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PREFACE

Shortly after September 11, 2001, I was struck by the stories in the press alleging insider trading in the stocks of the airlines involved in the attack. Dr. William Hery, research professor at the Polytechnic Institute of NYU, and I posited the ability to reverse-engineer actionable market intelligence, or MARKINT, that might be useful in counterterrorism from publicly available market information and prices. One of the earliest supporters of MARKINT was Randolph Tauss, director of corporate strategy at Omnis, Inc., who, while a senior government program manager, enthusiastically adopted the concept.

Since then, my scope and interests have widened. Over the last eight years, I have come to see the intelligence community and the financial community as having essentially similar issues with respect to the measurement and mitigation of extreme risk.

However, I’ve also seen that the members of each community are largely unaware of the applicability of the other’s work to their own problems. The financial community is generally unaware of the mathematical sophistication that has been operational in the defense community for a number of years in the form of network-centric operations within the Department of Defense. Similarly, in spite of new emphasis on open-source intelligence, or OSINT (as opposed to intelligence gathered by sensors or clandestine operations), the national security community is largely unaware of the wealth of information and analytical models available in the financial community that might be retasked to its purposes.

Fortunately, this is changing. The financial crisis of 2007–2008 has been a driver of analytical change, and the missions of the financial and intelligence communities have never before been so aligned. Recently, Dennis Blair, the new director of national intelligence (DNI), said that the “primary near-term security concern of the United States is the global economic crisis and its geopolitical implications.” The President’s Daily Brief (the PDB) has been joined by the daily Economic Intelligence Brief (the “Butterfly Brief”), both of which are classified intelligence community products. The CIA is now publicly advertising employment opportunities for ex-Wall Streeters.

At the same time, failures in risk management protocols and models by top-tier institutions such as Lehman Brothers and Bear Stearns have spurred a search for alternatives. And recognition of the causal chains that led to the crisis has led some theorists to move from backward-looking statistical models to forward-looking causal inference models.

Fortunately, the financial community is just now starting to take a systems view of the elements and interconnections of the causal network that is the global markets in an effort to explain and anticipate “black swan” events (i.e., undirected, unpredicted, and rare events) and “tipping points” (i.e., points at which a previously rare phenomenon becomes dramatically more common), popularized by Nassim Taleb and Malcolm Gladwell, respectively.

This book contains much of what I’ve learned by having a foot in each world. It is meant to be a modern Art of War for those who are involved in the pseudo-warfare of trading in the global capital markets. Appropriately, I’ve been immeasurably assisted by experts from each world.

From the financial community, I would like to thank Dr. Robert Mark, the founder of Black Diamond Risk Enterprises and one of the premier experts in the world on risk management and corporate governance. Bob generously suggested some additions on the subject of systemic risk and current best practice in risk management and contributed examples of typical risk reports.

And from the government community, I would also like to thank Dr. Paul Edward Lehner, consulting scientist at the Center for Integrated Intelligence Systems of The MITRE Corporation. Paul provided me with extraordinarily insightful comments (and an education in cutting-edge developments in mathematical psychology) as well as a unique perspective of the complementary analytical techniques used by the private and public sectors.

I’m also very appreciative to Bryan Ware (CEO), Dr. David Daniels (chief scientist), and Linwood Hudson (VP product development) of Digital Sandbox, Inc., of McLean, Virginia, who provided me with examples of risk inference networks used for purposes of national security.

My thanks also to Professor James Moffat, who allowed me to reproduce his fascinating summary of complexity concepts as they apply to information-age military forces, and to Dr. Julien Diard of the Laboratoire de Psychologie et NeuroCognition, Université Pierre Mendès France, who allowed me to do the same with his comprehensive hierarchy of probabilistic modeling formalisms.

And last but not least, my appreciation to Quantum 4D, Inc., and Palisades Corporation, who generously provided me with network analysis and visualization tools with which to create working examples of concepts from this book.


CHAPTER 1
Plausibility versus Probability: Two Worldviews

Over the last three decades or so, sophisticated financial modeling has been almost exclusively statistical in nature. The ready availability of massive amounts of historical market data has fueled the creation of valuation and risk measurement models built on concepts such as association, correlation, and likelihood.

All these models create implicit forecasts, that is, estimates of expected and possible future scenarios for a security or a portfolio of securities. Most often, these forecasts are based on the assumption that the future market behavior is well represented by the past.

However, this stochastic approach implies a worldview that ignores causality in favor of correlation. In this world, it doesn’t matter whether gold prices increased because interest rates decreased or vice versa. It also doesn’t matter whether the prices of a utility stock and an airline stock are directly related in some fashion or whether, instead, they are both driven by a common dependence on fuel prices. This world is a supremely efficient world as well: all prices reflect new information immediately, and that information is transmitted instantaneously around the globe.

However, intuition belies these notions. Traders and portfolio managers know that events drive prices. Catalysts such as the release of an economic indicator or an earnings report drive prices, and chain reactions precipitated by an important event can take a finite amount of time to propagate.

Such statistical models were often sufficient in the past, when the volume and complexity of derivative instruments were far lower than they are today. But now, the value and risk of popular instruments such as options on credit derivatives and complex asset-backed securities increasingly depend on the modeling of low-probability, high-consequence events. If the models used are not adequate for the task of anticipating such high-consequence events, massive losses and market disruptions can occur. Certainly the financial disruptions that began in 2007–2008 are abundant evidence of such failures.

But as the old saying goes, “Correlation is not causation.” The alternative to a statistical model is a causal model that explicitly creates an alternative worldview, one in which cause and effect are modeled in logical or temporal order.

This alternative world is one in which plausibility rather than probability is modeled. The consequences and likelihood of events that have never before occurred but that can be reasonably anticipated (as a consequence of other events) are included in the quantitative models. Such modeling is the forte of the intelligence community and those responsible for national security, who must create metrics and construct solutions for threats that have never before occurred.

Plausibility can be determined from a mixture of expert opinion, hard facts, and historical experience. Although the structure of any causal model may be guided by the insights of human experts, it need not be strictly an expert system. Instead, through a process of causal inference, past history can be used to validate and inform the model. A causal model is not necessarily deterministic; it can allow for uncertainty. Ideally, causal inference facilitates the integration of substantive knowledge with statistical data to refine the former and interpret the latter.

Such causal models are used in other disciplines, most notably epidemiology and decision science. They are little used in finance, with the notable exception of the measurement of operational risk (i.e., the risk of loss due to human error). Causal models are nearly absent from1 quantitative modeling for purposes of instrument valuation or market and credit risk measurement.

The preference that quantitative analysts have for “frequentist” or probabilistic models over causal models over the last three decades is understandable for a number of reasons.

First, such models are relatively easy to create and implement, using financial theories (such as modern portfolio theory) that are already well accepted and in the public domain.

Also, until recently, neither the mathematical language nor the technical tools that might facilitate the creation of causal models existed. Although the financial community commenced serious quantitative modeling in the 1970s, it wasn’t until the mid-1980s that much substantive work was done on causal models, even within the academic community.

Thus, the creation of rigorous theory, methodologies, and a language of causality that might have facilitated such model building did not exist at the time the financial community was choosing its path. Perhaps more important, even if such models had been created, the data required to inform them were usually insufficiently granular, synchronized, and properly organized for use in a causal inference process.

However, now, in the words of Judea Pearl, a leader in this field, “Put simply, causality has been mathematized.” At the same time, certain technological innovations have made causal inference practical in the financial arena.

Consider one of the key questions in causal inference: How can one distinguish between mere correlation and cause and effect? When the sun rises and the cock crows, was one of these two events the catalyst for the other, or were they both the consequence of a third event?

One of the best methods of validating causal relationships is via experimentation. We can wake up the cock at 3 a.m. and see if this causes the sun to rise. Or an experiment can be designed to eliminate all variables but one: for example, in medical trials, the effect of the drug on a patient. To produce valid results, such an experiment would probably contain key features used in causal modeling, such as randomization (e.g., patients are randomly selected to receive an experimental drug or a placebo) and elimination of exogenous factors (e.g., variations in age or sex).

Fortunately, in finance, the capital markets are a laboratory that continuously provides us with natural experiments. Thus, rather than using historical market prices in statistical analyses, we can use them in causal inference models. Every day, traders receive information about catalytic events that move markets and are able to observe the synchronous or subsequent effects of those catalysts.

Technological advances now make the observation of these natural experiments both possible and practical. Formerly, end-of-day data were relatively useless for determining causation because so many important events occur during the course of a trading day. Just as in a medical trial, when there are multiple variables, reliable causal inferences are exceedingly difficult to make.

Only in the last few years has commercial software become available that is capable of capturing event data and synchronizing those data with real-time market data of the highest granularity. This synchronized information gives us the means to learn from one controlled experiment at a time, even if the experiments last just seconds.

Although many events occur in the course of a trading day, few of them occur simultaneously, where simultaneous is defined as occurring within the same very small window of time. For example, we might capture the earliest moment at which an earnings report became public or a report on crude oil inventory was released. If we then examine the real-time behavior of stock or oil prices in the seconds to minutes after the release, we can form opinions about how such an event drives prices.

Besides potentially providing better estimates of value and risk, causal models may be more intuitive and understandable by risk managers and portfolio managers than statistical models are. For example, the language of causality is a natural language for risk management. Examples of causal concepts are influence, ignorability, disturbance, effect, confounding, intervention, and explanation.

The graphic representations that substitute for mathematical equations lend themselves well to financial applications. As Pearl points out, there is no analog in algebra or statistics to the causal operator “given that I do,” that is, the effect of a deliberate action on the outcome of the analysis. However, these representations lend themselves well to programming. Computer code does allow such operators; the statement A = B is a substitution rather than a statement about an inviolate relationship between A and B.

Similarly, hedge positions can be considered “interventions” that can block certain paths: those that lead to undesirable outcomes, such as very large losses. Such a hedge might be a security that is already in a portfolio or, alternatively, an exogenous variable that drives changes in one or more securities in the portfolio.

Further, the identification of hierarchically organized causes lends itself very naturally to the identification of systematic and specific risks as required by the Basel II accord. Such methods may provide results that are far superior to those provided by statistical methodologies such as principal component analysis,2 the results of which can be degraded by spurious correlations without expert intervention.

Causal models also provide a natural framework for the estimation of two key risk measures for which no industry-standard methods yet exist: economic capital (the amount of capital required to ensure the continued existence of the enterprise to a very high degree of confidence) and enterprise risk (the risk to an enterprise from all sources of risk). In such models, expert opinion can be integrated with historical behavior to systematically generate all plausible future scenarios, estimate their likelihood, and measure their consequences.

All else being equal, a causal approach is preferable to a statistical approach for several reasons.

First, a causal approach allows a more general solution. A statistical solution can be simulated, albeit inefficiently, using a causal network that includes an error component. However, the reverse is not true.

Second, causal networks do not require extensive historical data for all the securities and instruments in a portfolio. Causal models can be used even when history is not a reliable indicator of the future—for example, when a shift in risk regime has occurred or when new risk factors such as changing regulatory policy are expected to have a significant impact.

Causal networks can also be allowed to have a specific order in which events occur or a temporal component suitable for high-frequency trading and real-time risk management. Forecasts of consequential behavior produced in sufficient time to execute a trade can be used in automated, algorithmic trading. Further, observed market behavior that is time dependent (e.g., volatility clusters and jump diffusion processes) might be more easily explained in terms of causal models than it is by statistical models. Also, instead of relying on solutions such as GARCH3 methods or stochastic volatility models4 to calibrate observations to history, such observations might be explained in terms of the observable, noninstantaneous effects of traders’ and portfolio managers’ behavior.5

A causal approach can use all available information to inform the model, not just historical pricing data. In the terminology of the intelligence community, this is the use of “all source intelligence.” For example, additional fundamental information might be used to inform (or override) certain causal relationships. The sensitivity of an airline to the price of fuel might be independently modeled by a fundamental equity analyst and then compared to the relationship inferred by the causal model. Or if a publicly traded home builder has never before hedged its interest-rate exposure but has just started such a program, the past dependence of the company’s stock price on interest rates might be overridden.

A causal approach is far more dynamic than a statistical approach because it allows the introduction of prior knowledge. A forecast of one-day risk is substantially different one second after the release of the monthly unemployment statistics from what it was one second before that release, based on knowledge of both market expectations and the actual news. In the language of causal modeling, these are the prior and posterior distributions.

Most important of all, a causal structure provides far more transparency than do statistical parameters. The graphical language of causal modeling reveals the fundamental relationships assumed by experts and inferred from data and lends itself to the use of visualization tools that enhance clarity and aid human cognition.

The process of building such a model also removes some of the intellectual barriers between the front office and the middle office and between technical analysis and fundamental analysis. Causal relationships that can be understood and vetted by human experts with multiple areas of expertise are far more likely to be repeated in the future.

Clearly, causal models are somewhat more difficult to implement and to inform than are statistical models. However, when they are used for certain purposes, such as valuing complex derivative instruments, estimating extreme or real-time portfolio risk, or designing an optimal hedging strategy, they are well worth the effort.

For example, one of their major advantages is the ability to perform discrete-time and discrete-outcome modeling. Although common statistical methodologies such as copula approaches are mathematically elegant, they often implicitly eliminate the granularity, asymmetry, and noncontinuous behavior that are interesting features (and opportunities for profit) of real markets. By doing so, they may substantially over- or underestimate value or risk, particularly for instruments with a narrow payoff window, such as nth-to-default tranches in collateralized debt obligations,6 or in strategies such as calendar or price spreads in options.

What a causal approach lacks in computational elegance it may make up for in accuracy. Consider a situation in which Treasury bond traders are split 50/50 on whether the Treasury will announce an auction of 30-year bonds. This is a binary event: it will occur, or it will not; the yield curve will flatten or steepen. A realistic forecast of changes in 30-year bond yields just after the announcement is likely to be bimodal because there is no neutral event.

The benefit of a causal model is its ability to generate many plausible scenarios in a systematic fashion. The likelihood of some of these scenarios may be higher than in a random-walk world; that of others may be lower. Markets may have “hot spots” and “cold spots”: scenarios in which a convergence of certain chain reactions is likely to have major market repercussions or, conversely, scenarios that are virtually impossible.

This alternative forecast of the future, in which the distributions of possible outcomes can be granular, be asymmetrical, and have extreme outcomes, has profound implications for financial engineering, portfolio management, risk management, and even decision science. Clearly, a set of possible future scenarios substantially different from those created using continuous, normally distributed variables, suggests radically different results for all kinds of estimates.

Specifically, valuation models, particularly those for securities or complex derivative instruments, will produce results that are substantially different from the results of standard models that assume normality, symmetry, and outcomes that are in line with historical experience. Portfolio optimization and performance attribution models are similarly affected. The interactions between the securities in the portfolio may be poorly described by statistical measures such as correlation, and an ideal portfolio (i.e., one with an optimum risk-return profile) constructed using such scenarios might look quite different from one constructed using more traditional methods.

Most important, risk measurement models based on causal methods may estimate risk to have a magnitude that is either far greater or far less—as well as less continuous—than that estimated using traditional stochastic models. Certain outcomes that were formerly assumed to be virtually impossible must now be considered, whereas others are now less likely than before. At the heart of all risk measurement (and in fact all financial engineering) is the ability to generate all plausible alternative scenarios and estimate their likelihood. The sensitivity of a portfolio, an enterprise, or even the global capital markets themselves to the most extreme of these scenarios provides a systematic method for generating stress tests (i.e., measures of the consequences of a particular scenario) and ensuring the continued existence of the system as we know it.

The use of causal methods also provides solutions; they can be used to mitigate as well as measure risk. They provide a method for inserting circuit breakers into a portfolio or a banking system to subvert the most catastrophic outcomes. For example, a portfolio manager might purchase far out-of-the-money calls on crude oil to hedge the risk of large declines in the price of airline and hospitality stocks, or a regulator might modify capital requirements or position-limit rules.

The ultimate goal of enterprise risk management is as a quantitative decision-making tool. Ultimately, the use of causal methods facilitates the highest-level goal of risk management: decision making by senior management. An understanding of the possible future paths that might trigger tipping points and lead to catastrophic outcomes can assist C-suite executives in optimizing their business strategies on a risk-adjusted basis.

SUMMARY

In this chapter, we contrasted frequentist and causal approaches to risk management and their utility in measuring and mitigating extreme risk and optimizing decision making.

WHAT’S NEXT

In the next chapter, we will relate key milestones in the evolution of risk management philosophy and describe the most recent and revolutionary innovations in quantitative decision making.


CHAPTER 2
The Evolution of Modern Analytics

The recent journey toward the current state of quantitative finance owes as much to philosophy as it does to mathematics. It has been said that a human can’t visualize a number of objects greater than five without breaking them into smaller groups, such as two sets of three or three sets of two. For more complicated problems, humans have always had to create an abstraction or model of how things work.

As eloquently described by Peter Bernstein in Against the Gods: The Remarkable Story of Risk1 scientists of the seventeenth and eighteenth centuries considered the problem of decision making under uncertainty. Some of the greatest mathematicians in history (including Isaac Newton) were tasked by their patrons with solving gaming problems, with profit as the motive.

Such problems provided the perfect thought experiment, involving as they did both chance and preferences. In a sense, they forced the evolution of the financial markets, since those who used these insights to inform their decisions prospered, whereas those who did not became extinct.

This process of financial natural selection continues today. It’s a short leap from the gaming table to the trading room. Broker-dealers and hedge funds that were able to adequately manage risk survived and prospered during the financial crisis of 2008, whereas those that were not (including Bear Stearns, Lehman Brothers, and AIG) did not.

Along the evolutionary path are two historical milestones that were separated by more than 200 years but are suddenly receiving more attention from the mainstream of economic thought nearly simultaneously.

DANIEL BERNOULLI AND A NEW THEORY ON THE MEASUREMENT OF RISK

In 1954, spurred by a spate of recent references to this work, the journal Econometrica2 published the first English translation from the original Latin of Daniel Bernoulli’s 1738 Specimen theoriae novae de mensura sortis, or Exposition of a New Theory on the Measurement of Risk. 3

Bernoulli is far more famous as a physicist for his contributions to fluid mechanics, including the basic principles that allow aircraft to fly. Exposition was considered an exceedingly minor scientific contribution until its rediscovery by economists, evolutionary biologists, computer scientists, and others in the second half of the twentieth century. Although Dr. Louise Sommer, the translator, explicitly attempted to retain the article’s eighteenth-century flavor, the concepts and language of the article are astoundingly up to date.

This amazingly concise and complete piece of work not only discussed basic probability theory but also put forth the concepts of individual preferences and utility functions, which together form the foundation of a framework for cutting-edge topics such as quantitative decision support4and enterprise risk management (ERM).

For example, in discussing optimum wagering decisions, Bernoulli rejected the notion that the expected outcome (based on probabilities) should always be maximized and introduced sophisticated concepts such as risk premia5 and utility functions:6

Somehow a very poor fellow obtains a lottery ticket that will yield with equal probability either nothing or twenty thousand ducats. Will this man evaluate his chance of winning at ten thousand ducats? Would he not be ill-advised to sell this lottery ticket for nine thousand ducats? To me it seems that the answer is in the negative. On the other hand, I am inclined to believe that a rich man would be ill-advised to refuse to buy the lottery ticket for nine thousand ducats. If I am not wrong then it seems clear that all men cannot use the same rule to evaluate the gamble.

Bernoulli went on to more formally introduce key concepts such as quantitative measurement of risk, diversification, hedging, and, perhaps most important, the concept of maximizing utility rather than expected return:

Thus it becomes evident that no valid measurement of the value of a risk can be obtained without consideration being given to its utility, that is to say, the utility of whatever gain accrues to the individual or, conversely, how much profit is required to yield a given utility . . . the determination of the value of an item must not be based upon its price, but rather the utility it yields.

Long before the advent of behavioral economics, Bernoulli proposed the famous St. Petersburg Paradox, first suggested to him by his distinguished cousin Nicholas Bernoulli. In this simple but elegant thought experiment, he presages preference theory by introducing the topic of human preferences in valuation decisions.

In this experiment, a casino offers a gambler the opportunity to enter a game in which a coin is tossed repeatedly. The pot starts at one ducat but doubles each time heads appears on the toss. The game ends when tails appears, and the gambler realizes whatever is in the pot at that time, that is, 2k–1 ducats if tails appears on the kth toss.

The question is, what should the gambler be willing to pay to enter this game? The series has an expected value of infinity, since there is always some finite—albeit minuscule—probability of an infinite number of coin tosses.

Bernoulli recognized that there was a disconnect between what one might expect the gambler to pay and the expected value of infinity for the payout. Theoretically, the gambler should be willing to enter the game at any finite buy-in amount, but this is clearly a counterintuitive result (some have suggested that the mean amount that gamblers are willing to pay is as little as 25 ducats).

A number of solutions to resolve this paradox have been suggested, but they tend toward the practical: no casino would offer a game that could lead to an infinite expected loss or has the resources to pay off on the most lucrative payouts (an implicit acknowledgement of credit risk), or gamblers tend to underestimate the probability of the most extreme outcomes.

Bernoulli’s more insightful solution was to introduce the concept of a marginal utility function, in which he suggested that the utility to the gambler of each possible ducat earned is not equal. For example, the value to the gambler of the first ducat he earns is greater than that of one additional ducat added to a payoff of, say, 1,024 ducats (after 11 tosses). Depending on the nature of the function (Bernoulli suggested a logarithmic form7), the series can be made to converge to an intuitively acceptable value by weighting each successive outcome by its diminishing utility.

Bernoulli presaged behavioral economics by recognizing that the price at which a particular bet might trade might be quite different from its theoretical value, excluding preferences; in the case of the St. Petersburg Paradox, it would trade at around 25 ducats instead of infinity. Instead of calculating the expected value, he calculated the expected utility. Bernoulli explicitly recognized that the price at which a bet might trade is a function of both objective measures of its worth and investors’ net preferences.

In Exposition, Bernoulli addressed nearly every important issue having to do with portfolio diversification, optimum portfolio construction, risk measurement, capital adequacy, and decision making under uncertainty. He presages risk metrics such as value at risk (VaR),8 which are designed to constrain the worst outcomes possible, and capital requirements, and he even dealt with issues such as optimal hedging and the efficient frontier described by Markowitz 200 years later. However, probably his greatest philosophical insight was that

Decision theory = probability theory + utility theory

In Exposition, Bernoulli also considers the case of Caius, a Petersburg merchant who is deciding whether to insure commodities purchased in Amsterdam and transported by sea. The risk is high—he assumes that 5 of 100 ships sailing from Amsterdam will be lost—and the price of insurance is correspondingly high. “The question is, therefore, how much wealth must Caius possess apart from the goods under consideration in order that it be sensible for him to abstain from insuring them?”

Bernoulli also asks the opposite question (i.e., from the viewpoint of the seller of insurance rather than that of the buyer): “What minimum fortune should be possessed by the man who offers to provide this insurance in order for him to be rational in doing so?” His answer is this: “This is the rule: that it is advisable to divide goods which are exposed to some danger into several portions rather than to risk them all together.”

Bernoulli demonstrates that another merchant, Sempronius, would be best advised to diversify his investments among multiple ships. “In this way the value of Sempronius’ prospects of success will grow more favorable the smaller the proportion committed to one ship. However, his expectation will never rise in value above 7200 ducats. This counsel will be equally serviceable for those who invest their fortunes in foreign bills of exchange and other hazardous enterprises.”9

The power of Bernoulli’s logic is demonstrated by the fact that it has been adapted by other disciplines. For example, in evolutionary biology, the geographical dispersion of a species via migration increases the probability that the species will continue to exist in spite of the fact that some price was paid during migration. If a species remained in place at a location with uncertain environmental conditions, it would eventually die off. This is equivalent to a species hedging its evolutionary bets via diversification.

As brilliant as his insights were, Bernoulli’s computational problems were trivial. His case studies dealt with discrete events: a coin toss results in either heads or tails; a ship does or does not survive a winter storm. There was little uncertainty regarding the odds of each event, as well: the probability of heads is 50 percent; the nature of winter storms at sea and the failure rate of eighteenth-century ships were relatively stable. Further, there was zero or weak correlation between the discrete events: the coin has no memory, and each ship’s fate was assumed to be independent of the others’.

LOUIS BACHELIER AND BROWNIAN MOTION

Almost two centuries later, the French mathematician Louis Bachelier expanded on Bernoulli’s work on the role of chance. Although little known in finance, Bachelier contributed both the philosophical and the mathematical foundations for modern quantitative finance.

In July 2000 and on the occasion of the hundredth anniversary of the publication of Bachelier’s Ph.D. dissertation, the authors of a tribute to Bachelier in the journal Mathematical Finance10 declared, “The date March 29, 1900, should be considered as the birthdate of mathematical finance. On that day, a French postgraduate student, Louis Bachelier, successfully defended at the Sorbonne his thesis Theorie de la Speculation (The Theory of Speculation).” Anecdotally, the instructor who reviewed Bachelier’s dissertation was the famous mathematician, physicist, and philosopher Jules Henri Poincaré, the first to describe a chaotic deterministic system in physics that laid the groundwork for modern chaos theory.

This dissertation contains a number of advanced financial concepts. Because Bachelier had responsibility for his family’s business (wine merchants), he had practical experience with French financial instruments, including forward contracts and options.

Bachelier considered the evolution of stock prices over time to follow a Markov process, that is, a memoryless process in which the future depends on the current state of the system, not on its past. Bachelier stated, “The expectation of the speculator is zero.” This simple statement, along with his description of the Brownian motion that is an element of nearly every stochastic model in finance, presages an explicit representation of the efficient market hypothesis posited by Eugene Fama in his doctoral dissertation more than 60 years later.

Bachelier demonstrated that a Gaussian (normal) distribution with variance that increases linearly with time correctly represents the results of a Markov process.11 Stunningly, Bachelier also presages the Black-Scholes option-pricing model of the 1970s (inspired by a heat flow equation in physics) when he also observes that this family of distribution functions satisfies the heat equation: like heat, the probability diffuses or “radiates.”

The Black-Scholes partial differential equation (PDE), from which the famous option-pricing formula for European-style12 options is derived, is

dSt = μStdt + σStdWt

where St is the price of the underlying stock, μ is the mean return, σ is the standard deviation of returns of the stock, and Wt represents Brownian (random) motion (also called a Weiner process). This formula contains two components: one deterministic, in that the price is expected to trend over time along the mean expected return, and one stochastic, in which Wt represents all sources of uncertainty in price movement over time.

Bachelier’s contribution to this concept has recently received new attention. As Courtault and his associates state in their centenary tribute, “It is worth noting that in spite of the fact that in modern English textbooks Brownian motion is traditionally referred to as the Wiener process, the original terminology suggested by W. Feller in his famous treatise An Introduction to Probability Theory and Its Applications (1957) was the Wiener–Bachelier process.” Bachelier’s work on Brownian motion also predates Einstein’s work on the subject.

In his dissertation, Bachelier even applied his theories to the problem of option pricing, including that of American-style13 path-dependent options. This exceedingly practical contribution was unusual for a rigorously mathematical work. In it, he calculated the probability that a stock price controlled by Brownian motion does not exceed some threshold (the strike price) and identifies the least upper bound of the Brownian motion.

The tribute continues: “Bachelier considered that his principal achievement was the systematic use of the concept of continuity in probabilistic modeling: the continuous distributions are the fundamental objects correctly describing the very nature of many random phenomena and not just mathematical inventions simplifying a work with discrete distributions.”

Bachelier’s Theorie seemed destined for oblivion until it received fresh attention during the golden age of finance of the 1950s and 1960s. Economist (and later Nobel Prize winner) Paul Samuelson started to circulate the piece among his colleagues. Its appeal was instantaneous, and Samuelson and others took great interest in its implications.

But Wall Street didn’t catch up with him until decades later, when stochastic calculus and some of its specific applications (for example, the copula function, which allowed the computation of joint marginal probability distributions) were required for increasingly complex valuation and risk management problems.

FAMA AND THE EFFICIENT MARKET HYPOTHESIS

One of the most powerful concepts in twentieth-century economic thought was the efficient market hypothesis (EMH). EMH posits that all markets for traded assets are informationally efficient; that is, the price of each security reflects all public information known about that security at any point in time, and prices correct instantly as news becomes known or other events occur. Like Einstein’s mythical dice, market prices are therefore memoryless, and changes to them can be represented by a random process.

EMH implies that markets in the aggregate are rational; that is, although individual investors may over- or underreact to new information, on average they will correctly assess the effect of that information on price, and their diverse opinions are randomly distributed. EMH therefore anticipates the “wisdom of crowds” popularized many years later, which serves as the philosophical foundation for prediction markets.

EMH was formalized and expanded by Eugene Fama (also within his Ph.D. dissertation, originally published in 1965) at the University of Chicago. In an article titled “Efficient Capital Markets: A Review of Theory and Empirical Work,”14 Fama identified three forms of efficient markets: weak-form, semistrong-form, and strong-form efficiency. Each of these had implications for mathematical finance and the suitability of stochastic methods for forecasting and risk measurement.

In weak-form efficiency, Fama proposed that there is no serial correlation between successive prices in a time series. This implies that patterns in prices (for example, those identified in technical analysis15) that can be exploited for predictive value cannot exist. In weak-form efficiency, only fundamental analysis (e.g., projections of a company’s earnings and market share) can provide an opportunity to profit systematically over the long run. Extraordinary events such as market crashes are permitted in the weak form, being considered rare but statistically possible. In semistrong-form efficiency, even fundamental analysis will not allow an opportunity for profit.

In strong-form efficiency, market prices are assumed to reflect all information known to any market participant, either public or private, so that even insiders or those with expert knowledge have no edge. When legal and regulatory impediments to insider trading are strictly enforced, strong-form efficiency is deemed to be impossible.

EMH provided the philosophical foundation for the use of stochastic methods in mathematical finance. Clearly, this is philosophically consistent with Bachelier’s earlier assumption of both a memoryless Markov process (in that all information from the past is included in the current market price) and a speculator’s expectation of profit being zero.

Besides being philosophically attractive, EMH was exceedingly convenient. An assumption of instantaneous efficiency hugely simplified the task of modeling price movements in a mathematical fashion. Analysts could assume that all price observations were automatically synchronized. If one calculated, say, a correlation coefficient between the time series of two stocks, that statistic could be assumed to measure at least in part whether the two securities were related in a causal fashion, that is, were mutually dependent, as in a supplier-customer relationship, or were both dependent on the same exogenous drivers. In contrast to macroeconomic models, in which it might take time for the effects of a driver to be felt, no inconvenient leads or lags need be assumed.

Some assumption of rational processes by investors is subtly implied as well, along with justified choices such as the assumption that daily returns (rather than just changes in price) are normally distributed. These choices were also operationally convenient; in the days of batch processing, any models that minimized computer run time (especially ones expressed as closed-form solutions that did not require iteration) were favored by financial institutions.

SAMUELSON AND THE MATHEMATIZATION OF ECONOMICS

In addition to spurring innovation in market theories such as EMH, Paul Samuelson is best known for his pioneering work in creating meta-theories of economics—that is, in his own words, “a general theory of economic theories.”

Samuelson’s classic Foundations of Economic Analysis16 was first published in 1947, also as a product of his doctoral dissertation at Harvard in 1941. In it, he applied mathematical rigor to economics. The front page of Foundations quotes the American physicist Willard Gibbs’s motto, “Mathematics is a language.”

Perhaps Samuelson’s knowledge of thermodynamics assisted him in visualizing complex systems. Samuelson formalized the study of systems such as those of economies, describing the change in an equilibrium state as a function of the variables on which it depends, just as the gas in a container reacts to a change in temperature.

Samuelson’s work helped make economics operational; that is, he formalized qualitative theories so that the variables that defined them could be measured via real-world observation. For example, Samuelson’s work described in mathematical terms the effect on a system in equilibrium of a change in one of its variables. Such “operationalization,” in turn, allowed econometricians to build quantitative models to explain or forecast economic conditions.

HARRY MARKOWITZ AND MODERN PORTFOLIO THEORY

In 1952, just two years before the new translation of Bernoulli, Dr. Harry Markowitz introduced portfolio theory in his paper “Portfolio Selection” in the Journal of Finance.”17

The topic, today called modern portfolio theory (MPT), was both highly novel and extraordinarily mathematical for the times. While defending his Ph.D. dissertation at the University of Chicago three years later, Markowitz has said that Milton Friedman jokingly argued that portfolio theory was not economics.18

Markowitz’s work moved Bernoulli’s work from the casino and the high seas to Wall Street. MPT dealt with formal and rigorously mathematical expansions of Bernoulli’s basic concepts.

Like Bernoulli, Markowitz explicitly addressed the gap between intuitively correct behavior, such as the diversification practiced by the Medicis, and contemporaneous portfolio construction methods. Previously, portfolio managers had often constructed portfolios in a bottom-up fashion: when they identified new securities with favorable risk-reward characteristics, they added them to their portfolios irrespective of those portfolios’ prior composition. Although they might attempt to manage risk by limiting concentration in one or more individual stocks or industry sectors, they used no mathematical means to optimize the composition of a portfolio.

Markowitz mathematized diversification; he proposed a formal framework for a top-down approach in which the optimal portfolio was constructed by first abstracting each security into quantitative measures of individual and combined risk (that is, its expected return, standard deviation, and correlation with every other security that might be included in the portfolio) and then identifying the portfolio that maximized return for each possible value of risk.

For example, an ideal portfolio might consist of two securities, each with a favorable return, but negatively correlated so that their risks canceled. Such a portfolio is considered the theoretical ideal in “pairs trading” in equities, in which long and short positions in stocks of related industries are paired so that returns are additive but risk cancels out.

Markowitz’s key insight was that all optimally constructed portfolios sit on the “efficient frontier” of risk versus reward, as shown in Figure 2-1 for a two-stock portfolio.19
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Figure 2-1 The Efficient Frontier for Two Stocks

This graph illustrates the efficient frontier for a universe of two stocks: A and B. The x axis reflects risk, expressed as the standard deviation of daily returns, and the y axis reflects reward, expressed as return. Security B is assumed to have both more risk and more reward than the more stable Security A. The curve reflects the efficient frontier for each possible portfolio composition, starting with 100 percent A (the lowest point) and going to 100 percent B (the highest point).

Any portfolio with a return below the line for a given level of risk is suboptimal, and any portfolio with a return above the line is impossible. The investor is forced to accept a higher level of risk in order to increase return or accept a lower return to decrease risk.

There is no right answer for the optimal portfolio construction; as Bernoulli pointed out, it depends on the investor’s appetite for risk. MPT produces a range of values rather than one perfect portfolio, and the investor’s utility function with respect to risk determines the portfolio that is right for her. That is, the maximum amount of risk that an investor is willing to take determines where on the curve her optimal portfolio falls. Essentially, MPT maximizes investor utility.

Markowitz gave credit for MPT to A. D. Roy, who in July 1952 independently formalized the same equation as Markowitz. Years later, Markowitz graciously wrote, “On the basis of Markowitz (1952), I am often called the father of modern portfolio theory (MPT), but Roy (1952) can claim an equal share of this honor.”

Roy went one step further than Markowitz: whereas Markowitz left the decision as to the amount of risk to the investor, Roy, like Bernoulli, also attempted to suggest an appropriate utility function. He advised choosing the single point on the efficient frontier that maximized (μp – d)/σp, where d is a “disaster level” in terms of return.
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Figure 2-2 INDU Prices and Historical 100-Day Volatility: January 1, 1948, to December 31, 1952

Source: Bloomberg, L.P.

It’s interesting to note that to Roy, a disastrous scenario was one in which the return was insufficiently high rather than one in which the portfolio lost value. This is in spite of the fact that the stock market of the few years previous to the publication of his work had been reasonably volatile, as shown in weekly returns and historical volatility20 for the Dow Jones Industrial Average in Figure 2-2.21

There are some additional interesting implications of MPT. For one, the addition of risk-free assets that are funded by borrowing (i.e., adding leverage) can create a return that is above the original efficient frontier.

However, there are also a number of issues with the theory. For example, risk is expressed in terms of the standard deviation of returns, which is not a natural unit for risk preference. (Most people would prefer some loss limit, whereas a high standard deviation where profit is concerned is a good thing.) Markowitz later suggested some alternative expressions of risk, such as expected value of loss and probability of loss, foreshadowing future risk metrics such as value at risk and extreme value theory (EVT),22 and suggested, like Bernoulli and Roy, an alternative form for utility.

For a number of reasons, MPT was of mainly theoretical interest until the 1970s. First, portfolio optimization using such methods is a computationally intensive process. The size of the correlation matrix can be very large for all but the simplest portfolios: if N is the number of possible stock choices, the matrix is of size N = N.

There were practical considerations as well. For example, return often trumped risk in the optimization process: a stock with outstanding performance would tend to dominate the recommended portfolio. In those early days, return considerations appeared to outshine risk considerations.

Given the state of computer technology in 1952 and the computational demands of MPT, it’s no surprise that it wasn’t until decades later that Markowitz’s work was appreciated by the mainstream financial community.

Markowitz recognized this impediment and attempted to address it. Although he is far better known for MPT than he is for his work in the field of operations research in the 1950s and 1960s, he also developed numerical methods and computer languages (i.e., SIMSCRIPT, a computer language specifically designed to facilitate simulations) that could speed certain calculations. His theoretical work, together with an expression of a utility function and the means to perform the necessary calculations, would operationalize automated decision support in the field of portfolio selection.

WILLIAM SHARPE AND SPECIFIC AND SYSTEMATIC RISK

In 1964, economist William Sharpe expanded on Markowitz’s work by introducing the concepts of systematic risk and specific risk. Awarded the Nobel Prize in Economics for his work on the capital asset pricing model (CAPM), his work dealt in part with how much of a risk premia investors require to take on market risk and to what extent an enterprise should seek to hedge its own risks.23

Systematic risk is risk that is caused by movement of the markets as a whole (e.g., as a result of recessions or high interest rates), whereas specific risk is risk that is related to the individual characteristics of the securities (e.g., industry sector factors or management quality for a particular company). Specific risk can be reduced by diversification (i.e., by ensuring that highly correlated securities don’t constitute an inordinate share of the portfolio), but systematic risk cannot. According to Sharpe, an enterprise should seek only to eliminate systematic risk (often referred to as beta), since investors can reduce their exposure to specific risk via diversification.

In 1966, Sharpe proposed the metric that is now famous as the Sharpe ratio and is routinely reported by every asset manager. This ratio characterizes the risk-reward profile of a portfolio manager by penalizing the manager for volatility of returns24:
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Dissent about EMH, Kahneman, and the Growth of Behavioral Finance

The efficient market hypothesis remained mainstream opinion until the 1990s in spite of the fact that actual price behavior was not consistent with its most basic premises, at least for strong-form efficiency.

For several decades, economists and analysts have been well aware that distributions of historical returns exhibit fat tails.25 Depending on the asset class, these distributions might skew to the left or to the right.26 There are a variety of reasons for such skewness. Recently, economist Burton Malkiel (author of the classic finance book A Random Walk Down Wall Street27) pointed out that in emerging markets such as China’s, evidence of price manipulation as well as its statistical artifacts, such as serial correlation and nonrandom movement, can be observed.

Practitioners have also long been aware of this nonrandom behavior. For example, as early as 1987 (after the Black Monday crash), risk managers at the Options Clearing Corporation (OCC)28 considered which type of distribution might best estimate future market movements and therefore determine how much margin they should collect to protect the exchange. They chose to use a Lévy distribution rather than a Gaussian distribution.

In part, they selected a Lévy distribution (Figure 2-3) because it can be expressed analytically (like a Gaussian) and therefore calculated quickly. Also, it’s not so overly sensitive to new data (e.g., market shocks) that it creates its own market turmoil by precipitating sudden, large calls for additional margin. Such calls might exacerbate a crisis (and the exchanges’ own risk) if the OCC’s calculations were too responsive to recent history.
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Figure 2-3 Lévy Probability Density Function

Note: c is a scale parameter in the Lévy distribution.

There is some theoretical as well as empirical justification for such a choice. Mathematician Benoît Mandelbrot, the father of fractal theory, suggested that daily returns are well represented by a distribution with infinite variance and converge to a log-Lévy distribution.

But if the markets are not efficient, what other nonrandom drivers might explain observed market behavior? Behavioral economists, who had previously been dismissed as having more to do with psychology than with finance, were suddenly taken seriously. Like Bernoulli, they posited that humans are subject to various preferences and biases in their decision making. Because markets are, after all, composed of humans, their behavior and biases will extend to their investment choices. Theoretically, such factors would not contradict EMH if they were randomly distributed and averaged out, along with all the other drivers of individual actions. However, these economists found evidence of nonrandom biases.

Behavioral economists have identified a number of cognitive biases in humans, that is, a tendency to make errors in judgment or to prefer certain outcomes in a manner that is inconsistent with rational choice theory. Psychologists Amos Tversky and Daniel Kahneman29 and others related a number of types of biases, starting in the early 1970s. Some of those that are most relevant to market choices included innumeracy, in which individuals were unable to reason intuitively when faced with large-scale problems; confirmation bias, in which humans interpret new information in such a manner as to confirm a preexisting opinion; and illusory correlations, in which humans see causality where none exists.

Some behavioral economists have provided empirical evidence of such biases outside the market environment. For example, psychologist Peter Wason demonstrated hyperbolic discounting, in which humans prefer smaller, immediate payouts to larger, distant ones, but prefer the larger payout if the two payouts are both in the future—albeit at the same distance in time from one another.

Some economists feel that behavioral finance is not inconsistent with EMH. In fact, some hedge funds consider any systematic biases resulting from human behavior to be trading opportunities because both rational and irrational biases can be arbitraged away for a profit.

One of the major purposes of the capital markets is risk transference, and those who prefer the left side of the efficient frontier (i.e., the risk adverse who will accept a lower return in exchange for lower risk) can exchange positions with those who prefer the right. If the size of the funds that engage in such arbitrage is sufficiently large compared to the biases, even behavioral effects can be traded away.

SUMMARY

In this chapter, we related the scientific innovations that gave birth to the fields of financial engineering and mathematical finance and the early consideration of modern topics such as securities valuation, risk management, and portfolio optimization. We further described the continuing bias toward a frequentist approach in problems having to do with wagering or its modern equivalents, tempered by recent emphasis on the role of investor preferences and utility functions.

We also described how, by the middle of the twentieth century, economic theory had been mathematized. A frequentist approach, in which estimates of probability inform decision making under uncertainty, has dominated recent advances and provided a road map to quantitative risk management and portfolio optimization.

WHAT’S NEXT

In the next chapter, we will describe how Wall Street took economic theory and made it operational, thereby facilitating the extraordinary growth of the financial sector in the last three decades.


CHAPTER 3
Natural Selection on Wall Street

THE ASCENT OF THE QUANT

Over the last three decades, growth in the financial sector has been driven in large part by rapid advances in mathematical finance and financial engineering. Such innovation is the bedrock on which new products, businesses, and strategies rest. Without the existence of mathematical models and the means to implement them, the growth of trading in entirely new types of securities—such as the multi trillion dollar credit derivatives market that is just a few years old—would not be have been possible.

These advances have allowed participants to model increasingly complex and derivative instruments, better measure risk and performance, and optimize the use of an enterprise’s risk capital. This is the case because, in spite of the usefulness of these instruments as hedging vehicles, speculative trading in them for profit is still the dominant motive for most enterprises. Complex trading strategies employing such instruments (whose intrinsic risks are often multiplied many times by employing large amounts of leverage) cannot be initiated, monitored, or managed without state-of-the-art analytic tools on the trading desk and off.

Such trading has been so lucrative that it has helped spawn the massive hedge fund industry, whose members forgo all the more mundane activities of a securities dealer or a bank. Instead, a hedge fund can concentrate on whatever proprietary strategy its principals deem most likely to produce exceptional returns. Also, the so-called quantitative trading strategies, in which the role of the human as decision maker is diminished (other than as the developer of the algorithms), have been popular with investors and successful in attracting new money.

Parallel improvements in technology have facilitated this evolutionary path. The complex mathematical routines are computer-intensive, and supercomputers or their technical equivalent are sometimes required to meet the demands of analysts, traders, and risk managers. Furthermore, the computers themselves now trade; nearly 75 percent of all trading activity on the New York Stock Exchange today is computer-generated. So-called algo traders use mathematical algorithms to identify opportunities that last milliseconds, all without human intervention. The communications technology used by their executing brokers is so advanced that it is constrained only by the speed of light.

Even lower-frequency traders and trading management are able to monitor global markets in real time on portals that provide them with a wealth of information, including trading opportunities, performance statistics, and risk metrics. They’re supported by a wealth of commercial off-the-shelf services that inform and supplement proprietary models. Historical data are readily available (Bloomberg L.P. alone has 1.2 million economic and financial time series available to its subscribers), and live exchange feeds available at very high (millisecond) frequencies have facilitated increasingly sophisticated models and strategies.

In light of this intersection of attractive theory and the means to implement it, it was natural for the financial community to gravitate toward stochastic methods to create forecasting models. Thus, starting with the original “rocket scientists” in the late 1970s, quantitative analysts with doctorates in physics or computer science modeled future price behavior based only on past price behavior in increasingly sophisticated ways.

Academics and practitioners both contributed to a burst of new theory, and the gap between innovation and implementation became exceedingly short. This is still the case, except that these quants have taken their place on front-office trading desks as well. Anecdotally, at the University of California at Berkeley, fully 25 percent of the applicants for a master’s degree in financial engineering already have a Ph.D. in physics.

However, to rely on stochastic models, one must assume that the processes by which securities prices are established have both a deterministic (predicable) component and a random component.

The deterministic component, which is subject to both known and unknown drivers, may be so complex that it’s virtually impossible to model. As in other areas in which stochastic models are used (e.g., meteorology), there are often so many interacting drivers in play at one time that attempting to separating them is exceedingly difficult even if they are deterministic at a microscopic scale.

Therefore, trailblazing “quants” ignored the economic fundamentals that drove changes in market price. Instead, they concerned themselves only with the best means of expressing typical market behavior in rigorous mathematical equations, using only historical pricing data. These equations could be used to estimate both the value of a specific security or instrument and the uncertainly in that estimate over a particular future time horizon.

Theoretically, such analysis could be done without even knowing the identity of each of the historical time series; they might as well be series A and B rather than IBM and Bank of America. In fact, practically the only concession to the fact that the historical data were market data was the assumption that returns1 (rather than some other metric) are normally distributed.

Thirty or more years ago, this was an eminently reasonable choice because of the difficulty of collecting diverse fundamental data and modeling the market’s reactions to them. Perhaps more important, it was also an eminently practical choice. While best practice was in its embryonic state, only end-of-day prices were readily available for most securities and instruments. Furthermore, only end-of-day data could be synchronized with data from other sources2—a requirement when parameters such as correlation coefficients that measured relative behavior were being calculated.

In addition, at such a low frequency, prices and events could not be synchronized. Many events might affect the price of a security over a 24-hour period—the day might include an economic news release, an earnings report, and a corporate action as well as noise and more mundane market flows. The linkage between events and the market reaction to those events might be separated by hours—certainly a long enough period to lose the association between cause and effect.

Therefore, for good and practical reasons, quantitative analysts deliberately avoided the explicit modeling of causal relationships between a driver and a security or between changes in the price of one security and that of another. Instead, they modeled the behavior of one security relative to another in the form of a correlation coefficient.

However, something was lost in the process. Quants do not need to understand economics or financial analysis; they don’t need to know that higher oil prices will hurt an airline. Instead, they can observe the correlation between airline and oil prices.

A simple causal relationship (e.g., one cause, one effect) might create apparent correlation. Conversely, a more complex causal relationship (e.g., two causes, different effects) might obscure real correlation.

A correlation coefficient calculated at a low daily frequency cannot distinguish among situations in which (1) news relevant to only one security triggered changes in another related security (e.g., one in the same industry), (2) the same news triggered changes in both securities simultaneously (e.g., an economic news release), or (3) multiple events drove prices in a complex manner. If such estimates of correlation are flawed because they fail to reflect causality, they will provide poor estimates of future portfolio risk.

Nevertheless, analysts had some theoretical justification for ignoring causality in favor of correlation. Recall that the efficient market hypothesis postulates that, at any point in time, the market price of any security reflects all the information known about that security. Barring artificial constraints such as laws against insider trading, the fact that any nonpublic knowledge provides an opportunity for profit dictates that transactions designed to benefit from that information will move each security’s price to its proper level.

However, in a stochastic modeling process, even the most expert analysts acknowledge the uncertainty with respect to results. Explicit modeling of the nature and magnitude of such uncertainty gave rise to quantitative risk measurement, in which risk managers reported metrics such as value at risk (a measure of short-term risk) or economic capital (a measure of the amount of capital required by the enterprise).

Early on, analysts gradually recognized that simple statistical assumptions such as stable volatilities, normal distributions of returns, and independence of daily returns did not adequately represent actual market behavior to the degree of precision required when money was on the line. Many academic studies dating back to the 1960s observed that distributions in nearly all markets generally had fat tails, or higher-than-normal probabilities of very large and very small outcomes.

Although most initial models used the Gaussian (normal) distribution as the starting point, theorists soon created alternative representations of the random component of the stochastic process. For example, a jump-diffusion process was postulated for how prices moved over time (occasionally “jumping” and then diffusing that jump). These alternative representations were required to better price derivative securities (particularly those with some optionality) and measure risk.

Over time, analysts developed new theoretical models that allowed for such observed behavior, such as extreme value theory (EVT), which explicitly attempts to model fat-tailed distributions, and generalized autoregressive conditional heteroskedasticity (GARCH), which models stochastic volatility. Such models were used to value increasingly complex instruments as well as to measure market risk.

For a long time, the party continued. Technical innovation kept pace with financial innovation, and the most quantitative and technologically proficient shops, such as Goldman Sachs and Morgan Stanley, made money year after year.

There was a kind of inadvertent conspiracy with respect to best practice. Although the top-tier firms all closely guarded their own proprietary models and the manner in which they calculated the parameters (e.g., variance and covariance) that informed those models, nearly all firms used models with the same underlying assumptions regarding price behavior.

Without such relative unanimity, liquidity would have been much reduced: if firm A values a security at 80 and firm B values it at 90, no trade will occur, whereas if there is a quarter-point spread, it might.

However, sometimes these methods were pushed beyond their original utility. As old innovations became commoditized and new and more complex variations were created, financial engineers were called upon to produce increasingly specific forecasts. For example, in the 1980s, they were called upon to project mortgage prepayment rates3 by geographical region for use in pricing mortgage-backed securities,4 and in the 2000s, they were called upon to project the recovery rates5 in the case of a bankruptcy for pricing credit default swaps.6

Analysts needed to express their uncertainty about their estimates in statistical terms, for example, to price securities with embedded optionality or to measure risk. Often, a single, complex derivative security might include a number of such sensitivities or might be ultrasensitive to one or more risk factors (for example, in the case of “first-to-default” tranches of a collateralized mortgage obligation [CMO]). It might even be path-dependent, for example, in the case of “down-and-out” options, in which a price movement below a specific threshold terminates the option before expiration.

The terms for complex securities increased as well, requiring that forecasts of possible future scenarios be extended far into the future. Generally, most firms’ protocols called for using the last two or three years of data in calculating model parameters. (Data older than that are often considered unrepresentative of the future). However, using data from an immature market (e.g., using historical default probabilities and recovery experiences for purposes of pricing loans or credit default swaps) to price swaps with 10 years or more to expiration strained the “past represents future” assumption.

Sometimes, specific exposures could be hedged in the open market. For example, sensitivity to short-term rates could be laid off in the Chicago Mercantile Exchange’s Eurodollar futures contract. However, such hedging only increased the gross size of the portfolio and added additional credit risk (if the counterparty to the hedge transactions failed to meet its contractual obligations) in place of the original market risk.

Because many of the new structured securities “traded by appointment,” some of the largest dealers were required to keep these positions on their firms’ books for extended periods until they could be sold to institutional investors. Others held them willingly because they assumed that the positions would profit over time. For example, at the time of the AIG bailout, it was reported that AIG Financial Products held about $500 billion of credit default swaps on its books, which would have reaped large profits if there had been fewer credit defaults than expected.

Firms that were heavily involved in securitization were highly vulnerable to model risk, that is, the risk that the quantitative models produced flawed forecasts. In general, a firm realizes most of the profit on a new securitization when the new issue is distributed to institutional investors. However, if the securities were held in the firm’s portfolio, their value could only be estimated (using the same quantitative models, albeit calibrated to trading activity) rather than directly observed. Thus, until the position was laid off, the firm continued to own the risk that reality would deviate from the original forecasts.

THE WORLD BEFORE

The stochastic methods that are widely used in the financial community require an assumption of system stability; that is, although there will always be random motion and even occasional shocks, there will be no event that is so far away from historical experience that the system won’t survive and most enterprises live to trade another day.

Extreme events such as the crash of 1987 and the demise of Long-Term Capital Management (LTCM) in 1998 came close to triggering systemic failure; without timely bank intervention, one or more of the commodities exchanges might have closed their doors. However, in large part because of intervention by the Treasury and regulators, the casualties after each event were relatively limited, and so the lessons learned may have been more theoretical than tangible.

Outside such special cases and within the normal ebb and flow of daily trading, ordinary risk had not proved to be much of a problem. Most firms prospered, even during interim spikes in volatility, because their day-to-day activities generated substantial profits.

However, these firms were at risk from their own down-and-out scenario: an extreme event from which they might not recover. For example, a Russian financial crisis may have been the nominal trigger for LTCM’s sudden demise (Figure 3-1), but the amount of leverage that LTCM employed, along with flawed risk management protocols, created its vulnerability to such an event.
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Figure 3-1 Assets under Management of Long-Term Capital Management (billions of dollars)

Source: Wikipedia Commons

WHEN THE WORLD CHANGED

During the peak of the U.S. credit crisis in November 2008, the negotiations between the Federal Reserve, the Treasury, and the large broker-dealers shone a spotlight on the fragility of valuation and risk management protocols. As former Lehman Chairman Dick Fuld said after the Lehman board voted unanimously to file for bankruptcy, “I guess this is good-bye.” It was reported that AIG CEO Hank Paulson had, on impulse, designated a $700 billion price tag for the Troubled Assets Relief Program (TARP) because it was about half the size of the $1.7 trillion mortgage-backed securities market worldwide.
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Figure 3-2 Daily Five-Year CDS Spreads for Select G-10 Sovereign Debt: Two Years Ending November 26, 2009

Source: Bloomberg, L.P.

Model error hit home, especially for firms with leverage as high as 30:1, as was the case for Lehman before its demise. Formerly high-quality assets became toxic assets, and virtually no asset was considered safe. As shown in Figure 3-2, even the sovereign debt of the United States (i.e., U.S. Treasury securities), which is normally considered the safest asset in the world, traded as high as 100 basis points in the credit default swap (CDS) market—worse than Germany and equivalent to medium-grade corporate debt not long before.

These events demonstrated that the greatest risk to which a financial enterprise is exposed is systemic risk; when the entire system becomes unstable, it may be too late to change one’s exposure or mitigate damage. Weeks or even months are insufficient to turn the battleship, and the fact that most institutions are in the same boat can precipitate a liquidity crisis that exacerbates the downward spiral.

SUMMARY

In this chapter, we discussed the fundamental assumptions about the process by which prices are established, and the reasons—fundamental, technical, and practical—for their almost universal adoption by the financial community. We also discussed their extension to increasingly risky or inappropriate uses and the financial system’s resultant sensitivity to an assumption of stability that was violated during the credit crisis of 2008.

WHAT’S NEXT

In the next chapter, we will describe risk management models and protocols in use by financial institutions.
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