpleted succescily.

1f you hiave not aready done so, it recommended that you conplete the
postrstal steps after nstalition.

Required steps:

‘ou can connect to the DB2 instance "DB2" using the
lport number “50000". Record it for future reference.

(Optional steps:

To validate vour installation files. instance. and E

(Cick Frish to et the DE2 Setup wizard.

OEBPS/images/both01f014.jpg
Program name: OracleXE.exe
Publisher: Unknown
File origin: Hard drive on this computer

() Show details

OEBPS/images/both01f010.jpg
‘Set user information for the DB2 Administration Server

"

The 062 dmnsraton Server (DAS) unon you computes o e POt rured by e 02 k.
Specfy therequred user nformation for te

1t hghly recommended that you use & localuseror domain user account nstead of the LoclSystem aceount.
Further detals are avalabl by dcking Heb.
© Local user or Domai user account

User nformaton
Domain

Username

[7]use the same account fr the remaning DB2 services
v

<ok Rty][crad J[he]

OEBPS/images/both01f019.jpg
InstaliShield Wizard Complete

Setup has frished nstaling Oracle Database 10 Evpress
Ediion on yourcomputer.

ORACLE" - Lo e vatsbse b

DATABASE
EXPRESS EDITION

OEBPS/images/both01f015.jpg
License Agieement
Flesse r2ad thefolowing cense agresment careluly.

[ORACLE DATABASE 10g EXPRESS EDITION LICENSE
AGREEMENT -

To use this ficense, you must asree to al of the following terms (by
either clicking the accept button o instaling and using the program).

& L accept thetems nthe cense ageenent Pt
1 donot acceptthetems inthe cense ogeement

Bk Cancel

OEBPS/images/both01f016.jpg
Choose Destination Location
Sekat foder where setup vl rsalfles. araras

Setup il el Dracle Dafabase 10g Express Eciion n the folowing foder
Toinstaltothis foder,cick Next. To instal o a diferent fodr,cick Browse and select
arthe foder,

Destinaion Folder
Coracieeh Browse. ‘

Space Requied on C: 1553016 K

Spoce Avalable on C- 26BIK

OEBPS/images/both01f017.jpg
Summary

Fieview selings before proceeding with the Insallsion

CurentItalion Sefings.

[Destiation Fokder. C\orachanel
ot fr Drace Database Listene 1621

Pt fr iace Sevices for Mictosol Transachion Server: 2030
ot for HTTP Listener. 8080

OEBPS/images/both01f018.jpg
Specily Database Passwords

Enier and corfim passwordsfo the database. This passwerd wil be used forboth the SYS and
the SYSTEM database accounts

Ente Passnord e
T

Note: You shouid use the SYSTEM uses along v the password you enlerhere o log nto the.
Databise Horme Page sherthe mstal is compete.

Bk Cancel

OEBPS/images/c04tnt002b.jpg
ORACLE 116

LTRIM
(string, set)

REPLACE
(string?,
string2,
string3)

RTRIM
(string, set)

TO_CHAR

(expression)

1BM DB2 9.7

LTRIM
(string)

REPLACE
(string,
string2,
string3)

RTRIM
(string)

CHAR
(expression)

MICROSOFT
SQL SERVER
2008

LTRIM
(string)

REPLACE
(string1,
string2,
string3)

RTRIM
(string)

STR
(expression)

POSTGRESQL

LTRIM

OVERLAY

RTRIM

CONVERT

MysaL

LTRIM

REPLACE

RTRIM

CHAR

DESCRIPTION

Returns the string
with leading blank
characters removed.
HSQLDB uses
LTRIM function

Microsoft Access
uses LTRIM function

Replaces all occur-
rences of stringl
within string2 with
string3.

HSQLDB uses
REPLACE function

Microsoft Access
uses REPLACE
function

Returns string with
trailing blank char-
acters removed.
Additionally, the
optional second
argument in Oracle’s
implementation
allows you to specify
which characters are
to be removed.

HSQLDB uses
RTRIM function

Microsoft Access
uses RTRIM function

Converts the argu-
ment expression into
a character string.
HSQLDB uses
CONVER ad CAST
functions

Microsoft Access
uses CSTR function

OEBPS/images/c04tnt002a.jpg
ORACLE 116

SUBSTR
(string,1,n)

LENGTH
(string)

LPAD
(string1,n,
string2)

1BM DB2 9.7

LEFT
(string, n)

LENGTH
(string)

REPEAT
(char
expression,
n

SPACE (n)

MICROSOFT
SQL SERVER
2008

LEFT (string,
n

LEN (string)

REPLICATE
(char expres-
sion, n)

SPACE(n)

POSTGRESQL

SUBSTRING

CHARACTER_
LENGTH

CHAR_
LENGTH

LENGTH

LPAD

MYSQL

LEFT

CHAR-
ACTER_
LENGTH

LPAD
REPEAT

DESCRIPTION

Returns n number of
characters starting
from the left.

HSQLDB has
SUBSTRING
function

Microsoft Access
uses LEFT function

Returns the number
of characters in a
string.

HSQLDB uses
LENGTH function

Microsoft Access
uses LEN function

For REPEAT and
REPLICATE func-
tions, return the first
argument replicated
n times.

For Oracle’s LPAD,
the function returns
the first argument
padded on the left
with the third argu-
ment n times.

The SPACE function
is used to replicate
blank spaces n
times n times.
HSQLDB uses
REPEAT function
Microsoft Access
uses SPACE
function

OEBPS/images/c04tnt002d.jpg
ORACLE 116

TRIM
([BOTH|
LEADING |
TRAILING,
[trim_
charac-
ter]]
,string)

UPPER
(string)

1BM DB2 9.7

STRIP
(BOTH

| LEADING |
TRATLING,
string)
TRIM
(BOTH

| LEADING |
TRAILING,
string)
LTRIM
(RTRIM
(string))

UPPER
(string)
UCASE
(string)

MICROSOFT POSTGRESGL
SQL SERVER
2008

LTRIM BTRIM
(RTRIM
(string))

UPPER UPPER
(string)

MYSQL

TRIM

UPPER
UCASE

DESCRIPTION

Trims leading or
trailing spaces off
the string or both.
Oracle’s version
also allows for trim-
ming any arbitrary
character off the
string.

HSQLDB uses
combination of
LTRIM,RTRIM
functions
Microsoft Access
uses TRIM function

Converts all charac-
ters of a string into
uppercase.
HSQLDB uses
UCASE function
Microsoft Access
uses UCASE
function

OEBPS/images/c04tnt002c.jpg
ORACLE 116

SUBSTR
(string, n, m)

TRANSLATE
(string!,
string2,
string3)

1BM DB2 9.7

SUBSTR
(string, n,
m)

TRANSLATE
(string1,
string2,
string3)
INSERT
(works
similar to
STUFF)

MICROSOFT POSTGRESGL
SQL SERVER
2008

SUBSTRING SUBSTR
(string, n, m)

STUFF TRANSLATE
(string?,

start_posi-

tion, length,

string2)

MYSQL

SUBSTR

REPLACE

DESCRIPTION

Returns a part
of a string start-
ing from the n™"
character for
the length of m
characters.
HSQLDB uses
SUBSTRING
function

Microsoft Access
uses combina-
tions of functions
such as LEFT,
MID, and RIGHT

Replaces all
occurrences

of stringl
within string2
translated into
string3. The
STUFF (Microsoft)
and INSERT(IBM)
functions delete
specified length of
characters at the
start_position
and then insert
string?2 in that
place.

HSQLDB uses
REPLACE function

Microsoft Access
uses REPLACE
function

OEBPS/images/c01f004.jpg
(local) \SQLEXP... SQLQuery1.sql* | Summary |~ Object Explorer |

USE 1ibrary:
ALTER TABLE myLibrary
ADD book_id INTEGER:

SELECT * FROM myLibrazy: I

Kl

3 Rosits | Moseags |
e

Tother Touhez == ook g | beo1d
T saLeve exiaegel Bons . Tk Viley len 7208 | S7R0SZNG Engn [NUIL
2| Mioosch SOL Senver 200, Aexnege NULL Vi | 108 Ot 1,301 [sl G
3|t Rober Sreckley NULL ObBooks | 24 | Way0.2006 | STROTEEIISR0T | Ergh
4| Jonathan Livingston Seagul Richard Bach NULL MacMian | 100 | 1972 780075119616 | Engish. NULL
5| AShot Hstory of Neay E. Bl Byson NULL Broadway | 624 October5.2010 | 5780307885159 | Englsh NULL

OEBPS/images/c01f003.jpg

OEBPS/images/c01f002.jpg
93 g | master <[Ve b B v 335

OEBPS/images/both01f001.jpg
am to make

DB2 Program neme: db2exc 972 WIN »6.cxe
® Verified publsher: 18M Canada Limited
File origin: Hard drve on this computer

) Show detis S|

Change when these notifications sppear

OEBPS/images/both01f002.jpg
‘32-bitversion of DB2 Express.C server for Windows will be uncompressed
‘and installed on your machine.

fyou are using 64.bit Windows, download the 64.bit version of DB2
Express.C for Windows from
htpiNwvewibm.comidb2/expressidownioad.html.

OEBPS/images/both01f003.jpg
DB2 Setup Launchpad

» Welcome Welcome to DB2 Version 9.7
Release Information e DB2 Setup Launchpad gives you access toalofthe nformation that ou ned o nstall
initobition ecirements your DB2 products and features or Linux, UNIX, and Windows operating ystems.
o access more information about he DB2 products avalabe for nstalatn offo paform an
Upgrade Information Installation, select from the tabs provided. You can find more product information by searching
Install Product the Informaiion Cener.
Bt

B searcn ntormation Center

OEBPS/images/both01f008.jpg
Select the installation, response file creation, or both

The DB2 Setup Wiard can instal DB2 Express o this computer, create a response fie that you can
use to nstal thi product on a computer later, o both.

® Instal 082 Express- on this computer

© save my nstllaton settngs i a response fie
o software wil be nstalid on this computer.

© Install D82 Express-C on this computer and save my settingsn arespanse fle

'S Tester Doaun

OEBPS/images/both01f009.jpg
Select the installation folder

B—

The D82 Setup wzard nstals D62 Express < inth folowing flder. To select a difeent folder, cick Change or type 3
drectory.

Drectory [C:iprogram Fies (86) JEMISQUIB\. Gange..]

<tk | [Mextz [Coe [M]

OEBPS/images/both01f004.jpg
DB2 Setup Launchpad

ase Information
Installation Requirements
Upgrade Information
Install a Product

Exit

Install a Product

Ciick nstall New o launch the D2 Setup wizard for the desired product and o instal the
producto a new location. fyou wanto update, upgrade, or add features {0 an existing product
Gick Work with Existing. You can also launch other produc installations by dicking Install for
the corresponding product

DB2 Express-C Version 9.7

DB2 Express-C contains 3 ulfuncion DE2 ata server, which provides an entry-level product ot the Smal
‘and Mecium Business (SMB) mariet t comes with simplified packaging, and is easy o ransparently
Install fom within an appiication. s available on Linux and Windows platforms i fuly compatile with
scalable to, and has allhe autonomic manageabilyfeatures of s higher priced famil of oferings.

D82 Express-C comes with pureXHL(TH) data storage capabiifies and delvers flexble access to XML
data using XQuery, XPath and SOL_ s optimized for powering Web Services, Web 20, and SOA based
Solutins. I you require IEM supgort and maintenance subscrpton forthis no-charge data server, you can
purchase DB2 Express-C wih renewable 12 Months Subscrigton. For more Information, see

hip wwi . comidb2/express

Database Management and Application Development Tools

‘Asuite of GUItools for managing DB2 for Linux, UNIX, and Windows data and data-centric applications is
‘valable 10 instal Individualy these 100 prowide powertul Capabiltes 1t arget speciic data
management roles and tasks; more importanty, the components nteroperals seamissly, enabling

OEBPS/images/both01f005.jpg
Welcome to the DB2 Setup wizard for DB2 Express-C, Version 9.7
5765-F41

The D82 Setup wizard that uides you through the program setup process i loadng.

Licensed Materas -Property of IBM Corp.
CCoyht, B4 Corp. o oters, 1993, 2010, Ths roran =
the Program. The |

3 ‘rademerk or
 Corporation n the United States, other countrs, o both. Java
rademais are rademris o Sun Mcrosystems, Inc. n the Unted States, other countries, or both. US

s - Use, dupicaton or iscosure restited by GSA ADP Schedue Contract with 1M Corp.

OEBPS/images/both01f006.jpg
Software License Agreement.

Please read the folowng icense agreement carefly.

intemational License Agreement for Non-Warranted Programs B

[Part 1- General Terms

- DO NOT DOWNLOAD, INSTALL, COPY. ACCESS, OR USE THE PROGRAM; AND

- PROMPTLY RETURN THE PROGRAM AND PROOF OF ENTITLEMENT TO THE PARTY FROM
'YOU ACQUIRED T TO OBTAIN A REFUND OF THE AMOUNT YOU PAID. IF YOU =

(Resironii s)

© Iaccept the terms i thecense agreement
160 ot accept the terms n the lcense agreement

OEBPS/images/both01f007.jpg
Select the installation type
A‘d

© Tymicat Approamately 700 - 50018
© Compact: Approxmately 600 - 80048
© custom: Approxmately 600 - 1300 M8
Information about the rstalition type

The typical setu incudes basic datsbase sever function, database adminitraton tod, and most product
features and functonalty.

To add features for sppicaton development and other optonl functonaltylaer i the setup process, dick
Custom.

<gak) ([next> [cancel J[rep

OEBPS/images/c01f001.jpg
F... Microsoft SQL Server Management Studio
Ble Eit Yew Iods Mindow Community Lep

20 tew Query | [y | Oy

OEBPS/images/both01f033.jpg
Welcome to the Setup Wizard for MySQL
server 5.1

The Setup Wizard wil sl MySQL Server 5.1 release 5.1.99
on your computer. To continue, cick ext.

. [——

MysoL
(o) L)

OEBPS/images/both01f034.jpg
Setup Type
Choose the setup type that best sus your neec.

Pleace selectaseup type.

©® Typical
T4 Common program features wibe mstaled. Reconmended for
[generaluse.

© Complete.
= Alwur:n!ﬂ.swlhen’ﬂat.mnluhmﬁ
space)

© Custom

V4 Crocse wichrag festures you vant sl nd where thy
[e e Recamnendes o shance e

[-

OEBPS/images/both01f035.jpg
1fyou want toreview o change any of your instalation settings,cick Back. Cick Cancel to
et the waard.

Current settings:
Setup Type:
Tymcal

Destiation Foder:

C:Program Fies (86) MySQLMYSQL Server 5.1\
Data Folder:

CProgramData HySQUMYSQL Server 5.1\

T =)

OEBPS/images/c04tnt006.jpg
ORACLE 116

CAST (data
type AS data
type)

TO_CHAR
(expression)

TO_DATE
(expression)

IBM DB2 9.7

CAST (data type
AS data type)

CHAR
(expression)

DATE
(expression)

MICROSOFT SQL
SERVER 2008

CAST (data type AS
data type)

CONVERT (into data
type, value, format)

CAST [expression as
VARCHAR/CHAR

(N

CAST (expression as
DATETIME)

DESCRIPTION

Converts one data type into
another data type for which a
meaningful conversion can be
made.

HSQLDB uses both CAST and
CONVERT functions.
Microsoft Access uses number
of type specific functions such
as CINT (convert to integer) or
CDATE (convert to date) and so
on.

Converts an expression of a
compatible data type into a string
of characters.

HSQLDB uses CAST/CONVERT
functions.

Microsoft Access uses CSTR
function.

Converts an expression of a
compatible data type/format into
the DATE/DATETIME data
type.

HSQLDB uses TO_DATE function.
Microsoft Access uses CDATE
function.

OEBPS/images/both01f036.jpg
(CAUsers\SQUTester\Desktop\mysql-5.1 49-win32.msi
inknown

Hard drive on this computer

e J]

OEBPS/images/both01f030.jpg
C:\Program Files (86)\Microsoft SQL Server\. B

‘CAProgram Files xB)\Wikrosoft QL
‘Server\MSSQLI0_S0MSSQUSERVERWSSQUD3ta

CAProoram Files (x86)\Wicrosoft Q. Server\ssQL0soss [|
CA\Program Fils (xB6)\Microsoft SQL Server\MSSQLIO_SOMSS. E
C\Program Files (XB6WicosoftSQL Server\MssQ10 somss | . |
‘CAProgram Fils (x86)\Microsoft SQL Server\MSSQLLO_SOMSS. B

o Files 0860\ SQU Server\MSSQLL0_50.MSS. E]

OEBPS/images/c04tnt007.jpg
ORACLE 116

COALESCE (expres-
sionf, expression2,
expression3..)

CASE (expression)
WHEN<compare
value>THEN<substitute
value>ELSEEND

DECODE (expression,
compare value, sub-
stitute value...)

IBM DB2 9.7

COALESCE (expres-
sionf, expression2,
expression3...)

VALUE

CASE (expression)
WHEN<compare
value>THEN<substitute
value>ELSEEND

MICROSOFT SQL
SERVER 2008

COALESCE
(expressiont,
expression2,
expression3...)

CASE (expression)
WHEN<compare
value>THEN
<substitute
value>ELSEEND

DESCRIPTION

Returns first argument on
the list that is not NULL.

HSQLDB uses COALESCE
function.

Microsoft Access could
use combination of IIF and
IsNULL functions.

Compares an input
expression to some
predefined values and
outputs a substitute value,
either hard-coded or
calculated.

HSQLDB uses CASE
statement.

Microsoft Access could

use hierarchy of IIF
functions.

OEBPS/images/both01f031.jpg
st [wet][cmt [e

OEBPS/images/both01f032.jpg
1 vour st Srver 200 Rzttt compeed sty

SupplementalInformation:

[ollowing notes iy o this elease of SQL Server only.
Mitosoft Update.

IFor information about how to use Microsoft Update o dentity updates for SQU Serves 208 R2 see the
[Miciosoft Update Web site 3t D17://Q0.microsof<om/Twink/2,nkId=108403.

Issmples

1By detautt.sample databases and sample code are ot nstalled a5 part of SQU Srver Setup. To install
databases and sample code o non Express edilons of SQU Server 2008 2, see the CodePlex =

e[|

OEBPS/images/c07f003.jpg

OEBPS/images/c07f002.jpg
bk ISEN |
T 5700470229068
2 978-0470101865.
3| 70074548406
| Bl
| smanmse2
5 | STeomsateTTI
| 9781617430060
| 707315601
5 | 9780441788385
| STB007119%16
1| S7R007EE5155
12 | 9780312278670
o |] Joc | Joc_bookease Tloc_shet [loc poston e |

“The one inthe iving oom to the ight
The one inthe iving oom tothe ight
The one inthe iving oom to the ight
“The one nthe ving oom tothe right
The one nthe ving oom to the ight
The one inthe ving oom tothe ight
The one nthe iving oom tothe fight

The one inthe ving oom tothe ight
“The one inthe iving oom to the ight
“The one nthe ving oom tothe ight
The one in the living room to the right

OEBPS/images/c07f001.jpg

OEBPS/images/both01f037.jpg
Wizard Completed

Setup has finshed nstaling MySQL Server 5.1. CickFngh to
et the waard.

(! Configure the MySQL Server now
e s cpten o generate ncptmaed St
fle, setup a Windows service runing on a dedcated part
and o set the password for the oot account.

R e e

OEBPS/images/both01f038.jpg
8 Program name: MySQLinstanceConfig.exe
Verfied publisher: MySQLAB
Fieorgin: Hard drive onthis computer

) Show detis S|

OEBPS/images/both01f039.jpg
'MySQL Server Instance Configuration
‘Configure the MySQL Server 5.1 server nstance.

Please select 3 configuration type.
@ Detailed Configuration

Choose this configuration type to create the optimal server
setup forthis machine.

 Standard Configuration

Use this only on machines that do not aready have a MySQL
serverinstalation. This will use a general purpose configuration
forthe server that can be tuned manualy

<pac | [CHedz] concel

OEBPS/images/warning.gif

OEBPS/images/c07f006.jpg

OEBPS/images/c07f005.jpg

OEBPS/images/c07f004.jpg

OEBPS/images/c07tnt010.jpg
BOOKCASE

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

The one in the living room
to the right

SHELF

5}

POSITION

1

TITLE

SQL Bible

Wiley Pathways: Introduction to Database

Management

SGL Functions: Programmers Reference

After the Gold Rush: Creating a True

Profession of Software Engineering

A Short History of Nearly Everything

Mindswap

Stranger in a Strange Land

Jonathan Livingston Seagull

A La Recherche du Temps Perdu

Letters From Earth

Steppenwolf

OEBPS/images/both01f022.jpg
‘SQU SERVER 2008 R2 EXPRESS WITH ADVANCED SERVICES

license terms are an agreement between Microsoft Corporation (or based on where
ive, ane of s afiates) and you. Piease read them. They apply to the software named
bove, which includes the media on which you recenved 1, if any. The terms als0 apply to any
IMicrosoft

91 accept the cemse tems.

{7 Send esture usage data t Micosoft. Feature usage datainckudes information aboutyour hardware
configuration and how you use SQL Server and fs components.

See the Micosoft SOL Server 2008 R2

OEBPS/images/both01f023.jpg
License Terms
‘Setup Support s

“The ollowing componentsar required for SQU Server Setup:

Setup Support Fies

OEBPS/images/both01f024.jpg
‘Setup Support Rues:

When you install QU Server Setup support fles. Falres mst be

!

OEBPS/images/both01f025.jpg
Serverfeature ar nstance-aware and have
heir own regsry hives. They support

[Fe=r

Shared feature directory: C\Program Fkes (xB6)\Microsoft SQL Server\ |—|

Feer=remm | v === ——]

OEBPS/images/both01f020.jpg
T o ez
Verfied publsher. Microsoft Corporation
Fieongin Hard diive on this computer

) Show detis S|

hange when these notification:

OEBPS/images/both01f021.jpg
New installation or add features to an existing instalation.
Launch a wizard to install SQU Server 2008 R2 n a non-clustered environment of o add.
features to an existing SQL Server 2008 R instance.

Upgrade from SQL Server 2000, SQL Server 2005 or SQL Server 2008
Launch a wizard to upgrade SQU Server 2000, SQL Server 2005 o SQL Server 2008 to SQL.
Server 2008 R2.

Dy Search for product updates.
‘Search Microsoft Update for SQU Server 2008 R2 product updates.

OEBPS/images/both01f026.jpg
Server. Intance ID becomes part o th installation path.

Setup Support Rules. ® Detauttnstance:
Sasis S) Named instance: SQLExpress.
nataon Ries
sance Conturaton
Ok S Rt nstance10: wssauserven
sevs Contuaton
Py et o s BT S0 S =
e
Instataton Contiraton Rues
S Serve ectony: CAProgram e (x9N kosof QL ServerWSSQUID SOMSSQUSERVER
Compite [rp—
i Namesance D Featues canon Versen

(o [et> [cmat J[e]

OEBPS/images/both01f027.jpg
Setup Support Rules:

Instatation Rules
Instance Configuration

Disk Space Requirements
Server Configuration
Database Engine Configuration
Evor Reporting

Instalaton Configuration Rules

Service ‘Account Name. Password startupType.
SQUServer Database Engine N AUTHORITY\NETWOR... [+]
QU server Browser

e | ey, =y ——-|

OEBPS/images/both01f028.jpg
accent sensitive. Kanatype-insensitv.
sensitive for Unicode Data SQL Serve Sort rder 52 on Code Page 1252 for

ST | =T | = | .|

OEBPS/images/c04tnt002.jpg
ORACLE 116

CONCAT
strl, str2)

operator ‘I

INSTR
(string, sub-
string, start
position,
occurrence)

IBM DB2 9.7

CONCAT
(string?,
string2)

LOCATE
(string?,
string2, n)
POSSTR
(string1,
string2, n)

MICROSOFT
SQL SERVER
2008

POSTGRESQL

operator + operator “II”

CHARINDEX
(string?,
string2, n)

POSITION
STRPOS

PATINDEX
(<pattern>,
<string>)

MysaL

CONCAT

INSTR
POSITION

DESCRIPTION

Returns the result
of concatenation

of two strings. It

is overloaded for
Microsoft SQL
Server, where it also
adds up numeric
values.

HSQLDB supports
syntax identical to
Oracle and DB2,
while Microsoft
Access uses concat-
enation operator “&”

Returns the position
of an occurrence of
a substring within
the string.

The POSSTR in
IBM DB testis
case-sensitive.

HSQLDB has
LOCATION function;
Microsoft Access
has INSTR and
INSTRREV functions

OEBPS/images/both01f029.jpg
Feature Seection

Installation Rules

Instance e

- ® Windows authentication mode.

Servr Configuration

Database Engine Configuration © Mixed Mode (5QL Server authentication and Windows authentication)

Eor Reporting Speaty the forthe sQU serversystem =

Installaton Configuration Rules: T)

Instaiaton Progress. e |

Compite [e—]

Speaty SaL server

SQL server
aminirators have
nresrted sccess to
the Database Engine.

[o v] oo |

Cema [nee J[o J[v]

OEBPS/images/c07tnt002.jpg
BOOKCASE
The one in the living room to the right

The one in the living room to the right

The one in the living room to the right

The one in the living room to the right

The one in the living room to the right
The one in the living room to the right
The one in the living room to the right
The one in the living room to the right
The one in the living room to the right

The one in the living room to the right

SHELF

POSITION

TITLE
SQL Bible

Wiley Pathways: Introduction to
Database Management

SQL Functions: Programmers
Reference

After the Gold Rush: Creating
a True Profession of Software
Engineering

Mindswap

Stranger in a Strange Land.
Jonathan Livingston Seagull

A La Recherche du Temps Perdu
Letters From Earth

Steppenwolf

OEBPS/images/c07tnt001.jpg
BOOKS BOOKS_AUTHORS AUTHORS
bk_title bk_id bk_id au_id au_id au_last_name

SQL Bible 1 1 1 1 Kriegel

1 2 2 Trukhnov

OEBPS/images/bapp01f009.jpg
'ORACLE' Database Express Edition

ome S0L» SOL Scrts > crt Eator

Scpiamo[FcowrgSaLOncs by TWiehsd [Cancnl| [Wboweiond| Jotsar| swar] [

|/aS8iniasavarinaiBaEaiOraslaiEqEiasEinbaissssssssssssssssssssasssssasasasss,
/44s 211 right veserved. (C) agilitator.com sasssssssssssssssssssssssssesses
‘TanLE: 7

int N v
varchar (100) NULL

varchax (50) NULL
lisher varchar(100) NULL
b published_year ine WL

OEBPS/images/bapp01f008.jpg
ORACLE' Database Express Edition

@ Scrpt uploaded.

St owner IRV Elviw e o[5S [65] stz (G|

™ Show Resuits

Geeteolisbessal DiscoverngSQL Oraciedat DiscoverngSOL Orack Livary 4 Websal drop.aiables.sal

14

N

OEBPS/images/bapp01f007.jpg
ORACLE' Database Express Edition

User iBRARY

OEBPS/images/bapp01f006.jpg
Crestedsbasetser Cancel | Create |

* Username| Ilbvzly
*Passuodfeesesses
* Confirm Password|ee
Expire Password ™
Account Sttus riocked =]

Default Tablespace: USERS
‘Temporary Tablespace: TEMP

User Privileges
Roles:
¥ CONNECT ¥ RESOURCE I~ DBA

Direct Grant System Prvlages:
™ CREATE DATABASELINK ¥ CREATE WATERIALIZED VIEW ¥ CREATE PROCEDURE
¥ CREATE PUBLIC SYNONYM ™ CREATE ROLE ¥ CREATE SEQUENCE
7 CREATE SYNONYH ¥/ CREATE TABLE ¥ CHEATE TRIGGER
¥ CREATE TYPE ¥ CREATE EW

OEBPS/images/both01f050.jpg
A
BB Ve potaner ENTERPRISEDS CORPORATION
P Mark e ot oot

) Show detis S|

Change when these notifications sppear

OEBPS/images/c04tnt007a.jpg
ORACLE 116

NULLIF (expressiont,
expression2)

NVL (expression,
value)

IBM DB2 9.7

NULLIF (expression,
expression2)

COALESCE (expres-
sion, value)

MICROSOFT SQL
SERVER 2008

NULLIF
(expressiont,
expression2)

ISNULL (expres-
sion, value)

DESCRIPTION

Compares two expres-
sions; if they are null,
returns NULL; otherwise.
The first expression is
returned.

HSQLDB uses NULLIF
function.

Microsoft Access uses
combination of IIF and
IsNull functions.

Checks whether an
expression is null; if it is,
returns a specified value.
HSQLDB uses IFNULL
function.

Microsoft Access uses
ISNULL function.

OEBPS/images/both01f055.jpg
Please selec the port umber the server shauld sten on.

o ——

BitRock Installer

(o) (Chen>] (Lo]

OEBPS/images/both01f056.jpg
‘Select the ocale o be used by the new database duster.

[l —

BitRock Installer

(o) (Chen>] (Lo]

OEBPS/images/both01f057.jpg
[E=nEcn =]

Completing the PostgreSQL Setup Wizard

| setup has rished nstaling PostoresQ on your computer.

by

EHFPLSGDB‘

o Ereeorse Posigos Comoany

<o (] (ol)

OEBPS/images/both01f051.jpg
[E=nEcn =]

EnterprisepB

o Eraprs Posigor Comgary

Cem

OEBPS/images/both01f052.jpg
D D)

Please specfy the drectory where PostreSQL wil be nstalled.

Instalston Deectory rogram Fles (x66) Postgresal 6.0

BitRock Installer

OEBPS/images/both01f053.jpg
Data Directory

Please selecta drectory under which tostore your data.

Data Diectory ram Fies (x86) PosigreSQUS.O\data

BitRock Installer

(o) (Chen>] (Lo]

OEBPS/images/both01f054.jpg
— L |

Please provide a password for the database superuser (postgres) and service account (postores). If the
Service account aiready exists in Windows, you must enfer the current password fo the account. T the.
sccount does not exst, it wi be reated when you dick Next.

BitRock Installer

OEBPS/images/bapp01f001.jpg
G Orade Clent 10g Express Edtion + [ENICRETRELERY

) Postgres s Acdons » () Read Doumentstan
B Command Promot 5 Register For Online Forum
@ PostgresaL »
@) Posesa s+

OEBPS/images/bapp01f005.jpg
R

E—————

[—

. —

OEBPS/images/bapp01f004.jpg
t vou created.

i vou created.

i vou created.

i vou created.

[t rou created.

[t xou created.

OEBPS/images/bapp01f003.jpg
[Uiow croated.

vicy createa.
T—
franie alcered.
franie aicered.
franie alcered.
frane attered.

frante alcered.
JsaL> eC:\discoveryDiscoveringSaL.Oracle. dat

OEBPS/images/bapp01f002.jpg
saLep1u:
[Copyright <c> 1982, 2005, Oracle. ALL wights reserved.
saL> eC:\discovery\DiscoveringSaL.Oracle. Library. sql

Release 10.2.0.1.8 - Production on Wed Dec 22 1

OEBPS/images/bapp01f019.jpg
DB200G01 The SQL command completed

[NSERT INTO search books ¢ bk_id
08200001 The SQL comnand completed

[INSERT INTO search books ¢ bk_id
DB20BAVI The SQL command completed

[NSERT INTO search hooks ¢ bk_id
DB208@BI The SQL command completed

[NSERT INTO search hooks

< pk_id
[DB260861 The SQL command completed

[INSERT INTO search books ¢ bk_id
DB20BAOI The SQL command completed

INSERT INTQ search hooks ¢ bk_id
DB20BA0I The SQL conmand completed

onnit
DB20@A01 The SQL command completed

:\Progan Files\IBH\SQLLIB\BIN>

Successfully.

tag_id OUALUES(?,26)
sticosssFully.

. tag_id OUALUES(?,27)
stccessfully.

. tag_id OUALUES11,27>
stccessfully.

. tag_id DUALUES(S,28)
stecessfully.

. tag_id OUALUES(?,28)
shecessfully.

. tag_id UALUES(11,28>
stccessfully.

successfully.

OEBPS/images/bapp01f018.jpg
SProgran FLLeo\BINSGLLINDINAbZ —tuf Cidiscouery\DiscoueringSal. D52 UDD LIV
ary.sq

OEBPS/images/bapp01f017.jpg
CommndEdter Sokcted b Vew ook b q

HHEEHEIRP B O g
e

SR L e[o] w [BCBOR ¢ DB @6

SIS Sowlier . Wb pbiishedyer o Myrice W puge s, M boun_on . B bardsove . bh_somes

(hRta . b eitle | BTSN , bk publisher B publishedyear , B price | b cune | bk Boughe_on , b hara cover be_cover
020035 2, w10y Pathmays: Tovzoduceion to Database Nanagement,'STS-OATOLOLSES ", Vs 55,26, 504, *10/1072007" 0 UL WULL) 5 5

sl] >

[0

craonnen e S ot comieied siccontntiy &

08200001 The SoL commana compietea successrully. .

25200001 The 501 commans complated successtully.
o |

[———

OEBPS/images/both01f044.jpg
'MySQL Server Instance Configuration
‘Configure the MySQL Server 5.1 server nstance.
Picase set the networking options.
¥ Enable TCP/IP Networking.

Enable this to allow TCP/IP connections. When disabled, only
g local connections through named pipes are allowed.

Port Number: [ES] % Add firewall exception for this port

Please set the server SQL mode.

¥ Enable Strict Mode.
This option forces the server to behave more ke 3 traitional
database sever, It 5 recommended to enable this option.

OEBPS/images/both01f045.jpg
'MySQL Server Instance Configuration
Configure the MySQU Server 5.1 server instance

Please select the default character set,

@ Standard Character Sef

Makes Latind the default charset, This character s s suited for
- English and other West European languages.

 Best Support For Multiingualism
Make UTFS the default character set. This i the recommended
charadter set for storing text in many different languages.

 Manual Selected Defauit Character Set / Collation
Please speciy the character setto use.

Characterset B -

OEBPS/images/both01f046.jpg
'MySQL Server Instance Configuration
Configure the MySQU Server 5.1 server instance

Please set the Windows options.
¥ Install As Windows Service

This is the recommended way to run the MySQL
server on Windows.

Service Name: [MySQL

¥ Launch the MySQL Server automaticaly

I Include Bin Directory in Windows PATH

‘Check this option to include the directory containing
the server/ clent executables n the Windows PATH
Variable 50 they can be called from the command ine.

<o o

OEBPS/images/both01f047.jpg
'MySQL Server Instance Configuration
Configure the MySQU Server 5.1 server instance

Please set the security options.

¥ Modify Security Settings
New oot password: [Enter the root password.

Confirm: = Retype the password.

I~ Enable root access from remote machines

™ Create An Anonymous Account

This option wil reate an anonymous account on this server.
Please note that thiscan lead to an insecure system.

OEBPS/images/both01f040.jpg
'MySQL Server Instance Configuration
‘Configure the MySQU Servr 5.1 server instance.

Plcase select semver type. This willinfluence memory, disk and CPU usage.
 Developer Machine
This is 2 evelopment machine, and many other applications wil
b run on it MySQL Server should only use a minimal amourt of
memory.
 Server Machine
Several server applications will be running on this machine.

‘Choose this option for web/application severs. MySQLull have.
medium memory usage.

This machine is dedicated to run the MySQL Detabase Sever. No
other severs,such 3 8 web or mail sener, will e run. WSQU
il utize up to al avaiable memory.

< aance

OEBPS/images/both01f041.jpg
'MySQL Server Instance Configuration
‘Configure the MySQU Servr 5.1 server instance.

Please select the database usage.

@ Huitifunctional Database
‘General purpose databases. This willoptimize the semver for the
use of thefast transactional InnoD storage engine and the
high speed MyISAM storage engine.

 Transactional Database Only.

‘Optimized for application servers and transactional web
‘applications. Ths will make InnoDB the main storage engine.
Note that the MyISAM engine can still be used.

* Non-Transactional Database Only

suted forsimpe e apliations moritring o 059ing
‘applications a: wella: analyss program.
e ramsacionat LTS Horage engine ol o actvatec.

OEBPS/images/both01f042.jpg
'MySQL Server Instance Configuration
‘Configure the MySQL Server 5.1 server nstance.
Please select the drive o the InnoDE datafle, f you do not want o use the default
settings,
InnoDB Tablespace Settings.

Please choose the drve and directory where the InnoDB.
tablespace should be piaces.

Oiie Info

Volume Name:

Fle Syste: e

[I ——
BI5GB Dsisace Used [20.5GB Free Ditspce

<o o

OEBPS/images/both01f043.jpg
'MySQL Server Instance Configuration
‘Configure the MySQU Servr 5.1 server instance.

Please set the appronmate number of concurrent connections to the senver.

u ‘Select this option for database applications that will ot require

3 high number of concurrent connections. A number of 20
connections will be assumed.

 Online Transaction Processing (OLTP)
Choose this option for highly concurrent appiications that may.
haue at any one time up to 500 active connections such as
heaviy loaded web servers.
 Manual Setting
ﬁ Please enter the approximate number of concurrent

Concurrent connections: [

OEBPS/images/both01f048.jpg
'MySQL Server Instance Configuration
‘Configure the MySQL Server 5.1 server nstance.

Ready to execute ..

O Prepare configuration

© write configuration file
O start semice

© Apply securty settings

Please press [Execute] to start the configuration.

OEBPS/images/both01f049.jpg
'MySQL Server Instance Configuration
‘Configure the MySQL Server 5.1 server nstance.

Processing configuration ...

@ Prepare configuration

@ Wiite configuration fle (C/\rogam Fies (86]MySQUMYSCQL SarverS.1myin)
@ star senice

@ Apply securty settings

OEBPS/images/bapp01f012.jpg
Script: create_tables Status: Lomplete

View: C Detail ® Summary Display|[1! _J

Mumberd Elapsed Statem Eeedback \
[003 CREATE TABLE boots(bk_6 It NOT NULL Tove crestes o
2 002 CREATE TABLE authors (au_18 tNOT NULL , au_frstn Tabie creses o
3 001 CREATE TABLE scorchTags(tag_6 mtNOT NULL, Tabl crestes o
4 002 CREATE TABLE books_authors(bo_ mtNOTNULL, bk 0 Tabe crested)
s 003 CREATE TABLE location (loc_d mt NOT NULL,f_bk Tabe crested. o
s 003 CREATE TABLE search_books(i ntNOT NULL bk Tabe created o
7 003 CREATE VEW vwPubisherTtievear AS SELECT auhars.a Vew cresed)
s 000 CREATE VEW vwBookeubisheryear AS SELECT b it Vew crosea o
B 000 CREATE VEW vwBooksFiter AS SELECT b e, b | Vew creses)
0 006 ALTER TABLE baoks_uthors ADD CONSTRANT FK_ bk au_au FOREI Tabl aera. o
" 000 ALTER TABLE books_authors ADD CONSTRANT FK_bk au_books 7O Table atered o
2 001 ALTERTABLE ocaton ADD CONSTRANT FIlocaon_books FO Tabl akered. o
) 000 ALTER TABLE searcn_books ADD CONSTRANT FK_search_bk searc _ Table atered o
" 000 ALTER TABLE search_ books ADD CONSTRANT FK_search_bi bk Tabl atered. o
rou(e)1- 140114

Statements Processed 14
Successtul 14
With Ervors | 0

OEBPS/images/bapp01f011.jpg
ORACLE' Database Express Edition

e LsRaRY

Script|DiscoveringSQL Oracle Library. 4 We Run By[LIBRARY] View[Detais =] Display[15 =] [Go]] Delete Checked
C Seript. RunBy StartedV Elapsed Ststus Statements Bytes View Results

DssovernasOL Oracie Lbrarv 4 Vichsal UBRARY 1 seconds ago Er— i

row(s)1-1of 1

OEBPS/images/bapp01f010.jpg
Run Script Cancel | Run |

5}, You nave requested o run e oowing scrpt Pease conim yourrecuest

Scipt Name DiscoveringSaL Oracle Library.4.ieb.sal
Createa ‘on 1272212010 1206:36 PM by LIBRARY
Updated ‘on 12/22/2010 1205:36 PM by LIBRARY

Number of Sistements 7
SobtSizemByles 337

OEBPS/images/bapp01f016.jpg
=101 x]

‘glu.'.\xmmmw EESEECFEEE R

/evs all righe reserved (e) apilicacor.con

. Coreand ecie s deayed

oror paTaBASE 1sbrary: ot
e paoe T cces an

appoars o achic o o he

[|

s |

Stamen st chsacer [

OEBPS/images/bapp01f015.jpg
Editor 1 - DE

:dllm] e BCRORN DB @

/B vering soi. 1o D82 S seripes
/+r AL vaghe reserved (@) agiicacor.con

[——

OEBPS/images/bapp01f014.jpg
ORACLE' Database Express Edition

e S5 S0 Commonte

@ Asocommit_loy [10_=|

Ronms Cxpn Descrbe saved sl oy

T g —— T

OEBPS/images/bapp01f013.jpg
ORACLE' Database Express Edition

OEBPS/images/bapp01f029.jpg
QU Editor | Graphical Query Buider |

/+++ Discovering 5

/+%* a1l right rese

bR _sd bigint NOT NULL BROMARY KEY
bi_cicle varchar(100) NULL
ExISEN varchar(50) NULL

varchar (100) NULL

/ PRIMARY KEY will create implicit index "books pkey” for table "beoks™
/ BRIMARY ¥EY will create implicit index “authors piey" for table lsuthors”

Will create implicit sequence "search books br_id_seq” for serial column "search books.bt_id®
/ BRIMARY KEY will create implicit index "search books pkey” for table "search books”

J PRIMARY ¥EY will create implicit index "searchiags prey for cable "searchrags”

/ BRIMARY KEY will create implicit index "books_authors_pkey" for table “books_authors™

/ BRIMARY KEY will create implicit index "location pkey" for table -location”

[uery revurnea successfully with no result in 640 ms.

OEBPS/images/bapp01f028.jpg
¥ Comect toServer

focaP

OEBPS/images/c10tnt004.jpg
ISOLATION LEVEL
Read Uncommitted
Read Committed
Repeatable Read

Serializable

DIRTY READ

Yes

No

No

No

NONREPEATABLE READ

Yes

Yes

No

No

PHANTOM READ

Yes

Yes

Yes

No

OEBPS/images/both03f001.jpg
Installation of SQuirrel SQL Cient

"= Welcome to the installation of SQuirreL SQL Client 3.2.01
) This software is developed by:
- Gerd Wagrer <gerdagner Gusers. sourceforge ret>
~Ra Manning <menring: Gusers sourceforge.net>
~Genn Griffn <gnchome Guserssourceforge.net>
- Coin el <cobel @users.sourceforge.net>
W) The omepage s at: s . s org

=lolx|

(Mase wih zPck- htpizpack 0w

OEBPS/images/both03f002.jpg
ack - Installation of SQuirreL SQL

Plesse read the folowng nformation:

=1olx]

SQuirreL SQL Client s a graphical Java program that will alow you to view the structure of a
TDBC compiiant database, browse the data in tables, issue SQL commands etc. It s free software,
and you are welcome to redistribute it under the terms of the GNU Lesser General Pubic License.
The following compatibilty matrix shows which version of the Java Ruatime Environment (JRE) is
required (minimum version) for different versions of the SQuirrel. SQL Client:

‘SQuirreL, SQL Client Version | JRE Minimum Version
3.0 and higher 16
24-26x 15
20-232 14

The installation offers (wo install packages Base and Standard and a number of optional piugins. The

Standard package contains the following piugins:

AR, |

(Mg with 12Pack - ipizpack o)

e = G|

OEBPS/images/both03f003.jpg
[12packInstallation of Squinet SoLient Y]

B Selct e nstalatonpat:

Jc:Program Fiessquirelsa-3.2.0f [Bromse.

(Mase wih zPck- htpizpack 0w

e = |

OEBPS/images/both03f004.jpg
88 1zPack - Installation of SQuirreL SQL Client

0 pack nstatation progress:
et or jor

=10/ %/

Base.

8 Overal installation progress:

/s

(Mase wih zPck- htpizpack 0w

@res | et

OEBPS/images/both03f005.jpg
[setup Shortcuts

¥ Creste shortais n the Sart-enu
I~ Creste addional sortauts on the deskiop

Select » rogram Group for the Shortuts:

fe Live Mesting 2007 create shorteut for:
© aentuser

 allusers

(ase win Peck g izpack o)

OEBPS/images/both03f006.jpg
=l

8 Instalston has comleted successfuly.
481 An uninstaller program has been created in:
Exlsqurrel\Uninstaler

(4 Generste an sutomstc mstlaton st

(Mase wih zPck- htpizpack 0w

OEBPS/images/both03f007.jpg
He Edt Vew Fgwries

ook tiep

=-Q -

Psesn i roes | |5 30 X 9| -

Adiress [=:\courre Uninstaler

x

EEE |
=
S

i

© System Volume
5 0 wat

7D Tem |
‘ >|:I

Name - size | Type [[Date Modied. |
&) instolummery.htm 1@ HTM Doament 12/17/2010 %18PM
[Sunistatersar 175K8 Excatabe laFie 12/I7/2010420PM

2 ohyeces (b ree spaces 41.4G8)

[[y Comr

OEBPS/images/both03f008.jpg
48 12Pock - Uninstalier N =/ E.]

© T i reove the sl apicaton!

¥ [Farés the deeton of el
[
{5 uninstal © it

OEBPS/images/both03f009.jpg
=101

© T i reove the sl apicaton!

OEBPS/images/bapp01f023.jpg
USE [1ibrazy)
co

books

INSERT INTO [books]
([bk_id], [bk_citle], [bk_ISBN], [bk_publisher], [bk_published_year], [bk_price], [bk_page_count], [bk_bou
VALUES (1, 'SQL Bible', 'S78-0470223064 ", 'Wiley" , 2008, 39.9300, 888, 'Oct 10 2009 1: 0°,0, NULL, NUL|

INSERT INTO [books] I
{0k 441, (bk_ssv1e] , (bk_ISBN] , (k_publisher] , (ok_published_yeas] , (ok price] (bk_page_coust], (b bos
VALGES (3, 'Riley Pachuays: Tntroduinion o Darabase Managembnc,d76-3470101063", Rilsy:s 20075526,

INSERT INTO [books]
([bk_id], [bk_citle], [bk_ISBN], [bk_publisher], [bk_published_year], [bk_price], [bk_page_count], [bk_bou
VALUES (3, 'Microsofc SQL Server 2000 Weekend Crash Course','978-0764548406", 'Wiley',2001,29.99, 408, '

(1 zowis) atfected)

(1 zowis) affected)

@ zouis) atfecced)

@ zowis) arfected)

(1 zowts) affected)

(2 zowis) atfected)

OEBPS/images/bapp01f022.jpg
CEADT *ererenensenevsvasnensrane)
T/ew+ a1l right eserved (c) agilitator.com seersrenseas

USE [master]

co

CREATE DATABASE [library]
co

USE [1sbrary]

5 /vensnssnsssussnenas TABLES #assssssnenensnssnsssussnenarsssssanensnssssans/

L/swsvss Object: Table [dbo].[searchTags] Script Date: 10/04/2010 20:
SET ANSI_NULLS ON
o

9 seseversues

OEBPS/images/bapp01f021.jpg
Communty el

OEBPS/images/bapp01f020.jpg
2 ¥ Connect to Server x|

F §6T Server2008

Severtpe: Detcbase Evgre £
. |W_|
Ashertcaion: |3 [Windows Aunerscaton

Comed | Concel | Hep | opom» |

OEBPS/images/bapp01f027.jpg
E View N¢
DEEEBRO|S ALK 8 (2 [fow=mmymtoche =]

SQu Edtor |a-mommu~l st ae]

CREATE DATABASE 1ibrary TEMPLATE template0;

K1 |

e
et utut | ion Messages |y |
JQuery returned successfully with no result in 8687 ms.

OEBPS/images/c03tnt002.jpg
ZERO

ONE

MANY

ZERO
N/A

Arecord in the par-
ent table relates to
zero or one record in
the child table.

Notation: 1:0
Arecord in the par-
ent table relates to

zero or more records
in the child table.

Notation: N:0

ONE
N/A

Arecord in the parent table relates to
one and only one record in the child
table.

Notation: 1:1

While theoretically possible (and
allowed in some RDBMSs), a many-to-
one relationship, wherein a child table
contains multiple foreign keys from
multiple parents’ tables, is not recom-
mended because of increased com-
plexity enforcing referential integrity
(discussed later in this chapter).

Notation: N:1

MANY
N/A

A record in the parent
table relates to one or
many records in the child
table.

Notation: :N

A many-to-many relation-
ship requires an interme-
diate table that converts
it to two one-to-many
relationships.

Notation: N:N

OEBPS/images/bapp01f026.jpg
PO o VEEZ

(Exeaute SQL quenes.

OEBPS/images/bapp01f025.jpg
Servers (1)

OEBPS/images/bapp01f024.jpg
"“'MMIW|WEI

1ol x|

Vaue =
= descrpmon e
= Hosiame locabast n
i ==
5QLpene J
Kl [.
Retrieving Server detais... Done. .

OEBPS/images/titlepage_fmt.jpg
Discovering SQL

A HANDS-ON GUIDE FOR BEGINNERS

Alex Kriegel

WILEY
Wiley Publishing, Inc.

OEBPS/images/both03f010.jpg
SQuirreL SOL Client Version 32.0
Copyright (c) 2001-2010
Colin Bell, Gerd Wagner, Rob Manning and others

OEBPS/images/both03f011.jpg
Ele Divers Aiases Plugins Session Windows Help

comsctio [N 98] &8 e sessin EEDE

[“omers | aases

e I

WG]

TarooPmpst

OEBPS/images/both03f012.jpg
z

Eile Drivers.
Comnectto [+] [@8] & | Actve session [

= ——]
[+]/]w[o]x]]4]
v/ JDBC ODBC Bridge

Aiases Pluging Session Windows Help

o s 10 Va0 i 77 1. 5 | (WG | csiworuror |

OEBPS/images/both03f013.jpg
comeatto [-] [«]

Cbmes
el le[olx |]

s Pluging Session

Windows Help

Active Session

®® 5

@ HXTT Excel Ciient
@ HXTT Excel Embedded
@ HXTT Paradox Cent

@ HXTT Paradox Embedded
© HXTT Text Client

@ HXTT Text Embedded

© 181 DB2 App Driver

@ 181 DB2 Nt Driver

@ Informix

@ InstanD8.

@ InterClent
 Intersystems Cache

v/ JDBC ODEC Bridge
08

@ JTDS Microsof SL.
 JTDS Sybase

o Erors 10 a0 s 27 . 0 [T WG| wowrurs |

OEBPS/images/both03f014.jpg
Drivers Aiases Plugins Session Windows Help.

comeatto [][] &] e sessin

|REIICHE 5

@ Informix

z
@ InstantDB.
@ InterClient
© Intersystems Cache

/ JDBC ODBC Bridge
 j108

© JTDS Microson saL.
 JTDS Sybase

© JTDS Sybase

© JTOpen(As/400)

@ Nickoi

@ Mimer QL
© MMMYSQL Diiver
@ y3SQL Driver

© Oracie OCI Drver

[+]/]w[o]][4 [#]

TCom: Evers 0. Warings o o 7

Taszempst

OEBPS/images/both03f015.jpg
+ JDBC Driver

‘Change Driver: Microsoft MSSQL Server JDBC Driver
Driver

Name: [Microso MSSQL Server JDBC Driver

Example URL: idbcmicrosotsqiserver:/<server_name>:<1433>

Webste URL: [ipimsdn micosoftcomisal

Java Class Path | Extra Ciass Path

(C\Program Files\squirretsqk-3.2 Oliblantirjar
(C\Program Files\squiel-sq-3 2 Oliblasm-atrs jar
(C\Program Files\squinel-sqk-3 2 Olibiasm jar
(C\Program Files\squiek-sqk-3.2 Ollb\autocompletaar
(C\Program Files\squire-sqi-3 2 Oliblaxis-jaxpe ar
(C\Program Files\squirel-sqk-3 2 Olibtaxis jar
(C:\Program Files\squirrel-sal-3.2 Ouiblcglib jar
(CProgram Files\squirrel-sqk-3.2 Oliblcommon jar

<L I} I Dl

Ciass Name: rom micosonsaseneridbc SaLSoneromer

o e]

OEBPS/images/both03f016.jpg
‘Change Driver: Microsoft MSSQL Server JDBC Driver

Driver.
Name: [Microsoft MSSQL Server JOBC Driver

Example URL: [jdbcmicrosoftsqiserver/<server_name>:<1433>

Webste URL: [ipimsdn micosoftcomisal

Java Ciass Path | Extra Class Path

el List Drivers

ol Delete

Class Name: |

o e]

OEBPS/images/bapp01f030.jpg
[puery zecurned successsuliy: 1 row azfected, 32 ms execurion time.

rrow sfeciee. B Inicaioni T

OEBPS/images/both03f017.jpg
[- Coa— o)|]

File Name: [salidbod jar |
Files of ipe: 1R fles C"jar."2p) [=]

OEBPS/images/both03f018.jpg
+ JDBC Driver

‘Change Driver: Microsoft MSSQL Server JDBC Driver
Driver

Name: [licrosof MSSOL Senver JOBG Dver

Example URL: [igbcmicrosoftsalsenver/<server_name>:<1433>

Webste URL: [ipimsdn micosoftcomisal

Java Ciass Path | Extra Class Pah

o e]

OEBPS/images/both03f019.jpg
File Drivers Windows Help

Actve Session | [EEICIE)

Comedto

[+]/]w[o]][4 [#]

© 1BM DB Net Driver =
[|® momix

@ InstantDB.

@ InterClient
 Intersystems Cacne
/ JDBC ODBC Bridge
o jos

@ JTDS Microsof L.
@ JTDS Sybase. H
© JTDS Sybase

@ JTOpen(Asi400)

Q Nickoi

/ Microso HSSQL Server JOBC Driver
@ Mimer QL L
© MMMYSQL Diiver
@ y3SQL Driver

© Oracie OCI Drver

5 GOV S ST SOL 351510 o 8633l 1118 o i 4o SR SS0T S 08T Bl
Iy
T oo s o v o D R = TH| e

Aliasss

Ditvers

OEBPS/images/bapp01f034.jpg
2.Save and proceed

to the Openofiice.org D Wizard

Use the Database Wizardto reate a new database, open an exsting database fie,

or connect to 2 database stored on a server.

srtoyounant o e

& Crote anew dabase

 penan exsn datase e R
ety s

E—

€ Connect to an existig database
-

Cancel

OEBPS/images/bapp01f033.jpg
affected
affected
affected
affected
affected
affected
affected
affected
affected
affected

affected

affected

.01
@02
@.01
@.02
<@.02
<@.01
@02
@0
<@.01
<@.02
<@.01
@02

OEBPS/images/bapp01f032.jpg
eloopo o the MySQL manitor Conmands end with § or \g.
Jserver vorsdon: §-1-53-commanity MySQL Community Server (GPL>
opyright (c) 2080, 2018, affiliat ights reserved.

Orac Y A1l
s Ftuare cones with NDSOLOTELY Mo, UARRANTY s This is froe softu:
nd you are welcone to modify and redistribute it under 1°v2 Ticense

ype *helpi’ or *\h’ for help. Type ’\c’ to clear the current input statement.

wsql> source Gi\discovery\DiscoveringSQL.MySQL.Library.sql
Query OK, 9 rous affected (8.39 sec)

Query OK, 1 row affected (B.96 sec)

Databage changed
Query OK, 8 rous affected 8.85 sec)

Query OK, @ rous affected (8.82 sec)
Query OK, @ rous affected 8.82 sec)
Query OK. @ rous affected 0.81 sec)

OEBPS/images/bapp01f031.jpg

OEBPS/images/bapp01f038.jpg
B library.odb - Openoffice.org Base
fle £t [isert Toos ncow b

OEBPS/images/bapp01f037.jpg

OEBPS/images/bapp01f036.jpg

OEBPS/images/bapp01f035.jpg
= Database Wizard

Steps Decide how to proceed after saving the database

Do you went he wizard fo regiser the dtabase n OpenOfice org?
" Yes, register the database for me
 fio, Boriot ot

fter the tabase fe has been saved, whatdo you want 1o do?
¥ Open the database fo eciting
™ restetales uang the tale wizard

Clck Fnsh tosave the database.

ep <<sa vt |[eoen cance

OEBPS/images/c02tnt001.jpg
STEPS
Entities
Relationships.
Attributes
Primary Keys
Foreign Keys
Tables/Views
Columns

Data Types

CONCEPTUAL

YES

NYES!

LOGICAL

yYES]

\YES]

YES

\YES]

PHYSICAL

YES

AES]

A(ES]

YES

YES

OEBPS/images/c02tnt002.jpg
SQL STANDARD
CHARACTER

VARYINGVARCHAR

CLOB
or
CHARACTER LARGE OBJECT

NCHAR

NCHAR VARYING (n)

NATIONALCHARACTER
LARGE OBJECT

ORACLE 11G

CHARACTER

VARYING
VARCHAR
VARCHAR2
LONG VARCHAR

CLOB

NCHAR

NCHAR VARYING
NVARCHAR2

NCLOB

DB29.7

CHARACTER

VARYING
VARCHAR
LONG VARCHAR

CLOB

GRAPHIC

VARGRAPHIC
LONG VARGRAPHIC

DBCLOB

MS SQL SERVER 2008
CHARACTER

VARYING
VARCHAR
TEXT

'VARCHAR (MAX)

NCHAR

NVARCHAR

NVARCHAR (MAX)

OEBPS/images/c02tnt003.jpg
SQL STANDARD

CHARACTER

VARYINGVARCHAR

CLOB

or

CHARACTER LARGE
OBJECT

NCHAR

NCHAR VARYING

NATIONALCHARACTER
LARGE OBJECT

POSTGRESGL

CHARACTER

VARCHAR

TEXT

VARCHAR
TEXT

VARCHAR

VARCHAR
TEXT

MYSQL

CHAR

LONGTEXT
MEDIUMTEXT
TINYTEXT

VARCHAR
LONGTEXT
MEDIUMTEXT
TINYTEXT

VARCHAR

LONGTEXT

MEDIUMTEXT

TINYTEXT

VARCHAR
LONGTEXT

MS ACCESS

TEXT

TEXT

MEMO

TEXT
MEMO

TEXT
MEMO

TEXT
MEMO

HSQLDB
(OPENOFFICE
BASE)

CHARACTER

VARCHAR

LONGVARCHAR
OBJECT

CHARACTER

VARCHAR
LONGVARCHAR

LONGVARCHAR
OBJECT

OEBPS/images/c02tnt004.jpg
saL
STANDARD

INTEGER

SMALLINT

NUMERIC

ORACLE 116

NUMBER (38)
INT
SMALLINT
NUMBER (38)
NUMERIC
DECIMAL
NUMBER

DB29.5

INTEGER
BIGINT

SMALLINT

NUMERIC
DECIMAL

MS SQL SERVER
2008
INTEGER
BIGINT
SMALLINT
TINYINT
NUMERIC
DECIMAL
MONEY
SMALLMONEY

OEBPS/images/c09tnt001.jpg
RDBMS
IBM DB2
Microsoft
MysaL
Oracle

MS Access

HSQLDB

OPTIMIZER

CBO

CBO

RBO

CBO

RBO

RBO

DATA ACCESS PLAN
EXPLAIN

EXPLAIN

EXPLAIN

EXPLAIN PLAN FOR
SHOWPLAN

EXPLAIN PLAN

STATISTICS UPDATE

RUNSTATS

UPDATE STATISTICS

ANALYZE TABLE

ANALYZE

n/a

n/a

OEBPS/images/c03f004.jpg
books_authors

PKFK1 | bk_id
PKFK2 | au_id

OEBPS/images/c03f003.jpg
au_first_name
au_middle_name
au_last_name
au_notes

OEBPS/images/c03f002.jpg
bk_title
bk_ISBN
bk_publisher
bk_pub_year
bk_bought_on
bk_price
bk_notes
bk_cover_pic
bk_page_count
bk_hard_cover

OEBPS/images/c03f001.jpg
books books_authors
PK | bk_id . JPKFK1 | bk id
PK,FK2 | au_id
bk_title authors
bk_ISBN
bk_publisher PK |au_id
bk_pub_year
bk_bought_on au_first_name
S bk_price au_middle_name
bk_notes au_last_name
PKFK1 | bl_id SO bk_cover_pic au_notes
— bk_page_count
tag_id bk_hard_cover
H location
: searchTags
: PK |loc_id
PK |tag_id
loc_bookcase
tag_value loc_shelf

loc_position_left

OEBPS/images/c02tnt009.jpg
SQL SERVER
2008

char

varchar
integer
smallint

real
float
double

decimal
datetime
datetime

varbinary
binary
image

sql_variant

XML

ORACLE
106

char

varchar
integer
smallint

real
float
double

decimal
date
date

blob
clob

long

XMLType

IBM DB2 9.7

char

varchar
integer
smallint

rreal
float
double

decimal
date
time

graphic
vargraphic
clob

blob

XML

POSTGRESQL
9.0

char

varchar
integer
smallint

real
float

double
decimal
date
time

bytea

XML

MYSQL 5.5

char
varchar
integer
smallint

real
float
double

decimal
date
time

blob
binary

varbinary

n/a

MS ACCESS

char

varchar
number
number

number

number
date
time

OLE
Object

n/a

OPENOFFICE
BASE HSQLDB

char
varchar
integer
smallint

real
float
double

decimal
date
time

binary
varbinary

longvarbinary

n/a

OEBPS/images/c02tnt005.jpg
SQL STANDARD

INTEGER

SMALLINT

NUMERIC

POSTGRESQGL

INTEGER
BIGINT

SMALLINT

NUMERIC

MYSQL

INTEGER
BIGINT

SMALLINT
TINYINT

NUMERIC

MS ACCESS

NUMBER
(INTEGER, LONG
INTEGER

NUMBER
(INTEGER)

NUMBER

HSQLDB (OPENOFFICE BASE)

INTEGER
BIGINT

SMALLINT
TINYINT

NUMERIC

OEBPS/images/c02tnt006.jpg
SQL STANDARD

FLOAT

REAL

DOUBLE PRECISION

ORACLE 116

FLOAT

NUMBER

REAL

NUMBER

DOUBLE PRECISION
NUMBER

DB29.5

FLOAT

REAL

DOUBLE PRECISION

MS SQL SERVER 2008

FLOAT

REAL

DOUBLE PRECISION

OEBPS/images/c02tnt007.jpg
SQL STANDARD

FLOAT

REAL

DOUBLE PRECISION

POSTGRESQL

FLOAT

REAL

DOUBLE

MysaL

FLOAT

REAL

DOUBLE

MS ACCESS

NUMBER (DECIMAL)
NUMBER (DECIMAL)

NUMBER (DOUBLE)

HSQLDB
(OPENOFFICE BASE)

FLOAT

REAL

DOUBLE

OEBPS/images/c02tnt008.jpg
DATA TYPE

INTEGER

TINYINT

SMALLINT

BIGINT

MONEY

SMALLMONEY

REAL

FLOAT

DOUBLE

STORAGE SIZE
(BYTES)

4

4t08

RANGE

-2,147,483,648 to
+2,147,483,647

0 through 255

-32,768 to + 32,768

-9,223,372,036,854,775,808 to
+9,223,372,036,854,775,808

—922,337,203,685,477.5808 to +
922,337,203,685,477.5807

—214,748.3648 to
+214,748.3647

The range is from negative 3.402E

+ 38 to negative 1175E — 37, or from
positive 1.175E — 37 to 3.402E + 38. It
also includes 0.

The number can be zero or can range
from —1.79769E + 308 to —2.225€
—307, or from 2.225E - 307 to
1.79769E + 308

The number can be zero or can range
from —1.79769E + 308 to —2.225E

— 307, or from 2.225E — 307 to
1.79769E + 308.

NOTES

Implemented in all
RDBMSS

MS SQL Server only

Implemented in all
RDBMSs

Implemented in all

RDBMSs

MS SQL Server only

MS SQL Server only

Implemented in all
RDBMSs

Implemented in all
RDBMSs (if only as
synonyms)

Implemented in all
RDBMSs

OEBPS/images/c10f001.jpg
TABLE_CATALOG | TABLE_SCHEMA | TABLE NAVE | TABLE_TYPE |
1 [y, | @ adhors BASE TABLE
2| oy &0 search books BASE TABLE
3| oy o books_authos BAsE T2BLE
4| oy o locaton BAsE TaBLE
5 | ey o wPublsrerTtYear | VIEW
6| oy o BockPubisherfear | VIEW
7| ey &0 Bocksfiler view
|& | ey o ‘sysdagrams. BASE TABLE.

OEBPS/images/both02f016.jpg

OEBPS/images/note.gif

OEBPS/images/both02f014.jpg
B library.odb - Openoffice.org Base

OEBPS/images/both02f015.jpg

OEBPS/images/both03f020.jpg
‘Change Driver: Oracle Thin Drver
Driver
Name: [0racle Thin Driver

Example URL: [bcoradi tin @-sener (<1521} osabase_name>
Webste URL: iy race comtechnelogytechjavalsq,[abchidocsdbe_fag i

Java Ciass Path | Extra Class Pah

K11

Class Name: [orace jabc drver OracteDriver [+

o e]

OEBPS/images/both03f021.jpg
App Driv.

‘Change Driver: IBM DE2 ADp Driver
Driver

Name: [IBM DB2 App Driver

Example URL: [jdbcdb2tools
Webste URL: [t 306 lbm conisotwareidataaba

Java Ciass Path | Extra Class Pah

 [ustones]
.
T Dl Duste

Class Name: [com ibm db2 jcc DB2Drver [=]

o e]

OEBPS/images/both03f022.jpg
Change Driver: PosigreSQL Driver
Driver.
Name: [PostgreSQL Driver

Example URL: [jdbcpostgresal{</most-[.<5432>] <database>
Website URL: [ntp:1dbe postaresalorg

Java Ciass Path | Extra Class Pah

OEBPS/images/both03f023.jpg
‘Change Driver: MySQL Driver
Driver

Name: [MySQL Driver

Example URL: [ldbcmysaliocainost33os

Website URL: [ntp.sdew.mysql.com

Java Ciass Path | Extra Class Pah

OEBPS/images/both03f024.jpg
Fle Drers Ases Plugins Sescion Windows Help
Connectto: [+] [@] &|ctve session; Flalele)/m =

vl oo] PR

OEBPS/images/ffirsuf001.jpg

OEBPS/images/both03f025.jpg
Add Alias

Driver

+/ JDBC 0DEC Bridge [=] e |
URL: v/ JDBC ODEC Bridge)
User tiame:
Passwora

[JAutologon (] Connect at Startup

£ Properes

Warning - Passwords are saved in cleartext

(o] (e]

OEBPS/images/both03f026.jpg
Change Alias: SQL Server Connection

Name [SOL Server Gonnection
Drier / Wicroso WSSaL Server JOBG Diver [[New
URL: jabcsaisenveriocahost 1443 megratedSecurty=rue; |

User Name: | |
Passwora]

[JAutologon (] Connect at Startup

& ropanes| N

Warning - Passwords are saved in cleartext

(o] (e]

OEBPS/images/both03f027.jpg
[de cot vew roues Toos teb

[Oms - © - | Pt [rotes [155

| Adekess [G:1Discovering QL iatabase comnecton'sadbe_3 Olenuleuth

Foders. x| [ame.
B & saibe 30 A (D
ET=y (=)
EI=1") ©s
Qe
=
Qe
B 2 heb
EISEY

OEBPS/images/both03f028.jpg
‘Connectto: SQL Server Connection

s Crift
e
URL: Mieaasemeciecsbont 4424
user |]

e [
\Waming - Caps lock may interfere with. Mfﬁﬁ
—
|

OEBPS/images/both03f029.jpg
@ comecton sucess

TN

OEBPS/images/both02f012.jpg
ot ¢ A o

@ PaseThrougn
Selec Make Append Update Crostab Delete
Tabie

Quen Type

|cReATe TBLE authors

2u_id integer NOT NULL PRIMARY KEY
frst_name VARCHAR(SO) NULL
| au_midle_name VARCHARIS0) NULL
| 2ulast_name VARCHAR(S0) NULL
rotés TET

OEBPS/images/both02f013.jpg
X est vew Toos window teb
8 & R |

S —

Boint [BIGINT]
Text [VARGHAR]

Feld ropertes

Length E)

Format exampie

Defaultvave

OEBPS/images/both02f010.jpg
fserver [localhost]:
patabase [postgresi:
ort [54321%

sernane Tpostgres1:

AANING: Cnnsule code page <437> differs from Windous code page C1252>
hit charactrs. might not verk correctly. See psal reference
Roces For Windous users” For decails.
ype "help" For help.

(o}

OEBPS/images/both02f011.jpg
o =i \connect library

ARNING: Consele code page (437> differs from Windous code page (1252>
8-bit, characters might not work correctly. See psql reference
page “Notes for Windows ugers” for details.

[Library=# \a-

OEBPS/images/both02f005.jpg
o oIt D7 Intoractive mode. type QUIT b the comnand prompt. Outside
interactive mode, all commands must be prefixed with ’dhz

o list the currént command option settings. type LIST COMHAND OPTIONS.
‘or more detailed help, refer to the Online Reference Manual.

b2 => connect to library

Database Connection Infornation

Datahase server DB2ANT 9.7.2
801, authorization 1D - AKRIEGEL
Lacal'dacahace alins - LIERARY 2

b2 => select bk_id, bk_ISBN from hooks
K_1D BK_ISEN

-0170229061
9780476101865
978-0764548406
978-8764569012

782076754922
978-8735608771
9781617430060

OEBPS/images/both02f006.jpg
:\Progran Files\IBMNSQLLIB\BIN>AB2 connect to library
Database Connection Infornation
Datahase server

QL authorization 1D
Local database alias

DB2/NI 9.7.2
AKRTEGEL
LIBRARY

:\Progran Files\IBM\SQLLIBNBIN>

OEBPS/images/both02f003.jpg
=z x

EEm———r——

O |

Paaess

FoRS——

OEBPS/images/both02f004.jpg
ORACLE' Database Express Edition

User iBRARY

OEBPS/images/both02f009.jpg
in set (B.08 sec>

OEBPS/images/both02f007.jpg
icrosoft Vindows [Uercion 6.0.60021
opyright (c> 2006 Microsoft Corporation. ALl rights reserved.

:\sqlend - -\SQLEXPRESS —E

OEBPS/images/both02f008.jpg
:\Users\Alexdsqlond ~§ .\SQLEKPRESS -E
> use library

go
hanged database context to ’library’ .
BI_ISBN from books:

bl_ISBN
978-0470229061

788307885159
978-0312278670

OEBPS/images/both03f030.jpg
URL:
User Name:

Password

[Auto logon

[Oracle Database Connection
[vordetnnomver |

jdbcoracie hin@locainost 1521XE

[svstem

] Connect at Startup.

& Propertes

Warning - Passwords are saved in cleartext

]

(o] (e]

OEBPS/images/both03f031.jpg
Pﬂ

Name. [DB2Database Connecton |
. \/ 1BM DB2, m Driver
URL: lidbc ab2/ocainost'50000/Library

UserName: [aiscovery

Password

[JAutologon (] Connect at Startup

& Propertes

Warning - Passwords are saved in cleartext

(o] (e]

OEBPS/images/both03f032.jpg
[PostareSQL Database

gl
URL: lidbcpostgresal:Mocalhost 5432template 1
User Name: W—
Password]
[Autologon (] Connect at Startup

£ Properties
Warning - Passwords are savedin cleartext K

(o] (e]

OEBPS/images/both03f033.jpg
Name. [WsaLComecion]
- =Wl

URL: lidbemysqiiiocalnost3306.

UserName: c

Password

[JAutologon (] Connect at Startup

£ Propertes N

Warning - Passwords are saved in cleartext

(o] (e]

OEBPS/images/both03f034.jpg
File Drivers Aliases Plugins Session Windows Help g

Comectto QL Comnecton |] 8] &3] cive Session 1~ 50L sener Comectenim_| <[4 ® @ | [r4]]
* () 1-SQL Server Connecion (master) | » (3 2-MySOL Connecion 0 as root |

1

iogs e, Warmings 8 s

OEBPS/images/both03f035.jpg
Eile Diivers Alases Plugins Session Windows Help

Comectt: WySL Comnection | v] |5 | 8] acive Session:[1-S0L sever Comectonm__|[] ® ® [r¢] 1]

* [1-SOL Server Connection (master) | * () 2-MySQL Connection) as root |

e Z[2]o] %]+ [ole]oa[ale]x] ¢]s] 2

@/ 8|4

SQL | Hibemate | Monitor

|SELECT * FROM books

[=[+[E] ®umiows: [100

Cesest D70 bovks
[
mieicte
ok xson
ok publisnes
ok ubished_year
Tk peice
ok page.coue 1
et

Diers | Alssss

i

SELEGT FROM books |

Bova 1 SELECT + FROM books ke B
Results | WetaDaia | info | Oveniew
Dkid I biite | biISBN] bk oublisher | bk_published_year |
g [soLebie lo76-0470229004 Wity (2008 3¢
£l I I D]
oo server Comecion T i

1 Row(s) Inserted
Query 1 of 1, Rows read: 0. Elapsed time (seconds) - Total: 0. SQL query. 0. Building output 0

] Tiog ror 5, v 8 i 57 . 1 [TG | sssssrurer

OEBPS/images/c09f001.jpg
BOOKS

vs. PK | bk_id
bk_title bk_title
bk_publisher bk_pub_id

PUBLISHERS

PK,FK1

pub_id

pub_name

OEBPS/images/c09f005.jpg
[
32 Resuts | Ly Messages §” Executionpin |
Query 1: Query cost (relative to the batch): 100%
SELECT bk_title, bk publisher FROM books bk INNER JOIN location copy lc ON bik.bk i,

= =] m
— buscad toope e sem
et iecerion copry (10
poy o

]

Clustered Index Sest (Clustered)
Toooks] . [PK_books] [5k]
Cost: 48 %

OEBPS/images/c09f004.jpg
Query 1: Query cost (relative to the batch): 100%

SELECT bk_title, bk publisher FROM books bk INNER JOIN location lc ON bk.bk_id

c. £k bk 1.

. W o SO
B ooin | amsiTmm

Cazzz 0% Cosz: 473

]

Clustered Index Seek (Clustered)
Ibooks] . [PK_books] [bk]
Cost: 53 %

OEBPS/images/c09f003.jpg
] Resuts | L'y Messages 3 Execution pan |
Query 1: Query cost (relative o the bateh): 100%
SELECT bi_cticie, bk publisher FROM books WHERE bk id IN (SELECT fk bk loc FROM location WHERE loc_shelf.

= i iy
e o e Chumace ke Sean (Chssered

(Late sem Josn) tbeoks). (9K_pooks)
T3 Cost: 473

by

Clustered Tndex Sean (Clastered)
[locazion) . [PK_locacion]
Cost: 55 %

OEBPS/images/c09f002.jpg
¥ Exeaute b W 13 i ‘D"J\’)
\q SQLQuery2;sd .. O o

OEBPS/images/both02f001.jpg
QLPlus: Release 18.2.0.1.0 - Production on Sat Dec 25 12:48:45 2010

opyright (c) 1982, 2005, Oracle. ALl rights reserved.

0L> connect LIBRARY/discover
onnected.

QL) connect library/discover@XE
onnected.

oL>

OEBPS/images/both02f002.jpg
JsaL> select au_id. au first nane from authors where au_id <105
AU_ID AU_FIRST_NAME

Alexander
2 Boris

rous selected.
Q1>

