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Preface

Instrumentation and process control can be traced back many millennia. Some of the early examples are the process of making fire and instruments using the sun and stars, such as Stonehenge. The evolution of instrumentation and process control has undergone several industrial revolutions leading to the complexities of modern day microprocessor-controlled processing. Today’s technological evolution has made it possible to measure parameters deemed impossible only a few years ago. Improvements in accuracy, tighter control, and waste reduction have also been achieved.

This book was specifically written as an introduction to modern day industrial instrumentation and process control for the two-year technical, vocational, or degree student, and as a reference manual for managers, engineers, and technicians working in the field of instrumentation and process control. It is anticipated that the prospective student will have a basic understanding of mathematics, electricity, and physics. This course should adequately prepare a prospective technician, or serve as an introduction for a prospective engineer wishing to get a solid basic understanding of instrumentation and process control.

Instrumentation and process control involve a wide range of technologies and sciences, and they are used in an unprecedented number of applications. Examples range from the control of heating, cooling, and hot water systems in homes and offices to chemical and automotive instrumentation and process control. This book is designed to cover all aspects of industrial instrumentation, such as sensing a wide range of variables, the transmission and recording of the sensed signal, controllers for signal evaluation, and the control of the manufacturing process for a quality and uniform product.

Chapter 1 gives an introduction to industrial instrumentation. Chapters 2 through 4 refresh the student’s knowledge of basic electricity and introduce electrical circuits for use in instrumentation. Sensors and their use in the measurement of a wide variety of physical variables—such as level, pressure, flow, temperature, humidity, and mechanical measurements—are discussed in Chapters 5 through 10. The use of regulators and actuators for controlling pressure, flow, and the control of the input variables to a process are discussed in Chapter 11. Electronics is the medium for sensor signal amplification, conditioning, transmission, and control. These functions are presented as they apply to process control in Chapters 12 through 14. Finally, in Chapter 15, documentation as applied to instrumentation and control is introduced, together with standard symbols recommended by the Instrument Society of America (ISA) for use in instrumentation control diagrams.

The primary reason for writing this book was that the author felt that there was no clear, concise, and up-to-date book for prospective technicians and engineers which could help them understand the basics of instrumentation and process control. Every effort has been made to ensure that the book is accurate, easily readable, and understandable.

Both engineering and scientific units are discussed in the book. Each chapter contains worked examples for clarification, with exercise problems at the end of each chapter. A glossary and answers to the odd-numbered questions are given at the end of the book.

William C. Dunn
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Chapter

1

Introduction and Review

Chapter Objectives

This chapter will introduce you to instrumentation, the various measurement units used, and the reason why process control relies extensively on instrumentation. It will help you become familiar with instrument terminology and standards.

This chapter discusses
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1.1  Introduction

Instrumentation is the basis for process control in industry. However, it comes in many forms from domestic water heaters and HVAC, where the variable temperature is measured and used to control gas, oil, or electricity flow to the water heater, or heating system, or electricity to the compressor for refrigeration, to complex industrial process control applications such as used in the petroleum or chemical industry.

In industrial control a wide number of variables, from temperature, flow, and pressure to time and distance, can be sensed simultaneously. All of these can be interdependent variables in a single process requiring complex microprocessor systems for total control. Due to the rapid advances in technology, instruments in use today may be obsolete tomorrow, as new and more efficient measurement techniques are constantly being introduced. These changes are being driven by the need for higher accuracy, quality, precision, and performance. To measure parameters accurately, techniques have been developed that were thought impossible only a few years ago.

1.2  Process Control

In order to produce a product with consistently high quality, tight process control is necessary. A simple-to-understand example of process control would be the supply of water to a number of cleaning stations, where the water temperature needs to be kept constant in spite of the demand. A simple control block is shown in Fig. 1.1a, steam and cold water are fed into a heat exchanger, where heat from the steam is used to bring the cold water to the required working temperature. A thermometer is used to measure the temperature of the water (the measured variable) from the process or exchanger. The temperature is observed by an operator who adjusts the flow of steam (the manipulated variable) into the heat exchanger to keep the water flowing from the heat exchanger at the constant set temperature. This operation is referred to as process control, and in practice would be automated as shown in Fig. 1.1b.

[image: image]

Figure 1.1  Process control (a) shows the manual control of a simple heat exchanger process loop and (b) automatic control of a heat exchanger process loop.

Process control is the automatic control of an output variable by sensing the amplitude of the output parameter from the process and comparing it to the desired or set level and feeding an error signal back to control an input variable—in this case steam. See Fig. 1.1b. A temperature sensor attached to the outlet pipe senses the temperature of the water flowing. As the demand for hot water increases or decreases, a change in the water temperature is sensed and converted to an electrical signal, amplified, and sent to a controller that evaluates the signal and sends a correction signal to an actuator. The actuator adjusts the flow of steam to the heat exchanger to keep the temperature of the water at its predetermined value.

The diagram in Fig. 1.1b is an oversimplified feedback loop and is expanded in Fig. 1.2. In any process there are a number of inputs, i.e., from chemicals to solid goods. These are manipulated in the process and a new chemical or component emerges at the output. The controlled inputs to the process and the measured output parameters from the process are called variables.

[image: image]

Figure 1.2  Block diagram of a process control loop.

In a process-control facility the controller is not necessarily limited to one variable, but can measure and control many variables. A good example of the measurement and control of multivariables that we encounter on a daily basis is given by the processor in the automobile engine. Figure 1.3 lists some of the functions performed by the engine processor. Most of the controlled variables are six or eight devices depending on the number of cylinders in the engine. The engine processor has to perform all these functions in approximately 5 ms. This example of engine control can be related to the operations carried out in a process-control operation.

[image: image]

Figure 1.3  Automotive engine showing some of the measured and controlled variables.

1.3  Definitions of the Elements in a Control Loop

Figure 1.4 breaks down the individual elements of the blocks in a process-control loop. The measuring element consists of a sensor, a transducer, and a transmitter with its own regulated power supply. The control element has an actuator, a power control circuit, and its own power supply. The controller has a processor with a memory and a summing circuit to compare the set point to the sensed signal so that it can generate an error signal. The processor then uses the error signal to generate a correction signal to control the actuator and the input variable. The function and operation of the blocks in different types of applications will be discussed in Chaps. 11, 12, and 14. The definition of these blocks is given as follows:

Feedback loop is the signal path from the output back to the input to correct for any variation between the output level from the set level. In other words, the output of a process is being continually monitored, the error between the set point and the output parameter is determined, and a correction signal is then sent back to one of the process inputs to correct for changes in the measured output parameter.

Controlled or measured variable is the monitored output variable from a process. The value of the monitored output parameter is normally held within tight given limits.

Manipulated variable is the input variable or parameter to a process that is varied by a control signal from the processor to an actuator. By changing the input variable the value of the measured variable can be controlled.

Set point is the desired value of the output parameter or variable being monitored by a sensor. Any deviation from this value will generate an error signal.

Instrument is the name of any of the various device types for indicating or measuring physical quantities or conditions, performance, position, direction, and the like.

Sensors are devices that can detect physical variables, such as temperature, light intensity, or motion, and have the ability to give a measurable output that varies in relation to the amplitude of the physical variable. The human body has sensors in the fingers that can detect surface roughness, temperature, and force. A thermometer is a good example of a line-of-sight sensor, in that it will give an accurate visual indication of temperature. In other sensors such as a diaphragm pressure sensor, a strain transducer may be required to convert the deformation of the diaphragm into an electrical or pneumatic signal before it can be measured.

Transducers are devices that can change one form of energy to another, e.g., a resistance thermometer converts temperature into electrical resistance, or a thermocouple converts temperature into voltage. Both of these devices give an output that is proportional to the temperature. Many transducers are grouped under the heading of sensors.

Converters are devices that are used to change the format of a signal without changing the energy form, i.e., a change from a voltage to a current signal.

Actuators are devices that are used to control an input variable in response to a signal from a controller. A typical actuator will be a flow-control valve that can control the rate of flow of a fluid in proportion to the amplitude of an electrical signal from the controller. Other types of actuators are magnetic relays that turn electrical power on and off. Examples are actuators that control power to the fans and compressor in an air-conditioning system in response to signals from the room temperature sensors.

Controllers are devices that monitor signals from transducers and take the necessary action to keep the process within specified limits according to a predefined program by activating and controlling the necessary actuators.

Programmable logic controllers (PLC) are used in process-control applications, and are microprocessor-based systems. Small systems have the ability to monitor several variables and control several actuators, with the capability of being expanded to monitor 60 or 70 variables and control a corresponding number of actuators, as may be required in a petrochemical refinery. PLCs, which have the ability to use analog or digital input information and output analog or digital control signals, can communicate globally with other controllers, are easily programmed on line or off line, and supply an unprecedented amount of data and information to the operator. Ladder networks are normally used to program the controllers.

An error signal is the difference between the set point and the amplitude of the measured variable.

A correction signal is the signal used to control power to the actuator to set the level of the input variable.

Transmitters are devices used to amplify and format signals so that they are suitable for transmission over long distances with zero or minimal loss of information. The transmitted signal can be in one of the several formats, i.e., pneumatic, digital, analog voltage, analog current, or as a radio frequency (RF) modulated signal. Digital transmission is preferred in newer systems because the controller is a digital system, and as analog signals can be accurately digitized, digital signals can be transmitted without loss of information. The controller compares the amplitude of the signal from the sensor to a predetermined set point, which in Fig. 1.1b is the amplitude of the signal of the hot water sensor. The controller will then send a signal that is proportional to the difference between the reference and the transmitted signal to the actuator telling the actuator to open or close the valve controlling the flow of steam to adjust the temperature of the water to its set value.

Example 1.1  Figure 1.5 shows the block diagram of a closed-loop flow control system. Identify the following elements: (a) the sensor, (b) the transducer, (c) the actuator, (d) the transmitter, (e) the controller, (f) the manipulated variable, and (g) the measured variable.

(a) The sensor is labeled pressure cell in the diagram. (b) The transducer is labeled converter. There are two transducers—one for converting pressure to current and the other for converting current to pressure to operate the actuator. (c) The actuator in this case is the pneumatic valve. (d) The transmitter is the line driver. (e) The controller is labeled PLC. (f) The manipulated variable is the differential pressure developed by the fluid flowing through the orifice plate constriction. (g) The controlled variable is the flow rate of the liquid.

Simple and ideal process-control systems have been discussed. In practical process control the scenarios are much more complex with many scenarios and variables, such as stability, reaction time, and accuracy to be considered. Many of the basic problems are discussed in the following chapters.
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Figure 1.4  Block diagram of the elements that make up the feedback path in a process-control loop.
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Figure 1.5  Process control with a flow regulator for use in Example 1.1.

1.4  Process Facility Considerations

The process facility has a number of basic requirements including safety precautions and well-regulated, reliable electrical, water, and air supplies.

An electrical supply is required for all control systems and must meet all standards in force at the plant. The integrity of the electrical supply is most important. Many facilities have backup systems to provide an uninterruptible power supply (UPS) to take over in case of loss of external power. Power failure can mean plant shutdown and the loss of complete production runs. An isolating transformer should be used in the power supply lines to prevent electromagnetic interference (EMI) generated by motors, contactors, relays, and so on from traveling through the power lines and affecting sensitive electronic control instruments.

Grounding is a very important consideration in a facility for safety reasons. Any variations in the ground potential between electronic equipment can cause large errors in signal levels. Each piece of equipment should be connected to a heavy copper bus that is properly grounded. Ground loops should also be avoided by grounding cable screens and signal return lines at one end only. In some cases it may be necessary to use signal isolators to alleviate grounding problems in electronic devices and equipment.

An air supply is required to drive pneumatic actuators in most facilities. Instrument air in pneumatic equipment must meet quality standards, the air must be dirt, oil, contaminant, and moisture free. Frozen moisture, dirt, and the like can fully or partially block narrowed sections and nozzles, giving false readings or complete equipment failure. Air compressors are fitted with air dryers and filters, and have a reservoir tank with a capacity large enough for several minutes’ supply in case of system failure. Dry, clean air is supplied at a pressure of 90 psig (630 kPa·g) and with a dew point of 20°F (10°C) below the minimum winter operating temperature at atmospheric pressure. Additional information on the quality of instrument air can be found in ANSI/ISA-7.0.01-1996, Quality Standard for Instrument Air.

Water supply is required in many cleaning and cooling operations, and for steam generation. Domestic water supplies contain large quantities of particulates and impurities, and may be satisfactory for cooling, but are not suitable for most cleaning operations. Filtering and other similar processes can remove some of the contaminants making the water suitable for some cleaning operations, but for ultrapure water a reverse osmosis system may be required.

Installation and maintenance must be considered when locating instruments, valves and so on. Each device must be easily accessible for maintenance and inspection. It may also be necessary to install hand-operated valves so that equipment can be replaced or serviced without complete plant shutdown. It may be necessary to contract out maintenance of certain equipment or have the vendor install equipment, if the necessary skills are not available in-house.

Safety is a top priority in a facility. The correct material must be used in container construction, plumbing, seals, and gaskets to prevent corrosion and failure leading to leakage and spills of hazardous materials. All electrical equipment must be properly installed to code with breakers. Electrical systems must have the correct fire retardant for use in case of electrical fires. More information can be found in ANSI/ISA-12.01.01-1999, Definitions and Information Pertaining to Electrical Instruments in Hazardous Locations.

1.5  Units and Standards

As with all disciplines, a set of standards has evolved over the years to ensure consistency and avoid confusion. The Instrument Society of America (ISA) has developed a complete list of symbols for instruments, instrument identification, and process control drawings, which will be discussed in Chap. 15.

The units of measurement fall into two distinct systems; first, the English system and second, the International system, SI (Systéme International D’Unités) based on the metric system, but there are some differences. The English system has been the standard used in the United States, but the SI system is slowly making inroads, so that students need to be aware of both systems of units and be able to convert units from one system to the other. Confusion can arise over some units such as pound mass and pound weight. The unit for pound mass is the slug (no longer in common use), which is the equivalent of the kilogram in the SI system of units whereas pound weight is a force similar to the newton, which is the unit of force in the SI system. The conversion factor of 1 lb = 0.454 kg, which is used to convert mass (weight) between the two systems, is in effect equating 1-lb force to 0.454-kg mass; this being the mass that will produce a force of 4.448 N or a force of 1 lb. Care must be taken not to mix units of the two systems. For consistency some units may have to be converted before they can be used in an equation.

Table 1.1 gives a list of the base units used in instrumentation and measurement in the English and SI systems and also the conversion factors, other units are derived from these base units.

TABLE 1.1  Basic Units

[image: image]

Example 1.2  How many meters are there in 110 yard?

110 yard = 330 ft = (330 × 0.305) m = 100.65 m

Example 1.3  What is the equivalent length in inches of 2.5 m?

2.5 m = (2.5/0.305) ft = 8.2 ft = 98.4 in

Example 1.4  The weight of an object is 2.5 lb. What is the equivalent force and mass in the SI system of units?

2.5 lb = (2.5 × 4.448) N = 11.12 N

   2.5 lb = (2.5 × 0.454) kg = 1.135 kg

Table 1.2 gives a list of some commonly used units in the English and SI systems, conversion between units, and also their relation to the base units. As explained above the lb is used as both the unit of mass and the unit of force.

TABLE 1.2  Units in Common Use in the English and SI System

[image: image]

Conversion to SI

1 ft·lb = 1.356 J

1 lb (F) = 4.448 N

1 psi = 6897 Pa

1 hp = 746 W

 

Hence, the unit for the lb in energy and power is mass, whereas the unit for the lb in pressure is force, where the lb (force) = lb (mass) × g (force due to gravity).

Example 1.5  What is the pressure equivalent of 18 psi in SI units?

1 psi = 6.897 kPa

 

                      18 psi = (18 × 6.897) kPa = 124 kPa

Standard prefixes are commonly used for multiple and submultiple quantities to cover the wide range of values used in measurement units. These are given in Table 1.3

TABLE 1.3  Standard Prefixes

[image: image]

1.6  Instrument Parameters

The accuracy of an instrument or device is the difference between the indicated value and the actual value. Accuracy is determined by comparing an indicated reading to that of a known standard. Standards can be calibrated devices or obtained from the National Institute of Standards and Technology (NIST). This is the government organization that is responsible for setting and maintaining standards, and developing new standards as new technology requires it. Accuracy depends on linearity, hysteresis, offset, drift, and sensitivity. The resulting discrepancy is stated as a ± deviation from the true value, and is normally specified as a percentage of full-scale reading or deflection (%FSD). Accuracy can also be expressed as the percentage of span, percentage of reading, or an absolute value.

The range of an instrument specifies the lowest and highest readings it can measure, i.e., a thermometer whose scale goes from −40°C to 100°C has a range from −40°C to 100°C.

The span of an instrument is its range from the minimum to maximum scale value, i.e., a thermometer whose scale goes from −40°C to 100°C has a span of 140°C. When the accuracy is expressed as the percentage of span, it is the deviation from true expressed as a percentage of the span.

Reading accuracy is the deviation from true at the point the reading is being taken and is expressed as a percentage, i.e., if a deviation of ±4.35 psi in Example 1.6 was measured at 28.5 psi, the reading accuracy would be (4.35/28.5) × 100 = ±15.26% of reading.

Example 1.6  A pressure gauge ranges from 0 to 50 psi, the worst-case spread in readings is ±4.35 psi. What is the %FSD accuracy?

%FSD = ± (4.35 psi/50 psi) × 100 = ±8.7

Example 1.7  In the data sheet of a scale capable of weighing up to 200 lb, the accuracy is given as ±2.5 percent of a reading. What is the deviation at the 50 and 100 lb readings, and what is the %FSD accuracy?

  Deviation at 50 lb = ± (50 × 2.5/100) lb = ±1.25 lb

Deviation at 100 lb = ± (100 × 2.5/100) lb = ±2.5 lb

Maximum deviation occurs at FSD, that is, ±5 lb or ±2.5% FSD

The absolute accuracy of an instrument is the deviation from true as a number not as a percentage, i.e., if a voltmeter has an absolute accuracy of ±3 V in the 100-volt range, the deviation is ±3 V at all the scale readings, e.g., 10 ± 3 V, 70 ± 3 V and so on.

Precision refers to the limits within which a signal can be read and may be somewhat subjective. In the analog instrument shown in Fig. 1.6a, the scale is graduated in divisions of 0.2 psi, the position of the needle could be estimated to within 0.02 psi, and hence, the precision of the instrument is 0.02 psi. With a digital scale the last digit may change in steps of 0.01 psi so that the precision is 0.01 psi.
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Figure 1.6  Gauges (a) pressure gauge showing graduations; (b) hysteresis curve for an instrument.

Reproducibility is the ability of an instrument to repeatedly read the same signal over time, and give the same output under the same conditions. An instrument may not be accurate but can have good reproducibility, i.e., an instrument could read 20 psi as having a range from 17.5 to 17.6 psi over 20 readings.

Sensitivity is a measure of the change in the output of an instrument for a change in the measured variable, and is known as the transfer function, i.e., when the output of a pressure transducer changes by 3.2 mV for a change in pressure of 1 psi, the sensitivity is 3.2 mV/psi. High sensitivity in an instrument is preferred as this gives higher output amplitudes, but this may have to be weighted against linearity, range, and accuracy.

Offset is the reading of an instrument with zero input.

Drift is the change in the reading of an instrument of a fixed variable with time.

Hysteresis is the difference in readings obtained when an instrument approaches a signal from opposite directions, i.e., if an instrument reads a midscale value going from zero it can give a different reading from the value after making a full-scale reading. This is due to stresses induced into the material of the instrument by changing its shape in going from zero to full-scale deflection. Hysteresis is illustrated in Fig. 1.6b.

Example 1.8  A pressure gauge is being calibrated. The pressure is taken from 0 to 100 psi and back to 0 psi. The following readings were obtained on the gauge:

[image: image]

Figure 1.7a shows the difference in the readings when they are taken from 0 going up to FSD and when they are taken from FSD going back down to 0. There is a difference between the readings of 6 psi or a difference of 6 percent of FSD, that is, ±3 percent from linear.

[image: image]

Figure 1.7  Instrument inaccuracies (a) hysteresis error of a pressure gauge; (b) nonlinearity in a pressure-to-voltage transducer.

 

Resolution is the smallest amount of a variable that an instrument can resolve, i.e., the smallest change in a variable to which the instrument will respond.

Repeatability is a measure of the closeness of agreement between a number of readings (10 to 12) taken consecutively of a variable, before the variable has time to change. The average reading is calculated and the spread in the value of the readings taken.

Linearity is a measure of the proportionality between the actual value of a variable being measured and the output of the instrument over its operating range. Figure 1.7b shows the pressure input versus voltage output curve for a pressure to voltage transducer with the best fit linear straight line. As can be seen, the actual curve is not a straight line. The maximum deviation of +5 psi from linear occurs at an output of 8 V and −5 psi at 3 V giving a deviation of ±5 psi or an error of ±5 percent of FSD.

The deviation from true for an instrument may be caused by one of the above or a combination of several of the above factors, and can determine the choice of instrument for a particular application.

Summary

This chapter introduces the concept of process control and simple process loops, which will be expanded in later chapters.

The key points covered in this chapter are:

 

1.  A description of the operation of a basic process loop with a definition of the terms used in process control

2.  Some of the basic considerations for electrical, air, and water requirements in a process facility. Consideration needs for safety

3.  A comparison of the units used for parameter measurement and their relation to the basic units

4.  The relation between the English and the SI units, which are based on metric units. The use of standard prefixes to define multiples

5.  The accuracy of sensors and instruments and parameters such as linearity, resolution, sensitivity, hysteresis, and repeatability, used to evaluate accuracy

Problems

1.1  What is the difference between controlled and manipulated variables?

1.2  What is the difference between set point, error signal, and correction signal?

1.3  How many pounds are equivalent to 63 kg?

1.4  How many micrometers are equivalent to 0.73 milli-in?

1.5  How many pounds per square inch are equivalent to 38.2 kPa?

1.6  How many foot-pounds of energy are equivalent to 195 J?

1.7  What force in pounds is equivalent to 385 N?

1.8  How many amperes are required from a 110-V supply to generate 1.2 hp? Assume 93- percent efficiency.

1.9  How many joules are equivalent to 27 ft·lb of energy?

1.10  What is the sensitivity of an instrument whose output is 17.5 mV for an input change of 7°C?

1.11  A temperature sensor has a range of 0 to 120°C and an absolute accuracy of ±3°C. What is its FSD percent accuracy?

1.12  A flow sensor has a range of 0 to 25 m/s and a FSD accuracy of ±4.5 percent. What is the absolute accuracy?

1.13  A pressure sensor has a range of 30 to 125 kPa and the absolute accuracy is ±2 kPa. What is its percent full-scale and span accuracy?

1.14  A temperature instrument has a range −20°F to 500°F. What is the error at 220°F? Assume the accuracy is (a) ±7 percent of FSD and (b) ±7 percent of span.

1.15  A spring balance has a span of 10 to 120 kg and the absolute accuracy is ±3 kg. What is its %FSD accuracy and span accuracy?

1.16  A digital thermometer with a temperate range of 129.9°C has an accuracy specification of ±1/2 of the least significant bit. What is its absolute accuracy, %FSD accuracy, and its resolution?

1.17  A flow instrument has an accuracy of (a) ±0.5 percent of reading and (b) 0.5%FSD. If the range of the instrument is 10 to 100 fps, what is the absolute accuracy at 45 fps?

1.18  A pressure gauge has a span of 50 to 150 psi and its absolute accuracy is ±5 psi. What is its %FSD and span accuracy?

1.19  Plot a graph of the following readings for a pressure sensor to determine if there is hysteresis, and if so, what is the hysteresis as a percentage of FSD?
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1.20  Plot a graph of the following readings for a temperature sensor to determine the linearity of the sensor. What is the nonlinearity as a percentage of FSD?

[image: image]
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Chapter

2

Basic Electrical Components

Chapter Objectives

This chapter will help to refresh and expand your understanding of basic electrical components and the basic terms used in electricity as required for instrumentation.

This chapter discusses

 

[image: image]  Basic passive components (resistors, capacitors, and inductors) used in electrical circuits

[image: image]  Applications of Ohm’s law and Kirchoff’s laws

[image: image]  Use of resistors as voltage dividers

[image: image]  Effective equivalent circuits for basic devices connected in series and parallel

[image: image]  The Wheatstone bridge

[image: image]  Loading of instruments on sensing circuits

[image: image]  Impedances of capacitors and inductors

 

It is assumed that the student has a basic knowledge of electricity and electronics and is familiar with basic definitions. To recap, the three basic passive components—resistors, capacitors, and inductors—as well as some basic formulas as applied to direct and alternating currents will be discussed in this section.

2.1  Introduction

Electrical power can be in the form of either direct current (dc) (one direction only) or alternating current (ac) (the current reverses periodically, see Fig. 2.1). In ac circuits the electromotive force drives the current in one direction then reverses itself and drives the current in the reverse direction. The rate of direction change is expressed as a frequency f and is measured in hertz (Hz), i.e., cycles per second. Electrical signals travel at the speed of light. The distance traversed in one cycle is called a wavelength λ, the relationship between frequency and wavelength (meters) is given by the following equation:

[image: equation]

(2.1)

where c is the speed of light (3 × 108 m/s).

[image: image]

Figure 2.1  The basic sine wave.

In both dc and ac circuits, conventional current was originally considered to flow from the more positive to the less positive or negative terminal. It was later discovered that current flow is really a flow of electrons (negative particles) that flow from negative to positive. To avoid confusion, only conventional current flow will be considered in this text, i.e., current flows from positive to negative. When measuring ac voltages and currents with a meter, the root mean square (rms) value is displayed. The rms value of a sine wave has the same effective energy as the dc value. When displaying sine waves on an oscilloscope it is often more convenient to measure the peak-to-peak (pp) values as shown in Fig. 2.1. The peak amplitude of the sine wave (Vp or Ip) (0 to peak) is then (p − p)/2, and the rms value is given by

[image: equation]

(2.2)

The basic sine wave shown in Fig. 2.1 can be equated to a 360° circle or a circle with 2π rad. The period (cycle time) of a sine wave is broken down into four phases each being 90° or π/2 rad. This is derived from the trigonometry functions, and will not be elaborated upon.

2.2  Resistance

It is assumed that the student is familiar with the terms insulators, conductors, semiconductors, electrical resistance, capacitance, and inductance. Hence, the basic equations commonly used in electricity will be considered as a starting point.

2.2.1  Resistor formulas

The resistivity ρ of a material is the resistance to current flow between the opposite faces of a unit cube of the material (ohm per unit length). The resistance R of a component is expressed by

[image: equation]

(2.3)

where l is the length of the material (distance between contacts), and A is the cross-sectional area of the resistor; l and A must be in compatible units.

Table 2.1 gives the resistivity of some common materials. The resistivity ρ is temperature dependant, usually having a positive temperature coefficient (resistance increases as temperature increases), except for some metal oxides and semiconductors which have a negative temperature coefficient. The metal oxides are used for thermistors. The variation of resistance with temperature is given by

TABLE 2.1 Resistivity of Some Common Materials

[image: image]

RT2 = RT1(1 + αT)

(2.4)


	where RT2	= resistance at temperature T2

	RT1	= resistance at temperature T1

	α	= temperature coefficient of resistance

	T	= temperature difference between T1 and T2



 

The variation of resistance with temperature in some materials (platinum) is linear over a wide temperature range. Hence, platinum resistors are often used as temperature sensors. See Example 8.10 in Chap. 8.

Ohm’s law applies to both dc and ac circuits, and states that in an electrical circuit the electromotive force (emf) will cause a current I to flow in a resistance R, such that the emf is equal to the current times the resistance, i.e.

E = IR

(2.5)

This can also be written as

I = E/R or R = E/I


	where E	= electromotive force in volts (V)

	I	= current in amperes (A)

	R	= resistance in ohms (Ω)



Example 2.1  The emf across a 4.7-kΩ resistor is 9 V. How much current is flowing?

[image: image]

Power dissipation P occurs in a circuit, whenever current flows through a resistance. The power produced in a dc or ac circuit is given by

P = EI

(2.6)

where P is power in watts. (In ac circuits E and I are rms values).

Substituting Eq. (2.1) in Eq. (2.6) we get

[image: equation]

(2.7)

In an ac circuit the power dissipation can also be given by

P = EpIp/2

(2.8)

where Ep and Ip are the peak voltage and current values.

Example 2.2  What is the dissipation in the resistor in Example 2.1?

P = EI = (9 × 1.9) mW = 17.1 mW

Carbon composition resistors are available in values from 1 Ω to many megaohms in steps of 1, 2, 5, and 10 percent, where the steps are also the tolerances, as well as being available in different wattage ratings from 1/8 to 2 W. The wattage rating can be extended by using metal film or wire-wound resistors to several tens of watts. When choosing resistors for an application, not only should the resistor value be specified but the tolerance and wattage should also be specified. The value of carbon resistors is indicated by color bands and can be found in resistor color code charts.

Power transmission is more efficient over high-voltage lines at low current than at lower voltages and higher currents.

Example 2.3  Compare the energy loss of transmitting 5000 W of electrical power over power lines with an electrical resistance of 10 Ω using a supply voltage of 5000 V and the loss of transmitting the same power using a supply voltage of 1000 V through the same power lines.

The loss using 5000 V can be calculated as follows:

[image: image]

If, however, the supply voltage was 1000 V the loss would be

[image: image]

So that in going from 5000 to 1000 V, the losses increase from 10 to 250 W

2.2.2 Resistor combinations

Resistors can be connected in series, parallel, or a combination of both in a resistor network.

Resistors in series are connected as shown in Fig. 2.2a, their effective total value RT is the sum of the individual resistors, and is given by

[image: image]

Figure 2.2  Resistors connected in (a) series and (b) parallel.

[image: equation]

(2.9)

Example 2.4  What is the current flowing in the resistor network shown in Fig. 2.2a?

[image: image]

Voltage dividers are constructed using resistors connected in series as in Fig. 2.2a. A divider is used to reduce the supply voltage to a lower voltage value. The output voltage from the resistive divider can be calculated by multiplying the value of the current flowing by the value of the resistor across which the voltage is being measured, or by using the resistor ratios.

Example 2.5  What is the value of Vout across R3 with respect to the negative battery terminal in Fig. 2.2a?

Since the current flowing is the same in all resistors

Vout = 0.244 × 24 kΩ = 5.8 V

Thus, using the resistance values in the example 5.86 V is obtained from a 10-V supply. Alternatively, Vout can be calculated as follows

[image: image]

From which we get

[image: equation]

(2.10)

This shows that the value of Vout is the supply voltage times the resistor ratios. Using this equation in Example 2.5

[image: equation]

Potentiometers are variable resistance devices that can be used to set voltages. They can have linear or logarithmic characteristics and can be constructed using carbon film tracks, or wire wound if longevity and accuracy is required (see Fig. 2.3b and c). A wiper or slider can traverse the track to give a variable voltage. A potentiometer is connected between a supply voltage and ground as shown in Fig. 2.3a. Using a linear potentiometer the wiper can be used to obtain a voltage proportional to its position on the track making a voltage divider. In Fig. 2.3b the output voltage is proportional to shaft rotation, and in Fig. 2.3c the output voltage is proportional to linear displacement. Linear potentiometers are used to convert mechanical movement into electrical voltages. Logarithmic devices are used in volume controls (the ear, for instance, has a logarithmic response) or similar applications, where a logarithmic output is required.
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Figure 2.3  Circuit of (a) voltage divider potentiometer, (b) rotational carbon potentiometer, and (c) wire-wound slider type potentiometer.

Resistors in parallel are connected as shown in Fig. 2.2b, and their total effective value RT is given by

[image: equation]

(2.11)

Example 2.6  What is the current Ip flowing in the circuit shown in Fig. 2.2b, and what is the equivalent value RT of the three parallel resistors?

[image: image]

Kirchoff’s laws apply to both dc and ac circuits. The fist law (voltage law) states that in any closed path in a circuit, the algebraic sum of the voltages is zero, or the sum of the voltage drops across each component in a series circuit is equal to the source voltage. From Fig. 2.4a we get

[image: image]

Figure 2.4  Resistor networks to demonstrate Kirchoff’s (a) voltage law and (b) current law.

−E + V1 + V2 + V3 = 0 or E = V1 + V2 + V3

(2.12)

Kirchoff’s second law (current law) states that the sum of the currents at any node or junction is zero, i.e., the current flowing into a node is equal to the current flowing out of the node. In Fig. 2.4b for the upper node we get

−IT + I1 + I2 + I3 = 0 or IT = I1 + I2 + I3

(2.13)

The Wheatstone bridge is the most common resistance network developed to measure small changes in resistance and is often used in instrumentation with resistive types of sensors. The bridge circuit is shown in Fig. 2.5a. Four resistors are connected in the form of a diamond with the supply and measuring instrument forming the diagonals. When all the resistors are equal the bridge is balanced, i.e., the voltage at A and C are equal (E/2) and the voltmeter reads zero.

[image: image]

Figure 2.5  Circuit of (a) Wheatstone bridge and (b) compensation for lead resistance used in remote sensing.

 

If R2 is the resistance of a sensor whose change in value is being measured, the voltage at A will increase with respect to C as the resistance value increases, so that the voltmeter will have a positive reading. The voltage will change in proportion to any changes in the value of R2, making the bridge very sensitive to small changes in resistance. Abridge circuit can also be used to compensate for changes in resistance due to temperature changes, i.e., if R1 and R2 are the same type of sensing element, such as a strain gauge and reference strain gauge (see Fig. 2.6). The resistance of each gauge will change by an equal percentage with temperature, so that the bridge will remain balanced when the temperature changes. If R2 is now used to sense a variable, the voltmeter will only sense the change in R2 due to the change in the variable, as the effects of temperature changes on R1 and R2 will cancel.

[image: image]

Figure 2.6  Showing (a) strain gauge with reference gauge and (b) strain gauges used in a Wheatstone bridge.

 

Because of the above two features, bridges are extensively used in instrumentation. The voltmeter (measuring instrument) should have a high resistance, so that it does not load the bridge circuit. Bridges can also be used with ac supply voltages and ac meters. The resistors can then be replaced with capacitors, inductors, or a combination of resistors, capacitors, and inductors.

In many applications, the sensing resistor (R2) can be remote from a centrally located bridge. In such cases the resistance of the leads can be zeroed out by adjusting the bridge resistors. Any change in lead resistance due to temperature, however, will appear as a sensor value change. To correct for this error, lead compensation can be used. This is achieved by using three interconnecting leads as shown in Fig. 2.5b. A separate power lead is used to supply R2 so that only signal current flows in the signal lead from R2 to the bridge resistor R4. Any variations in voltage drop due to the supply current in the lead resistance do not affect the balance of the bridge. However, by monitoring any voltage changes between R4 and the voltage at the negative battery terminal a correction voltage that can be applied to the lead between R2 and R1 can be obtained, and this lead will also carry the supply current back to the bridge, and any changes in lead resistance will affect both leads equally.

Example 2.7  The resistors in the bridge circuit shown in Fig. 2.5a are all 2.7 kΩ, except R1 which is 2.2 kΩ. If E = 15 V what will the voltmeter read?

The voltage at point C will be 7.5 V, as R3 = R4, the voltage at C = 1/2 the supply voltage. The voltage at A will be given by
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The voltmeter will read 8.26 − 7.5 V = 0.76 V (note meter polarity)

2.2.3  Resistive sensors

Strain gauges are examples of resistive sensors (see Fig. 2.6a). The resistive conducting path in the gauge is copper or nickel particles deposited onto a flexible substrate in a serpentine form. When the substrate is bent in a concave shape along the bending axis perpendicular to the direction of the deposited resistor, the particles are compressed and the resistance decreases. If the substrate is bent in the other direction along the bending axis, the particles tend to separate and the resistance increases. Bending along an axis perpendicular to the bending axis does not compress or separate the particles in the strain gauge; so the resistance does not change. Piezoresistors are also used as strain gauge elements. These devices are made from certain crystalline materials such as silicon. The material changes its resistance when strained similarly to the deposited strain gauge. These devices can be very small. The resistance change in strain gauge elements is proportional to the degree of bending, i.e., if the gauge was attached to a pressure sensing diaphragm and pressure is applied to one side of the diaphragm, the diaphragm bows in relation to the pressure applied. The change in resistance of the strain gauge attached to the diaphragm is then proportional to the pressure applied. Figure 2.6b shows a Wheatstone bridge connected to the strain gauge elements of a pressure sensor. Because the resistance of the strain gauge element is temperature-sensitive, a reference strain gauge is also added to the bridge to compensate for these changes. This second strain gauge is positioned adjacent to the first so that it is at the same temperature, but rotated 90°, so that it is at right angles to the pressure-sensing strain gauge element and will, therefore, not sense the deformation as seen by the pressure-sensing element.

2.3  Capacitance

2.3.1  Capacitor formulas

Capacitors store electrical charge, as opposed to cells where the charge is generated by chemical action. Capacitance is a measure of the amount of charge that can be stored. The capacitance of a capacitor is given by

C = εA/d

(2.14)


	where C	= capacitance in farads (F)

	ε	= dielectric constant of the material (F/m) between the plates

	A	= area of the plates (m2)

	d	= distance between the plates (m)



 

The dielectric constants of some common materials are given in Table 2.2. A 1-F capacitor is defined as a capacitor that will store 1 C of charge when there is a voltage potential of 1 V across the plates of the capacitor (a coulomb of charge is obtained when a current of 1 A flows for 1 s). A farad is a very large unit and microfarad and picofarad are the commonly used units.

TABLE 2.2 Dielectric Constants of Some Common Materials

[image: image]

Example 2.8  What is the capacitance between two parallel plates whose areas are 1 m2 separated by a 1-mm thick piece of dielectric with a dielectric constant of 5.5 × 10−9 F/m?

[image: image]

In electrical circuits, capacitors are used to block dc voltages, but will allow ac voltages to pass through them. Capacitors do, however, present impedance not resistance to ac current flow. This is due to the fact that the current and voltage are not in phase. Impedance is similar to the resistance a resistor presents to a dc current flow, but as they are not identical they cannot be directly added and will be dealt with in Chap. 3.

The impedance of a capacitor to ac flow is given by

[image: equation]

(2.15)


	where XC	= impedance to ac current flow

	f	= frequency of the ac signal

	C	= capacitance in farads



 

Ohm’s law also applies to ac circuits, so that the relation between voltage and current is given by

E = IXC

(2.16)

where E is the ac voltage amplitude and I is the ac current flowing.

Example 2.9  What is the ac current flowing in the circuit shown in Fig. 2.7a?
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Figure 2.7  Circuits (a) used in Example 2.9 (b) capacitors connected in series, and (c) capacitors connected in parallel.

[image: image]

2.3.2 Capacitor combinations

The formulas for the effective capacitance of capacitors connected in series and parallel are the opposite of resistors connected in series and parallel.

Capacitors in series are shown in Fig. 2.7b and have an effective capacitance given by

[image: equation]

(2.17)

Capacitors in parallel are shown in Fig. 2.7c and have an effective capacitance given by

[image: equation]

(2.18)

Example 2.10  What is the value of the capacitor that could be used to replace the capacitor network shown in Fig. 2.8a?

[image: image]

Figure 2.8  Circuits for use in Example 2.10: (a) circuit used in example, (b) reduction of series capacitors to single capacitors, and (c) replacement of parallel capacitors with a single capacitor.

In this example the first step is to reduce the three capacitors in series to a single capacitor and the two capacitors in series to a single capacitor as shown in Fig. 2.8b.

[image: image]

The two capacitors in parallel in Fig. 2.8b are given by

CR = CX + CT = 0.125 μF + 0.24 μF = 0.365 μF

From Fig. 2.8c, the equivalent capacitance CE is given by

[image: image]

2.4  Inductance

2.4.1  Inductor formulas

Inductors are devices that oppose any change in the current flowing through them. The inductance of a coil is given by

[image: equation]

(2.19)


	where L	= inductance in henries

	N	= number of turns of wire
 
	μ	= permeability of the core of the coil (H/m)

	A	= cross sectional area of the coil (m2)

	d	= length of the coil (m)



 

A henry is defined as the inductance that will produce an emf of 1 V when the current through the inductance changes at the rate of 1 A/s.

Example 2.11  A coil with a diameter of 0.5 m and length 0.7 m is wound with 100 turns of wire, what is its inductance if the material of the core has a permeability of 7.5 × 10−7 H/m?

[image: image]

Inductive impedance to ac current flow is given by

XL = 2πfL

(2.20)


	where XL	= impedance to ac current flow

	f	= frequency of the ac signal

	L	= inductance in henries
 


Example 2.12  What is the impedance to a 50-kHz sine wave of a 10-mH inductance?

XL = 2πfL = 2π × 50 × 103 × 10 × 10−3 = 3100 Ω = 3.1 kΩ

2.4.2 Inductor combinations

The formula for the effective inductance of inductors connected in series and parallel is the same as for resistors.

Inductors in series have an effective inductance given by

[image: equation]

(2.21)

Inductors in parallel have an effective inductance given by

[image: equation]

(2.22)

Summary

This chapter was designed to refresh and expand your knowledge of basic electrical components. The main points covered in this chapter are:

 

1.  Introduction to the different effects of dc and ac electrical supplies on circuit components

2.  Resistivity of materials and their resistance when made into components, the effect of temperature on the resistance of components, introduction to Ohm’s law, and power dissipation in resistive components

3.  The effective resistance of resistors connected in series and parallel and their use as voltage dividers

4.  Discussion of Kirchoff’s voltage and current laws, Wheatstone bridge circuits and their use in the measurement of small changes in resistance, and the use of bridge circuits for strain gauge measurement

5.  Description of capacitance and the formulas used for capacitors, the effective capacitance of capacitors connected in series and parallel and the impedance of capacitors when used in ac circuits

6.  A description of inductance and the formulas used for inductors, the effective impedance of inductors used in ac circuits, and the effective inductance of inductors when they are connected in series and parallel

Problems

2.1  A radio beacon transmits a frequency of 230 MHz. What is the wavelength of the signals?

2.2  What is the power dissipation in a 68 Ω resistive load, when a 110-V (peak-to-peak) sine wave is applied to the resistor?

2.3  The resistivity of a material used to make a round 950 Ω resistor is 53 Ω per unit length. If the resistor has a radius of 0.16 in, what is it’s length?

2.4  A resistor with a temperature coefficient of 0.0045/°C has a resistance of 130 Ω at 20°C. At what temperature will the resistance be 183 Ω?

2.5  A dc voltage of 17 V is measured across a 133-Ω resistor. What is the current flowing through the resistor?

2.6  A dc voltage is applied to three resistors in parallel. The values of the resistors are 7.5, 12.5, and 14.8 kΩ. If the total current flowing is 2.7 mA, what is the applied voltage?

2.7  The configuration of the three resistors in Prob. 2.6 is changed from a parallel to a series connection. If the current flowing in the resistors is unchanged, what is the total voltage across the three resistors?

2.8  What is the supply current It flowing in the circuit shown in Fig. 2.9a?

[image: image]

Figure 2.9  Diagrams for (a) Prob. 2.8 and (b) Prob. 2.11.

2.9  Calculate the voltage across each of the resistors in Prob. 2.7. Does the result support Kirchoff’s first law?

2.10  What is the current flowing in each of the resistors in Prob. 2.6? Does the result support Kirchoff’s second law?

2.11  What is the voltage measured in the bridge circuit shown in Fig. 2.9b?

2.12  Two rectangular parallel plates 2.2 m by 3.7 m are separated by a material with a dielectric constant of 4.8 × 10−9 F/m. If the capacitance between the plates is 4.3 μF, what is the separation of the plates?

2.13  A3.2 nF capacitor has an impedance of 0.02 MΩ when an ac voltage is applied to it. What is the frequency of the ac voltage?

2.14  What is the current flowing in Prob. 2.13, if the peak-to-peak ac voltage is 18 V?

2.15  Three capacitors are connected in series. See Fig. 2.7b. If the values of the capacitors are 110, 93, and 213 pF, what is the value of a single capacitor that could be used to replace them?

2.16  What is the value of a single capacitor that could be used to replace the capacitors shown in Fig. 2.10a?

[image: image]

Figure 2.10  Circuits for (a) Prob. 2.16 and (b) Prob. 2.20.

2.17  An inductor of 2.8 mH is being constructed on a core whose diameter is 1.4 cm and length is 5.6 cm. If the permeability of the core is 4.7 × 10−7 H/m, how many turns of wire will be required?

2.18  What is the value of inductance that will have an impedance of 11.4 kΩ at a frequency of 2.3 MHz?

2.19  What value of inductance can be used to replace two inductors connected in parallel, if their values are 4.2 and 8.7 mH?

2.20  What value of inductance would be used to replace the inductor network shown in Fig. 2.10b?




End of sample
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