



[image: cover_image]



Table of Contents

Series Page

Title Page

Copyright

Dedication

Preface

Acknowledgements

Abbreviations

Symbols

Nomenclature

Introduction

Part I: Fundamentals of Multivariate Statistical Process Control

Chapter 1: Motivation for multivariate statistical process control

1.1 Summary of statistical process control

1.2 Why multivariate statistical process control

1.3 Tutorial session

Chapter 2: Multivariate data modeling methods

2.1 Principal component analysis

2.2 Partial least squares

2.3 Maximum redundancy partial least squares

2.4 Estimating the number of source signals

2.5 Tutorial Session

Chapter 3: Process monitoring charts

3.1 Fault detection

3.2 Fault isolation and identification

3.3 Geometry of variable projections

3.4 Tutorial session

Part II: Application Studies

Chapter 4: Application to a chemical reaction process

4.1 Process description

4.2 Identification of a monitoring model

4.3 Diagnosis of a fault condition

Chapter 5: Application to a distillation process

5.1 Process description

5.2 Identification of a monitoring model

5.3 Diagnosis of a fault condition

Part III: Advances in Multivariate Statistical Process Control

Chapter 6: Further modeling issues

6.1 Accuracy of estimating PCA models

6.2 Accuracy of estimating PLS models

6.3 Robust model estimation

6.4 Small sample sets

6.5 Tutorial session

Chapter 7: Monitoring multivariate time-varying processes

7.1 Problem analysis

7.2 Recursive principal component analysis

7.3 Moving window principal component analysis

7.4 A simulation example

7.5 Application to a Fluid Catalytic Cracking Unit

7.6 Application to a furnace process

7.7 Adaptive partial least squares

7.8 Tutorial Session

Chapter 8: Monitoring changes in covariance structure

8.1 Problem analysis

8.2 Preliminary discussion of related techniques

8.3 Definition of primary and improved residuals

8.4 Revisiting the simulation examples of Section 8.1

8.5 Fault isolation and identification

8.6 Application study of a gearbox system

8.7 Analysis of primary and improved residuals

8.8 Tutorial session

Part IV: Description of Modeling Methods

Chapter 9: Principal component analysis

9.1 The core algorithm

9.2 Summary of the PCA algorithm

9.3 Properties of a PCA model

Chapter 10: Partial least squares

10.1 Preliminaries

10.2 The core algorithm

10.3 Summary of the PLS algorithm

10.4 Properties of PLS

10.5 Properties of maximum redundancy PLS

References

Index

Statistics in Practice


Statistics in Practice


Series Advisors



Human and Biological Sciences

Stephen Senn

CRP-Santé, Luxembourg



Earth and Environmental Sciences

Marian Scott

University of Glasgow, UK



Industry, Commerce and Finance

Wolfgang Jank

University of Maryland, USA



Founding Editor

Vic Barnett

Nottingham Trent University, UK





Statistics in Practice is an important international series of texts which provide detailed coverage of statistical concepts, methods and worked case studies in specific fields of investigation and study.

With sound motivation and many worked practical examples, the books show in down-to-earth terms how to select and use an appropriate range of statistical techniques in a particular practical field within each title's special topic area.

The books provide statistical support for professionals and research workers across a range of employment fields and research environments. Subject areas covered include medicine and pharmaceutics; industry, finance and commerce; public services; the earth and environmental sciences, and so on.

The books also provide support to students studying statistical courses applied to the above areas. The demand for graduates to be equipped for the work environment has led to such courses becoming increasingly prevalent at universities and colleges.

It is our aim to present judiciously chosen and well-written workbooks to meet everyday practical needs. Feedback of views from readers will be most valuable to monitor the success of this aim.



A complete list of titles in this series appears at the end of the volume.



[image: Title Page]



This edition first published 2012

© 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats.  Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Kruger, Uwe, Dr.

Advances in statistical monitoring of complex multivariate processes : with applications in industrial process control / Uwe Kruger and Lei Xie.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-02819-3 (hardback)

1.  Multivariate analysis.  I. Xie, Lei. II. Title.

QA278.K725 2012

519.5′35—dc23

2012016445

A catalogue record for this book is available from the British Library.

ISBN: 978-0-470-02819-3








Dedicated to Dr. Xun Wang, my wife, and Melanie Kruger, my daughter, whose abundant support has made this book possible.

Uwe Kruger



Without the dedication and support of my wife, Jingjing Sha, this book would never have been possible.

Lei Xie


Preface

This book provides a timely reference text for academics, undergraduate and graduate students, and practitioners alike in the area of process monitoring and safety, as well as product quality assurance using multivariate statistics. The rapid evolution of this research area over the past 20 years is mainly driven by significant advances in computer horsepower and the ever growing demand from industry to effectively and efficiently monitor production processes. As an example, Nimmo (1995) outlined that the US-based petrochemical industry could save an estimated $10 bn annually if abnormal conditions could be detected, diagnosed and appropriately dealt with. Moreover, the demand from the oil and gas industry, other chemical engineering and general manufacturing industries is also a result of ever tighter government legislation on emissions and increased safety standards of their products.

The wide range of applications of multivariate statistics for process monitoring, safety and product quality is of considerable interest to the readership in chemical, mechanical, manufacturing, electrical and electronic, industrial and other related engineering and science disciplines. This research text serves as a reference for introductory and advanced courses on process safety, process monitoring and product quality assurance, total quality management of complex technical systems and is a supplementary text for courses on applied statistics and process systems engineering. As a textbook and reference, this book pays particular attention to a balanced presentation between the required theory and the industrial exploitation of statistical-based process monitoring, safety and quality assurance.

To cater for the different audiences with their partially conflicting demands, the scope of the book is twofold. The main thrust lies on outlining the relevant and important fundamental concept of multivariate statistical process control or, in short, MSPC and to demonstrate the working of this technology using recorded data from complex process systems. This addresses the needs for the more how-does-it-work and what-does-it-do oriented readership of this book, which includes undergraduate students, industrial practitioners and industrially oriented researchers. The second pillar is the theoretical analysis of the underlying MSPC component technology, which is important for the more research-oriented audience including graduate students and academicians.

The twofold coverage of the material results from the research background of both authors, which is centered on academic research in process monitoring, safety, product quality assurance and general process systems engineering, and their participation in numerous industrial R&D projects, including consultancy concerning the application of MSPC and the development of commercial software packages. As this book carefully outlines and discusses, the main advantage of the MSPC technology is its simplicity and reliance on recorded data and some a priori knowledge regarding the operation of the process system. On the other hand, this simplicity comes at the expense of stringent assumptions, including that the process is stationary and time-invariant, and that the process variables follow a Gaussian distribution.

With this in mind and based on academic and industrial R&D experience, the authors are convinced that MSPC technology has the potential to play an important role in commercial applications of process monitoring, safety and product quality assurance. This view is also supported by the arrival of software that entered the value-added market for commercially available packages, which includes AspenMultivariate™, Wonderware, SIMCA-P (to name but a few), consultancy companies, such as Perceptive Engineering Ltd., Eigenvector Research Inc. and statistical data analysis software, e.g. STATISTICA, SAS®.

The first thrust of MSPC work for monitoring complex process systems emerged in the late 1980 and the early 1990s and lays out a statistically sound concept under these basic assumptions. It is important to note, however, that if a process ‘unfortunately forgets’ to meet the above assumptions, the corresponding monitoring charts may produce false alarms or the sensitivity in detecting minor upsets is compromised. From the end of the 1990s until now, research work that has enhanced the core MSPC methodology has removed some of these stringent assumptions. This, in turn, allows the enhanced MSPC technology to be applicable in a more practically relevant environment.

Besides the required theoretical foundation of the MSPC methodology, this book also includes a detailed discussion of these advances, including (i) the monitoring of time-variant process systems, where the mean and variance of the recorded variables, and the relationship between and among these sets, change over time, (ii) the development and application of more practically relevant data structures for the underlying MSPC monitoring models and (iii) the development of a different construction of monitoring statistics and charts which significantly improves their sensitivity in detecting incipient fault conditions.

This book ideally supplements the good number of research texts available on multivariate statistics, statistical process control, process safety and product quality assurance. In particular, the research text brings together the theory of MSPC with industrial applications to demonstrate its usefulness. In particular, the mix of theory and practice in this area is rare; (exceptions include Mason and Young (2001)). Moreover, good and solid reference that address the theory as well as the application of component technology are rarely written for the industrial practitioner whose experience is pivotal in any process monitoring, safety and product quality assurance application.

To comprehend the content of this book, the readership is expected to possess basic knowledge of calculus including differentiation, integration and matrix computation. For the application study, a basic understanding of principles in physics and chemistry is helpful in following the analysis of the application studies and particularly the diagnosis of the recorded fault conditions. To enhance the understanding of the presented material and to improve the learning experience, each chapter presenting theoretical material, except the last two, includes a tutorial session which contains questions and homework-style projects. The questions assist with the familiarization of the covered material and the projects help the reader to understand the underlying principles through experimenting and discovering the facts and findings presented in this book either through self-study reports or team-based project reports. The calculations can be carried out using standard computational software, for example Matlab®.
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Introduction

Performance assessment and quality control of complex industrial process systems are of ever increasing importance in the chemical and general manufacturing industries as well as the building and construction industry (Gosselin and Ruel 2007; Marcon et al. 2005; Miletic et al. 2004; Nimmo 1995). Besides other reasons, the main drivers of this trend are: the ever more stringent legislation based on process safety, emissions and environmental pollution (ecological awareness); an increase in global competition; and the desire of companies to present a green image of their production processes and products.

Associated tasks entail the on-line monitoring of production facilities, individual processing units and systems (products) in civil, mechanical, automotive, electrical and electronic engineering. Examples of such systems include the automotive and the aerospace industries for monitoring operating conditions and emissions of internal combustion and jet engines; buildings for monitoring the energy consumption and heat loss; and bridges for monitoring stress, strain and temperature levels and hence assess elastic deformation.

To address the need for rigorous process monitoring, the level of instrumentation of processing units and general engineering systems, along with the accuracy of the sensor readings, have consequently increased over the past few decades. The information that is routinely collected and stored, for example in distributed control systems for chemical production facilities and the engine management system for internal combustion engines, is then benchmarked against conditions that are characterized as normal and/or optimal.

The data records therefore typically include a significant number of process variables that are frequently sampled. This, in turn, creates huge amounts of process data, which must be analyzed online or archived for subsequent analysis. Examples are reported for:

	the chemical industry (Al-Ghazzawi and Lennox 2008; MacGregor et al. 1991; Piovoso and Kosanovich 1992; Simoglou et al. 2000; Wang et al. 2003);

	the general manufacturing industry (Kenney et al. 2002; Lane et al. 2003; Martin et al. 2002; Monostori and Prohaszka 1993; Qin et al. 2006);

	internal combustion engines (Gérard et al. 2007; Howlett et al. 1999; Kwon et al. 1987; McDowell et al. 2008; Wang et al. 2008);

	aircraft systems (Abbott and Person 1991; Boller 2000; Jaw 2005; Jaw and Mattingly 2008; Tumer and Bajwa 1999); and

	civil engineering systems (Akbari et al. 2005; Doebling et al. 1996; Ko and Ni 2005; Pfafferott et al. 2004; Westergren et al. 1999).



For the chemical and manufacturing industries, the size of the data records and the ever increasing complexity of such systems have caused efficient process monitoring by plant operators to become a difficult task. This complexity stems from increasing levels of process optimization and intensification, which gives rise to operating conditions that are at the limits of operational constraints and which yield complex dynamic behavior (Schmidt-Traub and Górak 2006). A consequence of these trends is a reduced safety margin if the process shows some degree of abnormality, for example caused by a fault (Schuler 2006).

Examples for monitoring technical systems include internal combustion engines and gearbox systems. Process monitoring of internal combustion engines relates to tackling increasing levels of pollution caused by the emissions of an ever growing number of registered vehicles and has resulted in the introduction of the first on-board-diagnostic (OBD) system in the United States in 1988, and in Europe (EURO1) in 1992. The requirement for more advanced monitoring systems culminated in the introduction of OBDII (1994), EURO2 (1997) and EURO3 (2000) legislation. This trend has the aim of continuously decreasing emissions and is supported through further regulations, which relate to the introduction of OBDIII (considered since 2000), EURO4 (2006) and EURO5 (2009) systems.

Current and future regulations demand strict monitoring of engine performance at certain intervals under steady-state operating conditions. This task entails the diagnosis of any fault condition that could potentially cause the emissions to violate legislated values at the earliest opportunity. With respect to this development, a prediction by Powers and Nicastri (1999) indicated that the integration of model-based control systems and design techniques have the potential to produce safer, more comfortable and manoeuvrable vehicles. According to Kiencke and Nielsen (2000), there are a total of three main objectives that automotive control systems have to adhere to: (i) maintaining efficiency and low fuel consumption, (ii) producing low emissions to protect the environment and (iii) ensuring safety. Additional benefits of condition monitoring are improved reliability and economic operation (Isermann and Ballé 1997) through early fault detection.

For gearbox systems, the early detection of incipient fault conditions is of fundamental importance for their operation. Gearboxes can be found in aerospace, civil and general mechanical systems. The consequences of not being able to detect such faults at early stages can, for example, include reduced productivity in manufacturing processes, reduced efficiency of engines, equipment damage or even failure. Early detection of such faults can therefore provide significant improvements in the reduction of operational and maintenance costs, system down-time, and lead to increased levels of safety, which is of ever growing importance. An incipiently developing fault in a mechanical system usually affects certain parameters, such as vibration, noise and temperature. The analysis of these external variables therefore allows the monitoring of internal components, such as gears, which are usually inaccessible without the dismantling of the system. It is consequently essential to extract relevant information from the recorded signals with the aim of detecting any irregularities that could be caused by such faults.

The research community has utilized a number of different approaches to monitor complex technical systems. These include model-based approaches (Ding 2008; Frank et al. 2000; Isermann 2006; Simani et al. 2002; Venkatasubramanian et al. 2003) that address a wide spectrum of application areas, signal-based approaches (Bardou and Sidahmed 1994; Chen et al. 1995; Hu et al. 2003; Kim and Parlos 2003) which are mainly applied to mechanical systems, rule-based techniques (Iserman 1993; Kramer and Palowitch 1987; Shin and Lee 1995; Upadhyaya et al. 2003) and more recently knowledge-based techniques (Lehane et al. 1998; Ming et al. 1998; Qing and Zhihan 2004; Shing and Chee 2004) that blend heuristic knowledge into monitoring application. Such techniques have shown their potential whenever cost-benefit economics have justified the required effort in developing applications.

Given the characteristics of modern production and other technical systems, however, such complex technical processes may present a large number of recorded variables that are affected by a few common trends, which may render these techniques difficult to implement in practice. Moreover, such processes often operate under steady-state operation conditions that may or may not be predefined. To some extent, this also applies to automotive systems as routine technical inspections, for example once per year, usually include emission tests that are carried out at a reference steady state operation condition of the engine.

Underlying trends are, for example, resulting from known or unknown disturbances, interactions of the control system with the technical system, and minor operator interventions. This produces the often observed high degree of correlated among the recorded process variables that mainly describe common trends or common cause variation. The sampled data has therefore embedded within it information for revealing the current state of process operation. The difficult issue here is to extract this information from the data and to present it in a way that can be easily interpreted.

Based on the early work on quality control and monitoring (Hotelling 1947; Jackson 1959, 1980; Jackson and Morris 1956, 1957; Jackson and Mudholkar 1979), several research articles around the 1990s proposed a multivariate extension to statistical process control Kresta et al. (1989, 1991) MacGregor et al. (1991) Wise et al. (1989b, 1991) to generate a statistical fingerprint of a technical system based on recorded reference data. Methods that are related to this extension are collectively referred to as multivariate statistical process control or MSPC. The application of MSPC predominantly focussed on the chemical industry (Kosanovich and Piovoso 1991; Morud 1996; Nomikos and MacGregor 1994; Piovoso and Kosanovich 1992; Piovoso et al. 1991) but was later extended to general manufacturing areas (Bissessur et al. 1999; 2000; Lane et al. 2003; Martin et al. 2002; Wikström et al. 1998).

Including this earlier work, the last two decades have seen the development and application of MSPC gaining substantial interest in academe and industry alike. The recipe for the considerable interest in MSPC lies in its simplicity and adaptability for developing monitoring applications, particularly for larger numbers of recorded variables. In fact, MSPC relies on relatively few assumptions and only requires routinely collected operating data from the process to be monitored. The first of four parts of this book outlines and describes these assumptions, and is divided into a motivation for MSPC, a description of the main MSPC modeling methods and the underlying data structures, and the construction of charts to carry out on-line monitoring.

For monitoring processes in the chemical industry, the research community has proposed two different MSPC approaches. The first one relates to processes that produce a specific product on a continuous basis, i.e. they convert a constant stream of inputs into a constant stream of outputs and are referred to as a continuous processes. Typical examples of continuous processes can be found in the petrochemical industry. The second approach has been designed to monitor processes that convert a discontinuous feed into the required product over a longer period of time. More precisely, and different from a continuous process, this type of process receives a feed that remains in the reactor over a significantly longer period of time before the actual production process is completed. Examples of the second type of process can be found in the pharmaceutical industry and such processes are referred to as batch processes. This book focuses on continuous processes to provide a wide coverage of processes in different industries. References that discuss the monitoring of batch processes include Chen and Liu (2004), Lennox et al. (2001), Nomikos and MacGregor (1994, 1995), van Sprang et al. (2002) to name only a few.

The second part of this book then presents two application studies of a chemical reaction process and a distillation process. Both applications demonstrate the ease of utilizing MSPC for process monitoring and detecting as well as diagnosing abnormal process behavior. The detection is essentially a boolean decision whether current process behavior still matches the statistical fingerprint describing behavior that is deemed normal and/or optimal. If it matches, the process is in-statistical-control and if it does not the process is out-of-statistical-control. The diagnosis of abnormal events entails the identification and analysis of potential root causes that have led to the anomalous behavior. In other words, it assesses why the current plant behavior deviates from that manifested in the statistical fingerprint, constructed from a historic data record, that characterizes normal process behavior. The second part of this book also demonstrates that the groundwork on MSPC in the early to mid 1990s may rely on oversimplified assumptions that may not represent true process behavior.

The aim of the third part is then to show advances in MSPC which the research literature has proposed over the past decade in order to overcome some of the pitfalls of this earlier work. These advances include:

	improved data structures for MSPC monitoring models;

	the removal of the assumption that the stochastic process variables have a constant mean and variance, and the variable interrelationships are constant over time; and

	a fresh look at constructing MSPC monitoring charts, resulting in the introduction of a new paradigm which significantly improves the sensitivity of the monitoring scheme in detecting incipient fault conditions.



In order to demonstrate the practical usefulness of these improvements, the application studies of the chemical reactor and the distillation processes in the second part of this book are revisited. In addition, the benefits of the adaptive MSPC scheme is also shown using recorded data from a furnace process and the enhanced monitoring scheme is applied to recorded data from gearbox systems.

Finally, the fourth part of this book presents a detailed treatment of the core MSPC modeling methods, including their objective functions, and their statistical and geometric properties. The analysis also includes the discussion of computational issues in order to obtain data models efficiently.


Part I

Fundamentals of Multivariate Statistical Process Control


Chapter 1

Motivation for multivariate statistical process control

This first chapter outlines the basic principles of multivariate statistical process control. For the reader unfamiliar with statistical-based process monitoring, a brief revision of statistical process control (SPC) and its application to industrial process monitoring are provided in Section 1.1.

The required extension to MSPC to address data correlation is then motivated in Section 1.2. This section also highlights the need to extract relevant information from a large dimensional data space, that is the space in which the variation of recorded variables is described. The extracted information is described in a reduced dimensional data space that is a subspace of the original data space.

To help readers unfamiliar with MSPC technology, Section 1.3 offers a tutorial session, which includes a number of questions, small calculations/examples and projects to help familiarization with the subject and to enhance the learning outcomes. The answers to these questions can be found in this chapter. Project 2 to 4 require some self study and result in a detailed understanding on how to interpret SPC monitoring charts for detecting incipient fault conditions.

1.1 Summary of statistical process control

Statistical process control has been introduced into general manufacturing industry for monitoring process performance and product quality, and to observe the general process variation, exhibited in a few key process variables. Although this indicates that SPC is a process monitoring tool, the reference to control (in control engineering often referred to as describing and analyzing the feedback or feed-forward controller/process interaction), is associated with product or, more precisely, process improvement. In other words, the control objective here is to reduce process variation and to increase process reliability and product quality. One could argue that the controller function is performed by process operators or, if a more fundamental interaction with the process is required, a task force of experienced plant personnel together with plant managers. The next two subsections give a brief historical review of its development and outline the principles of SPC charts. The discussion of SPC in this section only represents a brief summary for the reader unfamiliar with this subject. A more in-depth and detailed treatment of SPC is available in references Burr (2005); Montgomery (2005); Oakland (2008); Smith (2003); Thompson and Koronacki (2002).

1.1.1 Roots and evolution of statistical process control

The principles of SPC as a system monitoring tool were laid out by Dr. Walter A. Shewhart during the later stages of his employment at the Inspection Engineering Department of the Western Electric Company between 1918 and 1924 and from 1925 until his retirement in 1956 at the Bell Telephone Laboratories. Shewhart summarized his early work on statistical control of industrial production processes in his book (Shewhart, 1931). He then extended this work which eventually led to the applications of SPC to the measurement processes of science and stressed the importance of operational definitions of basic quantities in science, industry and commerce (Shewhart, 1939). In particular, the latter book has had a profound impact upon statistical methods for research in behavioral, biological and physical sciences, as well as general engineering.

The second pillar of SPC can be attributed to Dr. Vilfredo Pareto, who first worked as a civil engineer after graduation in 1870. Pareto became a lecturer at the University of Florence, Italy from 1886, and from 1893 at the University of Lausanne, Switzerland. He postulated that many system failures are a result of relatively few causes. It is interesting to note that these pioneering contributions culminated in two different streams of SPC, where Shewhart's work can be seen as observing a system, whilst Pareto's work serves as a root cause analysis if the observed system behaves abnormally. Attributing the control aspect (root cause analysis) of SPC to the ‘Pareto Maxim’ implies that system improvement requires skilled personnel that are able to find and correct the causes of ‘Pareto glitches’, those being abnormal events that can be detected through the use of SPC charts (observing the system).

The work by Shewhart drew the attention of the physicists Dr. W. Edwards Deming and Dr. Raymond T. Birge. In support of the principles advocated by Shewart's early work, they published a landmark article on measurement errors in science in 1934 (Deming and Birge 1934). Predominantly Deming is credited, and to a lesser extend Shewhart, for introducing SPC as a tool to improved productivity in wartime production during World War II in the United States, although the often proclaimed success of the increased productivity during that time is contested, for example Thompson and Koronacki (2002, p5). Whilst the influence of SPC faded substantially after World War II in the United States, Deming became an ‘ambassador’ of Shewhart's SPC principles in Japan from the mid 1950s. Appointed by the United States Department of the Army, Deming taught engineers, managers including top management, and scholars in SPC and concepts of quality. The quality and reliability of Japanese products, such as cars and electronic devices, are predominantly attributed to the rigorous transfer of these SPC principles and the introduction of Taguchi methods, pioneered by Dr. Genichi Taguchi (Taguchi 1986), at all production levels including management.

SPC has been embedded as a cornerstone in a wider quality context, that emerged in the 1980s under the buzzword total quality management or TQM. This philosophy involves the entire organization, beginning from the supply chain management to the product life cycle. The key concept of ‘total quality’ was developed by the founding fathers of today's quality management, Dr. Armand V. Feigenbaum (Feigenbaum 1951), Mr. Philip B. Crosby (Crosby 1979), Dr. Kaoru Ishikawa (Ishikawa 1985) and Dr. Joseph M. Juran (Juran and Godfrey 2000). The application of SPC nowadays includes concepts such as Six Sigma, which involves DMAIC (Define, Measure, Analyze, Improve and Control), QFD (Quality Function Deployment) and FMEA (Failure Modes and Effect Analysis) (Brussee, 2004). A comprehensive timeline for the development and application of quality methods is presented in Section 1.2 in Montgomery (2005).

1.1.2 Principles of statistical process control

The key measurements discretely taken from manufacturing processes do not generally describe constant values that are equal to the required and predefined set points. In fact, if the process operates at a steady state condition, then these set points remain constant over time. The recorded variables associated with product quality are of a stochastic nature and describe a random variation around their set point values in an ideal case.

1.1.2.1 Mean and variance of a random variable

The notion of an ideal case implies that the expectation of a set of discrete samples for a particular key variable converges to the desired set point. The expectation, or ‘average’, of a key variable, further referred to as a process variable z, is described as follows

1.1 [image: 1.1]

where E{ · } is the expectation operator. The ‘average’ is the mean value, or mean, of z, [image: 0008], which is given by

1.2 [image: 1.2]

In the above equation, the index k represents time and denotes the order when the specific sample (quality measurement) was taken. Equation (1.2) shows that [image: 0010] as K → ∞. For large values of K, however, we can assume that [image: 0013] and small K values may lead to significant differences between [image: 0015] and [image: 1.2]. The latter situation, that is, small sample sizes, may present difficulties if no set point is given for a specific process variable and the average therefore needs to be estimated. A detailed discussion of this is given in Section 6.4.

So far, the mean of a process variable is assumed to be equal to a predefined set point [image: 1.2] and the recorded samples describe a stochastic variation around this set point. The following data model can therefore be assumed to describe the samples

1.3 [image: 1.3]

The stochastic variation is described by the stochastic variable z0 and can be captured by an upper bound and a lower bound or the control limits which can be estimated from a reference set of the process variable. Besides a constant mean, the second main assumption for SPC charts is a constant variance of the process variable

1.4 [image: 1.4]

where σ is defined as the standard deviation and σ2 as the variance of the stochastic process variable. This parameter is a measure for the spread or the variability that a recorded process variable exhibits. It is important to note that the control limits depend on the variance of the recorded process variable.

For a sample size K the estimate [image: 0022] may accordingly depart from [image: 1.2] and Equation (1.4) is, therefore, an estimate of the variance σ2, [image: 0025]. It is also important to note that the denominator K − 1 is required in (1.4) instead of K since one degree of freedom has been used for determining the estimate of the mean value, [image: 0028].

1.1.2.2 Probability density function of a random variable

Besides a constant mean and variance of the process variable, the third main assumption for SPC charts is that the recorded variable follows a Gaussian distribution. The distribution function of a random variable is discussed later and depends on the probability density function or PDF. Equation (1.5) shows the PDF of the Gaussian distribution

1.5 [image: 1.5]

Figure 1.1 shows the Gaussian density function for [image: 1.2] = 0 and various values of σ. In this figure the abscissa refers to values of z and the ordinate represents the ‘likelihood of occurrence’ of a specific value of z. It follows from Figure 1.1 that the smaller σ the narrower the Gaussian density function becomes and vice versa. In other words, the variation of the variable depends on the parameter σ. It should also be noted that the value of  ± σ represents the point of inflection on the curve f(z) and the maximum of this function is at z = [image: 1.2], i.e. this value has the highest chance of occurring. Traditionally, a stochastic variable that follows a Gaussian distribution is abbreviated by [image: 0038].


Figure 1.1 Gaussian density function for [image: 1.2] = 0 and σ = 0.25, σ = 1.0 and σ = 2.0.

[image: 1.1]

By closer inspection of (1.4) and Figure 1.1, it follows that the variation (spread) of the variables covers the entire range of real numbers, from minus to plus infinity, since likelihood values for very small or large values are nonzero. However, the likelihood of large absolute values is very small indeed, which implies that most values for the recorded variable are centered in a narrow band around [image: 1.2]. This is graphically illustrated in Figure 1.2, which depicts a total of 20 samples and the probability density function f(z) describing the likelihood of occurrence for each sample. This figure shows that large departures from [image: 1.2] can occur, e.g. samples 1, 3 and 10, but that most of samples center closely around [image: 1.2].


Figure 1.2 Random Gaussian distributed samples of mean [image: 1.2] and variance σ.

[image: 1.2]

1.1.2.3 Cumulative distribution function of a random variable

We could therefore conclude that the probability of z values that are far away from [image: 1.2] is small. In other words, we can simplify the task of monitoring the process variable by defining an upper and a lower boundary that includes the vast majority of possible cases and excludes those cases that have relatively small likelihood of occurrence. Knowing that the integral over the entire range of the probability density function is equal to 1.0, the probability is therefore a measure for defining these upper and lower boundaries. For the symmetric Gaussian probability density function, the probability within the range bounded by [image: 0045] and [image: 0046] is defined as

1.6 [image: 1.6]

Here, [image: 0047] and [image: 0048] defines the size of this range that is centered at [image: 1.2], 0 ≤ F( · ) ≤ 1.0, F( · ) is the cumulative distribution function and α is the significance, that is the percentage, α · 100%, of samples that could fall outside the range between the upper and lower boundary but still belong to the probability density function f( · ). Given that the Gaussian PDF is symmetric, the chance that a sample has an ‘extreme’ value falling in the left or the right tail end is [image: 0054]. The general definition of the Gaussian cumulative distribution function F(a, b) is as follows

1.7 [image: 1.7]

where Pr{ · } is defined as the probability that z assumes values that are within the interval [a, b].

1.1.2.4 Shewhart charts and categorization of process behavior

Assuming that [image: 1.2] = 0 and σ = 1.0, the probability of 1 − α = 0.95 and 1 − α = 0.99 yield ranges between [image: 0063] and [image: 0064]. This implies that 5% and 1% of recorded values can be outside this ‘normal’ range by chance alone, respectively. Figure 1.3 gives an example of this for [image: 1.2] = 10.0, σ = 1.0 and α = 0.01. This implies that the upper boundary or upper control limit, UCL, and the lower boundary or lower control limit, LCL, are equal to 10 + 2.58 = 12.58 and 10 − 2.58 = 7.42, respectively. Figure 1.3 includes a total of 100 samples taken from a Gaussian distribution and highlights that one sample, sample number 90, is outside the ‘normal’ region. Out of 100 recorded samples, this is 1% and in line with the way the control limits, that is, the upper and lower control limits, have been determined. Loosely speaking, 1% of samples might violate the control limits by chance alone.


Figure 1.3 Schematic diagram showing statistical process control chart.

[image: 1.3]

From the point of an interpretation of the SPC chart in Figure 1.3, which is defined as a Shewhart chart, samples that fall between the UCL and the LCL categorize in-statistical-control behavior of the recorded process variable and samples that are outside this region are indicative of an out-of-statistical-control situation. As discussed above, however, it is possible that α · 100% of samples fall outside the control limits by chance alone. This is further elaborated in Subsection 1.1.3.

1.1.2.5 Trends in mean and variance of random variables

Statistically, for quality related considerations a process is out-of-statistical-control if at least one of the following six conditions is met:


1. one point is outside the control limits;

2. two out of three consecutive points are two standard deviations above/below the set point;

3. four out of five consecutive points are one standard deviation above/below one standard deviation;

4. seven points in a row are all above/below the set point;

5. ten out of eleven points in a row are all above/below the set point; and

6. seven points in a row are all increasing/decreasing.


The process that is said to be an in-statistical-control process if none of the above hypotheses are accepted. Such a process is often referred to as a stable process or a process that does not present a trend. Conversely, if at least one of the above conditions is met the process has a trend that manifest itself in changes of the mean and/or variance of the recorded random variable. This, in turn, requires a detailed and careful inspection in order to identify the root cause of this trend. In essence, the assumption of a stable process is that a recorded quality variable follows a Gaussian distribution that has a constant mean and variance over time.

1.1.2.6 Control limits vs. specification limits

Up until now, the discussion has focussed on the process itself. This discussion has led to the definition of the control limits for process variables that follow a Gaussian distribution function and have a constant mean value, or set point, and variances have been obtained. More precisely, rejecting all of the above six hypotheses implies that the process is in-statistical control or stable and does not describe any trend. For SPC, it is of fundamental importance that the control limits of the key process variable(s) are inside the specification limits for the product. The specification limits are production tolerances that are defined by the customer and must be met. If the upper and lower control limits are within the range defined by the upper and lower specification limits, or USL and LSL, a stable process produces items that are, by default, within the specification limits. Figure 1.4 shows the relationship between the specification limits, the control limits and the set point of a process variable z for which 20 consecutively recorded samples are available.


Figure 1.4 Upper and lower specification limit as well as upper and lower control limits and set point value for key variable z.

[image: 1.4]

1.1.2.7 Types of processes

Using the definition of the specification and control limits, a process can be categorized into a total of four distinct types:


1. an ideal process;

2. a promising process;

3. a treacherous process; and

4. a turbulent process.


The process shown in Figure 1.4 is an ideal process, where the product is almost always within the specification limits. An ideal process is therefore a stable process, since the mean and variance of the key product variable z is time invariant. A promising process is a stable process but the control limits are outside the region defined by the specification limits. The promising process has the potential to produce a significant amount of off-spec product.

The treacherous process is an unstable process, as the mean and/or variance of z varies over time. For this process, the absolute difference of the control limits is assumed to be smaller than the absolute difference of the specification limits. Similar to a promising process, a treacherous process has the potential to produce significant off-spec product although this is based on a change in mean/variance of z. Finally, a turbulent process is an unstable process for which the absolute difference of the control limits is larger than the absolute difference of the specification limits. The turbulent process therefore often produces off-spec products.

1.1.2.8 Determination of control limits

It is common practice for SPC applications to determine the control limits zα as a product of σ, for example the range for the UCL and LCL are  ± σ,  ± 2σ etc. Typical are three sigma and six sigma regions. It is interesting to note that the control limits that represent three sigma capture 99.73% of cases, which appears to describe almost all possible cases. It is important to note, however, that if a product is composed of say 50 items each of which has been produced within a UCL and LCL that correspond to  ± 3σ, then the probability that any of the products does not conform to the required specification is 1 − (1 − α)50 = 1 − 0.997350 = 1 − 0.8736 = 0.1664, which is 16.64% and not 0.27%. It is common practice in such circumstances to determine UCL and LCL with respect to  ± 6σ, that is α = 1 − 0.999999998, for which the same calculation yields that the probability that one product does not conform to the required specification reduces to 0.01 parts per million.

1.1.2.9 Common cause vs. special cause variation

Another concept that is of importance is the analysis as to what is causing the variation of the process variable z. Whilst this can be regarded as a process specific entity, two distinct sources have been proposed to describe this variation, the common cause variation and the special cause variation. The properties of common cause variation are that it arises all the time and is relatively small in magnitude. As an example for common cause variation, consider two screws that are produced in the same shift and selected randomly. These screws are not identical although the differences in thread thickness, screw length etc. are relatively small. The differences in these key variables must not be a result of an assignable cause. Moreover, the variation in thread length and total screw length must be process specific and cannot be removed. An attempt to reduce common cause variation is often regarded as tampering and may, in fact, lead to an increase in the variance of the recorded process variable(s). A special cause variation on the other hand, has an assignable cause, e.g. the introduction of disturbances, a process fault, a grade change or a transition between two operating regions. This variation is usually rare but may be relatively large in magnitude.

1.1.2.10 Advances in designing statistical process control charts

Finally, improvements for Shewhart type charts have been proposed in the research literature for detecting incipient shifts in [image: 1.2] (that is [image: 0085] departs from [image: 1.2] over time), and for dealing with cases where the samples distribution function slightly departs from a Gaussian distribution. This has led to the introduction of cumulative sum or CUSUM charts (Hawkins 1993; Hawkins and Olwell 1998) and exponentially weighted moving average or EWMA charts (Hunter 1986; Lucas and Saccucci 1990).

Next, Subsection 1.1.3 summarizes the statistically important concept of hypothesis testing. This test is fundamental in evaluating the current state of the process, that is, to determine whether the process is in-statistical-control or out-of-statistical-control. Moreover, the next subsection also introduces errors associated with this test.

1.1.3 Hypothesis testing, Type I and II errors

To motivate the underlying meaning of a hypothesis test in an SPC context, Figure 1.5 describes the two scenarios introduced in the preceding discussion. The upper graph in this figure exemplifies an in-statistical-control situation, since:


	the recorded samples, z(k), are drawn from the distribution described by f0(z); and

	the confidence region, describing the range limited by the upper and lower control limits of this process, has been calculated by Equation 1.6 using f0(z)



Hence, the recorded samples fall inside the confidence region with a significance of α. The following statement provides a formal description of this situation.

[image: images/c01_I0008.gif]

In mathematical statistics, such a statement is defined as a hypothesis and referred to as H0. As Figure 1.5 highlights, a hypothesis is a statement concerning the probability distribution of a random variable and therefore its population parameters, for example the mean and variance of the Gaussian distribution function. Consequently, the hypothesis H0 that the process is in-statistical-control can be tested by determining whether newly recorded samples fall within the confidence region. If this is the case then the hypothesis that the process is in-statistical-control is accepted.


Figure 1.5 Graphical illustration of Type I and II errors in an SPC context.

[image: 1.5]

For any hypothesis testing problem, the hypothesis H0 is defined as the null hypothesis and is accompanied by the alternative hypothesis H1. In relation to the terminology introduced in the previous subsection, the statement governing the alternative hypothesis is as follows:

[image: images/c01_I0009.gif]

The lower plot in Figure 1.5 gives an example of an out-of-statistical-control situation by a shift in the mean of z from [image: 1.2] to [image: 1.2] + Δz. In general, if the null hypothesis is rejected the alternative hypothesis is accepted. This implies that if the newly recorded samples fall outside the confidence region the alternative hypothesis is accepted and the process is out-of-statistical-control. It should be noted that detecting an out-of-statistical-control situation, which is indicative of abnormal process behavior, is important but does not address the subsequent question as to what has caused this behavior. In fact, the diagnosis of anomalous process behavior can be considerably more challenging than detecting this event (Jackson 2003).

It is also important to note that testing the null hypothesis relies on probabilistic information, as it is related to the significance level α. If we assume a significance of 0.01, 99% of samples are expected to fall within the confidence region on average. In other words, this test is prone to mistakes and a sample that has an extreme value is likely to be outside the confidence region although it still follows f0(z). According to the discussion above, however, this sample must be considered to be associated with the alternative hypothesis H1. This error is referred to as a Type I error.





Definition 1.1.1

A Type I error arises if H0 is rejected while, in fact, it must be accepted. The probability of Type I error is defined as

[image: images/c01_I0010.gif]

where f0( · ) is the PDF of z.





Figure 1.5 also illustrates a second error that is associated with the hypothesis testing. Defining the PDF corresponding to the shift in mean of z from [image: 1.2] to [image: 1.2] + Δz by f1( · ), it is possible that a recorded sample belongs to f1( · ) but its value is with the control limits. This scenario is defined as a Type II error.





Definition 1.1.2

A Type II error arises if H0 is accepted, while, in fact, it must be rejected. In the context of the scenario described in the lower plot in Figure 1.5, the probability of a Type II error is defined as follows

[image: images/c01_I0011.gif]





The Type I error is equal to the significance level α for determining the upper and lower control limits. However, the probability of a Type II error β is not a constant and, according to the lower plot in Figure 1.5, depends on the size of Δz. It should be noted that the statement ‘failing to reject H0’ does not necessarily mean that there is a high probability that H0 is true but simply implies that a Type II error can be significant if the magnitude of the fault condition is small or incipient. Subsection 8.7.3 presents a detailed examination of detecting incipient fault conditions.

From SPC charts, it is desirable to minimize both Type I and II errors. However, Figure 1.5 highlights that decreasing α produces an increase in β and vice versa. One could argue that selecting α could depend on what abnormal conditions are expected. For SPC, however, the Type I error is usually considered to be more serious, since rejecting H0 although it is in fact true implies that a false alarm has been raised. If the online monitoring scheme produces numerous such false alarms, the confidence of process operators in the SPC/MSPC technology would be negatively affected. This argument suggests smaller α values. In support of this, the discussion on determining control limits in the previous subsection also advocates smaller α values.

The preceding discussion in this section has focussed on charting individual key variables. The next section addressed the problem of correlation among key process variables and motivates the need for a multivariate extension of the SPC framework.

1.2 Why multivariate statistical process control

The previous section has shown how a recorded process variable that follows a Gaussian distribution can be charted and how to determine whether the process is an ideal process. The use of Shewhart charts, however, relies on analyzing individual key variables of the process in order to analyze the current product quality and to assess the current state of the process operation. Despite the widespread success of the SPC methodology, it is important to note that correlation between process variables can substantially increase the number of Type II errors. If the null hypothesis is accepted, although it must be rejected, yields that the process is assumed to be in-statistical-control although it is, in fact, out-of-statistical-control. The consequence is that a large Type II error may render abnormal process behavior difficult to detect.

Before describing the effect of correlation between a set of process variables, it is imperative to define variable correlation. In here, it is strictly related to the correlation coefficients between a set of variables. For the ith and the jth process variable, which have the variances of [image: 0124] and [image: 0125] and the covariance [image: 0126], the correlation coefficient rij is defined as

1.8 [image: 1.8]

The above equation also shows the following and well known relationship between the variable variances, their covariance and the correlation coefficient

1.9 [image: 1.9]

Equation (1.9) outlines that a large covariance between two variables arises if (i) the correlation coefficient is large and (ii) their variances are large. Moreover, if the variances of both variables are 1, the correlation coefficient reduces to the covariance.

To discuss the correlation issue, the next three subsections present examples that involve two Gaussian distributed variables, [image: 0128] and [image: 0129] that have a mean of [image: 1.2]1 and [image: 1.2]2 and a variance of σ12 and σ22, respectively. Furthermore, the upper and lower control limits for these variables are given by UCL1 and LCL1 for z1 and UCL2 and LCL2 for z2. The presented examples describe the following three different cases:


1. no correlation between [image: 0140] and [image: 0141];

2. perfect correlation between [image: 0142] and [image: 0143]; and

3. a high degree of correlation between [image: 0144] and [image: 0145].


Cases 1 and 2 imply that the correlation coefficient between [image: 0146] and [image: 0147], is zero and one, respectively. The third case describes a large absolute correlation coefficient.

1.2.1 Statistically uncorrelated variables

Figure 1.6 gives an example of two process variables that have a correlation coefficient of zero. Both process variables can, of course, be plotted with a time base in individual Shewhart charts. In Figure 1.6 the horizontal and vertical plot represents the Shewhart charts for process variables z1 and z2, respectively. Individually, each of the process variables show that the process is in-statistical-control.


Figure 1.6 Schematic diagram showing two statistically uncorrelated variables.

[image: 1.6]

Projecting the samples of the individual charts into the central box between both charts yields a scatter diagram. The scatter points marked by ‘+’ are the intercept of the projections associated with the same sample index, e.g. z1(k) and z2(k) represent the kth point in the scatter diagram. The confidence region for the scatter diagram can be obtained from the joint PDF. Defining f1( · ) and f2( · ) as the PDF of z1 and z2, respectively, and given that r12 = 0 the joint PDF f( · ) is equal to1

1.10 [image: 1.10]

The joint PDF in (1.10) can also be written in matrix-vector form

1.11 [image: 1.11]

where

1.12 [image: 1.12]

is the covariance matrix of [image: 0159] and [image: 0160] and | · | is the determinant of a matrix.

In a similar fashion to the covariance matrix, the correlation between a set of nz variables can be described by the correlation matrix. Using (1.8) for i = j, the diagonal elements of this matrix are equal to one. Moreover, the non-diagonal elements possess values between  − 1 ≤ rij ≤ 1. The concept of correlation is also important to assess time-based trends within the process variables. However, the application of MSPC assumes that the process variables do not possess such trends.

Based on (1.11), a confidence region can be obtained as follows. Intercept a plane located close and parallel to the z1 − z2 plane with f(z1, z2). The integral over the interception area hugging the joint PDF is equal to 1 − α. The contour describing this interception is defined as the control ellipse and represents the confidence region. It should be noted that if the variance of both variables are identical, the control ellipse reduces to a circle, which is the case described in Figure 1.6.2 Subsection 1.2.3 shows how to construct a control ellipse.

One could naively draw a ‘rectangular’ confidence region that is bounded by the upper and lower control limits of the individual Shewhart charts. Since the individual samples are all inside the upper and lower control limits for both charts, the scatter points must fall within this ‘rectangle’. By directly comparing the ‘rectangle’ with the control ellipse in Figure 1.6, it can be seen both areas are comparable in size and that the scatter points fall within both.

The four corner areas of the rectangle that do not overlap with the circular region are small. Statistically, however, the circular region is the correct one, as it is based on the joined PDF. The comparison between the ‘rectangle’ and the circle, however, shows that the difference between them is negligible. Thus, the individual and joint analysis of both process variables yield an in-statistical-control situation.

1.2.2 Perfectly correlated variables

In this second case, the two variables [image: 0168] and [image: 0169] have a correlation coefficient of  − 1. According to (1.8), this implies that the covariance σ122 is equal to
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For identical variances, σ12  =  σ22  =  σ2, it follows that

1.14 [image: 1.14]

In other words, [image: 0173]. For unequal variances, both signals are equal up to the scaling factor [image: 0174]. Figure 1.7 shows the Shewhart charts for z1 and z2 which are plotted horizontally and vertically, respectively. Given that both variables have the same variance, both of them produce identical absolute values for each sample. This, however, implies that the projections of each sample fall onto a line that has an angle of 135° and 45° to the abscissas of the Shewhart chart for variable z1 and z2, respectively.


Figure 1.7 Schematic diagram showing two perfectly correlated variables.

[image: 1.7]

The 2D circular confidence region if [image: 0181] and [image: 0182] are statistically uncorrelated therefore reduces to a 1D line if they are perfectly correlated. Moreover, the joint PDF f(z1, z2) in this case is equal to

1.15 [image: 1.15]

if the variables have equal variance. Equation (1.15), however, presents two problems:

	the determinant of [image: 0184] is equal to zero; and

	the inverse of [image: 0185] therefore does not exist.



This results from the fact that the rank of [image: 0186] is equal to one.

To determine the joint PDF, Figure 1.8 ‘summarizes’ the scatter diagram of Figure 1.7 by assuming that the control limits for z1 and z2 are [image: 1.2] ± 3σ and [image: 1.2]1 = [image: 1.2]2 = [image: 1.2] for simplicity. The catheti of the right triangle depicted in Figure 1.8 are the ordinates of both Shewhart charts and the hypotenuse is the semimajor of the ‘control ellipse’. The length of both catheti is 6σ and the length of the hypotenuse is [image: 0192], accordingly.


Figure 1.8 Geometric interpretation of the scatter diagram in Figure 1.7.

[image: 1.8]

As the projections of the recorded samples fall onto the hypotenuse, the control limits for the projected points are the endpoints of the hypotenuse. Defining the two identical variables z1 and z2 by z the projected samples of z follow a Gaussian distribution and are scaled by 21/2. Next, defining the projected samples of z onto the hypotenuse as t, the ‘joint’ PDF of z1 = z2 = z reduces to the PDF of t

1.16 [image: 1.16]

One could argue that only one variable needs to be monitored. An inspection of Figure 1.7, however, yields that the joint analysis is a sensitive mechanism for detecting abnormal process behavior. If the process is in-statistical-control, the sample projections fall onto the hypotenuse. If not, the process is out-of-statistical-control, even if each sample is within the control limits of the individual Shewhart charts. Although a perfect correlation is a theoretical assumption, this extreme case highlights one important reason for conducting SPC on the basis of a multivariate rather than a univariate analysis of the individual variables.

1.2.3 Highly correlated variables

The last two subsections presented two extreme cases for the correlation between two variables. The third case examined here relates to a high degree of correlation between z1 and z2, which is an often observed phenomenon between the recorded process variables, particulary for large-scale systems. For example, temperature and pressure readings, flow rate measurements and concentrations or other product quality measures frequently possess similar patterns. Using a correlation coefficient of −0.95 and unity variance for z1 and z2 yields the following covariance matrix

1.17 [image: 1.17]

Figure 1.9 shows, as before, the two Shewhart charts and the scatter diagram, which represents the projected samples of each variable. Given that z1 and z2 are assumed to be normally distributed, the joint PDF is given by

1.18 [image: 1.18]


Figure 1.9 Schematic diagram showing two highly correlated variables.

[image: 1.9]

The control ellipse can be obtained by intercepting a plane that is parallel to the z1 − z2 plane to the surface of the joint PDF, such that the integral evaluated within the interception area is equal to 1 − α. Different to two uncorrelated variables of equal variance, this procedure yields an ellipse. Comparing Figures 1.6 and 1.9 highlights that both axes of the circle are parallel to the abscissas of both Shewhart charts for uncorrelated variables, whilst the semimajor of the control ellipse for highly correlated variables has an angle to both abscissas.

1.2.3.1 Size and orientation of control ellipse for correlation matrix [image: 0210]

The following study presents a lucid examination of the relationship between the angle of the semimajor and the abscissa, and the correlation coefficient between z1 and z2. This study assumes that the variance of both Gaussian variables is 1 and that they have a mean of 0. Defining the correlation coefficient between z1 and z2 by r12, produces the following covariance/correlation matrix

1.19 [image: 1.19]

It follows from (1.9) that the correlation coefficient is equal to the covariance, since σ12  =  σ22  =  1. As discussed in Jackson (2003), the orientation of the semimajor and semiminor of the control ellipse are given by the eigenvectors associated with the largest and the smallest eigenvalue of the [image: 0217], respectively,

1.20 [image: 1.20]

In the above equation, p1 and p2 are the eigenvectors associated with the eigenvalues λ1 and λ2, respectively, and λ1 > λ2.

Eigenvalues of [image: 0223]

For a correlation coefficient ranging from  − 1 to 1, Figure 1.10 shows how the eigenvalues λ1 and λ2 depend on the absolute value of the correlation coefficient r12, i.e. λ1(r12) = 1 + |r12| and λ2(r12) = 1 − |r12|. This analysis also includes the two extreme cases discussed in both previous subsections. For r12 = 0, both eigenvalues are equal to 1. On the other hand, if r12 = − 1, the larger eigenvalue is equal to 2 and the other one is 0. The eigenvalues represent the variance of the sample projections on the semimajor (larger eigenvalue) and the semiminor (smaller eigenvalue).


Figure 1.10 Eigenvalues of [image: 0347], λ1 and λ2, vs. correlation coefficient r12.

[image: 1.10]

For r12 = 0 the variances of the projected samples onto both axis of the ellipse are identical, which explains why the control ellipse reduces to a circle if σ12  =  σ22. For r12 = 1, however, there is no semiminor since all of the projected samples fall onto the hypotenuse of Figure 1.8. Consequently, λ2 is equal to zero (no variance) and the scaling factor between the projections of z, t, and z = z1 = z2 is equal to [image: 0239] since [image: 0240]. The introduced variable t describes the distance of the projected point measured from the center of the hypotenuse that is represented by the interception of both abscissas.

Orientation of semimajor of control ellipse

The second issue is the orientation of the semimajor relative to the abscissas of both Shewhart charts, which is determined by the direction of [image: 0242]. The angle of the semimajor and semiminor is given by arctan(p21/p11) × 180/π and arctan(p22/p12) × 180/π relative to the z2 axis. This yields the following angles for the ellipse axes:

1.21 [image: 1.21]

and

1.22 [image: 1.22]

respectively.

1.2.3.2 Size and orientation of control ellipse for covariance matrix [image: 0246]

In a general case, [image: 0247], the covariance matrix of z1 and z2, is

1.23 [image: 1.23]

Fixing r12 to, say 0.8, and taking into account that the eigenvectors do not change if this matrix is multiplied by a scalar factor allows examining the effect of [image: 0251] upon the orientation of the eigenvectors. More generally, varying this parameter within the interval [image: 0252] and the correlation coefficient [image: 0253] as well as defining σ22  =  1 allows examination of:

	the angle between p1 and the abscissa; and

	the values of both eigenvalues of [image: 0256].



Eigenvalues of [image: 0257]

The left plot in Figure 1.11 shows the resultant parametric curves for both eigenvalues vs. [image: 0258]. It is interesting to note that small ratios yield eigenvalues that are close to one for λ1 and zero λ2. This is no surprise given that the variance of z2 was selected to be one, whilst that of z1 is close to zero. In other words, the variance of z2 predominantly contributes to the joint PDF.


Figure 1.11 Eigenvalues of [image: 0351] (left plot) and angle of eigenvector associated with larger eigenvalue (right plot) vs. [image: 0352] and the parameter r12.

[image: 1.11]

Given that the length of the semimajor and semiminor is proportional to the eigenvalues λ1 and λ2, respectively, the ellipse becomes narrower as the ratio [image: 0266] decreases. In the extreme case of [image: 0267] the control ellipse reduces to a line. On the other hand, larger ratios produce larger values for λ1 and values below 1 for λ2. If no correlation between z1 and z2 exists, that is r12 → 0, the eigenvalue λ2 converges to one for large [image: 0274] ratios. However, the left plot in Figure 1.11 highlights that λ2 reduces in value and eventually converges to zero if there is a perfect correlation between both variables. For [image: 0276], this plot also includes both extreme cases discussed in the previous two subsections. For [image: 0277], letting r12 → 0 then both eigenvalues are equal to one and r12 = 1, λ1 = 2 and λ2 = 0.

Orientation of semimajor of control ellipse

The right plot in Figure 1.11 shows how the angle between the semimajor and the abscissa of the Shewhart chart for z1 changes with [image: 0283] and r12. For cases σ1 [image: 7.1] σ2 this angle asymptotically converges to 90°. Together with the fact that the eigenvalues in this case are λ1 = 1 and λ2 = 0 the control ellipse reduces to a line that is parallel to the abscissa of the Shewhart chart for z1 and orthogonal to that of the Shewhart chart for z2.

Larger ratios of [image: 0291] produce angles that asymptotically converge to 0°. Given that λ1 converges to infinity and λ2 between zero and one, depending upon the correlation coefficient, the resultant control ellipse is narrow with an infinitely long semimajor that is orthogonal to the abscissa of the Shewhart chart for z1. If r12 → 1, the ellipse reduces to a line.

The case of r12 → 0 is interesting, as it represents the asymptotes of the parametric curves. If [image: 0298] the semimajor has an angle of 90°, whilst for values in the range of [image: 0300], the angle becomes zero. For σ12  =  σ22, the control ellipse becomes a circle and a semimajor therefore does not exist.

1.2.3.3 Construction of control ellipse

What has not been discussed thus far is how to construct the control ellipse. The analysis above, however, pointed out that the orientation of this ellipse depends on the eigenvectors. The direction of the semimajor and semiminor is defined by the direction of the eigenvectors associated with the larger and the smaller eigenvalues, respectively. The exact length of the semimajor, a, and semiminor, b, depends on the eigenvalues of the covariance matrix

1.24 [image: 1.24]

where [image: 0304] is defined by

1.25 [image: 1.25]

and [image: 0305] is the critical value of a χ2 distribution with two degrees of freedom and a significance α, for example selected to be 0.05 and 0.01.

Applying (1.24) and (1.25) to the covariance matrix in (1.17) for α = 0.01 yields [image: 0309], implying that [image: 0310] and [image: 0311]. As z1 and z2 have an equal variance of 1, the angle between the semimajor and the abscissa of the Shewhart chart for z2 is 45° as discussed in Equation (1.22). Figure 1.12 shows this control ellipse along with a total of 100 samples of z1 and z2. Jackson (1980) introduced an alternative construction

1.26 [image: 1.26]


Figure 1.12 Control ellipse for [image: 0354], where [image: 0355] is the covariance/correlation matrix in (1.17), with a significance of 0.01.

[image: 1.12]

Based on the preceding discussion, the next subsection addresses the question laid out at the beginning of this section: why multivariate statistical process control?

1.2.4 Type I and II errors and dimension reduction

For the extreme case analyzed in Subsection 1.2.2, it follows that the projections of two perfectly correlated variables fall onto a 1D line and any departure from this line confirms that r12 is no longer equal to 1 for the ‘violating’ samples. Moreover, inspecting Figure 1.9, describing high correlation between two variables with respect to the sample represented by the asterisk yields that this sample shows an in-statistical-control situation, since it is within the control limits of both variables. However, if this sample is analyzed with respect to the multivariate control ellipse it lies considerably outside the normal operating region and hence, describes an out-of-statistical-control situation.

The joint analysis therefore suggests that this sample is indicative of an out-of-statistical-control situation. Comparing this to the case where the two variables are uncorrelated, Figure 1.6 outlines that such a situation can only theoretically arise and is restricted to the small corners of the naive ‘rectangular control region’. Following the introduction of hypothesis testing in Subsection 1.1.3, accepting the null hypothesis although it must be rejected constitutes a Type II error. Figure 1.13 shows graphically that the Type II error can be very substantial.


Figure 1.13 Graphical illustration of Type I and II errors for correlated variable sets.

[image: 1.13]

The slightly darker shaded area in this figure is proportional to the Type II error. More precisely, this area represents the difference between the circular and the elliptical confidence regions describing the uncorrelated case and the highly correlated case, respectively. It is interesting to note that correlation can also give rise to Type I errors if larger absolute values for z1 − z2 arise. The brightly shaded areas in Figure 1.13 give a graphical account of the Type I error, which implies that the alternative hypothesis H1, i.e. the process is out-of-statistical-control, is accepted although the null hypothesis must be accepted.

Besides the impact of correlation upon the hypothesis testing, particularly the associated Type II errors, Figure 1.9 highlights another important aspect. Projecting the samples of z1 and z2 onto the semimajor of the control ellipse describes most of the variance that is encapsulated within both variables. In contrast, the remaining variance that cannot be described by projecting the samples onto the semimajor is often very small in comparison and depends on r12. More precisely, the ratio of the larger over the smaller eigenvalue of [image: 0324] is a measure to compute how much the projection of the recorded samples onto the semimajor contribute to the variance within both variables.

A ratio equal to 1 describes the uncorrelated case discussed in Subsection 1.2.1. This ratio increases with r12 and asymptotically describes the case of r12 = 1 which Subsection 1.2.2 discusses. In this case, the variable [image: 0327], z1 = z2 = z describes both exactly. Finally, Subsection 1.2.3 discuss large ratios of [image: 0329] representing large r12 values. In this case, the scatter diagram for z1 and z2 produces a control ellipse that becomes narrower as r12 increases and vice versa.

In analogy to the perfectly correlated case, a variable t can be introduced that represents the orthogonal projection of the scatter point onto the semimajor. In other words, t describes the distance of this projected point from the origin, which is the interception of the abscissas of both Shewhart charts. The variable t consequently captures most of the variance of z1 and z2. The next chapter introduces data models that are based on approximating the recorded process variables by defining a set of such t-variables. The number of these t-variables is smaller than the number of recorded process variables.

1.3 Tutorial session

Question 1:

What is the main motivation for using the multivariate extension of statistical process control? Discuss the principles of statistical process control and the disadvantage of analyzing a set of recorded process variables separately to monitoring process performance and product quality.

Question 2:

Explain how a Type I and a Type II error affect the monitoring of a process variable and the detection of an abnormal operating condition.

Question 3:

With respect to Figure 1.13, use the area of overlap between the control ellipse and the naive rectangular confidence region, approximate the Type I and II error for using the naive rectangular confidence region for various correlation coefficients, 0 ≤ r12 ≤ 1.

Question 4:

Using a numerical integration, for example the quad2d and dblquad commands in Matlab, determine the correct Type I and II error in Question 2.

Question 5:

Following Questions 2 and 3, determine and plot an empirical relationship between the Type II error and correlation coefficient for two variables.

Project 1:

Simulate 1000 samples from a Gaussian distributed random variable such that the first 500 samples have a mean of zero, the last 500 samples have a mean of 0.25 and the variance of each sample is 1. Determine a Shewhart chart based on the assumption that the process mean is zero and comment on the detectability of the shift in mean from 0 to 0.25. Next, vary the shift in mean and comment on the detectability of the mean.

Project 2:

Construct a CUSUM chart and repeat the experiments in Project 1 for various window lengths. Comment upon the detectability and the average run length of the CUSUM chart depending on the window length. Empirically estimate the PDF of the CUSUM samples and comment on the relationship between the distribution function and the window length with respect to the central limit theorem. Is a CUSUM chart designed to detect small changes in the variable variance? Tip: carry out a Monte Carlo simulation and examine the asymptotic definition of a CUSUM sample.

Project 3:

Develop EWMA charts and repeat the experiments in Project 1 for various weighting parameters. Comment upon the detectability and the average run length depending on the weighting parameter. Is an EWMA chart designed to detect small changes in the variable variance? Tip: examine the asymptotic PDF of the EWMA samples for a change in variance.

Project 4:

Based on the analysis in Projects 2 and 3, study the literature and propose ways on how to detect small changes in the variable variance. Is it possible to construct hypothetical cases where a shift in mean and a simultaneous reduction in variance remains undetected? Suggest ways to detect such hypothetical changes.





1It follows from a correlation coefficient of zero that the covariance is also zero. This, in turn, implies that two Gaussian distributed variables are statistically independent.

2Two uncorrelated Gaussian distributed variables that have the same variance describe independently and identically distributed or i.i.d. sequences.


Chapter 2

Multivariate data modeling methods

The last chapter has introduced the principles of SPC and motivated the required multivariate extension to prevent excessive Type II errors if the recorded process variables are highly correlated. The aim of this chapter is to present different methods that generate a set of t-variables that are defined as score variables. Under the assumption that the process variables follow a multivariate Gaussian distribution, these score variables are statistically independent to circumvent increased levels of Type II errors. According to Figures 1.7 and 1.8, the generation of these score variables relies on projecting the recorded samples onto predefined directions in order to extract as much information from the recorded process variables as possible.

The data reduction techniques, introduced in the literature, are firmly based on the principle of establishing sets of latent variables that capture significant and important variation that is encapsulated within the recorded data. The score variables form part of these latent variable sets. For process monitoring, the variation that the latent variable sets extract from the recorded process variables is of fundamental importance for assessing product quality, process safety and, more generally, whether the process is in-statistical-control. These aspects are of ever growing importance to avert risks to the environment and to minimize pollution.

Data analysis and reduction techniques can be divided into single-block and dual-block techniques. The most notable single-block techniques include:


	Principal Component Analysis (Pearson 1901);

	Linear or Fisher's Discriminant Analysis (Duda and Hart 1973); and

	Independent Component Analysis (Hyvärinen et al. 2001).



Dual-block techniques, on the other hand, divide the recorded data sets into one block of predictor or cause variables and one block of response or effect variables and include:


	Canonical Correlation Analysis (Hotelling 1935; Hotelling 1936);

	Reduced Rank Regression (Anderson 1951);

	Partial Least Squares (Wold 1966a,b); and

	Maximum Redundancy (van den Wollenberg 1977),



among others. These listed single- and dual-block techniques are collectively referred as latent variable techniques.

From this list of techniques, the focus in the research literature has been placed on variance/covariance-based techniques as most appropriate for process monitoring applications. This has been argued on the basis of capturing the process variation, that is, encapsulated in the variance among and the covariance between the recorded process variables. These techniques are Principal Component Analysis (PCA) and Partial Least Squares (PLS), which are discussed and applied in this chapter and described and analyzed in Part IV of this book.

It should be noted that the research community has also developed latent variable techniques for multiple variable blocks, referred to as multi-block methods (MacGregor et al. 1994; Wangen and Kowalski 1989). These methods, however, can be reduced to single-block PCA or dual-block PLS models, for example discussed in Qin et al. (2001), Wang et al. (2003), Westerhuis et al. (1998). The methods used in this book are therefore limited to PCA and PLS.

As the focus for presenting MSPC technology in this chapter is based on its exploitation as a statistically based process monitoring tool, details of PCA and PLS are given using an introduction of the underlying data model, a geometric analysis and by presenting simple simulation examples in Sections 2.1 and 2.2, respectively. This allows a repetition of the results in order to gain familiarization with both techniques. A detailed statistical analysis of both techniques are given in Chapters 2 and Chapters 10.

Section 2.3 presents an extension of the PLS algorithm after analyzing that PCA and PLS fail to produce a latent variable data representation for a more general data structure. The validity of the general data structure is demonstrated by an application study of a distillation process in Part II of this book, which also includes an application study involving the applications of PCA. Section 2.4 then introduces methods for determining the number of the latent variable sets for each method. To enhance the learning outcomes, this chapter concludes with a tutorial session including short questions and calculations as well as homework type projects in Section 2.5.

2.1 Principal component analysis

This section introduces PCA using a geometrical analysis. Chapter 9 provides a more comprehensive treatment of PCA, including its properties, and further information may also be taken from the research literature, for example references Anderson (2003); Jolliffe (1986); Mardia et al. (1979); Wold et al. (1987). For a set of highly correlated process variables, PCA allows reducing the number of variables to be monitored by defining a significantly reduced set of latent variables, referred to as principal components, that describe the important process variation that is encapsulated within the recorded process variables.

2.1.1 Assumptions for underlying data structure

According to Figure 1.9, the important process variation can be described by projecting the two variables onto the semimajor of the control ellipse. This is further illustrated in Figure 2.1, which shows that the two correlated variables can be approximated with a high degree of accuracy by their projection onto the semimajor of the control ellipse. It can be seen further that the variance of the error of approximating both process variables using their projection onto the semimajor is relatively small compared to the variance of both process variables.


Figure 2.1 Schematic diagram of reconstructing two process variables by their projection onto the semimajor.

[image: 2.1]

This analysis therefore suggests utilizing the following data structure for the two process variables

2.1 [image: 2.1]

where [image: 0356] are the approximated values of the original process variables z1 and z2. In analogy to Figure 2.1, the vector [image: 0359] describes the orientation of the semimajor of the control ellipse.

With this in mind, approximating the samples of z1 and z2 relies on projecting the scatter points onto the semimajor. If the length of [image: 0362] is 1, the approximation is equal to [image: 0363]1, which the proof of Lemma 2.1.1 highlights. With respect to (2.1), the variable s is defined as the source signal, whilst [image: 0365] and [image: 0366] are error variables.

On the basis of the two-variable example above, the following general data model can be assumed for nz ≥ 2 recorded process variables

2.2 [image: 2.2]

Here, [image: 0368] is a vector of measured variables, [image: 0369] is a parameter matrix of rank n < nz, [image: 0371] is a vector of source variables representing the common cause variation of the process, [image: 0372] describes the stochastic variation of the process driven by common cause variation which is centered around the mean vector [image: 0373], [image: 0374] is an error vector, [image: 0375] is the approximation of z using common cause variation [image: 0377], and [image: 0378] represents the stochastic variation of the recorded variables [image: 0379].

It should be noted that the subscript t symbolically implies that [image: 0381] is the true representation of the variable interrelationships, whilst the error vector [image: 0382] represents measurement uncertainty and the impact of unmeasured and naturally occurring stochastic disturbances. With respect to SPC, unmeasured deterministic disturbances or stochastic disturbances of a large magnitude describe special cause variation that lead to a change of the mean vector [image: 0383] and/or changes in the covariance matrix [image: 0384].

The space spanned by the linearly independent column vectors in Ξ is defined as the model subspace, which is an n-dimensional subspace of the original nz-dimensional data space. The data model in (2.2) gives rise to the construction of a second subspace that is orthogonal to the model subspace and referred to as the residual subspace. The residual subspace is complementary to the model subspace and of dimension nz − n.

With respect to Figure 2.1, the semimajor and semiminor are the model subspace and the residual subspace, respectively. It is important to note these spaces only describe the stochastic component of the data vector z, which is [image: 0390]. Otherwise, both subspaces do not include the element 0 unless [image: 0392] and are, by definition, not subspaces.

Assumptions imposed on the data model in (2.2), describing highly correlated process variables, include:


	that each vector z, z0, s, and [image: 0396], stores random variables that follow Gaussian distributions; and

	that each of these vectors do not possess any time-based correlation.



The second assumption implies that the vectors s and [image: 0398] have the following properties:


	E{s(k)sT(l)} = δklSss;

	[image: 0400];

	[image: 0401]; and

	[image: 0402].



Here, k and l are sample instances, δkl is the Kroneker delta, that is 0 for all k ≠ l and 1 if k = l, and [image: 0408] and [image: 0409] are covariance matrices for s and [image: 0411], respectively. Table 2.1 shows the mean and covariance matrices for each vector in (2.2). The condition that [image: 0412] implies that s and [image: 0414] are statistically independent.

Table 2.1 Mean vector and covariance matrices of stochastic vectors in Equation (2.2).


	Vector
	Mean vector
	Covariance matrix



	s
	0
	Sss


	zs
	0
	[image: 1107]


	[image: 1108]
	[image: 1109]
	[image: 1110]



	[image: 1111]
	0
	[image: 1113]


	[image: 1114]
	0
	[image: 1116]


	z
	[image: 1118]
	[image: 1119]




It should be noted that the assumption of [image: 0415] is imposed for convenience. Under this condition, the eigendecomposition of [image: 0416] provides a consistent estimation of the model subspace spanned by the column vectors of Ξ if the number of recorded samples goes to infinity. This, however, is a side issue as the main aim of this subsection is to introduce the working of PCA as a MSPC tool. Section 6.1 shows how to consistently estimate the model subspace if this assumption is relaxed, that is [image: 0418] is no longer a diagonal matrix storing equal diagonal elements.

Prior to the analysis of how PCA reduces the number of variables, let us reconsider the perfect correlation situation discussed in Subsection 1.2.2. This situation arises if the error vector [image: 0419] in (2.2) is set to zero. In this case, it is possible to determine the source variable set, s, directly from the process variables z if the column vectors of Ξ are orthonormal, i.e. mutually orthogonal and of unit length.





Lemma 2.1.1

If the column vectors of Ξ are mutually orthonormal, the source variables, s, are equal to the orthogonal projection of the stochastic component of the measured vector, [image: 0425], onto [image: 0426], that is [image: 0427], [image: 0428],  …  , [image: 0430] in the error free case, i.e. [image: 0431].











Proof.

If the column vectors of Ξ are orthonormal, the matrix product ΞTΞ is equal to the identity matrix. Consequently, if z0 = Ξs, the source signals can be extracted by ΞTz0 = ΞTΞs = s.





On the other hand, if the column vectors of Ξ are mutually orthonormal but the error vector is no longer assumed to be zero, the source signals can be approximated by ΞTz0, which follows from

2.3 [image: 2.3]

The variance of [image: 0438], however, must be assumed to be larger than that of [image: 0439], i.e. [image: 0440] for all 1 ≤ i ≤ nz, to guarantee an accurate estimation of s.

2.1.2 Geometric analysis of data structure

The geometric analysis in Figure 2.2 confirms the result in (2.3), since

2.4 [image: 2.4]

where [image: 0443] is the angle between z0 and [image: 0445]. Given that [image: 0446], reformulating (2.3) yields

2.5 [image: 2.5]


Figure 2.2 Orthogonal projection of z0 onto orthonormal column vector of Ξ.

[image: 2.2]

The projection of a sample onto the column vectors of Ξ is given by

2.6 [image: 2.6]

The estimation of s, however, does not reduce to the simple projection shown in (2.4) and (2.5) if the column vectors of Ξ are not mutually orthonormal. To address this, PCA determines nz orthonormal loading vectors such that n of them span the same column space as Ξ, which are stored as column vectors in the matrix [image: 0453]. The remaining nz − n loading vectors are stored in the matrix [image: 0455]. These two matrices have the following orthogonality properties

2.7 [image: 2.7]

The loading vectors are eigenvectors of [image: 0456] and the above orthogonality properties give rise to the calculation of the following orthogonal projections

2.8 [image: 2.8]

The ith element stored in [image: 0458] represents the coordinate describing the orthogonal projection of z0 onto the ith column vector in P. Note that the column space of P is identical to the column space of Ξ. Moreover, the column vectors of P and Pd are base vectors spanning the model subspace and the residual subspace, respectively.

Given that the column vectors stored in Pd are orthogonal to those in P, they are also orthogonal to those in Ξ. Consequently, [image: 0469]. In this regard, the jth element of td is equal to the coordinate describing the orthogonal projection of z0 onto the jth column vector in Pd. In other words, the elements in t are the coordinates describing the orthogonal projection of z0 onto the model subspace and the elements in td are the coordinates describing the orthogonal projection of z0 onto the residual subspace. This follows from the geometric analysis in Figure 2.2.

On the basis of the preceding discussion, Figure 2.3 shows an extension of the simple 2-variable example to a 3-variable one, where two common cause ‘source’ variables describe the variation of 3 process variables. This implies that the dimensions of the model and residual subspaces are 2 and 1, respectively.


Figure 2.3 Schematic diagram of showing the PCA model subspace and its complementary residual subspace for 3 process variables.

[image: 2.3]

2.1.3 A simulation example

Using the geometric analysis in Figure 2.3, this example shows how to obtain an estimate of the model subspace [image: 0479] and the residual subspace, defined by the cross product of [image: 0480] and [image: 0481]. The data model for this example is

2.9 [image: 2.9]

which has a mean vector of zero. The elements in s follow a Gaussian distribution

2.10 [image: 2.10]

The error vector [image: 0483] contains random variables that follow a Gaussian distribution too

2.11 [image: 2.11]

From this process, a total of K = 100 samples, z0(1),  …  , z0(k),  …  , z0(100) are simulated. Figure 2.4 shows time-based plots for each of the 3 process variables. PCA analyzes the stochastic variation encapsulated within this reference set, which leads to the determination of the model subspace, spanned by the column vectors of Ξ, and the complementary residuals subspace. Chapter 9 highlights that this involves the data covariance matrix, which must be estimated from the recorded data

2.12 [image: 2.12]


Figure 2.4 Time-based plot of simulated process variables.

[image: 2.4]

For a nonzero mean vector, it must be estimated from the available samples first

2.13 [image: 2.13]

which yields the following estimation of the data covariance matrix

2.14 [image: 2.14]

The estimation of the data covariance matrix from the recorded reference data is followed by determining its eigendecomposition

2.15 [image: 2.15]

which produces the following estimates for the eigenvector and eigenvalue matrices

2.16 [image: 2.16]

and

2.17 [image: 2.17]

respectively.

Given that Ξ, Sss and [image: 0493] are known, the covariance matrix for the recorded variables can be determined as shown in Table 2.1

2.18 [image: 2.18]

Subsection 6.1 points out that [image: 0494] asymptotically converges to [image: 0495]. To examine how accurate the PCA model has been estimated from K = 100 samples, the eigendecomposition of [image: 0497] can be compared with that of [image: 0498]

2.19 [image: 2.19]

The departures of the estimated eigenvalues are:


	[image: 0499];

	[image: 0500]; and

	[image: 0501].



To determine the accuracy of the estimated model subspace, we can compare the normal vector of the actual model subspace with the estimated one. The one for the model subspace is proportional to the cross product, denoted here by the symbol  × , of the two column vectors of Ξ
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As the simulated process has two normally distributed source signals, the two principal components associated with the two largest eigenvalues must, accordingly, be associated with the model subspace, whilst the third one represents the complementary residual subspace, spanned by the third eigenvector. This is based on the fact that the eigenvectors are mutually orthonormal, as shown in Chapter 9. The last column of the matrix [image: 0504] stores the third eigenvector and the scalar product of this vector with n yields the minimum angle between the true and estimated residual subspace
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Equation (2.21) shows that the estimated model subspace is rotated by just over 2° relative to the actual one. In contrast, the one determined from [image: 0507], as expected, is equal to n.

Figure 2.2 shows that storing the 100 samples consecutively as row vectors in the matrix [image: 0509] allows determining the orthogonal projection of these samples onto the estimated model subspace as follows
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where [image: 0510] and [image: 0511] store the coordinates that determine the location of samples when projected orthogonally onto [image: 0512] and [image: 0513], respectively.

It should be noted that even if the column vectors of Ξ are orthonormal they may be different to the eigenvectors of [image: 0515]. This is because PCA determines the principal directions such that the orthogonal projection of z0 produces a maximum variance for each of them. More precisely, [image: 0517], which is equal to [image: 0518], and follows from the analysis of PCA in Chapter 9. These expectations, however, are equal to the eigenvalues of [image: 0519], which, accordingly, represent the variances of the projections, i.e. the t-scores or principal components such that λ1 ≥ λ2 ≥  ≥ λn.

Another aspect that this book discusses is the use of scatter diagrams for the loading vectors. Figure 1.9 shows a scatter diagram for two highly correlated variables. Moreover, Subsection 3.1.1 introduces scatter diagrams and the construction of the control ellipse, or ellipsoid if the dimension exceeds 2, for the score variables or principal components. Scatter diagrams for the loading vectors, on the other hand, plot the elements of the pairs or triples of loading vectors, for example the ith and the jth loading vector. This allows identifying groups of variables that have a similar covariance structure. An example and a detailed discussion of this is available in Kaspar and Ray (1992). The application studies in Chapters 4 and 5 also present a brief analysis of the variable interrelationships for recorded data sets from a chemical reaction and a distillation process, respectively.

2.2 Partial least squares

As in the previous section, the presentation of PLS relies on a geometric analysis. Chapter 10 provides a more detailed analysis of the PLS algorithm, including its properties and further information is available from the research literature, for example (de Jong 1993; de Jong et al. 2001; Geladi and Kowalski 1986; Höskuldsson 1988; Lohmoeller 1989; ter Braak and de Jong 1998). In contrast to PCA, PLS relies on the analysis of two variable sets that represent the process input and output variable sets shown in Figure 2.5. Alteratively, these variable sets are also referred to as the predictor and response, the cause and effect, the independent and dependent or the regressor and regressand variables sets in the literature. For simplicity, this book adopts the notation input and output variable sets to denote [image: 0523] as the input and [image: 0524] as the output variable sets. These sets span separate data spaces denoted as the input and output spaces, which Figure 2.5 graphically illustrates.


Figure 2.5 Division of the process variables into input and output variables.

[image: 2.5]


Figure 2.6 Schematic diagram of a distillation unit.

[image: 2.6]

Between these variables sets, there is the following linear parametric relationship
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where x0 and y0 are zero mean random vectors that follow a Gaussian distribution. Similar to (2.2), the recorded variables are defined by [image: 0527] and [image: 0528] with [image: 0529] and [image: 0530] being mean vectors. The matrix [image: 0531] is a parameter matrix describing the linear relationships between x0 and the uncorrupted output variables [image: 0533], and [image: 0534] is an error vector, representing measurement uncertainty for the output variables or the impact of unmeasured disturbances for example.

The error vector [image: 0535] is also assumed to follow a zero mean Gaussian distribution and is statistically independent of the input vector x0, implying that [image: 0537]. Moreover, the covariance matrices for x0, ys and [image: 0540] are [image: 0541], [image: 0542] and [image: 0543], respectively. To denote the parametric matrix [image: 0544] by its transpose relates to the identification of this matrix from recorded samples of x and y which are stored as row vectors in data matrices. This is discussed further in Chapter 10.

2.2.1 Assumptions for underlying data structure

With respect to the preceding discussion, the recorded variables are highly correlated. Separating them into the mean centered input and output variable sets implies that the individual sets are also highly correlated. According to (2.23), there is also considerable correlation between the input and output variables:


	as the uncorrupted output variables are a linear combination of the input variables; and

	the assumption that [image: 0547] for all 1 ≤ i ≤ nx, where [image: 0549] is the ith column vector of [image: 0551].



To illustrate the correlation issue in more detail, consider the distillation process in Figure 2.6. The output variables of this process are mainly tray temperature, pressure and differential pressure measurements inside the columns, and concentrations (if measured). These variables follow common cause variation, for example introduced by variations of the fresh feed and its composition as well as the temperatures and flow rate of the input streams into the reboilers and overhead condensers. Other sources that introduce variation are, among others, unmeasured disturbances, changes in ambient temperature and pressure, and operator interventions. Through controller feedback, the variations of the output variables will propagate back to the input variables, which could include flow rates, temperatures of the heating/cooling streams entering and leaving the reboilers and overhead condensers. The degree of correlation within both variable sets suggests the following data structure for the input and output variables
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Here, [image: 0552] and [image: 0553] are parameter matrices, [image: 0554] and [image: 0555] are the residual vectors of the input and output sets, respectively, which describe a negligible contribution for predicting the output set. The vector s stores the source signals describing common cause variation of the input and output sets. Recall that [image: 0557] is the error vector associated with the output variables and [image: 0558] under the assumptions (i) that the covariance matrix of the input variables has full rank nx, (ii) that n = nx and (iii) that the number of samples for identifying the PLS model in (2.24) K → ∞.

The source and error signals are assumed to be statistically independent of each other and follow a zero mean Gaussian distribution
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Moreover, the residual vectors e and f are also assumed to follow zero mean Gaussian distributions with covariance matrices See and Sff, respectively. The residual vectors, however, are generally not statistically independent, i.e. E{efT} ≠ 0. Subsection 2.3.2 discusses the independence of the error vectors in more detail. Asymptotically, if n = nx and K → ∞, however, [image: 0569] and See → 0.

By comparing the causal data model for PLS with that of the non-causal PCA one in (2.2), it should be noted that there are similarities. The parameter matrix Ξ for the PCA data model becomes [image: 0572] and [image: 0573] to describe the influence of the source variables upon the input and output variables, respectively. Moreover, the error variable g for the PCA data structure becomes e and f for the input and output variable sets, respectively. For PCA, however, if the number of source signals is assumed to be n = nz, the variable set z0 can be described by [image: 0579]. This follows from the fact that the covariance matrix of z0 is equal to its eigendecomposition for n = nz, as shown in (2.15) for [image: 0582]. With regards to PLS, however, this property is only maintained for the input variable set x0, as e → 0 for n → nx. In contrast, as n → nx the error vector [image: 0587].

Using the terminology for training artificial neural networks in an MSPC context, assuming that the variable sets z0 and x0 are identical PCA is an unsupervised learning algorithm for determining latent variable sets. In contrast, PLS is a supervised learning algorithm, which incorporates the parametric relationship relationship [image: 0590] into the extraction of sets of latent variables. Although this comparison appears hypothetical, this is a practically relevant case. An example is if the output variable set y0 consists of concentration measurements that represent quality variables which are not recorded with the same frequency as the variable set x0. In this case, only the z0 = x0 is available for on-line process monitoring.

2.2.2 Deflation procedure for estimating data models

PLS computes sequences of linear combinations of the input and output variables to determine sets of latent variables that describe common cause variation. The first set of latent variables includes
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where w1 and q1 are weight vectors of unit length that determine a set of linear combinations of x0 and y0, respectively, and yield the score variables t1 and u1. Geometrically, the linear combinations result in the orthogonal projections of the data vectors x0 and y0 onto the directions defined by w1 and q1, respectively. This follows from the fact that [image: 0604] and [image: 0605] are scalar products
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and
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where [image: 0606] and [image: 0607] are the angles between the vector pairs x0 and w1, and y0 and q1, respectively. Consequently, the score variables t1 and u1 describe the minimum distance between the origin of the coordinate system and the orthogonal projection of x0 and y0 onto w1 and q1, respectively. The weight vectors are determined to maximize the covariance between t1 and u1.

Chapter 10 gives a detailed account of the PLS objective functions for computing the weight vectors. After determining the score variables, the t-score variable is utilized to predict the input and output variables. For this, PLS computes a set of loading vectors, leading to the following prediction of both variable sets
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Here, p1 and [image: 0621] are the loading vectors for the input and output variables, respectively. As before, the notation [image: 0622] represents the prediction or estimation of a variable. Chapter 10, again, shows the objective function for determining the loading vectors. The aim of this introductory section on PLS is to outline its working and how to apply it.

It should be noted, however, that the weight and the loading vector of the output variables, q1 and [image: 0624], are equal up to a scalar factor. The two weight vectors, w1 and q1, the two loading vectors, p1 and [image: 0628], and the two score variables, t1 and u1 are referred to as the first set of latent variables (LVs). For computing further sets, the PLS algorithm carries out a deflation procedure, which subtracts the contribution of previously computed LVs from the input and output variables. After computing the first set of LVs, the deflation procedure yields
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where e2 and f2 are residual vectors that represent variation of the input and output variable sets which can be exploited by the second set of LVs, comprising of the weight vectors w2 and q2, the loading vectors p2 and [image: 0636] and the score variables t2 and u2. Applying the deflation procedure again yields
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Defining the original data vectors x0 and y0 as e1 and f1, the general formulation of the PLS deflation procedure becomes
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and the ith pair of LVs include the weight vectors wi and qi, the loading vectors pi and [image: 0647] and the score variables ti and ui.

Compared to the data structure in (2.24), the objective of the PLS modeling procedure is to:


	estimate the column space of parameter matrices [image: 0650] and [image: 0651]; and

	extract the variation of the source variable set s.



From the n sets of LVs, the p- and [image: 0654]-loading vectors, stored in separate matrices
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are an estimate for the column space of [image: 0655] and [image: 0656]. The t-score variables
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represent the variation of the source variables.

2.2.3 A simulation example

To demonstrate the working of PLS, an application study of data from a simulated process is now presented. According to (2.23), the process includes three input and two output variables and the following parameter matrix
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The input variable set follows a zero mean Gaussian distribution with a covariance
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The error variable set, [image: 0657] follows a zero mean Gaussian distribution describing i.i.d. sequences [image: 0658]. Figure 2.7 shows a total of 100 samples, that were simulated from this process, and produced the following covariance matrices
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Figure 2.7 Simulated samples of input and output variables.

[image: 2.7]

Equations 2.38 and 2.39 show how to compute the cross-covariance matrix
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or
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If [image: 0659] and [image: 0660] are equal to zero, the estimation of the covariance and cross-covariance matrices requires the use of (2.13) and (2.38). If this is not the case for at least one of the two variable sets, use (2.14) and (2.38) to estimate them.

Knowing that [image: 0661] is statistically independent of x0, (2.23) shows that these covariance matrices [image: 0663] and [image: 0664] are equal to
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and
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respectively. Inserting [image: 0665], [image: 0666] and [image: 0667], defined in (2.35) and (2.36), into (2.40) and (2.41) yields
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Comparing the true matrices with their estimates shows a close agreement.

Using the estimated matrices [image: 0668] and [image: 0669], a PLS model is determined next. The preceding discussion has outlined that a PLS model relies on the calculation of weight vectors of length 1. The projection of the input and output variables onto these weight vectors then produces the score variables. To complete the computation of one set of latent variables, the final step is to determine the loading vectors and the application of the deflation procedure to the input and output variables.

Figure 2.8 illustrates the working of the iterative PLS approach to the input and output data shown in Figure 2.7. The left and right column of plots present the results for the individual sets of latent variables, respectively. The top, middle and bottom rows of plots summarize the results of the first, the second and the third sets of latent variables, respectively. The first set of latent variables are computed from the original input and output variable sets and the first two plots at the top show the samples and the computed direction of the weight vectors.


Figure 2.8 Graphical illustration of the sample projections in the input and output spaces for determining the first, second and third set of latent variables.

[image: 2.8]

The control ellipses in the right plots are for the two output variables. The depicted samples in the middle and lower rows of plots represent the samples after the first and second deflation procedure has been carried out. It is interesting to note that after applying the first deflation procedure to the output variables, there is little variation left in this variable set, noticeable by the small control ellipse constructed on the basis of the covariance matrix of [image: 0670]. The deflation procedure also reduces the remaining variation of the input variables when comparing the top left with the middle left plot.

The third and final set of LVs is determined from the input and output variable sets after deflating the first and second sets of LVs. Comparing the plots in the bottom row with those in the middle of Figure 2.8 suggests that there is hardly any reduction in the remaining variance of the output variables but a further reduction in variation of the input variables. The analysis in Chapter 10 shows that after deflating the third set of latent variables from the input and output variables, the residuals of the input variable set is zero and the residuals of the output variables are identical to those of applying a regression model obtained from the ordinary least squares (OLS). Asymptotically, the residuals f converge to [image: 0672] as K → ∞.

Equation 2.43 lists the estimates for the w- and q-weight, the p- and [image: 0674]-loading matrices and the maximum covariance values for the t- and u-score variables
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Using the true covariance matrices, it is possible to compare the accuracy of the estimated ones. It follows from the analysis in Chapter 10 that each LV in one set can be computed either from the w- or the q-weight vector. It is therefore sufficient to determine the departure of the estimated w-weight vectors. The estimation error of the other LVs can be computed from the estimation error of the covariance matrices and the w-weight vector. For example, the estimation error for the q-weight vector is
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It is assumed here that [image: 0675], [image: 0676] and [image: 0677] [image: 0678]. The true w-weight matrix is equal to
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Since the w-weight vectors are of unit length, the angles between the estimated and true ones can directly be obtained using the scalar product [image: 0679] and are 0.2374°, 0.6501° and 0.6057° for the first, second and third vectors, respectively. The covariances of the first, the second and the third pair of score variables, obtained from the true covariance matrices, are 3.2829, 0.1296 and 0.0075 respectively, and close to the estimated ones stored in the vector [image: 0686] in (2.43). The estimation error for the w-weight vectors are around 0.25° for the first and around 0.65° for the second and third ones and is therefore small. The estimation accuracy, however, increases with the number of recorded samples. After inspecting the estimation accuracy, a very important practical aspect, namely how to interpret the results obtained, is given next.

So far, the analysis of the resultant PLS regression model has been made from Figure 2.8 by eye, for example, noticing that the number of samples outside the control ellipse describing the error vector [image: 0689]. A sound statistically-based conclusions, however, requires a more detailed investigation. For example, such an analysis helps in determining how many sets of latent variables need to be retained in the PLS model and how many sets can be discarded. One possibility to assess this is the analysis of the residual variance, given in Table 2.2.

Table 2.2 Variance reduction of PLS model to x0 and y0.


	LV Set
	Input Variables x0 ([image: 1123])
	Output Variables y0 ([image: 1125])



	1
	17.3808%
	3.1522%



	2
	0.5325%
	2.1992%



	3
	0.0000%
	2.0875%




The percentage values describe the cumulative variance remaining.

Equation (2.46) introduces a measure for the residual variance of both variable sets, [image: 0690] and [image: 0691], after deflating the previously computed i − 1 LVs
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where trace{ · } is the sum of the diagonal elements of a squared matrix,

2.47 [image: 2.47]

and
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The assumption that the process variables are normally distributed implies that the t-score variables [image: 0694] are statistically independent, which the analysis in Chapter 10 yields. Hence, [image: 0695] reduces to a diagonal matrix.

Summarizing the results in Table 2.2, the first set of LVs contribute to a relative reduction in variance of 82.6192% for the input and 96.8478% for the output variable set. For the second set of LVs, a further relative reduction of 16.8483% can be noticed for the input variable set, whilst the reduction for the output variables only amounts to 0.9530%. Finally, the third set of LVs only contribute marginally to the input and output variables by 0.5225% and 0.1117%, which is negligible.

The analysis in Table 2.2 therefore confirms the visual inspection of Figure 2.8. Given that PLS aims to determine a covariance representation of x0 and y0 using a reduced set of linear combinations of these sets, a parsimonious selection is to retain the first set of LVs and discard the second and third sets as insignificant contributors.

The final analysis of the PLS model relates to the accuracy of the estimated parameter matrix, [image: 0698]. Table 2.2 shows that x0 is completely exhausted after deflating 3 sets of LVs. Furthermore, the theoretical value for [image: 0700] can be obtained
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As stated in the preceding discussion, the estimated regression matrix, including all three sets of LVs, is equivalent to that obtained using the OLS approach. Equation (2.50) shows this matrix from the simulated 100 samples
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Comparing the estimated parameter matrix with the true one, shown in (2.35), it should be noted that particularly the first column of [image: 0701] departs from [image: 0702], whilst the second column provides a considerably closer estimate. Larger mismatches between the estimated and true parameter matrix can arise if:

	there is substantial correlation among the input variables (Wold et al. 1984); and

	the number of observations is ‘small’ compared to the number of variables (Ljung 1999; Söderström and Stoica 1994).



By inspecting the [image: 0703] in (2.36), non-diagonal elements of 0.9 and 0.8 show indeed a high degree of correlation between the input variables. Subsection 6.2.1 presents a further and more detailed discussion of the issue of parameter identification. The issue related to the accuracy of the PLS model is also a subject in the Tutorial Session of this chapter and further reading material covering the aspect of model accuracy is given in Höskuldsson (1988, 1996).

2.3 Maximum redundancy partial least squares

This section examines the legitimate question of why do we need both, the single-block PCA and the dual-block PLS methods for process monitoring. A more precise formulation of this question is: what can the separation of the recorded variable set to produce a dual-block approach offer that a single-block technique cannot? To address this issue, the first subsection extends the data models describing common cause variation in (2.2) and (2.24). Subsection 2.3.2 then shows that PCA and PLS cannot identify this generic data structure correctly. Finally, Subsection 2.3.3 introduces a different formulation of the PLS objective function that enables the identification of this generic data structure, and Subsection 2.3.4 presents a simulation example to demonstrate the working of this revised PLS algorithm.

2.3.1 Assumptions for underlying data structure

The preceding discussion in this chapter has outlined that PCA is a single-block technique that analyzes a set of variables. According to (2.2), this variable set is a linear combination of a smaller set of source signals that represent common cause variation. For each process variable, a statistically independent error variable is then superimposed to the contribution from the source signals.

On the other hand, PLS is a dual-block technique for which the recorded variables are divided into an input and an output set. Figure 2.6 shows that this division may not be straightforward. Whilst the fresh feed (stream F1) is easily identified as an input and top draw 1 (stream F7) and top draw 2 (stream F14) are outputs, how can the remaining streams (flow rates), temperature variables, pressure measurements, differential pressures or concentrations (if measured on-line) be divided?

An approach that the literature has proposed is selecting the variables describing the product quality as the outputs and utilizing the remaining ones as ‘inputs’. This arrangement separates the variables between a set of cause variables that describe, or predict, the variation of the output or effect variables. A question that one can justifiably ask is why do we need PLS if PCA is able to analyze a single-block arrangement of these variables, which is conceptually simpler? In addition to that, the division into input and output variables may not be straightforward either.

The need for a dual-block technique becomes clear by revisiting Figure 2.6. The concentrations (the quality variables y0), are influenced by changes affecting the energy balance within the distillation towers. Such changes manifest themselves in the recorded temperatures and pressures for example. On the other hand, there are also variables that relate to the operation of reboilers 1 and 2, overhead condensers 1 and 2, both reflux vessels, the heat exchanger and the pump that do not affect the quality variables. The variation in these variables, however, may be important to monitor the operation of the individual units and consequently cannot be ignored.

A model to describe the above scenario is an extension of (2.24)
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where s represents common cause variation in both variable sets and s′ describes variation among the input or cause variables that is uncorrelated to the output variables and hence, uninformative for predicting them. The next subsection examines whether PCA and PLS can identify the data structure in (2.51).

2.3.2 Source signal estimation

The model estimation w.r.t. (2.51) is separately discussed for PCA/PLS.

2.3.2.1 Model identification using PCA

The advantage of a dual block method over a single block approach, when applied to the above data structure, is best demonstrated by reformulating (2.51)
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Now, applying PCA to the data structure in (2.52) yields the following estimate for the source signals and residuals
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and
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respectively. Here, P and Pd store the first n and the remaining nz − n eigenvectors of the data covariance matrix [image: 0711], respectively, where
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Note that above covariance matrix is divided into a part that represents common cause variation and a second part that describes the common cause variation that only affects input variables and the error term for the output variables. Assuming that the model subspace, spanned by the eigenvectors stored in P is consistently estimated,2 the elements in [image: 0713] are linear combinations of [image: 0714]. Consequently, it may not be possible to extract and independently monitor [image: 0715] using PCA.

Moreover, the covariance matrix [image: 0716] is not known a priori and may have significantly larger entries compared to the error covariance matrix [image: 0717]. It is also possible that [image: 0718] is the dominant contribution of the joint variable set z0. Both aspects render the estimation of the column space [image: 0720] using PCA a difficult task, given that the error covariance matrix is not of the form [image: 0721]. More precisely, Subsection 6.1.1 discusses how to estimate the error covariance matrix and the model subspace simultaneously using maximum likelihood PCA.

Based on this simultaneous estimate, the source signals contribution [image: 0722] must be considered as additional error variables that:


	may have a considerably larger variance and covariance values compared to those of [image: 0723]; and

	the rank of the covariance matrix [image: 0724] is nx − n and not nx.



The assumption for estimating the error covariance matrix, however, is that it is a full rank matrix. Hence, PCA is (i) unable to separate the source signals of the input variables into those commonly shared by the input and output variables, and the remaining ones that are only encapsulated in the input variables and (ii) unable to identify the data structure using a maximum likelihood implementation.

2.3.2.2 Model Identification Using PLS

Different from PCA, PLS extracts t-score variables from the input variables. It is therefore tempting to pre-conclude that PLS extracts common cause variation by determining the n t-score variables that discard the non-predictive variation in [image: 0728]. The fact that the cross-covariance matrix [image: 0729] does not represent the signal contributions [image: 0730] and [image: 0731] reinforces this assumption.

A more detailed analysis, however, yields that this is not the case. Equation 2.56 reexamines the construction of the weight vectors assuming that q is predetermined
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The score variables are linear combination of x0 and y0, which implies that
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Equation 2.57 dictates the condition for separating s and s′ is [image: 0737]. Applying 1.8 to reformulate the covariance of the pair of score variables yields
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where rtu is the correlation coefficient between the score variables. If [image: 0739], it follows from (2.58) that
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and hence, the t-score variable does not include the non-predictive contribution [image: 0740]. This, however, generally cannot be assumed. It therefore follows that PCA and PLS cannot estimate a model that discriminates between:


	the common cause variation of the input and output variables;

	the non-predictive variation encapsulated in the input variables only; and

	the error variables corrupting the outputs.



The next subsection develops an alternative PLS formulation that extracts the common cause variation and discriminates between the three different types of variation.

2.3.3 Geometric analysis of data structure

The detailed examination of (2.56) to (2.58) yields that PLS effectively does not produce score variables that are related to model accuracy. This follows from the fact that the covariance criterion can be expressed by the product of the correlation coefficient times the square root of the variance products of the score variable. A larger variance for any of the score variables at the expense of a smaller correlation coefficient may, consequently, still produce a larger covariance. Model accuracy in the score space, however, is related to the correlation coefficient. The larger the correlation coefficient between two variables the more they have in common and hence, the more accurately one of these variables can predict the other.

Preventing PLS from incorporating P′s′ into the calculation of the t-score variables requires, therefore, a fresh look at its objective function. As outlined above, the key lies in determining weight vectors based on an objective function that relates to model accuracy rather than covariance. Starting with the following data structure
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for which the best linear unbiased estimator is the OLS solution (Henderson 1975)
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Using (2.60) and (2.61) gives rise to reformulate [image: 0742] as follows
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where [image: 0743]. It follows from (2.60) that the only contribution to [image: 0744] that can be predicted by the linear model is [image: 0745], since [image: 0746]. In a similar fashion to PCA, it is possible to determine a direction vector to maximize the following objective function
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where [image: 0747]. The optimal solution for (2.63) is

2.64 [image: 2.64]

The eigenvalue λ is the variance of the orthogonal projection of [image: 0749] onto q. The solution to (2.64) is the eigenvector associated with the largest eigenvalue of [image: 0751]. The eigenvector associated with the second largest eigenvalue captures the second largest contribution and so on.

Whilst this allows to extract weight vectors for y0, how to determine weight vectors for x0 to predict the u-score variable [image: 0754] as accurately as possible? By revisiting (2.57) and (2.58) it follows that the correlation coefficient rtu must yield a maximum to achieve this
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where [image: 0756] and t = wTx0. By incorporating the constraint [image: 0758], setting the variance of wTx0 to be 1, [image: 0760] and (2.65) becomes
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The fact that λ = E{(qTy0)2} follows from


	[image: 0762],

	[image: 0763], and

	[image: 0764],



so that [image: 0765]. The objective function in (2.66) therefore maximizes the correlation coefficient, [image: 0766], and has the following solution
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where the Lagrangian multiplier, μ, satisfies the constraint [image: 0768]. Next, (2.63) and (2.66) can be combined to produce the objective function
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which has the following solution for w and q
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and hence
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That both Lagrangian multiples have the same value follows from

2.71 [image: 2.71]

This solution relates to a nonsymmetric index of redundancy, introduced by Stewart and Love (1968) to describe the amount of predicted variance, and was first developed by van den Wollenberg (1977). Moreover, ten Berge (1985) showed that van den Wollenberg's maximum redundancy analysis represents a special case of Fortier's simultaneous linear prediction (Fortier 1966). The objective of the work in Fortier (1966) is to determine a linear combination of a set of predictors (inputs) that has a maximum predictability for all predictants (outputs) simultaneously.

The next step is to apply the standard PLS deflation procedure to determine subsequent sets of LVs. According to the data model in (2.51), only the contribution Ps in x0 is predictive for y0. By default, the solution of the objective function in (2.68) must discard the contribution P′s′. The next question is how many sets of latent variables can be determined by solving (2.68) and carrying out the PLS deflation procedure? The answer to this lies in the cross covariance matrix [image: 0775] as it only describes the common cause variation, that is, [image: 0776].

The loading vectors pi and [image: 0778] can now be computed by
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Utilizing (2.72), the deflation of the covariance matrix is

2.73 [image: 2.73]

and similarly for the cross-covariance matrix
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If the cross-covariance matrix is exhausted, there is no further common cause variation in the input variable set. One criterion for testing this, or a stopping rule according to the next section, would be to determine the Frobenius norm of the cross-covariance matrix after applying the ith deflation procedure

2.75 [image: 2.75]

If (2.75) is larger than zero, obtain the (i + 1)th pair of weight vectors, wi+1 and qi+1, by solving (2.70). On the other hand, if (2.75) is zero, the common cause variation has been extracted from the input variables.

It is important to note that (2.70) presents an upper limit for determining the maximum number of weight vector pairs. Assuming that ny ≤ nx, the rank of the matrix products [image: 0784] and [image: 0785] is ny. This follows from the fact that the rank of [image: 0787] is equal to ny. If n ≤ min(ny, nx), alternative stopping rules are discussed in Subsection 2.4.2. After extracting the common cause variation from x0, the objective function in (2.68) can be replaced by
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which is the PLS one. Table 2.3 shows the steps of this maximum redundancy PLS or MRPLS algorithm. This algorithm is an extension of the NIPALS algorithm for PLS, for example discussed in Geladi and Kowalski (1986), and incorporates the constraint objective function in (2.68). This implies that the actual data matrices X0 and Y0, storing a total of K samples of x0 and y0 in a consecutive order as row vectors, are utilized instead of [image: 0796] and [image: 0797].

Table 2.3 Algorithm for maximum redundancy PLS.


	Step
	Description
	Equation



	1
	Initiate iteration
	n = 1, i = 1, F(1) = Y0



	2
	Set up [image: 1129]
	[image: 1130]



	3
	Determine auxiliary vector
	[image: 1131]


	
	
	if i = n



	4
	Calculate w-weight vector
	[image: 1133]



	
	
	else [image: 1134]


	
	
	if i = n


	5
	Determine r-weight vector
	[image: 1136]


	
	
	else [image: 1137]


	6
	Compute t-score vector
	[image: 1138]



	7
	Determine q-weight vector
	[image: 1139]



	8
	Calculate u-score vector
	[image: 1140]



	
	
	if [image: 1141]



	9
	Check for convergence
	set [image: 1142] and go to Step 3


	
	
	else set [image: 1143] and go to Step 10



	
	
	if i = n : [image: 1145]


	10
	Determine p-loading vector
	else :



	
	
	[image: 1146]



	
	
	if i = n : [image: 1148]



	11
	Determine [image: 1149]-loading vector
	else :



	
	
	[image: 1150]



	12
	Deflate output data matrix
	[image: 1151]



	
	Check whether there is
	if so i = i + 1, n = n + 1



	13
	still significant variation
	and go to Step 3



	
	remaining in [image: 1154]
	if not i = i + 1, go to Step 14



	14
	Check whether i = nx
	if so then terminate else go to Step 2



The preceding discussion in this subsection has assumed the availability of [image: 0798] and [image: 0799], which has been for the convenience and simplicity of the presentation. Removing this assumption, the MRPLS algorithm relies on the data matrices X0 and Y0. The covariance and cross-covariance matrices can then be estimated, implying that the weight, score and loading vectors are estimates too.

That the MRPLS algorithm in Table 2.3 produces the optimal solution of the objective function in (2.68) follows from the iterative procedure described in Steps 3 to 8 in Table 2.3. With respect to Equation (2.70), the optimal solutions for [image: 0802] and [image: 0803] are the dominant eigenvectors3 of the positive semi-definite matrices
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respectively. Substituting Step 5 into Step 6 yields

2.78 [image: 2.78]

Now, substituting consecutively Step 4 and Step 3 into (2.78) gives rise to

2.79 [image: 2.79]

Finally, substituting Step 8 into (2.79)

2.80 [image: 2.80]

confirms that the iteration procedure in Table 2.3 yields the dominant eigenvector of

2.81 [image: 2.81]

as the q-weight vector. The equality in (2.81) is discussed in Chapter 10, Lemma 10.5.3 and Theorem 10.5.7. In fact, the iteration procedure of the MRPLS algorithm represents the iterative Power method for determining the dominant eigenvector of a symmetric positive semi-definite matrix (Golub and van Loan 1996). The dominant eigenvalue of [image: 0804] is K − 1 times the dominant eigenvalue of [image: 0806]. Now, substituting Step 3 into Step 4 gives rise to
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Next, consecutively substituting Steps 8, 7, 6 and then 5 into Equation (2.82) yields

2.83 [image: 2.83]

Hence, the iteration procedure of the MRPLS algorithm in Table 2.3 computes the optimal solution of the MRPLS objective function.

It should also be noted that, different from the PLS algorithm, the MRPLS algorithm produces an auxiliary vector [image: 0807]. This vector is, in fact, the w-weight vector for PLS. Furthermore, the w-weight vector for MRPLS is the product of [image: 0808] and the inverse of [image: 0809] or [image: 0810] when using the data matrices.

The algorithm presented in Table 2.3 relies on the fact that only the output data matrix needs to be deflated. Hence, the length constraint for the w-weight vector [image: 0811] is equivalent to [image: 0812]. It is important to note that deflating the output data matrix for the PLS algorithm requires the introduction of r-weight vectors, which is proven in Chapter 10, together with the geometric property that the w-weight vectors are mutually orthogonal to the p-loading vectors. Hence, MRPLS does not require the introduction of r-weight vectors.

Another important aspect that needs to be considered here relates to the deflated cross-covariance matrix. Equation (2.75) outlines that the Frobenius norm of [image: 0813] is larger than or equal to zero. For a finite data set, the squared elements of [image: 0814] may not be zero if the cross-covariance matrix is estimated. Hence, the PLS algorithm is able to obtain further latent variables to exhaust the input variable set. It is important to note, however, that the elements of [image: 0815] asymptotically converge to zero
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This presents the following problem for a subsequent application of PLS

2.85 [image: 2.85]

which yields an infinite number of solutions for [image: 0816] and [image: 0817]. In this case, it is possible to apply PCA to the deflated input data matrix in order to generate a set of nx − n t-score variables that are statistically independent of the t-score variables obtained from the MRPLS algorithm.

2.3.4 A simulation example

This example demonstrates the shortcomings of PLS and highlights that MRPLS can separately extract the common cause variation that affects the input and output variables and the remaining variation of the input variables that is not predictive to the output variables. The simulation example relies on the data model introduced in (2.51), where the parameter matrices [image: 0819], [image: 0820] and [image: 0821] were populated by random values obtained from a Gaussian distribution of zero mean and variance 1.

The number of input and output variables is 10 and 6, respectively. Moreover, these variable sets are influenced by a total of 4 source variables describing common cause variation. The remaining variation of the input variables is simulated by a total of 6 stochastic variables. The dimensions of the parameter matrices are, consequently, [image: 0822], [image: 0823] and [image: 0824]. Equations (2.86) to (2.88) show the elements determined for each parameter matrix.
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The common cause variation [image: 0825] as well as the uninformative variation in the input variables for predicting the outputs, [image: 0826], were Gaussian distributed i.i.d. sets of zero mean and unity covariance matrices, that is, [image: 0827] and [image: 0828]. Both source signals were statistically independent of each other, that is, [image: 0829]. Finally, the error variables, [image: 0830], were statistically independent of the source signals, that is, [image: 0831], and followed a zero mean Gaussian distribution. The variance of the error variables was also randomly selected between 0.01 and 0.06: σ12  =  0.0276, σ22  =  0.0472, σ32  =  0.0275, σ42  =  0.0340, σ52  =  0.0343 and σ62  =  0.0274.

To contrast MRPLS with PLS, a total of 5000 samples were simulated and analyzed using both techniques. The estimated covariance matrices for the source signals which are encapsulated in the input and output variable sets, s, the second set of source signals that is not predictive for the output variables, s′, and the error signals [image: 0840], are listed in (2.89) to (2.91).
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Comparing the estimates of Sss, [image: 0842] and [image: 0843] signals with the true covariance matrices shows a close agreement. This was expected given that 5000 is a relatively large number of simulated samples. Next, (2.92) to (2.94) show the estimates of [image: 0844], [image: 0845] and [image: 0846].
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2.93 [image: 2.93]

2.94 [image: 2.94]

Equations (2.96) to (2.98) show the actual matrices. With respect to the data model in (2.51), using [image: 0847], [image: 0848] and [image: 0849], given in (2.86) to (2.88), Sss = I, [image: 0851] and [image: 0852], the covariance matrices [image: 0853] and [image: 0854] allows computing the true covariance and cross-covariance matrices

2.95 [image: 2.95]

A direct comparison between the estimated matrices in (2.89) to (2.91) and the actual ones in (2.96) to (2.98) yields an accurate and very close estimation of the elements of [image: 0855] and [image: 0856]. However, slightly larger departures can be noticed for the estimation of the elements in [image: 0857]. This can be explained by the fact that the asymptotic dimension of [image: 0858] is 4 and the source signals have a much more profound impact upon [image: 0859] than [image: 0860]. With this in mind, the last two eigenvalues of [image: 0861] are expected to be significantly smaller than the first four, which describe the impact of the source variables. In contrast, there are a total of 10 source signals, including 4 that the input and output variables share in common and an additional 6 source signals that are not describing the variation of the output variables. Hence, the estimation accuracy of the 10-dimensional covariance matrix of the input variables is less than the smaller dimensional covariance matrix of the input and the cross-covariance matrix of the input and output variables.
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To verify the problem for PLS in identifying a model that relies on the underlying data structure in (2.51), the following matrix product shows that the w-weight vectors, obtained by PLS, are not orthogonal to the column vectors of [image: 0862]. According to (2.58), however, this is a condition for separating s from s′.

2.99 [image: 2.99]

Carrying out the same analysis by replacing the w-weight matrix computed by PLS with that determined by MRPLS, only marginal elements remain with values below 10−4. This can be confirmed by analyzing the estimated cross-covariance matrix between s′ and [image: 0867], that is, the 4 t-score variables extracted by MRPLS
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In contrast, the estimated cross-covariance matrix between [image: 0868] and s is equal to

2.101 [image: 2.101]

That [image: 0870] is close to an identity matrix is a coincidence and relates to the fact that the covariance matrices of the original source signals and the extracted t-score variables are equal to the identity matrix. In general, the extracted t-score variable set is asymptotically equal to s up to a similarity transformation, that is, [image: 0872].

Finally, Figure 2.9 compares the impact of the extracted LVs by PLS and MRPLS upon the deflation of the covariance and cross-covariance matrices. The presented analysis relies on the squared Frobenius norm of the deflated matrices over the squared Frobenius norm of the original matrices
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and

2.104 [image: 2.104]


Figure 2.9 Deflation of [image: 1097], [image: 1098] and [image: 1099] using extracted latent variable sets (left plot  →  MRPLS model; right plot  →  PLS model).

[image: 2.9]

Comparing both plots in Figure 2.9 yields that MRPLS rapidly deflates [image: 0873]. The retention of only one set of LVs produces a value below 0.3 for (2.101) and retaining a second LV set reduces this value to 0.05. In contrast, PLS deflates [image: 0874] more rapidly than MRPLS. The retention of only three sets of LVs yields values of 0.33 and 0.72 for PLS and MRPLS, respectively. Increasing this number to six retained LV sets produces values of 0.04 and 0.28 for PLS and MRPLS, respectively. Comparing the impact of the deflation with regards to (2.104) yields a favorable performance of the MRPLS algorithm. For each number of retained LV sets, MRPLS yields a smaller value that is close to zero for i = 4. In sharp contrast, even for seven or eight sets of retained LVs, PLS does not completely deflate [image: 0876].

On the basis of the analysis above, particularly the result presented in (2.99), however, this is expected and confirms that PLS is generally not capable of extracting common cause variation that is encapsulated in the input and output variables in an efficient manner unless the weight vectors are constrained to be orthogonal to the column space of [image: 0877]. As this matrix is generally not known a priori, such a constraint cannot be incorporated into the PLS routine.

2.4 Estimating the number of source signals

This section discusses the important issue of how to estimate the number of sets of latent components describing common cause variation and, accordingly, the number of source signals. This number, n, is of fundamental importance for the following reasons. If too few latent components are retained, variation that is to be attributed to the source signals is partially encapsulated in the residuals of the PCA/PLS models. On the other hand, the retention of too many latent components produces a model subspace that may capture a significant portion of the error vector(s). In the latter case, the monitoring statistics, summarized in the next chapter, describe common cause variation that is corrupted by a stronger influence of the error vector [image: 0879] (PCA) or variation of the input variables that is not significantly predictive for the output variables, that is, en+1 or s′ for small data sets (PLS/MRPLS).

An estimation of n that is too small or too large will affect the sensitivity in detecting and diagnosing special cause variation that negatively influences product quality and/or the general state of the process operation. Hence, abnormal events may consequently not be detected nor correctly diagnosed. The question, therefore, is when to stop retaining more sets of LVs in PCA/PLS monitoring models. This question has been addressed in the literature by developing stopping rules. The stopping rules for PCA, proposed in the research literature, are summarized in Subsection 2.4.1, followed by those of PLS in Subsection 2.4.2. For the subsequent discussion of stopping rules, [image: 0883] denotes the inclusion of [image: 0884] sets of LVs that are currently being evaluated and as before, n is the selected number of sets.

2.4.1 Stopping rules for PCA models

The literature has introduced and discussed numerous approaches for determining how many principal components should be included, or, in relation to (2.2), how many source signals the process has. Jackson (2003) and Valle et al. (1999) provide surveys and comparisons of various stopping rules for PCA models. The aim of this subsection is to bring together the most important stopping rules, which can be divided into (i) information theoretic criterion, (ii) eigenvalue-based criterion and (iii) cross-validation-based criterion. An additional criterion that is difficult to attribute to one of these three categories is (iv) the Velicer's partial correlation procedure. These four different approaches are now separately discussed below.

2.4.1.1 Information-based criteria

These include the Akaike's Information Criterion (AIC) (Akaike 1974) and the Minimum Description Length (MDL) (Rissanen 1978; Schwarz 1978). Both criteria rely on the utilization of (2.2) under the assumption that [image: 0886] and [image: 0887]. The covariance structure of the stochastic signal component is therefore
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with ΞSssΞT being of rank n and the discarded eigenvalues of [image: 0890], λn+1, λn+2,  …  , [image: 0894] are equal to [image: 0895]. The eigendecomposition of the [image: 0896] allows a consistent estimation of [image: 0897] and [image: 0898]
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Given that the eigenvectors are mutually orthonormal, the above equation reduces to
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The next step involves the utilization of the following parameter vector
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which allows the construction of the following maximum likelihood function4
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Wax and Kailath (1985) rewrote the above equation to be a log-likelihood function

2.110 [image: 2.110]

where [image: 0899] is the estimate of [image: 0900]. The maximum likelihood estimate for [image: 0901] maximizes (2.110). Anderson (1963) showed that these estimates are
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Here, li and li are the eigenvalue and the eigenvector of [image: 0904]. Wax and Kailath (1985) highlighted that substituting these estimates into (2.110) yields
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The AIC and MDL objective functions include the above term but rely on different terms to penalize model complexity. The objective functions for AIC and MDL are

2.113 [image: 2.113]

and
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respectively. Here, [image: 0905] is the number of principal components [image: 0906]. The selected number of principal components, [image: 0907], is the minimum of the AIC([image: 0908]) or MDL([image: 0909]) objective functions, depending which one is used. Wax and Kailath (1985) pointed out that the MDL objective function provides a consistent estimation of n, whilst the AIC one is inconsistent and tends, asymptotically, to overestimate n.

2.4.1.2 Eigenvalue-based criteria

Eigenvalue-based stopping rules include the cumulative percentage variance, the SCREE test, the residual percentage variance, the eigenvector-one-rule and other methods that derive from those.

Cumulative percentage variance or CPV test

This is the simplest and perhaps most intuitive eigenvalue-based test and determines the ratio of the sum of the first [image: 0912] estimated eigenvalues over the sum of all estimated eigenvalues
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The CPV criterion relies on the fact that the sum of the squared variables of z0 is equal to the sum of squared values of the score variables. This follows from
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and yields the relationship between the jth process and the nz score variables
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The squared value of [image: 0916] then becomes
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producing the following sum over the complete variable set, [image: 0917],    , [image: 0919],
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As the score variables do not include the index m, rewriting the above sum yields
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Hence, (2.118) reduces to
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Finally, taking the expectation of (2.121) yields

2.122 [image: 2.122]

Equation (2.122) implies that the sum of the variances of the recorded process variables is equal to the sum of the eigenvalues of the data covariance matrix. Moreover, the variance of the ith score variable is equal to the ith eigenvalue of the data covariance matrix. This is analyzed and discussed in more detail in Chapter 9.

The denominator of the CPV criterion is therefore the sum of the variances of the process variables and the numerator is the variance contribution of the retained components to this sum. Hence, the larger [image: 0923] the closer the CPV criterion becomes to 100%. A threshold, for example 95% or 99%, can be selected and n is the number for which Equation (2.115) exceeds this threshold. Despite the simplicity of the CPV criterion, the selection of the threshold is often viewed as arbitrary and subjective, for example (Valle et al. 1999). Smaller threshold suggests including fewer components and a less accurate recovery of z0 and a larger threshold increases n. The threshold is therefore a tradeoff between parsimony and accuracy in recovering z0.

SCREE test

This test plots the eigenvalues of the [image: 0931] against their number in descending order, which is referred to as a SCREE plot. Cattell (1966) highlighted that SCREE plots often show that the first few eigenvalues decrease sharply in value whilst most of the remaining ones align along a line that slowly decreases and further suggested to retain the first few sharply decreasing eigenvalues and the first one of the second set of slowly decreasing eigenvalues. If more than one such elbow emerges, Jackson (2003) pointed out that the first of these breaks determines the number of retained principal components. Conditions under which a larger number of principal components should be retained if the SCREE plot produces multiple elbows are discussed in Box et al. (1973); Cattell and Vogelmann (1977).

Residual percentage variance or RPV test

Similar to the CPV test, the RPV test determines n from the last few eigenvalues (Cattell 1966; Rozett and Petersen 1975)
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Average-eigenvalue test

Kaiser (1960) proposed an extension of the SCREE test that relies on the property that the trace of the covariance/correlation matrix is equal to the sum of the eigenvalues, which follows from the relationship in (2.117) to (2.122). Using (2.122), the average eigenvalue, [image: 0933], can be directly calculated from the trace of the data covariance/correlation matrix
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This rule suggests that eigenvalues that are larger or equal to [image: 0934] should be associates with the source signals and those below [image: 0935] corresponding to the error vector. If [image: 0936] is used instead of [image: 0937] the average eigenvalue is 1, as all of the diagonal elements are 1. With the use of [image: 0938] this rule is referred to as the eigenvalue-one-rule.

Alternative methods

Jolliffe (1972, 1973) conducted a critical review of the average-eigenvalue rule and concluded that the threshold for selecting the number of retained components may be too high. Based on a number of simulation examples, a recommendation in these references was to discard components that correspond to eigenvalues up 70% of the average eigenvalue.

To automate the SCREE test, Horn (1965) proposed the utilization of a second data set that includes the same number of samples and variables. This second data set, however, should include statistically uncorrelated Gaussian variables, so that the covariance matrix reduces to a diagonal matrix. The eigenvalues of both covariance matrices are then plotted in a single SCREE plot where the interception determines the cutoff point for separating retained from discarded components.

The use of the correlation matrix, that is, the identify matrix, reduces this method to the eigenvalue-one-rule. Farmer (1971) proposed a similar approach to that in (Horn 1965) using logarithmic SCREE plots. Procedures that rely on the incorporation of a second artificially generated data set are also referred to as parallel analysis. Other techniques that utilize the eigenvalues include the indicator function, the embedded error function (Malinowski 1977) and the broken stick model (Jolliffe 1986).

2.4.1.3 Cross-validation-based criteria

Cross-validation relies on the residuals [image: 0939] and was first proposed by Mosteller and Wallace (1963) and further discussed in Allen (1974) and Stone (1974) among others. The main principle behind cross-validation is:


1. remove some of the samples from the reference data set;

2. construct a PCA model from the remaining samples;

3. apply this PCA model to the removed samples; and

4. remove a different set of samples from the reference set and continue with Step 2 until a preselected number of disjunct sets have been removed.


Figure 2.10 illustrates the structured cross-validation approach, which segments the reference data set equally into groups. The first group is used to test the PCA model constructed from the remaining groups, then the second group is used etc.


Figure 2.10 Schematic representation of a structured cross-validation approach.

[image: 2.10]

Stone (1974) argued on theoretical grounds that the number of groups should be equal to the number of observations, which leads to an excessive computation. Geisser (1974) showed that using fewer groups is sufficient. This view is also echoed in Wold (1978). The research literature has proposed a number of performance indices, including the R and W statistics. A different cross-validation approach that omits variables rather than observations was proposed in Qin and Dunia (2000).

Cross-validation based on the R statistic

For the ith group, Wold (1978) suggested using the ratio of the PRESS statistic (PREdiction Sum of Squares) over the RSS statistic (Residual Sum of Squares)
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where
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and
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with [image: 0941] being the number of samples in the ith group. The sum over the g groups is
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If [image: 0944] is below one then increase [image: 0945] to [image: 0946], since the inclusion of the [image: 0947]th component increases the prediction accuracy relative to the ([image: 0948])th one. In contrast, if [image: 0949] exceeds one than this new component does not reduce the prediction accuracy. This stopping rule is often referred to as the R ratio or R statistic and the number of source signals is equal to the first n R ratios below one, that is, R(1),  …  , R(n) < 1.

Cross-validation based on the W statistic

Eastment and Krzanowski (1982) proposed an alternative criterion, defined as the W statistic, that involves the PRESS statistics for PCA models that include [image: 0957] and [image: 0958] retained components
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where Dr and [image: 0960] are the number of degrees of freedom that remain after determining the [image: 0961]th component and for constructing the [image: 0962]th component, respectively,
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Components that have a [image: 0963] value larger than 1 should be included in the PCA model. Eastment and Krzanowski (1982) suggested that the optimum number of source signals is the last one for which [image: 0964]. A discussion of these cross-validatory stopping rules in Wold et al. (1987), highlighted that they work well and the use of a proper algorithm does not render them too computationally expensive and concluded that cross-validation is slightly conservative yielding too few rather than too many components. The discussion, however, deemed this as an advantage as it circumvents an over-interpretation of the encapsulated information.

Variance of the reconstruction error (VRE)

A different approach to those by Wold (1978) and Eastment and Krzanowski (1982) is discussed in Qin and Dunia (2000). Instead of leaving portions of the reference data out, this technique omits the samples of one variable and reconstructs it by the remaining nz − 1 ones. Evaluating the accuracy of this reconstruction by PCA models for different numbers of source signals, each variable is removed and reconstructed by the remaining ones. This produces a total of nz contributions to the VRE performance index.

Using the eigendecomposition [image: 0967] and defining [image: 0968], the projection of z0 onto the model subspace [image: 0970] is for the ith element
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where [image: 0972] is the element of [image: 0973] stored in the ith row and the jth column. Replacing the variable [image: 0976] by [image: 0977] the above equation becomes
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The reconstruction of [image: 0978], [image: 0979], is therefore
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A more detailed treatment of variable reconstruction is given in Section 3.2. Equation (2.133) outlines that the number of retained components can vary from 1 to nz − 1. For [image: 0981], [image: 0982] and the denominator becomes zero. The use of (2.133) gives rise to the following reconstruction error
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Next, abbreviating [image: 0983] and rewriting (2.134) yields
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Noting that [image: 0984] is equal to the ith row or column of the symmetric matrix [image: 0986], this vector is also equal to
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where [image: 0987] is the ith Euclidean vector whose ith element is 1, whilst any other element is 0. Equation (2.135) can therefore be expressed as follows
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Expressing [image: 0990] as a function of [image: 0991] and [image: 0992]
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the variance of the reconstruction error for the ith variable becomes
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Since [image: 0994], the above equation reduces to
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Finally, defining [image: 0995], the VRE criteria is given by

2.141 [image: 2.141]

where [image: 0996] is the variance of the ith process variable. Valle et al. (1999) pointed out that the scaling of the reconstruction error is necessary, as variables that have a larger variance produce, by default, larger reconstruction errors and may have a dominant influence upon the calculation of the VRE performance index. The value of [image: 0998] that yields a minimum for the VRE performance index is then n.

A detailed discussion in Qin and Dunia (2000) showed that (2.141) yields a minimum, which is related to the fact that, according to (2.2), the data space is separated into a model subspace and a complementary residual subspace. Moreover, Valle et al. (1999) (i) proved that the VRE approach gives a consistent estimation of the number of source signals under the assumptions that the error vector [image: 1000](i) contains Gaussian i.i.d. sequences and (ii) postulated that it also gives a consistent estimation of the number of source signals if the error vector contains Gaussian sequences that have slightly different variances.

Valle et al. (1999) argued that the VRE method is to be preferred over cross-validatory methods for consistently estimating the number of source signals and in terms of computational costs. By directly comparing various stopping rules, including VRE, AIC, MDL, CPV, RPV and cross-validation based on the R-statistics, Valle et al. (1999) showed that the VRE method performed favorably. Despite the conceptual ease and computational efficiency of the VRE stopping rule, however, Subsection 6.1.1 shows that the above postulate, differences in the error variances, may not yield a consistent estimate for n, which is also demonstrated in Feital et al. (2010).

2.4.1.4 Velicer's Partial Correlation Criterion (VPC)

Velicer (1976) proposed this technique, which carries out a scaled deflation of the covariance matrix each time [image: 1002] is increased by 1. Starting with the deflation of the covariance matrix

2.142 [image: 2.142]

the scaling process for [image: 1003] involves the diagonal matrix [image: 1004]

2.143 [image: 2.143]

where

2.144 [image: 2.144]

and [image: 1005], [image: 1006],    , [image: 1008] are the diagonal elements of [image: 1009]. The VPC criterion relies on the sum of the non-diagonal elements of [image: 1010]

2.145 [image: 2.145]

In fact, [image: 1011] is a correlation matrix. Hence, [image: 1012] are correlation coefficients for i ≠ j and the VPC performance index is larger than zero within the range of [image: 1014] and [image: 1015]. The estimation of n is given by the minimum of VPC[image: 1017]. The underlying assumption for the VPC method is that the VPC curve decreases in value for an additional source variable if the average remaining covariance reduces faster than the remaining variance of the variable set. In contrast, an increase indicates that an additional source signal explains more variance than covariance.

2.4.2 Stopping rules for PLS models

The literature has proposed a number of different stopping rules, which include:

	analysis of variance approaches;

	cross validation criteria based on the accuracy of the PLS model in predicting the output variables;

	bootstrapping criteria; and

	the H-principle.



These different methods are now discussed separately.

2.4.2.1 Analysis of variance criteria

An analysis of variance can be carried out for the u-score or output variables (Jackson 2003). More practical and intuitive, however, is the use of the residuals of y0. In a similar fashion to the SCREE test for PCA, the Frobenius norm of the residual matrix

2.146 [image: 2.146]

can be plotted vs. [image: 1019]. The norm [image: 1020] often shows an initial sharp decrease when retaining the first few sets of LVs and then slowly decays as additional sets are included. Like a SCREE plot, n can be estimated from the intercept between a tangent that represents the first (few) sharp decrease(s) and a parallel line to the abscissa of value, [image: 1022]. Section 2.2 presents an example of using [image: 1023] to determine the number of source signals (Table 2.2). This example, however, divides [image: 1024] by ||Y0||2 and uses a percentage figure.

2.4.2.2 Cross-validation criterion

Lindberg et al. (1983) proposed a cross-validatory stopping rule that relies on the principle outlined in Figure 2.10. Segmenting the reference data into g groups, each group is once omitted for the identification of a PLS model. The prediction of the output variables is then assessed on the basis of the group that is left out. The performance index for the gth group is the PRESS statistic

2.147 [image: 2.147]

for which

2.148 [image: 2.148]

Including each of the G groups, the PRESS statistic finally becomes

2.149 [image: 2.149]

If minimum of the resulting curve for [image: 1029] exists, then this is the selected number of source signals. If this curve. however, decreases monotonically without showing a clear minimum n can be selected by the intercepting the tangent that describes the first (few) steep decrease(s) and the parallel line to the abscissa. Published work on cross-validation include Qin (1998) and Rännar et al. (1995). The latter work, however, discusses cases where there are considerably more variables than samples.

2.4.2.3 Bootstrapping criterion

As the analysis of variance relies on the user to select n and cross-validation may be computationally expensive, bootstrapping can be proposed as an alternative. Bootstrapping, in this context, relates to recent work on entropy-based independence tests (Dionisio and Mendes 2006; Wu et al. 2009), which tests the hypothesis that two variables are independent. Scaling the [image: 1032]th pair of score variables to unit variance, that is, [image: 1033] and [image: 1034], the corresponding hypothesis is as follows

2.150 [image: 2.150]

The above hypothesis can alternatively be expressed as

2.151 [image: 2.151]

Here, [image: 1035], [image: 1036], [image: 1037] and [image: 1038] are the [image: 1039]th p-weight and q-loading vectors, respectively, and [image: 1040] is the covariance of [image: 1041] and [image: 1042]. Chapter 10 provides a description of PLS including the relationship used in (2.151).

To test the null hypothesis, Granger et al. (2004) proposed the following procedure. Defining two independent Gaussian distributed white noise sequences of zero mean and variance 1, θ and ϕ, the critical value for testing the null hypothesis can be obtained from a smoothed bootstrap procedure (Efron and Tibshirani 1993) for the upper α-percentile using [image: 1046] samples of θ and ϕ, with K being the number of elements of [image: 1050] and [image: 1051].


1. Select randomly b bootstrapped sets containing K samples of θ and ϕ with replacement, defined here as

[image: images/c02_I0152.gif]

2. Compute the product for each pair of bootstrapped samples (θi(k)ϕi(k)), that is, the product of the row elements in Di, and store the products in vectors [image: 1058].

3. Work out the absolute estimates of the expectation of each set stored in the b vectors di, i.e. [image: 1061] and arrange these absolute estimates in the vector [image: 1062] in ascending order.

4. Determine the critical value, [image: 1063], as the upper α percentile of [image: 1065].


The null hypothesis, H0, is accepted if

2.152 [image: 2.152]

and rejected if [image: 1067]. In (2.152), [image: 1068], [image: 1069], where [image: 1070] is the variance of the [image: 1071]th t-score variable. Moreover, [image: 1072] and [image: 1073]. The computation of [image: 1074] and [image: 1075] follows from the deflation procedure that is discussed and analyzed in Chapter 10.

It should be noted that rejection of H0 results in accepting H1, which implies that the [image: 1078]th pair of latent variables need to be included in the PLS model and requires the calculation of the [image: 1079]th pair of latent variables after carrying out the deflation procedure. On the other hand, accepting the null hypothesis sets [image: 1080].

Table 2.4 lists estimated confidence limits for significance levels of:

	α =  5%, 1%, 0.5%, 0.1%, 0.05% and 0.01%



and different sample sizes:

	K =  100, 200, 500, 1000, 2000, 5000 and 10000.


Table 2.4 Confidence limits for various sample sizes, K and significance levels α.

[image: NumberTable]

The entries in Table 2.4 are averaged values over a total of 10 runs for each combination of sample size and significance level. For a reference set containing 5000 samples, for example, the confidence limit for the smoothed bootstrap approach was selected to be α = 0.5%, i.e. 0.0433.

2.4.2.4 H-Principle

Finally, Höskuldsson (1994) showed an alternative approach for deriving the PCA and PLS objective functions, which is inspired by the Heisenberg uncertainty inequality and referred to as the H-principle. This objective function is a product of a goodness of fit and a precision criterion. More precisely, Höskuldsson (1994, 1995, 2008) showed that the PCA and PLS objective functions can be derived from the H-principle including an estimation of n. A more detailed discussion regarding the H-principle, however, is beyond the scope of this book.

2.5 Tutorial Session

Question 1:

Compare the maximum number of sets of LVs that can be obtained by applying the PLS, the maximum redundancy and the CCA (Chapter 10) objective function if the covariance and cross-covariance matrices are known and of arbitrary dimension. Why can PLS exhaust the input variable set irrespective of the number of input and output variables, whilst maximum redundancy and CCA cannot?

Question 2:

Following from Question 1, why does MSPC rely on the use of variance and covariance-based methods, i.e. PCA and PLS, for providing a data model for the recorded variable set(s)?

Question 3:

Assuming that z0 = x0, why can PCA and PLS be seen as unsupervised and supervised learning algorithms, respectively?

Question 4:

Why is it beneficial to rely on statistically independent score variables, which PCA and PLS extract from the data and input variable set, respectively, instead of the original variable sets?

Question 5:

Explain the difference between the PLS and MRPLS objective function. What do the extracted score variables explain in both cases?

Project 1:

With respect to the simulation example in Subsection 2.1.3, use a Monte-Carlo simulation and vary the number of reference samples, and analyze this impact on the accuracy of estimating the data covariance matrix and its eigendecomposition.

Project 2:

Carry out a Monte-Carlo simulation to estimate the elements of the regression matrix (simulation example in Subsection 2.2.3) by varying the number of reference samples and the number of retained sets of LVs and comment upon your findings. Contrast your results with the simulation example in Subsection 6.2.2.

Project 3:

Develop a deflation-based method for CCA to extract the common cause variation encapsulated in the input and output variables with respect to the data structure in (2.51). Use the simulation example in Subsection 2.3.4 and compare the performance of the developed CCA method with that of MRPLS with particular focus on the predictability of the output variables.

Project 4:

Generate a data model with respect to (2.2) that includes a total of nz = 20 process variables, a varying number of source signals 1 ≤ n < 19, a varying error variance [image: 1088], a varying number of reference samples K and apply each of the stopping rules in Section 2.4.1 to estimate n. Comment and explain the results. Which method is most successful in correctly estimating n?





1The variable s describes the distance between the projection of the sample [image: 1093] onto the semimajor from the origin of the control ellipse which, according to Figure 1, is given by the interception the abscissas of both Shewhart charts.

2The assumptions for this are discussed in Subsection 6.1.1.

3A dominant eigenvector is the eigenvector associated with the largest eigenvalue of a symmetric positive semi-definite matrix under the assumption that this eigenvalue is not a multiple eigenvalue of that matrix.

4Information about parameter estimation using maximum likelihood is given in Subsection 6.1.3.




End of sample




    To search for additional titles please go to 

    
    http://search.overdrive.com.   


OEBPS/images/Inline_I24491.gif





OEBPS/images/Inline_I24490.gif





OEBPS/images/Inline_I24497.gif





OEBPS/images/Inline_I24499.gif





OEBPS/images/Inline_I24498.gif





OEBPS/images/Inline_I24492.gif





OEBPS/images/Inline_I24486.gif





OEBPS/images/Inline_I24487.gif





OEBPS/images/Inline_I24489.gif





OEBPS/images/Inline_I25794.gif
195 =19 /|,q;





OEBPS/images/Inline_I25792.gif
W5 = 1% [lw|l





OEBPS/images/Inline_I24462.gif
zy ~ N {0,S.






OEBPS/images/Inline_I24461.gif





OEBPS/images/Inline_I24468.gif





OEBPS/images/c09_I0010a.gif





OEBPS/images/Inline_I24469.gif
E{t} ()t (k)} = A?





OEBPS/images/c09_I0011a.gif





OEBPS/images/Inline_I20931.gif





OEBPS/images/Inline_I20937.gif





OEBPS/images/Inline_I20938.gif
C..-





OEBPS/images/Inline_I20939.gif





OEBPS/images/Inline_I20933.gif
>l





OEBPS/images/Inline_I20934.gif
>l





OEBPS/images/Inline_I20935.gif
>l





OEBPS/images/Inline_I20936.gif
C..-





OEBPS/images/c07_I0009.gif
z;

3

(
zi(k)

i)’





OEBPS/images/c07_I0008.gif
Az’






OEBPS/images/c07_I0005.gif
Zo(K +1) =3, (z2(K +1) - 2,) .





OEBPS/images/Inline_I20919.gif





OEBPS/images/c07_I0004.gif
K152 L A2 + & (2K +1) - 3,)





OEBPS/images/c07_I0007.gif
= (Kzy, — 2 (k).





OEBPS/images/c07_I0006.gif
LIRS 18,6 B 25 485 1A AZ) B5 0720 (K +1)Zg (K +1).






OEBPS/images/c07_I0001.gif





OEBPS/images/c07_I0003.gif
Prent 2K +1).
2y = Py + 2l






OEBPS/images/c07_I0002.gif





OEBPS/images/c09_I0012a.gif





OEBPS/images/Inline_I20923.gif





OEBPS/images/Inline_I20908.gif





OEBPS/images/Inline_I20909.gif





OEBPS/images/c09_I0013a.gif
usu
T
-Uu
LU’






OEBPS/images/Inline_I20916.gif





OEBPS/images/Inline_I20917.gif





OEBPS/images/Inline_I20912.gif





OEBPS/images/Inline_I20904.gif





OEBPS/images/Inline_I20905.gif





OEBPS/images/Inline_I20906.gif
1<n<n,-1





OEBPS/images/Inline_I20907.gif
n





OEBPS/images/Inline_I20900.gif





OEBPS/images/Inline_I20901.gif





OEBPS/images/c07_I0038.gif
1 0 o

21
o | Ll fsn), fee
. L7 08| \s2 [

e —0.6  0.02 a1






OEBPS/images/c07_I0037.gif
2y/1+4n2 — v (n., Kuin) — 1

Kinin = 2(1 =~ (112, Konin)) -






OEBPS/images/c07_I0039.gif
E{s}=0 E(#}:[_;_3 "?3]





OEBPS/images/c07_I0034.gif
1
- 2 Ta—
Py <s<s) = f S (137513,
A






OEBPS/images/c07_I0033.gif





OEBPS/images/c07_I0036.gif





OEBPS/images/c07_I0035.gif
tim 2O £ o) = )

o K (K —na)






OEBPS/images/c07_I0030.gif
(AQ,,)" + 25 (AQL,, (AQF,, —2))






OEBPS/images/c07_I0032.gif





OEBPS/images/c07_I0031.gif





OEBPS/images/Inline_I20973.gif
el





OEBPS/images/Inline_I20976.gif





OEBPS/images/Inline_I20970.gif





OEBPS/images/Inline_I20972.gif
(n)





OEBPS/images/Inline_I20977.gif
Zo,





OEBPS/images/Inline_I20978.gif





OEBPS/images/Inline_I20979.gif





OEBPS/images/c07_I0049.gif
—0.4808'
~0.0133
~0.8280

0.2882

A1 = 3.9693





OEBPS/images/c07_I0048.gif
11000 —0.3000  1.4600 —0.6060
—0.3000 11000 0.2900  0.2000
— 28,5 402 =
S SeZ o l= | 10600 02900 28140 —0.8702
6060 0.2000 —0.8702  0.4676






OEBPS/images/c07_I0045.gif
Ti(k) = T°(k)+ TP (k) + T2 (k)

.
THk) = T2k)+ Asi(k) (@ (Em:))

A2

+An(k) (2 (%" T ‘f’ ')zﬂ(n)





OEBPS/images/c07_I0044.gif
Asalk) 0

k — 3500) 0.0015
ASI(k)) ( (k= 3500) ') k> 3500
0 & < 3500

As(k) = (





OEBPS/images/c07_I0047.gif
E {13}

E{T3}

E{T3}






OEBPS/images/c07_I0046.gif
0.0015% (k= 3500)* k> 3500.






OEBPS/images/c07_I0041.gif
k <3500
. 5 k> 3500
ST (k - 3500)0.0015
s1,(k) = Sl +





OEBPS/images/c07_I0040.gif
E{g}=0 E{gg'}=0.1I





OEBPS/images/c07_I0043.gif
Qs(k) = (s(k) + As(k)) " " Py PG (s(k) + As(k)) + ¢ (K)PaP g(k).






OEBPS/images/c07_I0042.gif
Qy(k) = (E(s(k) + As(k)) + g(k))" [I - PPT

s(k) + As(k)) + g(k)) .





OEBPS/images/Inline_I20962.gif





OEBPS/images/Inline_I20963.gif





OEBPS/images/Inline_I20964.gif
Wi(n)>1





OEBPS/images/Inline_I20960.gif





OEBPS/images/Inline_I20961.gif





OEBPS/images/c06_I0170.gif
n ((K —K) - 1)
“EK-K)(K-Ki-n)

F(n. K~ Ky —n).





OEBPS/images/Inline_I20967.gif





OEBPS/images/Inline_I20968.gif
¢

p;p!





OEBPS/images/c06_I0169.gif
Pl (z—21) ~ N (0, KBTS,






OEBPS/images/c06_I0168.gif
(K~ Ky ~1)8 ~W(1\’—K. ~1,P!






OEBPS/images/c07_I0019.gif
zo(k + K,

B @k +K) — zg41)





OEBPS/images/c06_I0167.gif





OEBPS/images/c06_I0166.gif
I
S =xk= > BT (W) -2) (@ -2

Ko+l






OEBPS/images/c06_I0165.gif
= ol 1
S, = i 3 (alh) — ) (alh) ~ 1)
e





OEBPS/images/c07_I0016.gif





OEBPS/images/c06_I0164.gif
2(Ky +1) z2(K,+2) - z(K)|





OEBPS/images/c07_I0015.gif
Zre = 2= (K= 1)2* +2(k+K)).





OEBPS/images/c06_I0163.gif
Z{ = [2z(1) =z(2) - 2(K,)|





OEBPS/images/c07_I0018.gif
S =dig{on, - ons, )





OEBPS/images/c06_I0162.gif
zo(k) = & s1(k) + &y52(k) + E5s3(k) + g(k)





OEBPS/images/c07_I0017.gif
(2ilk +K) = Zip,)”






OEBPS/images/c07_I0012.gif
C=C - ' Az Az B — ao(k)zl (k)





OEBPS/images/c07_I0011.gif





OEBPS/images/c07_I0014.gif





OEBPS/images/c07_I0013.gif
zo(k) = ;" (z(k) — zx).





OEBPS/images/c07_I0010.gif





OEBPS/images/c06_I0161.gif
K
A= K—Z W () S.,..P,

I
S B gz (k)P =
«






OEBPS/images/c06_I0160.gif
Q=(2-2)" [1-PP'|(2-2)





OEBPS/images/Inline_I20957.gif





OEBPS/images/Inline_I20958.gif





OEBPS/images/c06_I0158.gif
PTzy teR",PecR™*"





OEBPS/images/c06_I0157.gif
) F s K — ).





OEBPS/images/c06_I0156.gif
T2 = (z-3)" 87, (2 %)






OEBPS/images/c06_I0155.gif





OEBPS/images/c06_I0154.gif





OEBPS/images/c07_I0027.gif
K> un, +2





OEBPS/images/c06_I0153.gif
.3
min 5" p (3;(k). 6)





OEBPS/images/c07_I0026.gif
Cis1 = F7Cr + ro(k + 1)z (k+ 1)
~ Cp + ok + VE (k+1) - gy
~ Cp+ p [Zolk + )28 (k+1) — €] .

=1Cx





OEBPS/images/c06_I0152.gif
minmed (g7 (k)) .





OEBPS/images/c07_I0029.gif
Qi1 = Qi + £AQ;,





OEBPS/images/c06_I0151.gif
lgi (k)I”

£Lo(9;(k),0) =

o
pean(as,0) = 0°[ 2001 (14 )]
YO8 if |g;(k)| <6
puuser(9;(K).0) = {g(fqi(k)‘,g), it Jgy(0)] > 0

X 2
peaveny(0;(k).6) = %1(”(¥))

o2
pwerson(o;(k).0) = ?{1 - {’ (g’(o”) ]}






OEBPS/images/c07_I0028.gif





OEBPS/images/c07_I0023.gif
Chs1

SO ECEE L + B Az AZL B
+ ek + K)zd (k + K).






OEBPS/images/c07_I0022.gif
o =0l +A, A5+

(il +K) — 7 )" — (ailk) — 7)?






OEBPS/images/c07_I0025.gif
Cit1 = Cr + p [Zo(k + 1)zg (k + 1) — Ci|






OEBPS/images/c07_I0024.gif
A

Pl CrriPi.,





OEBPS/images/c07_I0021.gif
Zi+1 = Zk + 3 (2(k + K) — z(k)) .





OEBPS/images/c06_I0159.gif





OEBPS/images/c07_I0020.gif
Ko Zen BTCT B B + B Az Mg By, +
L Go(k + K)al (k + K),

Crar =






OEBPS/images/Inline_I20941.gif





OEBPS/images/zoverline.gif





OEBPS/images/c06_I0150.gif
m;nz p(gi(k).0).
=





OEBPS/images/Inline_I20948.gif





OEBPS/images/Inline_I20949.gif
R(n)





OEBPS/images/Inline_I20944.gif
R(n)





OEBPS/images/Inline_I20945.gif





OEBPS/images/Inline_I20946.gif
n+1





OEBPS/images/Inline_I20947.gif





OEBPS/images/Inline_I22711.gif
Aa.,,





OEBPS/images/Inline_I22710.gif





OEBPS/images/Inline_I22715.gif
S///l.





OEBPS/images/Inline_I22717.gif
Seorn —





OEBPS/images/Inline_I22701.gif





OEBPS/images/Inline_I22703.gif





OEBPS/images/Inline_I22702.gif
Sy, + ASyy,






OEBPS/images/Inline_I22709.gif





OEBPS/images/Inline_I22708.gif
CIT





OEBPS/images/Inline_I22705.gif





OEBPS/images/Inline_I22704.gif





OEBPS/images/Inline_I22707.gif





OEBPS/images/Inline_I22706.gif





OEBPS/images/c07_I0059.gif
K3VPatm — 1 Fvy

P2 — Patm 'P2 — Prab-





OEBPS/images/c07_I0056.gif
k < 10000

R® 0.04511
o — 5% 107%(k — 1000002k > 10000

0.04511






OEBPS/images/c07_I0055.gif
123

Fop1 Fourca
Torm — 459.6°F






OEBPS/images/c07_I0058.gif
P2 ko (Fs ~ Fy, ~ )





OEBPS/images/noverline.gif





OEBPS/images/c07_I0057.gif
dpy

o = k1 (Fy, — Fg)





OEBPS/images/Inline_I20990.gif
—m





OEBPS/images/c07_I0052.gif
s~ L (RAHp — UATim — Quoss)
&





OEBPS/images/c07_I0051.gif
Fresh feed
flow setpoint

L
(k) = {1260+ Kpepiser (k) + K1Ts Y eniser (1) | 1b/s
frd





OEBPS/images/c07_I0054.gif
25840 k < 5000
Uy (k) = { 25 Bl _ 1075 (k — 5000) Bl | > 5000






OEBPS/images/c07_I0053.gif
dt

1
= (T2, - T2),





OEBPS/images/Inline_I20995.gif
= [1-e]s.,., [1-e")]





OEBPS/images/Inline_I20996.gif





OEBPS/images/c07_I0050.gif
4101 x 1079  »






OEBPS/images/Inline_I20998.gif





OEBPS/images/Inline_I20991.gif





OEBPS/images/Inline_I20992.gif





OEBPS/images/Inline_I20994.gif





OEBPS/images/c07_I0066.gif
=z ~ 1T_ |7
Folk +K) = Qo [Resa] %0

PRESS,, ,, <PRESS,,,

PRESS,,,, =i 50
Y=l






OEBPS/images/c07_I0063.gif
(0045115 ) paem Faveta

Torm — 450.6°F





OEBPS/images/c07_I0062.gif
Fuucto = ( Pose 52

) ICFM





OEBPS/images/c07_I0065.gif
ekt

zov =

E(Ik+1l]_l ®el, wH [E(IM»!)]_‘

Zawo

n [29-“»]-‘ AR BT [,:LM]"

+ LXo(k + 1)FE(k +1).






OEBPS/images/c07_I0064.gif
clk+1)

Toz0. Tk

[):‘X"*”] 20e®) Rk [EIZA-H’]

n] !

+[2]) 7 asin s[5

+ 1%o(k + )X (k +1).






OEBPS/images/Inline_I20984.gif
() RO ()
(e






OEBPS/images/c07_I0061.gif
Sy, + 1100Vg) RPM Vi = Vi (Fr, Fy, Fro)





OEBPS/images/Inline_I20986.gif





OEBPS/images/c07_I0060.gif
Foueea = (45,000 + 1/ 1.581 x 109 — 1.249 x 10° ( :
1






OEBPS/images/Inline_I20987.gif





OEBPS/images/Inline_I20981.gif





OEBPS/images/Inline_I20982.gif





OEBPS/images/Inline_I20983.gif





OEBPS/images/c06_I0103.gif
T,
(W‘> = argmaxw'S,.,,q — 1A (W'w - 1) - 1A (qTq - 1),
q1 w.q





OEBPS/images/c06_I0102.gif
P LS,
Sy P 4+ 8, PS,.Q"






OEBPS/images/c06_I0101.gif
Y





OEBPS/images/c06_I0100.gif
(s7()
ST f
(0}

T
)p =0
n





OEBPS/images/c06_I0109.gif
(2)
Ses

= Sugry

wiw]

wTS, . wi

zoy0-





OEBPS/images/c06_I0108.gif
- AY 4 e _ ai
Ady=di — 4 = o e





OEBPS/images/c06_I0107.gif





OEBPS/images/c06_I0106.gif





OEBPS/images/c06_I0105.gif
[Sz.z, +See] W1 P SyozeW1
VTS +Sw: VT WS, +S]w1

P =





OEBPS/images/c06_I0104.gif
P ol T [Srezo a'g
(d:) —argmin (p" ") [ ‘] wi—3 (e p+d"q)wis






OEBPS/images/Inline_I22634.gif





OEBPS/images/Inline_I22637.gif
w!'S.w;





OEBPS/images/Inline_I22636.gif
S.
e, +Se !
7t =8k
—s;!
cL [S7h. —






OEBPS/images/Inline_I23967.gif
E{z"2®"}





OEBPS/images/Inline_I23961.gif
E{zVzV"}





OEBPS/images/Inline_I22633.gif





OEBPS/images/Inline_I22639.gif





OEBPS/images/Inline_I21308.gif





OEBPS/images/Inline_I22638.gif





OEBPS/images/Inline_I23969.gif





OEBPS/images/Inline_I22624.gif





OEBPS/images/Inline_I22623.gif





OEBPS/images/Inline_I22620.gif





OEBPS/images/Inline_I22622.gif
Szrove





OEBPS/images/Inline_I22621.gif
Szrove





OEBPS/images/Inline_I22628.gif





OEBPS/images/Inline_I22613.gif





OEBPS/images/Inline_I23944.gif
VT203 = V921034






OEBPS/images/Inline_I22612.gif





OEBPS/images/Inline_I23943.gif





OEBPS/images/Inline_I22615.gif





OEBPS/images/Inline_I23946.gif





OEBPS/images/Inline_I22614.gif





OEBPS/images/Inline_I23945.gif
VT203 = V18.4207 = 4.2919





OEBPS/images/Inline_I23940.gif





OEBPS/images/Inline_I22611.gif
£ =0
w! Ap,





OEBPS/images/Inline_I22610.gif
Wi Scewy

WIS, ... w,

>0





OEBPS/images/Inline_I23948.gif





OEBPS/images/Inline_I22616.gif





OEBPS/images/Inline_I23947.gif





OEBPS/images/Inline_I22619.gif
£ =0
w! Ap,





OEBPS/images/Inline_I22618.gif





OEBPS/images/Inline_I23949.gif





OEBPS/images/Inline_I22604.gif





OEBPS/images/Inline_I23935.gif





OEBPS/images/Inline_I23934.gif





OEBPS/images/Inline_I22609.gif





OEBPS/images/Inline_I22606.gif





OEBPS/images/Inline_I22605.gif





OEBPS/images/Inline_I23939.gif





OEBPS/images/Inline_I22607.gif





OEBPS/images/Inline_I23938.gif
2"

O 22)





OEBPS/images/c06_I0147.gif
- med; (|2(7) — medy (2(k)) [)
- med, (medy (|2(j) — 2(k)]))
~med(z(j) — 2(k);j < k|)






OEBPS/images/c06_I0146.gif
|67 a(k) — i (5' z) |
r(a(k),Z) = sup { —— L

s\ o (s"2)





OEBPS/images/c06_I0145.gif





OEBPS/images/c06_I0144.gif
I
min Y [|2(k)
=





OEBPS/images/c06_I0143.gif
- 2
PN ORI
<






OEBPS/images/c06_I0142.gif
0.3595 0.0486

0.5714 0.0795
0.1172 0.4168
—0.0692

08121 —0.3820

03088 0.8626  0.2701 1602






OEBPS/images/c06_I0141.gif
0.7117
~0.8224
0.9939
~01198  ~0.5201
04176 —0.7674
0.5900  1.2467
1.3535  0.4461
—0.0858  —0.2066

15328 0.4058
0.4846  1.2736
~0.5008  —0.1896
88 0.3577
0.8203 01229
—1.5507 —0.7475
—1.4056  —0.4250
1.1138  —0.4765

2.5391
~1.1530
1.2286
~0.6048
1.3090
~1.4786
~1.9038
—0.2777

1.3881
0.2366
~1.0681
0.7035

~2.1575
1.8131
1.6360






OEBPS/images/c06_I0140.gif
0514
0.0375
0.0328
0.0716
0.0547
0.0643
0.0833
0.0487






OEBPS/images/Inline_I20010.gif
an





OEBPS/images/Inline_I22673.gif





OEBPS/images/Inline_I22672.gif





OEBPS/images/c06_I0149.gif





OEBPS/images/c06_I0148.gif
S

;lu z(k)fA)(zk)fz

)

dy

=





OEBPS/images/Inline_I25705.gif





OEBPS/images/Inline_I25706.gif





OEBPS/images/Inline_I21349.gif
S,





OEBPS/images/Inline_I25703.gif
YIX, (XX, XTY,





OEBPS/images/Inline_I22675.gif
Bl e RwXny

=,





OEBPS/images/Inline_I25701.gif
YIXo [XEXo) T XY, € Rro*m





OEBPS/images/Inline_I20013.gif
Q

an





OEBPS/images/Inline_I22674.gif
EL € Rwvxne





OEBPS/images/Inline_I21345.gif
SiA, = diag {/e2,






OEBPS/images/Inline_I22677.gif
=,





OEBPS/images/Inline_I20015.gif
2y





OEBPS/images/Inline_I21346.gif





OEBPS/images/Inline_I22676.gif





OEBPS/images/Inline_I25707.gif
YIX, (XX, XTY,





OEBPS/images/Inline_I25708.gif
SyuroSih. Seun





OEBPS/images/c06_I0136.gif
=tg Et
+E S8y, |+

[Zn} — g gnin Kln
LS T
ST (= S elk)+
=

P
(= Sy, (k)
ot





OEBPS/images/c06_I0135.gif
=L - ,
Sce = 25,885,  Syr=E,.SyEr





OEBPS/images/c06_I0134.gif





OEBPS/images/c06_I0133.gif





OEBPS/images/c06_I0132.gif





OEBPS/images/c06_I0131.gif





OEBPS/images/c06_I0130.gif





OEBPS/images/Inline_I22660.gif





OEBPS/images/Inline_I23990.gif





OEBPS/images/Inline_I22661.gif





OEBPS/images/c06_I0139.gif
S,

S,

ww

o e

oo






OEBPS/images/c06_I0138.gif
oz San| _ [Ser 0
Syzo Syowe 0 Sy,

5 5 1]8 o [P
A {0 Xd(l {pg’ .





OEBPS/images/c06_I0137.gif
=S

See| _

Zeﬂk)-“s"-,‘. e(k)+

ZfT(k)ét‘S”é:" £(k)+
i

a |80, — Sy~ Sy, B +
ety

o S5
Pt






OEBPS/images/Inline_I22668.gif





OEBPS/images/Inline_I21337.gif
Q= gx2
X2 (h) E{gx2 (h)} = gh





OEBPS/images/Inline_I21338.gif
2h
2¢
)’} =
A0)

gE {(x,

,))1} =

E {(gxl‘. (1





OEBPS/images/Inline_I20008.gif
2y





OEBPS/images/Inline_I22664.gif





OEBPS/images/Inline_I22666.gif
Sy





OEBPS/images/Inline_I22665.gif





OEBPS/images/c06_I0125.gif
Syove = B [Szoz0 —

o) BY + S5 = Syz,B + Sy





OEBPS/images/c06_I0124.gif
my 2142





OEBPS/images/c06_I0123.gif
wr Q) fi-[ B o





OEBPS/images/c06_I0122.gif
RT 0= [PP+Q7Q] [PT Q7]






OEBPS/images/c06_I0121.gif





OEBPS/images/c06_I0120.gif
Szozo — See =Sz.2.-





OEBPS/images/Inline_I22651.gif





OEBPS/images/Inline_I23982.gif





OEBPS/images/Inline_I21320.gif





OEBPS/images/Inline_I23981.gif





OEBPS/images/c06_I0129.gif





OEBPS/images/c06_I0128.gif
;'S':T, s'g,:y‘a] - [B’] Szo. [I B] =Sus,





OEBPS/images/c06_I0127.gif
Sroro Saow| _
S, S,

voro  Suouo





OEBPS/images/c06_I0126.gif
Syoye — Sip — Sy, B=0.





OEBPS/images/c05tnt001.jpg
Type Number Tag Description Unit

Input variable 1 Xy Tray 14 temperature °C
2 X Column overhead pressure bar
3 X3 Tray 2 temperature °C
4 Xy Fresh feed temperature °C
5 X5 Reboiler steam flow !
6 Xg Tray 31 temperature C
7 X Fresh feed flow °c
8 Xg Reboiler temperature °c

Output variable 9 n Bottom draw !
10 » Percentage C3 in C4 P
11 3 Percentage C5 in C4 P
12 Va Top draw !
13 Vs Percentage C4 in C5 Po

Itonnes per hour.





OEBPS/images/Inline_I23988.gif





OEBPS/images/Inline_I22656.gif





OEBPS/images/Inline_I23987.gif





OEBPS/images/Inline_I23989.gif





OEBPS/images/Inline_I22653.gif





OEBPS/images/Inline_I23984.gif
E{z"2®"}





OEBPS/images/Inline_I21322.gif
v.+f-QR"x,





OEBPS/images/Inline_I22655.gif





OEBPS/images/Inline_I23986.gif





OEBPS/images/Inline_I22654.gif
ny +ny > 2(ny +ng)





OEBPS/images/Inline_I23985.gif





OEBPS/images/c06_I0114.gif
AB
AB

AB

B -B
82k = e 8] e
s;L [s;h +si B





OEBPS/images/c06_I0113.gif





OEBPS/images/c06_I0112.gif





OEBPS/images/c06_I0111.gif





OEBPS/images/c06_I0110.gif
WIW

s = |1-s... b Szouos

LW





OEBPS/images/Inline_I22640.gif
S:ozo





OEBPS/images/c06_I0119.gif
(i+1)
S}

— [Serr, + Sec] wiw!] 8!





OEBPS/images/Inline_I23970.gif





OEBPS/images/c06_I0118.gif
Seoo. +Sewi @i =SPwi






OEBPS/images/c05tnt004.jpg
i i=1 i=2 i=3 i=4 i=35

1 0.3432  —0.1400 0.2327 0.4352 0.3363
2 00353 —0.5032 —0.5067  —0.0540 0.0487
3 0.0246 0.6499 0.3090 0.0025 0.0542
4 0.0689 0.0247 0.1094 0.0326  —0.5815
5 0.3140  —0.0546  —0.3199 0.2531  —0.2373
6 —0.2272 0.5290 0.2679  —0.1882 0.7000
7 0.5219 0.2088 0.0769 05185  —0.0144
8 0.0825 0.2166  —0.2549  —0.0046  —0.2344

A row represents the coefficients for the prediction of the output variables using the
jth input variable and the coefficients in a column are associated with the prediction
of the ith output variable using the input variables.

S S S S S e






OEBPS/images/c06_I0117.gif
Syoze Seor. +Seel ' Spar = M.





OEBPS/images/c05tnt003.jpg
MSE{/,,}  MSE{f,} MSE{f;} MSE{f,} MSE{f;}

- WD -

0.4008 0.6778 0.9537 0.3844 0.9036
0.2642 0.4600 0.9442 0.2692 0.1666
0.2642 0.3475 0.8711 0.2597 0.1311

0.2580 0.3222 0.7519 0.2561 0.0975






OEBPS/images/c06_I0116.gif
S. -
[Seor. +See) ' SuuuuSyur Wi = AWy





OEBPS/images/c05tnt002.jpg
Number  t-score variable  cont(S,,}  cont(S,,)  cont(S, )

1 1 04118 0.5052 0.4623
2 n 0.0516 0.1572 0.1820
3 I 0.0197 0.0889 0.1507
4 iy 0.0023 0.0545 0.1176
5 1 0.0001 0.0329 0.1176
6 1) 0.0000 0.0124 0.1176
7 4 0.0000 0.0002 0.1176
8 A 0.0000 0.0000 0.1176






OEBPS/images/c06_I0115.gif
Wi
(q") = arg max w81, ~ A (W [Se.z, + Sel] w=1) — §A (a"a - 1).





OEBPS/images/Inline_I22646.gif
S:ozo





OEBPS/images/Inline_I23977.gif





OEBPS/images/Inline_I21315.gif
T
Rx,





OEBPS/images/Inline_I22645.gif
x) vi)





OEBPS/images/Inline_I23976.gif





OEBPS/images/Inline_I21316.gif





OEBPS/images/Inline_I21317.gif





OEBPS/images/Inline_I22647.gif





OEBPS/images/Inline_I23978.gif





OEBPS/images/Inline_I21310.gif
i ZkCik





OEBPS/images/Inline_I22641.gif
Szrove





OEBPS/images/Inline_I22644.gif





OEBPS/images/Inline_I23975.gif





OEBPS/images/Inline_I23974.gif
o9

1/





OEBPS/images/Inline_I21318.gif
S:ozo





OEBPS/images/Inline_I21319.gif
Szrove





OEBPS/images/Inline_I25741.gif





OEBPS/images/Inline_I25742.gif
diag (A} = diag[%, R -





OEBPS/images/Inline_I20054.gif
aly





OEBPS/images/Inline_I24411.gif





OEBPS/images/Inline_I25740.gif





OEBPS/images/Inline_I24417.gif





OEBPS/images/Inline_I25749.gif





OEBPS/images/Inline_I24419.gif
ti ~ N {0, \;}





OEBPS/images/Inline_I25747.gif
XI'X,] " %
[X3Xo] T XYY X,





OEBPS/images/Inline_I24418.gif
zy ~ N {0,S.






OEBPS/images/Inline_I25748.gif





OEBPS/images/Inline_I24413.gif
Sgs € R™*"





OEBPS/images/Inline_I25745.gif





OEBPS/images/Inline_I24412.gif





OEBPS/images/Inline_I25746.gif
YIXo[XEXo] ' XTY,





OEBPS/images/Inline_I24414.gif
Spu6, € RMz—m)x(n:=n)





OEBPS/images/Inline_I25730.gif
i






OEBPS/images/Inline_I25731.gif
' g
q;






OEBPS/images/Inline_I24400.gif





OEBPS/images/Inline_I25738.gif





OEBPS/images/Inline_I24405.gif





OEBPS/images/Inline_I25737.gif





OEBPS/images/Inline_I20045.gif
- Zog





OEBPS/images/Inline_I24402.gif





OEBPS/images/Inline_I25734.gif





OEBPS/images/Inline_I20046.gif
Z+ zap





OEBPS/images/Inline_I24401.gif
plo, = o





OEBPS/images/Inline_I25735.gif





OEBPS/images/Inline_I20047.gif
- Zog





OEBPS/images/Inline_I24404.gif





OEBPS/images/Inline_I25732.gif





OEBPS/images/Inline_I20048.gif
Z+ zap





OEBPS/images/Inline_I24403.gif





OEBPS/images/Inline_I25733.gif





OEBPS/images/Inline_I22693.gif





OEBPS/images/Inline_I22692.gif





OEBPS/images/Inline_I25720.gif
Y{Xo [XIXo] XIFD





OEBPS/images/Inline_I22695.gif
See,





OEBPS/images/Inline_I22694.gif





OEBPS/images/Inline_I22691.gif





OEBPS/images/Inline_I22690.gif
S,

o





OEBPS/images/Inline_I20038.gif





OEBPS/images/Inline_I25725.gif





OEBPS/images/Inline_I21365.gif





OEBPS/images/Inline_I22697.gif





OEBPS/images/Inline_I25723.gif





OEBPS/images/Inline_I22696.gif
Sif,





OEBPS/images/Inline_I22699.gif
Ad,





OEBPS/images/Inline_I25721.gif





OEBPS/images/Inline_I21368.gif
Sev






OEBPS/images/Inline_I22698.gif





OEBPS/images/Inline_I25722.gif
MY = YIX, [XEXo] ™ XEY,





OEBPS/images/Inline_I22682.gif





OEBPS/images/Inline_I22681.gif





OEBPS/images/Inline_I21352.gif





OEBPS/images/Inline_I22684.gif
S:ozo





OEBPS/images/Inline_I20022.gif
2y





OEBPS/images/Inline_I21353.gif





OEBPS/images/Inline_I22683.gif
Sy





OEBPS/images/Inline_I20028.gif
2y





OEBPS/images/Inline_I21359.gif
Xa
(n)





OEBPS/images/Inline_I22689.gif
S





OEBPS/images/Inline_I25714.gif
SyuroSih. Seun





OEBPS/images/Inline_I22686.gif
Szrove





OEBPS/images/Inline_I25712.gif
0 € Rrvxn





OEBPS/images/Inline_I21355.gif
E{tt"} =R"S, .,






OEBPS/images/Inline_I22685.gif





OEBPS/images/Inline_I25713.gif





OEBPS/images/Inline_I20025.gif





OEBPS/images/Inline_I22688.gif
Sif,





OEBPS/images/Inline_I22687.gif
See,





OEBPS/images/Inline_I25711.gif
P e R





OEBPS/images/c09_I0006a.gif
=722 = 7M., T,






OEBPS/images/Inline_I25719.gif
JFUg;

TE

0
TXo)
Y X [XEX X
q; Y,





OEBPS/images/Inline_I24453.gif
E{(t2-X)"}





OEBPS/images/Inline_I25785.gif
7/ s9)|





OEBPS/images/Inline_I25786.gif
Mo /1M, G|l






OEBPS/images/Inline_I24455.gif
E{t¥}





OEBPS/images/Inline_I24454.gif
2





OEBPS/images/Inline_I25782.gif
—sligh)
M, = S{)s)





OEBPS/images/Inline_I25780.gif





OEBPS/images/Inline_I24458.gif





OEBPS/images/Inline_I25788.gif
M1 /)M,
0d;

1))





OEBPS/images/c09_I0007a.gif





OEBPS/images/Inline_I20085.gif
2y





OEBPS/images/Inline_I25774.gif
(J+1) _ al
sp = et






OEBPS/images/Inline_I24441.gif
t /)~ N, 1}





OEBPS/images/Inline_I25775.gif
sty =gl Y.
S& [1-w;p!]





OEBPS/images/Inline_I25772.gif





OEBPS/images/Inline_I25773.gif





OEBPS/images/Inline_I25771.gif
(9)-
_ 8w,

T w;STw;





OEBPS/images/Inline_I24446.gif





OEBPS/images/Inline_I25779.gif





OEBPS/images/Inline_I24448.gif
I (1/2) =2 exp (—t)dt

lo





OEBPS/images/c09_I0008a.gif





OEBPS/images/Inline_I24431.gif





OEBPS/images/Inline_I25763.gif
yozo =





OEBPS/images/Inline_I25764.gif
SEED/||sP e






OEBPS/images/Inline_I24433.gif
E{t}#2} = Ai);





OEBPS/images/Inline_I24432.gif
E{t?} =),





OEBPS/images/Inline_I25762.gif
Siye, = See





OEBPS/images/Inline_I24439.gif





OEBPS/images/Inline_I24438.gif





OEBPS/images/Inline_I25767.gif
1q; = S}
2





OEBPS/images/Inline_I25768.gif
195 /|1q; 11





OEBPS/images/Inline_I25765.gif
w; =S 0q;





OEBPS/images/Inline_I25766.gif
Wi /w1l





OEBPS/images/c09_I0009a.gif
rg m;!x#'M,,r =z (T T 1) = 2M. T - 2,





OEBPS/images/Inline_I20063.gif
zap = +£1.96





OEBPS/images/Inline_I21394.gif





OEBPS/images/Inline_I25752.gif
[XTXo] ™"
XIY,
WY
TXo





OEBPS/images/Inline_I20064.gif
zagy = £2.58





OEBPS/images/Inline_I21396.gif





OEBPS/images/Inline_I25750.gif
YIXo[XEXo] ' XTY,





OEBPS/images/Inline_I24421.gif
E{t"}





OEBPS/images/Inline_I21392.gif





OEBPS/images/Inline_I24428.gif





OEBPS/images/Inline_I25758.gif
[YIYe ™"





OEBPS/images/Inline_I21398.gif





OEBPS/images/Inline_I21399.gif





OEBPS/images/Inline_I24423.gif
A2 (m— 1)1





OEBPS/images/Inline_I24426.gif





OEBPS/images/Inline_I23045.gif





OEBPS/images/Inline_I24376.gif





OEBPS/images/Inline_I23044.gif





OEBPS/images/Inline_I24375.gif
E{¢;} =2A\p;





OEBPS/images/Inline_I23047.gif





OEBPS/images/Inline_I24378.gif





OEBPS/images/Inline_I23046.gif





OEBPS/images/Inline_I23041.gif





OEBPS/images/Inline_I23040.gif





OEBPS/images/Inline_I23043.gif





OEBPS/images/Inline_I24374.gif





OEBPS/images/Inline_I23042.gif





OEBPS/images/Inline_I24373.gif





OEBPS/images/Inline_I23049.gif





OEBPS/images/Inline_I23048.gif





OEBPS/images/Inline_I24379.gif





OEBPS/images/tbl_0002.gif
¢ o nn<': (n. + |)/2

— o linear dependency
¢ o onasn(t1), > lincar dependency
b n. n) <+ 1)/ o lincar dependency
< +1)/, - lincar dependency

$a





OEBPS/images/Inline_I23034.gif





OEBPS/images/Inline_I24365.gif





OEBPS/images/Inline_I23033.gif





OEBPS/images/Inline_I24364.gif





OEBPS/images/Inline_I25698.gif
YIX, [XEX,] ™ XIFD





OEBPS/images/Inline_I23036.gif





OEBPS/images/Inline_I24367.gif





OEBPS/images/Inline_I25695.gif
XJFUHh = XTFY) — p;q]





OEBPS/images/Inline_I23035.gif





OEBPS/images/Inline_I23030.gif





OEBPS/images/Inline_I24361.gif





OEBPS/images/Inline_I25693.gif





OEBPS/images/Inline_I24360.gif





OEBPS/images/Inline_I25694.gif
XTY, [(XEX,] ™ XIFD





OEBPS/images/Inline_I23032.gif





OEBPS/images/Inline_I24363.gif
E{¢i} =€ #0





OEBPS/images/Inline_I25691.gif





OEBPS/images/Inline_I23031.gif





OEBPS/images/Inline_I25692.gif
2





OEBPS/images/c08_I0014a.gif
3 T g
T 2 TO7 40  TOT OO 4 (&

TY = TO7 @ = O OO 4 ¢,





OEBPS/images/Inline_I23038.gif





OEBPS/images/Inline_I23037.gif





OEBPS/images/Inline_I24368.gif





OEBPS/images/Inline_I23039.gif





OEBPS/images/Inline_I25686.gif





OEBPS/images/Inline_I24353.gif





OEBPS/images/Inline_I25687.gif
[XTXo] ' XIFOYIX,





OEBPS/images/Inline_I23025.gif





OEBPS/images/Inline_I24356.gif
P!





OEBPS/images/Inline_I25684.gif
EV 1





OEBPS/images/Inline_I23024.gif





OEBPS/images/Inline_I24355.gif





OEBPS/images/Inline_I25685.gif





OEBPS/images/Inline_I25682.gif
[XTXo] ' XIFOYIX,





OEBPS/images/Inline_I25683.gif





OEBPS/images/Inline_I24352.gif





OEBPS/images/Inline_I25680.gif
[XTXo] ' XIFOYIX,





OEBPS/images/Inline_I25681.gif





OEBPS/images/overlinen.gif





OEBPS/images/Inline_I23027.gif





OEBPS/images/Inline_I23026.gif





OEBPS/images/Inline_I24357.gif





OEBPS/images/Inline_I23029.gif





OEBPS/images/Inline_I23028.gif





OEBPS/images/Inline_I24359.gif





OEBPS/images/Inline_I25689.gif





OEBPS/images/overliner.gif





OEBPS/images/Inline_I24343.gif





OEBPS/images/Inline_I24342.gif





OEBPS/images/Inline_I25676.gif





OEBPS/images/Inline_I24345.gif





OEBPS/images/Inline_I24344.gif





OEBPS/images/Inline_I25674.gif
V(1)
EYw;





OEBPS/images/Inline_I25671.gif
XIE® = EW" X,





OEBPS/images/Inline_I23010.gif
Z(i+1)





OEBPS/images/Inline_I25670.gif
EW g





OEBPS/images/Inline_I24347.gif





OEBPS/images/Inline_I24346.gif





OEBPS/images/Inline_I24349.gif





OEBPS/images/Inline_I25678.gif





OEBPS/images/Inline_I20809.gif
S:ozo





OEBPS/images/Inline_I20810.gif





OEBPS/images/Inline_I20811.gif
w/ED Ew, —






OEBPS/images/Inline_I20816.gif
2





OEBPS/images/Inline_I20817.gif





OEBPS/images/Inline_I20819.gif





OEBPS/images/Inline_I20812.gif
w!IXIXow; — 1





OEBPS/images/Inline_I20813.gif





OEBPS/images/Inline_I20814.gif





OEBPS/images/Inline_I20815.gif





OEBPS/images/Inline_I20806.gif





OEBPS/images/Inline_I20807.gif





OEBPS/images/Inline_I20808.gif





OEBPS/images/Inline_I20802.gif





OEBPS/images/Inline_I20803.gif





OEBPS/images/Inline_I20804.gif
FO'X, [XIXo) ™ XIFO





OEBPS/images/Inline_I24390.gif





OEBPS/images/Inline_I24392.gif





OEBPS/images/Inline_I23060.gif





OEBPS/images/Inline_I24391.gif





OEBPS/images/Inline_I24398.gif





OEBPS/images/Inline_I24397.gif





OEBPS/images/Inline_I24399.gif
Ad =Py





OEBPS/images/Inline_I24394.gif





OEBPS/images/Inline_I24396.gif





OEBPS/images/Inline_I24395.gif





OEBPS/images/Inline_I23050.gif





OEBPS/images/Inline_I24381.gif





OEBPS/images/Inline_I24380.gif
E{¢:i} =24\





OEBPS/images/Inline_I23056.gif





OEBPS/images/Inline_I24387.gif





OEBPS/images/Inline_I23055.gif





OEBPS/images/Inline_I23058.gif





OEBPS/images/Inline_I24389.gif





OEBPS/images/Inline_I23057.gif





OEBPS/images/Inline_I24388.gif





OEBPS/images/Inline_I23052.gif





OEBPS/images/Inline_I23051.gif





OEBPS/images/Inline_I24382.gif





OEBPS/images/Inline_I23054.gif





OEBPS/images/Inline_I24385.gif





OEBPS/images/Inline_I23053.gif





OEBPS/images/Inline_I23059.gif





OEBPS/images/c06_I0069.gif
LP[A 1] PTL"






OEBPS/images/c06_I0068.gif
-

+1

1S,
L
-
+13J)'II:V

' )

T l]ﬁ’ +
Bli

!

o
=L
-1=28,, &

PT - L

~1) P





OEBPS/images/c06_I0067.gif





OEBPS/images/c06_I0066.gif
Estimate of generalized

Estimat

Estimate of column space of =

verse EF

of orthogonal complement =+





OEBPS/images/c06_I0065.gif





OEBPS/images/c06_I0064.gif
"2 (1
n)<1





OEBPS/images/c06_I0063.gif
=2 _ K% (n)
R () = EE—nt2)(m—nt1)





OEBPS/images/Inline_I20852.gif
Sy





OEBPS/images/Inline_I20853.gif
S:ozo





OEBPS/images/Inline_I20854.gif





OEBPS/images/Inline_I20855.gif





OEBPS/images/Inline_I20851.gif





OEBPS/images/c06_I0062.gif
Hy : &)>x2(3(n:-n+2)(n.—n+1)).





OEBPS/images/c06_I0061.gif
Hy : m*m)<xi(3(n:—n+2)(n.—-n+1))





OEBPS/images/c06_I0060.gif





OEBPS/images/Inline_I20856.gif
Szrove





OEBPS/images/Inline_I20857.gif
S:ozo





OEBPS/images/Inline_I20858.gif
Szrove





OEBPS/images/Inline_I20859.gif





OEBPS/images/c06_I0059.gif
~0.032
~0.034
0.011
0.033
~0.018
0.006
~0.022
~0.003
0.001
0.014

0.058
0.029
0.031
~0.029
0.081
~0.008
0.035
~0.036
~0.011
~0.011

0.077
~0.034

0.004
~0.014
~0.005
~0.005

0.013
~0.006
~0.034
—0.012

0.012
0.065
~0.044
~0.005
0.008
0.051
0.037
~0.009
0.014
0.012





OEBPS/images/c06_I0058.gif
—0.043
~0.010
~0.005
0.029
0.028
0.098
0.024
0.041
0.057
0.031

~0.003
~0.020
0.048
~0.032
0.007
~0.023
0.018
~0.016
0.018
—0.011

0.026
0.001
0.018
~0.079
0.013
~0.004
0024

0.048

~0.014]
~0.004
0.013
~0.023
~0.016
0.034
0.020
0.008
0.041
—0.068,





OEBPS/images/c06_I0057.gif





OEBPS/images/c06_I0056.gif
ding {Seq

0.15'
0.10
0.25
0.05
0.20
0.50
0.35
0.40
0.30
0.45
0.10
0.25
0.15
0.05





OEBPS/images/c06_I0055.gif
m

1.00
0.00
0.00
0.00
0.50
0.00
0.25
~0.25
0.00
0.25
0.75
0.00
—0.50
0.00

0.00
1.00
0.00
0.00
0.00
0
0.25
~0.50
0.50
~0.25
0.00
0.25
—0.50
0.25

0.00
0.00
1.00
0.00
0.25
0.50
0.25
0.00
~0.05
0
0.25
0.00
0.00
0.00

0.00
0.00
0.00
1.00
0.25
0.25
0.25
0.25
0.00
~0.25
0.00
0.75
0.00
0.75,





OEBPS/images/c06_I0054.gif
zo=2s+g s~N{0I}  g~N{0,Sy}





OEBPS/images/c06_I0053.gif
P, N )
.
ﬂ] ’
0 Agl [P
do i
A





OEBPS/images/c06_I0052.gif





OEBPS/images/Inline_I20842.gif
S O





OEBPS/images/Inline_I20843.gif
Sy





OEBPS/images/Inline_I20844.gif
S:ozo





OEBPS/images/Inline_I20840.gif





OEBPS/images/c06_I0051.gif





OEBPS/images/Inline_I20849.gif





OEBPS/images/c06_I0050.gif





OEBPS/images/Inline_I20845.gif
Szrove





OEBPS/images/Inline_I20846.gif





OEBPS/images/Inline_I20847.gif





OEBPS/images/Inline_I20848.gif





OEBPS/images/c06_I0048.gif
T=L"' 8 L+L

LPAPTLT





OEBPS/images/c06_I0047.gif
. 5 5 1A of[Pr
L'S.. LT = [Pv P“l] {u KJ {PI':,





OEBPS/images/c06_I0046.gif
<notdofon et
71,7lz+§ n. T





OEBPS/images/c06_I0045.gif
= |+ 350 [E50 ] 0

Sgg = argmin K In
Sa, k=1

o





OEBPS/images/c06_I0044.gif





OEBPS/images/c06_I0043.gif





OEBPS/images/c06_I0042.gif





OEBPS/images/c06_I0041.gif
Zg=2Z5s+@






OEBPS/images/c06_I0049.gif
S, =argmin  ay [ K
00 g 1

+ay

sl al”
= =
=i Soa:






OEBPS/images/Inline_I20830.gif
fe RS





OEBPS/images/Inline_I20831.gif





OEBPS/images/c06_I0040.gif
[ 0 P2

0 0 o A1) Lpa

—o

oo






OEBPS/images/c06_I0037.gif
S.n= [P B [ﬁ xod} P;: i





OEBPS/images/c06_I0036.gif





OEBPS/images/c06_I0035.gif





OEBPS/images/c06_I0034.gif





OEBPS/images/c06_I0033.gif





OEBPS/images/c06_I0032.gif





OEBPS/images/c06_I0031.gif





OEBPS/images/c06_I0030.gif
3 (@) - &) 5 (66) - 8.0)-

et






OEBPS/images/c06_I0039.gif





OEBPS/images/c06_I0038.gif





OEBPS/images/Inline_I20820.gif





OEBPS/images/Inline_I20821.gif





OEBPS/images/Inline_I20822.gif
PB e RIOx4





OEBPS/images/Inline_I20827.gif
s ~N{0,1}





OEBPS/images/Inline_I20828.gif





OEBPS/images/Inline_I20829.gif





OEBPS/images/Inline_I20823.gif
P’ e RIOX6





OEBPS/images/Inline_I20824.gif
0 e Rox4





OEBPS/images/Inline_I20825.gif





OEBPS/images/Inline_I20826.gif





OEBPS/images/Inline_I20890.gif





OEBPS/images/Inline_I20896.gif





OEBPS/images/Inline_I23922.gif
clk+1)

[mer] me m
[):S"“’]’i [26+9) "Aimm—qﬂ[);y-m]
*ﬁio(k + K)ok + x)

cli = [ZMH)] e, 50
[):“*”] [}:“*”] AxH,AyH‘[):VyA'H)]_
ey Ro(k + K)Fo(k +K)






OEBPS/images/Inline_I20897.gif





OEBPS/images/Inline_I23921.gif
Ro(k +K) = [BED] 7 (x(k + )~ Rin)

Folk+K) = [£60] 7 (vlk +K) - 50)





OEBPS/images/Inline_I20898.gif
Sea






OEBPS/images/Inline_I20899.gif





OEBPS/images/Inline_I20894.gif





OEBPS/images/Inline_I23920.gif
B = ding {oV oIV}

B ,dmx{ Gean) (,wm}

vy





OEBPS/images/Inline_I20895.gif





OEBPS/images/c06_I0099.gif
f~N{0,S5} e~N{0,S.}





OEBPS/images/c06_I0098.gif





OEBPS/images/c06_I0097.gif
E{P} 7%

- — e = 0.0744.
E{yf} ~ o [PPT +P'S, P7T]b+0?






OEBPS/images/c06_I0096.gif
A = diag

6.058308"
4.393462
2.644292
1944088

0.054620
0.020089
0.003175
0.000021





OEBPS/images/Inline_I23911.gif
=7 (K% = x(k)),
(Ky, — y(k)






OEBPS/images/Inline_I20886.gif





OEBPS/images/Inline_I23910.gif
oo





OEBPS/images/Inline_I20887.gif
E{ge"} =01





OEBPS/images/Inline_I23913.gif





OEBPS/images/Inline_I23912.gif





OEBPS/images/Inline_I20883.gif





OEBPS/images/Inline_I20884.gif





OEBPS/images/c06_I0095.gif





OEBPS/images/Inline_I23919.gif
(e8) = (o) + (@gin)?
_ (Aii’»“.,)z + GO T P e 9 m)?
(k) = (o) + (AT )?

g V2 oy Wikt )~ i (k) =)
- 7
(Afgr,)” + 2 T






OEBPS/images/c06_I0094.gif





OEBPS/images/Inline_I23918.gif
AV =V -5





OEBPS/images/c06_I0093.gif
Sizs = PP 4+alP'PT

0420 —0.020 —0.529 0485 —0.304 .- —0.387
—0.020 0953 —1133 —0.568 0365 -~ —0.719
~0.529 —1.133 2486 0330 0130 .- 1.899

- 0.485  —0.568  0.330  1.695 . 0.848
—0.304 365  0.130 —0.057 0.833
—0.387 —0.719  1.899  0.848 2.296.






OEBPS/images/c06_I0091.gif





OEBPS/images/Inline_I23915.gif
- qu(k)"u ).
L=, [59] axay [50]
%o(K)FE (k)

=C®, [2‘,"’]_‘AE‘AT' [E(f"]_l






OEBPS/images/c06_I0090.gif
xg = Ps + P's’,





OEBPS/images/Inline_I23914.gif
Zalk) = [ “”]"(x(k)—m
[ m] -y





OEBPS/images/Inline_I23917.gif
AViyy =





OEBPS/images/Inline_I23916.gif
Xi1 = x (K= 1)V +x(k + X)),
Veer = 2 (K- 1)F +y(k+K))





OEBPS/images/c06_I0089.gif
Zxowxn (k)} [gxo k)xm)]_
E{(G, BOIC 41,)7} =






OEBPS/images/c06_I0088.gif
E{(E,*b,) (l;,fb,)T}:H,'" [gxm)xw)r





OEBPS/images/c06_I0087.gif
E{xo(®)fi(t)fil)xg (0} = E{xo(k)fi(k)} E {fi(xo (1)}
—_—
>
+E {xo(R)ix (D} E {i (k)X ()}
CLolBR) U PR )
B
+x0(k)xE () E (R0} -
by

o for all k#t





OEBPS/images/c06_I0086.gif
B

E{G0)60)} - [Smmde]
{Xn (k) Mk)ih (k)x5. (A-)H

k=1

-1
Xn (k)x§ (k)} .

™= E[\/]zw





OEBPS/images/c06_I0085.gif
-1

. T K K

E{(h,—b.) (6:-0:) } = [Zx..(k)x{(k)} E{ memm)]
K K -1
[Z fi (k) % <A~>]} {me)x;; <k>]





OEBPS/images/Inline_I20874.gif
S:ozo





OEBPS/images/Inline_I23900.gif
aQ





OEBPS/images/Inline_I20876.gif





OEBPS/images/Inline_I23902.gif
AXjey1
AV

Xpes1 = Xy

k1 — Vi






OEBPS/images/Inline_I20877.gif





OEBPS/images/Inline_I23901.gif
A (K
BT
k

(k% +x(k +1)),
(k¥i +y(k+1))





OEBPS/images/Inline_I20870.gif
S,.





OEBPS/images/Inline_I20872.gif
S5





OEBPS/images/Inline_I20873.gif
S,

o





OEBPS/images/c06_I0084.gif
-

K

S = [Z X0 (K) %0 (k)} {Zwkm *

{an(k)"o m] [Zxomxo W8+ an(kn" (k)}
=

E{ﬁ}:m[zxu(k)xw)] E{Zx»(k)r’(k)}

E{B} =B+ {k xo (k) x5 (K) [Zxomc{v‘ (k)}]
d

l-B-0





OEBPS/images/Inline_I23908.gif
oo





OEBPS/images/c06_I0083.gif
e{( ) (50 a0} =0 | S g | Se = oitiana





OEBPS/images/Inline_I23907.gif
Crozo





OEBPS/images/c06_I0082.gif
3.0043
~0.0000
—0.0000
—0.0000

Su=

~0.0000
25738
0.0000
—0.0000

—0.0000
0.0000
1.9804

—0.0000






OEBPS/images/c06_I0081.gif
3.0002
~0.0000
—0.0000
—0.0000

8u=

~0.0000
2.5670
0.0000
—0.0000

—0.0000
0.0000
1.9740
0.0000

.0000°

0.0000






OEBPS/images/Inline_I23909.gif
Crozo





OEBPS/images/c06_I0080.gif
0.2594
0.2822
0.2189
0.3691
0.2813
0.2805
0.2865
—0.1316
0.1161
~0.0409
0.2603

0.4274
0.1105
0.1087
~0.4708
0.1212
~0.0391
0.0554
~0.2815
0.0507
0.2439
0.3597

—0.2675
—0.3235

0.2546
0.1859

00143 ~0.0060
0.30030.0097
~0.0323
~0.1067
0.1013
0.1001
—0.1460
0.1057





OEBPS/images/Inline_I23904.gif
(k1)) *
(W) =
+ Rk +1) = i)’

S = diag {05 ot}






OEBPS/images/Inline_I20879.gif





OEBPS/images/Inline_I23903.gif
2
k+1) (* 22
(o) = 52 (o) + dat
+ @ik +1) = Frp10)
2EHD) _ ding {gwn . g:'n}





OEBPS/images/Inline_I23906.gif
clk+1) —

[Ei“”] =We®), w®
[,:LIHH]’;[,:‘IM,] "A,?MA,?M[,:LM»]

+ EXo(k + XL (k+1)

"
(ks1) _ +1)] 7 ket k)
el = K [m+0] T mel), 5

o
[E;Hn]’;[wm] "AimAyw[z;*“’]
+ ok + 1) (k+1)






OEBPS/images/Inline_I23905.gif
Rolk+1) = [SED] 7 xlk +1) = x05),

Folk+ 1) = [0 (w4 1)~ 910)





OEBPS/images/c06_I0079.gif
—0.0056
0.0347
0.0100
0.7843
0.0942
0.0674
0.0678
0.0518
0.0035

~0.0709

~0.0039

—0.0122
0.5435

0.5038
0.4384
0.0733
~0.1140
0.2199
0.0675
0.1434
~0.1995
0.1135
0.0559
0.4772
0.0408
—0.4136
0.0771

0.4102
~0.7203
0.0632
0.1414
0.2158
.0369
0036
0.1274
~0.2085
0.1272
0.3603

—0.3142
0.0187
0.8188

~0.0463
0.1288

0.3649
0.1697
0.0148

~0.0219
0.1304
0.1248
0.0034
0.1262

—0.0235






OEBPS/images/c06_I0078.gif





OEBPS/images/c06_I0077.gif





OEBPS/images/c06_I0076.gif
PY[S..., —S,lP=A,





OEBPS/images/c06_I0075.gif
f:ﬁ'L"zaéE{R'}:f”S.

P=A





OEBPS/images/c06_I0074.gif
“(Es+g)
[ .,] BrLg

s~ [f"L"E]_‘L.





OEBPS/images/Inline_I20860.gif





OEBPS/images/Inline_I20861.gif





OEBPS/images/Inline_I20862.gif





OEBPS/images/c06_I0073.gif
t=PTL'Ss=>s=






OEBPS/images/c06_I0072.gif
7o = Ss+g = LPt +g.





OEBPS/images/c06_I0071.gif





OEBPS/images/c06_I0070.gif
2 = PIL'LP = PIP = 0.





OEBPS/images/Inline_I20867.gif





OEBPS/images/Inline_I20868.gif





OEBPS/images/c02_I0098.gif
0.632
0.153
—0.283
—0.775
0.498
0.117

S =

0.153
0.642
—0.405
—0.359
0.012
—0.267

—0.283
~0.405
0.457
0.480
~0.266
0.238

—0.775
~0.359
0.480
1542
~0.291
0.472

0.012
—0.266
—0.291

0.814

0.406

0.117
~0.267
0.238
0.472
0.406
0.912





OEBPS/images/Inline_I22514.gif





OEBPS/images/c02_I0099.gif
Wi =

~0.358
0.564
0.803
1.097
0.639
1.053
~0.160
0.390
0.314
0.005

~0.031
~0.048

0.192
~0.258
~0.417
—0.197
~0.900

1.093
—0.568
—0.002

~0.128
~0.058
980
0.135
0.199
—1.522
0.516
0.822
0.374
0.000

~0.608
—0.432
~1.394
~0.042

1.333

0.491
~0.100
~0.056
—0.128

0.009

0.292
—0.241
0.728
~0.572

~0.852
—0.670
—0.367
~0.843
—1.008
1.041
0.704
0.024
0.196
—0.003





OEBPS/images/Inline_I22513.gif
P’ € R10%6





OEBPS/images/c02_I0096.gif
4.220

1.674

0.752

—1.146

—0.650

om0 = | 9,063
—0.558

1.457

1.464

~2.178

S,

1.674 0.752
3.158  —0.372
~0.372 39
0.480  —0.542
1.453
~0.134
0.405
0.022
0.339
~2.816

—1.146
0.480
~0.542
3.115
—0.787
2.164
1.476
1.346
—2.280
1.069

—2.178
0.698
~2.816
1.069
—0.305






OEBPS/images/c02_I0097.gif
S,

0w =

—0.701
0.200
~0.417
0.248
0.667
0.568
—0.497
—0.031
0.250
0.530

0.745
0.185
~0.273
—0.177
0.061
~0.401
~0.742
0.483
0.023
~0.556

—0.116
~0.020
0.521
~0.176
—0.016
~0.107
0.565
—0.248
0.047
0.084

0.639
~0.465
~0.049
—0.435
—0.831
~0.652

1.086
—0.876
—0.102
~0.615

~1.032
0.361
0.291
0.721
—0.046
—0.721
0.197
0.578

—0.510
~0.071
—~0.474
—0.229
0.404
0.146
0.493
—1.092
0.436
0.240





OEBPS/images/Inline_I22515.gif





OEBPS/images/c02_I0094.gif
0.634
0.162
—0.291
—0.777
0.502
0.121

S =

0.162
0.650
—0.405
—0.357
0.018
—0.253

—0.291
~0.405
0.455
0.476
~0.276
0.218

=0.777
~0.357
0.476
1.541
~0.291
0.461

0.502
0.018
.276
—0.291
0.828
0.418

0.121
~0.253
0.218
0.461
0.418
0.906





OEBPS/images/c02_I0095.gif
Srzs = PSP+ PSP

Sewe = BS.Q'
Sy = 98,97 + 8.





OEBPS/images/c02_I0092.gif
4.319
1.709
0.684
~1.169
~0.678
128
~0.583
1.457
1519
154

1.709
3.156
~0.449
0.442
~0.473

1724
0.364
0.756

0.684
.449
4.507
~0.559
1.470
—0.124
0.401
.006

~2.154
0.756
~2.805
1.097
~0.305
0.50:
~0.130
3 0.226
307 - —0.840
1.097 .- 4483





OEBPS/images/Inline_I22512.gif
P c pioxd





OEBPS/images/c02_I0093.gif
S,

0w =

—0.701
0.190
~0.427
0.223
0.679
0.569
~0.505
~0.032
0.282
0.512

0.753
0.191
—0.296
~0.185
0.065
—0.410
~0.752
0.477
0.035

551

—0.118
~0.021
0.527
~0.158
—0.032
—0.104
0.568
~0.225
0.020
0.095

0.669
~0.436.
~0.054
~0.398
—0.858
—0.651

1.092
~0.853
—0.128
—0.608

—0.875
167
~1.050
0.330
0.301

~0.512
~0.083
~0.507
~0.230
0.403
0.152
0.479
~1.088
0.448
0.240





OEBPS/images/Inline_I22511.gif





OEBPS/images/c02_I0090.gif
S

1.014 ~0.011
~0.011  1.036
~0.005  0.004
~0.010  0.006
~0.007  0.010
—0.017 —0.025

~0.005
0.004
0.987
0.010
0.008
0.018

—0.010
0.006
0.010
1.039

~0.004
0.006

~0.007
0.010
0.008
~0.004
1.005
—0.011

~0.017
~0.025
0.018
0.006
~0.011
993






OEBPS/images/c02_I0091.gif
S,

i =

0.028
0.001
~0.001
0.001
0.001
0.000

0.001
0.048
0.000
0.001
~0.000
0.000

—0.001
0.000
0.028
0.001

~0.001

~0.000

0.001  0.001
0.001 ~0.000
0.001 —0.001
0.035  0.001
0.001  0.035
0.001 —0.001

0.000
0.000
~0.000
0.001
.001
0.028






OEBPS/images/Inline_I22519.gif
S O





OEBPS/images/Inline_I22503.gif
E{fi(k)fi(D)} = duof.





OEBPS/images/Inline_I22505.gif





OEBPS/images/Inline_I22504.gif
S





OEBPS/images/Inline_I23835.gif





OEBPS/images/Inline_I22501.gif
E {xo(k)fi(k)fi(1)xg (1)} = xo(k)xg (1)of.





OEBPS/images/Inline_I22500.gif
E {xo(k)fi(k)f:(1)xg (1)} = 0 for all k # 1





OEBPS/images/Inline_I22507.gif
o T L





OEBPS/images/Inline_I22506.gif
S.L, =us'u”





OEBPS/images/Inline_I23837.gif





OEBPS/images/Inline_I22509.gif
u,





OEBPS/images/Inline_I23839.gif





OEBPS/images/c02_I0078.gif
G x PO Xow,.





OEBPS/images/c02_I0079.gif
& ()" T
o x O X, (XX, ' XTI (o)






OEBPS/images/c02_I0076.gif
(&) —meumrsia

v (w'w—1) - 1A (qTq-1),





OEBPS/images/Inline_I20797.gif
Szrove





OEBPS/images/c02_I0077.gif





OEBPS/images/Inline_I20798.gif
S:ozo





OEBPS/images/c02_I0074.gif
s = st —pigl.





OEBPS/images/Inline_I20799.gif
Szrove





OEBPS/images/c02_I0075.gif
|SM)H ,IZ Z ( L-Jﬂ)ﬂ)“ >





OEBPS/images/c02_I0072.gif





OEBPS/images/c02_I0073.gif





OEBPS/images/c02_I0070.gif
S, S.uS, — A% -
oSSy, W — APw =0 S, . S 1 S q-Aq=0.





OEBPS/images/c02_I0071.gif





OEBPS/images/Inline_I20796.gif
S:ozo





OEBPS/images/c02_I0089.gif
0.009
1.008
0.005
0.014

0.008
0.005
1.004
0.010

~0.010
0.014
0.010
1.027





OEBPS/images/c02_I0087.gif
0.600

—0.871
0.122
~0.719
0.473
0.596
0.801
-0,
0.000
0.170
0.662

~0.559
~0.638
~0.857
0.451
~0.719
0.507
0.719
~0.880
~0.256
0.324

0.765
~0.011
~0.774
~0.484

0.036
~0.580
~0.220
~0.478

0.277
~0.721





OEBPS/images/c02_I0088.gif
0.565 —0.279
0.447 ~0.427
910 0.593
~0.106 0.986
0.132 0.715
~0.234 0.775
0.005 0.929
0.854 0.500
987 ~0.613
976 —0.504

618
.297
768
0.753

448
0.224

0.693
~0.289
~0.230
~0.814

0.807
—0.588






OEBPS/images/Inline_I20787.gif
Szrove





OEBPS/images/c02_I0085.gif
(
(

D\ _ o T im 8§ _Sg
)ﬂ\xgrg‘_\;(w [Kli“‘smyu >bia,

)

“w'w 1) - A (afa-1)

') =argmaxw’0q — £\ (w'w —1) = $x(q"q - 1)
)

o %





OEBPS/images/c02_I0086.gif
0.174 0.742 -0.149  0.024
~0.486 0.243 —0.313  0.449
0405 —0.470 —0.002 -0.212
0230 —0.997 0562 0381
0.268 0.685 0424 0.242
0.810  —0.005  0.208  0.431






OEBPS/images/c02_I0083.gif
PXIFOFD X (0W,)





OEBPS/images/c02_I0084.gif
lim
K00

Sap — D Bid, V

—0.





OEBPS/images/c02_I0081.gif
FO' X [X5Xo] ' XEFO = (K - 1§ [§0]'80)





OEBPS/images/Inline_I20784.gif
Syozo
Szom!
. -





OEBPS/images/c02_I0082.gif
W XTI (o
x [XEXo] " XE (on,
oW, o






OEBPS/images/Inline_I20785.gif
S,

oo Szore Szovo





OEBPS/images/c02_I0080.gif
22(,d,) = FO' X, [XIX,] T XETFY (4a)





OEBPS/images/c06_I0026.gif





OEBPS/images/c06_I0025.gif





OEBPS/images/c06_I0024.gif





OEBPS/images/c06_I0023.gif





OEBPS/images/c06_I0022.gif
I
T =3 (o (k) — 20 (k)" S5 (20 (k) — 24 (k)

k=1





OEBPS/images/c06_I0021.gif
J* == Kn.In(27) — 5 In(|Sqq|)
K
=" (20 (k) — 2, (k) S5 (20 (k) — 2, (k).
—





OEBPS/images/c06_I0020.gif
i
T =3 (Jk (20 (K) = 2 (k) ,Sgq) )-

et





OEBPS/images/Inline_I22550.gif





OEBPS/images/Inline_I22552.gif





OEBPS/images/Inline_I21221.gif





OEBPS/images/Inline_I22551.gif





OEBPS/images/c02_I0058.gif
E{tu) = ro \/E { (s"‘BTW)I + (s/“q:”w)l} E { (s’fﬁrq)l + (qu)z}





OEBPS/images/c02_I0059.gif
E{tu} = rus %E { (s"t}sTw)z} E { (s DTq)z + (irq)z}





OEBPS/images/c06_I0029.gif
K

K =,
=3 b)) 854 (o) — (1) = 3 3 L0 = 20 B
22

oy T,





OEBPS/images/c02_I0056.gif
w = argmax E {w'xoygq} — A (w'w —1).





OEBPS/images/c06_I0028.gif





OEBPS/images/c02_I0057.gif





OEBPS/images/c06_I0027.gif
“o-1T

[[vv;‘] Soo vv['] a [\79[‘]1 s, 7}





OEBPS/images/c02_I0054.gif





OEBPS/images/c07f003.jpg
R
Fault .

magnitude

Time






OEBPS/images/Inline_I22558.gif





OEBPS/images/c02_I0055.gif
_ [ 9s.9! msn‘n"] [Sn 0

* 7 | s, N ' ’
P27 PSP 0 PSP }

» remaining variation






OEBPS/images/c07f002.jpg
Ratio of flops

e o8 qar
W





OEBPS/images/Inline_I22557.gif





OEBPS/images/c02_I0052.gif





OEBPS/images/c07f001.jpg
Old Window Intermediate Data New Window

i o o
: == ‘ RO Py
a(k+K-1)) 2k K)oy, 2(k+K) )
Matrix I Matrix II Matrix III

(z.x,.c.) (z'.z'.c') (Z.1.%,.1:C.))





OEBPS/images/Inline_I21228.gif





OEBPS/images/c02_I0053.gif





OEBPS/images/Inline_I22559.gif





OEBPS/images/c02_I0050.gif
Lior [02281 03365
=W [P W[ Q = |05864 08785
0.8133  0.5457





OEBPS/images/Inline_I21222.gif





OEBPS/images/Inline_I22554.gif





OEBPS/images/c02_I0051.gif
Yo=) asi+f=9s+f xule’,*v Zv,,f‘xsswxs's'

=

Yo+ ¥ X=X+ X





OEBPS/images/Inline_I22553.gif
Yo





OEBPS/images/Inline_I22556.gif
'PTh
2 PP’
Th + 02

= PP

Sxoye =





OEBPS/images/Inline_I22555.gif





OEBPS/images/c07f009.jpg
Pressure
Difference
Control (u8)

Main Fractionator

Regene- Diesel (u2) Reactor /
o | e Riser
Wash il Fresh fee @07,
(lyD) § (. y2) | Preheater| | o7
Gas Ol .56
Spill Air — Preheater
@ Outlet
(y4. d3)
Lift Air Slurry Recycle
(9, y19, (ud, y3) Reactor
¥20.y21) feed (v5)
Hot Air Regenerated Catalyst

(6, y15. y16,
v17.y18)

Spent catalyst

Pressure

Control
(y22)

Wet Gas
Compr.
(v8.y9.y10)

Downstream
Separation





OEBPS/images/c07f008.jpg
107! ==+ 1000

2000
== 3000
— =001
102 N etalctae
0.02
5 0015
g
g
£ o0l 2
® 0005
0
10" 10' 102 10°

Application horizon





OEBPS/images/c07f007.jpg
M 1

U D

00 3000 3500 4000 4500 5000 5500 6000
Sample number

O statistic 72 statistic

o

s





OEBPS/images/c07f006.jpg
1l

1500

2000

2500

3000 3500 4000
Sample number

4500

5000

5500 6000





OEBPS/images/c07f005.jpg
40

[«———— Reference data Ramp on st

source signal

TR I \\“ I \\JM

il il il

il Wi s bdi bl
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Sample number





OEBPS/images/c07f004.jpg
Plots of recorded variables

Injected ramp.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Sample number





OEBPS/images/c06_I0015.gif
0.4250  0.0560  0.2870
WET 4 Sge = 00560 0.6180 —0.3160
02870 —0.3160  0.6040






OEBPS/images/c06_I0014.gif





OEBPS/images/c06_I0013.gif
P
A
L4

P!
+ogl
oL






OEBPS/images/c06_I0012.gif





OEBPS/images/c06_I0011.gif
P[A-o2PT ==L 2 [A -1 £~ 2g"E",






OEBPS/images/c06_I0010.gif





OEBPS/images/Inline_I22541.gif
bio





OEBPS/images/Inline_I22540.gif





OEBPS/images/c02_I0069.gif
SyyzW ~Aq =0





OEBPS/images/c06_I0019.gif
TT s (20 (k) = 2 () . Sqq).
h





OEBPS/images/c06_I0018.gif
~4 (20— 2)" S5 (20~ 2.)





OEBPS/images/c02_I0067.gif
Sz~ 1VASsmw =0 w=






OEBPS/images/c06_I0017.gif
0.9982 arccos (0.9982) 150 = 3.4249°






OEBPS/images/c02_I0068.gif
w8, a— 3A(W'S, . w—1) ~IXx(qa"q—1).





OEBPS/images/c06_I0016.gif
05922 —0.6681  0.4506
—~0.7390 —0.2273  0.6342

0.9820 0 0
A= 0 0.5699 0 .

0 0 0.0951

[-0.3213 —0.7085 -nmsz]
p-





OEBPS/images/c02_I0065.gif
Yo wixg

E{(a50)°} Tl",/E{(w'x.,J’}





OEBPS/images/c02_I0066.gif
w = argmgs B { gl | 4 (w781 - 1).

VA





OEBPS/images/c02_I0063.gif





OEBPS/images/Inline_I22549.gif





OEBPS/images/c02_I0064.gif
Syoz0S;





OEBPS/images/Inline_I22548.gif





OEBPS/images/c02_I0061.gif





OEBPS/images/c02_I0062.gif
Syove = E {¥0¥3 } = SyoxoSaoeoSzowo + Sifs





OEBPS/images/Inline_I21213.gif





OEBPS/images/Inline_I22545.gif





OEBPS/images/c02_I0060.gif
—





OEBPS/images/Inline_I21214.gif
T
Rx,





OEBPS/images/Inline_I23875.gif





OEBPS/images/c06_I0004.gif
[P P [0 Ad] [p } Z“"P' +og Z il

Py






OEBPS/images/c06_I0003.gif
i 8., = Jim by ; (2(k) ~2) (2(k) - 3)" = Su,s,





OEBPS/images/c06_I0002.gif





OEBPS/images/c06_I0001.gif
Es+zZ+g

Zs+Z+ @

Zy + Z.





OEBPS/images/c02_I0038.gif
a X .
Seown = % kE:‘X(k)y' (k)





OEBPS/images/c02_I0039.gif
Suw = 7y 3 (60 =) (v (0 -5) "





OEBPS/images/c06_I0009.gif





OEBPS/images/c02_I0036.gif
1 08 09
Sore= | 08 1 05
09 05 1





OEBPS/images/c06_I0008.gif





OEBPS/images/c02_I0037.gif
. 1.4292 1.5304
Sy = | 11756 14205
13118 1.2877

21318 2.2293

Suw 2.2293  2.5130





OEBPS/images/c06_I0007.gif





OEBPS/images/c02_I0034.gif





OEBPS/images/c06_I0006.gif
LETRE I
] 2 2 .
Oz, Oz, T 0






OEBPS/images/c02_I0035.gif
0.3412 0.5341 0.7271

B=| 03003 08385 0.5681






OEBPS/images/c06_I0005.gif
=Y (o) el +02 Y pipl

=

[ —

=21






OEBPS/images/c02_I0032.gif
e, —tip;i  fig






OEBPS/images/Inline_I21204.gif





OEBPS/images/Inline_I22536.gif





OEBPS/images/Inline_I23867.gif





OEBPS/images/c02_I0033.gif
© G .





OEBPS/images/Inline_I22535.gif





OEBPS/images/c02_I0030.gif
ey

X —thipr

f

Yo —hiqp





OEBPS/images/Inline_I22538.gif





OEBPS/images/c02_I0031.gif
ey —tpr f3 =1 —1aqo.






OEBPS/images/Inline_I22537.gif





OEBPS/images/c07f021.jpg
] ] Ja
—

1 1 EES
4 4 i
S
1 1 1 EEN
1 1 1%
1 1 E P

S drzg v e a- w o- n o

& 2g3% g 3
3°3  sq 15 onsnes )
NS oL sy soqunN sisopodiH  ssoqodAH

Time (h)





OEBPS/images/Inline_I22532.gif





OEBPS/images/c07f020.jpg
g W /(D

Abnormal events

9w e Deindin

o
o D ==

‘TR

10 15 20 25 30 35 40 45 50
Time (h)






OEBPS/images/Inline_I21201.gif





OEBPS/images/Inline_I22531.gif
E{(b-b)(b—-b)"}





OEBPS/images/Inline_I21202.gif
Xa
(n)





OEBPS/images/Inline_I22534.gif





OEBPS/images/Inline_I23865.gif





OEBPS/images/Inline_I22533.gif





OEBPS/images/Inline_I22539.gif





OEBPS/images/c02_I0049.gif
0.05 + 0.05

= e . 100% = 2.2784%.
3h = Toss3 v 23308 100% .






OEBPS/images/c02_I0047.gif
Efeiel} = B{xoxj } = > p;E{t}} p] = Ssp0, - PE{tt"} P
{ } B3} o]
71 P; =Sz, {u"} P!





OEBPS/images/c02_I0048.gif
E{£87} = E {yoyd EH E{}q! =
} (yUYK:> - ﬂ, {'?) Qf =S Q
2 =8, — QE{tT} Q7.





OEBPS/images/c02_I0045.gif
0.6279  —0.1061 —0.7710
W= [05482 07635  0.3414
05525 —0.6371  0.5375





OEBPS/images/c02_I0046.gif
_ trace{E{eje } }

B trace { E{f;f } }
5e = trace {E {xoxI 1]

= A0 100%
T trace {E {yoy2}}

S100% sy,





OEBPS/images/c02_I0043.gif
0.6272 —0.1005 —0.7723
W= [0.5515 07576 0.3492
0.5500  —0.6450  0.5306

a 06788 —0.3722  0.8072
7343 0.9282 05903

0.6310  —0.0889
= (05361 0.7523
0.5611  —0.6530

9147 —0.1101 0.4601
9804 0.2747 0.3365

Q

(3.3385 0.1496  0.0091) .





OEBPS/images/c07f014.jpg
0.015

[l TS U TP P PR S iy

0.005

1 10 100
Application horizon





OEBPS/images/c02_I0044.gif
Aq

Aq

sT

2oy W §=
ST, w1 [l
Si,w  SLW _ SL,w (8L, -ASL,](w-Aw)
ST 8L, %l IS5, w2 [l
A8, W+ S, Aw
IST . wl

F.





OEBPS/images/c07f013.jpg
100 150 200 250
Time (h)





OEBPS/images/Inline_I22524.gif
oy

0.2





OEBPS/images/c02_I0041.gif
Bivars) = B{8 xxiB+8 x0f" + 1B+
E{yoyl} = BTE{xx}}B+E{jf"} =B"S,,.,B+Sy,





OEBPS/images/c07f012.jpg
10000

L

No abnormal process behavior

1. Fault

Fault 1 and Fault 2

100
Time (h)

150

200 250





OEBPS/images/Inline_I22527.gif





OEBPS/images/c02_I0042.gif
4237 1.4926
= | L1715 13709
1.3022  1.2666

2.0583 2.1625 s,

Swm = | 21625 23308 o





OEBPS/images/c07f011.jpg
20

18
z
E
g 16
g
g 14
£
S

e

1 2 3 4 5 6 7
Number of retained PCs





OEBPS/images/Inline_I22526.gif
o [Kk-1





OEBPS/images/c07f010.jpg
Plots of recorded variables

FPlots of recorded variables

mewwwwﬁmwmw

, ,'Wv,n’ml\,w "U"*“VV»"NW‘/M bt
3= e - i
oW 0 w2 2 W % 0 e w2
oo g -
W W w0 Woowm 0 a2

Time (h)

Time (h)





OEBPS/images/c02_I0040.gif
B4 xof'} = E{xox{ } B=S,,.,B





OEBPS/images/Inline_I22523.gif





OEBPS/images/Inline_I22522.gif





OEBPS/images/Inline_I23853.gif
mol [





OEBPS/images/c07f019.jpg
Excess variation in
recorded
temperature variables

05F
f«————— Identification data

Time (h)





OEBPS/images/c07f018.jpg
10

Component number

So o~ on T e -

(XLIEW UONE[21100) AN[BAUISIY

0.
0.
0.
0.

[

[
03

(XLIBUW UONR[ALI00) AN[RA A

o

Number of retained PCs





OEBPS/images/Inline_I22529.gif
S:ozo





OEBPS/images/c07f017.jpg
s
2
7

s
2
7

g
=}
7

g
2
7

Outlet

temp.3  temp.2  temp. |

temp.7  temp.6 temp.5  temp. 4

temp. 8

o
&
g

8

temp.

Plots of recorded temperature variables

498
496
494 s L L L L L

492
490
488 . . .

500
498
496

504
502
500

506 AT Spnpa A,
504
502

436
434

6 8 10 12
Time (h)

ol
-





OEBPS/images/Inline_I22528.gif
S:ozo





OEBPS/images/c07f016.jpg
Skin
temp. 1

T
Sg

£
%5

s
2
7

7

Outlet
temp.

temp. 2

temp. 3

temp. 5

temp. 6

temp. 8

temp. 9

temp. 7

Plots of recorded temperature variables

475 1 A n

490 fl L L

40 45 50






OEBPS/images/c07f015.jpg
No abnormal 1 Fault
process behavior

z 1r
23
23
Iy
] 1 —
2
3
] | |
E N ‘ ‘ ‘
40 60 80 100 120 140 160 180 200 220 240

Time (h)





OEBPS/images/c02_I0018.gif
0.4000 0.0560 0.2870
E{zyz]} = ES,E" +Sgg = | 00560  0.6580  —0.3160
0.2870  —0.3160 0.5040





OEBPS/images/Inline_I22594.gif
S:ozo





OEBPS/images/Inline_I25620.gif





OEBPS/images/c02_I0019.gif
—0.2836
0.6833
—0.6728

0.9459
0
0

—0.7338
~0.6063
—0.3064

0
0.5661

0

—0.6173
0.4068
0.6734

0 0.0500





OEBPS/images/Inline_I22593.gif





OEBPS/images/c02_I0016.gif
o

—0.2763
0.7035
—0.6548

—0.7201
—0.6028
3437

~0.6365
0.3766
0.6731





OEBPS/images/Inline_I21264.gif





OEBPS/images/Inline_I22596.gif





OEBPS/images/c02_I0017.gif
19135 0 0
= 0 0.5629 0
0 0 0.0439






OEBPS/images/Inline_I21265.gif





OEBPS/images/Inline_I22595.gif
Szrove





OEBPS/images/c02_I0014.gif
S ) -7) (20 -7)






OEBPS/images/Inline_I22590.gif





OEBPS/images/c02_I0015.gif





OEBPS/images/c02_I0012.gif
K 0.3794 0.0563 0.2858
L=k LW () = | 00563 06628 02031
0.2858  —0.2931 0.4781






OEBPS/images/Inline_I21260.gif





OEBPS/images/c02_I0013.gif





OEBPS/images/Inline_I21261.gif
T+ T§






OEBPS/images/c02_I0010.gif
s~N{0.8,} S, = [

1
~0.3

0.3
1

|





OEBPS/images/Inline_I25628.gif
GFOED = \,WwTEWD E®





OEBPS/images/c02_I0011.gif
g~N{0.S;,}  Sg = 0.05L





OEBPS/images/Inline_I21266.gif





OEBPS/images/Inline_I22598.gif
S:ozo





OEBPS/images/Inline_I25624.gif





OEBPS/images/Inline_I22597.gif





OEBPS/images/Inline_I21268.gif





OEBPS/images/Inline_I22599.gif
Szrove





OEBPS/images/Inline_I25623.gif





OEBPS/images/c02_I0029.gif
Hhpr Yo=hdq:.





OEBPS/images/Inline_I21251.gif
Tf <Tq





OEBPS/images/Inline_I22583.gif
feR"





OEBPS/images/Inline_I21252.gif
T2 =t"A 't





OEBPS/images/Inline_I22582.gif





OEBPS/images/Inline_I25610.gif
(XIX ' XI
X ' XIFOYIX,





OEBPS/images/c02_I0027.gif
lIxol| lw1]| cos (¢(xg.wi)) = Xg W1 => t1 = [|Xo|| €08 (Pixy.w1))





OEBPS/images/Inline_I21253.gif





OEBPS/images/c02_I0028.gif
[lyoll llar |l cos (2(ys.





OEBPS/images/Inline_I21254.gif
T? = AtTA'At





OEBPS/images/Inline_I22584.gif
e e R«





OEBPS/images/c02_I0025.gif
S

{(38) om0 ro)} - (% 3]
s(k) ~N{0,S..} §(k) ~N{0,Sg}.





OEBPS/images/c02_I0026.gif





OEBPS/images/c02_I0023.gif
B'x
o + f
=Y.
s+
f






OEBPS/images/Inline_I22581.gif





OEBPS/images/c02_I0024.gif
XU*ZF sitenn=Ps+en Yo Zq i B =98+ fup

=t





OEBPS/images/Inline_I22580.gif





OEBPS/images/c02_I0021.gif
2.0543°.






OEBPS/images/c03_I0004.gif





OEBPS/images/Inline_I21259.gif





OEBPS/images/c02_I0022.gif





OEBPS/images/c03_I0005.gif
¢
L2
n)

T2 =

o (0, K —
"
)






OEBPS/images/c03_I0006.gif
(K-1)
T TK-n

Fo(n, K —n).





OEBPS/images/Inline_I25615.gif





OEBPS/images/c01_I0030.gif
PO ) O fz)) g2
a3 0102





OEBPS/images/c02_I0020.gif
~0.6173

“feep | ol
1o 0.6734





OEBPS/images/c03_I0007.gif
29 — 2o = 29 — Pt =29 — PP'z
PPl (Ss +g) = Pyty = P,Plg.

~PP"]z






OEBPS/images/Inline_I25616.gif
1Pj—1 = [I-tjt] | |JEU-V = EU-V[I-w;_,p],]





OEBPS/images/Inline_I21255.gif





OEBPS/images/Inline_I25613.gif





OEBPS/images/c03_I0001.gif





OEBPS/images/Inline_I21256.gif





OEBPS/images/Inline_I25614.gif





OEBPS/images/c03_I0002.gif
E{tpLsthrs






OEBPS/images/Inline_I21257.gif
E{(13)"} = 40T AT E {7} A7 At = 4ACTA T AL





OEBPS/images/Inline_I22589.gif





OEBPS/images/Inline_I25611.gif
Y X[ XXX FD





OEBPS/images/c03_I0003.gif
2
il
L=

—T72





OEBPS/images/Inline_I21258.gif
7~ N{0.4A"ATTAL)






OEBPS/images/Inline_I25612.gif





OEBPS/images/c03_I0008.gif





OEBPS/images/c03_I0009.gif
Hy

T2 <T?





OEBPS/images/Inline_I25619.gif
th —t!





OEBPS/images/c01_I0024.gif
Ac 0 ey |
=l |y o || ot






OEBPS/images/c01_I0025.gif
0 and 45° if 0 < ryj2 < 1 (semimajor)





OEBPS/images/c01_I0026.gif
45°9f ~1<rpa<0,0ifrs

and 135% if 0 < rj2 < 1 (semiminor),





OEBPS/images/c01_I0027.gif
8.,

.
s [ o rumer]_af Gt ruie]
200 = | raovoy  of rare 1





OEBPS/images/Inline_I22573.gif





OEBPS/images/c01_I0028.gif
a=\T2- N, b=+\TZ X\





OEBPS/images/c01_I0029.gif





OEBPS/images/Inline_I22570.gif
bots, + 1.965, 7714 + 0.5324






OEBPS/images/Inline_I25606.gif
wIEU BV w;






OEBPS/images/Inline_I21249.gif





OEBPS/images/Inline_I22579.gif





OEBPS/images/Inline_I25607.gif
wlX{Xow; —1=0





OEBPS/images/Inline_I25604.gif
XIFO





OEBPS/images/Inline_I25605.gif





OEBPS/images/c01_I0020.gif
flanz) =f(t) =

1
Vor2a2






OEBPS/images/Inline_I22576.gif





OEBPS/images/Inline_I25602.gif
EW' pl)





OEBPS/images/c01_I0021.gif
S:oz0

1.00 -0.95
—0.95  1.00 |





OEBPS/images/Inline_I21245.gif
ty = t+ At





OEBPS/images/Inline_I22575.gif





OEBPS/images/Inline_I25603.gif
XIEY





OEBPS/images/c01_I0022.gif
2
1 - a-a 2-2 )5;"'1“(

f—T
27 [S20es| 2

f(21,22)






OEBPS/images/Inline_I22578.gif





OEBPS/images/Inline_I25600.gif
w!IXIXow; — 1





OEBPS/images/c01_I0023.gif
S0z = Caozo






OEBPS/images/Inline_I21247.gif





OEBPS/images/Inline_I22577.gif





OEBPS/images/Inline_I25601.gif
EW g





OEBPS/images/c03f005.jpg
7y(k) + Az (k)

ty (k)

L{0]

Jw)

ik

(v

RBFN

28





OEBPS/images/c03f004.jpg





OEBPS/images/c03f003.jpg
P






OEBPS/images/c03f002.jpg
—T2(n)

Type Il error

“

5 10 15 20 25 30 35 40 45 50
Number of principal componens 7






OEBPS/images/c03f001.jpg
(r?)

Type I error = 1% = a-100%

f(T7)

Type Il error . 100%






OEBPS/images/Inline_I25608.gif
w,TEU" FUlq;





OEBPS/images/Inline_I25609.gif
T T
wiX{FYq;





OEBPS/images/c02_I0009.gif





OEBPS/images/c01_I0013.gif
iy ERYE )

E {z0i20;






OEBPS/images/c02_I0007.gif





OEBPS/images/Inline_I22561.gif
L=20}





OEBPS/images/c01_I0014.gif
flazm) =

flnz) =





OEBPS/images/c02_I0008.gif
zy = Xs+Plyg

Py 70 = Pig






OEBPS/images/Inline_I22560.gif





OEBPS/images/c01_I0015.gif
-5






OEBPS/images/c02_I0005.gif
c0s (9, ¢ ) llz0ll = 25





OEBPS/images/Inline_I21231.gif





OEBPS/images/Inline_I22563.gif





OEBPS/images/c01_I0016.gif





OEBPS/images/c02_I0006.gif
2= ESi+2=) E&l20+2=D0+2
~





OEBPS/images/Inline_I22562.gif





OEBPS/images/c01_I0017.gif
E{z0,70,} =riJE{Z } E{},} = oh=-00





OEBPS/images/c02_I0003.gif





OEBPS/images/c01_I0018.gif





OEBPS/images/c02_I0004.gif
)= % &
llzol| I1€;]°

cos (i,






OEBPS/images/c01_I0019.gif





OEBPS/images/c02_I0001.gif





OEBPS/images/c02_I0002.gif
z2=S8+Z+@9=2,+Z2+9=2%+@ =12+ 2.





OEBPS/images/Inline_I22569.gif





OEBPS/images/Inline_I22568.gif





OEBPS/images/Inline_I23899.gif
Gz





OEBPS/images/Inline_I21233.gif





OEBPS/images/c01_I0010.gif
LcL
Fy ( rejecting Ho|Hy is true ) = a = / fo(z)dz+ / fo(2)dz,

ve






OEBPS/images/c01_I0011.gif
vcr

Fy ( failing to reject Ho|H, is true) = fi(z)dz.






OEBPS/images/Inline_I22567.gif





OEBPS/images/c01_I0012.gif





OEBPS/images/c01_I0002.gif
. s 2(1) +2(2) 4+ 2(K)
Jim F = Jim St i Z 2(k) — 2






OEBPS/images/Inline_I24332.gif





OEBPS/images/Inline_I25664.gif





OEBPS/images/c01_I0003.gif





OEBPS/images/Inline_I23000.gif





OEBPS/images/Inline_I24331.gif





OEBPS/images/c01_I0004.gif
E{-2"} =B{z} -2 = Im g} (:0)-3)" =0
«






OEBPS/images/Inline_I23003.gif





OEBPS/images/c01_I0005.gif





OEBPS/images/Inline_I23002.gif
€z (oty)






OEBPS/images/Inline_I24333.gif





OEBPS/images/Inline_I25663.gif





OEBPS/images/c01_I0006.gif
2tza,

F(2—zap,2+20p) = / f)dz=1-a.

i-Za,





OEBPS/images/Inline_I25660.gif





OEBPS/images/c01_I0007.gif
F(a,b)=Pr{a<z<b}=






OEBPS/images/Inline_I25661.gif





OEBPS/images/c01_I0008.gif
Hy : The process





OEBPS/images/Inline_I24330.gif





OEBPS/images/c01_I0009.gif
H, statistical-control.






OEBPS/images/Inline_I23009.gif





OEBPS/images/Inline_I23008.gif





OEBPS/images/Inline_I25668.gif
ﬁ,}TE(IJ' EUVW; =






OEBPS/images/Inline_I23004.gif
1t = ZWp;





OEBPS/images/Inline_I24335.gif
pi + Ap;





OEBPS/images/Inline_I25669.gif
X§Xow; =1





OEBPS/images/Inline_I24338.gif





OEBPS/images/Inline_I25666.gif
wIEO BOw;—1=0





OEBPS/images/c01_I0001.gif





OEBPS/images/Inline_I25667.gif
w,TE“" EYW;






OEBPS/images/Inline_I21295.gif
Pazy





OEBPS/images/Inline_I24321.gif





OEBPS/images/Inline_I25653.gif





OEBPS/images/Inline_I21296.gif





OEBPS/images/Inline_I24320.gif





OEBPS/images/Inline_I25654.gif





OEBPS/images/Inline_I21297.gif
And1





OEBPS/images/Inline_I24323.gif





OEBPS/images/Inline_I25651.gif





OEBPS/images/Inline_I24322.gif





OEBPS/images/Inline_I21291.gif
Ti =xa(n:—n)





OEBPS/images/Inline_I21292.gif





OEBPS/images/Inline_I25650.gif
EV'EVw,;





OEBPS/images/Inline_I21294.gif





OEBPS/images/Inline_I24329.gif





OEBPS/images/Inline_I24328.gif





OEBPS/images/Inline_I24325.gif





OEBPS/images/Inline_I25657.gif
A4, = FUEDW;





OEBPS/images/Inline_I24324.gif





OEBPS/images/Inline_I25658.gif





OEBPS/images/Inline_I24327.gif





OEBPS/images/Inline_I25655.gif





OEBPS/images/Inline_I24326.gif





OEBPS/images/Inline_I21284.gif





OEBPS/images/Inline_I24310.gif





OEBPS/images/Inline_I25642.gif





OEBPS/images/Inline_I24312.gif





OEBPS/images/Inline_I25640.gif





OEBPS/images/Inline_I21287.gif





OEBPS/images/Inline_I24311.gif





OEBPS/images/Inline_I25641.gif





OEBPS/images/Inline_I21282.gif





OEBPS/images/Inline_I21283.gif





OEBPS/images/Inline_I24318.gif
n; (n: + 1)/2





OEBPS/images/Inline_I24317.gif





OEBPS/images/Inline_I25648.gif





OEBPS/images/Inline_I24319.gif





OEBPS/images/Inline_I21288.gif
Ci






OEBPS/images/Inline_I25646.gif





OEBPS/images/Inline_I24313.gif





OEBPS/images/Inline_I25647.gif





OEBPS/images/Inline_I24316.gif





OEBPS/images/Inline_I25644.gif





OEBPS/images/Inline_I25645.gif
w;





OEBPS/images/Inline_I21273.gif
g =12~ Pt=[I-PP7|z





OEBPS/images/Inline_I25632.gif





OEBPS/images/Inline_I21276.gif





OEBPS/images/Inline_I21270.gif





OEBPS/images/Inline_I24306.gif
n ="z/y





OEBPS/images/Inline_I25637.gif
EW RO = XTFW = ED" Y,





OEBPS/images/Inline_I24308.gif
na=1fy <p < netlfy





OEBPS/images/Inline_I25638.gif





OEBPS/images/Inline_I21277.gif





OEBPS/images/Inline_I25635.gif
EG) 6





OEBPS/images/Inline_I21278.gif





OEBPS/images/Inline_I25636.gif
EW'EW = XTED = ED" X,





OEBPS/images/Inline_I21279.gif





OEBPS/images/Inline_I24305.gif





OEBPS/images/Inline_I25633.gif





OEBPS/images/Inline_I24304.gif





OEBPS/images/Inline_I25634.gif
EG) RG)





OEBPS/images/c03_I0073.gif
Az x v,,.





OEBPS/images/Inline_I25103.gif





OEBPS/images/c03_I0074.gif
==

M=

Qa-
(k) <
Qn





OEBPS/images/Inline_I22077.gif





OEBPS/images/Inline_I25104.gif





OEBPS/images/c03_I0075.gif
_-qu,
K- vhevn)






OEBPS/images/Inline_I22078.gif





OEBPS/images/Inline_I25101.gif





OEBPS/images/c03_I0076.gif
gr = I - €| (2o + vlAzp),





OEBPS/images/Inline_I22079.gif





OEBPS/images/c03_I0070.gif
K
% i






OEBPS/images/Inline_I22073.gif





OEBPS/images/c03_I0071.gif
Az, = argmin Z llgs (k) = X = € vnc]*
=1





OEBPS/images/c03_I0072.gif
K
S Qo) +2(8a" -~ vho)g

+(Az" — ol ) [1- €] (Az — v,0)





OEBPS/images/Inline_I22075.gif





OEBPS/images/Inline_I25109.gif





OEBPS/images/c03_I0077.gif
(2 +vpAz) I € | _ [1-¢lvn
E{ o }’5‘;@1}5, o,
e
Lim —€|vn

(2 +vhAz) I-€vn |
E { : oh - v, } “han





OEBPS/images/c03_I0078.gif
RMX™
e Uy | €
Vi) Vi2) '3





OEBPS/images/Inline_I25108.gif





OEBPS/images/c03_I0079.gif
K e
Ay = arg m{inz Qr (k) — 228, () T+ T e
<





OEBPS/images/Inline_I23391.gif





OEBPS/images/Inline_I23390.gif
O (n?)





OEBPS/images/c03_I0084.gif
2y, = 29 + TAzj.





OEBPS/images/Inline_I22065.gif
A-c21=rclec's





OEBPS/images/Inline_I23397.gif





OEBPS/images/c03_I0085.gif
5| = [F]ste o 1





OEBPS/images/Inline_I22066.gif





OEBPS/images/c03_I0086.gif
ty(k) [
_ pPr
P:](
7| (zo(k) +
Azl
(k
) k) =
=t(k) +
£(k)





OEBPS/images/Inline_I22067.gif
G s






OEBPS/images/Inline_I23399.gif
O (n?)





OEBPS/images/c03_I0087.gif
Fi(k) = 3235, i (t, (k) e, 0) ani

LK) =R

nei (tn., (k). i, 0) Qn.i






OEBPS/images/Inline_I22068.gif





OEBPS/images/Inline_I23398.gif
O (n?)





OEBPS/images/c03_I0080.gif
t

=

i
M=

48, = 20, (F)






OEBPS/images/Inline_I23393.gif





OEBPS/images/c03_I0081.gif
1

Azs = Jim ¥
K= K

K
S (2 (k) + Y Az),
«






OEBPS/images/Inline_I22062.gif





OEBPS/images/c03_I0082.gif
=1 1
7c]'r] Y71 €)Y Az = Azs






OEBPS/images/c03_I0083.gif
lim Qo (k) = (20,(k) = TAz3)" [ - €] (a0, (k) — TAZ3) — Qo (k).






OEBPS/images/Inline_I22064.gif
=L Ao L





OEBPS/images/Inline_I23394.gif





OEBPS/images/c03_I0088.gif
ty(k) = Al(k) + t(k) = f(k) + t(k),





OEBPS/images/Inline_I22069.gif





OEBPS/images/c03_I0089.gif





OEBPS/images/c03_I0051.gif





OEBPS/images/Inline_I22054.gif
Sea






OEBPS/images/Inline_I23386.gif





OEBPS/images/c03_I0052.gif





OEBPS/images/Inline_I23385.gif





OEBPS/images/c03_I0053.gif
UCL = Tay (Ky + K —2n—-2) LCL = -UCL





OEBPS/images/c03_I0054.gif
< UCL.





OEBPS/images/Inline_I23387.gif
O (n?)





OEBPS/images/Inline_I22050.gif
2§ s
o3> pip!





OEBPS/images/Inline_I22051.gif





OEBPS/images/Inline_I22052.gif





OEBPS/images/Inline_I23384.gif
O (n?)





OEBPS/images/c03_I0050.gif
S

> Fo(Kp—n—1.K-n-1).





OEBPS/images/Inline_I22053.gif





OEBPS/images/Inline_I23383.gif
O(Y/on, (ns + 1) ngy)





OEBPS/images/c03_I0059.gif
=Py, = %0, = PaPy %0, = %






OEBPS/images/c03_I0055.gif
H,y

~2).
>Tap (Kg+ K —2n





OEBPS/images/c03_I0056.gif
Zzo =7 +g=Cz+g Xo +






OEBPS/images/Inline_I23389.gif
O (Kn?)





OEBPS/images/c03_I0057.gif





OEBPS/images/c03_I0058.gif





OEBPS/images/c03_I0062.gif
= Pz, +Az) +pupnzy
paipnt (21, + A1) + DBy 22,






OEBPS/images/Inline_I22043.gif





OEBPS/images/Inline_I23375.gif
Pry+145 |





OEBPS/images/c03_I0063.gif
g _[1-ph pupn 21, + Az
92 ), paupu 193, 229





OEBPS/images/Inline_I22044.gif





OEBPS/images/c03_I0064.gif
)+ (

1=
P21P11

)a

21





OEBPS/images/Inline_I22045.gif
Mg oo Szyzy — Saozg





OEBPS/images/c03_I0065.gif
2

1o ) [ ph papn } (
a1 ;P PR 2






OEBPS/images/Inline_I22046.gif





OEBPS/images/Inline_I23376.gif
Aiy,
i





OEBPS/images/Inline_I23370.gif





OEBPS/images/c03_I0060.gif
tr=(pn P2 )( 21 Z(,A;' )





OEBPS/images/Inline_I22041.gif





OEBPS/images/c03_I0061.gif
)2

2,

) = (

pu
P21

)=

P
papn

pupa
3

I(

21, + Az

229

)





OEBPS/images/Inline_I22042.gif
E{z,g"} =0





OEBPS/images/Inline_I23372.gif
P





OEBPS/images/c03_I0066.gif
= = Y‘llpﬂ
B = PR+ Pupnz, = 0
3





OEBPS/images/Inline_I22047.gif
i) 0% - o2
limg .o G5 — 0





OEBPS/images/c03_I0067.gif
20 = S0l

1-p3

-





OEBPS/images/Inline_I22048.gif





OEBPS/images/c03_I0068.gif





OEBPS/images/Inline_I22049.gif





OEBPS/images/c03_I0069.gif
2mo (1)
2mo (2)

= argmin
<

()





OEBPS/images/c03_I0030.gif
_B{@-ElQ)7}

2E{Qs}





OEBPS/images/c03_I0031.gif
(E{Q:))"
2{(@Q - B{Q.)}

(E{Qs)”

et E{ -t}

hy=2





OEBPS/images/c03_I0032.gif
= x[R4S;L Rix





OEBPS/images/Inline_I25143.gif
Pn.





OEBPS/images/c03_I0037.gif
Hy

t 2
it > T2





OEBPS/images/c03_I0038.gif
D= 120, -
Az) = Lo





OEBPS/images/c03_I0039.gif
(‘)
Az, = Y Az

ieme





OEBPS/images/c03_I0033.gif
T






OEBPS/images/c03_I0034.gif
T? =TS = x{R'S; R xq.





OEBPS/images/c03_I0035.gif





OEBPS/images/c03_I0036.gif





OEBPS/images/c03_I0040.gif
fault condition  the fault condition





OEBPS/images/Inline_I25136.gif
Sea






OEBPS/images/c03_I0041.gif





OEBPS/images/Inline_I25137.gif





OEBPS/images/c03_I0042.gif
,p;,
Az, =2, Y
20, .






OEBPS/images/Inline_I25134.gif
R AN
AN





OEBPS/images/c03_I0043.gif





OEBPS/images/Inline_I25135.gif





OEBPS/images/Inline_I25132.gif





OEBPS/images/Inline_I25131.gif





OEBPS/images/c03_I0048.gif
Go,.f
aﬂg ~F(Kf-n—1K-n-1)






OEBPS/images/c03_I0049.gif
H
o %
0t <
,,, sF
o (Ky =
n—
1
K
—n
_)





OEBPS/images/c03_I0044.gif





OEBPS/images/c06tnt013.jpg
52

Parameter b; by, bos, oy Tbuig, By — 5 plsi
by —0.1367 —0.4255 0.000144 0.0145 —0.2888
by 0.4046 0.9467 0.000154 0.5678 0.5421
by —0.0404 —0.0704 0.000398 1.8401 —0.0300
by 0.0298 0.6135 0.000200 5.4602 0.5837
bs 0.4540 0.3540 0.000184 0.0166 —0.1000
be —0.2774 0.7714 0.000229 0.0738 1.0488
by —0.5659 —0.1898 0.000192 0.7608 0.3761
bg 0.3070 0.9552 0.000299 6.1609 0.6482
by 0.0148 0.3501 0.000538 4.3249 0.3353
bio 0.4453 0.8208 0.000224 0.7859 0.3755






OEBPS/images/c03_I0045.gif





OEBPS/images/c03_I0046.gif





OEBPS/images/c03_I0047.gif
7, =ﬁ<§;?’ng) (17;]?1)





OEBPS/images/c06tnt014.jpg
by i=1 i=2 i=3 i=4 i=5
=1 01877  —16272 02610 0.5726 0.1672
=2 01849  —0.1091  —03110 01565 —1.1893
=3 0.3211 0.0839 00128 —02812 1.5184
=14 00107 —0.0623 0.0813 00317 ~0.7710
j=5  —00180 13362  —0.8382 02808 —0.0935
j=6 0.0386 17358 07621 —03473 0.5738
j=17 1.0484 1.8321 0.7037 0.4777 0.0422
j=8  —00858 00892  —0.4392 01557 —0.1737

A row represents the coefficients for the prediction of the output variables using the jth input
variable and the coefficients in a column are associated with the prediction of the ith output variable
using the input variables.





OEBPS/images/Inline_I25139.gif





OEBPS/images/Inline_I22091.gif
P(n,ps)





OEBPS/images/Inline_I22092.gif
Sea






OEBPS/images/Inline_I22098.gif





OEBPS/images/Inline_I25125.gif





OEBPS/images/Inline_I22099.gif
J(9.8gg) >0





OEBPS/images/Inline_I25126.gif
DN S AR





OEBPS/images/Inline_I25123.gif





OEBPS/images/c03_I0010.gif
H
o

T >
T2





OEBPS/images/c06tnt010.jpg
Pij Jj= ji=2 i=4 ji=6
i 01702 0.1553 01895 00222 02005 0.1886
01727 ~0.0156 01797 ~0.1123 01482 02831
01751 00843 00605 ~02154 —~0.0718  0.0896
01572 03301 —02317 —0.2953 —0.1760 —0.0208
01773 00158 —0.1754 02077 0.1446  0.1575
01647 —0.1562 —0.2788 —0.1934  0.1082 —~0.1509
01756 0.0030 —0.0388 —0.0837 —0.2560 —0.0589
01534 03681 —0.1251 —0.0523 0.1696 —0.2490 0.1557
0.1733 —0.1904 —0.0434  0.1436 —0.0531 —0.1325  0.0484
01774 01335 —0.0463 00377 00231 02629  0.1216
01181 00896 06003 —0.4352 02118 01884 0.1074
01723 00576 02118 01905 01391 —0.1298 —0.0918
01732 01149 01266 —0.2004 —0.0590 —0.0771 —0.1354
01711 ~0.0563 01625 00149 01574 02397 —0.2727
0.1791 —0.0608 0.0327  0.0717 0.0860 —0.0952  0.0693
01702 00288 —0.1549 00488 02022 0.1204 —0.2727
0.1651 —0.2928 0.1657 —0.0236 —0.0754 0.0623  0.0727
01722 00001 02041 00381 01687 00859 03436
01750 ~0.0980 —~0.0218 —0.1741 02880 0.1954  0.0097
01744 —0.1659 00419 00388 02008 —0.0721 —0.0430
01733 ~0.1410 00287 01802  0.1174 —0.3004 —0.1751
01726 02010 00303 00155 00175 ~0.2110 —0.0486
0.1532  0.2597 0.2438 02137 —0.2477  0.1148 —0.3089
01472 02257 02163 00111 04567 04498 —0.4446
01770 ~0.0554 ~0.096 00112 00395 —0.0226 00237
0.1686  0.1257 —0.2211 —0.1773  0.2349 —0.1066 0.1424
01607 ~0.3476 00303 00236 00620 —0.0680 —0.0761
01752 ~0.1564 00643 00429 00733 01053 —0.0180
01770 ~0.1036 00720 —0.0805 —0.0977 —0.1432  0.0124
01782 00326 —0.1117 —~0.0917 —0.0257 —0.0103 —0.1105
01706 00383 00711 04773 —0.1093 0.169%  0.0911
01744 00233 —0.1877 —0.1674 01580 —0.0712  0.1956
01686 —~0.2307 01605 —0.0271 01832 01150 0.1322
01734 0.1413 —0.1548  0.1652 0.0014 —0.0454  0.0842
01650 —0.2458 —0.1743 —0.1453 —0.0701 0.1162 —0.1727

The estimated number of source signals is n = 20,





OEBPS/images/Inline_I25124.gif
A






OEBPS/images/Inline_I22094.gif
[ 0.04 006 |





OEBPS/images/Inline_I25122.gif





OEBPS/images/Inline_I22097.gif





OEBPS/images/Inline_I25120.gif





OEBPS/images/c03_I0015.gif
~PP"| 2.





OEBPS/images/c06tnt006.jpg
n K2 dof x2 7

1 7888.909466 105 129.917955 60.722242
2 4076.291059 91 114.267868 35.673117
3 783.559750 78 99.616927 7.865729
4 50.016546 66 85.964907 0.581825
5 28.513181 55 73.311493 0.388932
6 20.478358 45 61.656233 0.332138
7 4223217 36 50.998460 0.082811
8 2.713276 28 41.337138 0.065638
9 1 .47123/1 Z\] 32i670573 0.045032
dof = dof(n,.m) = n —n+2 n_—n+1 is the number of degrees of

freedom of the tatistic.





OEBPS/images/c03_I0016.gif
Qa=8y( /20513 mf,;‘o 1)+1) )

i





OEBPS/images/c06tnt005.jpg
Variable True Case 1 Case 2 Case 3 Case 4
8 0.15 0.1801 0.1797 1.0000 0.1796
& 0.10 0.0832 0.0831 1.0000 0.0834
& 0.25 0.2290 0.2302 1.0000 0.2292
&4 0.05 0.0473 0.0473 1.0000 0.0471
&5 0.20 0.1915 0.1918 1.0000 0.1906
& 0.50 0.5390 0.5388 1.0000 0.5363
87 0.35 0.3828 0.3829 1.0000 0.3816
83 0.40 0.4265 0.4267 1.0000 0.4246
&9 0.30 0.3041 0.3041 1.0000 0.3034
&10 0.45 0.4372 0.4377 1.0000 0.4371
& 0.10 0.0899 0.0900 1.0000 0.0900
&1 0.25 0.2283 0.2285 1.0000 0.2277
813 0.15 0.1562 0.1564 1.0000 0.1553
814 0.05 0.0527 0.0527 1.0000 0.0530

Case 1: @ = 1,4, = 50, a,

Case 2:a; = 1,4, =50,

Case 3: @ = 1,4, = 0,4,

Case 4: a, = 0,a, = 50, a






OEBPS/images/c03_I0017.gif
Q=Y (e -
=






OEBPS/images/c06tnt008.jpg
n A A 7 J IS dof %2 %
1 27915 23945 6.732 2489.7 33794 630 689.50 49.012
2 31.865 17.062 3.449 17725 19217 595 652.86 29.435
3 32037 11.627 1.486 1209.6 81858 561 617.21 13.263
4 31.091 9.489 1.071 990.70  5652.1 528 582.56 9.702
5 29534 7.540 0815 79173 35983 496  548.92 6.555
6 28265 6.174 0.629 651.92 23873 465 516.27 4.624
7 27.098 5249 0.522 557.22 17909 435 484.63 3.695
8 25.821  4.666 0.460 496.99  1429.0 406 453.98 3.148
9 25172 4224 0.404 451.64 12234 378 424.33 2.883
10 24275 3822 0352 409.97 1037.8 351  395.69 2.623
1123258 3456 0312 371.97  900.52 325 368.04 2.447
1222079 3.078 0277 332.69 74121 300 34140 2171
13 21.153 2735 0.243 297.06  637.50 276  315.75 2.019
14 20531 2402 0212 262.85 55573 253 291.10 1.909
15 19284  2.116 0.181 23271 44525 231 26745 1.665
16 18.545 1.827 0.156 202.76 36832 210 24481 1.505
17 17.507 1.571  0.131 17594 29979 190 223.16 1.343
18 16.721 1.393  0.116 157.23 25285 171 202.51 1.249
19 15502  1.171 0.092 133.57  192.61 153  182.86 1.053
20 14714 0937 0.072 109.12  140.75 136 164.22 0.857
21 13.652  0.862 0.066 100.54 12530 120 146.57 0.855
2212707 0.661 0.052 79.301 85430 105 129.92 0.658
23 11735 0.530 0.040 65.176  57.806 91 11427 0.506
24 10.886  0.378 0.029 49.007  32.955 78 99.617  0.331
25 9.823  0.327 0.026 42.773  33.511 66 85965  0.390
26 8930 0.217 0.017 30.824  17.062 55 73311 0.233
27 7980  0.080 0.006 16.017 2965 45  61.656  0.048

Parameters for objective function in Equation (6.49): a, — 1. a, = 100, ay — 10.
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