

Java™: A Beginner’s Guide

Fourth Edition

Java™: A Beginner’s Guide

Fourth Edition

Herbert Schildt

[image: image]

[image: image]

Copyright © 2007 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-166174-4

MHID: 0-07-166174-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-226384-8, MHID: 0-07-226384-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting there from. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

About the Author

Top-selling author Herbert Schildt is an authority on the C, C++, Java, and C# languages, and is a master Windows programmer. His programming books have sold more that 3.5 million copies worldwide and have been translated into all major foreign languages. He is the author of numerous bestsellers, including Java: The Complete Reference, Swing: A Beginner’s Guide, C++: The Complete Reference, and C#: The Complete Reference, and the co-author of The Art of Java. Schildt holds both graduate and undergraduate degrees from the University of Illinois. He can be reached at his consulting office at (217) 586-4683. His Web site is www.HerbSchildt.com.

Contents at a Glance

1 Java Fundamentals

2 Introducing Data Types and Operators

3 Program Control Statements

4 Introducing Classes, Objects, and Methods

5 More Data Types and Operators

6 A Closer Look at Methods and Classes

7 Inheritance

8 Packages and Interfaces

9 Exception Handling

10 Using I/O

11 Multithreaded Programming

12 Enumerations, Autoboxing, and Static Import

13 Generics

14 Applets, Events, and Miscellaneous Topics

15 Introducing Swing

A Answers to Mastery Checks

B Using Java’s Documentation Comments

Index

Contents

PREFACE

1 Java Fundamentals

The Origins of Java

How Java Relates to C and C++

How Java Relates to C#

Java’s Contribution to the Internet

Java Applets

Security

Portability

Java’s Magic: The Bytecode

The Java Buzzwords

Object-Oriented Programming

Encapsulation

Polymorphism

Inheritance

Obtaining the Java Development Kit

A First Simple Program

Entering the Program

Compiling the Program

The First Sample Program Line by Line

Handling Syntax Errors

A Second Simple Program

Another Data Type

Project 1-1 Converting Gallons to Liters

Two Control Statements

The if Statement

The for Loop

Create Blocks of Code

Semicolons and Positioning

Indentation Practices

Project 1-2 Improving the Gallons-to-Liters Converter

The Java Keywords

Identifiers in Java

The Java Class Libraries

Module 1 Mastery Check

2 Introducing Data Types and Operators

Why Data Types Are Important

Java’s Primitive Types

Integers

Floating-Point Types

Characters

The Boolean Type

Project 2-1 How Far Away Is the Lightning?

Literals

Hexadecimal and Octal Constants

Character Escape Sequences

String Literals

A Closer Look at Variables

Initializing a Variable

Dynamic Initialization

The Scope and Lifetime of Variables

Operators

Arithmetic Operators

Increment and Decrement

Relational and Logical Operators

Short-Circuit Logical Operators

The Assignment Operator

Shorthand Assignments

Type Conversion in Assignments

Casting Incompatible Types

Operator Precedence

Project 2-2 Display a Truth Table for the Logical Operators

Expressions

Type Conversion in Expressions

Spacing and Parentheses

Module 2 Mastery Check

3 Program Control Statements

Input Characters from the Keyboard

The if Statement

Nested ifs

The if-else-if Ladder

The switch Statement

Nested switch Statements

Project 3-1 Start Building a Java Help System

The for Loop

Some Variations on the for Loop

Missing Pieces

Loops with No Body

Declaring Loop Control Variables Inside the for Loop

The Enhanced for Loop

The while Loop

The do-while Loop

Project 3-2 Improve the Java Help System

Use break to Exit a Loop

Use break as a Form of goto

Use continue

Project 3-3 Finish the Java Help System

Nested Loops

Module 3 Mastery Check

4 Introducing Classes, Objects, and Methods

Class Fundamentals

The General Form of a Class

Defining a Class

How Objects Are Created

Reference Variables and Assignment

Methods

Adding a Method to the Vehicle Class

Returning from a Method

Returning a Value

Using Parameters

Adding a Parameterized Method to Vehicle

Project 4-1 Creating a Help Class

Constructors

Parameterized Constructors

Adding a Constructor to the Vehicle Class

The new Operator Revisited

Garbage Collection and Finalizers

The finalize() Method

Project 4-2 Demonstrate Finalization

The this Keyword

Module 4 Mastery Check

5 More Data Types and Operators

Arrays

One-Dimensional Arrays

Project 5-1 Sorting an Array

Multidimensional Arrays

Two-Dimensional Arrays

Irregular Arrays

Arrays of Three or More Dimensions

Initializing Multidimensional Arrays

Alternative Array Declaration Syntax

Assigning Array References

Using the length Member

Project 5-2 A Queue Class

The For-Each Style for Loop

Iterating Over Multidimensional Arrays

Applying the Enhanced for

Strings

Constructing Strings

Operating on Strings

Arrays of Strings

Strings Are Immutable

Using Command-Line Arguments

The Bitwise Operators

The Bitwise AND, OR, XOR, and NOT Operators

The Shift Operators

Bitwise Shorthand Assignments

Project 5-3 A ShowBits Class

The ? Operator

Module 5 Mastery Check

6 A Closer Look at Methods and Classes

Controlling Access to Class Members

Java’s Access Specifiers

Project 6-1 Improving the Queue Class

Pass Objects to Methods

How Arguments Are Passed

Returning Objects

Method Overloading

Overloading Constructors

Project 6-2 Overloading the Queue Constructor

Recursion

Understanding static

Static Blocks

Project 6-3 The Quicksort

Introducing Nested and Inner Classes

Varargs: Variable-Length Arguments

Varargs Basics

Overloading Varargs Methods

Varargs and Ambiguity

Module 6 Mastery Check

7 Inheritance

Inheritance Basics

Member Access and Inheritance

Constructors and Inheritance

Using super to Call Superclass Constructors

Using super to Access Superclass Members

Project 7-1 Extending the Vehicle Class

Creating a Multilevel Hierarchy

When Are Constructors Called?

Superclass References and Subclass Objects

Method Overriding

Overridden Methods Support Polymorphism

Why Overridden Methods?

Applying Method Overriding to TwoDShape

Using Abstract Classes

Using final

final Prevents Overriding

final Prevents Inheritance

Using final with Data Members

The Object Class

Module 7 Mastery Check

8 Packages and Interfaces

Packages

Defining a Package

Finding Packages and CLASSPATH

A Short Package Example

Packages and Member Access

A Package Access Example

Understanding Protected Members

Importing Packages

Java’s Class Library Is Contained in Packages

Interfaces

Implementing Interfaces

Using Interface References

Project 8-1 Creating a Queue Interface

Variables in Interfaces

Interfaces Can Be Extended

Module 8 Mastery Check

9 Exception Handling

The Exception Hierarchy

Exception Handling Fundamentals

Using try and catch

A Simple Exception Example

The Consequences of an Uncaught Exception

Exceptions Enable You to Handle Errors Gracefully

Using Multiple catch Statements

Catching Subclass Exceptions

Try Blocks Can Be Nested

Throwing an Exception

Rethrowing an Exception

A Closer Look at Throwable

Using finally

Using throws

Java’s Built-in Exceptions

Creating Exception Subclasses

Project 9-1 Adding Exceptions to the Queue Class

Module 9 Mastery Check

10 Using I/O 365

Java’s I/O Is Built upon Streams

Byte Streams and Character Streams

The Byte Stream Classes

The Character Stream Classes

The Predefined Streams

Using the Byte Streams

Reading Console Input

Writing Console Output

Reading and Writing Files Using Byte Streams

Inputting from a File

Writing to a File

Reading and Writing Binary Data

Project 10-1 A File Comparison Utility

Random Access Files

Using Java’s Character-Based Streams

Console Input Using Character Streams

Console Output Using Character Streams

File I/O Using Character Streams

Using a FileWriter

Using a FileReader

Using Java’s Type Wrappers to Convert Numeric Strings

Project 10-2 Creating a Disk-Based Help System

Module 10 Mastery Check

11 Multithreaded Programming

Multithreading Fundamentals

The Thread Class and Runnable Interface

Creating a Thread

Some Simple Improvements

Project 11-1 Extending Thread

Creating Multiple Threads

Determining When a Thread Ends

Thread Priorities

Synchronization

Using Synchronized Methods

The synchronized Statement

Thread Communication Using notify(), wait(), and notifyAll()

An Example That Uses wait() and notify()

Suspending, Resuming, and Stopping Threads

Project 11-2 Using the Main Thread

Module 11 Mastery Check

12 Enumerations, Autoboxing, and Static Import

Enumerations

Enumeration Fundamentals

Java Enumerations Are Class Types

The values() and valueOf() Methods

Constructors, Methods, Instance Variables, and Enumerations

Two Important Restrictions

Enumerations Inherit Enum

Project 12-1 A Computer-Controlled Traffic Light

Autoboxing

Type Wrappers

Autoboxing Fundamentals

Autoboxing and Methods

Autoboxing/Unboxing Occurs in Expressions

A Word of Warning

Static Import

Annotations (Metadata)

Module 12 Mastery Check

13 Generics

Generics Fundamentals

A Simple Generics Example

Generics Work Only with Objects

Generic Types Differ Based on Their Type Arguments

A Generic Class with Two Type Parameters

The General Form of a Generic Class

Bounded Types

Using Wildcard Arguments

Bounded Wildcards

Generic Methods

Generic Constructors

Generic Interfaces

Project 13-1 Create a Generic Queue

Raw Types and Legacy Code

Erasure

Ambiguity Errors

Some Generic Restrictions

Type Parameters Can’t Be Instantiated

Restrictions on Static Members

Generic Array Restrictions

Generic Exception Restriction

Continuing Your Study of Generics

Module 13 Mastery Check

14 Applets, Events, and Miscellaneous Topics

Applet Basics

Applet Organization and Essential Elements

The Applet Architecture

A Complete Applet Skeleton

Applet Initialization and Termination

Requesting Repainting

The update() Method

Project 14-1 A Simple Banner Applet

Using the Status Window

Passing Parameters to Applets

The Applet Class

Event Handling

The Delegation Event Model

Events

Event Sources

Event Listeners

Event Classes

Event Listener Interfaces

Using the Delegation Event Model

Handling Mouse Events

A Simple Mouse Event Applet

More Java Keywords

The transient and volatile Modifiers

instanceof

strictfp

assert

Native Methods

Module 14 Mastery Check

15 Introducing Swing

The Origins and Design Philosophy of Swing

Components and Containers

Components

Containers

The Top-Level Container Panes

Layout Managers

A First Simple Swing Program

The First Swing Example Line by Line

Use JButton

Work with JTextField

Create a JCheckBox

Work with JList

Project 15-1 A Swing-Based File Comparison Utility

Use Anonymous Inner Classes to Handle Events

Create a Swing Applet

What Next?

Module 15 Mastery Check

A Answers to Mastery Checks

B Using Java’s Documentation Comments

The javadoc Tags

@author

{@code}

@deprecated

{@docRoot}

@exception

{@inheritDoc}

{@link}

{@linkplain}

{@literal}

@param

@return

@see

@serial

@serialData

@serialField

@since

@throws

{@value}

@version

The General Form of a Documentation Comment

What javadoc Outputs

An Example that Uses Documentation Comments

Index

Preface

Java is the preeminent language of the Internet. Moreover, it is the universal language of Web programmers around the world. To be a professional Web developer today implies proficiency in Java. Therefore, if Internet-based programming is in your future, you have chosen the right language to learn—and this book will help you learn it.

The purpose of this book is to teach you the fundamentals of Java programming. It uses a step-by-step approach complete with numerous examples, self-tests, and projects. It assumes no previous programming experience. The book starts with the basics, such as how to compile and run a Java program. It then discusses the keywords, features, and constructs that form the core of the Java language. You’ll also find coverage of some of Java’s most advanced features, including multithreaded programming and generics. An introduction to Swing concludes the book. By the time you finish, you will have a firm grasp of the essentials of Java programming.

It is important to state at the outset that this book is just a starting point. Java is more than just the elements that define the language. Java also includes extensive libraries and tools that aid in the development of programs. To be a top-notch Java programmer implies mastery of these areas, too. After completing this book, you will have the knowledge to pursue any and all other aspects of Java.

The Evolution of Java

Only a few languages have fundamentally reshaped the very essence of programming. In this elite group, one stands out because its impact was both rapid and widespread. This language is, of course, Java. It is not an overstatement to say that the original release of Java 1.0 in 1995 by Sun Microsystems, Inc. caused a revolution in programming. This revolution radically transformed the Web into a highly interactive environment. In the process, Java set a new standard in computer language design.

Over the years, Java continued to grow, evolve, and otherwise redefine itself. Unlike many other languages, which are slow to incorporate new features, Java has continually been at the forefront of computer language design. One reason for this is the culture of innovation and change that came to surround Java. As a result, Java has gone through several upgrades—some relatively small, others more significant.

The first major update to Java was version 1.1. The features added by Java 1.1 were more substantial than the increase in the minor revision number would have you think. For example, Java 1.1 added many new library elements, redefined the way events are handled, and reconfigured many features of the original 1.0 library.

The next major release of Java was Java 2, where the 2 indicates second generation. The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the first release of Java 2 used the 1.2 version number. The reason is that it originally referred to the internal version number of the Java libraries, but then was generalized to refer to the entire release itself. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform Standard Edition), and the version numbers began to be applied to that product.

The next upgrade of Java was J2SE 1.3. This version of Java was the first major upgrade to the original Java 2 release. For the most part it added to existing functionality and tightened up the development environment. The release of J2SE 1.4 further enhanced Java. This release contained several important new features, including chained exceptions, channel-based I/O, and the assert keyword.

The next release of Java was J2SE 5, and it created the second Java revolution. Unlike most of the previous Java upgrades, which offered important, but incremental improvements, J2SE 5 fundamentally expanded the scope, power, and range of the language. To give you an idea of the magnitude of the changes caused by J2SE 5, here is a list of its major new features that are discussed in this book:

• Generics

• Autoboxing/unboxing

• Enumerations

• The enhanced, “for-each” style for loop

• Variable-length arguments (varargs)

• Static import

• Annotations

This is not a list of minor tweaks or incremental upgrades. Each item in the list represents a significant addition to the Java language. Some, such as generics, the enhanced for, and varargs, introduce new syntax elements. Others, such as autoboxing and auto-unboxing, alter the semantics of the language. Annotations add an entirely new dimension to programming.

The importance of these new features is reflected in the use of the version number “5.” The next version number for Java would normally have been 1.5. However, the new features were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of the change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing that a major event was taking place. Thus, it was named J2SE 5, and the developer’s kit was called JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its internal version number, which is also referred to as the developer version number. The “5” in J2SE 5 is called the product version number

The newest release of Java is called Java SE 6, and that is the version of Java described in this book. With the release of Java SE 6, Sun once again decided to change the name of the Java platform. First, notice that the “2” has been dropped. Thus, the platform now has the name Java SE and the official product name is Java Platform, Standard Edition 6. As with J2SE 5, the 6 in Java SE 6 is the product version number. The internal, developer version number is 1.6.

Java SE 6 builds on the base of J2SE 5, adding incremental improvements. Java SE 6 adds no major features to the Java language proper, but does enhance the API libraries, adds several new packages, and offers improvements to the runtime. In general, the release of Java SE 6 serves to further solidify the advances made by J2SE 5.

How This Book Is Organized

This book presents an evenly paced tutorial in which each section builds upon the previous one. It contains 15 modules, each discussing an aspect of Java. This book is unique because it includes several special elements that reinforce what you are learning.

Critical Skills

Each module begins with a set of critical skills that you will be learning. The location of each skill within the module is indicated.

Mastery Check

Each module concludes with a Mastery Check, a self-test that lets you test your knowledge. The answers are in Appendix A.

Progress Checks

At the end of each major section, Progress Checks are presented that test your understanding of the key points of the preceding section. The answers to these questions are at the bottom of the page.

Ask the Expert

Sprinkled throughout the book are special “Ask the Expert” boxes. These contain additional information or interesting commentary about a topic. They use a Question/Answer format.

Projects

Each Module contains one or more projects that show you how to apply what you are learning. These are real-world examples that you can use as starting points for your own programs.

No Previous Programming Experience Required

This book assumes no previous programming experience. Thus, if you have never programmed before, you can use this book. If you do have some previous programming experience, you will be able to advance a bit quicker. Keep in mind, however, that Java differs in several key ways from other popular computer languages. It is important not to jump to conclusions. Thus, even for the experienced programmer, a careful reading is advised.

Required Software

To compile and run all of the programs in this book you will need the latest Java Developers Kit (JDK) from Sun, which at the time of this writing is JDK 6. This is the JDK for Java SE 6. Instructions for obtaining the Java JDK are given in Module 1.

If you are using an earlier version of Java, such as Java 1.4, you will still be able to use this book, but you won’t be able to compile and run the programs that use Java’s newer features.

Don’t Forget: Code on the Web

Remember, the source code for all of the examples and projects in this book is available free of charge on the Web at www.osborne.com.

For Further Study

Java: A Beginner’s Guide is your gateway to the Herb Schildt series of programming books. Here are some others that you will find of interest.

To learn more about Java programming, we recommend the following:

Java: The Complete Reference

The Art of Java

Swing: A Beginner’s Guide

To learn about C++, you will find these books especially helpful.

C++: The Complete Reference

C++ From the Ground Up

STL Programming From the Ground Up

The Art of C++

To learn about C# we suggest the following Schildt books:

C#: A Beginner’s Guide

C#: The Complete Reference

If you want to learn about the C language, then the following title will be of interest.

C: The Complete Reference

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

Module 1
Java Fundamentals

CRITICAL SKILLS

1.1 Know the history and philosophy of Java

1.2 Understand Java’s contribution to the Internet

1.3 Understand the importance of bytecode

1.4 Know the Java buzzwords

1.5 Understand the foundational principles of object-oriented programming

1.6 Create, compile, and run a simple Java program

1.7 Use variables

1.8 Use the if and for control statements

1.9 Create blocks of code

1.10 Understand how statements are positioned, indented, and terminated

1.11 Know the Java keywords

1.12 Understand the rules for Java identifiers

The rise of the Internet and the World Wide Web fundamentally reshaped computing. Prior to the Web, the cyber landscape was dominated by stand-alone PCs. Today, nearly all PCs are connected to the Internet. The Internet, itself, was transformed—originally offering a convenient way to share files and information, today it is a vast, distributed computing universe. With these changes came a new way to program: Java.

Java is the preeminent language of the Internet, but it is more than that. Java revolutionized programming, changing the way that we think about both the form and the function of a program. To be a professional programmer today implies the ability to program in Java—it is that important. In the course of this book, you will learn the skills needed to master it.

The purpose of this module is to introduce you to Java, including its history, its design philosophy, and several of its most important features. By far, the hardest thing about learning a programming language is the fact that no element exists in isolation. Instead, the components of the language work in conjunction with each other. This interrelatedness is especially pronounced in Java. In fact, it is difficult to discuss one aspect of Java without involving others. To help overcome this problem, this module provides a brief overview of several Java features, including the general form of a Java program, some basic control structures, and operators. It does not go into too many details but, rather, concentrates on the general concepts common to any Java program.

CRITICAL SKILL 1.1 The Origins of Java

Computer language innovation is driven forward by two factors: improvements in the art of programming and changes in the computing environment. Java is no exception. Building upon the rich legacy inherited from C and C++, Java adds refinements and features that reflect the current state of the art in programming. Responding to the rise of the online environment, Java offers features that streamline programming for a highly distributed architecture.

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun Microsystems in 1991. This language was initially called “Oak” but was renamed “Java” in 1995. Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the primary motivation was the need for a platform-independent language that could be used to create software to be embedded in various consumer electronic devices, such as toasters, microwave ovens, and remote controls. As you can probably guess, many different types of CPUs are used as controllers. The trouble was that (at that time) most computer languages were designed to be compiled for a specific target. For example, consider C++.

Although it was possible to compile a C++ program for just about any type of CPU, to do so required a full C++ compiler targeted for that CPU. The problem, however, is that compilers are expensive and time-consuming to create. In an attempt to find a better solution, Gosling and others worked on a portable, cross-platform language that could produce code that would run on a variety of CPUs under differing environments. This effort ultimately led to the creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately more important, factor emerged that would play a crucial role in the future of Java. This second force was, of course, the World Wide Web. Had the Web not taken shape at about the same time that Java was being implemented, Java might have remained a useful but obscure language for programming consumer electronics. However, with the emergence of the Web, Java was propelled to the forefront of computer language design, because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they are desirable. While the quest for a way to create efficient, portable (platform-independent) programs is nearly as old as the discipline of programming itself, it had taken a back seat to other, more pressing problems. However, with the advent of the Internet and the Web, the old problem of portability returned with a vengeance. After all, the Internet consists of a diverse, distributed universe populated with many types of computers, operating systems, and CPUs. What was once an irritating but a low-priority problem had become a high-profile necessity.

By 1993 it became obvious to members of the Java design team that the problems of portability frequently encountered when creating code for embedded controllers are also found when attempting to create code for the Internet. This realization caused the focus of Java to switch from consumer electronics to Internet programming. So, while it was the desire for an architecture-neutral programming language that provided the initial spark, it was the Internet that ultimately led to Java’s large-scale success.

How Java Relates to C and C++

Java is directly related to both C and C++. Java inherits its syntax from C. Its object model is adapted from C++. Java’s relationship with C and C++ is important for several reasons. First, many programmers are familiar with the C/C++ syntax. This makes it easy for a C/C++ programmer to learn Java and, conversely, for a Java programmer to learn C/C++.

Second, Java’s designers did not “reinvent the wheel.” Instead, they further refined an already highly successful programming paradigm. The modern age of programming began with C. It moved to C++, and now to Java. By inheriting and building upon that rich heritage, Java provides a powerful, logically consistent programming environment that takes the best of the past and adds new features required by the online environment. Perhaps most important, because of their similarities, C, C++, and Java define a common, conceptual framework for the professional programmer. Programmers do not face major rifts when switching from one language to another.

One of the central design philosophies of both C and C++ is that the programmer is in charge! Java also inherits this philosophy. Except for those constraints imposed by the Internet environment, Java gives you, the programmer, full control. If you program well, your programs reflect it. If you program poorly, your programs reflect that, too. Put differently, Java is not a language with training wheels. It is a language for professional programmers.

Java has one other attribute in common with C and C++: it was designed, tested, and refined by real, working programmers. It is a language grounded in the needs and experiences of the people who devised it. There is no better way to produce a top-flight professional programming language.

Because of the similarities between Java and C++, especially their support for object-oriented programming, it is tempting to think of Java as simply the “Internet version of C++.” However, to do so would be a mistake. Java has significant practical and philosophical differences. Although Java was influenced by C++, it is not an enhanced version of C++. For example, it is neither upwardly nor downwardly compatible with C++. Of course, the similarities with C++ are significant, and if you are a C++ programmer, you will feel right at home with Java. Another point: Java was not designed to replace C++. Java was designed to solve a certain set of problems. C++ was designed to solve a different set of problems. Both will coexist for many years to come.

How Java Relates to C#

Recently a new language called C# has come on the scene. Created by Microsoft to support its .NET Framework, C# is closely reated to Java. In fact, many of C#’s features were directly adapted from Java. Both Java and C# share the same general C++-style syntax, support distributed programming, and utilize the same object model. There are, of course, differences between Java and C#, but the overall “look and feel” of these languages is very similar. This means that if you already know C#, then learning Java will be especially easy. Conversely, if C# is in your future, then your knowledge of Java will come in handy.

Given the similarity between Java and C#, one might naturally ask, “Will C# replace Java?” The answer is No. Java and C# are optimized for two different types of computing environments. Just as C++ and Java will co-exist for a long time to come, so will C# and Java.

[image: images]Progress Check

1. Java is useful for the Internet because it can produce _____________ programs.

2. Java is the direct descendent of what languages?

1. portable

2. C and C++.

CRITICAL SKILL 1.2 Java’s Contribution to the Internet

The Internet helped catapult Java to the forefront of programming, and Java, in turn, had a profound effect on the Internet. In addition to simplifying web programming in general, Java innovated a new type of networked program called the applet that changed the way the online world thought about content. Java also addressed some of the thorniest issues associated with the Internet: portability and security. Let’s look more closely at each of these.

Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the Internet and automatically executed by a Java-compatible web browser. Furthermore, an applet is downloaded on demand, without further interaction with the user. If the user clicks on a link that contains an applet, the applet will be automatically downloaded and run in the browser. Applets are intended to be small programs. They are typically used to display data provided by the server, handle user input, or provide simple functions, such as a loan calculator, that execute locally, rather than on the server. In essence, the applet allows some functionality to be moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the universe of objects that can move about freely in cyberspace. In general, there are two very broad categories of objects that are transmitted between the server and the client: passive information and dynamic, active programs. For example, when you read your e-mail, you are viewing passive data. Even when you download a program, the program’s code is still only passive data until you execute it. By contrast, the applet is a dynamic, self-executing program. Such a program is an active agent on the client computer, yet it is initiated by the server.

As desirable as dynamic, networked programs are, they also present serious problems in the areas of security and portability. Obviously, a program that downloads and executes automatically on the client computer must be prevented from doing harm. It must also be able to run in a variety of different environments and under different operating systems. As you will see, Java solved these problems in an effective and elegant way. Let’s look a bit more closely at each.

Security

As you are likely aware, every time that you download a “normal” program, you are taking a risk because the code you are downloading might contain a virus, Trojan horse, or other harmful code. At the core of the problem is the fact that malicious code can cause its damage because it has gained unauthorized access to system resources. For example, a virus program might gather private information, such as credit card numbers, bank account balances, and passwords, by searching the contents of your computer’s local file system. In order for Java to enable applets to be safely downloaded and executed on the client computer, it was necessary to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment and not allowing it access to other parts of the computer. (You will see how this is accomplished shortly.) The ability to download applets with confidence that no harm will be done and that no security will be breached is considered by many to be the single most innovative aspect of Java.

Portability

Portability is a major aspect of the Internet because there are many different types of computers and operating systems connected to it. If a Java program was to be run on virtually any computer connected to the Internet, there needed to be some way to enable that program to execute on different systems. For example, in the case of an applet, the same applet must be able to be downloaded and executed by the wide variety of different CPUs, operating systems, and browsers connected to the Internet. It is not practical to have different versions of the applet for different computers. The same code must work in all computers. Therefore, some means of generating portable executable code was needed. As you will soon see, the same mechanism that helps ensure security also helps create portability.

CRITICAL SKILL 1.3 Java’s Magic: The Bytecode

The key that allows Java to solve both the security and the portability problems just described is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly optimized set of instructions designed to be executed by the Java run-time system, which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as an interpreter for bytecode. This may come as a bit of a surprise because many modern languages are designed to be compiled into executable code due to performance concerns. However, the fact that a Java program is executed by the JVM helps solve the major problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in a wide variety of environments because only the JVM needs to be implemented for each platform. Once the run-time package exists for a given system, any Java program can run on it. Remember, although the details of the JVM will differ from platform to platform, all understand the same Java bytecode. If a Java program were compiled to native code, then different versions of the same program would have to exist for each type of CPU connected to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode by the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure. Because the JVM is in control, it can contain the program and prevent it from generating side effects outside of the system. Safety is also enhanced by certain restrictions that exist in the Java language.

When a program is interpreted, it generally runs slower than the same program would run if compiled to executable code. However, with Java, the differential between the two is not so great. Because bytecode has been highly optimized, the use of bytecode enables the JVM to execute programs much faster than you might expect.

Ask the Expert

Q: I have heard about a special type of Java program called a servlet. What is it?

A: A servlet is a small program that executes on the server. Just as applets dynamically extend the functionality of a web browser, servlets dynamically extend the functionality of a web server. It is helpful to understand that as useful as applets can be, they are just one half of the client/server equation. Not long after the initial release of Java it became obvious that Java would also be useful on the server side. The result was the servlet. Thus, with the advent of the servlet, Java spanned both sides of the client/server connection. Although the creation of servlets is beyond the scope of this beginner’s guide, they are something that you will want to study further as you advance in Java programming. (Coverage of servlets can be found in my book Java: The Complete Reference, published by McGraw-Hill/Osborne.)

Although Java was designed as an interpreted language, there is nothing about Java that prevents on-the-fly compilation of bytecode into native code in order to boost performance. For this reason, Sun began supplying its HotSpot technology not long after Java’s initial release. HotSpot provides a just-in-time (JIT) compiler for bytecode. When a JIT compiler is part of the JVM, selected portions of bytecode are compiled into executable code in real time on a piece-by-piece, demand basis. It is important to understand that it is not practical to compile an entire Java program into executable code all at once because Java performs various run-time checks that can be done only at run time. Instead, a JIT compiler compiles code as it is needed, during execution. Furthermore, not all sequences of bytecode are compiled—only those that will benefit from compilation. The remaining code is simply interpreted. However, the just-in-time approach still yields a significant performance boost. Even when dynamic compilation is applied to bytecode, the portability and safety features still apply because the JVM is still in charge of the execution environment.

CRITICAL SKILL 1.4 The Java Buzzwords

No overview of Java is complete without a look at the Java buzzwords. Although the fundamental forces that necessitated the invention of Java are portability and security, other factors played an important role in molding the final form of the language. The key considerations were summed up by the Java design team in the following list of buzzwords.

[image: images]

[image: images]Progress Check

1. What is an applet?

2. What is Java bytecode?

3. The use of bytecode helps solve what two Internet programming problems?

1. An applet is a small program that is dynamically downloaded over the Web.

2. A highly optimized set of instructions that can be interpreted by the Java Interpreter.

3. Portability and security.

Ask the Expert

Q: To address the issues of portability and security, why was it necessary to create a new computer language such as Java; couldn’t a language like C++ be adapted? In other words, couldn’t a C++ compiler that outputs bytecode be created?

A: While it would be possible for a C++ compiler to generate bytecode rather than executable code, C++ has features that discourage its use for the creation of Internet programs—the most important feature being C++’s support for pointers. A pointer is the address of some object stored in memory. Using a pointer, it would be possible to access resources outside the program itself, resulting in a security breach. Java does not support pointers, thus eliminating this problem.

CRITICAL SKILL 1.5 Object-Oriented Programming

At the center of Java is object-oriented programming (OOP). The object-oriented methodology is inseparable from Java, and all Java programs are, to at least some extent, object-oriented. Because of OOP’s importance to Java, it is useful to understand OOP’s basic principles before you write even a simple Java program.

OOP is a powerful way to approach the job of programming. Programming methodologies have changed dramatically since the invention of the computer, primarily to accommodate the increasing complexity of programs. For example, when computers were first invented, programming was done by toggling in the binary machine instructions using the computer’s front panel. As long as programs were just a few hundred instructions long, this approach worked. As programs grew, assembly language was invented so that a programmer could deal with larger, increasingly complex programs, using symbolic representations of the machine instructions. As programs continued to grow, high-level languages were introduced that gave the programmer more tools with which to handle complexity. The first widespread language was, of course, FORTRAN. Although FORTRAN was a very impressive first step, it is hardly a language that encourages clear, easy-to-understand programs.

The 1960s gave birth to structured programming. This is the method encouraged by languages such as C and Pascal. The use of structured languages made it possible to write moderately complex programs fairly easily. Structured languages are characterized by their support for stand-alone subroutines, local variables, rich control constructs, and their lack of reliance upon the GOTO. Although structured languages are a powerful tool, even they reach their limit when a project becomes too large.

Consider this: At each milestone in the development of programming, techniques and tools were created to allow the programmer to deal with increasingly greater complexity. Each step of the way, the new approach took the best elements of the previous methods and moved forward. Prior to the invention of OOP, many projects were nearing (or exceeding) the point where the structured approach no longer works. Object-oriented methods were created to help programmers break through these barriers.

Object-oriented programming took the best ideas of structured programming and combined them with several new concepts. The result was a different way of organizing a program. In the most general sense, a program can be organized in one of two ways: around its code (what is happening) or around its data (what is being affected). Using only structured programming techniques, programs are typically organized around code. This approach can be thought of as “code acting on data.”

Object-oriented programs work the other way around. They are organized around data, with the key principle being “data controlling access to code.” In an object-oriented language, you define the data and the routines that are permitted to act on that data. Thus, a data type defines precisely what sort of operations can be applied to that data.

To support the principles of object-oriented programming, all OOP languages, including Java, have three traits in common: encapsulation, polymorphism, and inheritance. Let’s examine each.

Encapsulation

Encapsulation is a programming mechanism that binds together code and the data it manipulates, and that keeps both safe from outside interference and misuse. In an object-oriented language, code and data can be bound together in such a way that a self-contained black box is created. Within the box are all necessary data and code. When code and data are linked together in this fashion, an object is created. In other words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private code or data is known to and accessible by only another part of the object. That is, private code or data cannot be accessed by a piece of the program that exists outside the object. When code or data is public, other parts of your program can access it even though it is defined within an object. Typically, the public parts of an object are used to provide a controlled interface to the private elements of the object.

Java’s basic unit of encapsulation is the class. Although the class will be examined in great detail later in this book, the following brief discussion will be helpful now. A class defines the form of an object. It specifies both the data and the code that will operate on that data. Java uses a class specification to construct objects. Objects are instances of a class. Thus, a class is essentially a set of plans that specify how to build an object.

The code and data that constitute a class are called members of the class. Specifically, the data defined by the class are referred to as member variables or instance variables. The code that operates on that data is referred to as member methods or just methods. Method is Java’s term for a subroutine. If you are familiar with C/C++, it may help to know that what a Java programmer calls a method, a C/C++ programmer calls a function.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is the quality that allows one interface to access a general class of actions. The specific action is determined by the exact nature of the situation. A simple example of polymorphism is found in the steering wheel of an automobile. The steering wheel (i.e., the interface) is the same no matter what type of actual steering mechanism is used. That is, the steering wheel works the same whether your car has manual steering, power steering, or rack-and-pinion steering. Therefore, once you know how to operate the steering wheel, you can drive any type of car.

The same principle can also apply to programming. For example, consider a stack (which is a first-in, last-out list). You might have a program that requires three different types of stacks. One stack is used for integer values, one for floating-point values, and one for characters. In this case, the algorithm that implements each stack is the same, even though the data being stored differs. In a non-object-oriented language, you would be required to create three different sets of stack routines, with each set using different names. However, because of polymorphism, in Java you can create one general set of stack routines that works for all three specific situations. This way, once you know how to use one stack, you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase “one interface, multiple methods.” This means that it is possible to design a generic interface to a group of related activities. Polymorphism helps reduce complexity by allowing the same interface to be used to specify a general class of action. It is the compiler’s job to select the specific action (i.e., method) as it applies to each situation. You, the programmer, don’t need to do this selection manually. You need only remember and utilize the general interface.

Inheritance

Inheritance is the process by which one object can acquire the properties of another object. This is important because it supports the concept of hierarchical classification. If you think about it, most knowledge is made manageable by hierarchical (i.e., top-down) classifications. For example, a Red Delicious apple is part of the classification apple, which in turn is part of the fruit class, which is under the larger class food. That is, the food class possesses certain qualities (edible, nutritious, etc.) which also, logically, apply to its subclass, fruit. In addition to these qualities, the fruit class has specific characteristics (juicy, sweet, etc.) that distinguish it from other food. The apple class defines those qualities specific to an apple (grows on trees, not tropical, etc.). A Red Delicious apple would, in turn, inherit all the qualities of all preceding classes, and would define only those qualities that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of its characteristics. Using inheritance, an object need only define those qualities that make it unique within its class. It can inherit its general attributes from its parent. Thus, it is the inheritance mechanism that makes it possible for one object to be a specific instance of a more general case.

[image: images]Progress Check

1. Name the principles of OOP.

2. What is the basic unit of encapsulation in Java?

1. Encapsulation, polymorphism, and inheritance.

2. The class.

Ask the Expert

Q: You state that object-oriented programming is an effective way to manage large programs. However, it seems that it might add substantial overhead to relatively small ones. Since you say that all Java programs are, to some extent, object-oriented, does this impose a penalty for smaller programs?

A: No. As you will see, for small programs, Java’s object-oriented features are nearly transparent. Although it is true that Java follows a strict object model, you have wide latitude as to the degree to which you employ it. For smaller programs, their “object-orientedness” is barely perceptible. As your programs grow, you will integrate more object-oriented features effortlessly.

Obtaining the Java Development Kit

Now that the theoretical underpinning of Java has been explained, it is time to start writing Java programs. Before you can compile and run those programs, however, you must have a Java development system installed on your computer. The one used by this book is the standard JDK (Java Development Kit), which is available from Sun Microsystems. Several other Java development packages are available from other companies, but we will be using the JDK because it is available to all readers. It also constitutes the final authority on what is and isn’t proper Java. At the time of this writing, the current release of the JDK is JDK 6. This is the development kit for Java SE 6, which stands for Java Platform, Standard Edition 6, and it is the version of Java described in this book. Because JDK 6 contains features that may not be supported by some earlier versions of Java, you should use JDK 6 (or later) to compile and run the programs in this book.

The JDK can be downloaded free of charge from www.java.sun.com. Just go to the download page and follow the instructions for the type of computer that you have. After you have installed the JDK, you will be ready to compile and run programs. The JDK supplies two primary programs. The first is javac.exe, which is the Java compiler. The second is java.exe, which is the standard Java interpreter, and is also referred to as the application launcher.

One other point: the JDK runs in the command prompt environment. It is not a windowed application.

CRITICAL SKILL 1.6 A First Simple Program

Let’s start by compiling and running the short sample program shown here.

/*
 This is a simple Java program.

 Call this file Example.java.
*/
class Example {
 // A Java program begins with a call to main().
 public static void main(String args[]) {
 System.out.println("Java drives the Web.");
 }
}

You will follow these three steps:

1. Enter the program.

2. Compile the program.

3. Run the program.

Entering the Program

The programs shown in this book are available from Osborne’s Web site: www.osborne.com. However, if you want to enter the programs by hand, you are free to do so. In this case, you must enter the program into your computer using a text editor, not a word processor. Word processors typically store format information along with text. This format information will confuse the Java compiler. If you are using a Windows platform, you can use WordPad or any other programming editor that you like.

For most computer languages, the name of the file that holds the source code to a program is arbitrary. However, this is not the case with Java. The first thing that you must learn about Java is that the name you give to a source file is very important. For this example, the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains one or more class definitions. The Java compiler requires that a source file use the .java filename extension. As you can see by looking at the program, the name of the class defined by the program is also Example. This is not a coincidence. In Java, all code must reside inside a class. By convention, the name of that class should match the name of the file that holds the program. You should also make sure that the capitalization of the filename matches the class name. The reason for this is that Java is case sensitive. At this point, the convention that filenames correspond to class names may seem arbitrary. However, this convention makes it easier to maintain and organize your programs.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of the program. Remember, bytecode is not executable code. Bytecode must be executed by a Java Virtual Machine. Thus, the output of javac is not code that can be directly executed.

To actually run the program, you must use the Java interpreter, java. To do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

Java drives the Web.

When Java source code is compiled, each individual class is put into its own output file named after the class and using the .class extension. This is why it is a good idea to give your Java source files the same name as the class they contain—the name of the source file will match the name of the .class file. When you execute the Java interpreter as just shown, you are actually specifying the name of the class that you want the interpreter to execute. It will automatically search for a file by that name that has the .class extension. If it finds the file, it will execute the code contained in the specified class.

The First Sample Program Line by Line

Although Example.java is quite short, it includes several key features that are common to all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*
 This is a simple Java program.

 Call this file Example.java.
*/

This is a comment. Like most other programming languages, Java lets you enter a remark into a program’s source file. The contents of a comment are ignored by the compiler. Instead, a comment describes or explains the operation of the program to anyone who is reading its source code. In this case, the comment describes the program and reminds you that the source file should be called Example.java. Of course, in real applications, comments generally explain how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program is called a multiline comment. This type of comment must begin with /* and end with */. Anything between these two comment symbols is ignored by the compiler. As the name suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. As mentioned, the class is Java’s basic unit of encapsulation. Example is the name of the class. The class definition begins with the opening curly brace ({) and ends with the closing curly brace (}). The elements between the two braces are members of the class. For the moment, don’t worry too much about the details of a class except to note that in Java, all program activity occurs within one. This is one reason why all Java programs are (at least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

// A Java program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins with a // and ends at the end of the line. As a general rule, programmers use multiline comments for longer remarks and single-line comments for brief, line-by-line descriptions.

The next line of code is shown here:

public static void main (String args[]) {

This line begins the main() method. As mentioned earlier, in Java, a subroutine is called a method. As the comment preceding it suggests, this is the line at which the program will begin executing. All Java applications begin execution by calling main(). The exact meaning of each part of this line cannot be given now, since it involves a detailed understanding of several other of Java’s features. However, since many of the examples in this book will use this line of code, let’s take a brief look at each part now.

The public keyword is an access specifier. An access specifier determines how other parts of the program can access the members of the class. When a class member is preceded by public, then that member can be accessed by code outside the class in which it is declared. (The opposite of public is private, which prevents a member from being used by code defined outside of its class.) In this case, main() must be declared as public, since it must be called by code outside of its class when the program is started. The keyword static allows main() to be called before an object of the class has been created. This is necessary since main() is called by the JVM before any objects are made. The keyword void simply tells the compiler that main() does not return a value. As you will see, methods may also return values. If all this seems a bit confusing, don’t worry. All of these concepts will be discussed in detail in subsequent modules.

As stated, main() is the method called when a Java application begins. Any information that you need to pass to a method is received by variables specified within the set of parentheses that follow the name of the method. These variables are called parameters. If no parameters are required for a given method, you still need to include the empty parentheses. In main() there is only one parameter, String args[], which declares a parameter named args. This is an array of objects of type String. (Arrays are collections of similar objects.) Objects of type String store sequences of characters. In this case, args receives any command-line arguments present when the program is executed. This program does not make use of this information, but other programs shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of the code included in a method will occur between the method’s opening curly brace and its closing curly brace.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("Java drives the Web.");

This line outputs the string “Java drives the Web.” followed by a new line on the screen. Output is actually accomplished by the built-in println() method. In this case, println() displays the string which is passed to it. As you will see, println() can be used to display other types of information, too. The line begins with System.out. While too complicated to explain in detail at this time, briefly, System is a predefined class that provides access to the system, and out is the output stream that is connected to the console. Thus, System.out is an object that encapsulates console output. The fact that Java uses an object to define console output is further evidence of its object-oriented nature.

As you have probably guessed, console output (and input) is not used frequently in real-world Java programs and applets. Since most modern computing environments are windowed and graphical in nature, console I/O is used mostly for simple utility programs and for demonstration programs. Later in this book, you will learn other ways to generate output using Java, but for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end with a semicolon. The reason that the other lines in the program do not end in a semicolon is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

One last point: Java is case sensitive. Forgetting this can cause you serious problems. For example, if you accidentally type Main instead of main, or PrintLn instead of println, the preceding program will be incorrect. Furthermore, although the Java compiler will compile classes that do not contain a main() method, it has no way to execute them. So, if you had mistyped main, the compiler would still compile your program. However, the Java interpreter would report an error because it would be unable to find the main() method.

[image: images]Progress Check

1. Where does a Java program begin execution?

2. What does System.out.println() do?

3. What is the name of the Java compiler? Of the Java interpreter?

1. main()

2. Outputs information to the console.

3. The standard Java compiler is javac.exe; the interpreter is java.exe.

Handling Syntax Errors

If you have not yet done so, enter, compile, and run the preceding program. As you may know from your previous programming experience, it is quite easy to accidentally type something incorrectly when entering code into your computer. Fortunately, if you enter something incorrectly into your program, the compiler will report a syntax error message when it tries to compile it. The Java compiler attempts to make sense out of your source code no matter what you have written. For this reason, the error that is reported may not always reflect the actual cause of the problem. In the preceding program, for example, an accidental omission of the opening curly brace after the main() method causes the compiler to report the following two errors.

Example.java:8: ′;′ expected
 public static void main(String args[])
 ^
Example.java:11: class, interface, or enum expected
}
^

Clearly, the first error message is completely wrong because what is missing is not a semicolon, but a curly brace.

The point of this discussion is that when your program contains a syntax error, you shouldn’t necessarily take the compiler’s messages at face value. The messages may be misleading. You may need to “second-guess” an error message in order to find the real problem. Also, look at the last few lines of code in your program that precede the line being flagged. Sometimes an error will not be reported until several lines after the point at which the error actually occurred.

CRITICAL SKILL 1.7 A Second Simple Program

Perhaps no other construct is as important to a programming language as the assignment of a value to a variable. A variable is a named memory location that can be assigned a value. Further, the value of a variable can be changed during the execution of a program. That is, the content of a variable is changeable, not fixed.

The following program creates two variables called var1 and var2.

[image: images]

When you run this program, you will see the following output:

var1 contains 1024
var2 contains var1 / 2: 512

This program introduces several new concepts. First, the statement

int var1; // this declares a variable

declares a variable called var1 of type integer. In Java, all variables must be declared before they are used. Further, the type of values that the variable can hold must also be specified. This is called the type of the variable. In this case, var1 can hold integer values. These are whole number values. In Java, to declare a variable to be of type integer, precede its name with the keyword int. Thus, the preceding statement declares a variable called var1 of type int.

The next line declares a second variable called var2.

int var2; // this declares another variable

Notice that this line uses the same format as the first line except that the name of the variable is different.

In general, to declare a variable you will use a statement like this:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the variable. In addition to int, Java supports several other data types.

The following line of code assigns var1 the value 1024:

var1 = 1024; // this assigns 1024 to var1

In Java, the assignment operator is the single equal sign. It copies the value on its right side into the variable on its left.

The next line of code outputs the value of var1 preceded by the string “var1 contains”:

System.out.println("var1 contains " + var1);

In this statement, the plus sign causes the value of var1 to be displayed after the string that precedes it. This approach can be generalized. Using the + operator, you can chain together as many items as you want within a single println() statement.

The next line of code assigns var2 the value of var1 divided by 2:

var2 = var1 / 2;

This line divides the value in var1 by 2 and then stores that result in var2. Thus, after the line executes, var2 will contain the value 512. The value of var1 will be unchanged. Like most other computer languages, Java supports a full range of arithmetic operators, including those shown here:

[image: images]

Here are the next two lines in the program:

System.out.print("var2 contains var1 / 2: ");
System.out.println(var2);

Two new things are occurring here. First, the built-in method print() is used to display the string “var2 contains var1 / 2:”. This string is not followed by a new line. This means that when the next output is generated, it will start on the same line. The print() method is just like println(), except that it does not output a new line after each call. Second, in the call to println(), notice that var2 is used by itself. Both print() and println() can be used to output values of any of Java’s built-in types.

One more point about declaring variables before we move on: It is possible to declare two or more variables using the same declaration statement. Just separate their names by commas. For example, var1 and var2 could have been declared like this:

int var1, var2; // both declared using one statement

Another Data Type

In the preceding program, a variable of type int was used. However, a variable of type int can hold only whole numbers. Thus, it cannot be used when a fractional component is required. For example, an int variable can hold the value 18, but not the value 18.3. Fortunately, int is only one of several data types defined by Java. To allow numbers with fractional components, Java defines two floating-point types: float and double, which represent single- and double-precision values, respectively. Of the two, double is the most commonly used.

To declare a variable of type double, use a statement similar to that shown here:

double x;

Here, x is the name of the variable, which is of type double. Because x has a floating-point type, it can hold values such as 122.23, 0.034, or –19.0.

To better understand the difference between int and double, try the following program:

[image: images]

The output from this program is shown here:

Original value of var: 10
Original value of x: 10.0

[image: images]

As you can see, when var is divided by 4, a whole-number division is performed, and the outcome is 2—the fractional component is lost. However, when x is divided by 4, the fractional component is preserved, and the proper answer is displayed.

There is one other new thing to notice in the program. To print a blank line, simply call println() without any arguments.

Ask the Expert

Q: Why does Java have different data types for integers and floating-point values? That is, why aren’t all numeric values just the same type?

A: Java supplies different data types so that you can write efficient programs. For example, integer arithmetic is faster than floating-point calculations. Thus, if you don’t need fractional values, then you don’t need to incur the overhead associated with types float or double. Second, the amount of memory required for one type of data might be less than that required for another. By supplying different types, Java enables you to make best use of system resources. Finally, some algorithms require (or at least benefit from) the use of a specific type of data. In general, Java supplies a number of built-in types to give you the greatest flexibility.

Project 1-1 Converting Gallons to Liters

GalToLit.java

Although the preceding sample programs illustrate several important features of the Java language, they are not very useful. Even though you do not know much about Java at this point, you can still put what you have learned to work to create a practical program. In this project, we will create a program that converts gallons to liters.

The program will work by declaring two double variables. One will hold the number of the gallons, and the second will hold the number of liters after the conversion. There are 3.7854 liters in a gallon. Thus, to convert gallons to liters, the gallon value is multiplied by 3.7854. The program displays both the number of gallons and the equivalent number of liters.

Step by Step

1. Create a new file called GalToLit.java.

2. Enter the following program into the file:

 /*
 Project 1-1

 This program converts gallons to liters.

 Call this program GalToLit.java.
 */
 class GalToLit {
 public static void main(String args[]) {
 double gallons; // holds the number of gallons
 double liters; // holds conversion to liters

 gallons = 10; // start with 10 gallons

 liters = gallons * 3.7854; // convert to liters

 System.out.println(gallons + " gallons is " + liters + " liters.");
 }
 }

3. Compile the program using the following command line:

 C>javac GalToLit.java

4. Run the program using this command:

 C>java GalToLit

You will see this output:

 10.0 gallons is 37.854 liters.

5. As it stands, this program converts 10 gallons to liters. However, by changing the value assigned to gallons, you can have the program convert a different number of gallons into its equivalent number of liters.

[image: images]Progress Check

1. What is Java’s keyword for the integer data type?

2. What is double?

1. int

2. The keyword for the double floating-point data type.

CRITICAL SKILL 1.8 Two Control Statements

Inside a method, execution proceeds from one statement to the next, top to bottom. However, it is possible to alter this flow through the use of the various program control statements supported by Java. Although we will look closely at control statements later, two are briefly introduced here because we will be using them to write sample programs.

The if Statement

You can selectively execute part of a program through the use of Java’s conditional statement: the if. The Java if statement works much like the IF statement in any other language. Its simplest form is shown here:

if (condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed. If condition is false, then the statement is bypassed. Here is an example:

if(10 < 11) System.out.println(“10 is less than 11”);

In this case, since 10 is less than 11, the conditional expression is true, and println() will execute. However, consider the following:

if(10 < 9) System.out.println("this won′t be displayed");

In this case, 10 is not less than 9. Thus, the call to println() will not take place.

Java defines a full complement of relational operators that may be used in a conditional expression. They are shown here:

[image: images]

Notice that the test for equality is the double equal sign.

Here is a program that illustrates the if statement:

/*
 Demonstrate the if.

 Call this file IfDemo.java.
*/
class IfDemo {
 public static void main(String args[]) {
 int a, b, c;

 a = 2;
 b = 3;

 if(a < b) System.out.println("a is less than b");

 // this won′t display anything
 if(a == b) System.out.println("you won′t see this");

 System.out.println();

 c = a - b; // c contains -1

 System.out.println("c contains -1");
 if(c >= 0) System.out.println("c is non-negative");
 if(c < 0) System.out.println("c is negative");

 System.out.println();

 c = b - a; // c now contains 1

 System.out.println("c contains 1");
 if(c >= 0) System.out.println("c is non-negative");
 if(c < 0) System.out.println("c is negative");

 }
}

The output generated by this program is shown here:

a is less than b

c contains -1
c is negative

c contains 1
c is non-negative

Notice one other thing in this program. The line

int a, b, c;

declares three variables, a, b, and c, by use of a comma-separated list. As mentioned earlier, when you need two or more variables of the same type, they can be declared in one statement. Just separate the variable names by commas.

The for Loop

You can repeatedly execute a sequence of code by creating a loop. Java supplies a powerful assortment of loop constructs. The one we will look at here is the for loop. The simplest form of the for loop is shown here:

for (initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable to an initial value. The condition is a Boolean expression that tests the loop control variable. If the outcome of that test is true, the for loop continues to iterate. If it is false, the loop terminates. The iteration expression determines how the loop control variable is changed each time the loop iterates. Here is a short program that illustrates the for loop:

/*
 Demonstrate the for loop.

 Call this file ForDemo.java.

*/
class ForDemo {
 public static void main(String args[]) {
 int count;

 for(count = 0; count < 5; count = count+1) ← This loop iterates five times.
 System.out.println("This is count: " + count);

 System.out.println("Done!");
 }
}

The output generated by the program is shown here:

This is count: 0
This is count: 1
This is count: 2
This is count: 3
This is count: 4
Done!

In this example, count is the loop control variable. It is set to zero in the initialization portion of the for. At the start of each iteration (including the first one), the conditional test count < 5 is performed. If the outcome of this test is true, the println() statement is executed, and then the iteration portion of the loop is executed. This process continues until the conditional test is false, at which point execution picks up at the bottom of the loop.

As a point of interest, in professionally written Java programs, you will almost never see the iteration portion of the loop written as shown in the preceding program. That is, you will seldom see statements like this:

count = count + 1;

The reason is that Java includes a special increment operator that performs this operation more efficiently. The increment operator is ++ (that is, two plus signs back to back). The increment operator increases its operand by one. By use of the increment operator, the preceding statement can be written like this:

count++;

Thus, the for in the preceding program will usually be written like this:

for(count = 0; count < 5; count++)

You might want to try this. As you will see, the loop still runs exactly the same as it did before.

Java also provides a decrement operator, which is specified as – –. This operator decreases its operand by one.

[image: images]Progress Check

1. What does the if statement do?

2. What does the for statement do?

3. What are Java’s relational operators?

1. The if is Java’s conditional statement.

2. The for is one of Java’s loop statements.

3. The relational operators are = =, !=, <, >, <=, and >=.

CRITICAL SKILL 1.9 Create Blocks of Code

Another key element of Java is the code block. A code block is a grouping of two or more statements. This is done by enclosing the statements between opening and closing curly braces. Once a block of code has been created, it becomes a logical unit that can be used any place that a single statement can. For example, a block can be a target for Java’s if and for statements. Consider this if statement:

[image: images]

Here, if w is less than h, both statements inside the block will be executed. Thus, the two statements inside the block form a logical unit, and one statement cannot execute without the other also executing. The key point here is that whenever you need to logically link two or more statements, you do so by creating a block. Code blocks allow many algorithms to be implemented with greater clarity and efficiency.

Here is a program that uses a block of code to prevent a division by zero:

[image: images]

The output generated by this program is shown here:

i does not equal zero
j / i is 2.0

In this case, the target of the if statement is a block of code and not just a single statement. If the condition controlling the if is true (as it is in this case), the three statements inside the block will be executed. Try setting i to zero and observe the result. You will see that the entire block is skipped.

As you will see later in this book, blocks of code have additional properties and uses. However, the main reason for their existence is to create logically inseparable units of code.

Ask the Expert

Q: Does the use of a code block introduce any run-time inefficiencies? In other words, does Java actually execute the { and }?

A: No. Code blocks do not add any overhead whatsoever. In fact, because of their ability to simplify the coding of certain algorithms, their use generally increases speed and efficiency. Also, the { and } exist only in your program’s source code. Java does not, per se, execute the { or }.

CRITICAL SKILL 1.10 Semicolons and Positioning

In Java, the semicolon is a separator that is used to terminate a statement. That is, each individual statement must be ended with a semicolon. It indicates the end of one logical entity.

As you know, a block is a set of logically connected statements that are surrounded by opening and closing braces. A block is not terminated with a semicolon. Since a block is a group of statements, with a semicolon after each statement, it makes sense that a block is not terminated by a semicolon; instead, the end of the block is indicated by the closing brace.

Java does not recognize the end of the line as a terminator. For this reason, it does not matter where on a line you put a statement. For example,

x = y;
y = y + 1;
System.out.println(x + “ ” + y);

is the same as the following, to Java.

x = y; y = y + 1; System.out.println(x + “ ” + y);

Furthermore, the individual elements of a statement can also be put on separate lines. For example, the following is perfectly acceptable:

System.out.println("This is a long line of output" +
 x + y + z +
 "more output");

Breaking long lines in this fashion is often used to make programs more readable. It can also help prevent excessively long lines from wrapping.

Indentation Practices

You may have noticed in the previous examples that certain statements were indented. Java is a free-form language, meaning that it does not matter where you place statements relative to each other on a line. However, over the years, a common and accepted indentation style has developed that allows for very readable programs. This book follows that style, and it is recommended that you do so as well. Using this style, you indent one level after each opening brace, and move back out one level after each closing brace. Certain statements encourage some additional indenting; these will be covered later.

[image: images]Progress Check

1. How is a block of code created? What does it do?

2. In Java, statements are terminated by a ____________.

3. All Java statements must start and end on one line. True or False?

1. A block is started by a {. It is ended by a }. A block creates a logical unit of code.

2. Semicolon.

3. False.

Project 1-2 Improving the Gallons-to-Liters Converter

GalToLitTable.java

You can use the for loop, the if statement, and code blocks to create an improved version of the gallons-to-liters converter that you developed in the first project. This new version will print a table of conversions, beginning with 1 gallon and ending at 100 gallons. After every 10 gallons, a blank line will be output. This is accomplished through the use of a variable called counter that counts the number of lines that have been output. Pay special attention to its use.

Step by Step

1. Create a new file called GalToLitTable.java.

2. Enter the following program into the file.

[image: images]

[image: images]

3. Compile the program using the following command line:

 C>javac GalToLitTable.java

4. Run the program using this command:

 C>java GalToLitTable

Here is a portion of the output that you will see:

 1.0 gallons is 3.7854 liters.
 2.0 gallons is 7.5708 liters.
 3.0 gallons is 11.356200000000001 liters.
 4.0 gallons is 15.1416 liters.
 5.0 gallons is 18.927 liters.
 6.0 gallons is 22.712400000000002 liters.
 7.0 gallons is 26.4978 liters.
 8.0 gallons is 30.2832 liters.
 9.0 gallons is 34.0686 liters.
 10.0 gallons is 37.854 liters.

 11.0 gallons is 41.6394 liters.
 12.0 gallons is 45.424800000000005 liters.
 13.0 gallons is 49.2102 liters.
 14.0 gallons is 52.9956 liters.
 15.0 gallons is 56.781 liters.
 16.0 gallons is 60.5664 liters.
 17.0 gallons is 64.3518 liters.
 18.0 gallons is 68.1372 liters.
 19.0 gallons is 71.9226 liters.
 20.0 gallons is 75.708 liters.

 21.0 gallons is 79.49340000000001 liters.
 22.0 gallons is 83.2788 liters.
 23.0 gallons is 87.0642 liters.
 24.0 gallons is 90.84960000000001 liters.

 25.0 gallons is 94.635 liters.
 26.0 gallons is 98.4204 liters.
 27.0 gallons is 102.2058 liters.
 28.0 gallons is 105.9912 liters.
 29.0 gallons is 109.7766 liters.
 30.0 gallons is 113.562 liters.

CRITICAL SKILL 1.11 The Java Keywords

Fifty keywords are currently defined in the Java language (see Table 1-1). These keywords, combined with the syntax of the operators and separators, form the definition of the Java language. These keywords cannot be used as names for a variable, class, or method.

The keywords const and goto are reserved but not used. In the early days of Java, several other keywords were reserved for possible future use. However, the current specification for Java defines only the keywords shown in Table 1-1.

In addition to the keywords, Java reserves the following: true, false, and null. These are values defined by Java. You may not use these words for the names of variables, classes, and so on.

CRITICAL SKILL 1.12 Identifiers in Java

In Java an identifier is a name given to a method, a variable, or any other user-defined item. Identifiers can be from one to several characters long. Variable names may start with any letter of the alphabet, an underscore, or a dollar sign. Next may be either a letter, a digit, a dollar sign, or an underscore. The underscore can be used to enhance the readability of a variable name, as in line_count. Uppercase and lowercase are different; that is, to Java, myvar and MyVar are separate names. Here are some examples of acceptable identifiers:

Table 1-1 The Java Keywords

[image: images]

[image: images]

Remember, you can’t start an identifier with a digit. Thus, 12x is invalid, for example.

You cannot use any of the Java keywords as identifier names. Also, you should not assign the name of any standard method, such as println, to an identifier. Beyond these two restrictions, good programming practice dictates that you use identifier names that reflect the meaning or usage of the items being named.

[image: images]Progress Check

1. Which is the keyword: for, For, or FOR?

2. A Java identifier can contain what type of characters?

3. Are index21 and Index21 the same identifier?

1. The keyword is for. In Java, all keywords are in lowercase.

2. Letters, digits, the underscore, and the $.

3. No; Java is case sensitive.

The Java Class Libraries

The sample programs shown in this module make use of two of Java’s built-in methods: println() and print(). These methods are members of the System class, which is a class predefined by Java that is automatically included in your programs. In the larger view, the Java environment relies on several built-in class libraries that contain many built-in methods that provide support for such things as I/O, string handling, networking, and graphics. The standard classes also provide support for windowed output. Thus, Java as a totality is a combination of the Java language itself, plus its standard classes. As you will see, the class libraries provide much of the functionality that comes with Java. Indeed, part of becoming a Java programmer is learning to use the standard Java classes. Throughout this book, various elements of the standard library classes and methods are described. However, the Java library is something that you will also want to explore more on your own.

[image: images] Module 1 Mastery Check

1. What is bytecode and why is it important to Java’s use for Internet programming?

2. What are the three main principles of object-oriented programming?

3. Where do Java programs begin execution?

4. What is a variable?

5. Which of the following variable names is invalid?

A. count

B. $count

C. count27

D. 67count

6. How do you create a single-line comment? How do you create a multiline comment?

7. Show the general form of the if statement. Show the general form of the for loop.

8. How do you create a block of code?

9. The moon’s gravity is about 17 percent that of earth’s. Write a program that computes your effective weight on the moon.

10. Adapt Project 1-2 so that it prints a conversion table of inches to meters. Display 12 feet of conversions, inch by inch. Output a blank line every 12 inches. (One meter equals approximately 39.37 inches.)

11. If you make a typing mistake when entering your program, what sort of error will result?

12. Does it matter where on a line you put a statement?

Module 2
Introducing Data Types and Operators

CRITICAL SKILLS

2.1 Know Java’s primitive types

2.2 Use literals

2.3 Initialize variables

2.4 Know the scope rules of variables within a method

2.5 Use the arithmetic operators

2.6 Use the relational and logical operators

2.7 Understand the assignment operators

2.8 Use shorthand assignments

2.9 Understand type conversion in assignments

2.10 Cast incompatible types

2.11 Understand type conversion in expressions

At the foundation of any programming language are its data types and operators, and Java is no exception. These elements define the limits of a language and determine the kind of tasks to which it can be applied. Fortunately, Java supports a rich assortment of both data types and operators, making it suitable for any type of programming.

Data types and operators are a large subject. We will begin here with an examination of Java’s foundational data types and its most commonly used operators. We will also take a closer look at variables and examine the expression.

Why Data Types Are Important

Data types are especially important in Java because it is a strongly typed language. This means that all operations are type checked by the compiler for type compatibility. Illegal operations will not be compiled. Thus, strong type checking helps prevent errors and enhances reliability. To enable strong type checking, all variables, expressions, and values have a type. There is no concept of a “type-less” variable, for example. Furthermore, the type of a value determines what operations are allowed on it. An operation allowed on one type might not be allowed on another.

CRITICAL SKILL 2.1 Java’s Primitive Types

Java contains two general categories of built-in data types: object-oriented and non-object-oriented. Java’s object-oriented types are defined by classes, and a discussion of classes is deferred until later. However, at the core of Java are eight primitive (also called elemental or simple) types of data, which are shown in Table 2-1. The term primitive is used here to indicate that these types are not objects in an object-oriented sense, but rather, normal binary values. These primitive types are not objects because of efficiency concerns. All of Java’s other data types are constructed from these primitive types.

Java strictly specifies a range and behavior for each primitive type, which all implementations of the Java Virtual Machine must support. Because of Java’s portability requirement, Java is uncompromising on this account. For example, an int is the same in all execution environments. This allows programs to be fully portable. There is no need to rewrite code to fit a specific platform. Although strictly specifying the size of the primitive types may cause a small loss of performance in some environments, it is necessary in order to achieve portability.

Table 2-1 Java’s Built-in Primitive Data Types

[image: images]

Integers

Java defines four integer types: byte, short, int, and long, which are shown here:

[image: images]

As the table shows, all of the integer types are signed positive and negative values. Java does not support unsigned (positive-only) integers. Many other computer languages support both signed and unsigned integers. However, Java’s designers felt that unsigned integers were unnecessary.

NOTE[image: images]

Technically, the Java run-time system can use any size it wants to store a primitive type. However, in all cases, types must act as specified.

The most commonly used integer type is int. Variables of type int are often employed to control loops, to index arrays, and to perform general-purpose integer math.

When you need an integer that has a range greater than int, use long. For example, here is a program that computes the number of cubic inches contained in a cube that is one mile by one mile, by one mile:

/*
 Compute the number of cubic inches
 in 1 cubic mile.
*/
class Inches {
 public static void main(String args[]) {
 long ci;
 long im;

 im = 5280 * 12;

 ci = im * im * im;

 System.out.println("There are " + ci +
 " cubic inches in cubic mile.");

 }
}

Here is the output from the program:

There are 254358061056000 cubic inches in cubic mile.

Clearly, the result could not have been held in an int variable.

The smallest integer type is byte. Variables of type byte are especially useful when working with raw binary data that may not be directly compatible with Java’s other built-in types. The short type creates a short integer. Variables of type short are appropriate when you don’t need the larger range offered by int.

Ask the Expert

Q: You say that there are four integer types: int, short, long, and byte. However, I have heard that char can also be categorized as an integer type in Java. Can you explain?

A: The formal specification for Java defines a type category called integral types, which includes byte, short, int, long, and char. They are called integral types because they all hold whole-number, binary values. However, the purpose of the first four is to represent numeric integer quantities. The purpose of char is to represent characters. Therefore, the principal uses of char and the principal uses of the other integral types are fundamentally different. Because of the differences, the char type is treated separately in this book.

Floating-Point Types

As explained in Module 1, the floating-point types can represent numbers that have fractional components. There are two kinds of floating-point types, float and double, which represent single- and double-precision numbers, respectively. Type float is 32 bits wide and type double is 64 bits wide.

Of the two, double is the most commonly used because all of the math functions in Java’s class library use double values. For example, the sqrt() method (which is defined by the standard Math class) returns a double value that is the square root of its double argument. Here, sqrt() is used to compute the length of the hypotenuse, given the lengths of the two opposing sides:

[image: images]

The output from the program is shown here:

Hypotenuse is 5.0

One other point about the preceding example: As mentioned, sqrt() is a member of the standard Math class. Notice how sqrt() is called; it is preceded by the name Math. This is similar to the way System.out precedes println(). Although not all standard methods are called by specifying their class name first, several are.

Characters

In Java, characters are not 8-bit quantities like they are in many other computer languages. Instead, Java uses Unicode. Unicode defines a character set that can represent all of the characters found in all human languages. Thus, in Java, char is an unsigned 16-bit type having a range of 0 to 65,536. The standard 8-bit ASCII character set is a subset of Unicode and ranges from 0 to 127. Thus, the ASCII characters are still valid Java characters.

A character variable can be assigned a value by enclosing the character in single quotes. For example, this assigns the variable ch the letter X:

char ch;
ch = ‘X’;

You can output a char value using a println() statement. For example, this line outputs the value in ch:

System.out.println("This is ch: " + ch);

Since char is an unsigned 16-bit type, it is possible to perform various arithmetic manipulations on a char variable. For example, consider the following program:

[image: images]

The output generated by this program is shown here:

ch contains X
ch is now Y
ch is now Z

In the program, ch is first given the value X. Next, ch is incremented. This results in ch containing Y, the next character in the ASCII (and Unicode) sequence. Next, ch is assigned the value 90, which is the ASCII (and Unicode) value that corresponds to the letter Z. Since the ASCII character set occupies the first 127 values in the Unicode character set, all the “old tricks” that you may have used with characters in other languages will work in Java, too.

Ask the Expert

Q: Why does Java use Unicode?

A: Java was designed for worldwide use. Thus, it needs to use a character set that can represent all the world’s languages. Unicode is the standard character set designed expressly for this purpose. Of course, the use of Unicode is inefficient for languages such as English, German, Spanish, or French, whose characters can be contained within 8 bits. But such is the price that must be paid for global portability.

The Boolean Type

The boolean type represents true/false values. Java defines the values true and false using the reserved words true and false. Thus, a variable or expression of type boolean will be one of these two values.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolDemo {
 public static void main(String args[]) {
 boolean b;

 b = false;
 System.out.println("b is " + b);
 b = true;
 System.out.println("b is " + b);

 // a boolean value can control the if statement
 if(b) System.out.println("This is executed.");

 b = false;
 if(b) System.out.println("This is not executed.");

 // outcome of a relational operator is a boolean value
 System.out.println("10 > 9 is " + (10 > 9));
 }
}

The output generated by this program is shown here:

b is false
b is true
This is executed.
10 > 9 is true

There are three interesting things to notice about this program. First, as you can see, when a boolean value is output by println(), “true” or “false” is displayed. Second, the value of a boolean variable is sufficient, by itself, to control the if statement. There is no need to write an if statement like this:

if(b == true) …

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the expression 10 > 9 displays the value “true.” Further, the extra set of parentheses around 10 > 9 is necessary because the + operator has a higher precedence than the >.

[image: images]Progress Check

1. What are Java’s integer types?

2. What is Unicode?

3. What values can a boolean variable have?

1. Java’s integer types are byte, short, int, and long.

2. Unicode is an international character set.

3. Variables of type boolean can be either true or false.

Project 2-1 How Far Away Is the Lightning?

Sound.java

In this project you will create a program that computes how far away, in feet, a listener is from a lightning strike. Sound travels approximately 1,100 feet per second through air. Thus, knowing the interval between the time you see a lightning bolt and the time the sound reaches you enables you to compute the distance to the lightning. For this project, assume that the time interval is 7.2 seconds.

Step by Step

1. Create a new file called Sound.java.

2. To compute the distance, you will need to use floating-point values. Why? Because the time interval, 7.2, has a fractional component. Although it would be permissible to use a value of type float, we will use double in the example.

3. To compute the distance, you will multiply 7.2 by 1,100. You will then assign this value to a variable.

4. Finally, you will display the result.

Here is the entire Sound.java program listing:

 /*
 Project 2-1
 Compute the distance to a lightning
 strike whose sound takes 7.2 seconds
 to reach you.
 */
 class Sound {
 public static void main(String args[]) {
 double dist;

 dist = 7.2 * 1100;

 System.out.println("The lightning is " + dist +
 " feet away.");

 }
 }

5. Compile and run the program. The following result is displayed:

 The lightning is 7920.0 feet away.

6. Extra challenge: You can compute the distance to a large object, such as a rock wall, by timing the echo. For example, if you clap your hands and time how long it takes for you to hear the echo, then you know the total round-trip time. Dividing this value by two yields the time it takes the sound to go one way. You can then use this value to compute the distance to the object. Modify the preceding program so that it computes the distance, assuming that the time interval is that of an echo.

CRITICAL SKILL 2.2 Literals

In Java, literals refer to fixed values that are represented in their human-readable form. For example, the number 100 is a literal. Literals are also commonly called constants. For the most part, literals, and their usage, are so intuitive that they have been used in one form or another by all the preceding sample programs. Now the time has come to explain them formally.

Java literals can be of any of the primitive data types. The way each literal is represented depends upon its type. As explained earlier, character constants are enclosed in single quotes. For example, ‘a’ and ‘%’ are both character constants.

Integer constants are specified as numbers without fractional components. For example, 10 and –100 are integer constants. Floating-point constants require the use of the decimal point followed by the number’s fractional component. For example, 11.123 is a floating-point constant. Java also allows you to use scientific notation for floating-point numbers.

By default, integer literals are of type int. If you want to specify a long literal, append an l or an L. For example, 12 is an int, but 12L is a long.

By default, floating-point literals are of type double. To specify a float literal, append an F or f to the constant. For example, 10.19F is of type float.

Although integer literals create an int value by default, they can still be assigned to variables of type char, byte, or short as long as the value being assigned can be represented by the target type. An integer literal can always be assigned to a long variable.

Hexadecimal and Octal Constants

As you probably know, in programming it is sometimes easier to use a number system based on 8 or 16 instead of 10. The number system based on 8 is called octal, and it uses the digits 0 through 7. In octal the number 10 is the same as 8 in decimal. The base 16 number system is called hexadecimal and uses the digits 0 through 9 plus the letters A through F, which stand for 10, 11, 12, 13, 14, and 15. For example, the hexadecimal number 10 is 16 in decimal. Because of the frequency with which these two number systems are used, Java allows you to specify integer constants in hexadecimal or octal instead of decimal. A hexadecimal constant must begin with 0x (a zero followed by an x). An octal constant begins with a zero. Here are some examples:

hex = 0xFF; // 255 in decimal
oct = 011; // 9 in decimal

Character Escape Sequences

Enclosing character constants in single quotes works for most printing characters, but a few characters, such as the carriage return, pose a special problem when a text editor is used. In addition, certain other characters, such as the single and double quotes, have special meaning in Java, so you cannot use them directly. For these reasons, Java provides special escape sequences, sometimes referred to as backslash character constants, shown in Table 2-2. These sequences are used in place of the characters that they represent.

For example, this assigns ch the tab character:

ch = ‘\t’;

The next example assigns a single quote to ch:

ch = ‘\’’;

String Literals

Java supports one other type of literal: the string. A string is a set of characters enclosed by double quotes. For example,

“this is a test”

Table 2-2 Character Escape Sequences

[image: images]

is a string. You have seen examples of strings in many of the println() statements in the preceding sample programs.

In addition to normal characters, a string literal can also contain one or more of the escape sequences just described. For example, consider the following program. It uses the \n and \t escape sequences.

[image: images]

Notice how the \n escape sequence is used to generate a new line. You don’t need to use multiple println() statements to get multiline output. Just embed \n within a longer string at the points where you want the new lines to occur.

[image: images]Progress Check

1. What is the type of the literal 10? What is the type of the literal 10.0?

2. How do you specify a long literal?

3. Is “x” a string or a character literal?

1. The literal 10 is an int, and 10.0 is a double.

2. A long literal is specified by adding the L or l suffix. For example, 100L.

3. The literal “x” is a string.

Ask the Expert

Q: Is a string consisting of a single character the same as a character literal? For example, is “k” the same as ‘k’?

A: No. You must not confuse strings with characters. A character literal represents a single letter of type char. A string containing only one letter is still a string. Although strings consist of characters, they are not the same type.

CRITICAL SKILL 2.3 A Closer Look at Variables

Variables were introduced in Module 1. Here, we will take a closer look at them. As you learned earlier, variables are declared using this form of statement,

type var-name;

where type is the data type of the variable, and var-name is its name. You can declare a variable of any valid type, including the simple types just described. When you create a variable, you are creating an instance of its type. Thus, the capabilities of a variable are determined by its type. For example, a variable of type boolean cannot be used to store floating-point values. Furthermore, the type of a variable cannot change during its lifetime. An int variable cannot turn into a char variable, for example.

All variables in Java must be declared prior to their use. This is necessary because the compiler must know what type of data a variable contains before it can properly compile any statement that uses the variable. It also enables Java to perform strict type checking.

Initializing a Variable

In general, you must give a variable a value prior to using it. One way to give a variable a value is through an assignment statement, as you have already seen. Another way is by giving it an initial value when it is declared. To do this, follow the variable’s name with an equal sign and the value being assigned. The general form of initialization is shown here:

type var = value;

Here, value is the value that is given to var when var is created. The value must be compatible with the specified type. Here are some examples:

int count = 10; // give count an initial value of 10
char ch = ‘X’; // initialize ch with the letter X
float f = 1.2F; // f is initialized with 1.2

When declaring two or more variables of the same type using a comma-separated list, you can give one or more of those variables an initial value. For example:

int a, b = 8, c = 19, d; // b and c have initializations

In this case, only b and c are initialized.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows variables to be initialized dynamically, using any expression valid at the time the variable is declared. For example, here is a short program that computes the volume of a cylinder given the radius of its base and its height:

[image: images]

Here, three local variables— radius, height, and volume —are declared. The first two, radius and height, are initialized by constants. However, volume is initialized dynamically to the volume of the cylinder. The key point here is that the initialization expression can use any element valid at the time of the initialization, including calls to methods, other variables, or literals.

CRITICAL SKILL 2.4 The Scope and Lifetime of Variables

So far, all of the variables that we have been using were declared at the start of the main() method. However, Java allows variables to be declared within any block. As explained in Module 1, a block is begun with an opening curly brace and ended by a closing curly brace. A block defines a scope. Thus, each time you start a new block, you are creating a new scope. A scope determines what objects are visible to other parts of your program. It also determines the lifetime of those objects.

Many other computer languages define two general categories of scopes: global and local. Although supported by Java, these are not the best ways to categorize Java’s scopes. The most important scopes in Java are those defined by a class and those defined by a method. A discussion of class scope (and variables declared within it) is deferred until later in this book, when classes are described. For now, we will examine only the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that method has parameters, they too are included within the method’s scope.

As a general rule, variables declared inside a scope are not visible (that is, accessible) to code that is defined outside that scope. Thus, when you declare a variable within a scope, you are localizing that variable and protecting it from unauthorized access and/or modification. Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are creating a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means that objects declared in the outer scope will be visible to code within the inner scope. However, the reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

[image: images]

[image: images]

As the comments indicate, the variable x is declared at the start of main()‘s scope and is accessible to all subsequent code within main(). Within the if block, y is declared. Since a block defines a scope, y is visible only to other code within its block. This is why outside of its block, the line y = 100; is commented out. If you remove the leading comment symbol, a compile-time error will occur, because y is not visible outside of its block. Within the if block, x can be used because code within a block (that is, a nested scope) has access to variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they are declared. Thus, if you define a variable at the start of a method, it is available to all of the code within that method. Conversely, if you declare a variable at the end of a block, it is effectively useless, because no code will have access to it.

Here is another important point to remember: variables are created when their scope is entered, and destroyed when their scope is left. This means that a variable will not hold its value once it has gone out of scope. Therefore, variables declared within a method will not hold their values between calls to that method. Also, a variable declared within a block will lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, that variable will be reinitialized each time the block in which it is declared is entered. For example, consider this program:

// Demonstrate lifetime of a variable.
class VarInitDemo {
 public static void main(String args[]) {
 int x;

 for(x = 0; x < 3; x++) {
 int y = -1; // y is initialized each time block is entered
 System.out.println("y is: " + y); // this always prints -1
 y = 100;
 System.out.println("y is now: " + y);
 }
 }
}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is always reinitialized to –1 each time the inner for loop is entered. Even though it is subsequently assigned the value 100, this value is lost.

There is one quirk to Java’s scope rules that may surprise you: although blocks can be nested, no variable declared within an inner scope can have the same name as a variable declared by an enclosing scope. For example, the following program, which tries to declare two separate variables with the same name, will not compile.

[image: images]

If you come from a C/C++ background, you know that there is no restriction on the names that you give variables declared in an inner scope. Thus, in C/C++ the declaration of count within the block of the outer for loop is completely valid, and such a declaration hides the outer variable. The designers of Java felt that this name hiding could easily lead to programming errors and disallowed it.

[image: images]Progress Check

1. What is a scope? How can one be created?

2. Where in a block can variables be declared?

3. In a block, when is a variable created? When is it destroyed?

1. A scope defines the visibility and lifetime of an object. A block defines a scope.

2. A variable can be defined at any point within a block.

3. Inside a block, a variable is created when its declaration is encountered. It is destroyed when the block exits.

Operators

Java provides a rich operator environment. An operator is a symbol that tells the compiler to perform a specific mathematical or logical manipulation. Java has four general classes of operators: arithmetic, bitwise, relational, and logical. Java also defines some additional operators that handle certain special situations. This module will examine the arithmetic, relational, and logical operators. We will also examine the assignment operator. The bitwise and other special operators are examined later.

CRITICAL SKILL 2.5 Arithmetic Operators

Java defines the following arithmetic operators:

[image: images]

The operators +, −, *, and / all work the same way in Java as they do in any other computer language (or algebra, for that matter). These can be applied to any built-in numeric data type. They can also be used on objects of type char.

Although the actions of arithmetic operators are well known to all readers, a few special situations warrant some explanation. First, remember that when / is applied to an integer, any remainder will be truncated; for example, 10/3 will equal 3 in integer division. You can obtain the remainder of this division by using the modulus operator %. It works in Java the way it does in other languages: it yields the remainder of an integer division. For example, 10 % 3 is 1. In Java, the % can be applied to both integer and floating-point types. Thus, 10.0 % 3.0 is also 1. The following program demonstrates the modulus operator.

// Demonstrate the % operator.
class ModDemo {
 public static void main(String args[]) {
 int iresult, irem;
 double dresult, drem;

 iresult = 10 / 3;
 irem = 10 % 3;

 dresult = 10.0 / 3.0;
 drem = 10.0 % 3.0;

 System.out.println("Result and remainder of 10 / 3: " +
 iresult + " " + irem);
 System.out.println("Result and remainder of 10.0 / 3.0: " +
 dresult + " " + drem);

 }
}

The output from the program is shown here:

Result and remainder of 10 / 3: 3 1
Result and remainder of 10.0 / 3.0: 3.3333333333333335 1.0

As you can see, the % yields a remainder of 1 for both integer and floating-point operations.

Increment and Decrement

Introduced in Module 1, the ++ and the − − are Java’s increment and decrement operators. As you will see, they have some special properties that make them quite interesting. Let’s begin by reviewing precisely what the increment and decrement operators do.

The increment operator adds 1 to its operand, and the decrement operator subtracts 1. Therefore,

x = x + 1;

is the same as

x++;

and

x = x - 1;

is the same as

--x;

Both the increment and decrement operators can either precede (prefix) or follow (postfix) the operand. For example,

x = x + 1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied as a prefix or a postfix. However, when an increment or decrement is used as part of a larger expression, there is an important difference. When an increment or decrement operator precedes its operand, Java will perform the corresponding operation prior to obtaining the operand’s value for use by the rest of the expression. If the operator follows its operand, Java will obtain the operand’s value before incrementing or decrementing it. Consider the following:

x = 10;
y = ++x;

In this case, y will be set to 11. However, if the code is written as

x = 10;
y = x++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it happens. There are significant advantages in being able to control when the increment or decrement operation takes place.

CRITICAL SKILL 2.6 Relational and Logical Operators

In the terms relational operator and logical operator, relational refers to the relationships that values can have with one another, and logical refers to the ways in which true and false values can be connected together. Since the relational operators produce true or false results, they often work with the logical operators. For this reason they will be discussed together here.

The relational operators are shown here:

[image: images]

The logical operators are shown next:

[image: images]

The outcome of the relational and logical operators is a boolean value.

In Java, all objects can be compared for equality or inequality using = = and !=. However, the comparison operators, <, >, <=, or >=, can be applied only to those types that support an ordering relationship. Therefore, all of the relational operators can be applied to all numeric types and to type char. However, values of type boolean can only be compared for equality or inequality, since the true and false values are not ordered. For example, true > false has no meaning in Java.

For the logical operators, the operands must be of type boolean, and the result of a logical operation is of type boolean. The logical operators, &, |, ^, and !, support the basic logical operations AND, OR, XOR, and NOT, according to the following truth table.

[image: images]

As the table shows, the outcome of an exclusive OR operation is true when exactly one and only one operand is true.

Here is a program that demonstrates several of the relational and logical operators:

// Demonstrate the relational and logical operators.
class RelLogOps {
 public static void main(String args[]) {
 int i, j;
 boolean b1, b2;

 i = 10;
 j = 11;
 if(i < j) System.out.println("i < j");
 if(i <= j) System.out.println("i <= j");
 if(i != j) System.out.println("i != j");
 if(i == j) System.out.println("this won′t execute");
 if(i >= j) System.out.println("this won′t execute");
 if(i > j) System.out.println("this won′t execute");

 b1 = true;
 b2 = false;
 if(b1 & b2) System.out.println("this won′t execute");
 if(!(b1 & b2)) System.out.println("!(b1 & b2) is true");
 if(b1 | b2) System.out.println("b1 | b2 is true");
 if(b1 ^ b2) System.out.println("b1 ^ b2 is true");
 }
}

The output from the program is shown here:

i < j
i <= j
i != j
!(b1 & b2) is true
b1 | b2 is true
b1 ^ b2 is true

Short-Circuit Logical Operators

Java supplies special short-circuit versions of its AND and OR logical operators that can be used to produce more efficient code. To understand why, consider the following. In an AND operation, if the first operand is false, the outcome is false no matter what value the second operand has. In an OR operation, if the first operand is true, the outcome of the operation is true no matter what the value of the second operand. Thus, in these two cases there is no need to evaluate the second operand. By not evaluating the second operand, time is saved and more efficient code is produced.

The short-circuit AND operator is &&, and the short-circuit OR operator is ||. Their normal counterparts are & and |. The only difference between the normal and short- circuit versions is that the normal operands will always evaluate each operand, but short-circuit versions will evaluate the second operand only when necessary.

Here is a program that demonstrates the short-circuit AND operator. The program determines whether the value in d is a factor of n. It does this by performing a modulus operation. If the remainder of n / d is zero, then d is a factor. However, since the modulus operation involves a division, the short-circuit form of the AND is used to prevent a divide-by-zero error.

[image: images]

To prevent a divide-by-zero, the if statement first checks to see if d is equal to zero. If it is, the short-circuit AND stops at that point and does not perform the modulus division. Thus, in the first test, d is 2 and the modulus operation is performed. The second test fails because d is set to zero, and the modulus operation is skipped, avoiding a divide-by-zero error. Finally, the normal AND operator is tried. This causes both operands to be evaluated, which leads to a run-time error when the division by zero occurs.

[image: images]Progress Check

1. What does the % operator do? To what types can it be applied?

2. What type of values can be used as operands of the logical operators?

3. Does a short-circuit operator always evaluate both of its operands?

1. The % is the modulus operator, which returns the remainder of an integer division. It can be applied to all of the numeric types.

2. The logical operators must have operands of type boolean.

3. No, a short-circuit operator evaluates its second operand only if the outcome of the operation cannot be determined solely by its first operand.

CRITICAL SKILL 2.7 The Assignment Operator

You have been using the assignment operator since Module 1. Now it is time to take a formal look at it. The assignment operator is the single equal sign, =. This operator works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

Ask the Expert

Q: Since the short-circuit operators are, in some cases, more efficient than their normal counterparts, why does Java still offer the normal AND and OR operators?

A: In some cases you will want both operands of an AND or OR operation to be evaluated because of the side effects produced. Consider the following:

 // Side effects can be important.
 class SideEffects {
 public static void main(String args[]) {
 int i;

 i = 0;

 /* Here, i is still incremented even though
 the if statement fails. */
 if(false & (++i < 100))
 System.out.println("this won′t be displayed");
 System.out.println("if statements executed: " + i); // displays 1

 /* In this case, i is not incremented because
 the short-circuit operator skips the increment. */
 if(false && (++i < 100))
 System.out.println("this won′t be displayed");
 System.out.println("if statements executed: " + i); // still 1 !!
 }
 }

As the comments indicate, in the first if statement, i is incremented whether the if succeeds or not. However, when the short-circuit operator is used, the variable i is not incremented when the first operand is false. The lesson here is that if your code expects the right-hand operand of an AND or OR operation to be evaluated, you must use Java’s non-short-circuit forms of these operations.

The assignment operator does have one interesting attribute that you may not be familiar with: it allows you to create a chain of assignments. For example, consider this fragment:

int x, y, z;
x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works because the = is an operator that yields the value of the right-hand expression. Thus, the value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a “chain of assignment” is an easy way to set a group of variables to a common value.

CRITICAL SKILL 2.8 Shorthand Assignments

Java provides special shorthand assignment operators that simplify the coding of certain assignment statements. Let’s begin with an example. The assignment statement shown here

x = x + 10;

can be written, using Java shorthand, as

x += 10;

The operator pair += tells the compiler to assign to x the value of x plus 10.

Here is another example. The statement

x = x - 100;

is the same as

x -= 100;

Both statements assign to x the value of x minus 100.

This shorthand will work for all the binary operators in Java (that is, those that require two operands). The general form of the shorthand is

var op = expression;

Thus, the arithmetic and logical assignment operators are the following:

[image: images]

Because these operators combine an operation with an assignment, they are formally referred to as compound assignment operators.

The compound assignment operators provide two benefits. First, they are more compact than their “longhand” equivalents. Second, they are implemented more efficiently by the Java run-time system. For these reasons, you will often see the compound assignment operators used in professionally written Java programs.

CRITICAL SKILL 2.9 Type Conversion in Assignments

In programming, it is common to assign one type of variable to another. For example, you might want to assign an int value to a float variable, as shown here:

int i;
float f;
i = 10;
f = i; // assign an int to a float

When compatible types are mixed in an assignment, the value of the right side is automatically converted to the type of the left side. Thus, in the preceding fragment, the value in i is converted into a float and then assigned to f. However, because of Java’s strict type checking, not all types are compatible, and thus, not all type conversions are implicitly allowed. For example, boolean and int are not compatible.

When one type of data is assigned to another type of variable, an automatic type conversion will take place if

[image: image] The two types are compatible.

[image: image] The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int type is always large enough to hold all valid byte values, and both int and byte are integer types, so an automatic conversion from byte to int can be applied.

For widening conversions, the numeric types, including integer and floating-point types, are compatible with each other. For example, the following program is perfectly valid since long to double is a widening conversion that is automatically performed.

[image: images]

Although there is an automatic conversion from long to double, there is no automatic conversion from double to long since this is not a widening conversion. Thus, the following version of the preceding program is invalid.

[image: images]

There are no automatic conversions from the numeric types to char or boolean. Also, char and boolean are not compatible with each other. However, an integer literal can be assigned to char.

CRITICAL SKILL 2.10 Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all programming needs because they apply only to widening conversions between compatible types. For all other cases you must employ a cast. A cast is an instruction to the compiler to convert one type into another. Thus, it requests an explicit type conversion. A cast has this general form:

(target-type) expression

Here, target-type specifies the desired type to convert the specified expression to. For example, if you want to convert the type of the expression x/y to int, you can write

double x, y;
// …
(int) (x / y)

Here, even though x and y are of type double, the cast converts the outcome of the expression to int. The parentheses surrounding x / y are necessary. Otherwise, the cast to int would apply only to the x and not to the outcome of the division. The cast is necessary here because there is no automatic conversion from double to int.

When a cast involves a narrowing conversion, information might be lost. For example, when casting a long into a short, information will be lost if the long’s value is greater than the range of a short because its high-order bits are removed. When a floating-point value is cast to an integer type, the fractional component will also be lost due to truncation. For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1. The 0.23 is lost.

The following program demonstrates some type conversions that require casts:

[image: images]

The output from the program is shown here:

Integer outcome of x / y: 3
Value of b: 100
Value of b: 1
ch: X

In the program, the cast of (x / y) to int results in the truncation of the fractional component, and information is lost. Next, no loss of information occurs when b is assigned the value 100 because a byte can hold the value 100. However, when the attempt is made to assign b the value 257, information loss occurs because 257 exceeds a byte’s maximum value. Finally, no information is lost, but a cast is needed when assigning a byte value to a char.

[image: images]Progress Check

1. What is a cast?

2. Can a short be assigned to an int without a cast? Can a byte be assigned to a char without a cast?

3. How can the following statement be rewritten?

 x = x + 23;

1. A cast is an explicit conversion.

2. Yes. No.

3. x += 23;

Operator Precedence

The following table shows the order of precedence for all Java operators, from highest to lowest. This table includes several operators that will be discussed later in this book.

[image: images]

Project 2-2 Display a Truth Table for the Logical Operators

LogicalOpTable.java

In this project you will create a program that displays the truth table for Java’s logical operators. You must make the columns in the table line up. This project makes use of several features covered in this module, including one of Java’s escape sequences and the logical operators. It also illustrates the differences in the precedence between the arithmetic + operator and the logical operators.

Step by Step

1. Create a new file called LogicalOpTable.java.

2. To ensure that the columns line up, you will use the \t escape sequence to embed tabs into each output string. For example, this println() statement displays the header for the table:

 System.out.println("P\tQ\tAND\tOR\tXOR\tNOT");

3. Each subsequent line in the table will use tabs to position the outcome of each operation under its proper heading.

4. Here is the entire LogicalOpTable.java program listing. Enter it at this time.

 // Project 2-2: a truth table for the logical operators.
 class LogicalOpTable {
 public static void main(String args[]) {

 boolean p, q;

 System.out.println("P\tQ\tAND\tOR\tXOR\tNOT");

 p = true; q = true;
 System.out.print(p + "\t" + q +"\t");
 System.out.print((p&q) + "\t" + (p|q) + "\t");
 System.out.println((p^q) + "\t" + (!p));

 p = true; q = false;
 System.out.print(p + "\t" + q +"\t");
 System.out.print((p&q) + "\t" + (p|q) + "\t");
 System.out.println((p^q) + "\t" + (!p));

 p = false; q = true;
 System.out.print(p + "\t" + q +"\t");
 System.out.print((p&q) + "\t" + (p|q) + "\t");
 System.out.println((p^q) + "\t" + (!p));

 p = false; q = false;
 System.out.print(p + "\t" + q +"\t");
 System.out.print((p&q) + "\t" + (p|q) + "\t");
 System.out.println((p^q) + "\t" + (!p));
 }
 }

Notice the parentheses surrounding the logical operations inside the println() statements. They are necessary because of the precedence of Java’s operators. The + operator is higher than the logical operators.

5. Compile and run the program. The following table is displayed.

[image: images]

6. On your own, try modifying the program so that it uses and displays 1’s and 0’s, rather than true and false. This may involve a bit more effort than you might at first think!

CRITICAL SKILL 2.11 Expressions

Operators, variables, and literals are the constituents of expressions. An expression in Java is any valid combination of those pieces. You probably already know the general form of an expression from your other programming experience, or from algebra. However, a few aspects of expressions will be discussed now.

Type Conversion in Expressions

Within an expression, it is possible to mix two or more different types of data as long as they are compatible with each other. For example, you can mix short and long within an expression because they are both numeric types. When different types of data are mixed within an expression, they are all converted to the same type. This is accomplished through the use of Java’s type promotion rules.

First, all char, byte, and short values are promoted to int. Then, if one operand is a long, the whole expression is promoted to long. If one operand is a float operand, the entire expression is promoted to float. If any of the operands is double, the result is double.

It is important to understand that type promotions apply only to the values operated upon when an expression is evaluated. For example, if the value of a byte variable is promoted to int inside an expression, outside the expression, the variable is still a byte. Type promotion only affects the evaluation of an expression.

Type promotion can, however, lead to somewhat unexpected results. For example, when an arithmetic operation involves two byte values, the following sequence occurs: First, the byte operands are promoted to int. Then the operation takes place, yielding an int result. Thus, the outcome of an operation involving two byte values will be an int. This is not what you might intuitively expect. Consider the following program:

[image: images]

Somewhat counterintuitively, no cast is needed when assigning b * b to i, because b is promoted to int when the expression is evaluated. However, when you try to assign b * b to b, you do need a cast—back to byte! Keep this in mind if you get unexpected type-incompatibility error messages on expressions that would otherwise seem perfectly OK.

This same sort of situation also occurs when performing operations on chars. For example, in the following fragment, the cast back to char is needed because of the promotion of ch1 and ch2 to int within the expression.

char ch1 = ‘a’, ch2 = ‘b’;
ch1 = (char) (ch1 + ch2);

Without the cast, the result of adding ch1 to ch2 would be int, which can’t be assigned to a char.

Casts are not only useful when converting between types in an assignment. For example, consider the following program. It uses a cast to double to obtain a fractional component from an otherwise integer division.

// Using a cast.
class UseCast {
 public static void main(String args[]) {
 int i;

 for(i = 0; i < 5; i++) {
 System.out.println(i + " / 3: " + i / 3);
 System.out.println(i + " / 3 with fractions: "
 + (double) i / 3);
 System.out.println();
 }
 }
}

The output from the program is shown here:

0 / 3: 0
0 / 3 with fractions: 0.0

1 / 3: 0
1 / 3 with fractions: 0.3333333333333333

2 / 3: 0
2 / 3 with fractions: 0.6666666666666666

3 / 3: 1
3 / 3 with fractions: 1.0

4 / 3: 1
4 / 3 with fractions: 1.3333333333333333

Spacing and Parentheses

An expression in Java may have tabs and spaces in it to make it more readable. For example, the following two expressions are the same, but the second is easier to read:

x=10/y*(127/x);
x = 10 / y * (127/x);

Parentheses increase the precedence of the operations contained within them, just like in algebra. Use of redundant or additional parentheses will not cause errors or slow down the execution of the expression. You are encouraged to use parentheses to make clear the exact order of evaluation, both for yourself and for others who may have to figure out your program later. For example, which of the following two expressions is easier to read?

x = y/3-34*temp+127;
x = (y/3) - (34*temp) + 127;

[image: images]Module 2 Mastery Check

1. Why does Java strictly specify the range and behavior of its primitive types?

2. What is Java’s character type, and how does it differ from the character type used by many other programming languages?

3. A boolean value can have any value you like because any non-zero value is true. True or False?

4. Given this output,

 One
 Two
 Three

using a single string, show the println() statement that produced it.

5. What is wrong with this fragment?

 for(i = 0; i < 10; i++) {
 int sum;

 sum = sum + i;
 }
 System.out.println("Sum is: " + sum);

6. Explain the difference between the prefix and postfix forms of the increment operator.

7. Show how a short-circuit AND can be used to prevent a divide-by-zero error.

8. In an expression, what type are byte and short promoted to?

9. In general, when is a cast needed?

10. Write a program that finds all of the prime numbers between 2 and 100.

11. Does the use of redundant parentheses affect program performance?

12. Does a block define a scope?

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

ops/t0024-01.jpg
Meaning

Less than

Less than or equal

Greaer than

Greaer than or equal

Equalto

Not equal

ops/f0495-01.jpg
class Pair<T, V extends T> { 4——————Here, V must be either the same

T first; type as T, or a subclass of T.
V second;

Pair(T a, V b) {
first = a;
second = b

}
11

ops/f0497-01.jpg
// Determine if the absolute values of two
// objects are the same.
boolean absEqual (NumericFns<?> ob) { 4————Nofice the wildcard.

if (Math.abs (num.doubleValue ())
Math. abs (ob.num.doubleValue())) return true;

return false;

}

ops/t0307-01.jpg
Protected

Private Member Default Member Member Public Member
Yes Yes Yes Yes
Visible within No Yes Yes. Yes
same package
by subelass
ible within No Yes Yes Yes
same package
by nomsubeloss
i No No Yes Yes
by subclass
Visible within | No No No Yes
different package

by non-subclass.

ops/t0192-01.jpg
0co0oo000O0O0C1
00000010
00000100
00001000

00010000
00100000
01000000

10000000

10000000
01000000

00100000
00010000

00001000

00000100
00000010
00000001

ops/page-template.xpgt

	

	

	
	

	

	
	

ops/f0329-01.jpg
// One interface can extend another.
interface A {

void methl();

void meth2 () ;

}
// B now includes methl() and meth2() - it adds meth3().
interface B extends A {
void meth3();
) B inherits A,

// This class must implement all of A and B
class MyClass implements B {
public void methl() {
System.out.println("Implement methl().");
}

ops/f0588-03.jpg
// Add list selection handler.
3lst.addListSelectionListener (this) ; +———Listen for st selecion events.

// 744 the list and label to the content pane.
3€xm.add (jscrlp) ;
j£rm.add (j1ab) ;

// pisplay the frame.
3Erm.setvisible (true) ;

}

/7 Handle list selection events
public void valueChanged (ListSelectionEvent le) { 4— Handelis selecion events.
// Get the index of the changed item.
int idx = 3lst.getSelectedIndex () ; 4——Get the index ofthe sleced/
deselected fem.
// pisplay selection, if item was selected.
1f(idx 1= -1)

ops/f0046-01.jpg
// Demonstrate escape sequences in strings
class StxDemo {
public static void main(String args(l) {
System.out.println("First line\nSecond line");
System.out.println("A\tB\tC") ;
System.out.println("D\tE\tF") Use \n fo generate a new line.

}
} Use tabsto align output.

“The output is shown here:

First line
Second line
A B c

D B F

ops/f0471-02.jpg
// Here, iOb receives the int value returned by m2().
// This value is automatically boxed so that it can be
// assigned to iOb.

Integer i0b = m2();

System.out.println("Return value from m2() is * + i0b);

// Next, m3() is called. It returns an Integer value
// which is auto-unboxed into an int.

int i=m30;

System.out.println("Return value from m3() is " + i);

// Next, Math.sqrt() is called with iOb as an argument.

// In this case, iOb is auto-unboxed and its value promoted to
// double, which is the type needed by sart().

i0b = 100;

System.out.println("Square root of iOb is " + Math.sqrt (iob));

ops/f0040-01.jpg
// Character variables can be handled like integers.
class CharArithDemo {
public static void main(String args(]) {
char ch;

ch = 1x0;
System.out.printin("ch contains " + ch);

che+; // increment che—— A char can be incremented
System.out.println("ch is now " + ch);

ch = 90; // give ch the value Z +——A char can be ossigned an integer volue.
System.out.printin("ch is now * + ch);

ops/f0175-01.jpg
// The for-each loop is essentially read-only.
class NoChange {
public static void main(String args(]) {
int nums(] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for(int x : nums) {

System.out.print (x + " ");
% = % * 10; // no effect on nums —— This does not change nums.

}
System.out.println() ;

for(int x : nums)
System.out.print (x + " ");

System.out.println();

ops/f0490-03.jpg
// Show the types.
£g0bj . showTypes () 1

// Obtain and show values.
int v = £gObj.getobl();
System.out.printin("value: " + v);

String str = tgObj.getob2();
System.out.printin("value: " + str);

ops/f0262-03.jpg
}

double area() {
return getWidth() * getHeight() / 2;
}

void showstyle() {
System.out.println(*Triangle is " + style);
}

}

class Shapess {
public static void main(String args(l) {
Triangle t1 = new Triangle();
Triangle t2 = new Triangle("right", 8.0, 12.0);
Triangle t3 = new Triangle(4.0);

t1 = t2;

System.out.println("Info for tl:
t1.showstyle () ;

t1.showbim() ;
System.out.println("Area is " + tl.area());

System.out.println() ;

System.out.println("Info for t2
t2.showstyle() ;
t2.showDim() ;

ops/f0432-02.jpg
class MyThread implements Runnable {
Thread thrd;
static SumArray sa = new SumArray();
int all;
int answer;

// Comstruct a new thread.

MyThread (String name, int nums(]) {
thrd = new Thread(this, name);
a = nums;
thrd.start(); // start the thread
}

// Begin execution of new thread.
public void run() {
int sum;

System.out.println(thrd.getName() + " starting.");
// synchronize calls to sumarray()

synchronized(sa) { 4—————————— Here, calls to sumArray() on
answer = sa.sumArray(a); sa are synchronized.

ops/f0567-02.jpg
// Create a text-based label.
JLabel jlab = new JLabel (" Swing defines the modern Java GUI.");

Creote @ swing lobe.

// A4a the label to the content pane.
3£rm.add (1ab) ; 4———— Add thelobel o the conent pane.

// pisplay the frame.
3Erm. setvisible (true) ; +——Mokethe frome visible.

i

public static void main(String args(]) {
// Create the frame on the event dispatching thread.
SwingUtilities. invokeLater (new Runnable() {
public void run() {
new SwingDemo () ; 4 SwingDemo must bo crecied on the event
) dispoiching hreod.
b
}

ops/e0188-01.jpg
11010011
| 10101010
11111011

ops/e0186-01.jpg
11010011
& 10101010
10000010

ops/f0410-03.jpg
o {
System.out.print (.
ery {

Thread. sleep(100);

}

catch (InterruptedException exc) {
System.out.println("Main thread interrupted.");

)

) while (mt.count

10);

System.out.println("Main thread ending."

ops/f0589-01.jpg
JList Demo,

sherry
on
chel
Sasha
Jossehn El
Current selection: Rachel

ops/f0270-01.jpg
// A multilevel hierarchy.
class TwoDShape {
private double width;
private double height;

// A default constructor.
Twobshape () {
width = height

)

// Parameterized constructor.
TwoDShape (double w, double h) {
width = w;
heignt - by

}

// Comstruct object with equal width and height.
TwoDShape (double x) {
width = height = x;

)

// Accessor methods for width and height.
double getwideh() { return wideh; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

0.0;

void showDim() {

ops/f0452-01.jpg
// An enumeration of Transport varieties.
enum Transport {
CAR, TRUCK, AIRPLANE, TRAIN, BOAT 4 Dedre an enumerofion.

}

class EnumDemo {
public static void main(String args(])

{
Transport tp; 4—————Declore a Transport reference.
tp = Transport.AIRPLANE; <———— Assign fp he consiont ARPLANE

// Output an enun value.

System.out .println("Value of tp: " + tp);
system.out.println();

tp = Transport.TRAIN;

ops/f0456-01.jpg
// Use an enum constructor, instance variable, and method.
enun Transport { Noice the

CAR(65), TRUCK(SS), AIRPLANB(600), TRAIN(70), BONT(22); 4— niilioter

private int speed; // typical speed of each transport

Add on insance varicbl

// constructor
Transport (int s) { speed = s; } +————Add o consiructor.

int getspeed() { return speed;) +————Addomethod.

}

class EnumDemo3 {
public static void main(String args(l)

{

Transport tp;

// Display speed of an airplane.
* miles per hour.\n");

ops/f0541-03.jpg
author = getParameter (*author”);
if (author == null) author = "mot found";e— hisimportantlo check thot
the paramele exiss!

purpose = getParameter ("purpose) ;

if (purpose == null) purpose = "mot found"
temp = getParameter ("version®
try {
if (temp 1= mull)
ver = Integer.parseInt (cemp) ;
else
ver = 0;
} catch (NunberFormatException exc) (€—— tis oo imporiantfo moke sure
Vexra 71 |/ fertor. &ode thot numeric conversions succeed.

}
}

public void paint (Graphics g) {
g.drawString ("Purpose: " + purpose, 10, 20);
g.drawString("By: " + author, 10, 40);
g.drawstring("Version: " + ver, 10, 60);
}
}

ops/t0572-01.jpg
Borderlayout CENTER | Borderlayout. EAST Borderlayout NORTH
Borderlayout. SOUTH BorderLayout WEST

ops/t0563-01.jpg
JApplet | JButton
ColorChooser | JCombobox
iclog | sditorpane
JFrame JinternalFrame.
st | Menu
“JOptionPane =
JProgressBar | RadioBution
JscrollBar | JscrollPane
Jspinner IspliPane
Soxthrea | MonFiod
JToolBar [Mooltip

Window |

ICheckBox

Component

JFileChooser

[obel

IMenuBar
IPasswordField

 RodfoButtonMenultem

JSeparator
JTabbedPane
JTextPane
Jtree

| JCheckBoxMenultem
| IDeskiopPane

| fomatedTesiold
| JlayeredPane

| Menulem

| JPopupMeny

| JRootPane

| JSider

JTable

| Togglebution

| Wiewport

|

ops/f0581-01.jpg
Use a Text Field

Enter text: [Testing

Reverse

You pressed ENTER. Text is: Testing

ops/t0565-01.jpg
Flowloyout ple layout that positions components lef-to-right, top-to-bottom.

Posiions componens rgh-o-lft or some culfral sefings.

Borderloyout Postions components within he cener o the borders o he conainer. This s
the defaulloyout for a conent pane.

Gridlayout Loys out components within a grid,

GridBoglayout [Lys out different size components within o Rlexible grid.

Boayout | Lays out components vericallyor hoizontally within a box.

Springlayout Lays out components subiec fo a sefof consiraints

ops/f0215-02.jpg
Err getErrorInfo(int i) { €———————Retum anobjectof type .
if(i >=0 & i < msgs.length)
return new Err(msgs([i], howbad[il);
else
return new Err("Invalid Error Code", 0);

i
}

class ErrInfo {
public static void main(String args(]) {
ErrorInfo err = new ErrorInfo();
Err e;

e = err.getErrorInfo(2);
System.out.println(e.msg + " severity: " + e.severity);

e = err.getErrorInfo(19);
System.out.println(e.msg + " severity

" + e.severity);
}
}

ops/f0583-01.jpg
// Demonstrate check boxes.

import java.awt.*:
import java.awt.event.;
import javax.swing.*:

class CDemo implements ItemListener {

Jrabel jlabSelected;
Jlabel jlabChanged
ICheckBox jcbAlpha
IChecksox jebBeta;
ICheckBox jchGamma;

cBpemo() {
// Create a new JFrame container.
JFrame jfrm = new JFrame ("Demonstrate Check Boxes");

// specify FlowLayout for the layout manager.
3€xm. setLayout (new FlowLayout ());

// Give the frame an initial size.
jErm. setsize (280, 120);

ops/f0585-01.jpg
Demonstrate Check Boxes

Alpha [] Beta

Gamma was just selected.
Selected check boxes: Alpha Gamma

ops/f0089-01.jpg
// Move more out of the for loop.
class Empty2 {
public static void main(string args(l) {
int i;

13 05 // move initialization out of loop
for(; i < 10;) {
System.ouc.princln(pass #" + i);
i++; // increment loop control var
}
]
}

ression

ops/f0102-01.jpg
System.out.println("\ni is " + i);

if (i==1) break one; 4———————Breaktoalabel
if (i==2) break two;
if (i==3) break three;

// this is never reached
System.out.println("won't print");

)

System.out.println("

}

System.out.println("After block two."

fter block three.");

}

System.out.println("After block one.");

}

System.out.println("After for.");

ops/f0600-01.jpg
You pressed down.

Applet started

ops/f0087-01.jpg
// A negatively running for loop.
class DecrFor {
public static void main(String args(]) {
int x;

for(x = 100; x > -100; x 5) #——————Loop control variable is
System.out.println(x) ; decremented by 5 each time.

ops/f0233-01.jpg
/{ Use a static block
class Staticelock {
static double rootOf2;
static double rootOf3;
static { + This blockis executed
System.out.printin("Inside static block." when he closs is oaded.
roOtOf2 = Math.sqrt (2.0 ;
rootOf3 = Math.sqrt(3.0) ;

}

staticBlock(String msg) {
System.out.println (msg) ;

}
}

class spemo3 {
public static void main(string args(l) {
StaticBlock ob = mew StaticBlock("Inside Constructor");

System.out.println(*Square root of 2 is " +
StaticBlock.rootOf2) ;

System.out.println("Square oot of 3 is " +
StaticBlock.rootOf3) ;

ops/f0435-04.jpg
class Threadcom {
public static void main(String args(]) {
TickTock tt = new TickTock();
MyThread mt1 = new MyThread(“Tick”, tt);
MyThread mt2 = new MyThread(“Tock”, tt);

try {
mt1.thed.join() ;
mt2.thrd. join() ;

) catch(Interruptedsxception exc) {
System.out.println("Main thread interrupted.”);

}

}
h

ops/f0285-04.jpg
void showstyle() {
System.out.printin("Triangle is " + style);

)
i

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
// A default constructor
Rectangle() {
super ();

b

/1 constructor for Rectangle.
Rectangle (double w, double h) {

super(w, h, "rectangle); // call superclass constructor
)

// Construct a square.
Rectangle (double x) {

super (x, "rectangle"); // call superclass constructor
}

// Construct an object from an object.
Rectangle (Rectangle ob) {

super (ob) ; // pass object to TwoDShape constructor
}

ops/f0276-04.jpg
// make a copy of tl

Triangle t2 = new Triangle(tl);

System.out .println("Info
t1.showstyle();
t1.showbim() ;
System.out.println(Area

System.out.println();

System.out .println ("Info
t2.showstyle() ;

2. showbim() ;
System.out.println ("Area

for £1: ");

is " + tl.area());

for t2:

is " + t2.areal));

ops/f0100-01.jpg
// Read input until a q is received.
class Break2 {
public static void main(String args(l)
throws java.io.IOException

char ch;

for(; ;) { 4 This “infnie” loop s
ch = (char) System.in.read(); // get a chax ferminoted by the breok.
if(ch == 'q') break; +————————————1
)

System.out.println("You pressed

)

}

ops/f0228-01.jpg
// A simple example of recursion.
class Factorial {
// This is a recursive function.
int factR(int n) {
int result;

if (n==1) return 1;
result = factR(n-1) * n;
return result

) Execute the recursive call fo factR().

// This is an iterative equivalent.
int factI(int n) {
int t, result;
result = 1;
for(t=1; t <= n; t++) result *= t;
return result;
b
}

ops/f0222-01.jpg
// Demonstrate an overloaded constructor.

class MyClass (
int x

MyClass () { 4 Comsinc obiocts in a variey of s
System.out.println ("Inside MyClass()."
x=0;

}

MyClass (int 1) { +
Systen.out .println (*Inside MyClass (int) .

}

MyClass (double d) { «
System.out.println("Inside MyClass(double).");

x = (int) d;

b
MyClass (int 1, int §) { —m—- |

System.out.println("Inside MyClass(int, int).");

ops/f0320-03.jpg
class Seriesbemo2 {
public static void main(String args(l) {
ByTwos twoOb = new ByTwos () ;
ByThrees threeOb = new ByThrees();
Series o

for(int i=0; i < 5; i+s) {
ob = two0b;
System.out.println("Next ByTwos value is " +
ob.getNext ()) ; 4

ob = threeob; Access an objectvio
System.out printin("Next ByThrees value is * + [on neroco reference
ob.getNext ()) ; ¢—

ops/f0231-01.jpg
// Use a static variable.

class Staticbemo {

int x; // a normal instance variable T ¢
static int y; // a static variable 4—,0:;‘}'2;:55;}:’1

}

class SDemo {
public static void main(String args(l) {
StaticDemo obl = new StaticDemo() ;
StaticDemo ob2 = new StaticDemo() ;

/* Each object has its own copy of
an instance variable. */
obl.x = 10;
ob2.x = 20;
System.out.println("0f course, obl.x and ob2.x " +
"are independent.");
System.out.println("obl.x: " + obl.x +

ops/f0204-02.jpg
}

return false;

}

// Return true if index is within bounds.
private boolean ok(int index) {
if(index >= 0 & index < length) return true;
return false;
}

}

// Demonstrate the fail-soft array.
class FSDemo {
public static void main(String args(l) {
FailSoftArray fs = new FailSoftArray(s, -1);
int x;

// show quiet failures
System.out.println("Fail quietly.");
for(int i=0; i < (fs.length * 2); i++)
£8.pUt (4, §%10) ; 4———— Access o ooy mustbe lhrough s accessor methods.

for(int i=0; i < (fs.length * 2)
x = fs.get(i);

i)

if(x 1
}

System.out.println("");

-1) System.out.print(x + " ");

ops/f0425-03.jpg
// set the priorities

me1.thrd

me2.thrd.

/1 starc

mel.chrd.

me2.thed

exy (

me1. chrd. join(

ACatisticy (wisssa RO RICRIFIIA) .
e ioriey (Tncesd N PRIGRITY- 3|+ Gromt obighpiiy

the threads
start();
start();

me2.thrd. join() ;

}

catch (Interruptedsxception exc) {

systen.

b

systen.

system

out.println("Main thread interrupted.”);

out.println("\nHigh priority thread counted to " +
me1.count) ;

out.println("Low priority thread counted to " +
me2.count) ;

ops/t0033-01.jpg
Test x ¥2 Maxlood
Sup. top. my_var sample23

ops/f0051-01.jpg
i
This program attempts to declare a variable
in an inner scope with the same name as one
defined in an outer scope.

+++ This program will not compile. *++
“
class Nestvar (
public static void main(String args(]) {
int count; «

for(count = 0; count < 10; count = count+l) {

System.out.println("This is count: " + count);
Con't declore count ogoin because
int count; // illegal!!! 4————————ifsqlready declared.

for(count = 0; count < 2; counts+)
System.out.println("This program is in errort

ops/f0469-01.jpg
// Demonstrate autoboxing/unboxing.
class AutoBox {

public static void main(String args(l) {

Integer i0b = 100; // autobox an int +—
[——— Autobox and then auto-
int i = i0b; // auto-unbox 4l unbox the value 100.

System.out.println(i + " " + i0b); // displays 100 100
}
}

ops/f0351-01.jpg
// Use finally.
class UseFinally {
public static void genException(int what) {
int t;
int nums[] = new int2];

System.out.println("Receiving " + what) ;
try {
switch (what) {
case 0
t = 10 / what; // generate div-by-zero error
break;
case 1:
nuns (4] = 4; // generate array index error.
break.
case 2:
return; // return from try block
}
}
catch (ArithmeticException exc) {
// cateh the exception
System.out.println("Can't divide by Zero!
return; // return from catch

}

ops/f0018-01.jpg
ol
This demonstrates a variable.

Call this file Examplez.java.
«/
class Example2 (
public static void main(String args(l) {
int varl; // this declares a variable $——Docre voriobls
int var2; // this declares another variable

varl = 1024; // this assigns 1024 to varl4——— Assign avarioble o vove,
System.out.printin(*varl contains " + varl);
varz = varl / 2;

System.out.print ("var2 contains varl / 2: ");
System.out.printin(var2) ;

ops/t0370-01.jpg
Method
int available()
void dlosel)

void mark(int numBytes)

‘booleon markSupported |
int el)

int read(byte bufferl)

int read(byte buffer] }, int offset,

Description

Returns he number of byesof inputcurrently avalabl for reading.

Closes the input source. Further read attempts will generate.

 an I0Excepion.

Ploces a mork ot the current point in the input seam that will remain
volid il numBytes bytes are recd.

Returs rue if mark()/ resel)are supported by the invoking sream.

Returns o infege representotion of the next vailoble by ofinpu.

vvx is returned when the end of the file is encountered.

to read up to bufferfen s into buffer and returns the
o e of byl tht w"g:hmbrim read. -1 is returned

| when the end of th fle is encountered.

Aemps o read up fo numBytes bykes into buffer sortng ot

il ot o he b f b succsily o
. Epp ooty il o ol

void resef() Resets the inpu poinfer o the previously set mark.

long skipllong numByes) i) e s,k e romber

e~
b pubedel el

ops/f0203-01.jpg
// Public vs private access
class MyClass {
private int alpha; // private access
public int beta; // public access
int gamma; // default access (essentially public)

/* Methods to access alpha. It is OK for a
member of a class to access a private member
of the same class.

“/

void setalphalint a) {
alpha = a;

)

int getAlpha() {
return alpha;
)
}

ops/f0503-01.jpg
// Demonstrate a simple generic method.
class GenericMethodDemo {

// Determine if the contents of two arrays are the same.
static <T, V extends T» boolean arraysEqual (T(] x, VO y) {
§f(x.length 1= y.length) return false;

for(int i=0; i < x.length; i++)
i (ix(i] .equals(y[il)) return false; // arrays differ

return true; // contents of arrays are equivalent

)

public static void main(String args(l) {

Integer nums(] = { 1, 2, 3, 4, 5 };
Integer nums2(] = { 1, 2, 3, 4, 5
Integer nums3(] = { 1, 2, 7, 4, 5 };

Integer numsdll = { 1, 2, 7, 4, 5, 6 };

ops/f0310-02.jpg
class Protectbemo {
public static void main(String args(]) {
ExtBook books[] = new ExtBook(S];

books [0]

new ExtBook ("Java: A Beginner's Guide",
"Schilde", 2007, "Osborne/McGraw-Hill");

books (1] = new ExtBook("Java: The Complete Reference",

"Schildt”, 2007, "Osborne/McGraw-Hill");

books (2] = new ExtBook ("The Art of Java",
"Schildt and Holmes®, 2003,
"Osborne/McGraw-Hill") ;
books (3] = new BxtBook ("Red Storm Rising",
"Clancy®, 1986, "Putnam');
books (4] = new ExtBook ("On the Road",
"Kerouac", 1955, "Viking");
for(int §=0; i < books.length; ir+) books(il.show();

// Find books by author
System.out.println(*Showing all books by Schildt.");
for(int i=0; i < books.length; i++)
if (books [1] .getAuthor () == "Schildt")
System.out .println (books 1] .getTitle());

// books(o].title = "test title'; // Brror - not accessible

}
} A R Sl Nl e i A

ops/t0019-01.jpg

ops/f0164-01.jpg
// Assigning array reference variables.
class AssignARef {
public static void main(String args(l) {
int i;

int numsl{] = new int[10];
int nums2(] = new int[10]

for(i=0; i < 10; is+)
nums1(i] = i;

for(i=0; i < 10; is+)
nums2[i] = -i;

System.out.print ("Here is numsl: *);

£or(i=0; i < 10; its)
System.out.print (nums1(i] + * ");

System.out.println() ;

System.out.print ("Here is nums2: ");

for(i=0; i < 10; iss)
System.out.print (nums2[i] + " ");

system.out.println();

ops/f0507-01.jpg
// A generic interface example.

// A generic containment interface.
// This interface implies that an implementing
// class contains one or more values.
interface ContainmenteT> { $—————— Ageneric inerface.
// The contains() method tests if a
// specific item is contained within
// an object that implements Containment.
boolean contains (T o) ;

}

// Implement Containment using an array to
// hold the values
class MyClass<T> implements Containment<Ts { €—— Any closs hot implements

TU arrayRef; o generi interfoce must
islfbe generic

MyClass(T(] o) {
arrayRef o;
1

ops/f0127-01.jpg
// Use a return value.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; /7 fuel consumption in miles per gallon

// Return the range.
int range() (
return mpg * fuelcap; «———— Retum the ronge for a given vehide.
}
}

class RetMeth {
public static void main(String args(]) {
Vehicle minivan - new vVehicle();
Vehicle sportscar = new Vehicle();

int rangel, rangez;

ops/f0441-02.jpg
// Use synchronized block to check suspended and stopped.

synchronized (this) {
while (suspended) {
) Lo This synchronized block checks
if (stopped) break; suspended and stopped.

}
}

} catch (InterruptedBxception exc) {
System.out.println(thrd.getName () + " interrupted.");

}

System.out .println(thrd.getName () + " exiting.");
)

// stop the thread.
synchronized void mystop() {
stopped = true;

// The following lets a suspended thread be stopped.

suspended = false;
notify();
}

ops/t0037-01.jpg
Meaning

Represents rue/folse volves

‘3%%‘

8bitnteger

char

Character

Double-prcision foating point

Singl-precision loating point

Integer

§lgrEe

Long integer
Shortinteger

ops/f0256-02.jpg
}
}

class Shapes2 {
public static void main(string args(l) {
Triangle t1 = new Triangle();
Triangle t2 = new Triangle();

t1.setwidth(4.0);
t1.setHeight (4.0) ;
tl.style = "isosceles"

t2.setWidth(8.0) ;
t2.setHeight (12.0) ;
t2.style = "right";

System.out .println("Info for tl: ");
t1.showstyle() ;

t1.showdim() ;

System.out.println(Area is " + tl.area());

System.out.println();

System.out .println("Info for t2:
t2.showstyle() ;

t2.showbim() ;
System.out.println("Area is * + t2.area());

ops/f0149-01.jpg
Pwr (double b, int e) {

this.p = b
This refers to the b instance:

this.
HEEE =S variable, not the parameter.
val = 1;
if (. 0) return;
for(; e>0; e--) val = val * b;

ops/f0316-01.jpg
// Implement Series.

class ByTwos implements Series {
int start;
int val; Implement the Series interface.

ByTwos ()
start
val

}

public int getNext() {
val += 2;
return val;

}

public void reset() {
start 0;
val = 0;

}

public void setStart (int x) {
start = x;
val = x;

ops/f0141-01.jpg
// Add a constructor.

class Vehicle (

int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; /1 fuel consumption in miles per gallon

// This is a constructor for Vehicle.
Vehicle (int p, int £, int m) { 4———— Construclorfor Vehick.
passengers = p;
fuelcap
mpg = m;

)

// Return the range.
int range() {
return mpg * fuelcap;

i}

// Compute fuel needed for a given distance.
double fuelneeded(int miles) {
return (double) miles / mpg;

}
}

£

ops/f0291-05.jpg
boolean isSquare() {
if (getWidth() == getHeight()) return true;
return false;

}

double area() {
return getwidth() * getHeight ();

)

}

class AbsShape {
public static void main(String args(l) {
TwoDShape shapes(] = new TwoDShape [4] ;
shapes (0] = new Triangle("right", 8.0, 12.0);
shapes[1] = new Rectangle(10);
shapes[2] = new Rectangle(10, 4);
shapes (3] = new Triangle(7.0);

for(int i=0; i < shapes.length; i++) {
System.out.println("object is " +
shapes (1] .getName ()) ;
System.out.println("Area is " + shapes[il.area());

System.out.println();
}
}
}

ops/t0355-01.jpg
Exception Meaning

ClassNoffoundException Class not found.

CloneNotSupportedException Attemp fo lone an objectthat does ot implement
prosedisc tho! Conectle niofoce "

legolAccessExcepion Access fo a das i denied.

InslonfafionException Attemp fo create an object of an obstract dlss or

infefoce.

InterrupledException One e hos been ntrped by anthr

NoSuchFieldException | A requested field does not exis.

NoSuchMethodExcepfion ‘A requested method does nof exisl.

ops/f0291-01.jpg
// Create an abstract class.

abstract class TwoDShape {4——————TwoDShape is now absira.
private double width;
private double height;
private String name;

// A default constructor.
TwoDShape () {
width = height = 0.0;
name = *null";

)

// Parameterized constructor.

TwoDShape (double w, double h, String n) {
width = w;
height
name = n;

)

// Construct object with equal width and height.
TwobShape (double x, String n) {
width = height = x
name = n;

ops/f0130-01.jpg
class Factor {
boolean isFactor (int a, int b) | 4———Ths mehod hos o porameters.
Si£((b % a) == 0) retumn true;
elce retum false;

b
}

class IsFact {
public static void main(String args(l) {
Factor x = new Factor(); i e
oisFador{].
if (x.isFactor (2, 20)) System.out.println("2 is factor"):
if(x.isFactor (3, 20)) System.out.println("this won't be displayed”);

ops/f0283-01.jpg
// Demonstrate dynamic method dispatch.

class Sup {
void who() {
System.out.println("who() in Sup");
}

}

class Subl extends Sup {
void who() {
System.out.println("who() in Subl");
}

}

class Sub2 extends Sup {
void who() {
System.out.println("who() in Sub2");
}

}

ops/f0123-01.jpg
// Add range to Vehicle.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons

int mpg; // fuel consumption in miles per gallon

/1 Display the range.
void range () { «———The range() method is contained witin the Vehicle closs.

system.out.println("Range is " + fuelcap * mpg);
}
}

class Addeth (
public static void main(String args(l) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();

Notice thot fuekcap and mpg are used direcly, wihout the dot opercfr.

int rangel, range2;

// assign values to fields in minivan
minivan.passengers = 7;

minivan. fuelcap = 16;

minivan.mpg = 21;

ops/f0252-02.jpg
class Shapes {
public static void main(String argsl]) {
Triangle t1 = new Triangle();
Triangle t2 = new Triangle();

t1.width = 4.0;
t1.height = 4.0;
tl.style = "isosceles";

«—— Allmembers of Triangle are availobl fo Triangle obiects,
ven those inherite rom TwoDShape.

t2.width = 8.0;
t2.height = 12.0;
t2.style = "right";

System.out .println("Info for t1: *);
t1.showstyle () ;

1. showbim() ;

System.out.println("Area is " + tl.area));

system.out.println() ;

System.out .println("Info for t2: ");
t2.showstyle () ;

2. showbim() ;

System.out.printin("Area is " + t2.area());

ops/f0394-02.jpg
System.out.println("Enter text ('stop’' to quit).

try {
do {
System.out .print (*
str = br.readLine();

if (str.compareTo("stop") == 0) break;

str = str + "\r\n"; // add newline
fw.write (str); S Waite srings o the fle.
} while(str.compareTo("stop") != 0);
} catch (I0Exception exc) {
System.out.println("Error writing to file.

}

try {
fu.close() ;
} catch(10Exception exc) {
System.out .println("Error closing file.

}

ops/f0498-03.jpg
else
System.out.println("Absolute values differ.");

System.out. tln() ;
e In his col, the wildeard

System.out.println("Testing i0b and 10b. moichos Long
¥ tion. anenqual o) T T
System.out printin(+Absolute values are squal.
ctee
Systen.out. printin(‘Absolute values differ.”

ops/t0548-01.jpg
Interface Description

Acionlistener Defines one method fo receive action events. Acton evens are generaled
by such hings as push buftons and menus.

Adjustmentisener Defines one method fo receive adfusiment evens, such as hose produced
by a scrol bor.

Componentlisener | Defines four methods o recognize when a component s hidden, moved,
resized, or shown.

Containertistener Defines two methods o recognize when a component s added o or
removed from a container.

Focuslistener Defines o methads o recognize when a componen gains or loses
keyboord focus.

emlistener Defines one method fo recognize when the siote of an fem changes.
| At ave s gonaroted by chack bos, fo exompe

Keylisener ‘Defines three methods fo recognize when key i pressed, released,
or typed.

Mouselistener ‘Defines five methods o recognize when the mouse i clicked, enfrs o
component,exits a component, i pressed, or i released.

MouseMolonlisener | Defines wo methods fo recognize when the mouse i crogged or moved.

Texlistener Defines one method fo recognize when a fext vave changes.

Windowlisener 0 when a window i aclivoted, dosed,

Defines seven methods fo oo

deacivoted, deiconifed, iconiied, opened, or quit

ops/f0276-01.jpg
class TwoDShape {
private double width;
private double height;

// A default constructor.
TwobShape () {
width = height

}

0.0;

// Parameterized comstructor.
TwoDShape (double w, double h) {
width = w;
height = h;

}

// construct an object with equal width and height.
TwoDShape (double x) {

width = height = x;
}

// Construct an object from an object.

TwoDShape (TwoDShape ob) { 4——————————— Construct object fom an object
width = ob.width;
height = ob.height;

}

ops/f0238-02.jpg
int max() {
int m = nums(0];
for(int i=1; i < nums.length; i++)
if (nums[i] > m) m = nums(i];

return m;

}

int avg() {
int a = 0;
for(int i=0; i < nums.lengt
a += nums(il;

i oiee)

return a / nums.length;

}
}
}

class NestedClassDemo {
public static void main(String args(]) {
int x[] = {3, 2, 1, 5, 6, 9, 7, 8 };
Outer outOb = new Outer (x);

outOb.Analyze () ;
}
}

ops/f0160-01.jpg
// Manually allocate differing size second dimensions.
class Ragged {
public static void main(String args(]) {

int riders() (] = new int(7][);
riders(0] = new int[10]77]
riders(1] = new int([10];
riders(2] = new int(10];
riders(3] = new int(10];
riders(4] = new int(10]; |

riders(5] = new int[2] But here, they are
riders(6] = new int(2]; 2 clements long.

int i, j;

Here, the second dimensions
are 10 elements long

// fabricate some fake data
for(i=0; i < 5; i++)
for(3=0; j < 10; j++)
riders[i] [] i+ 3+ 10;
for(i=s; i < 7; i++)
for(3=0; j < 2; j++)
riders[il (3] = i + 3 + 10;

ops/f0254-01.jpg
TwoDShape

width

height

showDim()
style

area()

showStyle()

Triangle

ops/f0261-01.jpg
// Add constructors to TwoDShape.
class TwoDShape {

private double width;

private double height;

// Parameterized comstructor.
TwoDShape (double w, double h) { 4————— A consiructor for TwoDShape.
width = w;
height =

)

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h

}

void showbim() {
System.out.println("Width and height are " +
width + * and " + height);

ops/f0494-03.jpg
System.out .printin("Reciprocal of dob is * +
dob. reciprocal ()

System.out .println("Fractional component of dob is " +
dob. fraction());

// This won't compile because String is not a
// subclass of Number.
// NumericFns<String> strob = new NumericFns<Strings ("Error");

b

} String i legol because it s

e, T P

ops/t0544-01.jpg
Method

Description

void destroy()

AccessibleConfext getAccessibleContext()
AppleiContext getAppletContext()

Sting gelAppletiniol)
AudioClip getAudioClip(URL url)

Colled by the browser ust before an o
Your applet vl override this meihod i i needs fo perform
any cleanup prior o ifs desirucion.

Returns the accessbilty contextfor the invoking object
Returns the confext associoted wih he applet
Relurns o sring tht describes the applo.

Returns an AudioClip obiect hot encapsulotes he audio
i found o e foction specied by ol

A getudeCiplURL v
String clipName)

Returns an AudioClip obiect hat encapsulotes the audio
lip found ot the location specifed by ur and hoving
the name specifed by clipName.

URL geCodeBasel) Refurns the URL associoted with the invoking applet.

URL gefDocumentBasel) Returns the URL of the HTML document that invokes
the applet

Image gefimage(URL url) Rtuns an nage bie! hl sncopales h imogo

found the location specified by url

ops/f0435-01.jpg
// Use wait{() and notify() to create a ticking clock.

class TickTock (

String state; // contains the state of the clock

synchronized void tick(boolean running) {

if (1running) { // stop the clock
state = "ticked";

notify(); // motify amy waiting threads
return;

}

System.out.print (*Tick "

state = "ticked"; // set the curremt state to ticked

notify(); // let tock() run <———tickl) notifes ock).
exy {
while (istate.equals ("tocked"))

}

catch(InterruptedException exc) {
System.out.printin("Thread interrupted.”) ;
}
}

wait(); // wait for tock() to complete €——rtick{)waits or fock().

ops/f0282-02.jpg
B(int a, int b, int ¢) {
super(a, b);

k-c) Bocause signatures differ, his
show(] simply overloads show{)

// overload show() in spercass A
void show(String msg) {

System.out.println(msg + k) ;
}

}

class Overload {

public static void main(String args(l) {
B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

}
}

ops/f0376-02.jpg
// open input file

try {
fin = new FileInputStream(args(0]);

} catch(FileNotFoundException exc) {
System.out.println("Input File Not Found");
return;

)
// open output file
try {

fout = new FileOutputStream(args(il);
} catch(FileNotFoundException exc) {
System.out.println("Error Opening Output File");

// Close the open input file.

ery {
Ein.close();

} catch(IOException exc2) {
system.out.println("Error closing input file.");

}
return;
i
// copy File
ery {
@ |
i - finread(); 4————Read bytes romone fle and
if(i 1= -1) fout.write(i); ¢—writethem o onother.

ops/f0380-04.jpg
try {
dataIn.close() ;

} catch(10Exception exc) {
System.out.println(*Error closing input file.");

}

ops/f0428-01.jpg
// Use synchronize to control access.

class sumarray {
private int sum;

synchronized int sumArray(int nums(]) { €—— sumAmay()is synchronized.

// reset sum

for(int i=0; i<nums.length; i++) {
sum += nums(i];
System.out.println(*Running total for " +
Thread.currentThread () .getName () +
" is "+ sum);

ery {
Thread.sleep(10); // allow task-switch
}
catch (Interruptedsxception exc) {
System.out .println("Main thread interrupted. "

}
}
return sum;
}
}

ops/t0389-01.jpg
Method
‘Wiiter appendichar ch)

Description
Appends chto the end of the invoking oulput sream. Retums o
reference to the invoking sireom.

‘Wiiter append{CharSequence chars)

‘Witer oppend(CharSequence chars,
int begin, int end)

Appends chars o the end of the invoking oulpu sireom. Retums
a reforence o the invoking stream. CharSequence is o inferoce
that defines read-only operafions on @ sequence of characters.

Appends he sequence of chars strting cf begin and stopping
b and ko s anl f o invking outgt seam. Reumo g

reference o the invoking sircom. CharSequence is an infeface
that defines read-only operafions on @ sequence of characters.

abstract void closel)
abstract void flush()

‘void writefint ch]

void write{char buffer]])

abstroct void waitelchar buffer|],
int offset,

Closes the output stroam. Further write aftemps will generate
an I0Exception.

Finalizes the oulput sofe o thot any buffers are cleared. That i,
P e ot i,

‘Writes a single choracter o the invoking output siream. Note
that the paramete i an in, which allows you o cal write with
expressions ithout having fo cast them bock fo chor.

‘Writes o complete array of characters fo the invoking output
stream.

Weites o subrange of numChars characers from the array
buffr, beginning ot bufe[offsof fo the invoking output sheam.

int numChors)
void write(Sting st) Writes st o the invoking output sream.
void write{Sting st int ofse, Writesa subrange of numChars chaoracters from the array st
int numChars) beginning of the specified ofset.

ops/f0385-01.jpg
/7 DOMORBLIATCS TERJON ACCess Tile8..
import java.io.*;

class RandomAccessDemo {
public static void main(String args(])

{

double datal] = { 19.4, 10.1, 123.54, 33.0, 87.9, 74.25 };
double d;
RandomAccessFile raf;

Open random access fe.

try {
raf = new RandomhccessFile("random.dat", "rw");
}

catch (FileNotFoundxception exc) {

System.out.println("Cannot open file.")
return ;

}

try {
/1 Write values to the file.
for(int i=0; i < data.length
raf.writeDouble (datalil);

}

/1 Now, read back specific values

raf.seek(0); // seek to first double 4———— Use seckl) to set he fle
4 = raf.readbouble(); pointer
System.out.println(*First value is * + d);

i) {

ops/f0392-01.jpg
EiaEs Hoagh nes |
public static veid mein(String args(l)
throws 10Bxception

{

// creats = ButferedResder using System.in
Bu feradReadsr br - new Buf ferediader (new

InputStreanizader (Syaten. in)) ;
String str;

Systen.out .printin("Enter 1ines of text.’
Eystem.out printin("Enter 'stop’ to quit

i

o {
str = br.readLine) s Use rodiine) from BufleredReader
System.out .pristin(sts) ; oread o e o frt.

} while(istr.equals("stop™));

ops/f0048-01.jpg
// Demonstrate dynamic initialization.
class DynInit {
public static void main(String args(l) {

double radius = 4, height = 5 volume is dynamicall inificlized ot run time.

// dynamically initialize volume
double volume = 3.1416 * radius * radius * height;

System.out.println("Volume is * + volume:

ops/f0583-04.jpg
}

if (jebGanma. isSelected () (
stx o= "Ganma';

}

jlabSelected.setText ("Selected check boxes: " + str);

}

public static void main(string args(]) {
// Create the frame on the event dispatching thread.

SwingUtilities. invokeLater (new Runnable() {
public void run()
new CBDemo () ;
i
b
¥

ops/f0540-01.jpg
£ Applet Viewer: Banner

the Web Java Rules

Applet started

ops/f0262-04.jpg
System.out.println("Area is " + t2.area());

System.out.println() ;

System.out.println(*Info for t3:
t3.showstyle();

3. showbim() ;
System.out.println(*Area is " + t3.area());

)

System.out.println() ;

ops/f0344-01.jpg
// Use a nested try block.
class NestTrys {
public static void main(String args()) {
// Here, numer is longer than denom.
int numer() = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom() = { 2, 0, 4, 4, 0, 8 };

try { // outer try ¢————————— Nested try blocks
for(int i=0; i<numer.length; i++) {
try { // nested try
System.out.println(numer[i] + * / +

denom[i] + " is " +
numer [i] /denom[i]) ;

}

catch (ArithmeticException exc) {
// catch the exception

System.out.println("Can't divide by Zer:
}

}

b

catch (ArrayIndexoutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");
System.out.println("Fatal error - program terminated.");

i}
)
}

ops/f0490-02.jpg
System.out.println("Type of V is * +
ob2.getClass () .getName()) ;

)

T getob1() {
return obl;

)

v getob2() {
return ob2;
)

}

// pemonstrate TwoGen.
class SimpGen {

public static void main(String args(l) { Here, Infoger s passed 1o T,
nd Sting s possed fo V.

TwoGens<Integer, String> tgObj = +—————1

new TwoGen<Integer, String>(88, "Generics");

ops/f0061-01.jpg
// Demonstrate automatic conversion from long to double.
class LtoD {
public static void main(String args(]) {
long L;
double D;

100123285L;

L
D = L; #——————Automatic conversion from long to double

System.out.println("L and D: " + L + " " + D);

ops/f0320-02.jpg
class ByThrees implements Series {
int scart;

int val;
ByThrees () {
start = 0;
val
}
public int getNext() {
val += 3;
return va:
}
public void reset() {
start = 0;
val = 0;

}

public void setStart (int x) {
start - x;
val =

ops/f0309-01.jpg
// Make the instance variables in Book protected.
package BookPack;

public class Book {
// these are now protected
protected String title;
protected String author; [—These are now protected.
protected int pubDate;

public Book(String t, String a, int d) {
title = t;
author = a
pubDate = d;

)

public void show() {
System.out.println(title);
System.out.println (author) ;
System.out.println (pubDate) ;
System.out.println();

ops/t0008-01.jpg
Simple. Java has a concise, cohesive setof features that makes it easy fo lear and use.

Secure Java provides a secure means of creating Infernet applications.
Portable Java programs can execute in any environment for which there is @ Jova
runime systm.
Objectoriented Jova emboies the modern, abjectcrented progromming phicsophy.
Robust o nemrages o s prograin b b i e nd
Molthreaded Java provides integroted supportfor mulhreaded programming.
‘Architecture-neutral | Java is notfied Yo a specific machine or aperating system archilecture.
Interpreted Java supports cros-plaform code through the use of Java bytecode.
High performance | The Java bytecode is highly oplimized for speed of execufion.
Distributed [Jovor wos designed with the distributed environment of the Infernet in mind.
Dynamic Java programs carry with them substantial amounts of runfimo type

nformalion that is used o veriy and resclve accesses o objecs f ron fime.

ops/f0380-01.jpg
// Write and then read back binary data.
import java.io.*;

class RWData {
public static void main(String args(])

{

DatautputStream dataout;
DatalnputStream dataln;

int i = 10;
double d = 1023.56;
boolean b = true;

try {
dataout = new

DataOutputStream(new FileOutputStream("testdata"));
)

catch (IOException exc) {
System.out.println("Cannot open output file.");
return;

)

try {

ops/f0159-01.jpg
o 2 34— rightindex

0 1 2 3 4

156@8

2 L5 10 1 12

lftindex
table[1][2]

ops/f0588-02.jpg
1/ Specify a flow Layout.
fxm. setLayout (new FlowLayout ());

// Give the frame an initial size.
jErm.setsize (200, 160);

// Terminate the program when the user closes the application.
jfxm. setDefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;

// create a JList

Jlst = new JList (names) ; +———— Croao holist. Switch o single-selecion
mode.
j1st. setselectionNode (ListSelect iontodel . SINGLE_SELECTION) ;

// Ada 1ist to a scroll pane.
jeerlp = new JScrollrane (31st); 4————Wiapthelitino scrol pone.

// Set the preferred size of the scroll pane.
jscrlp.setPreferredsize (new Dimension(120, 90));

// Make a label that displays the selection.
3lab = new JLabel ("Please choose a name");

ops/f0347-01.jpg
// Rethrow an exception.
class Rethrow (
public static void genException() {
// here, nuner is longer than denom
int numer(] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom(] = { 2, 0, 4, 4, 0, 8 };

for(int i=0; i<numer.length; ivs) {
ery {

System.out .println(nuner (i) + " / * +
denom([i] + v is " +
nuner (] /denom (31 :

}
cateh (ArithmeticException exc) {
/1 catch the exception
System.out .printin("Can't divide by Zero

}

catch (ArrayIndexoutofScundemsception exc) {

ops/f0452-02.jpg
// compare two enum values.
if(tp == Transport.TRAIN) 4 Compore woTronsport
System.out.println("tp contains TRAIN.\n"); ‘objects for equality.

// Use an enum to control a switch statement.
switch(tp) { ¢———————— Useon enmerationto
case CAR: control switch sttement.
System.out.println("A car carries people.
break;
case TRUCK:
System.out.println("A truck carries freight."):
break;
case AIRPLANE:
System.out.println("An airplane flies.");
break;
case TRAIN:
System.out.println("A train runs on rails.");
break;
case BOAT:
System.out.println("A boat sails on water.");
break;

ops/f0475-01.jpg
// Use static import to bring sqrt() and pow() into view.

import static java.lang.Math.sqrt; ¢— — -)
import static java.lang.Math.pow; e—— L‘:ﬁ""" mw'msqn(l

class Quadratic {
public static void main(String args(l) {

// a, b, and ¢ represent the coefficients in the
// quadratic equation: ax’ + bx + ¢ = 0
double a, b, ¢, x;

0 for x.

1/ solve ax’ + x - 3
4
1

// Find first solution.
x = (-b + sart(pow(b, 2) - 4 *a*c) / (2+a);

System.out.println("First solution: * + x);
// Find second solution.

x = (-b - sqrt(pow(b, 2) -4 *a*c) / (2+a);
System.out.println("Second solution: " + X);

ops/f0342-01.jpg
// Use multiple catch statements.
class ExcDemod {
public static void main(String args(l) {
// Here, numer is longer than denon.
int numer() = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom(] = { 2, 0, 4, 4, 0, 8 };

for(int i=0; i<numer.length; i+s) {

ery {
System.out.printin(numer[i] + * / " +
denom[i] + " is " +
numer [1] /denom(1]) ;

i)

catch (ArithmeticException exc) { 4———————— Muhiple catch stotements

// catch the exception
System.out.println("Can't divide by Zero

}

catch (ArrayIndexoutofBoundsException exc) {
// catch the exception
System.out.printin("No matching element found.");
}
) ¥
}

ops/f0435-03.jpg
// Construct a new thread
MyThread (String name, TickTock tt) {
thrd = new Thread(this, name);
££ob = te;
thrd.start(); // start the thread

}

/1 Begin execution of new thread.
public void run() {

if (thrd.getName () .compareTo("Tick") == 0) {
£or(int =0; i<5; ir+) tOb.tick(true);
ttob. tick(false) ;

}

else {
for(int §-0; i<S; is) EEOb.tock(true);
£eob. tock (alse) ;

}

ops/f0028-01.jpg
el

Demonstrate a block of code.

call this file BlockDemo.java.

*/

class BlockDemo {
public static void main(String args()) {

}
}

double i, 3, di

i=5;
3= 10;

// the target of this if is a block

PGt 0) (
System.out .println("i does not equal zero")
a3/
System.out.print("j / i is " + d);

}

The torget of the i
is ths entire block.

ops/f0459-02.jpg
tp = Transport.ATRPLANE;
tp2 = Transport.TRAIN:
tp3 = Transport.AIRPLANE;

System.out .println(

Compare ordinal velues
// Demonstrate compareTo ()
if (tp.compareTo(tp2) < 0)
System.out.println(tp + " comes before " + tp2);
if (tp.compareTo(tp2) > 0)

System.out.println(tp2 + " comes before " + tp);

if (tp.compareTo(tp3) == 0)
System.out.println(tp + " equals " + tp3);

ops/f0154-01.jpg
[6] a1dwres

[8] ardues

(] a1dures

[o] a1dwres

[s] ardures

[p] d1dwies

€] ardureg

[) ardures

[1] ardwres

[o] arduwes

ops/f0020-01.jpg
e
This program illustrates the differences
between int and double

Call this file Example3.java.
“/
class Example3 {
public static void main(String args(l) {
int var; // this declares an int variable
double x; // this declares a floating-point variable

var = 10; // assign var the value 10

% = 10.0; // assign x the value 10.0

System.out.println("Original value of var: " + var);
System.out.println("Original value of x: " + X);

System.out.println(); // print a blank line 4————Ouputa blonk line.

// now, divide both by 4
var = var / 4;

x=x/ 4
System.out .println(*var after division: " + var);
System.out.println("x after division: " + x);

ops/f0470-01.jpg
// Autoboxing/unboxing takes place with
// method parameters and return values.

class AutoBox2 {
// This method has an Integer parameter.
static void m(Integer v) { €——————————~Receives an Integer.
System.out .println("m() received " + v);
}

ops/t0368-01.jpg
Byte Stream Class Meaning

BufforedinpuSiream Buffered input sream

BufferedOutputSiream Buffered output sream

ByteArrcylnpulSheom oput seam thal reads from o byte aay

ByteArrayOulputSireom Oulput siream that wries fo byte arroy

DatainputSiream An input sream that contains mathods or reading the Jova
onderd daa ypos

DotouputSream An oulput siream th contain methods fo wrifng the Jova
andord dafa ypes

FllnputSireom Input siream that reads from a e

FileOutpulSiream Oulput sream that writes fo e

FillrinputShreom Implements InputStream

FilterOutputStream | Implements OutputStream

nputSiream Abstract closs tho describes sireom input

ObjectinputSireom Input siream for objocts

ObjectOufpusireom Oulpu stream for object

OutputSiream ‘Abstract closs thot describos sireom output

PipedinpulStream nput pipe

PipedOutputStream | Outputpipe

PrintSream Output treom th confains prin() and printinl)

PushbackinputSireom Input siream that allovs bytes fo be refurmed o the sream

RandomAccessFile ‘Supports random ccess fle 1/O

SequencelnpuSiream Input siream that i combination of o or more inputsirecms.

that wil be read sequenially, one affer the other

ops/f0418-02.jpg
System.out.println(thrd.getName() + " terminating.");
}
}

class MoreThreads {
public static void main(String args(l) {
System.out.println("Main thread starting.");

MyThread mt1 = new MyThread ("Child #1)
MyThread mt2 = new MyThread ("Child #2"); 4—— Create and stor executing

MyThread mt3 = new MyThread ("Child #3"); three threads.
do {

System.out.print (".");

ery {

Thread.sleep(100) ;
}
catch (Interruptedxception exc) (
System.out . println ("Main thread interrupted.");
}
} while (me2.count < 10 ||
me2 . count < 10 ||
me3_count < 101;

System.out .println("Main thread ending.

ops/f0583-02.jpg
// Terminate the program when the user closes the application.
3£xm. setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;

// create empty labels.
labSelected = new JLabel ("");
labChanged = new JLabel (");

// make check boxes
jcbAlpha = new JCheckBox (*Alpha") ; ¢————
jebBeta = new JCheckBox ("Beta”) ; Create the check bores
jobGamma = new JCheckBox ("Gamma") ; —

// Bvents generated by the check boxes
// are handled in common by the itemStateChanged()
// method implemented by CBDemo.
jcbAlpha.addItenListener (this) ;
jcbBeta.addItenListener (this) ;

jcbGamma. addItenListener (this) ;

// Ada check boxes and labels to the content pane.
j£rm.add (jcbAlpha) ;

j£rm.add (jcbBeta) ;

j£rm.add (JcbGanma) ;

3£rm.add (31abChanged) ;

3£rm.add (31abSelected)

ops/f0285-05.jpg
boolean isSquare() {
if (getwidth() == getHeight()) return true;
return false;

}

/1 override area() for Rectangle.
Gouble area() {4——————— Override areal | for Reclangle.
return getWidth() * getHeight();
}
}

class Dynshapes {
public static void main(String args(]) {
TwoDShape shapes (] = new TwoDShape (5] ;

shapes (0] = new Triangle("right", 8.0, 12.0);
shapes (1] = new Rectangle(10);

shapes (2] = new Rectangle(10, 4);

shapes (3] = new Triangle(7.0);

shapes[4] = new TwoDShape (10, 20, "generic®); Thep ‘“NW‘O'HMU
for(int i=0; i < shapes.length; is+) {

System.out.println("object is " + shapes[i] .getName());
System.out.println("Area is " + shapes([i].area());
System.out.println();

}

}
}

ops/f0308-01.jpg
// Book recoded for public access.
package BookPack;

public class Book {4—————Book and its members must be public
private String title; in order fo be used by other packages.
private String author;
private int pubDate;

// Now public.

public Book(String t, String a, int d) {
title = t;
author = a;
pubDate = d;

}

// Now public.

public void show() {
System.out.println(title);
System.out.println (author) ;
System.out.println(pubDate) ;
System.out.println();

}
}

ops/f0261-02.jpg
// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

Triangle(String s, double w, double h) {
super(w, h); // call superclass constructor

style
) Use super() fo execute the
TwoDShape consirucior.

double area() {
return getWidth() * getHeight() / 2;

)

void showstyle() {
System.out.println("Triangle is " + style);
)
}

ops/f0285-01.jpg
LF Dl dyxistie: Sntice, Gl epalam,
Class Twobshape {
private double width;
private double height;
private String name;

/1 A default constructor.
TwoDShape () {
width = height = 0.0;
name = "null®;

}

// Parameterized constructor.
TwoDShape (double w, double h, String n) {
widch = w;
height = h.
name = n;

}

// Construct object with equal width and height
TwoDShape (double x, Stxing n) {
width = height

i

// Construct an object from an object.
TwoDShape (TwobShape ob)
width = ob.width;

ops/f0376-03.jpg
} while(i 1= -1);
} catch(I0Exception exc) {
System.out.println("File Error");

}

try {
fin.close() ;

} catch(IOException exc)
System.out.println("Error closing input file.

}

try {
fout.close() ;

} catch(IOException exc)
System.out.println("Error closing output file.");

}

ops/f0282-01.jpg
/* Methods with differing signatures are
overloaded and not overridden. */
class A {
int i, 3

int b) {

// display i and j
void show() {

System.out.println("i and j: " + i + " " + j);
}

}

// Create a subclass by extending class A.
class B extends A {
int k;

ops/f0574-01.jpg
// Demonstrate a push button and handle action events.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*

class ButtonDemo implements ActionListener {
JLabel jlab;
Buttonbemo() {

// create a new JFrame container.
JFrame jfrm = new JFrame ("A Button Example");

// specify Flowiayout for the layout manager.
jErm. setLayout (new FlowLayout () ;

// Give the frame an initial size.
jfrm.setsize (220, 90);

// Terminate the program when the user closes the application.
jrm. setDefaultCloseOperation (JFrame . EXIT_ON_CLOSE) ;

// Make two buttons.
JButton jbralp - new JBUEEOR(“UB") 7 e tc ok butons
JButton jbtnDown = new JButton("Down"); €—I :

ops/f0087-02.jpg
// Use commas in a for statement.
class Comma {
public static void main(String args()) {

ine 1, 3;
for(i=0, j= i<d; den,) 4 Nofice the two loop
System.out printin("i and 3+ " 4 &+ % vy §); conrolvoriobles

ops/f0395-02.jpg
ery {
while((s = br.readline()) t= null) { <————"Rood lies from the e and
System.out.println(s); display them on the screen.
}
} catch(10Bxception exc) {
System.out .println("Error reading file.");

}

ey
£r.close0) s

} cateh (10Bxception exc) {
Syscem.out.println (+Error closing file.”

}

ops/f0432-01.jpg
// Use a synchronized block to control access to SumArray.
class Sumarray {
private int sum;

3 " Here, sumArray() is
—Here,
int sumArray(int nums()) { S aciroris
sum = 0; // reset sum = ks

for(int i=0; icnums.length; irs) {

sum += nums (]

System.out.println("Running total for " +
Thread. currentThread () .getName () +
vis "+ sum);

try {

Thread.sleep(10); // allow task-switch
}

catch (InterruptedException exc) {
System.out.println("Main thread interrupted."
)

}

return sum;

)
}

ops/t0547-01.jpg
Event Class.

Description

AcionEvent Goneralo when a buton is presse, a s fom i double-clicked, o a menu fom
i sleced.

AdiusimentEvent | Generoled when a scrol bor is manipulated.

‘ComponentEvent | Genarated when o componet s hidden, moved, reized, or becomes visbl.

ContinerEvent | Goneraled when a component is addd Io or removed from o container.

FocusEvent Goneralod when a component gains or loses keyboord focus.

nputEvent Abstoctsupercass for oll componentinput event classes.

HemEvent | Ganeroted whn a check bos or st e s dlicked; oso occurs when a choice
slecion is made o a checkable men fomi selected or deselected.

KeyEvent Generalod when input i receved from the keyboord.

MovseEvent Goneralod when the mousa s drogged or moved, licke, presse, or reeased;
alo generaied when he mouse enters or exif o compone.

TextEvent | Generated when the vlue of a text area or fext fied s changed.

WindowEvent | Generated when a window is activeted, losed, deactivated, deiconfed,

iconified, opened, or quit.

ops/t0545-01.jpg
void play{URL url, String clipName)

#fon audio dip is found af the location specified by url
with the nome specifed by clipName, the dip is played.

void resize(Dimension dim)

Resizes the applet according o the dimensions specified
by dim. Dimension is @ clss stored inside jova.aw. I
contoins hwo infeger filds: width and height.

void resizelint wic, int heighi

finol void seStub{AppletStub stubObj)

Resizes the applet according 1o the dimensions specifed
by widh oo Tt =
Makes stubObi the stub for the applet. This method is used
b th i sysom and is o sl ol by yeur
applet. A stb s @ smallpiece of code thot provides the
linkoge between your apple and the browser.

void showStats(Sring)

void start{)

Displays sir i the stofus window of the browser or applet
viewer, I the browser docs not support @ staus window,
then no ociion fokes place.

Colled by the browser when an applet should start (or
resume) executon. It s automaticaly called ofe i)

when an applet firt begins.

void stop()

Colled by the browser 1o suspend execuiion of the applel,
Once stopped, on apple s restarled when the browser
calls tart).

ops/f0550-02.jpg
// Handle mouse entered.
public void mouseEntered (MouseEvent me) {
mouseX = 0;
mouseY = 10;
msg = "Mouse entered.";
repaint () ;

)

// Handle mouse exited.
public void mouseExited (MouseEvent me) {
mouseX = 0;

mouseY = 10
msg = "Mouse exited.";
repaint () ;

)

// Handle button pressed.
public void mousePressed (MouseEvent me) {
// save coordinates
mouseX = me.getx();
mouseY = me.get¥();
msg = "Down";
repaint () ;

ops/f0246-01.jpg
// Varargs and overloading.
class VarArgs3 { First version of vaTest()

static void vaTest (int ... v) (4—‘

system.out.println ("vaTest (int
"Number of args: " + V.lengnh),
System.out.println("Contents: ");

for(int i=0; i < v.length; i++)
System.out.println(" arg " + i + ": "+ v[il);

System.out.println();
} Second version of vaTest()

static void vaTest (boolean ... v) (<—|

System.out.println ("vaTest (boolean .
"Number of args: " + v.length);
System.out.println("Contents: ");

for(int i=0; i < v.length; i+s)
System.out.println(* arg " + i + "

"+ vIil);

ops/f0410-02.jpg
count++;
} while(count < 10);

}

catch (InterruptedException exc) {
System.out.println(thrdName + " interrupted.")

}

System.out.println(thrdName + " terminating

}
}

class UseThreads {
public static void main(string args(l) {
System.out.println("Main thread starting.”);

// First, construct a MyThread object.
MyThread me = new MyThread("Child H1"); «——— Creale a runnable obiect

// Next, comstruct a thread from that object.
Thread newThrd = new Thread(mt) ; €————— Consiructathread on that b

// Finally, start execution of the thread
newThrd. start () ; 4—————————— Siart running the thread.

ops/f0231-02.jpg
"\nob2.
System.out.printin() ;

"o+ ob2.x);

/* Each object shares one copy of
a static variable. */
System.out.println("The static variable y is shared.");
obl.y = 19;
System.out.println("obl.y: " + obl.y +
"\nob2. + ob2.y);
System.out.println();

System.out.println("The static variable y can be" +
" accessed through its class.");
Staticbemo.y = 11; // Can refer to y through class name
System.out.println("StaticDemo.y: " + StaticDemo.y +
"\nob1. + obl.y +
"\nob2 . + ob2.y);

ops/f0541-02.jpg
// Pass a parameter to an applet.
import java.awt.*;

inport java.applet.*; s s
%8 passed fo the opple.
<applet code='Param" widt
<param name-author value="Herb Schildt's
<param name-purpose value='Demonstrate Parameters’s
<param name-version value=2>

</applets

“

public class Param extends Applet (
String author,
String purpose;
int ver;

public void start() {
string temp;

ops/f0576-01.jpg
AButton Example

up

Down

You pressed Uy

ops/f0228-02.jpg
class Recursion {
public static void main(String args(l) {
Factorial £ = new Factorial();

System.out.println("Factorials using recursive method.") ;
System.out.println("Factorial of 3 is " + f.factR(3));
System.out.println("Factorial of 4 is " + £.factR(4));
System.out.println("Factorial of 5 is " + £.factR(5));
System.out.println();

System.out.println("Factorials using iterative method.
System.out.println("Factorial of 3 is " + £.factI(3));
System.out.println("Factorial of 4 is " + £.factI(4));
System.out.println("Factorial of 5 is " + f.factI(s));

ops/f0255-01.jpg
// Private members are not inherited.
// This example will not compile.

// A class for two-dimensional objects.

class TwoDShape {
private double width;
private double height

// these are
// now private

void showbim() {
System.out.println("width and height are " +
width + " and " + height);
}
}

// A subclass of TwobShape for triangles.
class Triangle extends TwoDShape {
String style;

Can't access a private member
of @ superclass.
double area() {

return width * height / 2; // Error! can't access
}

void showsStyle() {
System.out.println("Triangle is " + style);
}

ops/f0204-03.jpg
// now, handle failures
System.out.println("\nFail with error reports.”):
for(int i=0; i < (fs.length * 2); i+s)
if(1fs.put (i, i*10))
System.out.println(*Index * + i + " out-of-bounds");

for(int i=0; i < (fs.length * 2); i++) {
x = £s.get(i);
if(x t= -1) System.out.print(x + " ")
else
System.out.println(*Index * + i + " out-of-bounds");

ops/f0067-01.jpg
// A promotion surprise!
class PromDemo (
public static void main(String args(l) {

byte b
int i;

No castnesded because resul i already elevted fo it
bet0; N

b * b; // OK, mo cast needed

- T Cotisnesded e o signanint i o byl

= (byte) (b * b); // cast needed:

o

System.out.println("i and b: " + i + " " + b);

ops/f0503-02.jpg
/"
1

)
}

if (arraysEqual (nums, nums)) 4——————————— The type arguments for Tand V.

System.out.println(*nuns equals nums); oroimplcily deermined when
the method i caled.

if (arraysEqual (nuns, nums2))
System.out.println(*nums equals nums2");

if (arraysEqual (nums, nums3))
System.out.println(nums equals nums3");

if (arraysEqual (nums, numsd))
System.out.println(*nums equals numsd"

// create an array of Doubles
Double dvals(] = { 1.1, 2.2, 3.3, 4.4, 5.5 };

// This won't compile because nums and dvals
/1 are mot of the same type.
if (arraysEqual (nuns, dvals))
System.out.println("nums equals dvals");

ops/f0244-01.jpg
// Use varargs with standard arguments.
class VarArgs2 {

// Here, msg is a normal parameter and v is a

/1 varargs parameter

static void vaTest (String msg, int ... v) { 4———A‘nomal’ and varorg
System.out .println(msg + v.length) ; parometer
System.out .printin("Contents: ") ;

for(int i=0; i < v.length; i++)
System.out.println(" arg " + i + ": " + v[il);

system.out.println() ;

¥

public static void main(String args(])
{
vaTest ("One vararg: *, 10);
vaTest ("Three varargs: ", 1,
vaTest ("No varargs: ") ;

}
}

3);

ops/t0379-02.jpg
Input Method Purpose
boolean readBclean!) | Roods o booleon
byte reodBytel) [Reods o byte
chor readChar() Reads a char
double recdDoublel) Roods o double
Hoat readFloat) Reods o float

int rodin) Roods on nt
Tong readicngl | [Roods a long
short readshorl{) | Roods a short

ops/f0351-02.jpg
catch (ArrayIndexOutOfBoundsException exc) {
/1 catch the exception

System.out.println(*No matching element found.");

}

Thisis executed on way ou
finally {¢———— w,
Syste.out.println("Leaving try."); sity/omibids,
}
}
}

class FinallyDemo {
public static void main(string args(]) {

for(int i=0; i < 3; iw4) {
UseFinally.genException (i) ;
System.out.println();

ops/f0530-01.jpg
import java.awt.*;

inport Java.spplet. g:‘:‘:&;‘:‘:‘* by oppletviewer
<applet code="SimpleApplet" width=200 height=60>

</applets

3

public class SimpleApplet extends Applet {
public void paint (Graphics g) {
g.drawstring("Java makes applets easy.", 20, 20);
)
}

ops/f0270-04.jpg
public static void main(String argsl(l) {
ColorTriangle t1

new ColorTriangle ("Blue', "right®, 8.0, 12.0);
ColorTriangle t2 =
new ColorTriangle ("Red”, "isosceles", 2.0, 2.0);

System.out.println("Info for ti: ");
t1.showstyle();

£1.showbim() ;

1. showcolor () ;

System.out.println("Area is * + tl.area());

system.out.println() ;

System.out.println("Info for t2:

£2.showstyle() ; .
t2.showbim() ; 4 AColorTriangle object can coll methods

t2.showColor () ; dofined by iself and is superclasses.

System.out.printin("Area is " + t2.area());

ops/f0353-01.jpg
// Use throws.
class Throwsbero {
public static char prowpt (String str)
throws java.io.10Bxception { €———————— Notce the throws douse

System.out.print (str + ": ");
return (char) System.in.read();

}

public static void main(String args(]) {
char ch;

ery { Since prompt() might throw on
ch = prompt ("Enter a letter") ; 4———————— excepiion, a collto t must be

) enclosed within iy block.

catcn (java. io. T0Bxception exc) {
System.out.println("1/0 exception occurred.
ch - xi;

}

System.out.println("You pressed " + ch);

ops/f0336-01.jpg
// Demonstrate exception handling.
class ExcDemol {
public static void main(String args(l) {
int nums(] = new int(4];

try { +——Credte oy block.
System.out.println("Before exception is generated.");

// Generate an index out-of-bounds exception.
nums (7] = 10;
System.out.println("this won't be displayed");

}

cateh (ArrayIndexOutofBoundsException exc) { +—— Caich oy boundory
// cateh the exception erors
System.out.println("Index out-of-bounds

1

System.out.println("After catch statement

Atempt 0 index pas
o oy

ops/t0052-01.jpg
Meaning

Addifion

Subirction (oo unary minus)

Multplication

Division

Modulus

Increment

Decrement

ops/f0441-03.jpg
// Suspend the thread.

synchronized void mysuspend() {
suspended = true;

}

// Resume the thread.
synchronized void myresume () {
suspended = false;
notify();
)
}

class Suspend {
public static void main(String args(l) {
MyThread obl = new MyThread ("My Thread");

ery {
Thread.sleep(1000); // let obl thread start executing

obl.mysuspend () ;
System.out .println("Suspending thread.
Thread. sleep (1000) ;

obl.myresume () ;
System.out .println("
Thread. sleep (1000) ;

esuming thread

ops/f0072-01.jpg
// Read a character from the keyboard.
class KbIn {
public static void main(String args(])
throws java.io.IOBxception {

char ch;
System.out.print ("Press a key followed by ENTER: ");
ch = (char) System.in.read(); // get a char 4—— Reada character

from the keybord.
System.out.println("Your key is: " + ch);

ops/f0039-01.jpg
[*
Use the Pythagorean theorem to
find the length of the hypotenuse
given the lengths of the two opposing
sides.

*/

class Hypot {
public static void main(String args(]) {

double x, y, z;

Notice how sqt() i called. It is preceded by

the name of the class of which it is @ member.

z = Math.sqre (x*x + y*y);

System.out.println("Hypotenuse is " +z);

ops/f0339-01.jpg
& TRAS. Woul L. MOTK
class ExcTypeMismatch {
public static void main(String args(l) {
int nums (] = new int(4]; Thisthrows an
ArrayindexOutOfBoundsException.

try {
System.out.println(*Before exception is generated.");

// generate an index out-of-bounds exception
nums (7] = 10; %
Systen.out.println("this won't be displayed");

}

/* Can't catch an array boundary error with an

ArithmeticBxception. +/
catch (ArithmeticException exc) { ¢

// catch the exception
System.out.println(*Index out-of-bounds!")

This res o cach i with or
ArithmeticException

}

System.out.println("After catch statement.")

ops/f0031-01.jpg
}
}
}

System.out.println(gallons + " gallons is " +
liters + " liters.");

Increment the line counter
COUNEET 4+ ¢ iih cich loop iteration.

// every 10th line, print a blank line

if (counter == 10) { $—————————— Ifcounter s 10,
System.out.println(); output a blank line.
counter = 0; // reset the line counter

)

ops/f0184-01.jpg
// R simple automated telephone directory.
class Phone {
public static void main(String args(]) {
String numbers() (] = {
{ *Tom", vss5-3322" },
{ Mary", vs55-8976" },
{ ngon", vs55-1037" },
{ "Rachel”, "s55-1400" }

I
int i;
if (args.length 1= 1) To use the progrom, one
System.out .println("Usage: java Phone <names"); command-ine argument
else { must be present.

for(i=0; i<numbers.length; i++) {
1f (numbers [1] (0] .equals (args [0))) {
System.out.println(numbers[i] [0] + *
numbers (1] [1]) ;

break;

}
b
if(i == numbers.length)
System.out .println("Name not found.");

ops/t0371-01.jpg
Method

Description

void dlosel) Closes the output siream. Further wite atemps will generae
an IOExcepion.
void fush() Finalizes the oufput sofe so thot any buffers are dleared. That i, it
ushes the oup buffors.
void writefint b) Werites a single byte fo an output stream. Note that the parameter
s an in, which allows you o col write with expressions without
hoving fo cast them back fo byte.
void witlbyte buffr 1) Wit @ complte array of yte fo an oufpu sream.

void write(byle buffer|], int ofset, | Writes a sibronge of s s from the array buffer,

int numBytes)

beginning ot buller offsef,

ops/f0391-01.jpg
o e
import {ava.io.

ops/f0034-01.jpg

ops/f0141-02.jpg
class VenConsDemo {
public static void main(String args(l) {

// construct complete vehicles
Vehicle minivan = new Vehicle(7, 16, 21)
Vehicle sportscar = new Vehicle(2, 14, 12)
double gallons;

int dist = 252;

gallons = minivan.fuelneeded(dist);

System.out.println("To go " + dist + " miles minivan needs * +
gallons + " gallons of fuel.")

gallons

sportscar. fuelneeded (dist) ;

System.out.println("To go " + dist + * miles sportscar needs " +
gallons + " gallons of fuel.");

ops/f0129-01.jpg
// A simple example that uses a parameter.

class ChkNum {
// return true if x is even
boolean isEven (int x) { 4———— Here,xis n ineger porameter ofisEvenl).
if ((x%2) 0) return true;
else return false;
)
}

class ParmDemo {
public static void main(String args(]) {
ChkNum e = new ChkNum() ;

Poss orgumens
if(e.isEven(10)) System.out.println("10 is even.v); 'oisEven().

if(e.isEven(9)) System.out.println("s is even.”);

if(e.isEven(8)) System.out.println("8 is even.");

ops/f0598-01.jpg
// A simple Swing-based applet

import javax.swing.*;
import java.awt.*;
import java.awt.event.+;

/e
This HTML can be used to launch the applet:

<object code="MySwinghpplet" width=200 height=80>
</object>
*/

public class MySwingApplet extends JApplet { 4——— Swing opplels mustexend
Thutton jbalp Thoper
TButton Jbeanow

JLabel jlab;

// Tnitialize the applet.
public void init() {

ery {
SwingUtilities.invokeAndWait (new Runnable () { < Use invokeAndWait()
public void run() (‘o crect he GUL
makeGUI(); // initialize the GUI
}
bi

} catch (Exception exc) {

ops/t0186-02.jpg
Bitwise AND

Bitwise OR

Bitwise exclusive OR

Shift right

Unsigned shift right

Shift ok

One’s complement (unary NOT)

ops/f0162-01.jpg
// Initialize a two-dimensional array.
class Squares {
public static void main(String args[l) {
int sgrs(l(] = {

{11},
{2, 4}
{3, 9},
{4, 16 }
{5 25} Notice how each row has
{6 361},
{7, 49},
{8, 64}
{9, 81},
{ 10, 100 }

)i

int i, j

for(i=0; i < 10; i++) {

for(j=0; j < 2; j++)
System.out.print (sqrs[i] [3] + " ");

System.out.println();

}

}
}

ops/f0165-01.jpg
// Use the length array member.
class Lengthbemo {
public static void main(String args(l) {
int list[] = new int([10];
int nums(] = { 1, 2, 3 };
int table(][] = { // a variable-length table
{1, 2, 3),
{4, s},
(6. 7.8, 9}

i

System.out.println("length of list is " + list.length);
System.out.println("length of nums is * + nums.length) ;
System.out.println("length of table is " + table.length);
System.out.println("length of table[0] is " + table[0].length)
System.out.println("length of table(1] is " + table[1].length)
System.out.println("length of table(2] is " + table(2].length);
System.out.println();

// use length to initialize list
for(int i=0; i < list.length; i++)
list{i] = i * i;

// now use length to display list)
for(int i=0; i < list.length; i++)
System.out.print (List[i] + " ");

System.out.println() ;

ops/t0480-01.jpg
Annotation

Description

@Reontion

Specifes the retention polcy tht will be associated withthe annolafion. The
reteiion policy determines how long an annoaion i present during the:
compiltion and deployment proces.

@Documented

@Torget

A morker onnotation that folls ool hat an annotafion s o be documented.
igned fo be used only as an amnotafon fo an annolation declaraiion.

| Speciies thetypes of declorations fo which an annolafion can be opplied.

1t designed fo be used only as on annolafion fo another annotofion.
@Target tokes one rgument, which must be o constont from the ElemeniType
enumerafion, which defnes verious constanis, such os CONSTRUCTOR, FELD,
‘and METHOD. The argument determines the fypes of declarafons fo which the
annoation can be applied

@inherited

@Override

@Deprecated

@SuppressWarnings

A marker annotation that causes the annotation for a superclass fo be inherited
by o sublass

A method amotaled with @Override must override a method from a
supercloss. I t doesn', o comple-fime eror vl esult. I s used fo ensure thot
 supercloss method is actuolly overridden, and not imply overloaded. This is

| @ marker annolafion.

A marker annoafion that indicaes that o dedlaration is obsolete and has been

| eploced by a newer form

‘Specifes that one or more wornings that might be ssued by the compler are fo
be suppressed. The wamings to suppress are specified by name, in siing form.

ops/f0127-02.jpg
// assign values to fields in minivan
minivan.passengers

minivan. fuelcap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;

sportscar. fuelcap = 1
sportscar.mpg = 12;
// get the ranges —
rangel = minivan.range(); Assign the voue
range2 = sportscar.range(); retorned o a variable.

System.out.println("Minivan can carry " + minivan.passengers +
“ with range of " + rangel + " Miles");

System.out .println("Sportscar can carry " + sportscar.passengers +
" with range of " + range2 + " miles");

ops/f0550-03.jpg
// ¥andle button released.
public void mouseReleased (MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.get¥();
msg = "Up"
repaint () ;

)

// Handle mouse dragged.
public void mouseDragged (MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.get¥();
msg = "an;

showStatus ("Dragging mouse at " + mouseX + ",

repaint () ;

+ mouseY) ;

ops/f0296-01.jpg
// Return a String object.

class ErrorMsg {
/1 Error codes.
£inal int OUTERR
final int INERR
final int DISKERR =
final int INDEXERR

“4———— Dedlare final constants.

string msgs(] = {
"Output Brror",
“Input Error",
"Disk Full",
"Index Out-Of-Bounds"

ops/f0574-02.jpg
// Add action listeners.
btnUp.addActionListener (this) ; +——
btnbown.addActionListener (this) ; 4—I

‘Add acion listeners for the buttons.

// Add the buttons to the content pane.
jfrm.add (jbtnUp) ; +——
3£rm.add (jbtnDown) ; 4—1

‘Add the butons o the content pane.

// create a label.
jlab = new JLabel("Press a button.

// Add the label to the frame.
jfrm.add (j1ab) ;

// Display the frame.
j£rm.setVisible(true) ;

ops/f0140-01.jpg
// A parameterized constructor.

class MyClass {
int x;

MyClass (int i) { €———This constructor has a parameter.
i

class ParmConsDemo {
public static void main(String args(l) {
MyClass t1 = new MyClass(10);
MyClass t2 = new MyClass(88);

System.out.println(tl.x + " " + £2.%);

}
}

ops/t0354-01.jpg
Exception Meaning
AsithmeicException Avithmeic error, such o divide-by-zero.
ArraylndexOutOfBoundsException | Array index is out-of-bounds.

ArrayStoreException ignment fo an array element of an incompatible type.
ClossCastException Involid cast.

EnumConstNofPresentException An aftempt is made o use an undefined enumerafion value.
legolArgumeniException legol rgument used o invoke a method.
HlegalMoritorStoteException Hlegol morior operaion,such o witing on an urlocked read.
llegolStateException Environment or application s in incorrect state.
HegalThreadStateException Requested operation not compaible with curent hread sof.
IndexOuOfBoundsException Some ype of index is ouof-bounds.
NegafiveArroySizeExceplion Array crected vith @ negafive size.

NullPointerException nvalid use of a null eference.

NomberFormafExcepfion Tavelid conversion of o sing b o numeric forma,
SecurityException Aftempt fo violate security.

StingindexOutOfbounds Atlampt o index outide the bounds of a sring
TypeNotPresentExcepfion Type not found.

UnsupportedOperafionException | An unsupported oporction was encouniered.

ops/t0398-01.jpg
Wrapper
Double
Float

Integer

Byte

| Conversion Method

stafic double porseDouble(Siring s throws NumberFormaiExcepfion

|stotic float porseFloof(Sting st throws NumberFormaException

stafic ong porselong(String st} hrows NumberFormalException

Stoc int porselniString s) throws NumberFormatException
stofic short parseShorf{String st} throws NumberFormatExcepion

stafic byte parseByte(String str) throws NumberFormatException

ops/t0055-02.jpg
Operator | Meaning
& AND

| OR

A XOR (exclusive OR)
1 ‘Short-circuit OR
& ‘Short-circuit AND

NOT

ops/f0579-01.jpg
// Use a text field.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*

class TFDemo implements ActionListener (
JTextrield jef;
JButton sbtnRev;
JLabel jlabbrompt, jlabContents;
TEDemo () {

// create a new JFrame container.
JFrame jfrm = new JFrame("Use a Text Field");

// specify FlowLayout for the layout manager.
jfxm. setLayout (new FlowLayout ()

// Give the frame an initial size.
jfxm. setsize (240, 120);

// Terminate the program when the user closes the application
j£xm. setbefaultCloseOperation (JFrame. EXIT_ON_CLOSE) ;

// create a text field.
JEE = new JTextField(10); ——— Create o fext feld thotis 10 columns wide.

ops/f0252-01.jpg
// A simple class hierarchy.

// A class for two-dimensional objects.
class TwoDShape {

double width,

double height;

void showpim() {
System.out.printin("Width and height are
width + " and " + height);

}
}

/] A subclass of TwoDShape for triangles
class Triangle extends TwobShape {
string style;
Triangle inherits TwoDShape.
double area() {
return width * height / 2; +——— Triongle con rfer fo the members of TwoDShape
i s they were port of riangle.

void showstyle() {
System.out.println("Triangle is " + style);

ops/f0291-02.jpg
// Construct an object from an object.
TwoDShape (TwoDShape ob) {

width = ob.width;

height = ob.height;

name = ob.name;
}

// Becessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

String getName() { return name; }

void showpim() {
System.out.println("Width and height are " +
width + " and " + height);
)

// Now, area() is abstract.
abstract double area () ; «——————— Make areal) info an
} bsiroct method.

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

ops/f0485-03.jpg
// Get the value in iOb. Notice that
// no cast is needed.

int v = i0b.getob();
System.out.println(*value: " + v);

Create a reforence ond an

System.out.println(); BT el

// create a Gen object for Strings.
GeneStrings strob = new Gen<String>("Generics Test");

// Show the type of data used by strob.
stxOb. showType) ;

// Get the value of strob. Again, notice
// that no cast is needed.

String str = strob.getob();

System.out .println(*value: " + stx);

ops/f0568-01.jpg
A Simple Swing Application

Swing defines the modern Java GUI.

ops/f0118-01.jpg
/* A program that uses the Vehicle class.

call this file VehicleDemo.java
A
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

}

// This class declares an object of type Vehicle.
class vehicleDemo {
public static void main(string args(l) {
Vehicle minivan = new Vehicle();
int range;

// assign values to fields in minivan
minivan.passengers = 7;

minivan. fuelcap = 16; 4——— Nolice the use of the dof
minivan.mpg = 21; operator fo access @ member.

// compute the range assuming a full tank of gas

range = minivan.fuelcap * minivan.mpg;

System.out.println("Minivan can carry " + minivan.passengers +
" with a range of " + range);

ops/mgh_gradient.jpg

ops/f0216-01.jpg
// Demonstrate method overloading.

class Overload {
void ovlDemo () {e————————————— Firstversion
System.out .println("No parameters’);

)

// overload oviDemo for one integer parameter.
void ovlDemo (int a) { 4 Second version
System.out.println("One parameter: " + a;

}

// overload oviDemo for two integer parameters
int ovlDemo(int a, int b) { 4——————————— Third version

System.out.println("Two parameters: " + a + " " + b);
return a + b;
)

// overload oviDemo for two double parameters.
double ovlDemo(double a, double b) {4—————— Fourhversion

System.out.println("Two double parameters: " +
a+ " veb);
return a + b;
}
}

ops/f0498-02.jpg
il we
}

// pemonstrate a wildcard
class WildcardDemo {
public static void main(String args(]) {

NumericFns<Integer> iOb =
new NumericFns<Integer(6) ;
NumericFns<Double> dob =
new NumericFns<Double>(-6.0) ;

NumericFns<Long> 10b
new NumericFns<Long> (L) ;

In this cll,the widcord
ype moiches Double.

System.out.println("Testing iOb and dob."
£ (i0b.absEqual (dOb)) P A

System.out.println("Absolute values are equal.

ops/f0394-01.jpg
/* A simple key-to-disk utility that
demonstrates a FileWriter. */

import java.io.*:

class KtoD {
public static void main(String args(])

{

String str;
FileWriter fw;
BufferedReader br =
new BufferedReader (
new InputStreamReader (System.in));

try {

fw = new FileWriter("test.txt"); <—— Create FileWriter.
}
catch (I0Exception exc) {

System.out .println("Cannot open file.");

return ;

}

ops/f0160-02.jpg
System.out.println("Riders per trip during the weel
for(i=0; i < 5; i++) {
for(3=0; j < 10; j++)
System.out.print (riders(i] [3] + " ");
System.out.println();

)

System.out.println();

System.out.println("Riders per trip on the weekend:");
for(i=5; i < 7; i++) {
£or(j=0; j < 2; j++)
System.out.print (riders(i] [3] + " ");
System.out.println();

)

)
}

ops/f0522-02.jpg
}
System.out.println(thrd.getName() + " terminating.
}
}

class JoinThreads {
public static void main(String args(l) {
System.out.println("Main thread starting.");

MyThread mtl = new MyThread("Child #1);
MyThread mt2 = new MyThread("Child #2*);
MyThread mt3 = new MyThread("Child #3");
try {
B R R L Y E———
System.out .println("Child #1 joined.");
me2. thrd.join () ; 4—————————————1— Wait unii the specified
System.out .println("Child #2 joined."); thread ends.
mt3.thrd.join() ; +—————————
System.out .println("Child #3 joined.");

b

catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}

System.out.println("Main thread ending.");

ops/f0238-01.jpg
// Use an inner class.
class Outer {
int nums(];

outer(int n[]) {

void Analyze() {
Inner inOb = new Inner();

System.out.println("Minimum: * + inOb.min());
System.out.println("Maximum: " + inOb.max());
System.out.println("Average: " + inOb.avg());

}

// This is an inner class.
class Inner { <————Aninner dass
int min() {
int m = nums[0];
for(int i=1; i < nums.length; i++)
if (nums([i] < m) m = nums[i];

return m;

}

ops/pub.jpg
New York Chicago San Francisco
Lishon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

ops/f0203-02.jpg
class Accessbemo {
public static void main(String args(l) {
MyClass ob = new MyClass () :
/* Access to alpha is allowed only through
its accessor methods. */
ob. setAlpha (-99) ;
System.out .println(*cb.alpha is * + ob.getAlpha());

/7 You cannot access alpha like this:
// ob.alpha = 10; // Wrong! alpha is private!4——Wrong—clphais pricte

// These are OK because beta and gamma are public.
ob.beta = 88; 4————OK because these ore public.
ob.gamma = 99;

ops/f0372-01.jpg
// Read an array of bytes from the keyboard.
import java.io.*;

class ReadBytes {
public static void main(String args(])
throws IOBxception {
byte datal] = new byte[10];

System.out.println("Enter some characters.");
System. in.read (data) ; 4——————————— Read on array of bytes
System.out.print ("You entered: "); from the keyboard.
for(int i=0; i < data.length; i++)

System.out.print ((char) datali]);

ops/f0304-02.jpg
} BookDemo is also part of BookPack.

class BookDemo { 4—,

public static void main(String args(l) {
Book books (] = new Book[S];

books[0] = new Book("Java: A Beginner's Guide",
"Schildt", 2007);
books[1] = new Book("Java: The Complete Reference,
"Schildt", 2007);
books[2] = new Book("The Art of Java",
"Schildt and Holmes", 2003);
books[3] = new Book ("Red Storm Rising",
"Clancy", 1986);
books[4] = new Book("On the Road",

"Kerouac", 1955);

for(int i=0; i < books.length; i++) books [i].show();

ops/f0494-01.jpg
// 1In this version of NumericFns, the type argument
// for T must be either Number, or a class derived
/1 £rom Number
class NumericFns<T extends Numbers { 4————Inhis case, the fype argument
T aims mustbe either Number or o
subcloss of Number.
// Pass the constructor a reference to
/7 a numeric object.
NumericFns (T n) {
num = n;
}

// Return the reciprocal
double reciprocal() {

return 1 / num.doublevalue();
}

// Return the fractional component.
double fraction() {

return num.doubleValue() - num.intValue();
}

ops/f0498-01.jpg
// Dem. 8 wildeued.
class NumericFns<T extends Numbers (
T num;

/1 Pass the constructor a reference to
/1 a numeric object.
NumericFns (T n) {

)

// Return the reciprocal.
double reciprocal() {
return 1 / num.doublevalue() ;

¥

// Return the fractional component.
double fraction() {
return num.doublevValue() - num.intValue();

)

// Determine if the absolute values of two
/1 objects are the same.
boolean absEqual (NumericFns<?> ob) {
if (Math. abs (nun.doublevalue ())
Math. abs (ob.num.doubleValue ())) return true;

return false;

i}

ops/t0060-01.jpg

ops/f0583-03.jpg
// pisplay the frame.
jErm. setvisible (true

}

// This is the handler for the check boxes.

public void itemStateChanged (ItemBvent ie) { 4——— Hondl check box
item everts.

String stx

// Obtain a reference to the check box that
// caused the event. Get a reference fo the check
JCheckBox cb = (JCheckBox) ie.getItem(); 4—— boxthat changed

// Report what check box changed.
if (cb.isSelected ()) S Deformine whot happened.
labChanged. setText (cb.getText () + " was just selected.”
elze
labChanged. setText (cb.getText () + " was just cleared.

// Report all selected boxes.

1% (Scbalpha. isselected() {
str 4= "Alpha ";

}

if (jobBeta. isselected()) {
sbr e Hpeky A

ops/f0328-01.jpg
// An interface that contains constants.
interface IConst { _
int MIN = 0;

int MAX = 10; [These are constants.

String ERRORMSG = "Boundary Error"; I
}
class IConstD implements IConst {
public static void main(String args([]) {
int nums(] = new int [MAX];

for(int i=MIN; i < 11; i++) {
if (i >= MAX) System.out.println(ERRORMSG);
else {
nums (1)
System.out.print (nums [i] +

}

}
}
}

ops/f0308-02.jpg
// This class is in package BookPackB.
package BookPackB;

// Use the Book Class £rom BookPack. Qualify Book with s

class UseBook {

package name: BookPack.

public static void main(String args(l) {

BookPack.Book books (]

books [0]
books [1]
books (2]
books [3]

books [4]

for (int i=

new BookPack .Book (.
"Schilde",

new BookPack.Book
"Schilde",

new BookPack . Book ("

= new BookPack.Book (5] ;

Java: A Beginner's Guide",
2007)

Java: The Complete Reference",
2007) ;

The Art of Java',

"Schildt and Holmes", 2003);

new BookPack. Book ("
“Clancy", 1.
new BookPack . Book ("
"Kerouac™,

; i < books.length;

Red Storm Rising",
986) ;

On the Road",
1955) ;

i++) books[i].show();

ops/f0080-01.jpg
// Demonstrate the switch without break statements.
class NoBreak {
public static void main(String args(]) {
int i;

for(i=0
switch(i) {
case 0:
System.out.println("i is less than one");
case 1:
System.out.println("i is less than two"):
case 2:
System.out.println("i is less than three");
case 3:
System.out.println("i is less than four");
case 4:
System.out.printin("i is less than five");

)

System.out.printin();

}

The case statements
follthrough here.

}
i

ops/f0285-02.jpg
height = ob.height;
name = ob.name;

i

// hccessor methods for width and height.
double getiidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

String getName() { return name; }

void showdin() {
System.out.princln("Width and height are *
width + % and * o height);

} The areal) method defined by TwaDShape.

double area() {:
System.out.println(varea() must be overridden®);
return 0.0;

}

// B subclass of TwoDshape for triangles
class Triangle extends TwobShape {
private String style;

1A BRERlE Ghastraotor;

ops/f0515-01.jpg
// Demonstrate a raw type.
class GeneT> {
T ob; // declare an object of type T

// Pass the constructor a reference to
7/ an object of type T.
Gen(r o) {

ob = o

)

// Return ob.
T getob() {

return ob:
)

}

// Demonstrate raw type.
class Rawbemo {
public static void main(String args(l) {

// Create a Gen object for Integers.
Gen<Integer> i0b = new GeneIntegers(88);

// create a Gen object for Strings.
Genestring> strOb = new Gen<String>("Generics Test"):

ops/f0174-01.jpg
// Use a for-each style for loop.
class ForEach {
public static void main(String args(l) {
int nums(] = { 1, 2, 3, 4, 5, 6, 7, 8 9, 10 };
int sum = 0

// Use for-each style for to display and sum the values.

for(int x : nums) {

System.out.println("Value is: " + x);

sum += x; Afor-ecch style for loop
}

System.out.println("Summation: " + sum);

ops/f0176-01.jpg
// Use for-each style for on a two-dimensional array.
class Forgach2 {
public static void main(String args(l) {
int sum = 0;
int nums (][] = new int(3](5];

// give nums some values
for(int i = 0; & < 3; is4)
for(int 3=0; j < 5; j++)

nums (4 (3] = (i+1)*(3+1);

// Use for-each for loop to display and sum the values.
for(int x(] : nums) {

for(int y : x) {
System.out.println("Value is: " + y); Notice how xis declared.
sum 4= y;
}
)
System.out.println("Summation: * + sum) ;

ops/f0455-01.jpg
// Use the built-in enumeration methods.

// An enumeration of Transport varieties.
enun Transport (
CAR, TRUCK, AIRPLANE, TRAIN, BOAT

}

class BnumDemo2 {
public static void main(String args(])

{

Transport tp;

System.out.println("Here are all Transport constants");

// use values()

Transport allTransports(] = Transport.values ()

for (Transport t : allTransports)
System.out.println(t) ;

‘Obtoin an arroy of Transport constants

system.out.println() ;

1/ use valueof ()

tp = Transport.valueOf (VAIRPLANE") ; ¢———— Obioi tho constont wit
System.out.println("tp contains " + tp); thename ARPLANE

ops/t0349-01.jpg
Method
Throwable fillnStackTrace!)

String getlocolizedMessagel)
String getMessogel)
void printStackTracef)

| Description

Returns a Throwable obiect hot confins @ completed

sack race. This object can be rehrown.
| Returns alocaized description ofth excapion.
| Returns a descripton of the excepton.

Displays the stack frace.

void printStackTrace{PrintStreom streom)

Sends the stack race o the specied sream.

“void printStackTrace{PriniWriter siream)
Sting tostingl)

| ends the stockrace o the specifed sroam.

Returns a String object containing a complete.
deseripon of o axceplion Thi methed colled
by printin{) when outputing a Throwable object.

ops/e0189-01.jpg
orrrririi

10111001
11000110

ops/f0320-01.jpg
// Demonstrate interface references.

class ByTwos implements Series (
int scarc;

int val;
ByTwos () {
start = 0;
val
}
public int getNext() {
val += 2;
return val;
}
public void reset() {
start = 0;
val = 0;
}
public void setStart (int x) {
start = x;
val
}

13

ops/f0283-02.jpg
class DynDispDemo {
public static void main(String args(]) {
Sup superOb = new Sup();
Subl subObl = new Subl();
Sub2 subOb2 = new Sub2();

Sup supRef;

supRef = superOb;

supRef .who () ; 4——— In each case,
the version of

SupRef - subObl; whol) to call
is determined

SupRef.who ()i *———— g fime by
the type of

supRef = subOb2; object being

supRef.who () ; +——— referred fo.

ops/f0380-02.jpg
System.out.println("Writing " + i);
dataout .writeInt (i) ;

System.out.println("Writing " + d); Wite binary dato.
dataout .writebouble (d) ; ¢——————————]

System.out.println("Writing " + b);
dataout .writeBoolean (b) ;4¢—————————

System.out.println("Writing " + 12.2 * 7.4);
dataout .writeDouble(12.2 * 7.4); $————

}
catch (T0Exception exc) {
System.out.println("Write error."

}

try {
dataout.close () ;
} catch(10Exception exc) {
System.out.println(*Error closing output file.");
return;

}

System.out.println();

ops/f0139-01.jpg
// A simple constructor.

class MyClass {

int x;

MyClass () { <4——Thisis the constructor for MyClass.

10;

class ConsDemo {
public static void main(String args([]) {

}
}

MyClass t1
MyClass t2

System.out.

= new MyClass () ;
- new MyClass () ;

println(tl.x + " " + £2.%);

ops/t0064-01.jpg

ops/t0066-01.jpg
true
false
true
Far T

true
false
false
ERTRe

OR
true
true
true
PRl ER:

XOR

false
true
true
P rar

NOT
false
false
true

ops/f0588-01.jpg
// Demonstrate a simple JList.

import.
impore.
import.
import.

javax.swing.*;
javax.swing.event.+
ava.awe.;
java.awe.event.*;

class ListDemo implements ListSelectionListener {

JList jlst;
JLabel jlab;
JSerollPane jserlp;

// Create an array
String names() = {

of names.
"Sherry",
"Sasha",
“Tom", "Mary",
"Andrew, "Mate,

gon",

Listbemo() {
// Create a new JFrame container.
Frane 3tm =

"Josselyn”,
wxen®,

"Rachel",
"Randy",

"Todd"

new JFrame ("JList Demo");

This arr
i

willbe
ina Jis

ops/f0435-02.jpg
synchronized void tock(boolean running) {
if(1running) { // stop the clock
state = "tocked";
notify(); // motify any waiting threads
return;

}

system.out.println("Tock") ;
state = "tocked"; // set the current state to tocked

notify(); // let tick() run $———tock() noffies fick()

ey {
while(!state.equals("ticked"))
wait(); // wait for tick to complete 4——rtockl) wais for fickl).

}
catch (InterruptedException exc) {
System.out .printin(*Thread interrupted.”);
!

class MyThread implements Rumnable {
Thread thrd;
TickTock ttOb;

ops/t0191-01.jpg
<< Lekt shift

- Right hit

ey Unsigned right shift

ops/f0459-01.jpg
// Demonstrate ordinal() and compareTo().

// hn enumeration of Transport varieties
enum Transport {
CAR, TRUCK, AIRPLANE, TRAIN, BOAT

}

class EnumDemos {
public static void main(String args(l)

{

Transport tp, tp2, tp3;

// Obtain all ordinal values using ordinal().
System.out .println("Here are all Transport constants" +
" and their ordinal values: ");
for (Transport t : Transport.values())
System.out.printin(t + * " + t.ordinal()) ; 4——Oboin ordinol volues

ops/f0414-01.jpg
// Improved MyThread.

class MyThread implements Runnable (
int count;
Thread thrd; «—————— Aroferenco fo e threod issored n hrd.

// Comstruct a new thread.

MyThread (String name) {
thrd = new Thread (this, name); «—— The threod is named when it is created.
count = 0;
thrd.starc(); // start the thread <—— Bogin execfing the thread.

}

1/ Begin execution of new thread.
public void run() {
System.out.printin(thrd.getName() + " starting.");
try {
do {
Thread. sleep(500) ;
System.out.println("In * + thrd.getName() +
", count is " + count);:

count++;
} while(count < 10);

}

ops/f0266-01.jpg
// Using super to overcome name hiding.
class A {
int i;

}

// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A

B(int a, int b) {
super.i = a; // i in A<— Here, superi refers

i=b; //iinB totheiin A.

}

void show() {
System.out.println("i in superclass: " + super.
System.out.println("i in subclass: " + i);

}
}

class UseSuper {
public static void main(String args(]) {
B subOb = new B(1, 2);

subOb. show () ;

}
}

i);

ops/f0240-02.jpg
spacer++;
if ((spacer ¥ &) == 0) {
System.out.print (" ");
spacer - 0;
)
}
System.out.println() ;
)
)

for(byte b = 0; b < 10; br+) {
ShowBits byteval = new ShowBits (8);

System.out.print (b + * in binary:
byteval.show (b) ;

"y

}

ops/f0275-01.jpg
// A superclass reference can refer to a subclass object.
class x {
int a;

XGine 1) {a = i;)

}

class ¥ extends X {
int b;

Y(int i, int §) {
super (3) ;
b= i;
)
}

class SupSubRef {
public static void main(string args(l) {
X x = new X(10);
X x2;
Yy = new ¥(s, 6);

%2 = x; // OK, both of same type

System.out.println("x2.
Y‘ b thus x2 con refer fo .

x2 T y; // still Ok because Y is derived from X
System.out.println("x2.a: " + x2.a);

// % references know only about X members
x2.a = 19; // OK
// x2.b = 27; // Exror, X doesn't have a b member

}
}

< x2.a); OKbecouseYis a subdass of X;

ops/f0246-02.jpg
System.out.println();
} Third version of vaTest)

s vosa et e s ine .) (o]
System.out.println("vaTest (String, int
msg + v.length);
System.out.println("Contents: ");

for(int i=0; i < v.length; i+s)
System.out.println(* arg " + i + ": " + v[il);

System.out.println() ;

}
public static void main(String args(])
{

vaTest (1, 2, 3);

vaTest ("Testing: ", 10, 20);

vaTest (true, false, false);

}

ops/f0262-01.jpg
// Add more constructors to TwoDShape.
class TwoDShape {

private double width;

private double height;

// B default constructor.
‘TwoDShape () {

width = height
)

// Parameterized constructor.
‘TwoDShape (double w, double h) {
width = w;
height = h;

0.0;

}

// construct object with equal width and height.
TwoDShape (double x) {

width = height = x;
}

// Accessor methods for width and height.
double getwidth() { return widch; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

ops/f0410-01.jpg
/4 Create a thread by isplehenting Rummable. ofgec of MyTheeod con be
in heir own threads bocause
class MyThread implements Runnable { «—————— MyThreod imploments Runnable
int count;
String thrdName;

MyThread (String name) {
count
thrdName = name;

}

// Entry point of thread.
public void run() { 4———————— Threads stort execufing here.
System.out .println(thrdName + " starting.®
try [
o {
Thread.sleep(500) ;
System.out.println("In " + thrdName +
n, count ie " + count);

ops/f0418-01.jpg
// Create multiple threads.

class MyThread implements Runnable {
int count;
Thread thrd;

// Construct a new thread.
MyThread (string name) {
thrd - new Thread(this, name);
count = o;
thrd.start(); // start the thread

}

/1 Begin execution of new thread.
public void run() {
System.out.printin(thrd.getName () + " starting.");
try {
do (
Thread. sleep(500) ;
System.out.println("In " + thrd.getName() +
", count is " + count);
countes;
} while(count < 10);
}
catch(InterruptedBxception exc) {
System.out.println(thrd.getNane () + " interrupted.
1

ops/f0281-02.jpg
class B extends A {
int k;

B(int a, int b, int) {

super(a, b);
Kitier Use super fo call the version of

) showl) defined by superclass A.
void show() {;

super.show(); // this calls A's show()
System.out.println("k: " + k);

}
}

ops/t0379-01.jpg
Output Method | Purpose

void writeBoolean(boolean val) | Writes the boolean specified by val.

void writeBytelnt val) | Writes he low-order byte specified by val
void witeCharfint vo) Wi the value specied by val as o charactr
void writeDoubleldouble val) { | Wites the double specified by val.

void writeFloat{float val) | Writes the float specified by val.

void writelnfint val) | Write the int specifed by val.

void writelongllong vall | Weites the long specifed by val.

void writeShort{int val) | Writes the value specified by val as a short.

ops/t0388-01.jpg
Method
abstract void close()

void mark(int numChars)

boolean morkSupported|)
int read()

Description
Closes theinput source. Furher recd otemps il generate

an IOxcepfion.

Ploces a mark ot the current point in the input sieam hat will
remain vlid unfl numChars choracters ore read.

| Retorns rue if mark()/resef{) are supported on fhis sream.

Returns an ineger representation ofthe next available character
from the invoking inpu sreom. ~1 is refurned when the end of the

il is encountered.

int readchar buffer])

Attemps o read up fo buffer.ength charoctes into buffer and
retuns the acluol number of choracters that were successful read.
1 is roturned when the end of the fileis encountered.

‘absiractint read{char buffer|],
int offset,
int numChars)

int read(CharBuffer buffer)

Attemps o read up fo numChars charociers into bulfer strting of
buferoffse] returning the number of choraclers successully read.
1 is retured when the end of the fle is encountered.

| Aemps o fll the buffer specfied by buffer, otuming o e

of choraclers successully read. -1 i reurncd when the end of he
e is encountered. CharBufer is o dlos that encopsuloles @
sequence of choracters, such os a sring.

boolean ready()

void rese|)

Returns rue fthe next input request il not wait. Othenwise, it

|returns false.

Resets the input poiner 1o the previously set mark.

long skipflong numChars)

Skips over numChars charodters of npul,retuming the number of
characters actually skipped.

ops/f0421-01.jpg
// Use isAlive().
class MoreThreads {
public static void main(String args(l) {
System.out.println("Main thread starting.");

MyThread mel
MyThread me2
MyThread mt3

new MyThread ("Child #1")
new MyThread("Child #2");
new MyThread ("Child #3")

o {
System.out.print (*.");

ery {
Thread.sleep(100) ;
}

catch (InterruptedException exc) {
System.out.println("Main thread interrupted.”);:
}

} while (mtl.thrd.isAlive()

|
mt2.thrd.isAlive() || «—— This waits uniil oll threads terminate.
me3.thrd. isAlive) ;

System.out.println("Main thread ending."

ops/t0409-01.jpg
Method | Meaning
final String getName{) | Obtains a thread's name.
final int getPriority{) | Obtains a thread's prior

finol boolean isAlve()

final void oin{)

void runf)

safc vid seepllong miliseconds)
oid starl{)

| Determines whether a thread is st running.

| Waits for a thread to terminate.

| Entry point for the hread.

|Suspends a thread for a specified period of millseconds.
|Strts a thread by calling its run{) method.

ops/f0425-01.jpg
// Demcnstrate thread priorities.

class Priority implements Runnable {
int count;
Thread thrd;

static boolean stop = false;
static String currentName;

/+ Construct a new thread. Notice that this
constructor does not actually start the
threads running. */

Priority(String name) {
thrd = new Thread(this, name);
count = 0;
currentName = name;

}

/1 Begin execution of new thread.
public void xun() {
System.out .println(thrd.getNane () + * starting.");
gl

ops/f0261-03.jpg
class Shapesa {
public static void main(String args(]) {
Triangle t1 = new Triangle("isosceles", 4.0, 4.0);
Triangle t2 = new Triangle("right", 8.0, 12.0);

System.out.println("Info for tl: ");
t1.showstyle () ;

t1.showbim() ;

System.out.println("Area is " + tl.area());

System.out.println() ;

System.out.println("Info for t2: ");
t2.showstyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.area());

ops/f0550-01.jpg
// Demonstrate the mouse event handlers.
import java.awt.
import java.awt.event.*;
import java.applet.+;
/e
<applet code
</applet>
4

MouseEvents" width=300 height=100>

public class MouseEvents extends Applet
implements MouseListener, MouseMotionListener {

String msg =
int mouseX = 0, mouseY =

i // coordinates of mouse

public void init() {

addMouseListener (this) ;

addMouseMot ionListener (this) ; ¢——— Register this class as a listener for
) mouse events.

// Handle mouse clicked.
public void mouseClicked (MouseEvent me) {

mouseX = 0;

mouseY = 10; This, and the other event handlers,
msg = "Mouse clicked. respond to mouse events.
repaint () ;

ops/f0270-03.jpg
double area() {
return getWidth() * getHeight() / 2;
)

void showstyle() {
System.out .println ("Triangle is * + style);
}
}

// Extend Triangle.
class ColorTriangle extends Triangle {
private String color;
ColorTriangle inherits Triangle, which
is descended from TwoDShape, so
ColorTriangle incudes allmembers

double w, double h) { cfTriangle ond TwoDShape
super(s, w, h):

ColorTriangle (String c, String s,

color = c;

}

String getColor() { return color; }

void showcolor () {
System.out.println("Color is " + color);
}

}

olas shspess {

ops/f0541-01.jpg
< applet Viewer: StatusWindow [2)[E)[X]
Aoplet

This s in the applet window.

This i shown in the status window.

ops/f0181-01.jpg
// Demonstrate String arrays.
class Stringhrrays {
public static void main(String args(l) {
string strs(] = { "This", "is", "a", "test.

System.out.println("Original array: ");

for(string s : strs)
System.out.print(s + " ");

System.out.println("\n");

// change a string

strs(l] = "was";

strs(3] = "test, too!";

System.out .println("Modified array: ");
for(string s : strs)
System.out.print (s + "

An array of stings

ops/0071661743_ci_std.jpg
Covers:

- Data types, operators, control
statements

« Classes, objects, methods

+ Multithreading, generics, Swing

+ And much more

Vww.05borme.com

Herbert Schildt

Top-selling programming author with more
than 3.5 million books sold worldwide!

ops/f0393-01.jpg
// Demonstrate PrintWriter.

import java.io.*; Create a PrintWriter linked

o System.out.
public class PrintWriterDemo {
{

public static void main(String args(])
PrintWriter pw = new PrintWriter(System.out, true);

int i = 10;
double d = 123.65;

pw.println("Using a PrintWriter."
pw.println(i);
pw.println(d);

pw.println(i + " + " + d + " is " + (i+d));

ops/f0395-01.jpg
/* A simple disk-to-screen utility that
demonstrates a FileReader. */

import java.io.

class Dtos {
public static void main(String args(]) {
string s;
FileReader fr;
Butferedreader br;

ey {
£r = new FileReader("test.txt®);
br = new BufferedReader (fr);

} catch(FileNotFoundException exc) {
Systen.out.println("Cannot open input file.”)
return;

ops/f0049-01.jpg
LBty

Lass Secpeens |
Public seatie void main (Sreina azas(l) [
int ;11 kaoum %0 211 code vichin nain

SE(x e 10) (/7 star new scope

int y - 20, // ko only to chis blook

e e eeeh e e

ops/f0552-01.jpg
Applet Viewer: MouseEvents

Moving mouse at 127, 53

ops/f0050-01.jpg
e et e
}
11y = 1007 1/ Brxort v e known here +— e,y vl e opn.

17 % 1o 51 o b
Systen-out.printini s 4 %);
)
Y

ops/f0319-01.jpg
// Implement Series.

class ByThrees implements Series { 4————— Implement Series a different way.
int start;
int val;

ByThrees() {
start - 0;
val 0;

)

public int getNext() {
val += 3;
return val;

)

public void reset() {
start = 0;
val

)

public void setStart(int x) {
start = x;
val = x

ops/t0032-01.jpg
boolean

assert byte case

catch char dass const conive | defoul

do double ™ enum extends final

finaly floot for ot it implements
import instanceof | int interface long native

new package | privale prowced | publc roum
short stic svichp supor svikch synchronized
s hrow rows wonsont iy void
“olatle while I

ops/f0337-01.jpg
/* An exception can be generated by one
method and caught by another. */

class Excrest (
// Generate an exception.

static void genException() {
int nums(] = new int(4];

System.out.println("Before exception is generated.");

/1 generate an index out-of-bounds exception

nuns (7] = 10; ¢—————Eycoplon generated here.
System.out.println("this won't be displayed"

}
}

class Excbemoz {
public static void main(String args(l) {

try {
ExcTest .genException() ; Exception cought here
}
cateh (ArrayIndexoutofBoundsException exc) {
// catch the exception
System.out .println("Index out-of-bounds!

)

System.out.println(*After catch statement.

}
}

ops/f0189-01.jpg
// Use XOR to encode and decode a message.
class Encode {
public static void main(String args(l) {
String msg = "This is a test";
String encmsg = "
String decmsg = "
int key = 88;

System.out.print ("Original message: ");
System.out.println (msg) ;

// encode the message
for(int i=0; i < msg.length(); is+)
encmsg = encmsg + (char) (msg.charAt (i)

Thisconsiuct the encoded sring.

Kkey) ;

Systen.out .print (*Encoded message: ")
System.out .println (encmsg) ;

// decode the message

for (int
decmsg

0; 1 < meg.length(); i++)
decmsg + (char) (encmsg.charAt (i) * key);

This consircts the decoded sting.

System.out.print (*Decoded message: ")
System.out.println(decmsg) ;

ops/f0276-03.jpg
// Comstruct an isosceles triangle.
Triangle (double x) {
super(x); // call superclass constructor

style = "isosceles

)

// construct an object from an object.
Triangle (Triangle ob) {
super (ob) ; // pass object to TwoDShape constructor
style = ob.style;
) Pass a Triangle reference fo
TwoDShape's consiructor.
double area() {
return getWidth() * getHeight() / 2;
}

void showstyle() {
System.out.println(*Triangle is " + style);
)

)

class Shapes? {
public static void main(String args(l) {
Triangle t1 =
new Triangle('right", 8.0, 12.0);

ops/f0296-02.jpg
// Return the error message.
string getErrorMsg(int i) {
if(i >=0 & 1 < msgs.length)
return msgs[il;
else
return *Invalid Error Code";

class Finalb {
public static void main(String args(]) {
ErrorMsg err = new ErrorMsgl() ; Use final constants,

System.out.println (err.getErrorMsg (err.OUTERR)) ;
System.out .println (err.getErrorMsg (err.DISKERR)) ;

)
3

ops/f0428-03.jpg
System.out.println(thrd.getName() + * terminating.”

}
}

class sync {
public static void main(String args(l) {

int all = {1, 2, 3, 4, 5};

MyThread mtl = new MyThread("Child #1", a);
MyThread mt2 = new MyThread("Child #2°, a);

}
}

ops/f0167-01.jpg
// Use length variable to help copy an array.
class ACopy {
public static void main(String args(l) {
int i;
int numsi(]
int nums2 (]

new int [10];
new int [10] ;

for(i=0; i < numsl.length; i++)
numsl[i] = i;

Use length to compare array sizes.
// copy numsl to nums2
if (nums2.length >= numsl.length)
for(i = 0; i < nums2.length; i++)
nums2 [i] = numsl([i];

for (i
System.out.print (nums2[i] + " ");

; i < nums2.length; i++)

ops/f0550-04.jpg
// Handle mouse moved.
public void mouseMoved (MouseEvent me) {
// show status
showStatus ("Moving mouse at " + me.getX() + ", " +
me.gety());

)

// Display msg in applet window at current X,Y location.
public void paint (Graphics g) {
g.drawString(msg, mouseX, mouseY);

}

ops/f0598-02.jpg
System.out.println("Can't create because of "+ exc);

)
}

// This applet does not need to override start(), stop(),
/1 or destroy().

/1 set up and initialize the GUI.
private void makeGUT() {
// Set the applet to use flow layout.
setLayout (new FlowLayout () ;

// Wake two buttons.
3btnUp = new JButton("Up");
jbtnDown = new JButton ("Down"

// Add action listener for Up button.
jbtnUp.addActionListener (new ActionListener() { —
public void actionPerformed (ActionEvent ae) {

jlab.setText ("You pressed Up."); Use anonymous
} inner closss o
D hondle buton
events.

// Ada action listener for Down burton.
jbenDoun . addAct ionListener (new ActionListener() { +—
public void actionperformed (ActionEvent ae) (
j1ab.setText ("You pressed down.")

ops/f0091-01.jpg
// Declare loop control variable inside the for.
class Forvar {
public static void main(String args(l) (
int sum = 0;
int fact = 1;

// compute the factorial of the numbers through 5

for(int i = 1; i <= 5; i+4) { @—————————Thevariableiis declared
cum += i; // i is known throughout the loop insidethe for sctoment
fact *= i;

}

// but, i is not known here.

System.out.println("Sum is * + sum);
system.out.println("Factorial is " + fact);

ops/t0298-01.jpg
Method

Obect clonel |

boolean equls(Obiect objec)

void finalize()

Closs<? extends Object> getClass()
int hashCodel)

void noliy()

void noiiyAll

String toString()

)
void waitong milseconds)
void waitlong millseconds,
int nanoseconds)

|Purpose

Crectes a new obiect hat i the same as the object being cloned.
Determines whether one object s equal fo another

Coled before an unused object s recycld.

Obins the class of an object ot run fime.

| Retums he hosh code associoled with e invoking object
| Resumes execulion of o hreod waifing on he invoking abjec

Resumes execution of all threads waiting on the nvoking obiect
Returns a sting th descibes the object.
Waits on another threod of execution.

ops/caution.jpg

ops/f0574-03.jpg
! Handle button events.

// Handle button events.
public void actionPerformed(ActionEvent ae) {

if (ae.getActionComnand () . equals ("Up")) 4———— Use the aclion

Jlab.setText ("You pressed Up."); commond o
elze determine which
o button was
3lab.setText ("You pressed down. sy

}

public static void main(String args(l) {
// Create the frame on the event dispatching thread.
SwingUtilities. invokeLater (new Runnable() {
public void run() {
new ButtonDemo () ;
}
b
}

ops/t0656-01.jpg
Tag | Meaning

Gauhor dontifcs the author of @ dass.

{@code) | Displays information as-is, without processing HTMLsiyles, in code font.
Qeoprocoted | Specifies thot @ doss or member s deprecoted.

(@docRoot) | Specifie the path o the root direcory ofth current documentaion
excepion | Ideniifies on exception hrown by a method.

(@inherifDoc) | Inherits @ conment from the immediat supercass.

{@link) |nserts on indine lin fo another opic

(@lnkplin) | Inserts an nlin nk o amothr opic but the ik i csployed in plin et fon.
(@lirol) |Displaysiformaion as-s, wihout procesing HTMLsyles.

@porom 'Dowmwls @ method's parameter.

@return | Documents @ method's return valve.

@0 | Speciies link to another fopi

@serial | Documents o defoult seialzablefcld.

@serialDola Documents the data written by the writeObject) or writeExternal|) methods.
@sericlField | Documents an ObjectStreamField component.

@since Stotes the release when a specific chonge wes iniroduced.

@hrows | Some os @exception.

(@volue) | Diplaysthe vale ofa constan, which must be o safc fiold.

@version | Specifies the version of a class.

ops/t0055-01.jpg
Operator | Meaning

== Equolto
Not equal o
> Greater than
s Less than
>= Grealer than or equal fo

- Less than or equol fo

ops/f0579-02.jpg
// set the action commands for the text field.
jt£.setActionCommand ("myTF") ; 4——Setthe acfion command fo the fext fild.

// create the Reverse button.
JButton jbtnRev = new JButton('Reverse);

// Bda action listeners.
jtf.addactionListener (this) ; +———7 Add action listeners for both the tex ield
jbtnRev.addActionListener (this) ; 4—1 and the bufion

// create the labels.

jlabPrompt = new JLabel ("Enter text:);
jlabcontents = new JLabel ("");

// 3dd the components to the content pane.
3£rm.add (jlaberompt) ;

jerm.add(3ee) ;

3£rm.add (jbenRrev) ;

3frm.add(jlabContents) ;

// Display the frame.
jfrm.setvisible (true) ;

ops/f0468-01.jpg
// Demonstrate manual boxing and unboxing with a type wrapper.
class Wrap {
public static void main(String args(l) {

Integer iOb = new Integer(100); «———— Manually box the value 100.

int i = iOb.intValue () ; 4———— Manualy unbox the value in iOb.

System.out.println(i + * * + i0b); // displays 100 100
}
}

ops/t0186-01.jpg
P

pla

p&q

ops/f0247-01.jpg
// Varargs, overloading, and ambiguity.
/1’

// This program contains an error and will
// mot compile!

class VarArgsd {

// Use an int vararg parameter.
static void vaTest (int v) { ¢ Anintvararg

/" ...

)
// Use a boolean vararg parameter.
static void vaTest (boolean ... v) { 4————Aboolean vararg
/" o...
)
public static void main(String args(])
{
vaTest (1, 2, 3); // OK
vaTest (true, false, false); // OK
vaTest(); // Error: Ambiguous! €———— Ambiguous!
)

}

ops/f0216-02.jpg
class Overloadpemo {

public static void main(String args(]) {
Overload ob = new Overload();
int resl;

double resD;

// call all versions of ovlDemo()
ob.oviDemo() ;
System.out .println();

ob.oviDemo (2) ;
System.out.println() ;

resI = ob.ovlDemo(4, 6);

System.out.println("Result of ob.ovlDemo(4, 6): " +
resl);

System.out.println() ;

resD = ob.oviDemo(1.1, 2.32);
System.out.println("Result of ob.oviDemo(1.1, 2.32): " +
resD) ;

ops/f0088-01.jpg
// Parts of the for can be empty.
class Empty {
public static void main(String args(l) {
int i;

for(i = 0: 3 < 10:) { «————The teation expression s missing.
System.out.println("pass #" + i);
is+; // increment loop control var

}
}

ops/f0329-02.jpg
public void meth2() {
System.out.println("Implement meth2().");

}

public void meth3() {
System.out.println("Implement meth3().");

}
}

class IFExtend {
public static void main(String argl]) {
MyClass ob = new MyClass();

ob.methl();
ob.meth2 () ;
ob.meth3 () ;

ops/f0490-01.jpg
// A simple generic class with two type

// parameters: T and V.

class TwoGen<T, V> { ————Use hwo type porameters.
T obl;
v ob2;

// Pass the constructor references to
// objects of type T and V.
TwoGen(T o1, V 02) {

obl = ol;

ob2 = 02

)

// sShow types of T and V.
void showTypes () (
System.out.println("Type of T iz * +
ob1.getClass () .getName () ;

ops/f0218-01.jpg
// One ovlDemo(int) is OK.
void oviDemo(int a) { 4 Relum fypes comnot be used fo
System.out.println("One pavameter: " + a); differentiote overloaded methods.

}

/+ Brror! Two oviDemo(int)s are not OK even though
return types differ
«/
int ovibemo(int a) {
System.out.printin("One parameter: * + a);
return a * a;

}

ops/f0243-01.jpg
// Demonstrate variable-length arguments.
class VarArgs {

// vaTest() uses a vararg.

static void vaTest (int ... v) {
System.out .println("Number of args:
System.out.println("Contents: *);

"+ v.length);

i< v.length; i++)
arg " + i+ i "4 vIi]);

for (int i=
System.out.println("

System.out.println();

)
public static void main(String args(])

{

// Notice how vaTest() can be called with a
// variable number of arguments.

vaTest (10) ; // 1 arg
vaTest (1, 2, 3); // 3 args |——— Call with diflerent numbers
vaTest () ; // no args | of arguments.

ops/f0441-04.jpg
obl.mysuspend () ;
System.out .println("Suspending thread.
Thread.sleep (1000) ;

obl.myresume () ;
System.out .println("Resuming thread.");
Thread. sleep (1000) ;

obl.mysuspend () ;
System.out .println("
obl.mystop() ;

} catch (InterruptedBxception e) {
System.out.println("Main thread Interrupted”);

}

// wait for thread to finish
exy {
obl.thrd.join() ;
} catch (InterruptedBxception e) {
System.out.println("Main thread Interrupted”);

}

topping thread

System.out.println("Main thread exiting.

ops/f0077-01.jpg
// Demonstrate an if-else-if ladder.

class Ladder {

public static void main(String args()) {

int x;

for (x=0; x<6; x4) {
$F (xas1)
System.out.printin("x
else if(x==2)
System.out .println("x
else if(x=s3)
System.out.println("x
else if (x==d)
System.out .println("x
else

System.out .println("x

is

is

one")

wor) 5

three") ;

four®) ;

not between 1 and

any; ——Thisisthe
dofauk sctement.

ops/f0522-01.jpg
// Use join().

class MyThread implements Runnable {
int count;
Thread thrd;

// Construct a new thread.
MyThread (String name) {
thrd = new Thread(this, name);
count = 0;
thrd.start(); // start the thread
}

/1 Begin execution of new thread.
public void run() {
System.out .println (thrd.getName () + * starting.");
try {
o {
Thread. sleep(500) ;
System.out.println("In " + thrd.getName() +
", count is * + count);
counts;
} while (count < 10);
}
catch (Interruptedgxception exc) {
System.out.println(thrd.getName() + " interrupted

T

ops/f0214-01.jpg
// Return a String object.
class ErrorMsg {
string msgs(] = {
"output Error",
"Input Error",
"Disk Full",
"Index Out-Of-Bounds"

b

// Return the error message.
String getErrorMsg(int i) { €—————Return an object of type String.
if(i >=0 & i < msgs.length)
return msgs [i];
else
return "Invalid Error Code;

)
}

class ErrMsg {
public static void main(String args(]) {
ErrorMsg err = new ErrorMsg();

System.out.println(err.getErrorisg(2)) ;
System.out.println(err.getErrorisg(19)) ;

)
}

ops/f0485-02.jpg
// Demonstrate the generic class
class Genbemo {
public static void main(String args(l) {
/1 Create a Gen reference for Integers.
GencIntegers 0b; ¢————————— Crdlea reference o
an cbject o ype

// Create a GeneIntegers object and assign its Cendmegen

1/ reference to i0b. Notice the use of autoboxing

// to encapsulate the value 88 within an Integer object.

i0b = new Gen<Integer> (88) ; 4————————————— ngoniiotean obiect of
ype Genintegers.

// Show the type of data used by iOb.

10b. showType () ;

ops/f0347-02.jpg
// catch the exception
System.out.println("No matching element found.");
throw exc; // rethrow the exception

y! L simeene

}
}

class Rethroubemo {
public static void main(String args(l) {
ey {
Rethrow.genException () ;

}
catch (ArrayTndexOutOfBoundsExcept ion exc) { 4— Cotch revown excepion
// recatch exception
System.out.println("Fatal error - " +
"program terminated.");
}

}
}

ops/f0062-01.jpg
// *** This program will not compile. ***
class LtoD {
public static void main(String args()) {
long L;
double D;

D = 100123285.0;
L = D; // Tllegal! ! i———No automafic conversion from double o long

System.out.println("L and D: " + L + " " + D);

ops/f0291-03.jpg
// A default constructor.
Triangle() {

super () ;

style

)

"null";

// Constructor for Triangle.

Triangle(String s, double w, double h) {

super(w, h, "triangle");

style = s;

}

// Construct an isosceles triangle.
Triangle (double x) {

super(x, "triangle"); // call superclass constructor

style = "isosceles";

)

// Construct an object from an object.
Triangle (Triangle ob) {

super (ob) ; // pass object to TwoDShape constructor

style = ob.style;

}

double area() {

return getWidth() * getHeight() / 2;

)

ops/f0374-01.jpg
/* Display a text file.

To use this program, specify the name

of the file that you want to see.

For example, to see a file called TEST.TXT,
use the following command line.

Jjava ShowFile TEST.TXT
e

import java.io.*;

class ShowFile {
public static void main(String args(l)

{
int i;
FileInputStream fin;

// First make sure that a file has been specified.
if (args.length != 1) {
System.out.println("Usage: ShowFile File);
return;

}

ops/f0027-01.jpg
if (w < h) {4————Startof block
vo=w*h;
w=0;

| —_ e T T

ops/f0285-03.jpg
Triangle() {
super () :
style = "nulle;

}

// constructor for Triangle
Triangle(string s, double w, double h) {
super(w, h, "triangle®);

style

}

// Construct an isosceles triangle.
Triangle (double x) {
super(x, "triangle"); // call superclass constructor

5

style = "isosceles";

}

// construct an object from an object.
Triangle (Triangle ob) {
super (ob) ; // pass object to TwoDShape comstructor
style = ob.style;

}

// override area() for Triangle.
double area () {#———————————————Override area) for Triangle.

return getWidth() * getHeight() / 2;

}

ops/f0479-01.jpg
// An example that uses @Deprecated.

// Deprecate a class.
@Deprecated «—— Mark a class os deprecated.
class MyClass {

private String msg;

MyClass (String m) {
meg = m;

}

// Deprecate a method within a class.

@Deprecated]
string getMsg() {

s st Mark @ method as deprecated
}

/"o
}

class AnnoDemo {
public static void main(String args(]) {
MyClass myObj = new MyClass("test");

System.out .println(myobj.getMsg()) ;

}
}

ops/f0197-01.jpg
// Prevent a division by zero using the ?.
class NoZerobiv {
public static void main(String args(]) {
int result;

for(int i = -
result = i
i1 1= 0)
System.out.println("100 / " + i + " is " + result);

i< 6 i) {
071200 /i:0

4 This prevents o divide-by-zero.

ops/t0179-01.jpg
boolean equals(String st)

intlength()
char charAfint index)
int compareTo[Sting sh)

int indexOffSring st

Returns true if the invoking string contains the same character
sequence os si.

Obtains the length of a sing.
Obtains the character of the index specified by index:

Retams s hon i e okig sin i s s, reir
than zero i the nvoking sring is greater than s, and zero ifthe
strings are equal.

Searches the invoking siing for the substring specified by st Returns
e e g i

int lastindexOfString str)

Searches the invoking siing for the substring specified by st Returns
sy et e

ops/progress_check.jpg

ops/f0589-02.jpg
Compare Fites (= (B[]

Second file:

sample2d

Compare|

Files are not the same.

ops/f0346-01.jpg
// Manually throw an exception.
class Throwbemo {
public static void main(String args(l) {
try {
System.out.println("Before throw.");
throw new ArithmeticException(); «—————Throw an exception.

)

catch (ArithmeticException exc) {
// catch the exception
System.out.println("Exception caught.");

}

System.out.println("After try/catch block.");

}
}

ops/f0432-03.jpg
)
System.out.printin ("

um for " + thrd.getName() +
is * + answer);

System.out.println(thrd.getName() + " terminmating.

}
}

class sync {
public static void main(string args(l) {
int all = {1, 2, 3, 4, 5};

MyThread mtl = new MyThread("Child #1", a);
MyThread mt2 = new MyThread("Child #2", a);

try {
mtl.thrd.join();
mt2.thrd.join();
} catch(InterruptedException exc) {
System.out .println("Main thread interrupted.");

}
}

}

ops/f0343-01.jpg
// Subclasses must precede superclasses in catch statements.
class ExcDemos {
public static void main(String args(]) {
// Here, numer is longer than denom.
int numer() - { 4, 8, 16, 32, 64, 128, 256, 512 };
int denoml) = { 2, 0, 4, 4, 0, 8 };

for(int i<numer.length; i++) {

ery {
System.out.println(numer(i] + * / " +
denom[i] + " is " +
numer [1] /denom[1]) ;

)

catch (ArrayIndexOutOfBoundsException exc) {4——— Coich subdoss
// catch the exception
System.out.println("No matching element found.");

}

catch (Throwable exc) { ¢———————————————Cotch superclass
System.out.println("Some exception occurred.");

}

}
}
}

ops/f0155-01.jpg
// Use array initializers.
class MinMax2 {
public static void main(String args(l) {
int nums(] = { 99, -10, 100123, 18, -978, i i
5623, 463, -9, 287, 49 }; /vy infiolzen

int min, max;

min = max = nums([0];

for (int i; i< 10; i+ {
if (nums[i) < min) min = nums(il;
if (nums (i) > max) max = nums(il;

}

System.out.println("Min and max: " + min + " " + max);

ops/f0472-01.jpg
// Rutoboxing/unboxing occurs inside expressions.

class AutoBox3 {
public static void main(String args(l) {

Integer iOb, i0b2;
int i;

i0b = 99;
System.out.println("Original value of iOb: " + iOb);

// The following automatically unboxes iOb,
// perforns the increment, and then reboxes
// the result back into i0b.

++i0b; +

System.out.printin("After ++i0b:

"+ dob);

// Here, i0b is unboxed, its value is increased by 10,
// and the result is boxed and stored back in i0b.

i0b += 10;
System.out.println("After i0b += 10: * + i0b);

Autoboxing/
// Were, i0b is unboxed, the expression is f— unbaring occurs
// evaluated, and the result is reboxed and in expressions.

1/ assigned to iob2.
i0b2 = 10b + (i0b / 3) ; 4]
System.out.println("iOb2 after expression: " + i0b2);

// The same expression is evaluated, but the
// result is not reboxed.
i=d0b s (100 /3); ——————————————

System.out.println("i after expression: " + i);

ops/f0304-01.jpg
// A short package demonstration.
package BookPack ; ————————————— This fle is port of the BookPack package.

class Book {4 Thus, Book is port of BookPack
private String title;
private String author;
private int pubDate;

Book (String t, String a, int d) {
title = t;
author = a;
pubDate = d

)

void show() {
System.out.println(title);
System.out.println(author) ;
System.out .println (pubbate) ;
System.out.println();

}

ops/f0021-01.jpg
Original value of var: 10
Original value of x: 10.0

var after division: 2 4——Fractional component lost
x after division: 2.5 4—————Fractional component preserved

ops/f0153-01.jpg
// Demonstrate a one-dimensional array.
class ArrayDemo {
public static void main(String args(l) {
int sample[] = new int[10];

int i;
for(i = 0; i < 10; i i+1)
sample(i) = i; Arrays are indexed from zero.
for(i = 0; i < 10; i i+1) 4—‘
System.out.println("This is sample[" + i + "]: " +

sample[i]);

ops/f0471-01.jpg
// This method returns an int.
static int m2() { ¢———————— Retumsanint.

return 10;
} Returns on Integer.
// This method returns an Integer.
static Integer m3() {
return 99; // autoboxing 99 into an Integer.
}

public static void main(String args(]) {

// Pass an int to m(). Because m() has an Integer

// parameter, the int value passed is automatically boxed.
m(199) ;

ops/f0414-02.jpg
catch (InterruptedException exc) {
System.out.println(thrd.getName() + " interrupted.");
}
System.out.println(thrd.getName() + " terminating.");
}
}

class UseThreadsImproved {
public static void main(String args(]) {

System.out.println("Main thread starting."

MyThread mt = new MyThread("Child #1");
a4 Now the thread starts when it is created.
System.out.print (.
ery {
Thread.sleep(100) ;
)
catch (InterruptedException exc) {
System.out.println("Main thread interrupted."):

}

} while (me.count

10);

System.out .println("Main thread ending.");

i
}

ops/t0045-01.jpg
Escape Sequence

Description

v

Single quote

vy

Double quote

W\

Backslash

Carriogo retun

New line

Form feed

Horizontal tob

Backspaco

Octal constant (where dddis an octal constant]

E{Ez;z:;z

Hexadecimal constant (where xooox is @ hexadecimal constant)

ops/t0369-01.jpg
Character Stream Class Meaning

BufferecReader | Buffered input choracer sream

BufferedWirter Buffered oulput choracter sireom
CharArrayReader | Input sieam tho reods rom o character array
CharArroyWeier ‘Output siream thotwites fo o choracler orray
FileReoder Input sieom that reads from a fe

FleWriter | Output siroam ot wries foa fle

FillrRooder fered reader

FllerWrter Fillred wter

InpulSiremReader Inputsireom that ranslafe bytes fo characiers
LineNomberReoder Inpot sieam thot counts ines
OutpuSireamWeiter | Output siream that ranslates charocters fo bytes
PipedReoder Input pipe

PipedWiriter Output pipe.

PrinfWeiter | Output stream tht contains print{) and printin)
PushbackReader Input siream thot allows characlers fo be returned o the input sream
Reader | Absiroct clos thot describes character sheom input
StingReader Input sireom that reads from a sring
StingWeiter | Output siream that wites fo @ sing

Witer Absiract class that describes characler siream oulpul

ops/f0398-02.jpg
catch (NumberFormatException exc) {
System.out.println("Invalid format");
n=o;

}

System.out.println("Enter " + n + " values.");
for(int i=0; i <mn ; ivs) {
System.out.print (*: ");
str = br.readline();
try {
t = Double.parseDouble (str) ; 4——— Convert sting fo double.
} catch (NumberFormatException exc) {
System.out.println(*Invalid format");
€= 0.0;
)

sum 4= t;
}

avg = sum / n;
System.out.println("Average is " + avg);

ops/f0262-02.jpg
void showbim() {
System.out.println(*Width and height are " +
width + " and " + height);
)
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {
super ()
style = "null";

)

// Constructor
Triangle(String s, double w, double h) {
super(w, h); // call superclass constructor +—

style = s;
Use superl) to call the
. vorious forms of he

// Construct an isosceles triangle. ‘TwoDShape consiruclor.

Triangle (double x) {
super (x); // call superclass constructor $———

style = “isosceles"

ops/f0567-01.jpg
// A simple Swing program.

import javax.swing.

4 Swing programs must import jovax.swing

class SwingDemo {

Swingoeno() {
Crecto coniner.
// Create a new aFrame container
cematStincs mavs vmmmn (oh a4 b ggica iy em |

// Give the frame an initial size.
3frm. setSize (275, 100); 4——— Sefthe dimensions ofthe ame.

// Terninate the program when the user closes the application.

$Em.setDefaultCloseOperat ion (JFane. EXIT_ON_CLOSE) ; 4—— Tomige

ops/f0120-01.jpg
o passengers | 7
minivan Fecan -
mpg 21
passengers | 2

s
o fuelcap 14
mpg 12

ops/f0270-02.jpg
System.out.println("Width and height are " +
width + * and " + height);
)

}

// Extend TwoDShape.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {

super () ;

style = "null";

)

Triangle (String s, double w, double h) {
super(w, h); // call superclass constructor

style = s;

}

/1 construct an isosceles triangle.
Triangle (double x) {
super (x); // call superclass constructor

style = "isosceles";

}

ops/f0441-01.jpg
// Suspending, resuming, and stopping a thread.

class MyThread implements Runnable {
Thread thrd;
volatile boolean suspended; 4— Suspends thread when true.
volatile boolean stopped: 4——— Siops thread when e,

MyThread (String name) {
thrd = new Thread(this, name);
suspended = false;
stopped = false;
thrd.start();

}

// This is the entry point for thread.
public void run() {
System.out.println(thrd.getName() + " starting.");
try {
for (int i ;i< 10005 i+s) {
System.out.print(i + " ");
1£((1%10)==0) {
System.out.println() ;
Thread.sleep (250) ;
}

ops/t0235-01.jpg
ol [fedach
Possl |bcadef

ops/f0119-01.jpg
// This program creates two Vehicle objects.

class vehicle (
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg: 7/ £uel consumption in miles per gallon

}

// This class declares an object of type Vehicle.
class Twovehicles {
public static void main(String args(l) {

Vehicle minivan = new Vehicle(); it

Vehicle sportscar = new Vehicle(); winivan and
sportscor refor

int rangel, range2; o seporle
objects.

// assign values to fields in minivan
minivan.passengers = 7;

minivan. fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;

sportscar. fuelcap = 147

sportscar.mpg = 12;

// compute the ranges assuming a full tank of gas
rangel = minivan.fuelcap * minivan.mpg;
range2 = sportscar.fuelcap * sportscar.mpg;

System.out.println("Minivan can carry * + minivan.passengers +
" with a range of " + rangel);

System.out.println("Sportscar can carry " + sportscar.passengers +
“ with a range of " + range2);

ops/f0259-01.jpg
// Add a constructor to Triangle.

// A class for two-dimensional objects.
class TwoDShape {
private double width; // these are
private double height; // now private

// Accessor methods for width and height.
double getwidth() { return width; }

double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h;

void showbim() {
System.out.println("width and height are " +
width + " and " + height);
}
}

// B subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// Constructor
Triangle (String s, double w, double h) {

setwidth (w) ; o
— i
setHeight (h) ; Initiclize TwoDShape

portion of object.

style

ops/f0588-04.jpg
jlab.setText ("Current selection: " + names[idx]);
else // Otherwise, reprompt.
lab.setText ("Please choose a name"
}

public static void main(String args(l) {
// Create the frame on the event dispatching thread
SwingUtilities. invokeLater (new Runnable() {
public void run() {
new Liscoeno() ;
}

b
}

ops/f0215-01.jpg
// Return a programmer-defined object.
class Err {
String msg; // error message
int severity; // code indicating severity of error

Err(String m, int s) {
msg = m;
severity = s;
}
}

class ErrorInfo {

String msgs(] = {
"output Error",
"Input Error",

"Disk Full",
"Index Out-Of-Bounds"

)i

int howbad(] = { 3, 3, 2

ops/f0240-01.jpg
// Use ShowBits as a local class.
class LocalClassbemo {
public static void main(String args(]) {

// An inner class version of Showsits.
class ShowBits { 4—————————— Alocol dlass nested
int numbits;

ShowBits (int n) {
nunbits = n;

}

void show(long val) {
long mask

// left-shift a 1 into the proper position
mask <<= numbits-1;

int spacer

for (; mask mask »20= 1) {
if((val & mask) 1= 0) System.out.print(*1);
Sine Fystes Gitipeintison);

0;

ops/f0242-01.jpg
// vaTest() uses a vararg. Declare a variable-length argument list.
static void vaTest (int ... v) {
System.out.println("Number of args: " + v.length);
System.out.println("Contents: ");

for(int i < v.length; i++)
System.out.println(" arg " + i+ ": " + v(il);

System.out.println();

}

ops/f0373-01.jpg
// Demonstrate System.out.write().
class WriteDemo {
public static void main(String args(]) {
int b;

b= 'X';
System.out .write (b) ; ——————Write a byte fo the screen.
System.out.write('\n');

}
}

ops/f0063-01.jpg
// Demonstrate casting.
class Castbemo {
public static void main(String args(l) {

double x, v:
byte b;
int i
char ch;
10.0;
3.0;

Truncotion will occor in this converson.
i= (int) (x / y); // cast double to int
System.out.println("Integer outcome of x / y: " + i);

i = 100;

b = (byte) i;4——————— Noloss ofinf hero. A byte can hold the value 100.
System.out.println("Value of b: * + b);

i=2s7;

b = (byte) ;4 Informationlos this fime. A byte cannat hold he volue 257.
System.out .println("Value of b: * + b);

b = 88; // ASCII code for X

©h = (char) bj 4 Cost batween incompatibl types
System.out.println(ch: * + ch);

ops/f0579-04.jpg
// Enter was pressed while focus was in the

// text tiela.

J1abContents. setText ("You pressed ENTER. Text is: " +
jtE.getText ()

]

public static void main(String args()) {
// Create the frame on the event dispatching thread.
SwingUtilities. invokeLater (new Runnable() {
public void run() {
new T¥Demo ()7
)
b
}

ops/f0164-02.jpg
nums2 = numsl; // now nums2 refers to numsl<——— Assignon array

System.out.print ("Here is nums2 after assignment:) ;

For(i=0; i < 10; i++)
System.out.print (nums2[i] + " "

System.out.println() ;

// now operate on numsl array through nums2
nums2(3] = 99;

System.out.print ("Here is numsl after change through nums2:

for(i< 105 dvs)
System.out.print (nums1(i] + " "
System.out.println() ;

ops/f0318-01.jpg
// Implement Series and add getPrevious().
class ByTwos implements Series {

int start;

int val;

int prev;

ByTwos () {
start = 0;
val = 0;
prev =

)

public int getNext() {
prev = val;
val 4= 2;
return val;

)

public void reset() {
start = 0;
val = 0;
prev

)

public void setStart (int x) {
start = x;
val = x;
prev = x -

)

int getPrevious() {<4—————Add amethod not defined by Series.
return prev;
}

}

ops/f0501-01.jpg
class UseBoundedWildcard {
// Here, the ? will match A or any class type
// that extends A.
static void test (Gen<? extends A> o) { 4———— Use a bounded wildcard
s
)

public static void main(String args(]) {
Aa - newal;
B b = new B();
Cc =newcCl;
Dd = new D();

Gen<A> w = new Gen<a>(a);
Gen w2 = new Gen(b);
Gen<C> w3 = new Gen<C>(c);
Gen<D> w4 = new Gen<D>(d);

// These calls to test() are OK.

test (w) ;

test (w2) ; These are legal because w, w2, and w3 are subclosses of A.
test (w3) ;

// can't call test() with w4 because
// it is not an object of a class that
// inherits A.
// test(wa); // Exror: ——Thisisllegal because wdkis not a subclass of A.
}
}

ops/f0520-01.jpg
// Ambiguity caused by erasure on
// overloaded methods.
class MyGenClass<T, V> {

T obl;

v ob2;

/"o

// These two overloaded methods are ambiguous

// and will not compile.

void set(T o) { €—
obl = o;

} [——————These two methods are

inherently ambiguous.

void set(V o) { «—
ob2 = o;
}

}

ops/t0314-01.jpg
Description
Contains a lorge number of general-purpose dlosses

javalang.

jovaio Contains the /O dasses

jova.nel ‘Contains those clsses that suppor networking
jova.opplet | Contains classes for creating opplets

jova.awt

Contains classes that support the Abstract Window Toolkit

ops/f0204-01.jpg
/* This class implements a "fail-soft" array which prevents
runtime errors.

o
class FailSoftArray {
private int all; // reference to array

private int errval; // value to return if get() fails

public int length; // length is public

/* Comstruct array given its size and the value to
return if get() fails. */
public FailSoftArray(int size, int errv) {
a = new int[sizel;
errval = errv;
length = size;

}

// Return value at given index.
public int get(int index) {
if (ok (index)) return alindex] ;4——Trap an out-of-bounds index.
return errval;

i}

// Put a value at an index. Return false on failure.
public boolean put (int index, int val) {
if (ok (index)) {
alindex] = val;
et Erus

ops/f0291-04.jpg
void showstyle() {
System.out.printin("Triangle is " + style);

)
}

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
// A default constructor.
Rectangle() {
super () ;

)

// constructor for Rectangle.
Rectangle (double w, double h) {
super(w, h, "rectangle"); // call superclass constructor

)

// Construct a square.
Rectangle (double x) {
super (x, "rectangle"); // call superclass constructor

)

// Construct an object from an object.
Rectangle (Rectangle ob) {
super (ob) ; // pass object to TwoDShape constructor

)

ops/f0090-01.jpg
// The body of a loop can be empty.
class Eupty3 {
public static void main(String args(]) {
int i;
int sum =

// sum the numbers through 5
for(i = 1; i <= 5; sum += i++) ; €——Nobody in this loop!

System.out.println("Sum is " + sum);

ops/f0183-01.jpg
// Use substring().
class subStr {

public static void main(String args(l) {
String orgstr = "Java makes the Web move.":
// construct a substring This creates @
String substr = orgstr.substring(s, 18); «— new siring that
contains the
desired substring,

System.out.println("orgstr: " + orgstr);
System.out.println("substr: * + substr);

ops/note.jpg

ops/f0390-01.jpg
// Use a BufferedReader to read characters from the console.
import java.io.
class ReadChars {
public static void main(String args(])
throws IOException

Create BufferedReader

{ linked to System.in.
char c;

BufferedReader br = new:
Buf feredReader (new
InputStreamReader (System.in)) ;

System.out.println("Enter characters, period to quit.");

// read characters
do {
¢ = (char) br.read();
System.out.println(c);
} while(c 1= *.%);

ops/f0506-01.jpg
// Use a generic constructor.
class Summation {
private int sum;

<T extends Number> Summation(T arg) { 4———— Ageneric construcior
sum = 0;

for (int
sum 4= i

;i <= arg.intValue(); i++)

}

int getsum() {
return sum;
)

}

class GenConsDemo {

public static void main(String args(l) {
Summation ob = new Summation(4.0);

System.out.println("Summation of 4.0 is " +
ob.getsum()) ;

ops/f0579-03.jpg
// Handle action events. This method handles both
public void actionPerformed (ActionEvent ae) { «— bufion ondtex field events.

i£ (ae.getActionConmand () .equals ("Reverse")) { 4—— Use the acion
// The Reverse button was pressed. cammnd o deernin
String orgStr = jLf.getText(); ich component
String resstr = "' oormrec e erk

// Reverse the string in the text field.
for (int i=orgStr.length()-1;
resstr += orgstr.charAt (i);

/1 Store the reversed string in the text field.
JtE.setText (resstr) ;
} else

ops/f0030-01.jpg
/*

Project 1-2

This program displays a conversion
table of gallons to liters.

call this program "GalToLitTable.java.

*/
class GalToLitTable {
public static void main(String args(]) {
double gallons, liters;
int counter; Line counter is initally set o zero,

counter = 0 4—J

for(gallons = 1; gallons 100; gallons++) {
liters = gallons * 3.7854; // convert to liters

ops/f0485-01.jpg
& SINphw el . aLaes.,

/] Were, T is a type parameter that

// will be replaced by a real type

// when an object of type Gen is created.

class Gen<T> { 4—————————————— Ddaore o generic css. Tis the
T ob; // declare an object of type T ‘generi type porometr.

// Pass the constructor a reference to
/1 an object of type T.
Gen(T o) {

ob = o

}

// Return ob
T getob() {
return ob;

}

/1 Show type of T.
void showType() {
System.out.println("Type of T is " +
ob.getClass () .getName ()) ;

ops/f0259-02.jpg
}

double area() {
return getWidth() * getHeight() / 2;
}

void showstyle() {
System.out.println("Triangle is " + style);

}
}
class Shapes3 {
public static void main(String args(]) {
Triangle t1 = new Triangle("isosceles", 4.0, 4.0);
Triangle t2 new Triangle("right", 8.0, 12.0);
System.out.println("Info for tl: ");
tl.showstyle();
t1.showDim() ;
System.out.println("Area is " + tl.area());
System.out.println();
System.out.println("Info for t:
t2.showstyle();
t2.showDim() ;
System.out.println("Area is " + t2.area());
}

ops/f0123-02.jpg
// assign values to fields in sportscar
sportscar.passengers = 2;

sportecar. fuelcap = 14;

sportscar.mpg = 12;

System.out.print ("Minivan can carry " + minivan.passengers +
LoD
minivan.range(); // display range of minivan

System.out.print ("Sportscar can carry " + Sportscar.passengers +

LA

sportscar.range(); // display range of sportscar.

ops/t0056-01.jpg
[q P&q pla P"q p
False False False False False True
True Folie Folse True Trve Folse
False True Folse Trve. True. Trve
Tre Trve True True False False

ops/f0276-02.jpg
// RAccessor methods for width and height.
double getwidth() { return width; }
double getHeight () { return height; }
void setwidth(double w) { width = w; }
void setHeight (double h) { height = h; }

void showbim() {
System.out.println("Width and height are " +
width + " and " + height);
)
}

// A subclass of TwobShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {

super () ;

style = "null";

}

// Constructor for Triangle.
Triangle(String s, double w, double h) {
super (w, h); // call superclass constructor

style = s;

}

ops/f0313-01.jpg
// Demonstrate import.
package BookPackB;

import BookPack..* ; 4———————— Import BookPack.

// Use the Book Class from BookPack.

class UseBook (

public static void main(String args(l)
Book books (] = new Book (5] ;4———————— Now, you con refer to Book

books [0]

books (1]

books [2]

books (3]

books (4]

new

new

new

new

new

{

direcly, without qulification.

Book("Java: A Beginner's Guide",

"Schilde",

2007) ;

Book ("Java: The Complete Reference”,

"Schilde",

2007) ;

Book ("The Art of Java",

"Schildt and Holmes",
Book ("Red Storm Rising",

"Clancy",

1986) ;

Book ("On the Road",

"Kerouac™,

for(int i=0; i < books.length;

1955) ;

2003) ;

i++) books[i] .show() ;

ops/f0281-01.jpg
// display k - this overrides show() in A
void show() {4————————— This show{) in B overrides
System.out.println("k: " + k); the one defined by A.
}
}

class Override {
public static void main(String args(]) {
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B
}
}

ops/f0425-02.jpg
count++;

if (currentName . compareTo (thrd.getName ())
currentName = thrd.getName () ;
System.out.println("In " + currentName);

i

} while(stop == false && count < 10000000) ; 4———The frstthreod
stop = true; 110,000,000
: stops ol fhreads.

system.out.println("\n" + thrd.getName() +
" terminating.”);
}

}

class PriorityDemo {
public static void main(String args(l) {
Priority mtl = new Priority("High Priority");
Priority mt2 = new Priority("Low Priority");

ops/f0428-02.jpg
class MyThread implements Runnable {
Thread thrd;
static SumArray sa
int all;
int answer;

new Sumarray () ;

// Construct a new thread.

MyThread (String name, int nums[]) {
thrd = new Thread(this, name);
a = nums;
thrd.start(); // start the thread

}

// Begin execution of new thread.
public void run() {
int sum;

System.out.println(thrd.getName () + " starting.”):
answer = sa.sumArray(a) ;

System.out.println("Sum for " + thrd.getName() +
" is " + answer);

ops/f0310-01.jpg
// Demonstrate Protected.
package BookPackB;

class ExtBook extends Bookpack.Book {
private String publisher:

public ExtBook(String €, String a, int d, String p) {
super(t, a, @);
publisher

}

public void show() {
super. show () ;
System.out .println (publisher) ;
System.out.println();

}

public String getPublisher() { return publisher;
public void setPublisher(String p) { publisher = p; }

/* These are OK because subclass can access
a protected member. */

public String getTitle() { return title; }

public void setTitle(String t) { title = t; }

public String getAuthor() { return author; }e——Access o Book's members
public void sethuthor(String a) { author = a; } isollowed for sbcosses.
public int getPubDate() { return pubDate; }

public void setPubDate(int d) { pubbate = d;)

ops/f0380-03.jpg
// Now, read
try {
dataln = new
DataInputStream(new FileInputStream("testdata"));

}

them back.

catch(IOException exc) {

}

System.out.

return;

try {

i = dataln

d = dataln
System.out

b = dataln

a

}

datain

-readint () ; 4—————————————
System.out.

-readDouble () j ¢——— |
.println("Reading " + d); Read binary data.

.readBoolean () ; e— 1
System.out.

-readpouble () ; 4—]
System.out.

println("Cannot open input file.

println(*Reading " + i);

println(*Reading " + b);

println(*Reading " + d);

catch (I0Exception exc) {

}

System.out.

println(*Read error.");

ops/f0385-02.jpg
raf.seek(8); // seek to second double
4 = raf.readbouble();
System.out .println("Second value is " + d);

raf.seek(s * 3); // seek to fourth double
d = raf.readbouble() ;
System.out.println("Fourth value is " + d);

system.out.println();

// Wow, read every other value.

System.out.printin("Here is every other value:

for(int i=0; i < data.length; i+=2) {
raf.seek(s * 1); // seek to ith double
d = raf.readbouble () ;
System.out.print(d + * ");

i
}

catch(10Exception exc) {
System.out .println(“File error.

)

try {
raf.close();

} catch (1oException exc) {
System.out.println("Error closing file."

}

}
3

")

ops/f0374-02.jpg
try {
fin = new FileInputStream(args[0]); €———— Open the file.
} catch(FileNotFoundException exc) {
System.out.println("File Not Found");
return;

}

try {
// read bytes until EOF is encountered
do
i(: fin.read(); 4 Read from the file.
if(i t= -1) System.out.print((char) i);
} while(i -1) ; ¢——————————When i equals -1, the end of
} catch(IOException exc) { the file hos been reached.
System.out.println("Error reading file.");

}

try {
fin.close() ; 4 Close the file.
} catch(IOException exc) {
System.out .println("Error closing file.");

}

ops/f0398-01.jpg
/* This program averages a list of numbers entered
by the user. */

import java.io.*;

class Avghums {
public static void main(String args(])
throws IOException

(

// create a BufferedReader using System.in
BufferedReader br = new

BufferedReader (new InputStreamReader (System.in));
string str;
int n;
double sum = 0.
double avg,

System.out .print ("How many numbers will you enter: ");
str = br.readLine();
try {

n=

}

Integer.parseInt (stx) ; 4—— Convert sting o int.

ops/t0037-02.jpg
Type Range

bye |8 -12810 127

shot |16 3276810 32,767

int 32 ~2,147,483,648 10 2,147,483,647

long |64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

ops/f0256-01.jpg
// Use accessor methods to set and get private members.

// B class for two-dimensional objects.

class TwoDShape {
private double widt!
private double height

// these are
// now private

// Accessor methods for width and height.

double getwidth() { return width; }
double getHeight () { return height; } <——— Accessor methods for
void setWidth(double w) { width = w; } ‘width and height

void setHeight (double h) { height = h; }

void showbim() {
System.out.println("Width and height are " +
width + " and " + height);

// A subclass of TwoDShape for triangles.
class Triangle extends TwobShape {
String style;

Use accessor methods
double area() { ! provided by superclass.

return getWidth() * getHeight() / 2;

}

void showstyle() {
System.out.println("Triangle is " + style);

ops/f0376-01.jpg
/* Copy a text file.

To use this program, specify the name

of the source file and the destination file.
For example, to copy a file called FIRST.TXT
to a file called SECOND.TXT, use the following
command line.

java CopyFile FIRST.TXT SECOND.TXT
*/

import java.io.

class CopyFile {
public static void main(String args[l)
{
int i;
FileInputStream fin;
FileOutputStream fout;

// First make sure that both files have been specified.
if (args.length) {
System.out.println("Usage: CopyFile From To");
return;

)

ops/f0542-01.jpg
Applet Viewer: Param
Applet
Purpose: Demonstrate Pararmeters

By: Herb Schildt
Version: 2

Applet started

ops/f0209-01.jpg
B et e T pessl L0 Wt
class Block {

int a, b, o

int volune;

Block(int i, int 3, int k) {
b=3;
c =k
volume = a * b+ c;

}

/1 Return true if ob defines same block.
boolean sameBlock (Block ob) { 4 Uso objec iype for porameter
if((ob.a == a) & (ob.b == b) & (ob.c == C)) return true;

else return false;

}

// Return true if ob has same volune.
boolean samevolume (Block ob) {
if (ob.volume == volume) return true;
else return false;
¥
}

class PassOb {
public static void main(string args(]) {
Block obl = new Block(10, 2, 5);
Block ob2 - new Block(10, 2, 5);
Block ob3 - new Block(4, 5, 5);

System.out .println("obl same dimensions as ob2: " +
ob1.sameBlock (0b2)) ; 4—————— Poss an object

System.out .println("obl same dimensions as ob3: " +
ob1.sameBlock (0b3))

System.out.println("obl same volume as ob3: " +
ob1.sameVolume (0b3)) ;

ops/round.jpg

ops/f0528-01.jpg
// A minimal applet.
import java.awt.*; a———————————— Nofice these import statements.

import java.applet.

public class SimpleApplet extends Applet {

public void paint (Graphics g) {
g.drawString("Java makes applets easy.", 20, 20);
}

} This outputs fo the.
aelals Snian

ops/t0544-02.jpg
Image gefimage(URL url,

Returns an Image object that encapsulates the image

Sting imogeName) found o th location specifed by url and having the
name specified by imageName.
Locole getlocalel) Refurns a Locale obiect hotis used by various locale-

Sring gotParometr(Sring poramName)

Stringl] [] getParameterinfol)

void iniff)

boolean isActivel)

sensiive classes and methods.

Rt e poramelc csociled wih prmomo.
is returned i he specifed parometer is not ound.

Returns o Sting toble that describes the porometers
recogrised by the e Eoch onry in e e must
consist of three sirings that contan the name of the
poromeer, a descripion of s type and/or range,
nd an explanotion of s purpose.

This method is colled when an opplet begins execuion.
Hfysrpetrewpriepollimlen

Returns true i the opplt hos been started. I returs folse
ifthe applet has been stopped.

stafc inol AudioClip
newAudicClp{URL url)

void play(URL url)

Ratrs s Ao cbfct ol sl o ok
cip found ot the location specified by ol This method ié
imilr fo getAudioClip|) excepl that it i stfic and can
b exacuted without he nead fo an Applet bjec

1Fan audio dip is found ot the location specifed by)
the diip is played.

ops/f0494-02.jpg
"

// Demonstrate NumericEns.
class Boundsbemo {
public static void main(String args(l) {

NumericFng<Integers i0b = 4 Inlogeris OK bocause it
new NumericFns<Integers(s); o subclassof Number.

System.out.println("Reciprocal of i0b is * +
i0b.reciprocal ()) ;

System.out .println("Fractional component of i0b is " +
iob. fraction()) ;

System.out.println();

NumericFag<Doubles dob = —————————————— Double s also OK.
new NumericFns<Doubles(5.25) ;

ops/f0531-01.jpg
Applet Viewer: SimpleApplet
Applet

Java makes applets easy.

ops/f0598-03.jpg
}
b

// Rad the buttons to the content pane.
add (jbtnup) ;
add (jbtnbown) ;

// create a text-based label.
jlab = new JLabel ("Press a button.");

// Aad the label to the content pane.
add(jlab) ;

ops/f0057-01.jpg
// Demcustrate the short-circult operators.
class SCops {
public static void main(String args(l) {
int n, 4, @

d=2
if(d 1= 0 && (n % d) == 0)
System.out.println(d + " is a factor of " + n);

d = 0; // now, set d to zero

// since d is zero, the second operand is not evaluated.

LE(d 1= 0 && (n % d) == 0) 4————————————————The shortcicuit
System.out.println(d + " is a factor of * + n); s

/* Now, try same thing without short-circuit operator.

This will cause a divide-by-zero error.
*/
if@

0& (n%a)

System.out.println(d + * is a factor of " + m); ” .
) allowing a divsion

" by zer0 o ocaur.

ops/f0223-01.jpg
// Initialize one object with another.
class Summation {
int sum;

// construct from an int.
Summation (int num) {

for(int i=1; i
sum += i;

num; i+s)

)

// construct from another object.

Summat ion (Summation ob) { e———————— Consiruct one object from ancther.
sum = ob.sum;

}

}

class Sumbemo {
public static void main(String args(l) {
Summation s1 = new Summation(s);
Summation s2 = new Summation(sl);

System.out.println(*sl.sum: * + sl.sum);
System.out.println("s2.sum: * + 52.sum);

ops/f0515-02.jpg
/"
/"

/"
}
}

/7 create a raw-type Gen object and give it

// a Double value.

Gen raw = new Gen (new Double (98.6)) ; 4—————When o type argument is
supplied, a raw ype is created.

// Cast here is necessary because type is unknown.

double d = (Double) raw.getob();

System.out.println("value: * + d);

// The use of a raw type can lead to run-time.
/] exceptions. Here are some examples.

/1 The following cast causes a run-time error!
int i = (Integer) raw.getob(); // run-time error

// This assignment overrides type safety.
Stxob = raw; // OK, but potentially wrong <———Rowiypes overide
String str = strOb.getob(); // run-time error hpesalely.

// This assignment also overrides type safety.
raw = i0b; // OK, but potentially wrong
d = (Double) raw.getob(); // run-time error

