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For my Victoria





Long live the sun. May the darkness be hidden.
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introduction

As its campfires glow against the dark, every culture tells stories to itself about how the gods lit up the morning sky and set the wheel of being into motion. The great scientific culture of the West—our culture—is no exception. The calculus is the story this world first told itself as it became the modern world.

The sense of intellectual discomfort by which the calculus was provoked into consciousness in the seventeenth century lies deep within memory. It arises from an unsettling contrast, a division of experience. Words and numbers are, like the human beings that employ them, isolated and discrete; but the slow and measured movement of the stars across the night sky, the rising and the setting of the sun, the great ball bursting and then unaccountably subsiding, the thoughts and emotions that arise at the far end of consciousness, linger for moments or for months, and then, like barges moving on some sullen river, silently disappear—these are, all of them, continuous and smoothly flowing processes. Their parts are inseparable. How can language account for what is not discrete, and numbers for what is not divisible?

Space and time are the great imponderables of human experience, the continuum within which every life is lived and every river flows. In its largest, its most architectural aspect, the calculus is a great, even spectacular theory of space and time, a demonstration that in the real numbers there is an instrument adequate to their representation. If science begins in awe as the eye extends itself throughout the cold of space, past the girdle of Orion and past the galaxies pinwheeling on their axes, then in the calculus mankind has created an instrument commensurate with its capacity to wonder.

It is sometimes said and said sometimes by mathematicians that the usefulness of the calculus resides in its applications. This is an incoherent, if innocent, view of things. However much the mathematician may figure in myth, absently applying stray symbols to an alien physical world, mathematical theories apply only to mathematical facts, and mathematics can no more be applied to facts that are not mathematical than shapes may be applied to liquids. If the calculus comes to vibrant life in celestial mechanics, as it surely does, then this is evidence that the stars in the sheltering sky have a secret mathematical identity, an aspect of themselves that like some tremulous night flower they reveal only when the mathematician whispers. It is in the world of things and places, times and troubles and dense turbid processes, that mathematics is not so much applied as illustrated.

Whatever physicists may say, both space and time, it would seem, go on and on; the imaginary eye pushed to the very edge of space and time finds nothing to stop it from pushing further, every conceivable limit a seductive invitation to examine the back side of the beyond. We are finite creatures, bound to this place and this time, and helpless before an endless expanse. It is within the calculus that for the first time the infinite is charmed into compliance, its luxuriance subordinated to the harsh concept of a limit. The here and now of ordinary life, these are coordinated by means of a mathematical function, one of the noble but inscrutable creations of the imagination, the silken thread that binds together the vagrant world’s far-flung concepts. Fabulous formulas bring anarchic speed panting to heel and make of its forward rush a function of time; the wayward area underneath a curve is in the end subordinated to the rule of number. Speed and area, the calculus reveals, are related, the revelation acting like lightning flashing between two distant mountain peaks, the tremendous flash of light showing in the moment before it subsides that those peaks are strangely symmetrical, each existing to sustain the other. The relationship that holds between speed and area holds also between concepts that are like speed and area, the calculus emerging at the far end of these considerations as the most general of theories treating continuous magnitudes, its concepts appearing in a thousand scattered sciences, the light that they shed there reflections of the subject’s central light, its single sun.

The dryness of this description should not obscure the drama that it reveals. Of all the miracles available for inspection, none is more striking than the fact that the real world may be understood in terms of the real numbers, time and space and flesh and blood and dense primitive throbbings sustained somehow and brought to life by a network of secret mathematical nerves, the juxtaposition of the two, throbbings on the one hand, those numbers on the other, unsuspected and utterly surprising, almost as if some somber mechanical puppet proved capable of articulated animation by means of a distant sneeze or sigh.

The body of mathematics to which the calculus gives rise embodies a certain swashbuckling style of thinking, at once bold and dramatic, given over to large intellectual gestures and indifferent, in large measure, to any very detailed description of the world. It is a style that has shaped the physical but not the biological sciences, and its success in Newtonian mechanics, general relativity, and quantum mechanics is among the miracles of mankind. But the era in thought that the calculus made possible is coming to an end. Everyone feels that this is so, and everyone is right. Science will, no doubt, continue as a way of life, one among others, but its unique claim to our intellectual or religious devotion—this has been lost and it is foolish to deny it.

This is an elegiac conclusion. Although what I have written is intended to evoke a miracle, in the end there is that melancholy fall, a reminder that in mathematics as in everything else, stories have a beginning and they come to an end.

SAN FRANCISCO, 1995


a note to the reader

The fundamental theorem of the calculus is the focal point of this book, the goal toward which the various chapters tend. The book has a strong narrative drive, its various parts subordinated to the goal of enabling anyone who has read what I have written to experience that hot flush that accompanies any act of understanding, saying as he or she puts down the book, Yes, that’s it, now I understand.

My aim throughout has been to provide a tour of the calculus, not a treatise. I have concentrated on the essentials. There are no problem sets or exercises or anything at all like that in what I have written. I have suppressed whenever possible mathematical formalism in favor of ordinary English. But there is no explaining mathematics without from time to time using mathematics, and the mathematician’s symbolism, which to an outsider looks as inviting as Chinese, does represent an instrument of matchless power and concision. It is my hope that by using this instrument sparingly the symbols might come to gleam against the background of plain prose, like jewels seen on black velvet.

The argument of the book is conveyed in the text itself; down below, in the various appendices, definitions are given in their full formality and a number of theorems demonstrated. I have not proved everything that might be proved: some statements remain in the text as ringing affirmations. Nothing in the appendices is beyond the grasp of the ordinary reader, but there is no avoiding the fact that confrontation with proof is quite often a humbling experience. The eye slows; a feeling of helplessness steals over the soul. At first, it seems as if the confident language of mathematical assertion constitutes a subtle form of mockery. There is no help for any of this save the ancient remedies of practice and a willingness to put pencil to paper. Readers who want the big picture need not linger in the cellars; but a mathematical argument, once understood, is in its capacity to compel belief a miracle of enlightened life. Those who at first recoil indignantly from a disciplined argument may in time revisit appreciatively the inferences they rejected.

I have written this book for men and women who wish to understand the calculus as an achievement in human thought. It will not make them mathematicians, but I suspect that what they want is simply a little more light shed on a dark subject.

And that is something we all could use: a little more light.


the frame of the book

The overall structure of the calculus is simple. The subject is defined by a fantastic leading idea, one basic axiom, a calm and profound intellectual invention, a deep property, two crucial definitions, one ancillary definition, one major theorem, and the fundamental theorem of the calculus.


The fantastic leading idea: the real world may be understood in terms of the real numbers.

The basic axiom: brings the real numbers into existence.

The calm and profound invention: the mathematical function.

The deep property: continuity.

The crucial definitions: instantaneous speed and the area underneath a curve.

The ancillary definition: a limit.

The major theorem: the mean value theorem.

The fundamental theorem of the calculus is the fundamental theorem of the calculus.

These are the massive load-bearing walls and buttresses of the subject.




chapter 1

Masters of the Symbols

SOME THINGS WERE GREEK TO THE GREEKS. IN THE FIFTH CENTURY B.C., Zeno the Eleatic argued that a man could never cross a room to bump his nose into the wall.

How so?

In order to reach the wall he would have first to cross half the room, and then half the remaining distance again, and then half the distance that yet remains. “This process,” Zeno wrote in an argument still current in fraternity houses (where it never fails to impress the brothers), “can always be continued and can never be ended.” But an infinite process requires an infinite amount of time for its completion, no? So one might think. A process is, after all, something that takes place in time. But the plain fact is that we are capable of compressing those infinite steps into a brisk walk from one end of a room to the other: that sort of thing we do with ease. An irresistible inference is in conflict with an inescapable fact, Zeno’s diamond-bright little argument serving to invest the ordinary with a lurid aspect of the impossible.

It is now twenty-two centuries later, time pivoting at the seventeenth century to pause reflectively and answer Zeno. No telephones yet; no fax machines; no cappuccino; no computers; no roads really. Stairs but no StairMasters. Sanitation? Appalling. Ditto for personal hygiene. But no MTV either, no late-night infomercials for wok cooking or Swedish hair restoratives, Madonna an incubus merely, waiting to be born. Before the seventeenth century, everything is squid ink and ocean ooze and dark clotted intuitions; but afterward, a strange symbolic system erupts into existence and floods the intellectual landscape with a hard flat nacreous light. Communing with the powers of the night and the dark undulating rhythms that flow across the sky, the mathematician—of all people!—emerges as the unexpected master of those symbols, the calculus his treasure chest of chants and incantations, fabulous formulas, wormholes into the forbidden heart of things.

In its historical development, the calculus represents an exercise in delayed gratification. Gratification is the right if unexpected word, suggesting as it does a moist intellectual explosion, but delay is the governing concept, the calculus like one of those poignant adolescent dreams in which desires are painfully defined but hopelessly deferred. The warm-up to the calculus stretches from the ancient world to the seventeenth century, but the subject’s center was discovered quite suddenly by Gottfried Leibnitz and Isaac Newton in the second half of the century, a striking example of two fire alarms going off in the night at precisely the same time in two widely separated countries. Other mathematicians, in France, England, and Italy, it is true, saw this and they saw that, but they never saw this and that and so remain in history forever holding the door through which Leibnitz and Newton raced. Like every story, this one has a before and an after, a passage from darkness into light. The common view is the commonsensical view: in Leibnitz and Newton there was an effulgence, a shining forth.

It goes without saying, of course, that although each man had plainly conceived his ideas uninfluenced by the other, both wasted enormous energies in an undignified and peevish effort to establish the priority of their claims.

Isaac Newton was born on Christmas Day, 1642; it was the year that Galileo died. A curious series of numerical coincidences runs through the history of the calculus. Early portraits show him as a saturnine youth, with a long face marked by a high forehead and small suspicious eyes. It is not the face of a man inclined much to small talk or to pleasant evenings spent in steamy pubs, a glass of bitter in hand. The tension at his mouth suggests someone prepared to withdraw quivering in irritation from his senses. And those small, sharp, shrewd but dark and narrow eyes, they seem to say, those eyes: Let me see now, Mr. Berlinski, your deductions for this year appear to exceed your income …

It is that sort of face.

In the winter of 1665–66, Trinity College in Cambridge closed its doors owing to the plague. Newton returned to his home in the English countryside. At twenty-three he was already marked by his contemporaries as a man with a deep indwelling nature, an indifference to pleasure. In the year that followed, Newton stated and proved the binomial theorem (a generalization of the familiar rule that a + b times itself is a2 + 2ab + b2), invented the calculus, discovered the universal law of gravitation (and so created contemporary dynamics), and developed a theory of color. In English history, those twelve months are known quite properly as the annus mirabilis, the year of miracles. On returning to Cambridge, Newton was appointed the Lucasian professor of mathematics. He made his discoveries known with the natural reluctance of a man convinced of his genius and so indifferent to praise, but in 1687, at the urging of the astronomer Edmund Halley, he published the Philosophiae Naturalis Principia Mathematica, commonly known as the Principia, and thereby secured his enduring reputation as the author of the greatest scientific work in history.

The Principia is the supreme expression in human thought of the mind’s ability to hold the universe fixed as an object of contemplation; it is difficult to reconcile its monumental power with a number of humanly engaging but anecdotal accounts of its composition: the disheveled and half-dressed Newton, so the stories run, his crumb-filled wig askew, shambling about the evil-smelling room in which he lived and worked, muttering to himself, his thin lips half forming words, stiff with attention or slack and slumped indifferently on his unmade bed, entirely absorbed, forgetting to eat and sleeping in weak, disorganized fits, an apple rotting on the desk, the Principia taking shape in stages, vellum sheets piling up on the wooden desk.

It is the place where modern physics begins, this vatic text, and so in a certain sense the place where modern life begins. Stars in the staring sky and objects on the surface of earth are in the Principia brought under the control of a simple symbolic system, their behavior circumscribed by the law of universal attraction. The anarchic waywardness of the pre-Newtonian universe is gone for good, the gods who had gone before scattered to the night winds in favor of the red-eyed God that for a time Newton alone could see. The universe in all of its aspects, the Principia goes on to suggest, is coordinated by a Great Plan, an elaborate and densely reticulated set of mathematical laws, a system of symbols. It is this idea that drove Newton. A portion of the Principia he majestically entitled the system of the world. It is this idea that yet drives physicists. Searching for a final theory, one that would subsume all other physical theories, Steven Weinberg, he of the Nobel Prize, is a Newton legatee, an heir.

And here is Gottfried Wilhelm Leibnitz, born in Leipzig just four years after Newton. He is standing by the hors d’oeuvres and the potted shrimp, a fleshy man of perhaps forty. An enormous brunette wig with elaborate curls covers his head; he is dressed for court in lace and silk. He has a high forehead, arched cheekbones, wide-set staring eyes, and a large handsome nose; his is the face of a man, I think, who would enjoy mulled wine, poached eggs on buttered toast, a warm fire as the wind rattles the windows of a country castle, a young serving girl bending low over the plates and after dinner saying softly but without real surprise: Why, Herr Leibnitz, really now, bitte!

Leibnitz studied law, theology, and philosophy; he was interested in mathematics and diplomacy, history, geology, linguistics, biology, numismatics, classical languages, and candlemaking. A serenely confident man of high intellectual power with a steady, easily sustained interest in things, he spent much of his life in the services of the Hanoverian court in Germany, attending to weedy dukes wise enough to know their better when they met him. As a court official, he immersed himself in genealogy and legal affairs, traveling the Continent at the behest of his royal masters; but no matter his official duties, or the endless days spent cramped in wooden coaches, the bumpy roads of Europe beneath his well upholstered backside, he remained a metaphysician among metaphysicians and a mathematician among mathematicians—a Prince among Princes; he knew the great intellects of Europe and the great intellects of Europe knew him.

The contrast to Newton is instructive. Leibnitz was an intellectual man about town, what the French call un brasseur d’affaires, someone who saunters through a world of ideas; he came to the calculus because his genius caught on something and then gushed. The vision that he embraced was intensely local. There are problems here, things to study there, a world of overflowing variety. The simple rules governing affairs in Leipzig are not the intricate and complicated rules needed to make sense of sinister intrigues in Paris. The night is different from the day, the earth from the moon. What is appropriate in a stuberl is inappropriate at court. The sensible intelligence requires not so much universal laws as universal methods, ways of coordinating information and holding different aspects of the world together simultaneously. Leibnitz prophetically imagined a universal computing machine; he conceived the idea of a formal system; he understood, or so it appears, the nature of those discrete combinatorial systems that inform both human grammars and DNA; he saw in the future the shape that mathematical logic would take, and in his strange philosophical invocations of items such as monads, each of which somehow contains a potential universe, he seemed to divine the future course of quantum mechanics and cosmology, almost as if amidst the disorder and distractions of his life he was occasionally able to slip sideways into the stream of time and see just enough of the future to suggest his most pregnant and compelling ideas.

Newton, on the other hand, was an intellectual seer. The same hypnotic, coal-black eyes peer out intently from every mask he wore. He was driven to invent the calculus because it was the indispensable mathematical tool without which he could not complete—he could not begin—the enterprise involved in describing the Great Plan in all its limpidness, simplicity, and unearthly beauty. His vision of things was intensely global. The world’s ornamental variety he regarded as an impediment to understanding. Nothing in his temperament longed to cherish the particular—the way in which wisteria smells in spring, the slow curve of a river bed, a woman’s soft and puzzled smile, the overwhelming thisness of this or the thatness of that. Whatever the differences between one place and another, or between the past, the present, and the future, some underlying principle, some form of unity, subsumes them, those differences, and shows, to the mathematician at least, that like the cut edges of a glimmering crystal they are superficial aspects of a central flame.

This may suggest that between Leibnitz and Newton there was a difference in intellectual depth. Not so. I am talking of men of genius. And yet there is no doubt that it has been Newton’s vision of the universe coordinated by a Great Plan, a set of mathematical principles pregnant enough to compel the very foundations of the world into being, that has until now been impressed on the physical sciences, so that the very enterprise itself, from the Principia to various theories of absolutely everything that contemporary physicists assure us are in preparation, bears the stamp of his enigmatic and brooding personality.


chapter 2

Symbols of the Masters

IT IS A FACT. AT SOME TIME OR OTHER THE MATHEMATICIANS OF EUROPE looked out over the universe, noted its appalling clutter, and determined that on some level there must exist a simple representation of the world, one that could be coordinated with a world of numbers. Note the double demand. A representation of the world, and one coordinated with numbers. When did this fantastic idea come about? I have no idea. It did not occur to the ancients, however much they may have been given to number mysticism; cowled and hooded medieval monks would have regarded the idea as superstitious mummery (as perhaps it is); and as late as the middle of the sixteenth century, amidst a culture that had learned brilliantly to represent aurochs and angels in terms of paint and durable pigment, the idea of a mathematical representation of the world remained alien and abstract. But by the end of the seventeenth century, the representation was essentially complete (even though it required another one hundred and fifty years for the logical details painfully to be put in place). The real world had been reinterpreted in terms of the real numbers. This fantastic achievement is the expression of a great psychological change, the moment of its completion comparable to the measured minute in antiquity during which the hectoring and complaining gods of the ancient world came to be seen as aspects of a single inscrutable and commanding deity.

The idea that the world at large (and so the world of experience) requires a mathematical representation raises two obvious questions. Which world is to be coordinated with numbers? And coordinated with which numbers? First things first. The mathematical representation of the world proceeds by means of Euclidean geometry, a theory old already in the seventeenth century. A vexed pause now to recollect high-school geometry. There is Mrs. Crabtree, standing glumly by the blackboard. There is Amy Kranz, dressed in a red sweater, her pubescent back arched invigoratingly. There is Stokely, the class clown, wadding up a spitball. But what is going on? In class, I mean. Apparently something to do with triangles or trapezoids. The blackboard is filled with drawings. And from purely an intuitive point of view, this snapshot (from the blessed fifties, in my own case) will do as well as anything else. Elementary geometry is the study of certain simple, regular, and evident shapes. Straight lines and points predominate. Except for a few simple arcs, no curves beyond the circle. No crooked lines. Nothing by way of irregularity or shapelessness. No algebra. Few symbols, in fact. The discipline proceeds by elimination and idealization. The meaty players are stripped from the muddy football field and the field itself reduced to its essentials of length, width, and area.

In its historical aspect, geometry is a subject that rises steaming from ancient Egyptian marshes, where tough overseers wearing oiled braids looked out over the fields, a stiff papyrus sheet underneath their arm, with even the most unapproachable of ancient rulers, The King Whose Name None Dare Speak, deferring to the man capable of determining the area under His cultivation or the volume of His awful pyramid. To recall that overseer is to recall the practical origins of the subject. Geometry as a high intellectual art leaves the overseer knee-deep in marsh and mud, a mosquito buzzing fitfully over his bronzed and polished head. The Greeks of the third century B.C., to whom the subject is due, took the overseer’s lore and made of it a deductive science. Certain geometrical assertions were set aside and simply accepted as self-evident. A straight line, Euclid buoyantly affirmed, may be drawn between any two points. And then again, he affirmed again, all right angles are equal. There are five such postulates in Euclidean geometry, and a number of auxiliary axioms dealing with purely logical matters—the familiar declaration, for example, that equals added to equals are equal. From these postulates and axioms, Euclid proceeded to derive the assertions of geometry, its central theorems. He thus gave to the overseer’s lore an enduring intellectual structure.

For many centuries the austere edifice of Euclidean geometry stood as a supreme example of pure thought. Euclid, it was said (by Edna St. Vincent Millay, who knew no geometry), looked on beauty bare. Its intellectual grandeur aside, Euclidean geometry plays a simple striking role in the organization of experience. It is a schematic; it functions as a blueprint. In Euclidean geometry, the outlines of the Great Plan are for the first time revealed. The straightforward definitions and theorems of Euclidean geometry, conceived initially as exercises in thought, the mind companionably addressing itself, have a direct and thus an uncanny interpretation in the voluptuous and confusing world of the senses. A straight line is the shortest distance between two points. That the structure of the physical universe seems to have been composed with Fitzwater and Blutford’s high-school textbook, Welcome to Geometry, firmly in mind is evidence that in general things are stranger than they seem.

Humped, ancient, and austere, Euclidean geometry is a static theory and thus to some degree a stagnant theory; within its confines, everything remains the same, and from its lucid mirror no form of change is ever shown. Things are what they are, now and forever. This was a view favored by the Greeks who took the long view, indeed, of things; but we live in a world of ceaseless growth and decay, with things in fretful motion on the surface of the earth, planets wheeling in the night sky, galaxies coming into existence and then disappearing, and even the universe itself arising out of a preposterous Bang! and thus fated one day either to expand infinitely into the void or collapse back onto itself like a crushed Mallomar. Geometry may well describe the skeleton, but the calculus is a living theory and so requires flesh and blood and a dense network of nerves.

Adieu, Mrs. Crabtree, adieu.

How Much and How Many

Unlike Euclidean geometry, arithmetic rises directly from the wayward human heart, the lub-dub under the physician’s stethoscope or the lover’s ear (sounding very much like the words so soon, it ends), impossible to hear without a mournful mental echo: 1, 2, 3, 4, …, the doubled sounds, that beating heart, those numerical echoes, cohering perfectly for as long as any of us can count.

The most familiar of objects, numbers are nonetheless surprisingly slippery, their sheer slipperiness interesting evidence that certain intellectual tools may be successfully used before they are successfully understood. Numbers tend to sort themselves out by clans or systems, with each new system arising as the result of a perceived infirmity in the one that precedes it. The natural numbers 1, 2, 3, 4, …, start briskly at 1 and then go on forever, although how we might explain what it means for anything to go on forever without in turn using the natural numbers is something of a mystery. In almost every respect, they are, those numbers, simply given to us, and they express a primitive and intimate part of our experience. Like so many gifts, they come covered with a cloud. Addition makes perfect sense within the natural numbers; so, too, multiplication. Any two natural numbers may be added, any two multiplied. But subtraction and division are curiously disabled operations. It is possible to subtract 5 from 10. The result is 5. What of 10 from 5? No answer is forthcoming from within the natural numbers. They start at 1.

The integers represent an expansion, a studied enlargement, of the system of natural numbers, one motivated by obvious intellectual distress and one made possible by two fantastic inventions. The distress, I have just described. And those inventions? The first is the number 0, the creation of some nameless but commanding Indian mathematician. When 5 is taken away from 5, the result is nothing whatsoever, the apples on the table vanishing from the table, leaving in their place a peculiar and somewhat perfumed absence. What was there? Five apples. What is there? Nothing, Nada, Zip. It required an act of profound intellectual audacity to assign a name and hence a symbol to all that nothingness. Nothing, Nada, Zip, Zero, 0.

The negative numbers are the second of the great inventions. These are numbers marked with a caul: −504, −323, −32, −1 (I have always thought the minus sign a symbol of strangeness). The result is a system that is centered at 0 and that proceeds toward infinity in both directions: …, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4,.… Subtraction is now enabled. The result of taking 10 from 5 is −5.

And yet if subtraction (along with addition and multiplication) is enabled among the integers, division still provokes a puzzle. Some divisions may be expressed entirely in integral terms—12 divided by 4, for example, which is simply 3. But what of 12 divided by 7? Which in terms of the integers is nothing whatsoever and so calls to mind those moments on Star Trek when the transporter fails and causes the Silurian ambassador to vanish.

It is thus that the rational numbers, or fractions, enter the scene, numbers with a familiar doubled form: 2/3, 5/9, 17/32. The fractions express the relationship between the whole of things that have parts and the parts that those things have. There is that peach pie, the luscious whole, and there are those golden dripping slices, parts of the whole, and so two thirds or five ninths or seventeen thirty-seconds of the thing itself. With fractions in place, division among the integers proceeds apace. Dividing 12 by 7 yields the exotic 12/7, a number that does not exist (and could not survive) amidst the integers. But fractions play in addition a conspicuous role in measurement and so achieve a usefulness that goes beyond division.

The natural numbers answer the oldest and most primitive of questions—how many? It is with the appearance of this question in human history that the world is subjected for the first time to a form of conceptual segregation. To count is to classify, and to classify is to notice and then separate, things falling within their boundaries and boundaries serving to keep one thing distinct from another. The world before the appearance of the natural numbers must have had something of the aspect of an old-fashioned Turkish steambath, pale, pudgy figures arising out of the mist and shambling off down indistinct corridors, everything vague and vaguely dripping; afterward, the world becomes hard-edged and various, the discovery of counting leading ineluctably to an explosive multiplication of bright ontological items, things newly created because newly counted.

The rational numbers, on the other hand, answer a more modern and sophisticated question—how much? Counting is an all or nothing affair. Either there are three dishes on the table, three sniffling patients in the waiting room, three aspects to the deity, or there are not. The question how many? does not admit of refinement. But how much? prompts a request for measurement, as in how much does it weigh? In measurement some extensive quantity is assessed by means of a scheme that may be made better and better, with even the impassive and uncomplaining bathroom scale admitting of refinement, pounds passing over to half pounds and half pounds to quarter pounds, the whole system capable of being forever refined were it not for the practical difficulty of reading through the hot haze of frustrated tears the awful news down there beneath all that blubber. This refinement, which is an essential part of measurement, plainly requires the rational numbers for its expression and not merely the integers. I may count the pounds to the nearest whole number; in order to measure the fat ever more precisely, I need those fractions.

However useful, the fractions retain under close inspection a certain unwholesomeness, even a kind of weirdness. For one thing, they appear from the first to be involved in a suspicious conceptual circle. An ordinary fraction is a division in prospect, with 1/2 representing 1 divided by 2. But the rational numbers were originally invoked in order to provide an account of division amidst the integers. The operation of division has been explained by recourse to the fractions and the fractions explained by recourse to the operation of division. This is not a circle calculated to inspire confidence. It is for this reason that mathematicians often talk of fractions as if they were constructed from the integers, a turn of phrase that suggests honest labor honestly undertaken. The construction proceeds in the simplest possible way. The fractions themselves are first eliminated in favor of pairs of integers taken in a particular order, with 2/3 vanishing in favor of (2, 3) and the somewhat top-heavy 25/2 in favor of (25, 2). The symbolic universe now shrinks—gone are those elegant fractions; and then it dramatically expands—pairs of integers come into existence. What is required to make this rather suspicious shuffle work is some evidence that the ordinary arithmetic operations by which fractions are added, subtracted, multiplied, and divided carry over to pairs of integers.

As, indeed, they do. Two fractions a/b and c/d are equal when ad = bc. The same number is represented by 2/3 as by 4/6 because 2×6 is just 4×3. High-school wisdom. But ditto for the pairs of numbers (a, b) and (c, d), whatever they may be. Ditto how? Ditto by definition, the mathematician simply saying that (a, b) is the same as (c, d) if ad = bc. And ditto again by definition when it comes to adding, multiplying, subtracting, and dividing pairs of integers, those pairs coming in the end to perform every useful function ever performed by fractions.

In this way, the rational numbers are emptied of one source of their weirdness—fractions; thus removed, those fractions are promptly reintroduced into the mathematical world on the reasonable grounds that if questions come up (what are those damn things?), they can always be answered (pairs of integers).

With fractions in place, the system of numbers in which they are embedded undergoes a qualitative change. The integers are discrete in the sense that between 1 and 2 there is absolutely nothing. There is not much more, needless to say, between 2 and 3. Going from one integer to another is like proceeding from rock to rock across an inky void. The fractions fill up the spaces in the void, with 3/2, for example, standing solidly between 1 and 2. There are now rocks between rocks—the void is vanishing—and rocks between rocks and rocks, with 1/3 standing between 1/4 and 1/2. The filling-in of fractions between fractions is a process that goes on forever. That void has vanished. The number system is now dense, and not discrete, infinite in either direction, as the positive and negative integers go on and on, and infinite between the integers as well.

In looking at the space between 1 and 2, swarming now with pullulating fractions, the mathematician, or the reader, may for a moment have the unexpected sensation of peering into some sinister sinkhole, some hidden source of creation.




End of sample




    To search for additional titles please go to 

    
    http://search.overdrive.com.   


OEBPS/images/Berl_9780307789730_epub_016_r1.jpg
opposite

Snco-
oo
‘hypotenuse
Cosinep» 2
Typtcnse
oppoic d
‘adjacent ‘adjacent

opposi





OEBPS/images/Berl_9780307789730_epub_137_r1.jpg
%gll +Cyt+C,,





OEBPS/images/Berl_9780307789730_epub_015_r1.jpg
yelons

y=log, 56

y=log,x





OEBPS/images/Berl_9780307789730_epub_136_r1.jpg
!gl+C,





OEBPS/images/Berl_9780307789730_epub_014_r1.jpg





OEBPS/images/Berl_9780307789730_epub_135_r1.jpg
J vel(1)





OEBPS/images/Berl_9780307789730_epub_013_r1.jpg
2| f=2






OEBPS/images/Berl_9780307789730_epub_134_r1.jpg
J’ ace(r)





OEBPS/images/Berl_9780307789730_epub_012_r1.jpg
RAC

@.8)

e ELo e
<
Il






OEBPS/images/Berl_9780307789730_epub_133_r1.jpg





OEBPS/images/Berl_9780307789730_epub_011_r1.jpg





OEBPS/images/Berl_9780307789730_epub_132_r1.jpg
F2)=2"=-2+C=






OEBPS/images/Berl_9780307789730_epub_010_r1.jpg
39" ’ RREEN
8
7
6
5
-2,4)° ¢4 (2,4)
3
2
(—).l)'1 .[l.l)
-5 -4 -3 =2 -1 O\I 2 3 4
(0,0)






OEBPS/images/Berl_9780307789730_epub_131_r1.jpg





OEBPS/images/Berl_9780307789730_epub_130_r1.jpg





OEBPS/images/Berl_9780307789730_epub_L007_r1.jpg







OEBPS/images/Berl_9780307789730_epub_cvt_r1.jpg







OEBPS/images/Berl_9780307789730_epub_019_r1.jpg
x =
i =
5 7
= M I s
- 2 2
y
'
EANE I
2 2 = 7 3






OEBPS/images/Berl_9780307789730_epub_018_r1.jpg





OEBPS/images/Berl_9780307789730_epub_139_r1.jpg





OEBPS/images/Berl_9780307789730_epub_017_r1.jpg





OEBPS/images/Berl_9780307789730_epub_138_r1.jpg
P(.)=%gﬂ+c,,+c,,





OEBPS/images/Berl_9780307789730_epub_005_r1.jpg





OEBPS/images/Berl_9780307789730_epub_126_r1.jpg





OEBPS/images/Berl_9780307789730_epub_004_r1.jpg





OEBPS/images/Berl_9780307789730_epub_125_r1.jpg
7-—?1 -1





OEBPS/images/Berl_9780307789730_epub_003_r1.jpg





OEBPS/images/Berl_9780307789730_epub_124_r1.jpg
Derivatives

d
2ic)-0

La)=a
SO0
2102l 70)20)

-
Lier)ene

Anndervanves

fo-c

fazarsc

fart)= .j fie) @t
Juozg01= 02 g0

[ame=-eosr+c





OEBPS/images/Berl_9780307789730_epub_002_r1.jpg
e(1,3)
(2.2
1
5,0
4 -3 2 12 s
. -
3,-2)





OEBPS/images/Berl_9780307789730_epub_123_r1.jpg





OEBPS/images/Berl_9780307789730_epub_001_r1.jpg





OEBPS/images/Berl_9780307789730_epub_122_r1.jpg





OEBPS/images/Berl_9780307789730_epub_121_r1.jpg





OEBPS/images/Berl_9780307789730_epub_120_r1.jpg
ar\) _
— f@).





OEBPS/images/Berl_9780307789730_epub_009_r1.jpg
av—o-vow

fr)=1*





OEBPS/images/Berl_9780307789730_epub_008_r1.jpg





OEBPS/images/Berl_9780307789730_epub_129_r1.jpg





OEBPS/images/Berl_9780307789730_epub_007_r1.jpg





OEBPS/images/Berl_9780307789730_epub_128_r1.jpg
30





OEBPS/images/Berl_9780307789730_epub_006_r1.jpg





OEBPS/images/Berl_9780307789730_epub_127_r1.jpg
4 @.4)
[

3

N
c=2

h
=1

=2[ll/f1 1/[l[2 [

=0,

-1

e






OEBPS/images/Berl_9780307789730_epub_038_r1.jpg
lim f{ 5+ 5 | = £6),





OEBPS/images/Berl_9780307789730_epub_159_r1.jpg
Sfom)

a b a b
INSCRIBED. MEAN VALUE CIRCUMSCRIBED
RECTANGLE RECTANGLE RECTANGLE
(LESS THAN (BQUAL TO (GREATER THAN

ACTUAL AREA) ACTUAL AREA) ACTUAL AREA)





OEBPS/images/Berl_9780307789730_epub_037_r1.jpg
nnnnnnnnnnnnnnnnnnnnnnnnnnnn





OEBPS/images/Berl_9780307789730_epub_158_r1.jpg





OEBPS/images/Berl_9780307789730_epub_036_r1.jpg





OEBPS/images/Berl_9780307789730_epub_157_r1.jpg





OEBPS/images/Berl_9780307789730_epub_035_r1.jpg
Dissanitaslis a3 3





OEBPS/images/Berl_9780307789730_epub_156_r1.jpg
lim 3 £(2,)8,





OEBPS/images/Berl_9780307789730_epub_034_r1.jpg





OEBPS/images/Berl_9780307789730_epub_155_r1.jpg
b





OEBPS/images/Berl_9780307789730_epub_033_r1.jpg





OEBPS/images/Berl_9780307789730_epub_154_r1.jpg
f(2)A, + f(t,)A, +...+ f(1,)A,.





OEBPS/images/Berl_9780307789730_epub_032_r1.jpg





OEBPS/images/Berl_9780307789730_epub_153_r1.jpg
> Fle)a





OEBPS/images/Berl_9780307789730_epub_031_r1.jpg
lim 1 (x)

fla).





OEBPS/images/Berl_9780307789730_epub_152_r1.jpg
f(t)A + f(t,)A, +...+ (1, )A,.





OEBPS/images/Berl_9780307789730_epub_030_r1.jpg





OEBPS/images/Berl_9780307789730_epub_151_r1.jpg
FAn =i~An An = A=t

P tect thmb





OEBPS/images/Berl_9780307789730_epub_150_r1.jpg
S






OEBPS/images/Berl_9780307789730_epub_039_r1.jpg





OEBPS/images/Berl_9780307789730_epub_027_r1.jpg





OEBPS/images/Berl_9780307789730_epub_148_r1.jpg
j(l’H)’Zl:('zH)s






OEBPS/images/Berl_9780307789730_epub_026_r1.jpg





OEBPS/images/Berl_9780307789730_epub_147_r1.jpg
| (e +1)2(20) = F(g(1))+ C





OEBPS/images/Berl_9780307789730_epub_025_r1.jpg





OEBPS/images/Berl_9780307789730_epub_146_r1.jpg
[ e £





OEBPS/images/Berl_9780307789730_epub_024_r1.jpg
S = 1, 12, 1/3, /4, VS, 16, 1T, 18,

4 6 &5 10, 12, 14, 16, ...,





OEBPS/images/Berl_9780307789730_epub_145_r1.jpg
| (2 +1)2(20)





OEBPS/images/Berl_9780307789730_epub_023_r1.jpg
(=161 +100) - (161 +100)
-1 )






OEBPS/images/Berl_9780307789730_epub_144_r1.jpg
| (2 +1)2(20)7





OEBPS/images/Berl_9780307789730_epub_022_r1.jpg
SPEED






OEBPS/images/Berl_9780307789730_epub_143_r1.jpg
4g(t)

[ (e %L = F(g)+C.





OEBPS/images/Berl_9780307789730_epub_021_r1.jpg
- Distance covered = 16
Position _ 84

reached






OEBPS/images/Berl_9780307789730_epub_142_r1.jpg
J'dFQ:(r)) B0 _ pa)+C
de()  dt





OEBPS/images/Berl_9780307789730_epub_020_r1.jpg
LOGARITHMIC FUNCTIONS

PowERs oF x

o T
(@ Graph of i)=&

5.

n

o * EXPONENTIAL FUNCTIONS

) Graph of )
Roo ruxcions

PoLYNOMIAL FUNCTIONS.
PO =07 4,00 ¢ty s e ay

RATIONAL FUNCTIONS)
SW=PIOE). where
P and Q are polynomials






OEBPS/images/Berl_9780307789730_epub_141_r1.jpg
sz-‘di’(x(!))dx_(l).
dr do(t)  dt





OEBPS/images/Berl_9780307789730_epub_140_r1.jpg
ar _ afe(®) aglt)
dr de(r) dr





OEBPS/images/Berl_9780307789730_epub_029_r1.jpg





OEBPS/images/Berl_9780307789730_epub_028_r1.jpg
5

03

A

T






OEBPS/images/Berl_9780307789730_epub_149_r1.jpg





OEBPS/images/Berl_9780307789730_epub_059_r1.jpg
oy oy





OEBPS/images/Berl_9780307789730_epub_058_r1.jpg





OEBPS/images/Berl_9780307789730_epub_179_r1.jpg





OEBPS/images/Berl_9780307789730_epub_057_r1.jpg
(2,4)

(1.1






OEBPS/images/Berl_9780307789730_epub_178_r1.jpg





OEBPS/images/Berl_9780307789730_epub_056_r1.jpg
Face of f(1)=





OEBPS/images/Berl_9780307789730_epub_177_r1.jpg





OEBPS/images/Berl_9780307789730_epub_055_r1.jpg
20

0 Tty





OEBPS/images/Berl_9780307789730_epub_176_r1.jpg





OEBPS/images/Berl_9780307789730_epub_054_r1.jpg





OEBPS/images/Berl_9780307789730_epub_175_r1.jpg





OEBPS/images/Berl_9780307789730_epub_053_r1.jpg





OEBPS/images/Berl_9780307789730_epub_174_r1.jpg





OEBPS/images/Berl_9780307789730_epub_052_r1.jpg
=16-32Ar-16Ar'+ 100 +16 - 100
At





OEBPS/images/Berl_9780307789730_epub_173_r1.jpg
lim Z £(1)A,





OEBPS/images/Berl_9780307789730_epub_051_r1.jpg
—16(1+2A1+ Ar*)+100 - (-16+100)
At ’





OEBPS/images/Berl_9780307789730_epub_172_r1.jpg





OEBPS/images/Berl_9780307789730_epub_050_r1.jpg
—16(142Ar+ A’ ) +100 - (=16 4+ 100).





OEBPS/images/Berl_9780307789730_epub_171_r1.jpg





OEBPS/images/Berl_9780307789730_epub_170_r1.jpg
f(s)(b-a)





OEBPS/images/Berl_9780307789730_epub_049_r1.jpg





OEBPS/images/Berl_9780307789730_epub_048_r1.jpg
P(1+ Ar) ==16(1+2At + Ar* ) +100.





OEBPS/images/Berl_9780307789730_epub_169_r1.jpg





OEBPS/images/Berl_9780307789730_epub_047_r1.jpg
. P+AnN-P()
INSTANTANEOUS SPEED = lim ———————
8 Ar





OEBPS/images/Berl_9780307789730_epub_168_r1.jpg





OEBPS/images/Berl_9780307789730_epub_046_r1.jpg
P+ A1) - P(1)
Ar

AVERAGE SPEED =





OEBPS/images/Berl_9780307789730_epub_167_r1.jpg





OEBPS/images/Berl_9780307789730_epub_045_r1.jpg
arc)
dt






OEBPS/images/Berl_9780307789730_epub_166_r1.jpg
mb-a)< [ f<M(b-a).





OEBPS/images/Berl_9780307789730_epub_044_r1.jpg
INSTANTANEOUS SPEED = lim —
26 Az





OEBPS/images/Berl_9780307789730_epub_165_r1.jpg
|J’:f-§f(:,)A,’<e





OEBPS/images/Berl_9780307789730_epub_043_r1.jpg





OEBPS/images/Berl_9780307789730_epub_164_r1.jpg





OEBPS/images/Berl_9780307789730_epub_042_r1.jpg
Al
AVERAGE SPEED = ——.
At






OEBPS/images/Berl_9780307789730_epub_163_r1.jpg
lim i 1(t)a, = j:/

181150,





OEBPS/images/Berl_9780307789730_epub_041_r1.jpg
AVERAGE SPEEI






OEBPS/images/Berl_9780307789730_epub_162_r1.jpg





OEBPS/images/Berl_9780307789730_epub_040_r1.jpg
Lee

Lee






OEBPS/images/Berl_9780307789730_epub_161_r1.jpg
f(s)(b-a)





OEBPS/images/Berl_9780307789730_epub_160_r1.jpg





OEBPS/page-template.xpgt
 

   
    
		 
    
  
     
		 
		 
    

     
		 
    

     
		 
		 
    

     
		 
    

     
		 
		 
    

     
         
             
             
             
             
             
             
        
    

  

   
     
  





OEBPS/images/Berl_9780307789730_epub_079_r1.jpg





OEBPS/images/Berl_9780307789730_epub_078_r1.jpg
®.fib)






OEBPS/images/Berl_9780307789730_epub_199_r1.jpg
s

o,





OEBPS/images/Berl_9780307789730_epub_077_r1.jpg
J0)-jta)
b—a





OEBPS/images/Berl_9780307789730_epub_198_r1.jpg
[ £=60),





OEBPS/images/Berl_9780307789730_epub_076_r1.jpg
angett

fb)

fia)






OEBPS/images/Berl_9780307789730_epub_197_r1.jpg





OEBPS/images/Berl_9780307789730_epub_075_r1.jpg





OEBPS/images/Berl_9780307789730_epub_196_r1.jpg





OEBPS/images/Berl_9780307789730_epub_074_r1.jpg
local
maximum

<< absolute maximum






OEBPS/images/Berl_9780307789730_epub_195_r1.jpg
1m=jl'%,





OEBPS/images/Berl_9780307789730_epub_073_r1.jpg





OEBPS/images/Berl_9780307789730_epub_194_r1.jpg





OEBPS/images/Berl_9780307789730_epub_072_r1.jpg
dF _ dg(t) dg(t)
dr de(r) dt





OEBPS/images/Berl_9780307789730_epub_193_r1.jpg
1

6(1)





OEBPS/images/Berl_9780307789730_epub_071_r1.jpg
df _ dF(g(1)) dg(t)
dt de(t) dt





OEBPS/images/Berl_9780307789730_epub_192_r1.jpg





OEBPS/images/Berl_9780307789730_epub_070_r1.jpg





OEBPS/images/Berl_9780307789730_epub_191_r1.jpg





OEBPS/images/Berl_9780307789730_epub_190_r1.jpg





OEBPS/images/Berl_9780307789730_epub_069_r1.jpg
1"+ 2A+ A
‘Ae






OEBPS/images/Berl_9780307789730_epub_068_r1.jpg
futran-ja)
Ar





OEBPS/images/Berl_9780307789730_epub_189_r1.jpg
G(r)= j f





OEBPS/images/Berl_9780307789730_epub_067_r1.jpg
lim —
AT A7





OEBPS/images/Berl_9780307789730_epub_188_r1.jpg





OEBPS/images/Berl_9780307789730_epub_066_r1.jpg





OEBPS/images/Berl_9780307789730_epub_187_r1.jpg





OEBPS/images/Berl_9780307789730_epub_065_r1.jpg





OEBPS/images/Berl_9780307789730_epub_186_r1.jpg





OEBPS/images/Berl_9780307789730_epub_064_r1.jpg
)= 1t)

=1





OEBPS/images/Berl_9780307789730_epub_185_r1.jpg





OEBPS/images/Berl_9780307789730_epub_063_r1.jpg
J+an-s@)
Ar





OEBPS/images/Berl_9780307789730_epub_184_r1.jpg
L I
anl A  anl’





OEBPS/images/Berl_9780307789730_epub_062_r1.jpg





OEBPS/images/Berl_9780307789730_epub_183_r1.jpg
n”+2n+1
an?





OEBPS/images/Berl_9780307789730_epub_061_r1.jpg
Jutan-f)
At ’






OEBPS/images/Berl_9780307789730_epub_182_r1.jpg





OEBPS/images/Berl_9780307789730_epub_060_r1.jpg
P=(L1)

Q=24






OEBPS/images/Berl_9780307789730_epub_181_r1.jpg
o 2
im ™ (n+1)

e





OEBPS/images/Berl_9780307789730_epub_180_r1.jpg
n(n+1)?

- dn





OEBPS/images/Berl_9780307789730_epub_L09_r1.jpg





OEBPS/images/Berl_9780307789730_epub_L08_r1.jpg
23





OEBPS/images/Berl_9780307789730_epub_L07_r1.jpg
23





OEBPS/images/Berl_9780307789730_epub_L06_r1.jpg
/4 %3





OEBPS/images/Berl_9780307789730_epub_L05_r1.jpg
vV3+V12 =33





OEBPS/images/Berl_9780307789730_epub_099_r1.jpg
)= £(6)- fla) - L= LD b0





OEBPS/images/Berl_9780307789730_epub_L04_r1.jpg





OEBPS/images/Berl_9780307789730_epub_098_r1.jpg
@)= f(a)~ fla)- LT D (g g)=
b—a






OEBPS/images/Berl_9780307789730_epub_097_r1.jpg
40 = £(0) - f(a@) - LD=LE,






OEBPS/images/Berl_9780307789730_epub_096_r1.jpg
hir) = f(6)

LOZS@ gy f(u)]






OEBPS/images/Berl_9780307789730_epub_095_r1.jpg
) f( )

————(t-a)+f(a)





OEBPS/images/Berl_9780307789730_epub_094_r1.jpg
mt+0






OEBPS/images/Berl_9780307789730_epub_093_r1.jpg
(t-a)+b.





OEBPS/images/Berl_9780307789730_epub_092_r1.jpg
J(b)~-f(a)
s





OEBPS/images/Berl_9780307789730_epub_091_r1.jpg
f(r)-Something specifying points on AB.





OEBPS/images/Berl_9780307789730_epub_090_r1.jpg





OEBPS/images/Berl_9780307789730_epub_089_r1.jpg
gle) _ fb)-f(a)
dr bea





OEBPS/images/Berl_9780307789730_epub_088_r1.jpg





OEBPS/images/Berl_9780307789730_epub_087_r1.jpg





OEBPS/images/Berl_9780307789730_epub_086_r1.jpg
DF(t)=Df(r)— Dgl(r)=0.





OEBPS/images/Berl_9780307789730_epub_085_r1.jpg





OEBPS/images/Berl_9780307789730_epub_084_r1.jpg
DI f(t)—g(t)|= Df(t) - Dg(1),





OEBPS/images/Berl_9780307789730_epub_083_r1.jpg
DF(t)= D| f(t)- g(1)].





OEBPS/images/Berl_9780307789730_epub_082_r1.jpg





OEBPS/images/Berl_9780307789730_epub_081_r1.jpg
f(t)=g(t)+C,





OEBPS/images/Berl_9780307789730_epub_080_r1.jpg





OEBPS/images/Berl_9780307789730_epub_cvi_r1.jpg
A Tour of the Calculus

DAVID BERLINSKI





OEBPS/images/Berl_9780307789730_epub_tp_r1.jpg
Tour
of
the

dLCULLUS

David Berlinski

o






OEBPS/images/Berl_9780307789730_epub_214_r1.jpg
cerm-60=["r-[ 1;





OEBPS/images/Berl_9780307789730_epub_213_r1.jpg
[r=6w.





OEBPS/images/Berl_9780307789730_epub_212_r1.jpg





OEBPS/images/Berl_9780307789730_epub_211_r1.jpg





OEBPS/images/Berl_9780307789730_epub_210_r1.jpg
i+h
J’” 'F=Gt+h).





OEBPS/images/Berl_9780307789730_epub_219_r1.jpg
Gt +h) -G
Tm‘f"





OEBPS/images/Berl_9780307789730_epub_218_r1.jpg
fo=-["r





OEBPS/images/Berl_9780307789730_epub_217_r1.jpg
{77






OEBPS/images/Berl_9780307789730_epub_216_r1.jpg
.[,Mf





OEBPS/images/Berl_9780307789730_epub_215_r1.jpg
G(/+hz G(r) 1“”' ",[f)





OEBPS/images/Berl_9780307789730_epub_203_r1.jpg
J:f =F(b)-F(a)





OEBPS/images/Berl_9780307789730_epub_202_r1.jpg
i
[ =6(b)-Gla)





OEBPS/images/Berl_9780307789730_epub_SR3_r1.jpg





OEBPS/images/Berl_9780307789730_epub_201_r1.jpg
[ £=60)





OEBPS/images/Berl_9780307789730_epub_SR2_r1.jpg





OEBPS/images/Berl_9780307789730_epub_200_r1.jpg





OEBPS/images/Berl_9780307789730_epub_209_r1.jpg





OEBPS/images/Berl_9780307789730_epub_208_r1.jpg
Gt +h)-G(r)
sy





OEBPS/images/Berl_9780307789730_epub_207_r1.jpg
J':Jz(r)





OEBPS/images/Berl_9780307789730_epub_206_r1.jpg





OEBPS/images/Berl_9780307789730_epub_205_r1.jpg





OEBPS/images/Berl_9780307789730_epub_204_r1.jpg





OEBPS/images/Berl_9780307789730_epub_115_r1.jpg





OEBPS/images/Berl_9780307789730_epub_114_r1.jpg
glc) _ f(b)-jla) f(a)
dt b—-a





OEBPS/images/Berl_9780307789730_epub_113_r1.jpg
J(b) - fla)






OEBPS/images/Berl_9780307789730_epub_112_r1.jpg





OEBPS/images/Berl_9780307789730_epub_111_r1.jpg
dantc) _ailc) _ 115)—1(a)
At At bhe—a





OEBPS/images/Berl_9780307789730_epub_110_r1.jpg
) _ g _ 70
dt dt





OEBPS/images/Berl_9780307789730_epub_119_r1.jpg
DF(t)= f(¢)





OEBPS/images/Berl_9780307789730_epub_118_r1.jpg





OEBPS/images/Berl_9780307789730_epub_117_r1.jpg
=3





OEBPS/images/Berl_9780307789730_epub_116_r1.jpg





OEBPS/images/Berl_9780307789730_epub_104_r1.jpg
10 f(@)-LO=L@ |
—






OEBPS/images/Berl_9780307789730_epub_225_r1.jpg





OEBPS/images/Berl_9780307789730_epub_103_r1.jpg
Di() = D| )~ f(@)- L= LD )|






OEBPS/images/Berl_9780307789730_epub_224_r1.jpg
(a)=Fla)+C.





OEBPS/images/Berl_9780307789730_epub_102_r1.jpg
0 =| £ fta) - L1,

(1 ﬂ)}





OEBPS/images/Berl_9780307789730_epub_223_r1.jpg





OEBPS/images/Berl_9780307789730_epub_101_r1.jpg





OEBPS/images/Berl_9780307789730_epub_222_r1.jpg
G(r) =L’ 7.





OEBPS/images/Berl_9780307789730_epub_100_r1.jpg
h(b)= f(b)- fla)- f(b)— f(a)=0.





OEBPS/images/Berl_9780307789730_epub_221_r1.jpg
.G+ h)-GQ)
N ———F———c
oo N





OEBPS/images/Berl_9780307789730_epub_220_r1.jpg
lim Gt+h)—-G(r) _
-y N






OEBPS/images/Berl_9780307789730_epub_int_r1.jpg





OEBPS/images/Berl_9780307789730_epub_109_r1.jpg
0 =| 1= fla)- L1 )]





OEBPS/images/Berl_9780307789730_epub_108_r1.jpg
) _ flb)=fla)
dr B





OEBPS/images/Berl_9780307789730_epub_107_r1.jpg





OEBPS/images/Berl_9780307789730_epub_106_r1.jpg





OEBPS/images/Berl_9780307789730_epub_105_r1.jpg
1) fa))-| L1 )|





OEBPS/images/Berl_9780307789730_epub_226_r1.jpg
Gb)=[ f=[ f =F(b)~F(a)





