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FOREWORD

This book deals with the idea and practice of proof in mathematics. As a college teacher, I know that this is a difficult concept to grasp, and a major poser for both teachers and learners. As a Gibilisco reader, I wasn’t expecting anything less than a complete, entertaining, and go-getting presentation. I have been amply rewarded in my expectations.

Chapter 1 gets you right in the midst of the symbols that enable you to read a mathematical argument. You need this, just as a music student needs to know how to read a score. Chapter 2 deals with more sophisticated logic: how to put thoughts together coherently (and correctly—your typical mathematician is not a politician). Chapter 3, now that you have the language, actually builds a mathematical universe; in this it is a visionary chapter, yet it feels natural, and it is beautifully done. In Chapter 4, the fun begins! The mind-bending problems of fallacies and paradoxes are well illustrated. Chapters 5 and 6 are a bit more traditional, and provide an excellent selection of basic facts in geometry and numbers, respectively. Chapter 7 concludes the book with an innovative and mind-opening overview of some famous proofs. This can be read even “if only” to learn about, and savor, the development of mathematics in history as an intellectual adventure.

The book can be used for self-training. It assumes nothing, and teaches you everything you need. How it teaches you is another story. Stan Gibilisco has the gift and the passion of a coach. He provides the right example and exercise as soon as you see something new; by going through it with him, and again on your own in the quiz at the end of each chapter, you make it your own. Gibilisco takes you there, and is with you each step of the way.

When Stan Gibilisco asked me to write a short foreword for this book, I felt honored. I knew, in this case, that he wanted to distance himself from the material for two reasons. First, he has a personal attachment to proofs. (I’ve seen a mathematical journal that Stan kept as a college student, where he challenged himself to create an alternative concept of number and function, to supply some of the properties that the theorems he was taught did not have. He came close to doing something like what Bernhard Riemann did in the nineteenth century when he created the concept of a Riemann surface.) The second reason why Stan asked someone else to write about the book is, I think, that he was not complacent. He had decided to undertake a formidable task: portray the very language of mathematics. Stan wanted to provide the basics and a little more, a true exposure to the curiosity and creativity that has driven people, through the ages, to attempt to envision all possible worlds. It was to be a friendly book—as are all in the Demystified series—and also an abstract work that would show you beautiful examples and help you to soar high towards truth. Its reader-friendliness is of a sort that Gibilisco’s readers have come to know. Its beauty must reside in the mind of the audience. As the Indian mathematician Bhaskara II said in the 12th century, “Behold!” (That was his proof-without-words of the Theorem of Pythagoras, which is illustrated in Chapter 7 of this book.)

Please enjoy this book and keep it handy! If I see you in my Algebra class, I will know you from it.

EMMA PREVIATO, Professor of Mathematics
Department of Mathematics and Statistics, Boston University


PREFACE

This book is for people who want to learn how to prove mathematical theorems. It can serve as a supplemental text in a classroom, tutored, or home-schooling environment. It should also be useful for people who need to refresh their knowledge of, or skills at, this daunting aspect of mathematics.

For advancing math students, the introduction to theorem-proving can be a strange experience. It is more of an art than a science. In many curricula, students get their first taste of this art in middle school or high school geometry. I suspect that geometry is favored as the “launching pad” for theorem-proving because this field lends itself to concrete illustrations, which can help the student see how proofs progress. This book starts out at a more basic level, dealing with the principles of “raw logic” before venturing into any specialized field of mathematics.

This book contains practice quizzes, tests, and exam questions. In format, they resemble the questions found in standardized tests. There is a short quiz at the end of each chapter. These quizzes are all “open book.” You may (and should) refer to the chapter texts when taking them. This book has two multi-chapter sections or “parts,” each of which concludes with a test. Take each test when you’re done with all the chapters in the applicable section. There is a “closed book” exam at the end of this course. It contains questions drawn uniformly from all the chapters. Take it when you have finished both sections, both section tests, and all the quizzes.

In the back of the book, there is an answer key for all the quizzes, both tests, and the final exam. Each time you’ve finished a quiz, test, or the exam, have a friend check your paper against the answer key and tell you your score without letting you know which questions you missed. Keep studying until you can get at least three-quarters (but hopefully nine-tenths) of the answers right.

As I wrote this work, I tried to strike a balance between the “absolute rigour” that G. H. Hardy demanded in the early 1900s when corresponding with Ramanujan, the emerging Indian number theorist, and the informality that tempts everybody who tries to prove anything. I decided to employ a conversational style in a field where some purists will say that such language is out of place. It was my desire to bridge what sometimes seemed like an intellectual gulf that couldn’t be spanned by any author. I hope the result is a course that will, at least, leave serious students better off after completing it than they were before they started.

Some college and university professors are concerned that American math students aren’t getting enough training in logic and theorem-proving at the middle school and high school levels. These skills are essential if one is to develop anything new in mathematics. Sound reasoning is mandatory if one hopes to become a good theoretical scientist, experimentalist, or engineer—or even a good trial lawyer.

I recommend that you complete one chapter every couple of weeks. That will make the course last approximately one standard semester. Two hours a day ought to be enough study time. I also recommend you read as many of the “Suggested Additional References” (listed in the back of this book) as you can. Dare I insinuate that mathematics can be cool?

Illustrations in this book were generated with CorelDRAW. Some of the clip art is courtesy of Corel Corporation.

Suggestions for future editions are welcome.

STAN GIBILISCO
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PART ONE
The Rules of Reason




CHAPTER 1
The Basics of Propositional Logic

In order to prove something, we need a formal system of reasoning. It isn’t good enough to have “a notion” or even “a powerful feeling” that something is true or false. We aren’t trying to convince a jury that something is true “beyond a reasonable doubt.” In mathematics, we must be prepared to demonstrate the truth of a claim so there is no doubt whatsoever.

To understand how proofs work, and to learn how to perform them, we must become familiar with the laws that govern formal reasoning. Propositional logic is the simplest scheme used for this purpose. It’s the sort of stuff Socrates taught in ancient Greece. This system of logic is also known as sentential logic, propositional calculus, or sentential calculus.

Operations and Symbols

The word calculus in logic doesn’t refer to the math system invented by Newton and Leibniz that involves rates of change and areas under curves. In logic, calculus means a formal system of reasoning. The words propositional or sentential refer to the fact that the system works with complete sentences.

LET IT BE SO!

You will often come across statements in math texts, including this book, such as: “Let X, Y, and Z be logical variables.” This language is customary. You’ll find it all the time in mathematical literature. When you are told to “let” things be a certain way, you are being asked to imagine, or suppose, that things are that way. This sets the scene in your mind for statements or problems to follow.

SENTENCES

Propositional logic does not involve breaking sentences down into their internal details. We don’t have to worry about how words are interconnected and how they affect each other within a sentence. Those weird sentence diagrams, which you may have worked with in your middle-school grammar class, are not a part of propositional logic. A sentence, also called a proposition, is the smallest possible entity in propositional logic.

Sentences are represented by uppercase letters of the alphabet. You might say “It is raining outside,” and represent this by the letter R. Someone else might add, “It’s cold outside,” and represent this by the letter C. A third person might say, “The weather forecast calls for snow tomorrow,” and represent this by the letter S. Still another person might add, “Tomorrow’s forecast calls for sunny weather,” and represent this by B (for “bright”; we’ve already used S).

NEGATION (NOT)

When we write down a letter to stand for a sentence, we assert that the sentence is true. So, for example, if John writes down C in the above situation, he means to say “It is cold outside.” You might disagree if you grew up in Alaska and John grew up in Hawaii. You might say, “It’s not cold outside.” This can be symbolized as the letter C with a negation symbol in front of it.

There are several ways in which negation, also called NOT, can be symbolized. In propositional logic, a common symbol is a drooping minus sign (¬). That’s the one we’ll use. Some texts use a tilde (∼) to represent negation. Some use a minus sign (−). Some put a line over the letter representing the sentence; still others use an accent symbol. It seems as if there is no shortage of ways to express a denial, even in symbolic logic! In our system, the sentence “It’s not cold outside” can be denoted as ¬C.

Suppose someone comes along and says, “You are correct to say ¬C. In fact, I’d say it’s hot outside!” Suppose this is symbolized by H. Does H mean the same thing as ¬C? Not necessarily. You’ve seen days that were neither cold nor hot. There can be in-between states such as “cool” (K), “mild” (M), and “warm” (W). But there is no in-between condition when it comes to C and ¬C. In propositional logic, either it is cold, or else it is not cold. Either it is hot, or else it is not hot. A proposition is either true, or else it is false (not true).

There are logical systems in which in-between states exist. These go by names such as fuzzy logic. But a discussion of those types of logic belongs in a different book. In all the mathematical proofs we’ll be dealing with, any proposition is either true or false; there is neither a neutral truth state nor any continuum of truth values. Our job, when it comes to doing math proofs, is to demonstrate truth or falsity if we can.

CONJUNCTION (AND)

Propositional logic doesn’t get involved with how the phrases inside a sentence affect each other, but it is very concerned with the ways in which distinct, complete sentences interact in logical discourse. Sentences can be combined to make bigger ones, called compound sentences. The truth or falsity of a compound sentence depends on the truth or falsity of its components, and on the ways those components are connected.

Suppose someone says, “It’s cold outside, and it’s raining outside.” Using the symbols from the previous sections, we can write this as:

[image: image]

In logic, we use a symbol in place of the word AND. There are several symbols in common use, including the ampersand (&), the inverted wedge (∧), the asterisk (*), the period (.), the multiplication sign (×), and the raised dot (.). We’ll use the ampersand because it represents the word AND in everyday language, and is easiest to remember. Thus, the compound sentence becomes:

[image: image]

The formal term for the AND operation is logical conjunction. A compound sentence containing one or more conjunctions is true when, but only when, both or all of its components are true. If any of the components are false, then the whole compound sentence is false.

DISJUNCTION (OR)

Now imagine that a friend comes along and says, “You are correct in your observations about the weather. It’s cold and raining; there is no doubt about those facts. I have been listening to the radio, and I heard the weather forecast for tomorrow. It’s supposed to be colder tomorrow than it is today. But it’s going to stay wet. So it might snow tomorrow.”

You say, “It will rain or it will snow tomorrow, depending on the temperature.”

Your friend says, “It might be a mix of rain and snow together, if the temperature is near freezing.”

“So we might get rain, we might get snow, and we might get both,” you say.

“Correct. But the weather experts say we are certain to get precipitation of some sort,” your friend says. “Water is going to fall from the sky tomorrow—maybe liquid, maybe solid, and maybe both.”

In this case, suppose we let R represent the sentence “It will rain tomorrow,” and we let S represent the sentence “It will snow tomorrow.” Then we can say:

[image: image]

This is an example of logical disjunction. There are at least two symbols commonly used to represent disjunction: the addition symbol (+) and the wedge (∨). Let’s use the wedge. We can now write:

[image: image]

A compound sentence in which both, or all, of the components are joined by disjunctions is true when, but only when, at least one of the components is true. A compound sentence made up of disjunctions is false when, but only when, all the components are false.

Logical disjunction, as we define it here, is the inclusive OR operation. There’s another logic operation called exclusive OR, in which the compound sentence is false, not true, if and only if all the components are true. We won’t deal with that now. The exclusive OR operation, sometimes abbreviated XOR, is important when logic is applied in engineering, especially in digital electronic circuit design.

IMPLICATION (IF/THEN)

Imagine that the conversation about the weather continues. You and your friend are trying to figure out if you should get ready for a snowy day tomorrow, or whether rain and gloom is all you’ll have to contend with.

“Does the weather forecast say anything about snow?” you ask.

“Not exactly,” your friend says. “The radio announcer said, ‘There is going to be precipitation through tomorrow night, and it’s going to get colder tomorrow.’ I looked at my car thermometer as she said that, and it said the outdoor temperature was just a little bit above freezing.”

“If there is precipitation, and if it gets colder, then it will snow,” you say.

“Of course.”

“Unless we get an ice storm.”

“That won’t happen.”

“Okay,” you say. “If there is precipitation tomorrow, and if it is colder tomorrow than it is today, then it will snow tomorrow.” (This is a weird way to talk, but we’re learning about logic, not the art of witty conversation.)

Suppose you use P to represent the sentence “There will be precipitation tomorrow.” In addition, let S represent the sentence “It will snow tomorrow,” and let C represent the sentence “It will be colder tomorrow.” Then in the previous conversation, you have made a compound proposition consisting of three sentences, like this:

[image: image]

Another way to write this is:

[image: image]

In this context, the meaning of the term “implies” is intended in the strongest possible sense. In logic, if X “implies” Y, it means that X is always accompanied or followed by Y, not merely that X suggests Y. Symbolically, the above proposition is written this way:

[image: image]

The double-shafted arrow pointing to the right represents logical implication, also known as the IF/THEN operation. In a logical implication, the “implying” sentence (to the left of the double-shafted arrow) is called the antecedent. In the previous example, the antecedent is (P & C). The “implied” sentence (to the right of the double-shafted arrow) is called the consequent. In this example, the consequent is S.

Some texts make use of other symbols for logical implication, including the “hook” or “lazy U opening to the left” (⊃), three dots (∴), and a single-shafted arrow pointing to the right (→). In this book, we’ll stick with the double-shafted arrow pointing to the right.

LOGICAL EQUIVALENCE (IFF)

Suppose your friend changes the subject and says, “If it snows tomorrow, then there will be precipitation and it will be colder.”

For a moment you hesitate, because this isn’t the way you’d usually think about this kind of situation. But you have to agree, “That is true. It sounds strange, but it’s true.” Your friend has just made this implication:

[image: image]

Implication holds in both directions here, but there are plenty of scenarios in which an implication holds in one direction but not the other.

You and your friend have agreed that both of the following implications are valid:

[image: image]

These two implications can be combined into a conjunction, because we are asserting them both at the same time:

[image: image]

When an implication is valid in both directions, the situation is defined as a case of logical equivalence. The above statement can be shortened to:

[image: image]

Mathematicians sometimes shorten the phrase “if and only if” to the single word “iff.” So we can also write:

[image: image]

The symbol for logical equivalence is a double-shafted, double-headed arrow (⇔). There are other symbols that can be used. Sometimes you’ll see an equals sign, a three-barred equals sign (≡), or a single-shafted, double-headed arrow (↔). We’ll use the double-shafted, double-headed arrow to symbolize logical equivalence. Symbolically, then:

[image: image]

[image: image]PROBLEM 1-1

Give an example of a situation in which logical implication holds in one direction but not in the other.

[image: image]SOLUTION 1-1

Consider this statement: “If it is overcast, then there are clouds in the sky.” This statement is true. Suppose we let O represent “It is overcast” and K represent “There are clouds in the sky.” Then we have this, symbolically:

[image: image]

If we reverse this, we get a statement that isn’t necessarily true. Consider:

[image: image]

This translates to: “If there are clouds in the sky, then it’s overcast.” We have all seen days or nights in which there were clouds in the sky, but there were clear spots too, so it was not overcast.

Truth Tables

The outcome, or logic value, of an operation in propositional logic is always either true or false, as we’ve seen. Truth can be symbolized as T, +, or 1, while falsity can be abbreviated as F, −, or 0. Let’s use T and F. They are easy to remember: “T” stands for “true” and “F” stands for “false”! When performing logic operations, sentences that can attain either T or F logic values (depending on the circumstances) are called variables.

A truth table is a method of denoting all possible combinations of truth values for the variables in a proposition. The values for the individual variables, with all possible permutations, are shown in vertical columns at the left. The truth values for compound sentences, as they are built up from the single-variable (or atomic) propositions, are shown in horizontal rows.

TRUTH TABLE FOR NEGATION

The simplest truth table is the one for negation, which operates on a single variable. Table 1-1 shows how this works for a single variable called X.

[image: image]

Table 1-1. Truth Table for Negation

TABLE FOR CONJUNCTION

Let X and Y be two logical variables. Conjunction (X & Y) produces results as shown in Table 1-2. The AND operation has value T when, but only when, both variables have value T. Otherwise, the operation has value F.

[image: image]

Table 1-2. Truth Table for Conjunction

TABLE FOR DISJUNCTION

Logical disjunction for two variables (X ∨ Y) has a truth table that looks like Table 1-3. The OR operation has value T when either or both of the variables have value T. If both of the variables have value F, then the operation has value F.

[image: image]

Table 1-3. Truth Table for Disjunction

TABLE FOR IMPLICATION

A logical implication is valid (that is, it has truth value T) except when the antecedent has value T and the consequent has value F. Table 1-4 shows the truth values for logical implication.

[image: image]

Table 1-4. Truth Table for Implication

[image: image]PROBLEM 1-2

Give an example of a logical implication that is obviously invalid.

[image: image]SOLUTION 1-2

Let X represent the sentence, “The wind is blowing.” Let Y represent the sentence, “A hurricane is coming.” Consider this sentence:

[image: image]

Now imagine that it is a windy day. Therefore, variable X has truth value T. But suppose you are in North Dakota, where there are never any hurricanes. Sentence Y has truth value F. Therefore, the statement “If the wind is blowing, then a hurricane is coming” is false.

TABLE FOR LOGICAL EQUIVALENCE

If X and Y are logical variables, then X IFF Y has truth value T when both variables have value T, or when both variables have value F. If the truth values of X and Y are different, then X IFF Y has truth value F. This is broken down fully in Table 1-5.

[image: image]

Table 1-5. Truth Table for Logical Equivalence

THE EQUALS SIGN

In logic, we can use an ordinary equals sign to indicate truth value. Thus if we want to say that a particular sentence K is true, we can write K = T. If we want to say that a variable X always has false truth value, we can write X = F. Just be careful about this. Don’t confuse the meaning of the equals sign with the meaning of the double-shafted, double-headed arrow that stands for logical equivalence!

[image: image]PROBLEM 1-3

Tables 1-1 through 1-4—the truth tables for negation, conjunction, disjunction, and implication—are defined by convention. The truth values are based on common sense. Arguably, the same is true for logical equivalence. It make sense that two logically equivalent statements ought to have identical truth values, and that if they don’t, they can’t be logically equivalent. But suppose you want to prove this. You can derive the truth values for logical equivalence based on the truth tables for conjunction and implication. Do it, and show the derivation in the form of a truth table.

[image: image]SOLUTION 1-3

Remember that X ⇔ Y means the same thing as (X ⇒ Y) & (Y ⇒ X). You can build up X ⇔ Y in steps, as shown in Table 1-6 as you go from left to right. The four possible combinations of truth values for sentences X and Y are shown in the first (left-most) and second columns. The truth values for X ⇒ Y are shown in the third column, and the truth values for Y ⇒ X are shown in the fourth column. In order to get the truth values for the fifth (right-most) column, conjunction is applied to the truth values in the third and fourth columns. The complex logical operation (also called a compound logical operation because it’s made up of combinations of the basic ones) in the fifth column is the same thing as X ⇔ Y.

[image: image]

Table 1-6. Truth Table for Problem 1-3

Q.E.D.

What you have just seen is a mathematical proof of the fact that for any two logical sentences X and Y, the value of X ⇔ Y is equal to T when X and Y have the same truth value, and the value of X ⇔ Y is equal to F when X and Y have different truth values. Sometimes, when mathematicians finish proofs, they write “Q.E.D.” at the end. This is an abbreviation of the Latin phrase Quod erat demonstradum. It translates as “Which was to be demonstrated.”

Some Basic Laws

Logic operations obey certain rules, called laws. These laws are somewhat similar to the laws that govern the behavior of numbers in arithmetic, or variables in algebra. Following are some of the most basic laws of propositional logic.

PRECEDENCE

When reading or constructing logical statements, the operations within parentheses are always performed first. If there are multilayered combinations of sentences (called nesting of operations), then you should first use ordinary parentheses, then square brackets [], and then curly brackets {}. Alternatively, you can use groups of plain parentheses inside each other, but be sure you end up with the same number of left-hand parentheses and right-hand parentheses in the complete expression.

If there are no parentheses or brackets in an expression, instances of negation should be performed first. Then conjunctions should be done, then disjunctions, then implications, and finally logical equivalences.

As an example of how precedence works, consider the following compound sentence:

[image: image]

Using parentheses and brackets to clarify this according to the rules of precedence, we can write it like this:

[image: image]

Now consider a more complex compound sentence, which is so messy that we run out of parentheses and brackets if we use the “ordinary/square/curly” scheme:

[image: image]

Using plain parentheses only, we can write it this way:

[image: image]

When we count up the number of left-hand parentheses and the number of right-hand parentheses, we see that there are six left-hand ones and six right-hand ones. (If the number weren’t the same, we’d be in trouble!)

CONTRADICTION

A contradiction always results in a false truth value. This is one of the most interesting and useful laws in all of mathematics, and has been used to prove many important facts, as well as to construct satirical sentences. Symbolically, if X is any logical statement, we can write the rule like this:

[image: image]

LAW OF DOUBLE NEGATION

The negation of a negation is equivalent to the original expression. That is, if X is any logical variable, then:

[image: image]

COMMUTATIVE LAWS

The conjunction of two variables always has the same value, regardless of the order in which the variables are expressed. If X and Y are logical variables, then X & Y is logically equivalent to Y & X:

[image: image]

The same property holds for logical disjunction:

[image: image]

These are called the commutative law for conjunction and the commutative law for disjunction, respectively. The variables can be commuted (interchanged in order) and it doesn’t affect the truth value of the resulting sentence.

ASSOCIATIVE LAWS

When there are three variables combined by two conjunctions, it doesn’t matter how the variables are grouped. Suppose you have a compound sentence that can be symbolized as follows:

[image: image]

where X, Y, and Z represent the truth values of three constituent sentences. Then we can consider X & Y as a single variable and combine it with Z, or we can consider Y & Z as a single variable and combine it with X, and the results are logically equivalent:

[image: image]

The same law holds for logical disjunction:

[image: image]

These are called the associative law for conjunction and the associative law for disjunction, respectively.

We must be careful when applying associative laws. All the operations in the compound sentence must be the same. If a compound sentence contains a conjunction and a disjunction, we cannot change the grouping and expect to get the same truth value in all possible cases. For example, the following two compound sentences are not, in general, logically equivalent:

[image: image]

LAW OF IMPLICATION REVERSAL

When one sentence implies another, you can’t reverse the sense of the implication and still expect the result to be valid. It is not always true that if X ⇒ Y, then Y ⇒ X. It can be true in certain cases, such as when X ⇔ Y. But there are plenty of cases where it isn’t true.

If you negate both sentences, then reversing the implication can be done, and the result is always valid. This is called the law of implication reversal. It is also known as the law of the contrapositive. Expressed symbolically, suppose we are given two logical variables X and Y. Then the following always holds:

[image: image]

[image: image]PROBLEM 1-4

Use words to illustrate an example of the previous law in action, in a way that makes sense.

[image: image]SOLUTION 1-4

Let V represent the sentence “Jane is a living vertebrate creature.” Let B represent the sentence “Jane has a brain.” Then V ⇒ B reads, “If Jane is a living vertebrate creature, then Jane has a brain.” Applying the law of implication reversal, we can also say with certainty that ¬B ⇒¬V. That translates to: “If Jane does not have a brain, then Jane is not a living vertebrate creature.”

DeMORGAN’S LAWS

If the conjunction of two sentences is negated as a whole, the resulting compound sentence can be rewritten as the disjunction of the negations of the original two sentences. Expressed symbolically, if X and Y are two logical variables, then the following holds valid in all cases:

[image: image]

This is called DeMorgan’s law for conjunction.

A similar rule holds for disjunction. If a disjunction of two sentences is negated as a whole, the resulting compound sentence can be rewritten as the conjunction of the negations of the original two sentences. Symbolically:

[image: image]

This is called DeMorgan’s law for disjunction.

You might now begin to appreciate the use of symbols to express complex statements in logic! The rigorous expression of DeMorgan’s laws in verbal form is quite a mouthful, but it’s easy to write these rules down as symbols.

DISTRIBUTIVE LAW

A specific relationship exists between conjunction and disjunction, known as the distributive law. It works somewhat like the distributive law that you learned in arithmetic classes—a certain way that multiplication behaves with respect to addition. Do you remember it? It states that if a and b are any two numbers, then

[image: image]

Now think of logical conjunction as the analog of multiplication, and logical disjunction as the analog of addition. Then if X, Y, and Z are any three sentences, the following logical equivalence exists:

[image: image]

This is called the distributive law of conjunction with respect to disjunction.

Truth Table Proofs

The laws of logic we’ve just stated were not merely dreamed up. They can be demonstrated to be true in general. Truth tables can be used for this purpose. If we claim that two compound sentences are logically equivalent, then we can show that their truth tables produce identical results. Also, if we can show that two compound sentences have truth tables that produce identical results, then we can be sure those two sentences are logically equivalent, as long as all possible combinations of truth values are accounted for.

The next few paragraphs show truth table proofs for the commutative laws, the associative laws, the law of implication reversal, DeMorgan’s laws, and the distributive law. Some of these proofs seem trivial in their simplicity. When some people see proofs like this, they ask, “Why bother with going through the motions, when these things are obvious?” The answer is this: In mathematics, something can appear to be obvious and then turn out to be false! In order to protect against mistaken conclusions, the pure mathematician adheres to a form of discipline called rigor. The following proofs are rigorous. They leave no room for doubt or dispute.

COMMUTATIVE LAW FOR CONJUNCTION

Tables 1-7A and 1-7B show that the following two general sentences are logically equivalent for any two variables X and Y:

[image: image]

[image: image]

Table 1-7. Truth table proof of the commutative law of conjunction. At A, statement of truth values for X & Y. At B, statement of truth values for Y & X. The outcomes are identical, demonstrating that they are logically equivalent.

COMMUTATIVE LAW FOR DISJUNCTION

Tables 1-8A and 1-8B show that the following two general sentences are logically equivalent for any two variables X and Y:

[image: image]

[image: image]

Table 1-8. Truth table proof of the commutative law of disjunction. At A, statement of truth values for X ∨ Y. At B, statement of truth values for Y ∨ X. The outcomes are identical, demonstrating that they are logically equivalent.

ASSOCIATIVE LAW FOR CONJUNCTION

Tables 1-9A and 1-9B show that the following two general sentences are logically equivalent for any three variables X, Y, and Z:

[image: image]

[image: image]

Table 1-9A. Derivation of truth values for (X & Y) & Z. Note that the last two columns of this proof make use of the commutative law for conjunction, which has already been proven.

[image: image]

Table 1-9B. Derivation of truth values for X & (Y & Z). The far right-hand column of this table has values that are identical with those in the far right-hand column of Table 1-9A, demonstrating that the far right-hand expressions in the top rows are logically equivalent.

Note that in Table 1-9A, the last two columns make use of the commutative law for conjunction, which has already been proven. Once proven, a statement is called a theorem, and it can be used in future proofs.

ASSOCIATIVE LAW FOR DISJUNCTION

Tables 1-10A and 1-10B show that the following two general sentences are logically equivalent for any three variables X, Y, and Z:

[image: image]

In Table 1-10A, we take advantage of the commutative law for disjunction, which has already been proved, in the last two columns.

[image: image]

Table 1-10A. Derivation of truth values for (X ∨ Y) ∨ Z. Note that the last two columns of this proof make use of the commutative law for disjunction, which has already been proven.

[image: image]

Table 1-10B. Derivation of truth values for X ∨ (Y ∨ Z). The far right-hand column of this table has values that are identical with those in the far right-hand column of Table 1-10A, demonstrating that the far right-hand expressions in the top rows are logically equivalent.

LAW OF IMPLICATION REVERSAL

Tables 1-11A and 1-11B show that the following two general sentences are logically equivalent for any two variables X and Y:

[image: image]

[image: image]

Table 1-11. Truth table proof of the law of implication reversal. At A, statement of truth values for X ⇒ Y. At B, derivation of truth values for ¬Y⇒¬X. The outcomes are identical, demonstrating that they are logically equivalent.

DeMORGAN’S LAW FOR CONJUNCTION

Tables 1-12A and 1-12B show that the following two general sentences are logically equivalent for any two variables X and Y:

[image: image]
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Table 1-12. Truth table proof of DeMorgan’s law for conjunction. At A, statement of truth values for ¬(X & Y). At B, derivation of truth values for ¬X ∨ ¬Y. The outcomes are identical, demonstrating that they are logically equivalent.

DeMORGAN’S LAW FOR DISJUNCTION

Tables 1-13A and 1-13B show that the following two general sentences are logically equivalent for any two variables X and Y:

[image: image]
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Table 1-13. Truth table proof of DeMorgan’s law for disjunction. At A, statement of truth values for ¬(X ∨ Y). At B, derivation of truth values for ¬X & ¬Y. The outcomes are identical, demonstrating that they are logically equivalent.

DISTRIBUTIVE LAW

Tables 1-14A and 1-14B show that the following two general sentences are logically equivalent for any three variables X, Y, and Z:

[image: image]

[image: image]

Table 1-14A. Derivation of truth values for X & (Y ∨ Z).

[image: image]

Table 1-14B. Derivation of truth values for (X & Y) ∨ (X & Z). The far right-hand column of this table has values that are identical with those in the far right-hand column of Table 1-14A, demonstrating that the far right-hand expressions in the top rows are logically equivalent.

[image: image]PROBLEM 1-5

Using truth tables, prove the following logical proposition:

[image: image]

[image: image]SOLUTION 1-5

Tables 1-15A and 1-15B show that the following two general sentences are logically equivalent for any three variables X, Y, and Z:

[image: image]

[image: image]

Table 1-15A. Derivation of truth values for (X & Y) ⇒ Z.

[image: image]

Table 1-15B. Derivation of truth values for ¬Z ⇒ (¬X ∨¬Y). The far right-hand column of this table has values that are identical with those in the far right-hand column of Table 1-15A, demonstrating that the far right-hand expressions in the top rows are logically equivalent.

[image: image]PROBLEM 1-6

Use rules that we have presented in this chapter, rather than truth-table comparison, to prove the proposition stated in Problem 1-5.

[image: image]SOLUTION 1-6

First, consider DeMorgan’s law for conjunction. This states that the following two sentences are logically equivalent for any X and Y:

[image: image]

This means that the two expressions are directly interchangeable. Whenever we encounter either of these in any logical sentence, we can “pull it out” and “plug in” the other one. Let’s take advantage of this fact on the right-hand side of the second expression in Problem 1-5, changing it to the following:

[image: image]

According to the law of implication reversal, this is logically equivalent to:

[image: image]

Using the law of double negation on both sides of this expression, we see that this is logically equivalent to:

[image: image]

This is precisely the first expression in Problem 1-5. This shows that the first and second expressions in Problem 1-5 are logically equivalent.

Quiz

This is an “open book” quiz. You may refer to the text in this chapter. A good score is eight correct. Answers are in the back of the book.

1. The conjunction of three sentences is false

(a) if and only if all three sentences are false.

(b) if and only if at least one of the sentences is false.

(c) if and only if at least two of the sentences are false.

(d) under no circumstances, because a conjunction can’t be defined for more than two sentences.

2. The disjunction of three sentences is false

(a) if and only if all three sentences are false.

(b) if and only if at least one of the sentences is false.

(c) if and only if at least two of the sentences are false.

(d) under no circumstances, because a disjunction can’t be defined for more than two sentences.

3. In a logical implication, the double-shafted arrow pointing to the right can be replaced by the word or words

(a) “and.”

(b) “if.”

(c) “if and only if.”

(d) “implies.”

4. How many possible combinations of truth values are there for a set of three sentences, each of which can attain either the value T or the value F?

(a) 2

(b) 4

(c) 8

(d) 16

5. Suppose you observe, “It is not sunny today, and it’s not warm.” Your friend says, “The statement that it’s sunny or warm today is false.” These two sentences are logically equivalent, and this constitutes a verbal example of

(a) one of DeMorgan’s laws.

(b) the law of double negation.

(c) the commutative law for conjunction.

(d) the law of implication reversal.

6. Imagine that I claim a certain general statement is a rule of logic. You demonstrate that my supposed rule has at least one exception. This shows that

(a) it is not a law of logic.

(b) it violates the commutative law.

(c) it violates the law of implication reversal.

(d) it demonstrates that a disjunction implies logical falsity.

7. Look at Table 1-16. What, if anything, is wrong with this truth table?

(a) Not all possible combinations of truth values are shown for X, Y, and Z.

(b) The entries in the far right-hand column are incorrect.

(c) It is impossible to have a logical operation such as (X ∨ Y) & Z.

(d) Nothing is wrong with Table 1-16.

8. What, if anything, can be done to make Table 1-16 show a valid derivation?

(a) Nothing needs to be done. It is correct as it is.

(b) In the top row, far-right column header, change the ampersand (&) to a double-shafted arrow pointing to the right (⇒).

(c) In the far-left column, change every T to an F, and change every F to a T.

(d) In the first three columns, change every T to an F, and change every F to a T.

[image: image]

Table 1-16. Truth table for Quiz Questions 7 and 8.

9. A rule or law that has been proven

(a) can’t be used to prove future theorems, because all theorems must be proven directly from an original set of rules.

(b) can be used to prove future theorems, as long as truth tables are avoided.

(c) can be used to prove future theorems, but only by means of truth tables.

(d) can be used to prove future theorems.

10. Imagine that someone says to you, “If I am a human and I am not a human, then the moon is made of Swiss cheese.” (Forget for a moment that this person has obviously lost contact with the real world.) This is a verbal illustration of the fact that

(a) implication can’t be reversed.

(b) DeMorgan’s laws don’t always hold true.

(c) conjunction is not commutative.

(d) a contradiction implies logical falsity.


CHAPTER 2
How Sentences Are Put Together

Plenty of things can be proved without dissecting sentences into smaller parts. But sometimes, it’s necessary to break sentences down. That’s what predicate logic, also called predicate calculus, is all about. In this chapter, we’ll see how sentences should (and should not) be constructed.

Sentence Structure

When a sentence (proposition) takes the form of a declaration, that sentence can be split into a subject and a predicate. The subject is a noun, or “naming word.” It is the center of attention in the sentence. The predicate gives information about the subject. This information can be “passive,” such as a description of the subject’s color or shape, or “active,” such as an expression of what the subject does or where it goes.

SUBJECT/VERB (SV)

Consider the following sentences. These are about as basic as sentences get (with the exception of one-word commands or exclamations):

• Jack walks.

• Jill sneezes.

• The computer works.

• You shop.

Each of these sentences contains a noun (the subject) followed by a verb—an “action word”—and that is all. The action is not directed at anything in particular, nor does it happen in any special way. “Jack walks.” Where? To school, in his home, or through the woods? Does he walk fast or slowly? We don’t know. “Jill sneezes.” Does she sneeze at you, or at the wall, or into a handkerchief? Does she sneeze loudly or quietly? No clue. “The computer works.” How well? How fast? With which programs? We are not told. “You shop.” For what? Where? For how long? Not specified. The sentences are vague, but they are nevertheless well-formed propositions. They are called subject/verb (SV) sentences.

SUBJECT/VERB/OBJECT (SVO)

Consider the following sentences:

• Jack walks to school.

• Jill kicks the ball.

• I mow the lawn.

• You trim a tree.

Each of these sentences contains a noun (the subject) followed by a verb, and then there is another noun that is influenced or acted upon by the subject and verb. In all four of these sentences, the subjects are people: Jack, Jill, I, and you. (Subjects don’t have to be people, or even animate things, however.) The objects in the previous examples are inanimate: school, ball, lawn, and tree. (This, too, is a coincidence. Objects aren’t always inanimate.) Each sentence also contains a verb: walk, kick, mow, and trim.

Let S represent a subject, V a verb, and O an object. We can diagram each of the above sentences as shown in Fig. 2-1. The subject, by means of the verb, performs some action on the object. This type of statement can be called a subject/verb/object (SVO) sentence.

[image: image]

Fig. 2-1. Examples of subject/verb/object (SVO) sentences.

SUBJECT/LINKING VERB/COMPLEMENT

Now look at the following sentences:

• Jack is a boy.

• Jill has a cold.

• I was hungry.

• You will get tired.

Each of these sentences contains a noun (the subject) at the beginning. Then there’s a word at the end that tells us some detail about the subject; it complements the subject. The subject and the complement are linked by a word in the middle, which we’ll call a link or linking verb.

If we let S represent a subject, LV a linking verb, and C a complement, then we can diagram each of the previous sentences as shown in Fig. 2-2. These are examples of subject/linking verb/complement (SLVC) sentences.

[image: image]

Fig. 2-2. Examples of subject/linking verb/complement (SLVC) sentences.

WHAT’S THE PREDICATE?

In an SVO sentence, the predicate consists of the verb and the object. In an SLVC sentence, the predicate consists of the linking verb and the complement.

The eight sentences in the previous two sections can be broken into subjects and predicates, as shown in Table 2-1. The subjects and predicates are assigned symbols. Predicates are given non-italicized uppercase letters of the alphabet, and subjects are given italicized lowercase letters. These assignments seem arbitrary, but that’s all right as long as we agree on them. (Ideally we’d use the first letter of each noun, but some of these coincide here, and that could cause confusion among the sentences.)

[image: image]

Table 2-1. Sentences broken into subjects and predicates, along with symbols. Symbols are arbitrary to prevent coincidences that could cause confusion among the sentences.

Using the symbols in the table, we can denote each of the sentences by writing the symbol for the predicate first, followed by the symbol for the subject. The first four sentences, which are SVO type, are thus denoted Wa, Ki, Mq, and Tu. The second four sentences, which have the same subjects but are of the SLVC form, are denoted Ba, Ci, Hq, and Ru. In all eight of the sentences, the symbols for the subjects are called logical constants (or simply constants) because they denote specific, identifiable subjects.

VARIABLES

Now imagine that, instead of specific nouns as subjects, we use unspecified ones. You ask, “What is an unspecified noun?” The answer is, “Anything, as long as we don’t say exactly what.” In predicate logic, a non-specific noun is called a logical variable (or simply a variable), and is represented by a lowercase letter in italics, usually from near the end of the alphabet. A favorite is x. The letters w, y, and z are also popular for symbolizing variables. If necessary, subscripts can be used if a sentence has a lot of variables: for example, x1, x2, x3, x4, x5, and so on.

Examine the generalized sentences shown in Table 2-2. The constants a, i, q, and u have been replaced by the variable x. But the structures of the sentences in Table 2-2 are identical to their counterparts on corresponding lines of Table 2-1. There is no need to use different letters for the subjects in Table 2-2, because the variable is non-specific by nature. There can’t be any confusion among things or people when we don’t say exactly what or who they are!

[image: image]

Table 2-2. Sentences broken into subjects and predicates, along with symbols. The subject in each case is “someone” and is represented by the variable x.

When we replace the constants with the variable x, we have eight sentences that can be denoted as follows: Wx, Kx, Mx, Tx, Bx, Cx, Hx, and Rx. In every case, the predicate, symbolized by a non-italicized uppercase letter, tells us something about the variable, symbolized by x. The first four predicates are “doing” expressions, and the second four are “being” expressions. In a general sense, we can say “x does or goes to such-and-such” for the first four sentences, and “x has such-and-such a characteristic” for the second four sentences.

[image: image]PROBLEM 2-1

What types of sentences are the following? Identify their parts.

• The atmosphere has layers.

• The tornado destroyed the barn.

• I bought a computer.

• My computer is defective.

[image: image]SOLUTION 2-1

The first sentence is of the SLVC type. The subject is “atmosphere,” the linking verb is “has,” and the complement is “layers.”

The second sentence is SVO. The subject is “tornado,” the verb is “destroyed,” and the object is “barn.”

The third sentence is SVO. The subject is “I,” the verb is “bought,” and the object is “computer.”

The fourth sentence is SLVC. The subject is “my computer,” the linking verb is “is,” and the complement is “defective.”

[image: image]PROBLEM 2-2

Evaluate the fourth sentence in the previous problem in another way, and write down a symbolic expression for it.

[image: image]SOLUTION 2-2

This sentence can be considered the negation of the SLVC sentence “My computer is perfect.” If we symbolize “my computer” by c and “perfect” by P, then “My computer is perfect” can be denoted Pc, and “It is not true that my computer is perfect” can be denoted ¬(Pc).

[image: image]PROBLEM 2-3

Identify the predicate in each of the sentences stated in Problem 2-1.

[image: image]SOLUTION 2-3

The predicates are “has layers,” “destroyed the barn,” “bought a computer,” and “is defective,” respectively. If we consider the fourth sentence as the equivalent of “It is not true that my computer is perfect,” then the predicate of the negated sentence becomes “is perfect.”

Quantifiers

The foregoing sentences are much simpler than most of the things people say. Let’s go to the next level of complexity.

UNIVERSAL QUANTIFIER

Look at the following sentences. The first two are SVO, and the second two are SLVC. But all four of these sentences have something in common.

• Every boy walks to school.

• Every football gets kicked.

• All swimmers are hungry.

• All teachers are geniuses.

The common feature of the above sentences is the fact that they are blanket statements. They speak about things as being universally true (or false). They can be reworded like this:

• For any thing, if that thing is a boy, then that thing walks to school.

• For any thing, if that thing is a football, then that thing gets kicked.

• For any thing, if that thing is a swimmer, then that thing is hungry.

• For any thing, if that thing is a teacher, then that thing is a genius.

Each subject has become a variable, represented by the generic word or phrase “thing” or “that thing.” Let’s replace the word “thing” and the phrase “that thing” in each of the above statements by the symbol x. Here’s what we get:

• For any x, if x is a boy, then x walks to school.

• For any x, if x is a football, then x gets kicked.

• For any x, if x is a swimmer, then x is hungry.

• For any x, if x is a teacher, then x is a genius.

There is a symbol in predicate logic that stands for the words “for all,” “for every,” or “for any.” That symbol is ∀. It looks like an upside-down uppercase letter A, and is called the universal quantifier because it indicates that something is universally true about a variable. The variable to which the quantifier applies is written right after the symbol.

Now let’s symbolize the phrases in the above sentences according to Table 2-3. If we write out the sentences symbolically, using the ⇒ symbol from propositional logic to indicate implication, we get these:

[image: image]

[image: image]

Table 2-3. Predicate symbols used to denote some sentences containing quantifiers of a variable.

The quantifier is placed in parentheses to separate it from the sentence that follows. There are other ways a universal quantifier can be set apart from the rest of the sentence: using a colon after ∀x, using a vertical line after ∀x, and placing a portion of the sentence after the quantifier in parentheses while not using parentheses around the quantifier. Therefore, for example, we can write any of the following to represent the first of the above symbolized sentences:

[image: image]

These two notations are commonly used in mathematics papers and texts. The parentheses are more often used when writing about predicate logic.

EXISTENTIAL QUANTIFIER

Now examine the following sentences. They apply to the same subjects, verbs, linking verbs, objects, and complements as the sentences in the preceding paragraphs. But there is an important difference! These sentences are not blanket statements. In fact, there is a definite suggestion that there are exceptions to the rules:

• Some boys walk to school.

• Some footballs get kicked.

• Some swimmers are hungry.

• Some teachers are geniuses.

These sentences can be reworded to get the following:

• There exists a thing, such that if that thing is a boy, then that thing walks to school.

• There exists a thing, such that if that thing is a football, then that thing gets kicked.

• There exists a thing, such that if that thing is a swimmer, then that thing is hungry.

• There exists a thing, such that if that thing is a teacher, then that thing is a genius.

Again, each subject has become a variable, represented by the generic word or phrase “thing” or “that thing.” Let’s replace the word “thing” and the phrase “that thing” in each of the above statements by the symbol x. Here’s what we get:

• There exists an x, such that if x is a boy, then x walks to school.

• There exists an x, such that if x is a football, then x gets kicked.

• There exists an x, such that if x is a swimmer, then x is hungry.

• There exists an x, such that if x is a teacher, then x is a genius.

Logicians use a symbol to stand for the words “there exists,” “there is,” “for some,” or “for at least one.” That symbol is ∃, a backwards uppercase letter E. It is called the existential quantifier. It indicates that something can be, or sometimes is, true about a variable. The variable to which the quantifier applies is, as with the universal quantifier, written right after the symbol.

Refer to Table 2-3 and symbolize the sentence parts. If we write out the foregoing existential-quantifier sentences symbolically, using the ⇒ symbol from propositional logic to indicate implication, we get:

[image: image]

The quantifier is, again, placed in parentheses to separate it from the sentence that follows. As with the universal quantifier, we can have these alternative notations for the first of the above sentences:

[image: image]

If there is any doubt about which portion of the sentence after a quantifier is “covered” by that quantifier, then parentheses or higher-order brackets should be placed around only that portion of the sentence affected. For example, suppose you write this:

[image: image]

This could be confused with either of the following:

[image: image]

If there aren’t any parentheses around an expression following a quantifier, you should interpret this to mean that the entire expression is to be considered as a whole. Thus, the second of the above interpretations is the correct one. But here’s a good rule you can follow when working with logical formulas: “When in doubt, it’s better to have too many sets of parentheses than not enough.” That is, it’s better to clarify oneself excessively than insufficiently!

MULTIPLE QUANTIFIERS

It’s possible to have sentences in which there is more than one quantifier, each one applying to a different variable. For example:

[image: image]

This is read as follows: “For all x, there exists a y and there exists a z such that Px and Qy and Rz.”

If all the quantifiers are of the same type (either universal or existential) in a multiple-quantifier expression, then the quantifier can be listed once, and all the applicable variables can be listed following it. For example:

[image: image]

This is read as follows: “For all x, for all y, and for all z, Px and Qy and Rz.”

[image: image]PROBLEM 2-4

Symbolize the following sentences:

• Caesar is a human being.

• All human beings will die.

• Caesar will die.

[image: image]SOLUTION 2-4

Let H represent the predicate “is a human being.” Let D represent the predicate “will die.” Let c represent the subject “Caesar,” which is a constant. Let x represent a logical variable. Then the above sentences can be symbolized:

[image: image]

[image: image]PROBLEM 2-5

Symbolize the following logical argument. “Caesar is a human being. All human beings will die. Therefore, Caesar will die.”

[image: image]SOLUTION 2-5

We already have the symbolic representations of the three sentences contained in the argument. This argument states that if the first two sentences are both true, then the last one is true. So we can write the argument like this:

[image: image]

Remember the rules for precedence outlined in the last chapter. Tasks within parentheses or brackets are performed first. Then conjunction is performed, and then implication. If you want to use extra brackets to avoid any possibility of confusion, you can write the argument this way:

[image: image]

Well-Formed Formulas

In propositional logic, every sentence is written as a single symbol. Such a symbol can’t be put down with incorrect structure, because it’s a self-contained whole. But in predicate logic, sentences are broken down into parts. This means they must have a certain syntax, just as the sentences you utter or write in everyday life should obey certain rules of grammar (or would, in an English teacher’s paradise).

WHY BOTHER WITH SYNTAX?

In every generation, new grammar rules evolve. Sentences that would have given a language purist nightmares 50 years ago are commonplace today. A few decades in the future, some of the sentences we think are fashionable now will sound archaic, foreign, or stupid. Nonstandard syntax can “come out goofy.” That’s not necessarily a major problem in casual speech. But in logic, sloppy syntax cannot be allowed, because it produces meaningless, ambiguous, or inaccurate statements.

Problems with syntax have caused serious misunderstandings between people in cultures where the sentences are not put together in the same ways. Problems with syntax can also cause intergenerational conflicts. We don’t want that sort of thing to happen in logic. We can’t afford to allow any room for confusion when we want to prove something!

WHAT IS A WFF?

A properly constructed sentence in predicate logic, translated into symbols according to certain rules, is called a well-formed formula. This term is often abbreviated wff (pronounced “wiff” or “woof”).

Let’s use boldface uppercase letters from the latter part of the alphabet (such as X) to represent unspecified subject/predicate sentences. There are certain basic rules for constructing such sentences. Here they are:

• All sentences in propositional logic are wffs.

• If A is a predicate and k is a constant or variable, then Ak is a wff. In other words, any predicate can be put together with any subject, and the result is a wff.

• If A is a predicate and k1, k2, k3,…, and kn are constants or variables, then Ak1k2k3… kn, representing the conjunction Ak1 & Ak2 & Ak3 &…& Akn, is a wff. In other words, a predicate can apply to more than one subject.

• If A is a predicate, k1, k2, k3,…, and kn are constants or variables, and we are given a wff of the form Ak1k2k3… kn, then Ak1, Ak2, Ak3,… and Akn are all wffs. In other words, if a wff contains a predicate and multiple subjects, then that predicate can be put together with any one of the subjects, and the result is a wff.

• If X is any wff containing the variables x1, x2, x3,… xn that do not have quantifiers, and if we let a quantifier (either universal or existential) be represented by the “wild card” symbol #, then (#x1)(#x2)(#x3)…(#xn) X is a wff.

• Sentential negation, conjunction, disjunction, implication, and logical equivalence can all be used with or between predicate wffs, just as they can be used with or between simple propositions, and the result is always a wff.

• Any formula that does not conform to these rules is not a wff.

Here’s an important thing to remember: A statement does not have to be true in order to be a wff! Statements whose truth is not known, or that are obviously false, can nevertheless be perfect wffs.

If the above syntax rules seem complicated, read them through a few times. All they are meant to do is tell us how to put sentences together so they make logical (if not always common) sense.

MULTIPLE CONSTANTS

Thus far, we’ve constructed wffs in which there is only one constant or one variable. However, in the above rules, there is mention of multiple constants. In most such cases, there are two constants: the subject and the object in an SVO sentence. The option of symbolizing sentences with multiple constants lets us express things in more detail than would be possible if multiple constants were not allowed.

Consider the following sentences:

• Jill walks to school.

• Bob kicks the football.

• That runner eats pork.

• My teacher understands Einstein.

Let’s symbolize the nouns and verbs as indicated in Table 2-4. We can then write the sentences like this:

[image: image]

[image: image]

Table 2-4. Nouns and verbs used to denote some sentences containing two constants.

We list the verb first, then the subject, and then the object. The order in which the constants appear is important.

Suppose we reverse the order of the constants in each of the above sentences? Then we get the following:

[image: image]

Assuming we keep the symbol assignments shown in Table 2-4, these symbolic representations translate this way:

• The school walks to Jill.

• The football kicks Bob.

• Pork eats that runner.

• Einstein understands my teacher.

These are legitimate wffs, even though they come out strange when expanded into words. Nothing in the syntax rules forbids a wff to be ridiculous when translated into everyday language. (Imprecision or ambiguity is intolerable, but silliness is all right.)

Multiple variables are allowable, too. If we don’t want to specify the constants in the preceding four wffs, we might use variables x and y instead, getting these:

[image: image]

These wffs translate like this, respectively:

• x walks to y.

• x kicks y.

• x eats y.

• x understands y.

[image: image]PROBLEM 2-6

Which of the following are wffs? Which are not? Variables are symbolized as x and y. Constants are symbolized as a and b. Predicates are symbolized as R and S.

[image: image]

[image: image]SOLUTION 2-6

Only the second expression, Sabx, conforms to the syntax rules for predicate wffs. Therefore, it alone is a wff.

[image: image]PROBLEM 2-7

Write out the second sentence above (a legitimate wff) using the words indicated in Table 2-5 in place of the predicate, constants, and variable.

[image: image]

Table 2-5. Table for Problems 2-7 and 2-8.

[image: image]SOLUTION 2-7

Here it is! Note that the first symbol in a wff always represents a verb or predicate, and should be treated as such.

• Adam stands in front of Betsy and a person from France.

[image: image]PROBLEM 2-8

In order to illustrate, in words, what can happen when predicate formulas do not conform to the rules for wffs, write out the faulty formulas from Problem 2-6, using the words indicated in Table 2-5 in place of the predicates, constants, and variables. Note that the first symbol in a wff always represents a verb or predicate, and should be treated as such.

[image: image]SOLUTION 2-8

The following represent good attempts, at least, to translate the four faulty wffs shown previously.

• Runs toward a person from France Adam and Betsy.

• Stands in front of runs toward Adam.

• A person from France runs toward a person from England, stands in front of, and Betsy.

• Stands in front of Adam-ifies.

There are undoubtedly other ways to expand the faulty formulas (which we might call poorly-formed formulas, or pffs). But from these, you should get the idea that sentence construction is important. Even the most fervent rebels against the English language will wrinkle their noses at mutilated sentences like these for decades to come!

Venn Diagrams

Quantifiers can be applied to sets of subjects or objects, and these relationships can be illustrated as Venn diagrams. Let’s look at some examples. Imagine two types of things, known as widgets and doodads. Imagine two sets, one consisting of all the widgets in the world, and the other consisting of all the doodads in the world. Suppose that both sets contain lots of items.

SOME (MAYBE ALL) WIDGETS ARE DOODADS

Let the predicate W represent “is a widget,” and the predicate D represent “is a doodad.” Consider this sentence:

[image: image]

This translates as, “There exists at least one x, such that x is a widget and x is a doodad.” It can also be translated as “Some (maybe all) widgets are doodads.” There are four ways this can occur, as shown in Fig. 2-3. The set of widgets is represented by the solid rectangle and its interior. The set of doodads is represented by the dashed rectangle and its interior. Individual widgets and doodads can be represented by points inside the respective rectangles.

[image: image]

Fig. 2-3. At A and B, some widgets are doodads (and some aren’t). At C, some widgets are doodads (in fact, they all are). At D, some widgets are doodads (in fact, the set of widgets and the set of doodads coincide).

ALL WIDGETS ARE DOODADS

Now suppose that all widgets are doodads. The technical way to state this is, “For every x, if x is a widget, then x is a doodad.” This is written as follows in symbolic language:

[image: image]

This can happen in two different ways, as shown in Fig. 2-4.

[image: image]

Fig. 2-4. At A, all widgets are doodads (but some doodads aren’t widgets). At B, all widgets are doodads (and all doodads are widgets, too).

SOME (BUT NOT ALL) WIDGETS ARE DOODADS

Now let’s go back to the situation shown in Fig. 2-3, but place a constraint on it. We now say, “There exists at least one x, such that x is a widget and x is a doodad. But it is not true that for all x, x is a widget and x is a doodad.” More simply, we would say, “Some (but not all) widgets are doodads.” This can be symbolized as follows:

[image: image]

This situation can occur in two different ways, as shown in Fig. 2-5.

[image: image]

Fig. 2-5. Some (but not all) widgets are doodads. At A, the sets overlap but don’t coincide. At B, the set of doodads is contained within the set of widgets.

NO WIDGETS ARE DOODADS

Suppose we want to illustrate this sentence: “No widgets are doodads.” This can be more technically translated as, “It is not true that there exists an x such that x is a widget and x is a doodad.” Symbolically, we write:

[image: image]

This situation can also be stated as “There exists no x such that x is a widget and x is a doodad.” We symbolize this as above, but without the square brackets so the negation symbol applies directly to the quantifier:

[image: image]

This is illustrated by the Venn diagram of Fig. 2-6. The set of widgets and the set of doodads are disjoint sets. That means they have no elements (x’s, denoting widgets or doodads) in common. Another way of stating this is:

[image: image]

[image: image]

Fig. 2-6. No widgets are doodads. The sets are disjoint; they have no elements in common.

NOT ALL WIDGETS ARE DOODADS

Let’s look at one more example. Suppose we want to illustrate this statement: “Not all widgets are doodads.” This can be changed to the more rigorous form, “It is not true that for every x, if x is a widget, then x is a doodad.” Symbolically, we get the following formula:

[image: image]

We can also say, “Not for every x, is it true that if x is a widget, then x is a doodad.” This is written just the same as above, but without the square brackets. In this rendition, the negation sign applies directly to the quantifier:

[image: image]

This is illustrated by means of the Venn diagrams in Fig. 2-7. Any imaginable scenario is possible, except those in which the set of widgets is a subset of, or is exactly the same as, the set of doodads.

[image: image]

Fig. 2-7. Not all widgets are doodads. At A, the sets overlap but don’t coincide. At B, the set of doodads is contained within the set of widgets. At C, the sets are disjoint.

[image: image]PROBLEM 2-9

Examine Fig. 2-8. The set of widgets is shown as a solid rectangle, and the set of doodads is shown as a dashed rectangle. Four points are shown, representing constants a, b, c, and d. Write predicate sentences (in words) for all four of these constants.

[image: image]SOLUTION 2-9

Here are the sentences that apply individually to each of the constants, which we call item a, item b, item c, and item d:

• Item a is not a widget and is not a doodad.

• Item b is a widget but not a doodad.

• Item c is a widget and is also a doodad.

• Item d is not a widget, but it is a doodad.

[image: image]PROBLEM 2-10

Write the above sentences in symbolic form. Be sure they conform to the rules for wffs.

[image: image]SOLUTION 2-10

Some people find it helpful to write word-based sentences in rigorous logical form before attempting to symbolize them. The word “but” is logically equivalent to “and.” Here are the sentences in “wff-ready” form:

• It is not true that item a is a widget, and it is not true that item a is a doodad.

• It is true that item b is a widget, and it is not true that item b is a doodad.

• It is true that item c is a widget, and it is true that item c is a doodad.

• It is not true that item d is a widget, and it is true that item d is a doodad.

Based on these sentences, translation into wffs is straightforward. For any non-specified item x, let Wx mean “x is a widget,” and let Dx mean “x is a doodad.” The following four wffs are valid, based on Fig. 2-8:

[image: image]

[image: image]

Fig. 2-8. Illustration for Problems 2-9 and 2-10.

Quiz

This is an “open book” quiz. You may refer to the text in this chapter. A good score is eight correct. Answers are in the back of the book.

1. Suppose we are given a sentence in symbolic form: (∃x) Px. The part of this sentence after the quantifier

(a) is an SV sentence.

(b) is an SVO sentence.

(c) is an SLVC sentence.

(d) might be an SV, SVO, or SLVC sentence; we don’t know unless we are told what P stands for.

2. If Q is a sentence in propositional logic, then

(a) Q is a wff.

(b) Q is not a wff.

(c) Q contains an existential quantifier.

(d) Q contains a universal quantifier.

3. Suppose F, G, and H are complicated sentences, but all three are wffs. Which of the following is not a wff?

[image: image]

[image: image]

[image: image]

[image: image]

4. Which of the following is an example of an SLVC sentence?

(a) I know.

(b) Jim runs to the Post Office.

(c) We are prisoners.

(d) Jane drives a truck.

5. Which of the following is an example of an SV sentence?

(a) I know.

(b) Jim runs to the Post Office.

(c) We are prisoners.

(d) Jane drives a truck.

6. Let the predicate symbol W stand for “is a widget,” and let the predicate symbol D stand for “is a doodad.” Imagine that there are lots of widgets and lots of doodads lying around. Let z be a variable. Suppose we know the following statement is true:

[image: image]

Based on this fact, of which of the following statements can we be certain?

[image: image]

[image: image]

[image: image]

(d) All of the above

7. Consider the scenario of Question 6. Which of the Venn diagrams in Fig. 2-9 can apply to this situation?

(a) A

(b) B

(c) C

(d) None of the diagrams (A), (B), or (C) can apply.

[image: image]

Fig. 2-9. Illustration for Quiz Question 7.

8. In an SVO sentence, the subject is always

(a) a noun.

(b) a verb.

(c) an adjective.

(d) a wff.

9. A wff cannot contain

(a) both negation and disjunction.

(b) both negation and conjunction.

(c) both constants and variables.

(d) a variable all by itself, and nothing else.

10. Consider the statement “I created a TIFF image.” The structure of this sentence can best be described as

(a) SVO.

(b) SV.

(c) an existential quantifier.

(d) a universal quantifier.
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nonzero denominator.

In the expression p/1, both the numerator
and denominator are integers, and 1 # 0.

re@.

This follows from the definition of rational
number.
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Mow
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Wire:
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G ez,

‘This follows from the definition of even integer

‘The quotient plq is a ratio of
integers in lowest terms.

This is part of the assertion we made o start this proof.

pleZmdqhe 7,

We have proven both of these facts.

(12)/(ql2) is a ratio of
integers.

‘This follows from the statement immediately above this
line.

‘The ratio plq is not given in
lowest terms.

This follows from the statement immediately above this
line, and the fact that (p/2)/(q/2) = pla.

We have a contradiction!

‘The line immediately above this one is contrary to our
original assertion,

2" is not a ratio of integers
in lowest terms.

Invoke reductio ad absurdum.
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Statements

Reasons

Assume 2" can be represen-
ted as a ratio of two integers,
pand g, in lowest terms.

“This is the initial assumption, from which we will derive a
contradiction and then apply reductio ad absurdum.

2!

lg.

cification of the claim made above.

“This is merely a sp

"

@ = plg)?

Square both sides of the equation i the previous line.

Use basic algebra on the equation in the previous line.

Multiply each side of the equation in the previous line by ¢,

Divide each side of the equation in the previous line by 2.

We know g &
Therefore ¢ < Z.

You'll get a chance to fill this in later.

We know p &
Therefore p’ € Z.

You'll get a chance to fill this in later.

PreZ

We know this because ¢ = p/2, and 4" € Z.

P’ is an even integer.

‘This follows from the definition of even integer.

pis an even integer.

According 0 the odd-times-odd theorem, if p were 0dd,
then px p would be odd.






ops/t0224-02.jpg
pl2ez

‘This follows from the definition of even integer.

Let p/2 =1, where 1 € Z. This will make things simpler!

p=2 Multiply each side of the equation in the previous line by 2.

24" =it Substitute 21 for p in the equation 24" = p* from above.

24 =48 Simplify the right-hand side of the equation in the previous
line.

qn= Divide each side of the equation in the previous line by 4.

We know 1 € Z.
Therefore ' € Z.

You'll get a chance to fill this in later,

irez

This follows from the previous two lines.

4 is an even integer.

This follows from the defi

on of even integer.

qis an even integer.

According 0 the odd-times-odd theorem, if ¢ were odd,
then ¢ x g would be odd.
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heZ

You'll get a chance to fill this in later

res=hlg

This is a mere matter of substitution.

g0

This is because ¢ = bd with b 0 and d #
0, 50 the product-of-integers axiom, with
the help of DeMorgan’s Law for disjunc-
tion, ensures that g # 0.

/g i the quotient of two
integers with nonzero
denominator.

We already know that g € Z, h & Z, and
g#0.

7+ s is the quotient of
two integers with
nonzero denominator.

This is a mere matter of substitution.

(r+s)eQ.

This follows from the defini
rational number
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Statements

Reasons

Letre Qandse Q.

We will use these in the proof.

Letae Z,be Z,ce Z,
deZ b#0 andd#0.

We will use these in the proof.

Letr=alb

This is defined because b # 0.

Lets=cl/d.

This is defined because d # 0.

r+s=alb+cld.

This is a mere matter of substitution.

s =(ab+ be)/bd.

This follows from the sum-of-fractions
axiom.

Letad = e, lethc =
and let bd = g.

Rename these products for simplicity

eeZfeZadge Z

“This follows from the product-of-integers
axiom.

res=(e+f)lg.

This is a mere matter of substitution.

Lete+f=h.

Rename this sum for simplicity.
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Statements

Reasons

Let ¢* be the length of line
segment PS

We need to call it something!

Let p* be the length of line
segment OS.

We need to call it something!

Let p** be the length of line
segment RS,

We need to call it something!

g=r

‘We are told this.

pr=p

You'll get a chance to fill this in later.

q*=q*

This is trivial. Anything is equal to itself.
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‘This is a rewording of the previous statement using a
double negative.

Suppose

‘This is the first of two possible c:

5.

“The number p is not
the largest pr

‘This follows from the fact that z > p, which we have
established.

Suppose z € C.

This is the second of two possible cases.

‘The number 2 is divisible
without a remainder by
at least one prime.

You'll get a chance to fill this in later,

Let g be a prime that divides
2 without a remainder.

We're simply identifying one such, and giving it a name.

qes, We have established that no element of S, divides 2 without
a remainder, but ¢ does.
a>p “The prime ¢ can’t be less than or equal to p, because then it

would be an element of S,

‘The number p is not
the largest prime.

‘We just found one bigger, namely, g.

Both of the above cases result
in contradictions.

Tn each case, we determine that p is not the largest pr
but we assumed originally that it is.

‘There is no largest prime.

We are forced to conclude this because it is the negation of
our original assertion.
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Statements

Reasons

Suppose there is a largest
prime number.

‘This is our initial assumption, from which we will derive
a contradiction,

Let p be the largest prime.

We're s

mply naming the number.

LetS, be the set of all primes
smaller than or equal (0 p.

‘We're simply naming the set

Let 2 be the product of all
the elements of S, plus 1.

‘We're simply naming the quantity.

>p “This follows from the fact that z is 1 larger than at least one
positive-integer multiple of p.

ez This follows from the product-of-integers axiom and the
sum-of-integers axiom.

Suppose k € There exists at least one such; let’s just investigate its

properties.

‘The quotient z/k always has
a remainder of 1, no matter
which k we choose from S

“The quotient /k is equal to a product of primes, plus 1.
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Counterclockwise around APQS,
we encounter sides of lengths
r,p*, and ¢* in that order.

This is evident from the geometry of the
situation.

Clockwise around APRS,
we encounter sides of lengths
. p**, and g* in that order.

This is evident from the geometry of the
situation.

Clockwise around APRS,
we encounter sides of lengths
r,p*, and ¢* in that order.

This follows from substituting r for g and
p* for p** in the preceding statement.

APQ!

APSR.

This follows from the statements in the first
and third lines above this line, and from the
definition of inverse congruence for triangles.
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m°ZPQOR + m°ZQRP + m°ZRPQ > 180°
or
m°ZPOR + m°ZORP + m°ZRPQ < 180°
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Statements

Reasons

LetS={2,4,6,8,10,. This is an example that sets the scene for
the proof.
LetT={1,3,579,..}. This is an example that sets the scene for

the proof.

SUT={1,2,3,4,5..)

‘This is apparent by examining sets § and
7 and denoting their elements in an
increasing sequence.

Sets § and T are disjoint.

This follows from the fact that no even
positive integer is odd, and the fact that
n0 odd positive integer is even.

SAT=2.

This follows from the definition of
disjoint sets.

(Vu)ug SAT.

You'll get a chance to fill this in later.

[ENENED]
(e SUT)& (e SNT)).

We just found an example of an element 1,
asetS.and aset T for whichue SUT
andug SAT.
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k>n
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alb + 1/10.
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‘The number x is a product of
primes.

‘This follows from the facts that x=yz,y € P.and z € P.

Suppose that
(reP)&(ze 0).

This is the second of four possible

‘The number z is a product of
primes.

“This follows from the facts that = < .x and x is the smallest
composite that i not & product of primes

“The number x is a product of
primes.

‘This follows from the facts that x = yz and y & P.

Suppose that
GeO&@eP)

‘This is the third of four possible cases.

‘The number y is a product of
primes.

This follows from the facts that y < x and x is the smallest
composite that s not a product of primes

‘The number x is a product of
primes.

‘This follows from the facts that x = yz and z € P,

Suppose that
(eO)&(ze O).

‘This is the fourth of four possible cases.
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Statements

Reasons

Suppose there exist composite
numbers that are not products
of primes.

This is the initial assumption from which we will derive a
contradiction, thus proving its negation, which is the
proposition at hand.

There is a smallest composite
number x that s not a product
of primes.

‘This follows from the well-ordering axiom.

x> 1.

You'll get a chance to fill this in later.

xe P

‘We are told that x is composite, and by defi
means x is not prime.

on, this

There exist positive integers
¥ and 2, such that ¥

‘This follows from the definition of prime number.

l<y<x Iy had t0 be equal o either I or x, then x would be prime;
and if y were larger than , then x/y would would be
between 0 and 1, and would not be a positive integer.

l<z<ux 1 2 had 10 be equal 10 cither 1 or x, then x would be prime;

and if z were larger than x, then x/z would would be
between 0 and 1, and would not be a positive integer.

Suppose that
GeP&ieP),

‘This s the first of four possible cases.
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(<) & (2 <),

‘We determined this carlier

The number x is the smallest
composite that is not a
product of primes.

We determined this earlier.

The numbers y and z are both
products of primes.

This follows from the previous two steps.

The number x is a product of
primes,

This follows from the previous step and the fact that x

All four of the above cases
result in contradictions.

In each case, we determine that x is  product of primes,
but we determined earlier that x is not a product of prim

There exist no composite
numbers that are not products
of primes.

We are forced to conclude this because it is the negation of
our original assertion.

Any composite number is a
product of primes.

This.

asimpler way of expressing the previous statement.
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Statements

Reasons

Let A and B be non-empty sets.

We will use these in the proof.

Let ¢ be a constant.

We will use this in the proof.

Assume c & AU B,

i

s our initial assumption.

—lce A)v(ce B).

This follows from the definition of
set union.

—(ce A)&—(ce B).

This follows from DeMorgan’s Law
for disjunction.

(ceA)&(ce B)

This is simply another way of stating
the previous line.

ce AnB.

‘This follows from the definition of
set intersection.
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Statements

Reasons

Let A and B be non-empty sets.

We will use these in the proof.

Let ¢ be a constant.

We will use thi

n the proof.

Assume c ¢ AU B.

“This is our initial

sumption.

Sllce Avice B

“This follows from the definition
of set union.

~(ce A)&(ce B).

You'll get a chance to provide
this reason in Exam Question 38

(ce A)&(ce B).

This is simply another way of
stating the previous line.

ce AnB.

‘This follows from the definition
of set intersection.
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Statements

Reasons

Letre Qandse Q.

We will use these in the proof.

Letae Z,be Z,ce Z,
deZb#0,andd#0.

We will use these in the proof,

Letr=alb

Thi

defined because b # 0.

Let s = c/d.

This is defined because d # 0.

r—s=alb-cld.

This is the result of substituting a/b for r, and
cld fors.

alb=cld =alb+ (~cld).

‘This follows from the difference-between-
fractions axiom.

alb+(=cld)=r+(=cld).

This is the result of substituting r for a/b in
the previous statement

r-s=r+(-cld).

This follows from the previous three steps.

—c=-lxc

You'll get a chance to fill this in later.
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~leZandce Z For -1, the fact follows from the definition of
integer. For ¢, we are told this at the outset.
ez This follows from the previous two steps and

the product-of-integers axiom.

—cld is the quotient of
two integers, and the
denominator is nonzero.

This follows from the previous step and
the outset, where we are told that d € Z
and also that d 0.

—cld € Q. ‘This follows from the definition of a rational
number.

re g We are told this at the outset.

r+(-cld)e Q. This follows from the previous two steps and

from Solution 6-6.

+(=cld).

‘This was previously determined

<0

‘This follows from the previous two steps.
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X=the plane defined
by this page held flat
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Let 1 be the length of line
segment UQ.

We have to call it something!

Line segment UQ is
the hypotenuse of AQTU.

This is evident from the geometry
of the situation.

2. 2

+q-

‘This is true according to the Theorem
of Pythagoras.

“This is the result of substituting 1 for
the values of r and g.

r=21"

‘This is the result of solving the equa-
tion in the previous line for 1

The length of line segment
UQ s equal to 2" units.

This follows from the fact that we
have defined £ as the length of line
segment UQ.
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Statements

Reasons

ZOTU is aright angle.

We constructed it that way!

AQTU is a right triangle.

This follows from the definition of
right triangle.

Let r be the length of line

segment OT.

We have to call it something!

r=1

We defined the length of line segment
O as 1 unit, using the compass.

Let ¢ be the length of line
segment 7U.

We have to call it something!

You'll get a chance to fill this in later
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Statements

Reasons

Suppose n € C.

This is our starting point.

The number  is expressible
as a product of primes.

This follows from the prime factor theorem.

B=P X PyX Py KX P,
where

PyPyPy P € P,
meZ,andm>1

This is a restatement of the fact that n is
expressible as a product of primes.

nlpy =Py Xpy X X p,

This is the result of dividing each side of the
preceding equation by the prime p,

Py X Py X ... X p, is a product
of primes.

We know this because py. p. py. ... p,, € P.

Letpy X pyX... Xp,

We simply rename the product.

The number kis an integer.

You'll get a chance to fill this in later.

The prime p, divides  with
1o remainder.

This follows by algebra from the preceding
five steps.

The number n can be divided
by at least one prime without
a remainder.

We've found a prime that does it, namely, p,
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Statements

Reasons

Consider a triangle APQR,

We have to start somewhere.

Choose a point § such that
line RS is parallel to line PQ.

We will use this point later.

Choose a point 7 on line RS,
such that point R is between
point T and point S,

‘We will use this point later.

Line PR and line OR are
transversals (o the parallel lines
PQand RS.

‘This is apparent from the definition of a
transversal line.

Consider ZQORS, and call its
measure x*. Also consider ZTRP,
and call its measure z*

We will use these later.
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Angles ZRQP and ZQRS are
alternate interior angles.

‘This is apparent from the definition of
altemate interior angles.

Angles ZOPR and ZTRP are
alternate interior angles.

“This is apparent from the definition of
alternate interior angles.

‘This follows from the AIA Theorem,

‘This follows from the AIA Theorem.

‘This is apparent from the geometry of
the situation, and from the definition
of an angular degree

Z4y4x=I180°

You'll get a chance to fill this in later.

The measures of the interior
angles of APOR add up to
measure of a straight angle.

‘This is because x, y, and z are the

measures of the interior angles of
APQR.
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Sm = [(3x) Ax & Cx]
Sm

(Ix) Ax & Cx
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(a) (Vx)Dx= Wx





ops/c0118-03.jpg
(c) (Vx) -Dx & Wx
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Statements Reasons

Letre Qands e . We will use these in the proof.

Letae Z,be Z,ce Z, | Wewill use these in the proof.
deZb#0,andd#0.

Letr=alb. This is defined because b 0.

Let s = c/d. ‘This is defined because d # 0.

rs = (alb)(cld). This is the result of substituting /b for r. and
cld for's

(@/b)(cld) = (@o)(bd ). This follows from the product-of-fractions
axiom.

s = (ac)l(bd). This follows from the previous two steps.
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ace Qand bd € Q.

‘This follows from the product-of-integers
axiom

bd #0.

This is because b # 0 and d # 0, so the
product-of-integers axiom, with the help of
DeMorgan’s Law for disjunction, ensures that
bd#0.

(ac)/(bd) is the quotient of
two integers with a
nonzero denominator.

‘This follows directly from the previous step.

(ac)/(bd) < .

You'll get a chance to fill this in later.

e Q.

This is the result of subs
quantity (ac)/(bd).

uting rs for the
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In ASRP and ASQP, correspond-
ing pairs of angles have equal
measures going in opposite
directions.

You'll get a chance to fill this
later.

MZSPR = mZQPS.

These two angles constitute a pair of
corresponding angles in ASRP and
ASQP.

mZSPR +mZQPS = mZQPR.

This i
the

evident from the geometry of
tuation.

The ray PS bisects angle ZQPR.

This follows from the definition of
bisection.
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Statements

Reasons

Line segment SR has the same
length as line segment SQ.

We have bisected line segment RQ,
and the midpoint is S.

Line segment RP has the same
length as line segment OP.

We have constructed them both from
from the same arc centered at point P.

Line segment PS has the same | This is trivial!
length as itself.
In ASRP and ASQP, correspond- | This is evident from the geometry of

ing pairs of sides have equal
lengths as we o around them in
opposite directions.

the situation.

ASRP

ASQP.

This follows from the SSS axiom
and the definition of inverse
congruence.
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Statements

Reasons

Let A and B be non-empty sets.

We will use these in the proof.

Let ¢ be a constant.

We will use this in the proof.

Assume c € AN B.

“This is our initial assumption.

(ce A)&(ce B).

This follows from the definition
of set intersection.

ceA

This follows from the definition
of logical conjunction.

(ce A)vice B).

This follows from the definition
of logical disjunction.

ceAUB

‘This follows from the definition
of set union.






ops/e0008-01.jpg
S=(P&C)





ops/e0008-02.jpg
P&C)=S8
S=({P&C)





ops/e0008-03.jpg
[([P&C)=S]&[S=(P&(C)]





ops/e0008-04.jpg
(P& C) IFAND ONLY IF S





ops/e0008-05.jpg
(P& C)IFF S





ops/e0008-06.jpg
P&C)e S





ops/e0226-01.jpg
P=4q
P>q





ops/t0022-01.jpg
—Y =X

—X

-y






ops/f0085-01.jpg





ops/e0146-01.jpg
APQOR = ASTU





ops/f0062-01.jpg
M

e ntersECHON

point
L






ops/e0180-01.jpg
r=r
r=s)=(@¢=n
(r=s)& (s=0]=(r=1





ops/e0180-02.jpg
[((a=0)v(b=0)] < (ab=0)





ops/t0035-01.jpg
Subject Predicate
Subject Symbol Predicate Symbol
Jack a walks to school w
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Jack a is a boy B
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1 q was hungry H
You u will get tired R






ops/f0051-02.jpg
Doodads = === ==

Widgets






ops/f0051-01.jpg
Doodads = = = ===

Widgets






ops/f0108-01.jpg
Car going 80 km/h

Car going 50 km/h

o





ops/c0139-01.jpg





ops/e0078-02.jpg





ops/c0162-01.jpg





ops/e0078-01.jpg
S={aya,,aya,a,...}





ops/e0053-01.jpg
—~Wa & —Da
Wb & —Db
We & De
—Wd & Dd





ops/e0248-01.jpg
9*0
(Q¥R) = (R¥ Q)
(Q¥R) & (R¥S)] = (Q¥Y9)





ops/c0244-04.jpg
(d @x)(xe G&xe H)





ops/c0244-05.jpg
(e) (Vx)(xe G & xe& H)





ops/c0244-02.jpg
(b) (Vx) (xe H= xe G)





ops/c0244-03.jpg
) (Vx)(xeg H=>x¢ G)





ops/c0151-03.jpg





ops/c0244-01.jpg
(a) (Vx)(xe G xe H)





ops/c0151-01.jpg





ops/c0151-02.jpg





ops/e0042-02.jpg
He & [(Vx) Hx = Dx] = D¢





ops/e0042-03.jpg
{Hc & [(Vx) Hx = Dx]} = Dc





ops/e0042-01.jpg
He
(Vx) Hx = Dx
De





ops/e0019-01.jpg
X&Y)&Z
X&(Y&Z)





ops/f0210-01.jpg





ops/e0271-02.jpg
(dx) Px & Qx





ops/e0271-01.jpg
(XVvY)vZ]Ie [ XVvI(YvVvZ)





ops/f0050-01.jpg
Doodads =

Widgets






ops/f0109-01.jpg
L
x| 4N






ops/t0047-01.jpg
Symbol Word of Phrase
R runs towards
s stands in front of
a Adam
b Betsy
x aperson from France
v a person from England






ops/f0176-01.jpg
ANB





ops/f0153-01.jpg





ops/t0009-01.jpg
-X





ops/e0006-01.jpg





ops/e0006-02.jpg





ops/c0150-02.jpg





ops/c0150-03.jpg





ops/e0041-03.jpg
(Vx)(3yv)(dz) (Px & Qy & R2)





ops/e0064-01.jpg





ops/c0150-01.jpg
a






ops/e0041-04.jpg
(Vx, v, 2) (Px & Qy & Rz)





ops/e0041-01.jpg
(Vx) Px & Qx & Rx





ops/f0144-01.jpg





ops/e0041-02.jpg
(Vx) Px & (Qx & Rx)
(Vx) (Px & Qx & Rx)





ops/t0010-02.jpg
Xvy






ops/e0144-01.jpg





ops/t0010-01.jpg
XvyY






ops/f0121-01.jpg
Definition

Axiom (or
postulats)

Axiom
Axiome)

Definition

Theorem

e
ﬂ i
g
)
Theorem

Corollary






ops/f0110-01.jpg
b= 2by5

Tby3

Straight diagonal just
misses these points!

Straight diagonal =






ops/e0179-01.jpg
SNQ=0





ops/e0179-02.jpg
R=0Q0US





ops/e0179-03.jpg
NcZcQCR





ops/e0191-02.jpg
r+s=(ad+ bc)/bd





ops/t0021-01.jpg
XvY)vz

Zv(XVY)

Xvy






ops/c0242-02.jpg





ops/e0191-01.jpg





ops/f0209-01.jpg





ops/e0191-04.jpg
r+s=hlg





ops/e0191-03.jpg
r+s=(e+f)g





ops/c0242-01.jpg





ops/t0021-02.jpg
Xv(YVvZ)

Yvz






ops/c0199-01.jpg





ops/c0199-02.jpg





ops/t0197-02.jpg
ade Qand be e Q.

This follows from the product-of-integers
axiom.

be #0.

This is because b # 0 and ¢ # 0, s0 the
product-of-integers axiom, with the help of
DeMorgan’s Law for disjunction, ensures that
be#0.

(ad)/(be) is the quotient
of two integers with a
nonzero denominator

“This follows directly from the previous step.

(ad)/(be) Q.

You'll get a chance to fill this in later.

s e Q.

This is the result of substituting 7/s for the
quantity (ad)/(be).
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Someone x walks to school w
Someone. x kicks the ball K
Someone x mows the lawn M
Someone x trims a tree T
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Someone x was hungry H
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Statements

Reasons

Letre Qandse Q.

We will use these in the proof.

Letae Z,be Z ce Z,

de Z,b#0,c#0,and
d#0,

We will use these in the proof.

Let r=alb.

This is defined because b # 0.

Lets=c/d.

This is defined because d # 0.

rls = (alb)lc/d).

This is the result of substituting a/b for r, and
cld for 5.

(alb(cld) = (ad)l(be).

This follows from the quotient-of-fractions.
axiom,

rls = (ad)/(be).

This follows from the previous two steps.
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Statements
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ASPQ = AQRS

This is the theorem resulting from
Solution -5

Counterclockwise measures of
corresponding angles in AQRS
and ASPQ are equal

This comes from the definition of
direct congruence.

ZOSR and ZSOP ase corresponding
angles in AORS and ASPQ, as we
proceed in the same direction
around both triangles.

This is evident from examination
of the problem.

mZQSR and mZSQP are
defined counterclockwise.

This is evident from the statement
of the problem.

mZQSR = mZSOP

This comes from information
derived in the preceding steps.
and from the definition of direct
congruence.
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Statements

Reasons

Consider the quantity (r+s)
as a single value,

We need to do this to get started!

(r+8)(t +u)
=(r+9t+(r+s)u

This follows from the distributive axiom.

(r+ S+ (r+ s
(r+5)+ u(r+5s)

You'll get a chance to fill this in later.

Hr+s)+u(r+s)
=i+t urtus

This follows from the distributive axiom.

s urdus
T St T su

This follows from the commutative axiom
for multiplication.

U SEE U SU
7 kst su

This follows from the commutative axiom
for addition.

(r+8)(t +u)
=t kst su

‘This follows from repeated application of a
component of the equality axiom. You will
geta chance to identify the component later.
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0

LEARN to spot fallacies and deceptions,
and AVOID logical TRAPS and pitfalls

-

SHARPEN your powers of critical THINKING
as you learn to DEVELOP airtight arguments

-

OVERCOME "pure mathphobia"
=)
PREPARE for theoretical math courses

=)

Complete with practice TEST QUESTIONS
and answer keys

Stan Gibilisco






ops/e0040-02.jpg
dx: Bx = Wx
3x | Bx = Wx
Jx (Bx = Wx)





ops/t0019-02.jpg
X&Y)&Z

Z& (X &Y)

X&Y






ops/t0019-01.jpg
YvX

Xvy






ops/c0160-01.jpg





ops/c0160-02.jpg





ops/c0160-03.jpg





ops/e0027-01.jpg
s e A Y )





ops/e0027-02.jpg
(X &Y)] = (—7)





ops/e0027-03.jpg
X&Y)=Z





ops/c0159-01.jpg
mZUSQ = mZLTQOS





ops/e0188-01.jpg
-1,0,1, 2,






ops/e0188-02.jpg
<K=3<c-2<-1<0<cl1<c2<3






ops/c0241-02.jpg





ops/c0241-01.jpg





ops/c0241-03.jpg





ops/f0213-01.jpg





ops/e0223-07.jpg





ops/e0223-08.jpg





ops/e0005-02.jpg
C&R





ops/t0157-01.jpg
Statements

Reasons

Line segment SP in ASPQ
corresponds to line segment OR
in AQRS.

We assign them that way

Line segment PQ in ASPQ
corresponds o line segment RS
in AQRS

We assign them that way.

Line segment QS in ASPQ
corresponds to line segment SQ
in AQRS.

We assign them that way.

Line segment PQ has the same Given.
length as line segment SR.
Line segment SP has the same Given.

length as line segment RQ.

Line segment QS has the same
length as line segment S.

This comes from the definition
of the length of a line segment:
it is the same in either direction.

Corresponding sides of ASPQ and
AQRS have the identical lengths
expressed counterclockwise.

This is based on the above state-
ments, and on the way we have
assigned corresponding sides.

ASPQ = AQRS.

SSS axiom.
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Statements

Reasons

‘The length of line segment RP equals the
length of line segment PR.

It doesn’t matter which direction we go
when we define the length of a line segment

Let m be the length of line segments RP
and PR.

We have to call it something!

ZSRP and ZOPR are alternate interior
angles.

‘This is apparent from the geometry of the
situation.

mZSRP = mZQPR.

‘This follows from the AIA Theorem.

Let x be the measure of ZSRP and ZQPR.

We have to call it something!

PSR and ZRQP are right angles.

We are told this.

mZPSR = mZRQP.

You'll get a chance to fill this in later.

Let y be the measure of ZPSR and ZRQP.

We have to call it something!

Counterclockwise around ARPQ or APRS,
we encounter a side of length 1, an angle
of measure x, and an angle of measure y,
in that order.

‘This is evident from the geometry of the
situation

ARPQ = APRS.

‘This follows from the SAA axiom.
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Statements

Reasons

Letg=" This is our initial assertion.

qe Q. We know that ¢ is a rational number
because % is equal to the quotient of two
integers, namely 1 and 2.

heZ. We know this because 0 < % < 1, and there
exist no elements of Z between 0 and 1.

qez This follows from the fact that g = %, and

not an integer.
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‘Wall
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2nd jump

Initial position of frog
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Statements

Reasons

Let Z, denote the set of
positive integers.

We have to symbolize it somehow!

Suppose that p € Z,
andge Z,

‘We need two nonspecific positive integers to do the proof.

I a GCD exists for p and g,
let's call it g.

We have to call it something!

Suppose 1 is the only positive
integer that divides p and ¢
without remainders,

“This i the first of two possibilities
Let's see what it implies.

g=1,and there is noth
further to prove

‘This follows from the definition of GCD.

Suppose 1 is not the only
positive integer that divides
p and g without remainders.

This is the second of two possibilities.
Let's see what it implies.
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One and only one of the
following is true: p < . or
p>q.orp=g.

“This follows from the trichotomy axiom because p and g,
being positive integers, are real numbers as well.

Suppose that p < g.

This s case 1 of the trichotomy. Let’s see what it impli

There is no positive integer
n larger than p such that
pine Z,and gin < Z,

If such an 7 exists, then 0 < pin < 1, and thus pin &

We know 1 divides both p and ¢ without remainders, and
that no positive integer larger than p can do so. We are thus
forced to this conclusion.

Suppose that p > .

“This i case 2 of the trichotomy. Let’s see what it implics.

There is no natural number
a larger than g such that
pine Z and g € Z,

If such an 1 exists, then 0 < g/n < 1, and thus g/n & Z..
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1<g<q

We know 1 divides both p and ¢ without remainders, and
that no positive integer larger than ¢ can do so. We are thus
forced to this conclusion.

Suppose that p = g.

This s case 3 of the richotomy. Lets see what it impl

Plge Z,and gip € Z,

This is trivial because plg = g/p=1,and 1 & Z,

There is no natural number
n larger than p and g such
that pln € Z, or gln € Z,

If such an 1 exists, then 0 < pin < 1 making pin ¢ Z,, and
0<gln <1 making gln & Z,

‘We know that p and g divide each other without remain-
ders, and that no number larger than them can do so. We
ar thus forced to this conclusion.

There exists a GCD for any
pair of positive integers,

All the possibilities have been covered!
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Predicate

Predicate
Symbol

is a boy

B

walks to school

is a football

gets kicked

is a swimmer

w|=|=|=

is hungry

is a teacher

is a genius.

o=z
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Statements

Reasons

Transversal line PR crosses lines PQ and RS.

“This is evident from the geometry of
of the situation.

The two angles ZSRT and ZQPT are
alternate interior angles within parallel lines.

This is evident from the geometry of
the situation.

ZSRT and ZQPT have equal measure.

You'll get a chance to fill this in later.

Let x be the measure of ZSRT and ZQPT.

We have to call it something!

Let m be the length of line segments PQ
and RS,

We're told that their lengths are equal,
and we have to call them something!

Transversal line SQ cros
and RS,

ines PQ

‘This is evident from the geometry of
the situation.

The two angles ZTQP and ZTSR are
alternate interior angles within parallel lines.

This is evident from the geometry of
the situa

ZTQP and ZTSR have equal measure.

You'll get a chance to fill this in later.

Let y be the measure of ZTQP and £TSR.

We have to call it something!

Counterclockwise around APQT or ARS'
we encounter an angle of measure ., a side
of length m, and an angle of measure y, in
that order.

‘This is evident from the geometry of
the situation.

APQT = ARST.

This follows from the ASA axiom.
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Statements

Reasons,

A quantity is always equal to itself

Both 1/(-1) and (~1)/1 are equal to ~1. Either of these
expressions can be substituted for ~1 in the previous
equation

VR = (1) 211 ‘The square root of a quotient is equal to the square root
of the numerator divided by the square root of the
denominator.

(1" = [()"f=1)"?) | Any pair of equal quotients can be cross-multiplied. The

numerator of the one times the denominator of the other
equals the denominator of the one times the numerator
of the other.

ither side of the previous equation consists of a quantity
multiplied by itself. That is the same thing as the quantity
squared

When the square root of a number s squared, the result
is the original number. Therefore, all the exponents can
be taken out of the preceding equation.
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Statements

Reasons

Letre Q.

‘This is our initial assertion.

(re @ v(re X

This follows from the definition of logical disjunction,
where X can be any set whatsoever.

re QUX.

You'll get a chance to supply the reason for this later.

Consider X = .

‘We can do this because X can be any set we choose.

reQus. ‘This follows from the previous two steps.
QuUS=R ‘This follows from the definition of the set of real numbers,
re R This follows from the previous two steps.
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