

Java™: The Complete Reference, Seventh Edition

About the Author

Herbert Schildt is a leading authority on the Java, C, C++, and C# languages, and is a master Windows programmer. His programming books have sold more than 3.5 million copies worldwide and have been translated into all major foreign languages. He is the author of the best-selling The Art of Java, Java: A Beginner’s Guide, and Swing: A Beginner’s Guide. Among his other bestsellers are C++: The Complete Reference, C++: A Beginner’s Guide, C#: The Complete Reference, and C#: A Beginner’s Guide. Schildt holds both graduate and undergraduate degrees from the University of Illinois. He can be reached at his consulting office at (217) 586-4683. His Web site is www.HerbSchildt.com.

Java™: The Complete Reference, Seventh Edition

Herbert Schildt

[image: Image]

[image: Image]

Copyright © 2007 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-163177-8

MHID: 0-07-163177-1

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-226385-5, MHID: 0-07-226385-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting there from. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Contents at a Glance

Part I The Java Language

1 The History and Evolution of Java

2 An Overview of Java

3 Data Types, Variables, and Arrays

4 Operators

5 Control Statements

6 Introducing Classes

7 A Closer Look at Methods and Classes

8 Inheritance

9 Packages and Interfaces

10 Exception Handling

11 Multithreaded Programming

12 Enumerations, Autoboxing, and Annotations (Metadata)

13 I/O, Applets, and Other Topics

14 Generics

Part II The Java Library

15 String Handling

16 Exploring java.lang

17 java.util Part 1: The Collections Framework

18 java.util Part 2: More Utility Classes

19 Input/Output: Exploring java.io

20 Networking

21 The Applet Class

22 Event Handling

23 Introducing the AWT: Working with Windows, Graphics, and Text

24 Using AWT Controls, Layout Managers, and Menus

25 Images

26 The Concurrency Utilities

27 NIO, Regular Expressions, and Other Packages

Part III Software Development Using Java

28 Java Beans

29 Introducing Swing

30 Exploring Swing

31 Servlets

Part IV Applying Java

32 Financial Applets and Servlets

33 Creating a Download Manager in Java

A Using Java’s Documentation Comments

Index

Contents

Preface

Part I The Java Language

1 The History and Evolution of Java

Java’s Lineage

The Birth of Modern Programming: C

C++: The Next Step

The Stage Is Set for Java

The Creation of Java

The C# Connection

How Java Changed the Internet

Java Applets

Security

Portability

Java’s Magic: The Bytecode

Servlets: Java on the Server Side

The Java Buzzwords

Simple

Object-Oriented

Robust

Multithreaded

Architecture-Neutral

Interpreted and High Performance

Distributed

Dynamic

The Evolution of Java

Java SE 6

A Culture of Innovation

2 An Overview of Java

Object-Oriented Programming

Two Paradigms

Abstraction

The Three OOP Principles

A First Simple Program

Entering the Program

Compiling the Program

A Closer Look at the First Sample Program

A Second Short Program

Two Control Statements

The if Statement

The for Loop

Using Blocks of Code

Lexical Issues

Whitespace

Identifiers

Literals

Comments

Separators

The Java Keywords

The Java Class Libraries

3 Data Types, Variables, and Arrays

Java Is a Strongly Typed Language

The Primitive Types

Integers

byte

short

int

long

Floating-Point Types

float

double

Characters

Booleans

A Closer Look at Literals

Integer Literals

Floating-Point Literals

Boolean Literals

Character Literals

String Literals

Variables

Declaring a Variable

Dynamic Initialization

The Scope and Lifetime of Variables

Type Conversion and Casting

Java’s Automatic Conversions

Casting Incompatible Types

Automatic Type Promotion in Expressions

The Type Promotion Rules

Arrays

One-Dimensional Arrays

Multidimensional Arrays

Alternative Array Declaration Syntax

A Few Words About Strings

A Note to C/C++ Programmers About Pointers

4 Operators

Arithmetic Operators

The Basic Arithmetic Operators

The Modulus Operator

Arithmetic Compound Assignment Operators

Increment and Decrement

The Bitwise Operators

The Bitwise Logical Operators

The Left Shift

The Right Shift

The Unsigned Right Shift

Bitwise Operator Compound Assignments

Relational Operators

Boolean Logical Operators

Short-Circuit Logical Operators

The Assignment Operator

The ? Operator

Operator Precedence

Using Parentheses

5 Control Statements

Java’s Selection Statements

if

switch

Iteration Statements

while

do-while

for

The For-Each Version of the for Loop

Nested Loops

Jump Statements

Using break

Using continue

return

6 Introducing Classes

Class Fundamentals

The General Form of a Class

A Simple Class

Declaring Objects

A Closer Look at new

Assigning Object Reference Variables

Introducing Methods

Adding a Method to the Box Class

Returning a Value

Adding a Method That Takes Parameters

Constructors

Parameterized Constructors

The this Keyword

Instance Variable Hiding

Garbage Collection

The finalize() Method

A Stack Class

7 A Closer Look at Methods and Classes

Overloading Methods

Overloading Constructors

Using Objects as Parameters

A Closer Look at Argument Passing

Returning Objects

Recursion

Introducing Access Control

Understanding static

Introducing final

Arrays Revisited

Introducing Nested and Inner Classes

Exploring the String Class

Using Command-Line Arguments

Varargs: Variable-Length Arguments

Overloading Vararg Methods

Varargs and Ambiguity

8 Inheritance

Inheritance Basics

Member Access and Inheritance

A More Practical Example

A Superclass Variable Can Reference a Subclass Object

Using super

Using super to Call Superclass Constructors

A Second Use for super

Creating a Multilevel Hierarchy

When Constructors Are Called

Method Overriding

Dynamic Method Dispatch

Why Overridden Methods?

Applying Method Overriding

Using Abstract Classes

Using final with Inheritance

Using final to Prevent Overriding

Using final to Prevent Inheritance

The Object Class

9 Packages and Interfaces

Packages

Defining a Package

Finding Packages and CLASSPATH

A Short Package Example

Access Protection

An Access Example

Importing Packages

Interfaces

Defining an Interface

Implementing Interfaces

Nested Interfaces

Applying Interfaces

Variables in Interfaces

Interfaces Can Be Extended

10 Exception Handling

Exception-Handling Fundamentals

Exception Types

Uncaught Exceptions

Using try and catch

Displaying a Description of an Exception

Multiple catch Clauses

Nested try Statements

throw

throws

finally

Java’s Built-in Exceptions

Creating Your Own Exception Subclasses

Chained Exceptions

Using Exceptions

11 Multithreaded Programming

The Java Thread Model

Thread Priorities

Synchronization

Messaging

The Thread Class and the Runnable Interface

The Main Thread

Creating a Thread

Implementing Runnable

Extending Thread

Choosing an Approach

Creating Multiple Threads

Using isAlive() and join()

Thread Priorities

Synchronization

Using Synchronized Methods

The synchronized Statement

Interthread Communication

Deadlock

Suspending, Resuming, and Stopping Threads

Suspending, Resuming, and Stopping Threads Using Java 1.1 and Earlier

The Modern Way of Suspending, Resuming, and Stopping Threads

Using Multithreading

12 Enumerations, Autoboxing, and Annotations (Metadata)

Enumerations

Enumeration Fundamentals

The values() and valueOf() Methods

Java Enumerations Are Class Types

Enumerations Inherit Enum

Another Enumeration Example

Type Wrappers

Autoboxing

Autoboxing and Methods

Autoboxing/Unboxing Occurs in Expressions

Autoboxing/Unboxing Boolean and Character Values

Autoboxing/Unboxing Helps Prevent Errors

A Word of Warning

Annotations (Metadata)

Annotation Basics

Specifying a Retention Policy

Obtaining Annotations at Run Time by Use of Reflection

The AnnotatedElement Interface

Using Default Values

Marker Annotations

Single-Member Annotations

The Built-In Annotations

Some Restrictions

13 I/O, Applets, and Other Topics

I/O Basics

Streams

Byte Streams and Character Streams

The Predefined Streams

Reading Console Input

Reading Characters

Reading Strings

Writing Console Output

The PrintWriter Class

Reading and Writing Files

Applet Fundamentals

The transient and volatile Modifiers

Using instanceof

strictfp

Native Methods

Problems with Native Methods

Using assert

Assertion Enabling and Disabling Options

Static Import

Invoking Overloaded Constructors Through this()

14 Generics

What Are Generics?

A Simple Generics Example

Generics Work Only with Objects

Generic Types Differ Based on Their Type Arguments

How Generics Improve Type Safety

A Generic Class with Two Type Parameters

The General Form of a Generic Class

Bounded Types

Using Wildcard Arguments

Bounded Wildcards

Creating a Generic Method

Generic Constructors

Generic Interfaces

Raw Types and Legacy Code

Generic Class Hierarchies

Using a Generic Superclass

A Generic Subclass

Run-Time Type Comparisons Within a Generic Hierarchy

Casting

Overriding Methods in a Generic Class

Erasure

Bridge Methods

Ambiguity Errors

Some Generic Restrictions

Type Parameters Can’t Be Instantiated

Restrictions on Static Members

Generic Array Restrictions

Generic Exception Restriction

Final Thoughts on Generics

Part II The Java Library

15 String Handling

The String Constructors

String Length

Special String Operations

String Literals

String Concatenation

String Concatenation with Other Data Types

String Conversion and toString()

Character Extraction

charAt()

getChars()

getBytes()

toCharArray()

String Comparison

equals() and equalsIgnoreCase()

regionMatches()

startsWith() and endsWith()

equals() Versus = =

compareTo()

Searching Strings

Modifying a String

substring()

concat()

replace()

trim()

Data Conversion Using valueOf()

Changing the Case of Characters Within a String

Additional String Methods

StringBuffer

StringBuffer Constructors

length() and capacity()

ensureCapacity()

setLength()

charAt() and setCharAt()

getChars()

append()

insert()

reverse()

delete() and deleteCharAt()

replace()

substring()

Additional StringBuffer Methods

StringBuilder

16 Exploring java.lang

Primitive Type Wrappers

Number

Double and Float

Byte, Short, Integer, and Long

Character

Recent Additions to Character for Unicode Code Point Support

Boolean

Void

Process

Runtime

Memory Management

Executing Other Programs

ProcessBuilder

System

Using currentTimeMillis() to Time Program Execution

Using arraycopy()

Environment Properties

Object

Using clone() and the Cloneable Interface

Class

ClassLoader

Math

Transcendental Functions

Exponential Functions

Rounding Functions

Miscellaneous Math Methods

StrictMath

Compiler

Thread, ThreadGroup, and Runnable

The Runnable Interface

Thread

ThreadGroup

ThreadLocal and InheritableThreadLocal

Package

RuntimePermission

Throwable

SecurityManager

StackTraceElement

Enum

The CharSequence Interface

The Comparable Interface

The Appendable Interface

The Iterable Interface

The Readable Interface

The java.lang Subpackages

java.lang.annotation

java.lang.instrument

java.lang.management

java.lang.ref

java.lang.reflect

17 java.util Part 1: The Collections Framework

Collections Overview

Recent Changes to Collections

Generics Fundamentally Change the Collections Framework

Autoboxing Facilitates the Use of Primitive Types

The For-Each Style for Loop

The Collection Interfaces

The Collection Interface

The List Interface

The Set Interface

The SortedSet Interface

The NavigableSet Interface

The Queue Interface

The Deque Interface

The Collection Classes

The ArrayList Class

The LinkedList Class

The HashSet Class

The LinkedHashSet Class

The TreeSet Class

The PriorityQueue Class

The ArrayDeque Class

The EnumSet Class

Accessing a Collection via an Iterator

Using an Iterator

The For-Each Alternative to Iterators

Storing User-Defined Classes in Collections

The RandomAccess Interface

Working with Maps

The Map Interfaces

The NavigableMap Interface

The Map Classes

Comparators

Using a Comparator

The Collection Algorithms

Arrays

Why Generic Collections?

The Legacy Classes and Interfaces

The Enumeration Interface

Vector

Stack

Dictionary

Hashtable

Properties

Using store() and load()

Parting Thoughts on Collections

18 java.util Part 2: More Utility Classes

String Tokenizer

BitSet

Date

Calendar

GregorianCalendar

TimeZone

SimpleTimeZone

Locale

Random

Observable

The Observer Interface

An Observer Example

Timer and TimerTask

Currency

Formatter

The Formatter Constructors

The Formatter Methods

Formatting Basics

Formatting Strings and Characters

Formatting Numbers

Formatting Time and Date

The %n and %% Specifiers

Specifying a Minimum Field Width

Specifying Precision

Using the Format Flags

Justifying Output

The Space, +, 0, and (Flags

The Comma Flag

The # Flag

The Uppercase Option

Using an Argument Index

The Java printf() Connection

Scanner

The Scanner Constructors

Scanning Basics

Some Scanner Examples

Setting Delimiters

Other Scanner Features

The ResourceBundle, ListResourceBundle, and PropertyResourceBundle Classes

Miscellaneous Utility Classes and Interfaces

The java.util Subpackages

java.util.concurrent, java.util.concurrent.atomic, and java.util.concurrent.locks

java.util.jar

java.util.logging

java.util.prefs

java.util.regex

java.util.spi

java.util.zip

19 Input/Output: Exploring java.io

The Java I/O Classes and Interfaces

File

Directories

Using FilenameFilter

The listFiles() Alternative

Creating Directories

The Closeable and Flushable Interfaces

The Stream Classes

The Byte Streams

InputStream

OutputStream

FileInputStream

FileOutputStream

ByteArrayInputStream

ByteArrayOutputStream

Filtered Byte Streams

Buffered Byte Streams

SequenceInputStream

PrintStream

DataOutputStream and DataInputStream

RandomAccessFile

The Character Streams

Reader

Writer

FileReader

FileWriter

CharArrayReader

CharArrayWriter

BufferedReader

BufferedWriter

PushbackReader

PrintWriter

The Console Class

Using Stream I/O

Improving wc() Using a StreamTokenizer

Serialization

Serializable

Externalizable

ObjectOutput

ObjectOutputStream

ObjectInput

ObjectInputStream

A Serialization Example

Stream Benefits

20 Networking

Networking Basics

The Networking Classes and Interfaces

InetAddress

Factory Methods

Instance Methods

Inet4Address and Inet6Address

TCP/IP Client Sockets

URL

URLConnection

HttpURLConnection

The URI Class

Cookies

TCP/IP Server Sockets

Datagrams

DatagramSocket

DatagramPacket

A Datagram Example

21 The Applet Class

Two Types of Applets

Applet Basics

The Applet Class

Applet Architecture

An Applet Skeleton

Applet Initialization and Termination

Overriding update()

Simple Applet Display Methods

Requesting Repainting

A Simple Banner Applet

Using the Status Window

The HTML APPLET Tag

Passing Parameters to Applets

Improving the Banner Applet

getDocumentBase() and getCodeBase()

AppletContext and showDocument()

The AudioClip Interface

The AppletStub Interface

Outputting to the Console

22 Event Handling

Two Event Handling Mechanisms

The Delegation Event Model

Events

Event Sources

Event Listeners

Event Classes

The ActionEvent Class

The AdjustmentEvent Class

The ComponentEvent Class

The ContainerEvent Class

The FocusEvent Class

The InputEvent Class

The ItemEvent Class

The KeyEvent Class

The MouseEvent Class

The MouseWheelEvent Class

The TextEvent Class

The WindowEvent Class

Sources of Events

Event Listener Interfaces

The ActionListener Interface

The AdjustmentListener Interface

The ComponentListener Interface

The ContainerListener Interface

The FocusListener Interface

The ItemListener Interface

The KeyListener Interface

The MouseListener Interface

The MouseMotionListener Interface

The MouseWheelListener Interface

The TextListener Interface

The WindowFocusListener Interface

The WindowListener Interface

Using the Delegation Event Model

Handling Mouse Events

Handling Keyboard Events

Adapter Classes

Inner Classes

Anonymous Inner Classes

23 Introducing the AWT: Working with Windows, Graphics, and Text

AWT Classes

Window Fundamentals

Component

Container

Panel

Window

Frame

Canvas

Working with Frame Windows

Setting the Window’s Dimensions

Hiding and Showing a Window

Setting a Window’s Title

Closing a Frame Window

Creating a Frame Window in an Applet

Handling Events in a Frame Window

Creating a Windowed Program

Displaying Information Within a Window

Working with Graphics

Drawing Lines

Drawing Rectangles

Drawing Ellipses and Circles

Drawing Arcs

Drawing Polygons

Sizing Graphics

Working with Color

Color Methods

Setting the Current Graphics Color

A Color Demonstration Applet

Setting the Paint Mode

Working with Fonts

Determining the Available Fonts

Creating and Selecting a Font

Obtaining Font Information

Managing Text Output Using FontMetrics

Displaying Multiple Lines of Text

Centering Text

Multiline Text Alignment

24 Using AWT Controls, Layout Managers, and Menus

Control Fundamentals

Adding and Removing Controls

Responding to Controls

The HeadlessException

Labels

Using Buttons

Handling Buttons

Applying Check Boxes

Handling Check Boxes

CheckboxGroup

Choice Controls

Handling Choice Lists

Using Lists

Handling Lists

Managing Scroll Bars

Handling Scroll Bars

Using a TextField

Handling a TextField

Using a TextArea

Understanding Layout Managers

FlowLayout

BorderLayout

Using Insets

GridLayout

CardLayout

GridBagLayout

Menu Bars and Menus

Dialog Boxes

FileDialog

Handling Events by Extending AWT Components

Extending Button

Extending Checkbox

Extending a Check Box Group

Extending Choice

Extending List

Extending Scrollbar

25 Images

File Formats

Image Fundamentals: Creating, Loading, and Displaying

Creating an Image Object

Loading an Image

Displaying an Image

ImageObserver

Double Buffering

MediaTracker

ImageProducer

MemoryImageSource

ImageConsumer

PixelGrabber

ImageFilter

CropImageFilter

RGBImageFilter

Cell Animation

Additional Imaging Classes

26 The Concurrency Utilities

The Concurrent API Packages

java.util.concurrent

java.util.concurrent.atomic

java.util.concurrent.locks

Using Synchronization Objects

Semaphore

CountDownLatch

CyclicBarrier

Exchanger

Using an Executor

A Simple Executor Example

Using Callable and Future

The TimeUnit Enumeration

The Concurrent Collections

Locks

Atomic Operations

The Concurrency Utilities Versus Java’s Traditional Approach

27 NIO, Regular Expressions, and Other Packages

The Core Java API Packages

NIO

NIO Fundamentals

Charsets and Selectors

Using the NIO System

Is NIO the Future of I/O Handling?

Regular Expression Processing

Pattern

Matcher

Regular Expression Syntax

Demonstrating Pattern Matching

Two Pattern-Matching Options

Exploring Regular Expressions

Reflection

Remote Method Invocation (RMI)

A Simple Client/Server Application Using RMI

Text Formatting

DateFormat Class

SimpleDateFormat Class

Part III Software Development Using Java

28 Java Beans

What Is a Java Bean?

Advantages of Java Beans

Introspection

Design Patterns for Properties

Design Patterns for Events

Methods and Design Patterns

Using the BeanInfo Interface

Bound and Constrained Properties

Persistence

Customizers

The Java Beans API

Introspector

PropertyDescriptor

EventSetDescriptor

MethodDescriptor

A Bean Example

29 Introducing Swing

The Origins of Swing

Swing Is Built on the AWT

Two Key Swing Features

Swing Components Are Lightweight

Swing Supports a Pluggable Look and Feel

The MVC Connection

Components and Containers

Components

Containers

The Top-Level Container Panes

The Swing Packages

A Simple Swing Application

Event Handling

Create a Swing Applet

Painting in Swing

Painting Fundamentals

Compute the Paintable Area

A Paint Example

30 Exploring Swing

JLabel and ImageIcon

JTextField

The Swing Buttons

JButton

JToggleButton

Check Boxes

Radio Buttons

JTabbedPane

JScrollPane

JList

JComboBox

Trees

JTable

Continuing Your Exploration of Swing

31 Servlets

Background

The Life Cycle of a Servlet

Using Tomcat for Servlet Development

A Simple Servlet

Create and Compile the Servlet Source Code

Start Tomcat

Start a Web Browser and Request the Servlet

The Servlet API

The javax.servlet Package

The Servlet Interface

The ServletConfig Interface

The ServletContext Interface

The ServletRequest Interface

The ServletResponse Interface

The GenericServlet Class

The ServletInputStream Class

The ServletOutputStream Class

The Servlet Exception Classes

Reading Servlet Parameters

The javax.servlet.http Package

The HttpServletRequest Interface

The HttpServletResponse Interface

The HttpSession Interface

The HttpSessionBindingListener Interface

The Cookie Class

The HttpServlet Class

The HttpSessionEvent Class

The HttpSessionBindingEvent Class

Handling HTTP Requests and Responses

Handling HTTP GET Requests

Handling HTTP POST Requests

Using Cookies

Session Tracking

Part IV Applying Java

32 Financial Applets and Servlets

Finding the Payments for a Loan

The RegPay Fields

The init() Method

The makeGUI() Method

The actionPerformed() Method

The compute() Method

Finding the Future Value of an Investment

Finding the Initial Investment Required to Achieve a Future Value

Finding the Initial Investment Needed for a Desired Annuity

Finding the Maximum Annuity for a Given Investment

Finding the Remaining Balance on a Loan

Creating Financial Servlets

Converting the RegPay Applet into a Servlet

The RegPayS Servlet

Some Things to Try

33 Creating a Download Manager in Java

Understanding Internet Downloads

An Overview of the Download Manager

The Download Class

The Download Variables

The Download Constructor

The download() Method

The run() Method

The stateChanged() Method

Action and Accessor Methods

The ProgressRenderer Class

The DownloadsTableModel Class

The addDownload() Method

The clearDownload() Method

The getColumnClass() Method

The getValueAt() Method

The update() Method

The DownloadManager Class

The DownloadManager Variables

The DownloadManager Constructor

The verifyUrl() Method

The tableSelectionChanged() Method

The updateButtons() Method

Handling Action Events

Compiling and Running the Download Manager

Enhancing the Download Manager

A Using Java’s Documentation Comments

The javadoc Tags

@author

{@code}

@deprecated

{@docRoot}

@exception

{@inheritDoc}

{@link}

{@linkplain}

{@literal}

@param

@return

@see

@serial

@serialData

@serialField

@since

@throws

{@value}

@version

The General Form of a Documentation Comment

What javadoc Outputs

An Example that Uses Documentation Comments

Index

Preface

As I write this, Java is just beginning its second decade. Unlike many other computer languages whose influence begins to wane over the years, Java’s has grown stronger with the passage of time. Java leapt to the forefront of Internet programming with its first release. Each subsequent version has solidified that position. Today, Java is still the first and best choice for developing web-based applications.

One reason for Java’s success is its agility. Java has rapidly adapted to changes in the programming environment and to changes in the way that programmers program. Most importantly, it has not just followed the trends, it has helped create them. Unlike some other languages that have a revision cycle of approximately 10 years, Java’s release cycle averages about 1.5 years! Java’s ability to accommodate the fast rate of change in the computing world is a crucial part of why it has stayed at the forefront of computer language design. With the release of Java SE 6, Java’s leadership remains unchallenged. If you are programming for the Internet, you have chosen the right language. Java has been and continues to be the preeminent language of the Internet.

As many readers will know, this is the seventh edition of the book, which was first published in 1996. This edition has been updated for Java SE 6. It has also been expanded in several key areas. Here are two examples: it now includes twice as much coverage of Swing and a more detailed discussion of resource bundles. Throughout are many other additions and improvements. In all, dozens of pages of new material have been incorporated.

A Book for All Programmers

This book is for all programmers, whether you are a novice or an experienced pro. The beginner will find its carefully paced discussions and many examples especially helpful. Its in-depth coverage of Java’s more advanced features and libraries will appeal to the pro. For both, it offers a lasting resource and handy reference.

What’s Inside

This book is a comprehensive guide to the Java language, describing its syntax, keywords, and fundamental programming principles. Significant portions of the Java API library are also examined. The book is divided into four parts, each focusing on a different aspect of the Java programming environment.

Part I presents an in-depth tutorial of the Java language. It begins with the basics, including such things as data types, control statements, and classes. Part I also discusses Java’s exception-handling mechanism, multithreading subsystem, packages, and interfaces. Of course, Java’s newer features, such as generics, annotations, enumerations, and autoboxing are covered in detail.

Part II examines key aspects of Java’s standard API library. Topics include strings, I/O, networking, the standard utilities, the Collections Framework, applets, GUI-based controls, imaging, and concurrency.

Part III looks at three important Java technologies: Java Beans, Swing, and servlets.

Part IV contains two chapters that show examples of Java in action. The first chapter develops several applets that perform various popular financial calculations, such as computing the regular payment on a loan or the minimum investment needed to withdraw a desired monthly annuity. This chapter also shows how to convert those applets into servlets. The second chapter develops a download manager that oversees the downloading of files. It includes the ability to start, stop, and resume a transfer. Both chapters are adapted from my book The Art of Java, which I co-authored with James Holmes.

Don’t Forget: Code on the Web

Remember, the source code for all of the examples in this book is available free-of-charge on the Web at www.osborne.com.

Special Thanks

Special thanks to Patrick Naughton. Patrick was one of the creators of the Java language. He also helped write the first edition of this book. For example, much of the material in Chapters 19, 20, and 25 was initially provided by Patrick. His insights, expertise, and energy contributed greatly to the success of this book.

Thanks also go to Joe O’Neil for providing the initial drafts for Chapters 27, 28, 30, and 31. Joe has helped on several of my books and, as always, his efforts are appreciated.

Finally, many thanks to James Holmes for providing Chapter 32. James is an extraordinary programmer and author. He was my co-author on The Art of Java and is the author of Struts: The Complete Reference and a co-author of JSF: The Complete Reference.

HERBERT SCHILDT
November 8, 2006

For Further Study

Java: The Complete Reference is your gateway to the Herb Schildt series of programming books. Here are some others that you will find of interest.

To learn more about Java programming, we recommend the following:

Java: A Beginner’s Guide

Swing: A Beginner’s Guide

The Art Of Java

To learn about C++, you will find these books especially helpful:

C++: The Complete Reference

C++: A Beginner’s Guide

The Art of C++

C++ From the Ground Up

STL Programming From the Ground Up

To learn about C#, we suggest the following Schildt books:

C#: The Complete Reference

C#: A Beginner’s Guide

To learn about the C language, the following titles will be of interest:

C: The Complete Reference

Teach Yourself C

When you need solid answers, fast, turn to Herbert Schildt, the recognized authority on programming.

PART I
The Java Language

CHAPTER 1 The History and Evolution of Java

CHAPTER 2 An Overview of Java

CHAPTER 3 Data Types, Variables, and Arrays

CHAPTER 4 Operators

CHAPTER 5 Control Statements

CHAPTER 6 Introducing Classes

CHAPTER 7 A Closer Look at Methods and Classes

CHAPTER 8 Inheritance

CHAPTER 9 Packages and Interfaces

CHAPTER 10 Exception Handling

CHAPTER 11 Multithreaded Programming

CHAPTER 12 Enumerations, Autoboxing, and Annotations (Metadata)

CHAPTER 13 I/O, Applets, and Other Topics

CHAPTER 14 Generics

CHAPTER 1
The History and Evolution of Java

To fully understand Java, one must understand the reasons behind its creation, the forces that shaped it, and the legacy that it inherits. Like the successful computer languages that came before, Java is a blend of the best elements of its rich heritage combined with the innovative concepts required by its unique mission. While the remaining chapters of this book describe the practical aspects of Java—including its syntax, key libraries, and applications—this chapter explains how and why Java came about, what makes it so important, and how it has evolved over the years.

Although Java has become inseparably linked with the online environment of the Internet, it is important to remember that Java is first and foremost a programming language. Computer language innovation and development occurs for two fundamental reasons:

• To adapt to changing environments and uses

• To implement refinements and improvements in the art of programming

As you will see, the development of Java was driven by both elements in nearly equal measure.

Java’s Lineage

Java is related to C++, which is a direct descendant of C. Much of the character of Java is inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-oriented features were influenced by C++. In fact, several of Java’s defining characteristics come from—or are responses to—its predecessors. Moreover, the creation of Java was deeply rooted in the process of refinement and adaptation that has been occurring in computer programming languages for the past several decades. For these reasons, this section reviews the sequence of events and forces that led to Java. As you will see, each innovation in language design was driven by the need to solve a fundamental problem that the preceding languages could not solve. Java is no exception.

The Birth of Modern Programming: C

The C language shook the computer world. Its impact should not be underestimated, because it fundamentally changed the way programming was approached and thought about. The creation of C was a direct result of the need for a structured, efficient, high-level language that could replace assembly code when creating systems programs. As you probably know, when a computer language is designed, trade-offs are often made, such as the following:

• Ease-of-use versus power

• Safety versus efficiency

• Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized one set of traits or the other. For example, although FORTRAN could be used to write fairly efficient programs for scientific applications, it was not very good for system code. And while BASIC was easy to learn, it wasn’t very powerful, and its lack of structure made its usefulness questionable for large programs. Assembly language can be used to produce highly efficient programs, but it is not easy to learn or use effectively. Further, debugging assembly code can be quite difficult.

Another compounding problem was that early computer languages such as BASIC, COBOL, and FORTRAN were not designed around structured principles. Instead, they relied upon the GOTO as a primary means of program control. As a result, programs written using these languages tended to produce “spaghetti code”—a mass of tangled jumps and conditional branches that make a program virtually impossible to understand. While languages like Pascal are structured, they were not designed for efficiency, and failed to include certain features necessary to make them applicable to a wide range of programs. (Specifically, given the standard dialects of Pascal available at the time, it was not practical to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting attributes that had dogged earlier efforts. Yet the need for such a language was pressing. By the early 1970s, the computer revolution was beginning to take hold, and the demand for software was rapidly outpacing programmers’ ability to produce it. A great deal of effort was being expended in academic circles in an attempt to create a better computer language. But, and perhaps most importantly, a secondary force was beginning to be felt. Computer hardware was finally becoming common enough that a critical mass was being reached. No longer were computers kept behind locked doors. For the first time, programmers were gaining virtually unlimited access to their machines. This allowed the freedom to experiment. It also allowed programmers to begin to create their own tools. On the eve of C’s creation, the stage was set for a quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX operating system, C was the result of a development process that started with an older language called BCPL, developed by Martin Richards. BCPL influenced a language called B, invented by Ken Thompson, which led to the development of C in the 1970s. For many years, the de facto standard for C was the one supplied with the UNIX operating system and described in The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978). C was formally standardized in December 1989, when the American National Standards Institute (ANSI) standard for C was adopted.

The creation of C is considered by many to have marked the beginning of the modern age of computer languages. It successfully synthesized the conflicting attributes that had so troubled earlier languages. The result was a powerful, efficient, structured language that was relatively easy to learn. It also included one other, nearly intangible aspect: it was a programmer’s language. Prior to the invention of C, computer languages were generally designed either as academic exercises or by bureaucratic committees. C is different. It was designed, implemented, and developed by real, working programmers, reflecting the way that they approached the job of programming. Its features were honed, tested, thought about, and rethought by the people who actually used the language. The result was a language that programmers liked to use. Indeed, C quickly attracted many followers who had a near-religious zeal for it. As such, it found wide and rapid acceptance in the programmer community. In short, C is a language designed by and for programmers. As you will see, Java inherited this legacy.

C++: The Next Step

During the late 1970s and early 1980s, C became the dominant computer programming language, and it is still widely used today. Since C is a successful and useful language, you might ask why a need for something else existed. The answer is complexity. Throughout the history of programming, the increasing complexity of programs has driven the need for better ways to manage that complexity. C++ is a response to that need. To better understand why managing program complexity is fundamental to the creation of C++, consider the following.

Approaches to programming have changed dramatically since the invention of the computer. For example, when computers were first invented, programming was done by manually toggling in the binary machine instructions by use of the front panel. As long as programs were just a few hundred instructions long, this approach worked. As programs grew, assembly language was invented so that a programmer could deal with larger, increasingly complex programs by using symbolic representations of the machine instructions. As programs continued to grow, high-level languages were introduced that gave the programmer more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was an impressive first step, it is hardly a language that encourages clear and easy-to-understand programs. The 1960s gave birth to structured programming. This is the method of programming championed by languages such as C. The use of structured languages enabled programmers to write, for the first time, moderately complex programs fairly easily. However, even with structured programming methods, once a project reaches a certain size, its complexity exceeds what a programmer can manage. By the early 1980s, many projects were pushing the structured approach past its limits. To solve this problem, a new way to program was invented, called object-oriented programming (OOP). Object-oriented programming is discussed in detail later in this book, but here is a brief definition: OOP is a programming methodology that helps organize complex programs through the use of inheritance, encapsulation, and polymorphism.

In the final analysis, although C is one of the world’s great programming languages, there is a limit to its ability to handle complexity. Once the size of a program exceeds a certain point, it becomes so complex that it is difficult to grasp as a totality. While the precise size at which this occurs differs, depending upon both the nature of the program and the programmer, there is always a threshold at which a program becomes unmanageable. C++ added features that enabled this threshold to be broken, allowing programmers to comprehend and manage larger programs.

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.” However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented features. Because C++ is built on the foundation of C, it includes all of C’s features, attributes, and benefits. This is a crucial reason for the success of C++ as a language. The invention of C++ was not an attempt to create a completely new programming language. Instead, it was an enhancement to an already highly successful one.

The Stage Is Set for Java

By the end of the 1980s and the early 1990s, object-oriented programming using C++ took hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect language. Because C++ blended the high efficiency and stylistic elements of C with the object-oriented paradigm, it was a language that could be used to create a wide range of programs. However, just as in the past, forces were brewing that would, once again, drive computer language evolution forward. Within a few years, the World Wide Web and the Internet would reach critical mass. This event would precipitate another revolution in programming.

The Creation of Java

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working version. This language was initially called “Oak,” but was renamed “Java” in 1995. Between the initial implementation of Oak in the fall of 1992 and the public announcement of Java in the spring of 1995, many more people contributed to the design and evolution of the language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were key contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the primary motivation was the need for a platform-independent (that is, architecture-neutral) language that could be used to create software to be embedded in various consumer electronic devices, such as microwave ovens and remote controls. As you can probably guess, many different types of CPUs are used as controllers. The trouble with C and C++ (and most other languages) is that they are designed to be compiled for a specific target. Although it is possible to compile a C++ program for just about any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The problem is that compilers are expensive and time-consuming to create. An easier—and more cost-efficient—solution was needed. In an attempt to find such a solution, Gosling and others began work on a portable, platform-independent language that could be used to produce code that would run on a variety of CPUs under differing environments. This effort ultimately led to the creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately more important, factor was emerging that would play a crucial role in the future of Java. This second force was, of course, the World Wide Web. Had the Web not taken shape at about the same time that Java was being implemented, Java might have remained a useful but obscure language for programming consumer electronics. However, with the emergence of the World Wide Web, Java was propelled to the forefront of computer language design, because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they are desirable. While the quest for a way to create efficient, portable (platform-independent) programs is nearly as old as the discipline of programming itself, it had taken a back seat to other, more pressing problems. Further, because (at that time) much of the computer world had divided itself into the three competing camps of Intel, Macintosh, and UNIX, most programmers stayed within their fortified boundaries, and the urgent need for portable code was reduced. However, with the advent of the Internet and the Web, the old problem of portability returned with a vengeance. After all, the Internet consists of a diverse, distributed universe populated with various types of computers, operating systems, and CPUs. Even though many kinds of platforms are attached to the Internet, users would like them all to be able to run the same program. What was once an irritating but low-priority problem had become a high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems of portability frequently encountered when creating code for embedded controllers are also found when attempting to create code for the Internet. In fact, the same problem that Java was initially designed to solve on a small scale could also be applied to the Internet on a large scale. This realization caused the focus of Java to switch from consumer electronics to Internet programming. So, while the desire for an architecture-neutral programming language provided the initial spark, the Internet ultimately led to Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is by intent. The Java designers knew that using the familiar syntax of C and echoing the object-oriented features of C++ would make their language appealing to the legions of experienced C/C++ programmers. In addition to the surface similarities, Java shares some of the other attributes that helped make C and C++ successful. First, Java was designed, tested, and refined by real, working programmers. It is a language grounded in the needs and experiences of the people who devised it. Thus, Java is a programmer’s language. Second, Java is cohesive and logically consistent. Third, except for those constraints imposed by the Internet environment, Java gives you, the programmer, full control. If you program well, your programs reflect it. If you program poorly, your programs reflect that, too. Put differently, Java is not a language with training wheels. It is a language for professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as simply the “Internet version of C++.” However, to do so would be a large mistake. Java has significant practical and philosophical differences. While it is true that Java was influenced by C++, it is not an enhanced version of C++. For example, Java is neither upwardly nor downwardly compatible with C++. Of course, the similarities with C++ are significant, and if you are a C++ programmer, then you will feel right at home with Java. One other point: Java was not designed to replace C++. Java was designed to solve a certain set of problems. C++ was designed to solve a different set of problems. Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two reasons: to adapt to changes in environment and to implement advances in the art of programming. The environmental change that prompted Java was the need for platform-independent programs destined for distribution on the Internet. However, Java also embodies changes in the way that people approach the writing of programs. For example, Java enhanced and refined the object-oriented paradigm used by C++, added integrated support for multithreading, and provided a library that simplified Internet access. In the final analysis, though, it was not the individual features of Java that made it so remarkable. Rather, it was the language as a whole. Java was the perfect response to the demands of the then newly emerging, highly distributed computing universe. Java was to Internet programming what C was to system programming: a revolutionary force that changed the world.

The C# Connection

The reach and power of Java continues to be felt in the world of computer language development. Many of its innovative features, constructs, and concepts have become part of the baseline for any new language. The success of Java is simply too important to ignore.

Perhaps the most important example of Java’s influence is C#. Created by Microsoft to support the .NET Framework, C# is closely related to Java. For example, both share the same general syntax, support distributed programming, and utilize the same object model. There are, of course, differences between Java and C#, but the overall “look and feel” of these languages is very similar. This “cross-pollination” from Java to C# is the strongest testimonial to date that Java redefined the way we think about and use a computer language.

How Java Changed the Internet

The Internet helped catapult Java to the forefront of programming, and Java, in turn, had a profound effect on the Internet. In addition to simplifying web programming in general, Java innovated a new type of networked program called the applet that changed the way the online world thought about content. Java also addressed some of the thorniest issues associated with the Internet: portability and security. Let’s look more closely at each of these.

Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the Internet and automatically executed by a Java-compatible web browser. Furthermore, an applet is downloaded on demand, without further interaction with the user. If the user clicks a link that contains an applet, the applet will be automatically downloaded and run in the browser. Applets are intended to be small programs. They are typically used to display data provided by the server, handle user input, or provide simple functions, such as a loan calculator, that execute locally, rather than on the server. In essence, the applet allows some functionality to be moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the universe of objects that can move about freely in cyberspace. In general, there are two very broad categories of objects that are transmitted between the server and the client: passive information and dynamic, active programs. For example, when you read your e-mail, you are viewing passive data. Even when you download a program, the program’s code is still only passive data until you execute it. By contrast, the applet is a dynamic, self-executing program. Such a program is an active agent on the client computer, yet it is initiated by the server.

As desirable as dynamic, networked programs are, they also present serious problems in the areas of security and portability. Obviously, a program that downloads and executes automatically on the client computer must be prevented from doing harm. It must also be able to run in a variety of different environments and under different operating systems. As you will see, Java solved these problems in an effective and elegant way. Let’s look a bit more closely at each.

Security

As you are likely aware, every time you download a “normal” program, you are taking a risk, because the code you are downloading might contain a virus, Trojan horse, or other harmful code. At the core of the problem is the fact that malicious code can cause its damage because it has gained unauthorized access to system resources. For example, a virus program might gather private information, such as credit card numbers, bank account balances, and passwords, by searching the contents of your computer’s local file system. In order for Java to enable applets to be downloaded and executed on the client computer safely, it was necessary to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment and not allowing it access to other parts of the computer. (You will see how this is accomplished shortly.) The ability to download applets with confidence that no harm will be done and that no security will be breached is considered by many to be the single most innovative aspect of Java.

Portability

Portability is a major aspect of the Internet because there are many different types of computers and operating systems connected to it. If a Java program were to be run on virtually any computer connected to the Internet, there needed to be some way to enable that program to execute on different systems. For example, in the case of an applet, the same applet must be able to be downloaded and executed by the wide variety of CPUs, operating systems, and browsers connected to the Internet. It is not practical to have different versions of the applet for different computers. The same code must work on all computers. Therefore, some means of generating portable executable code was needed. As you will soon see, the same mechanism that helps ensure security also helps create portability.

Java’s Magic: The Bytecode

The key that allows Java to solve both the security and the portability problems just described is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly optimized set of instructions designed to be executed by the Java run-time system, which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as an interpreter for bytecode. This may come as a bit of a surprise since many modern languages are designed to be compiled into executable code because of performance concerns. However, the fact that a Java program is executed by the JVM helps solve the major problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in a wide variety of environments because only the JVM needs to be implemented for each platform. Once the run-time package exists for a given system, any Java program can run on it. Remember, although the details of the JVM will differ from platform to platform, all understand the same Java bytecode. If a Java program were compiled to native code, then different versions of the same program would have to exist for each type of CPU connected to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode by the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure. Because the JVM is in control, it can contain the program and prevent it from generating side effects outside of the system. As you will see, safety is also enhanced by certain restrictions that exist in the Java language.

In general, when a program is compiled to an intermediate form and then interpreted by a virtual machine, it runs slower than it would run if compiled to executable code. However, with Java, the differential between the two is not so great. Because bytecode has been highly optimized, the use of bytecode enables the JVM to execute programs much faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that prevents on-the-fly compilation of bytecode into native code in order to boost performance. For this reason, Sun began supplying its HotSpot technology not long after Java’s initial release. HotSpot provides a Just-In-Time (JIT) compiler for bytecode. When a JIT compiler is part of the JVM, selected portions of bytecode are compiled into executable code in real time, on a piece-by-piece, demand basis. It is important to understand that it is not practical to compile an entire Java program into executable code all at once, because Java performs various run-time checks that can be done only at run time. Instead, a JIT compiler compiles code as it is needed, during execution. Furthermore, not all sequences of bytecode are compiled—only those that will benefit from compilation. The remaining code is simply interpreted. However, the just-in-time approach still yields a significant performance boost. Even when dynamic compilation is applied to bytecode, the portability and safety features still apply, because the JVM is still in charge of the execution environment.

Servlets: Java on the Server Side

As useful as applets can be, they are just one half of the client/server equation. Not long after the initial release of Java, it became obvious that Java would also be useful on the server side. The result was the servlet. A servlet is a small program that executes on the server. Just as applets dynamically extend the functionality of a web browser, servlets dynamically extend the functionality of a web server. Thus, with the advent of the servlet, Java spanned both sides of the client/server connection.

Servlets are used to create dynamically generated content that is then served to the client. For example, an online store might use a servlet to look up the price for an item in a database. The price information is then used to dynamically generate a web page that is sent to the browser. Although dynamically generated content is available through mechanisms such as CGI (Common Gateway Interface), the servlet offers several advantages, including increased performance.

Because servlets (like all Java programs) are compiled into bytecode and executed by the JVM, they are highly portable. Thus, the same servlet can be used in a variety of different server environments. The only requirements are that the server support the JVM and a servlet container.

The Java Buzzwords

No discussion of Java’s history is complete without a look at the Java buzzwords. Although the fundamental forces that necessitated the invention of Java are portability and security, other factors also played an important role in molding the final form of the language. The key considerations were summed up by the Java team in the following list of buzzwords:

• Simple

• Secure

• Portable

• Object-oriented

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s examine what each of the others implies.

Simple

Java was designed to be easy for the professional programmer to learn and use effectively. Assuming that you have some programming experience, you will not find Java hard to master. If you already understand the basic concepts of object-oriented programming, learning Java will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will require very little effort. Because Java inherits the C/C++ syntax and many of the object-oriented features of C++, most programmers have little trouble learning Java.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code compatible with any other language. This allowed the Java team the freedom to design with a blank slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing liberally from many seminal object-software environments of the last few decades, Java manages to strike a balance between the purist’s “everything is an object” paradigm and the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy to extend, while primitive types, such as integers, are kept as high-performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on a program, because the program must execute reliably in a variety of systems. Thus, the ability to create robust programs was given a high priority in the design of Java. To gain reliability, Java restricts you in a few key areas to force you to find your mistakes early in program development. At the same time, Java frees you from having to worry about many of the most common causes of programming errors. Because Java is a strictly typed language, it checks your code at compile time. However, it also checks your code at run time. Many hard-to-track-down bugs that often turn up in hard-to-reproduce run-time situations are simply impossible to create in Java. Knowing that what you have written will behave in a predictable way under diverse conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons for program failure: memory management mistakes and mishandled exceptional conditions (that is, run-time errors). Memory management can be a difficult, tedious task in traditional programming environments. For example, in C/C++, the programmer must manually allocate and free all dynamic memory. This sometimes leads to problems, because programmers will either forget to free memory that has been previously allocated or, worse, try to free some memory that another part of their code is still using. Java virtually eliminates these problems by managing memory allocation and deallocation for you. (In fact, deallocation is completely automatic, because Java provides garbage collection for unused objects.) Exceptional conditions in traditional environments often arise in situations such as division by zero or “file not found,” and they must be managed with clumsy and hard-to-read constructs. Java helps in this area by providing object-oriented exception handling. In a well-written Java program, all run-time errors can—and should—be managed by your program.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked programs. To accomplish this, Java supports multithreaded programming, which allows you to write programs that do many things simultaneously. The Java run-time system comes with an elegant yet sophisticated solution for multiprocess synchronization that enables you to construct smoothly running interactive systems. Java’s easy-to-use approach to multithreading allows you to think about the specific behavior of your program, not the multitasking subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One of the main problems facing programmers is that no guarantee exists that if you write a program today, it will run tomorrow—even on the same machine. Operating system upgrades, processor upgrades, and changes in core system resources can all combine to make a program malfunction. The Java designers made several hard decisions in the Java language and the Java Virtual Machine in an attempt to alter this situation. Their goal was “write once; run anywhere, any time, forever.” To a great extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling into an intermediate representation called Java bytecode. This code can be executed on any system that implements the Java Virtual Machine. Most previous attempts at cross-platform solutions have done so at the expense of performance. As explained earlier, the Java bytecode was carefully designed so that it would be easy to translate directly into native machine code for very high performance by using a just-in-time compiler. Java run-time systems that provide this feature lose none of the benefits of the platform-independent code.

Distributed

Java is designed for the distributed environment of the Internet because it handles TCP/IP protocols. In fact, accessing a resource using a URL is not much different from accessing a file. Java also supports Remote Method Invocation (RMI). This feature enables a program to invoke methods across a network.

Dynamic

Java programs carry with them substantial amounts of run-time type information that is used to verify and resolve accesses to objects at run time. This makes it possible to dynamically link code in a safe and expedient manner. This is crucial to the robustness of the Java environment, in which small fragments of bytecode may be dynamically updated on a running system.

The Evolution of Java

The initial release of Java was nothing short of revolutionary, but it did not mark the end of Java’s era of rapid innovation. Unlike most other software systems that usually settle into a pattern of small, incremental improvements, Java continued to evolve at an explosive pace. Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The features added by Java 1.1 were more significant and substantial than the increase in the minor revision number would have you think. Java 1.1 added many new library elements, redefined the way events are handled, and reconfigured many features of the 1.0 library. It also deprecated (rendered obsolete) several features originally defined by Java 1.0. Thus, Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.” The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the first release of Java 2 used the 1.2 version number. The reason is that it originally referred to the internal version number of the Java libraries, but then was generalized to refer to the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections Framework, and it enhanced the Java Virtual Machine and various programming tools. Java 2 also contained a few deprecations. The most important affected the Thread class in which the methods suspend(), resume(), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part, it added to existing functionality and “tightened up” the development environment. In general, programs written for version 1.2 and those written for version 1.3 are source-code compatible. Although version 1.3 contained a smaller set of changes than the preceding three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important upgrades, enhancements, and additions. For example, it added the new keyword assert, chained exceptions, and a channel-based I/O subsystem. It also made changes to the Collections Framework and the networking classes. In addition, numerous small changes were made throughout. Despite the significant number of new features, version 1.4 maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most of the previous Java upgrades, which offered important, but measured improvements, J2SE 5 fundamentally expanded the scope, power, and range of the language. To grasp the magnitude of the changes that J2SE 5 made to Java, consider the following list of its major new features:

• Generics

• Annotations

• Autoboxing and auto-unboxing

• Enumerations

• Enhanced, for-each style for loop

• Variable-length arguments (varargs)

• Static import

• Formatted I/O

• Concurrency utilities

This is not a list of minor tweaks or incremental upgrades. Each item in the list represents a significant addition to the Java language. Some, such as generics, the enhanced for, and varargs, introduce new syntax elements. Others, such as autoboxing and auto-unboxing, alter the semantics of the language. Annotations add an entirely new dimension to programming. In all cases, the impact of these additions went beyond their direct effects. They changed the very character of Java itself.

The importance of these new features is reflected in the use of the version number “5.” The next version number for Java would normally have been 1.5. However, the new features were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of the change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing that a major event was taking place. Thus, it was named J2SE 5, and the developer’s kit was called JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its internal version number, which is also referred to as the developer version number. The “5” in J2SE 5 is called the product version number.

Java SE 6

The newest release of Java is called Java SE 6, and the material in this book has been updated to reflect this latest version of Java. With the release of Java SE 6, Sun once again decided to change the name of the Java platform. First, notice that the “2” has been dropped. Thus, the platform now has the name Java SE, and the official product name is Java Platform, Standard Edition 6. As with J2SE 5, the 6 in Java SE 6 is the product version number. The internal, developer version number is 1.6.

Java SE 6 builds on the base of J2SE 5, adding incremental improvements. Java SE 6 adds no major features to the Java language proper, but it does enhance the API libraries, add several new packages, and offer improvements to the run time. As it relates to this book, it is the changes to the core API that are the most notable. Many of the packages have new classes, and many of the classes have new methods. These changes are indicated throughout the book. In general, the release of Java SE 6 serves to further solidify the advances made by J2SE 5.

A Culture of Innovation

Since the beginning, Java has been at the center of a culture of innovation. Its original release redefined programming for the Internet. The Java Virtual Machine (JVM) and bytecode changed the way we think about security and portability. The applet (and then the servlet) made the Web come alive. The Java Community Process (JCP) redefined the way that new ideas are assimilated into the language. The world of Java has never stood still for very long. Java SE 6 is the latest release in Java’s ongoing, dynamic history.

CHAPTER 2
An Overview of Java

As in all other computer languages, the elements of Java do not exist in isolation. Rather, they work together to form the language as a whole. However, this interrelatedness can make it difficult to describe one aspect of Java without involving several others. Often a discussion of one feature implies prior knowledge of another. For this reason, this chapter presents a quick overview of several key features of Java. The material described here will give you a foothold that will allow you to write and understand simple programs. Most of the topics discussed will be examined in greater detail in the remaining chapters of Part I.

Object-Oriented Programming

Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to at least some extent object-oriented. OOP is so integral to Java that it is best to understand its basic principles before you begin writing even simple Java programs. Therefore, this chapter begins with a discussion of the theoretical aspects of OOP.

Two Paradigms

All computer programs consist of two elements: code and data. Furthermore, a program can be conceptually organized around its code or around its data. That is, some programs are written around “what is happening” and others are written around “who is being affected.” These are the two paradigms that govern how a program is constructed. The first way is called the process-oriented model. This approach characterizes a program as a series of linear steps (that is, code). The process-oriented model can be thought of as code acting on data. Procedural languages such as C employ this model to considerable success. However, as mentioned in Chapter 1, problems with this approach appear as programs grow larger and more complex.

To manage increasing complexity, the second approach, called object-oriented programming, was conceived. Object-oriented programming organizes a program around its data (that is, objects) and a set of well-defined interfaces to that data. An object-oriented program can be characterized as data controlling access to code. As you will see, by switching the controlling entity to data, you can achieve several organizational benefits.

Abstraction

An essential element of object-oriented programming is abstraction. Humans manage complexity through abstraction. For example, people do not think of a car as a set of tens of thousands of individual parts. They think of it as a well-defined object with its own unique behavior. This abstraction allows people to use a car to drive to the grocery store without being overwhelmed by the complexity of the parts that form the car. They can ignore the details of how the engine, transmission, and braking systems work. Instead, they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications. This allows you to layer the semantics of complex systems, breaking them into more manageable pieces. From the outside, the car is a single object. Once inside, you see that the car consists of several subsystems: steering, brakes, sound system, seat belts, heating, cellular phone, and so on. In turn, each of these subsystems is made up of more specialized units. For instance, the sound system consists of a radio, a CD player, and/or a tape player. The point is that you manage the complexity of the car (or any other complex system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs. The data from a traditional process-oriented program can be transformed by abstraction into its component objects. A sequence of process steps can become a collection of messages between these objects. Thus, each of these objects describes its own unique behavior. You can treat these objects as concrete entities that respond to messages telling them to do something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human understanding. It is important that you understand how these concepts translate into programs. As you will see, object-oriented programming is a powerful and natural paradigm for creating programs that survive the inevitable changes accompanying the life cycle of any major software project, including conception, growth, and aging. For example, once you have well-defined objects and clean, reliable interfaces to those objects, you can gracefully decommission or replace parts of an older system without fear.

The Three OOP Principles

All object-oriented programming languages provide mechanisms that help you implement the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s take a look at these concepts now.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps both safe from outside interference and misuse. One way to think about encapsulation is as a protective wrapper that prevents the code and data from being arbitrarily accessed by other code defined outside the wrapper. Access to the code and data inside the wrapper is tightly controlled through a well-defined interface. To relate this to the real world, consider the automatic transmission on an automobile. It encapsulates hundreds of bits of information about your engine, such as how much you are accelerating, the pitch of the surface you are on, and the position of the shift lever. You, as the user, have only one method of affecting this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission by using the turn signal or windshield wipers, for example. Thus, the gear-shift lever is a well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the transmission does not affect objects outside the transmission. For example, shifting gears does not turn on the headlights! Because an automatic transmission is encapsulated, dozens of car manufacturers can implement one in any way they please. However, from the driver’s point of view, they all work the same. This same idea can be applied to programming. The power of encapsulated code is that everyone knows how to access it and thus can use it regardless of the implementation details—and without fear of unexpected side effects.

In Java, the basis of encapsulation is the class. Although the class will be examined in great detail later in this book, the following brief discussion will be helpful now. A class defines the structure and behavior (data and code) that will be shared by a set of objects. Each object of a given class contains the structure and behavior defined by the class, as if it were stamped out by a mold in the shape of the class. For this reason, objects are sometimes referred to as instances of a class. Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class. Collectively, these elements are called members of the class. Specifically, the data defined by the class are referred to as member variables or instance variables. The code that operates on that data is referred to as member methods or just methods. (If you are familiar with C/C++, it may help to know that what a Java programmer calls a method, a C/C++ programmer calls a function.) In properly written Java programs, the methods define how the member variables can be used. This means that the behavior and interface of a class are defined by the methods that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for hiding the complexity of the implementation inside the class. Each method or variable in a class may be marked private or public. The public interface of a class represents everything that external users of the class need to know, or may know. The private methods and data can only be accessed by code that is a member of the class. Therefore, any other code that is not a member of the class cannot access a private method or variable. Since the private members of a class may only be accessed by other parts of your program through the class’ public methods, you can ensure that no improper actions take place. Of course, this means that the public interface should be carefully designed not to expose too much of the inner workings of a class (see Figure 2-1).

Inheritance

Inheritance is the process by which one object acquires the properties of another object. This is important because it supports the concept of hierarchical classification. As mentioned earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications. For example, a Golden Retriever is part of the classification dog, which in turn is part of the mammal class, which is under the larger class animal. Without the use of hierarchies, each object would need to define all of its characteristics explicitly. However, by use of inheritance, an object need only define those qualities that make it unique within its class. It can inherit its general attributes from its parent. Thus, it is the inheritance mechanism that makes it possible for one object to be a specific instance of a more general case. Let’s take a closer look at this process.

[image: Image]

FIGURE 2-1 Encapsulation: public methods can be used to protect private data

Most people naturally view the world as made up of objects that are related to each other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe animals in an abstract way, you would say they have some attributes, such as size, intelligence, and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe, and sleep. This description of attributes and behavior is the class definition for animals.

If you wanted to describe a more specific class of animals, such as mammals, they would have more specific attributes, such as type of teeth, and mammary glands. This is known as a subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the attributes from animals. A deeply inherited subclass inherits all of the attributes from each of its ancestors in the class hierarchy.

[image: Image]

Inheritance interacts with encapsulation as well. If a given class encapsulates some attributes, then any subclass will have the same attributes plus any that it adds as part of its specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow in complexity linearly rather than geometrically. A new subclass inherits all of the attributes of all of its ancestors. It does not have unpredictable interactions with the majority of the rest of the code in the system.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to be used for a general class of actions. The specific action is determined by the exact nature of the situation. Consider a stack (which is a last-in, first-out list). You might have a program that requires three types of stacks. One stack is used for integer values, one for floating-point values, and one for characters. The algorithm that implements each stack is the same, even though the data being stored differs. In a non–object-oriented language, you would be required to create three different sets of stack routines, with each set using different names. However, because of polymorphism, in Java you can specify a general set of stack routines that all share the same names.

[image: Image]

FIGURE 2-2 Labrador inherits the encapsulation of all its superclasses

More generally, the concept of polymorphism is often expressed by the phrase “one interface, multiple methods.” This means that it is possible to design a generic interface to a group of related activities. This helps reduce complexity by allowing the same interface to be used to specify a general class of action. It is the compiler’s job to select the specific action (that is, method) as it applies to each situation. You, the programmer, do not need to make this selection manually. You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a cat, it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl. The same sense of smell is at work in both situations. The difference is what is being smelled, that is, the type of data being operated upon by the dog’s nose! This same general concept can be implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work Together

When properly applied, polymorphism, encapsulation, and inheritance combine to produce a programming environment that supports the development of far more robust and scalable programs than does the process-oriented model. A well-designed hierarchy of classes is the basis for reusing the code in which you have invested time and effort developing and testing. Encapsulation allows you to migrate your implementations over time without breaking the code that depends on the public interface of your classes. Polymorphism allows you to create clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but cars are more like programs. All drivers rely on inheritance to drive different types (subclasses) of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family minivan, drivers can all more or less find and operate the steering wheel, the brakes, and the accelerator. After a bit of gear grinding, most people can even manage the difference between a stick shift and an automatic, because they fundamentally understand their common superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and gas pedals hide an incredible array of complexity with an interface so simple you can operate them with your feet! The implementation of the engine, the style of brakes, and the size of the tires have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers to offer a wide array of options on basically the same vehicle. For example, you can get an antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-, or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering wheel to change direction, and press the accelerator when you want to move. The same interface can be used to control a number of different implementations.

As you can see, it is through the application of encapsulation, inheritance, and polymorphism that the individual parts are transformed into the object known as a car. The same is also true of computer programs. By the application of object-oriented principles, the various parts of a complex program can be brought together to form a cohesive, robust, maintainable whole.

As mentioned at the start of this section, every Java program is object-oriented. Or, put more precisely, every Java program involves encapsulation, inheritance, and polymorphism. Although the short example programs shown in the rest of this chapter and in the next few chapters may not seem to exhibit all of these features, they are nevertheless present. As you will see, many of the features supplied by Java are part of its built-in class libraries, which do make extensive use of encapsulation, inheritance, and polymorphism.

A First Simple Program

Now that the basic object-oriented underpinning of Java has been discussed, let’s look at some actual Java programs. Let’s start by compiling and running the short sample program shown here. As you will see, this involves a little more work than you might imagine.

 /*
 This is a simple Java program.
 Call this file "Example.java".
 */
 class Example {
 // Your program begins with a call to main().
 public static void main(String args[]) {
 System.out.println("This is a simple Java program.");
 }
 }

NOTE

The descriptions that follow use the standard Java SE 6 Development Kit (JDK 6), which is available from Sun Microsystems. If you are using a different Java development environment, then you may need to follow a different procedure for compiling and executing Java programs. In this case, consult your compiler’s documentation for details.

Entering the Program

For most computer languages, the name of the file that holds the source code to a program is immaterial. However, this is not the case with Java. The first thing that you must learn about Java is that the name you give to a source file is very important. For this example, the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains one or more class definitions. The Java compiler requires that a source file use the .java filename extension.

As you can see by looking at the program, the name of the class defined by the program is also Example. This is not a coincidence. In Java, all code must reside inside a class. By convention, the name of that class should match the name of the file that holds the program. You should also make sure that the capitalization of the filename matches the class name. The reason for this is that Java is case-sensitive. At this point, the convention that filenames correspond to class names may seem arbitrary. However, this convention makes it easier to maintain and organize your programs.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the source file on the command line, as shown here:

 C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of the program. As discussed earlier, the Java bytecode is the intermediate representation of your program that contains instructions the Java Virtual Machine will execute. Thus, the output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher, called java. To do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

 This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file named after the class and using the .class extension. This is why it is a good idea to give your Java source files the same name as the class they contain—the name of the source file will match the name of the .class file. When you execute java as just shown, you are actually specifying the name of the class that you want to execute. It will automatically search for a file by that name that has the .class extension. If it finds the file, it will execute the code contained in the specified class.

A Closer Look at the First Sample Program

Although Example.java is quite short, it includes several key features that are common to all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*
 This is a simple Java program.
 Call this file "Example.java".
*/

This is a comment. Like most other programming languages, Java lets you enter a remark into a program’s source file. The contents of a comment are ignored by the compiler. Instead, a comment describes or explains the operation of the program to anyone who is reading its source code. In this case, the comment describes the program and reminds you that the source file should be called Example.java. Of course, in real applications, comments generally explain how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program is called a multiline comment. This type of comment must begin with /* and end with */. Anything between these two comment symbols is ignored by the compiler. As the name suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

 class Example {

This line uses the keyword class to declare that a new class is being defined. Example is an identifier that is the name of the class. The entire class definition, including all of its members, will be between the opening curly brace ({) and the closing curly brace (}). For the moment, don’t worry too much about the details of a class except to note that in Java, all program activity occurs within one. This is one reason why all Java programs are (at least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

 // Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins with a // and ends at the end of the line. As a general rule, programmers use multiline comments for longer remarks and single-line comments for brief, line-by-line descriptions. The third type of comment, a documentation comment, will be discussed in the “Comments” section later in this chapter.

The next line of code is shown here:

 public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests, this is the line at which the program will begin executing. All Java applications begin execution by calling main(). The full meaning of each part of this line cannot be given now, since it involves a detailed understanding of Java’s approach to encapsulation. However, since most of the examples in the first part of this book will use this line of code, let’s take a brief look at each part now.

The public keyword is an access specifier, which allows the programmer to control the visibility of class members. When a class member is preceded by public, then that member may be accessed by code outside the class in which it is declared. (The opposite of public is private, which prevents a member from being used by code defined outside of its class.) In this case, main() must be declared as public, since it must be called by code outside of its class when the program is started. The keyword static allows main() to be called without having to instantiate a particular instance of the class. This is necessary since main() is called by the Java Virtual Machine before any objects are made. The keyword void simply tells the compiler that main() does not return a value. As you will see, methods may also return values. If all this seems a bit confusing, don’t worry. All of these concepts will be discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mind that Java is case-sensitive. Thus, Main is different from main. It is important to understand that the Java compiler will compile classes that do not contain a main() method. But java has no way to run these classes. So, if you had typed Main instead of main, the compiler would still compile your program. However, java would report an error because it would be unable to find the main() method.

Any information that you need to pass to a method is received by variables specified within the set of parentheses that follow the name of the method. These variables are called parameters. If there are no parameters required for a given method, you still need to include the empty parentheses. In main(), there is only one parameter, albeit a complicated one. String args[] declares a parameter named args, which is an array of instances of the class String. (Arrays are collections of similar objects.) Objects of type String store character strings. In this case, args receives any command-line arguments present when the program is executed. This program does not make use of this information, but other programs shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of the code that comprises a method will occur between the method’s opening curly brace and its closing curly brace.

One other point: main() is simply a starting place for your program. A complex program will have dozens of classes, only one of which will need to have a main() method to get things started. When you begin creating applets—Java programs that are embedded in web browsers—you won’t use main() at all, since the web browser uses a different means of starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

 System.out.println("This is a simple Java program.");

This line outputs the string “This is a simple Java program.” followed by a new line on the screen. Output is actually accomplished by the built-in println() method. In this case, println() displays the string which is passed to it. As you will see, println() can be used to display other types of information, too. The line begins with System.out. While too complicated to explain in detail at this time, briefly, System is a predefined class that provides access to the system, and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in most real-world Java programs and applets. Since most modern computing environments are windowed and graphical in nature, console I/O is used mostly for simple utility programs and for demonstration programs. Later in this book, you will learn other ways to generate output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end with a semicolon. The reason that the other lines in the program do not end in a semicolon is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

A Second Short Program

Perhaps no other concept is more fundamental to a programming language than that of a variable. As you probably know, a variable is a named memory location that may be assigned a value by your program. The value of a variable may be changed during the execution of the program. The next program shows how a variable is declared and how it is assigned a value. The program also illustrates some new aspects of console output. As the comments at the top of the program state, you should call this file Example2.java.

 /*
 Here is another short example.
 Call this file "Example2.java".
 */

 class Example2 {
 public static void main(String args[]) {
 int num; // this declares a variable called num

 num = 100; // this assigns num the value 100

 System.out.println("This is num: " + num);

 num = num * 2;

 System.out.print("The value of num * 2 is ");
 System.out.println(num);
 }
 }

When you run this program, you will see the following output:

 This is num: 100
 The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the program is shown here:

 int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages) requires that variables be declared before they are used.

Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the variable. If you want to declare more than one variable of the specified type, you may use a comma-separated list of variable names. Java defines several data types, including integer, character, and floating-point. The keyword int specifies an integer type.

In the program, the line

 num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal sign.

The next line of code outputs the value of num preceded by the string “This is num:”.

 System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string that precedes it, and then the resulting string is output. (Actually, num is first converted from an integer into its string equivalent and then concatenated with the string that precedes it. This process is described in detail later in this book.) This approach can be generalized. Using the + operator, you can join together as many items as you want within a single println() statement.

The next line of code assigns num the value of num times 2. Like most other languages, Java uses the * operator to indicate multiplication. After this line executes, num will contain the value 200.

Here are the next two lines in the program:

 System.out.print("The value of num * 2 is ");
 System.out.println(num);

Several new things are occurring here. First, the built-in method print() is used to display the string “The value of num * 2 is”. This string is not followed by a newline. This means that when the next output is generated, it will start on the same line. The print() method is just like println(), except that it does not output a newline character after each call. Now look at the call to println(). Notice that num is used by itself. Both print() and println() can be used to output values of any of Java’s built-in types.

Two Control Statements

Although Chapter 5 will look closely at control statements, two are briefly introduced here so that they can be used in example programs in Chapters 3 and 4. They will also help illustrate an important aspect of Java: blocks of code.

The if Statement

The Java if statement works much like the IF statement in any other language. Further, it is syntactically identical to the if statements in C, C++, and C#. Its simplest form is shown here:

if(condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed. If condition is false, then the statement is bypassed. Here is an example:

 if(num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression is true, and println() will execute. If num contains a value greater than or equal to 100, then the println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators which may be used in a conditional expression. Here are a few:

[image: Image]

Notice that the test for equality is the double equal sign.

Here is a program that illustrates the if statement:

 /*
 Demonstrate the if.

 Call this file "IfSample.java".
 */
 class IfSample {
 public static void main(String args[]) {
 int x, y;

 x = 10;
 y = 20;

 if(x < y) System.out.println("x is less than y");

 x = x * 2;
 if(x == y) System.out.println("x now equal to y");

 x = x * 2;
 if(x > y) System.out.println("x now greater than y");

 // this won't display anything
 if(x == y) System.out.println("you won't see this");
 }
 }

The output generated by this program is shown here:

 x is less than y
 x now equal to y
 x now greater than y

Notice one other thing in this program. The line

 int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop

As you may know from your previous programming experience, loop statements are an important part of nearly any programming language. Java is no exception. In fact, as you will see in Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the most versatile is the for loop. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable to an initial value. The condition is a Boolean expression that tests the loop control variable. If the outcome of that test is true, the for loop continues to iterate. If it is false, the loop terminates. The iteration expression determines how the loop control variable is changed each time the loop iterates. Here is a short program that illustrates the for loop:

 /*
 Demonstrate the for loop.

 Call this file "ForTest.java".
 */
 class ForTest {
 public static void main(String args[]) {
 int x;

 for(x = 0; x<10; x = x+1)
 System.out.println("This is x: " + x);
 }
 }

This program generates the following output:

 This is x: 0
 This is x: 1
 This is x: 2
 This is x: 3
 This is x: 4
 This is x: 5
 This is x: 6
 This is x: 7
 This is x: 8
 This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the initialization portion of the for. At the start of each iteration (including the first one), the conditional test x < 10 is performed. If the outcome of this test is true, the println() statement is executed, and then the iteration portion of the loop is executed. This process continues until the conditional test is false.

As a point of interest, in professionally written Java programs you will almost never see the iteration portion of the loop written as shown in the preceding program. That is, you will seldom see statements like this:

 x = x + 1;

The reason is that Java includes a special increment operator which performs this operation more efficiently. The increment operator is ++. (That is, two plus signs back to back.) The increment operator increases its operand by one. By use of the increment operator, the preceding statement can be written like this:

 x++;

Thus, the for in the preceding program will usually be written like this:

 for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same as it did before.

Java also provides a decrement operator, which is specified as – –. This operator decreases its operand by one.

Using Blocks of Code

Java allows two or more statements to be grouped into blocks of code, also called code blocks. This is done by enclosing the statements between opening and closing curly braces. Once a block of code has been created, it becomes a logical unit that can be used any place that a single statement can. For example, a block can be a target for Java’s if and for statements. Consider this if statement:

 if(x < y) { // begin a block
 x = y;
 y = 0;
 } // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the two statements inside the block form a logical unit, and one statement cannot execute without the other also executing. The key point here is that whenever you need to logically link two or more statements, you do so by creating a block.

Let’s look at another example. The following program uses a block of code as the target of a for loop.

 /*
 Demonstrate a block of code.

 Call this file "BlockTest.java"
 */
 class BlockTest {
 public static void main(String args[]) {
 int x, y;

 y = 20;

 // the target of this loop is a block
 for(x = 0; x<10; x++) {
 System.out.println("This is x: " + x);
 System.out.println("This is y: " + y);
 y = y - 2;
 }
 }
 }

The output generated by this program is shown here:

 This is x: 0
 This is y: 20
 This is x: 1
 This is y: 18
 This is x: 2
 This is y: 16
 This is x: 3
 This is y: 14
 This is x: 4
 This is y: 12
 This is x: 5
 This is y: 10
 This is x: 6
 This is y: 8
 This is x: 7
 This is y: 6
 This is x: 8
 This is y: 4
 This is x: 9
 This is y: 2

In this case, the target of the for loop is a block of code and not just a single statement. Thus, each time the loop iterates, the three statements inside the block will be executed. This fact is, of course, evidenced by the output generated by the program.

As you will see later in this book, blocks of code have additional properties and uses. However, the main reason for their existence is to create logically inseparable units of code.

Lexical Issues

Now that you have seen several short Java programs, it is time to more formally describe the atomic elements of Java. Java programs are a collection of whitespace, identifiers, literals, comments, operators, separators, and keywords. The operators are described in the next chapter. The others are described next.

Whitespace

Java is a free-form language. This means that you do not need to follow any special indentation rules. For instance, the Example program could have been written all on one line or in any other strange way you felt like typing it, as long as there was at least one whitespace character between each token that was not already delineated by an operator or separator. In Java, whitespace is a space, tab, or newline.

Identifiers

Identifiers are used for class names, method names, and variable names. An identifier may be any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore and dollar-sign characters. They must not begin with a number, lest they be confused with a numeric literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value. Some examples of valid identifiers are

[image: Image]

Invalid identifier names include these:

[image: Image]

Literals

A constant value in Java is created by using a literal representation of it. For example, here are some literals:

[image: Image]

Left to right, the first literal specifies an integer, the next is a floating-point value, the third is a character constant, and the last is a string. A literal can be used anywhere a value of its type is allowed.

Comments

As mentioned, there are three types of comments defined by Java. You have already seen two: single-line and multiline. The third type is called a documentation comment. This type of comment is used to produce an HTML file that documents your program. The documentation comment begins with a /** and ends with a */. Documentation comments are explained in Appendix A.

Separators

In Java, there are a few characters that are used as separators. The most commonly used separator in Java is the semicolon. As you have seen, it is used to terminate statements. The separators are shown in the following table:

[image: Image]

The Java Keywords

There are 50 keywords currently defined in the Java language (see Table 2-1). These keywords, combined with the syntax of the operators and separators, form the foundation of the Java language. These keywords cannot be used as names for a variable, class, or method.

[image: Image]

TABLE 2-1 Java Keywords

The keywords const and goto are reserved but not used. In the early days of Java, several other keywords were reserved for possible future use. However, the current specification for Java only defines the keywords shown in Table 2-1.

In addition to the keywords, Java reserves the following: true, false, and null. These are values defined by Java. You may not use these words for the names of variables, classes, and so on.

The Java Class Libraries

The sample programs shown in this chapter make use of two of Java’s built-in methods: println() and print(). As mentioned, these methods are members of the System class, which is a class predefined by Java that is automatically included in your programs. In the larger view, the Java environment relies on several built-in class libraries that contain many built-in methods that provide support for such things as I/O, string handling, networking, and graphics. The standard classes also provide support for windowed output. Thus, Java as a totality is a combination of the Java language itself, plus its standard classes. As you will see, the class libraries provide much of the functionality that comes with Java. Indeed, part of becoming a Java programmer is learning to use the standard Java classes. Throughout Part I of this book, various elements of the standard library classes and methods are described as needed. In Part II, the class libraries are described in detail.

CHAPTER 3
Data Types, Variables, and Arrays

This chapter examines three of Java’s most fundamental elements: data types, variables, and arrays. As with all modern programming languages, Java supports several types of data. You may use these types to declare variables and to create arrays. As you will see, Java’s approach to these items is clean, efficient, and cohesive.

Java Is a Strongly Typed Language

It is important to state at the outset that Java is a strongly typed language. Indeed, part of Java’s safety and robustness comes from this fact. Let’s see what this means. First, every variable has a type, every expression has a type, and every type is strictly defined. Second, all assignments, whether explicit or via parameter passing in method calls, are checked for type compatibility. There are no automatic coercions or conversions of conflicting types as in some languages. The Java compiler checks all expressions and parameters to ensure that the types are compatible. Any type mismatches are errors that must be corrected before the compiler will finish compiling the class.

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and boolean. The primitive types are also commonly referred to as simple types, and both terms will be used in this book. These can be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued signed numbers.

• Floating-point numbers This group includes float and double, which represent numbers with fractional precision.

• Characters This group includes char, which represents symbols in a character set, like letters and numbers.

• Boolean This group includes boolean, which is a special type for representing true/false values.

You can use these types as-is, or to construct arrays or your own class types. Thus, they form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although Java is otherwise completely object-oriented, the primitive types are not. They are analogous to the simple types found in most other non–object-oriented languages. The reason for this is efficiency. Making the primitive types into objects would have degraded performance too much.

The primitive types are defined to have an explicit range and mathematical behavior. Languages such as C and C++ allow the size of an integer to vary based upon the dictates of the execution environment. However, Java is different. Because of Java’s portability requirement, all data types have a strictly defined range. For example, an int is always 32 bits, regardless of the particular platform. This allows programs to be written that are guaranteed to run without porting on any machine architecture. While strictly specifying the size of an integer may cause a small loss of performance in some environments, it is necessary in order to achieve portability.

Let’s look at each type of data in turn.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive and negative values. Java does not support unsigned, positive-only integers. Many other computer languages support both signed and unsigned integers. However, Java’s designers felt that unsigned integers were unnecessary. Specifically, they felt that the concept of unsigned was used mostly to specify the behavior of the high-order bit, which defines the sign of an integer value. As you will see in Chapter 4, Java manages the meaning of the high-order bit differently, by adding a special “unsigned right shift” operator. Thus, the need for an unsigned integer type was eliminated.

The width of an integer type should not be thought of as the amount of storage it consumes, but rather as the behavior it defines for variables and expressions of that type. The Java run-time environment is free to use whatever size it wants, as long as the types behave as you declared them. The width and ranges of these integer types vary widely, as shown in this table:

[image: Image]

Let’s look at each type of integer.

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from −128 to 127. Variables of type byte are especially useful when you’re working with a stream of data from a network or file. They are also useful when you’re working with raw binary data that may not be directly compatible with Java’s other built-in types.

Byte variables are declared by use of the byte keyword. For example, the following declares two byte variables called b and c:

 byte b, c;

short

short is a signed 16-bit type. It has a range from −32,768 to 32,767. It is probably the least-used Java type. Here are some examples of short variable declarations:

 short s;
 short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a range from −2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are commonly employed to control loops and to index arrays. Although you might think that using a byte or short would be more efficient than using an int in situations in which the larger range of an int is not needed, this may not be the case. The reason is that when byte and short values are used in an expression they are promoted to int when the expression is evaluated. (Type promotion is described later in this chapter.) Therefore, int is often the best choice when an integer is needed.

long

long is a signed 64-bit type and is useful for those occasions where an int type is not large enough to hold the desired value. The range of a long is quite large. This makes it useful when big, whole numbers are needed. For example, here is a program that computes the number of miles that light will travel in a specified number of days.

 // Compute distance light travels using long variables.
 class Light {
 public static void main(String args[]) {
 int lightspeed;
 long days;
 long seconds;
 long distance;

 // approximate speed of light in miles per second
 lightspeed = 186000;

 days = 1000; // specify number of days here
 seconds = days * 24 * 60 * 60; // convert to seconds

 distance = lightspeed * seconds; // compute distance

 System.out.print("In " + days);
 System.out.print(" days light will travel about ");
 System.out.println(distance + " miles.");
 }
 }

This program generates the following output:

 In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating expressions that require fractional precision. For example, calculations such as square root, or transcendentals such as sine and cosine, result in a value whose precision requires a floating-point type. Java implements the standard (IEEE–754) set of floating-point types and operators. There are two kinds of floating-point types, float and double, which represent single- and double-precision numbers, respectively. Their width and ranges are shown here:

[image: Image]

Each of these floating-point types is examined next.

float

The type float specifies a single-precision value that uses 32 bits of storage. Single precision is faster on some processors and takes half as much space as double precision, but will become imprecise when the values are either very large or very small. Variables of type float are useful when you need a fractional component, but don’t require a large degree of precision. For example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

 float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double precision is actually faster than single precision on some modern processors that have been optimized for high-speed mathematical calculations. All transcendental math functions, such as sin(), cos(), and sqrt(), return double values. When you need to maintain accuracy over many iterative calculations, or are manipulating large-valued numbers, double is the best choice.

Here is a short program that uses double variables to compute the area of a circle:

 // Compute the area of a circle.
 class Area {
 public static void main(String args[]) {
 double pi, r, a;

 r = 10.8; // radius of circle
 pi = 3.1416; // pi, approximately
 a = pi * r * r; // compute area

 System.out.println("Area of circle is " + a);
 }
 }

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers beware: char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a fully international character set that can represent all of the characters found in all human languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul, and many more. For this purpose, it requires 16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars. The standard set of characters known as ASCII still ranges from 0 to 127 as always, and the extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. Since Java is designed to allow programs to be written for worldwide use, it makes sense that it would use Unicode to represent characters. Of course, the use of Unicode is somewhat inefficient for languages such as English, German, Spanish, or French, whose characters can easily be contained within 8 bits. But such is the price that must be paid for global portability.

NOTE

More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

 // Demonstrate char data type.
 class CharDemo {
 public static void main(String args[]) {
 char ch1, ch2;

 ch1 = 88; // code for X
 ch2 = 'Y';

 System.out.print("ch1 and ch2: ");
 System.out.println(ch1 + " " + ch2);
 }
 }

This program displays the following output:

 ch1 and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that corresponds to the letter X. As mentioned, the ASCII character set occupies the first 127 values in the Unicode character set. For this reason, all the “old tricks” that you may have used with characters in other languages will work in Java, too.

Although char is designed to hold Unicode characters, it can also be thought of as an integer type on which you can perform arithmetic operations. For example, you can add two characters together, or increment the value of a character variable. Consider the following program:

 // char variables behave like integers.
 class CharDemo2 {
 public static void main(String args[]) {
 char ch1;

 ch1 = 'X';
 System.out.println("ch1 contains " + ch1);

 ch1++; // increment ch1
 System.out.println("ch1 is now " + ch1);
 }
 }

The output generated by this program is shown here:

 ch1 contains X
 ch1 is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This results in ch1 containing Y, the next character in the ASCII (and Unicode) sequence.

Booleans

Java has a primitive type, called boolean, for logical values. It can have only one of two possible values, true or false. This is the type returned by all relational operators, as in the case of a < b. boolean is also the type required by the conditional expressions that govern the control statements such as if and for.

Here is a program that demonstrates the boolean type:

 // Demonstrate boolean values.
 class BoolTest {
 public static void main(String args[]) {
 boolean b;

 b = false;
 System.out.println("b is " + b);
 b = true;
 System.out.println("b is " + b);

 // a boolean value can control the if statement
 if(b) System.out.println("This is executed.");

 b = false;
 if(b) System.out.println("This is not executed.");

 // outcome of a relational operator is a boolean value
 System.out.println("10 > 9 is " + (10 > 9));
 }
 }

The output generated by this program is shown here:

 b is false
 b is true
 This is executed.
 10 > 9 is true

There are three interesting things to notice about this program. First, as you can see, when a boolean value is output by println(), “true” or “false” is displayed. Second, the value of a boolean variable is sufficient, by itself, to control the if statement. There is no need to write an if statement like this:

 if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the expression 10 > 9 displays the value “true.” Further, the extra set of parentheses around 10 > 9 is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals

Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally described, let’s take a closer look at them.

Integer Literals

Integers are probably the most commonly used type in the typical program. Any whole number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values, meaning they are describing a base 10 number. There are two other bases which can be used in integer literals, octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java by a leading zero. Normal decimal numbers cannot have a leading zero. Thus, the seemingly valid value 09 will produce an error from the compiler, since 9 is outside of octal’s 0 to 7 range. A more common base for numbers used by programmers is hexadecimal, which matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a hexadecimal constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is 0 to 15, so A through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is strongly typed, you might be wondering how it is possible to assign an integer literal to one of Java’s other integer types, such as byte or long, without causing a type mismatch error. Fortunately, such situations are easily handled. When a literal value is assigned to a byte or short variable, no error is generated if the literal value is within the range of the target type. An integer literal can always be assigned to a long variable. However, to specify a long literal, you will need to explicitly tell the compiler that the literal value is of type long. You do this by appending an upper- or lowercase L to the literal. For example, 0×7ffffffffffffffL or 9223372036854775807L is the largest long. An integer can also be assigned to a char as long as it is within range.

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They can be expressed in either standard or scientific notation. Standard notation consists of a whole number component followed by a decimal point followed by a fractional component. For example, 2.0, 3.14159, and 0.6667 represent valid standard-notation floating-point numbers. Scientific notation uses a standard-notation, floating-point number plus a suffix that specifies a power of 10 by which the number is to be multiplied. The exponent is indicated by an E or e followed by a decimal number, which can be positive or negative. Examples include 6.022E23, 314159E–05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you must append an F or f to the constant. You can also explicitly specify a double literal by appending a D or d. Doing so is, of course, redundant. The default double type consumes 64 bits of storage, while the less-accurate float type requires only 32 bits.

Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean value can have, true and false. The values of true and false do not convert into any numerical representation. The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, they can only be assigned to variables declared as boolean, or used in expressions with Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that can be converted into integers and manipulated with the integer operators, such as the addition and subtraction operators. A literal character is represented inside a pair of single quotes. All of the visible ASCII characters can be directly entered inside the quotes, such as ‘a’, ‘z’, and ‘@’. For characters that are impossible to enter directly, there are several escape sequences that allow you to enter the character you need, such as ‘\″ for the single-quote character itself and ‘\n’ for the newline character. There is also a mechanism for directly entering the value of a character in octal or hexadecimal. For octal notation, use the backslash followed by the three-digit number. For example, ‘\141’ is the letter ‘a’. For hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For example, ‘\u0061’ is the ISO-Latin-1‘a’ because the top byte is zero. ‘\ua432’ is a Japanese Katakana character. Table 3-1 shows the character escape sequences.

String Literals

String literals in Java are specified like they are in most other languages—by enclosing a sequence of characters between a pair of double quotes. Examples of string literals are

 "Hello World"
 "two\nlines"
 "\"This is in quotes\""

[image: Image]

TABLE 3-1 Character Escape Sequences

The escape sequences and octal/hexadecimal notations that were defined for character literals work the same way inside of string literals. One important thing to note about Java strings is that they must begin and end on the same line. There is no line-continuation escape sequence as there is in some other languages.

NOTE

As you may know, in some other languages, including C/C++, strings are implemented as arrays of characters. However, this is not the case in Java. Strings are actually object types. As you will see later in this book, because Java implements strings as objects, Java includes extensive string-handling capabilities that are both powerful and easy to use.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the combination of an identifier, a type, and an optional initializer. In addition, all variables have a scope, which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...];

The type is one of Java’s atomic types, or the name of a class or interface. (Class and interface types are discussed later in Part I of this book.) The identifier is the name of the variable. You can initialize the variable by specifying an equal sign and a value. Keep in mind that the initialization expression must result in a value of the same (or compatible) type as that specified for the variable. To declare more than one variable of the specified type, use a comma-separated list.

Here are several examples of variable declarations of various types. Note that some include an initialization.

[image: Image]

The identifiers that you choose have nothing intrinsic in their names that indicates their type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows variables to be initialized dynamically, using any expression valid at the time the variable is declared.

For example, here is a short program that computes the length of the hypotenuse of a right triangle given the lengths of its two opposing sides:

 // Demonstrate dynamic initialization.
 class DynInit {
 public static void main(String args[]) {
 double a = 3.0, b = 4.0;

 // c is dynamically initialized
 double c = Math.sqrt(a * a + b * b);

 System.out.println("Hypotenuse is " + c);
 }
 }

Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized by constants. However, c is initialized dynamically to the length of the hypotenuse (using the Pythagorean theorem). The program uses another of Java’s built-in methods, sqrt(), which is a member of the Math class, to compute the square root of its argument. The key point here is that the initialization expression may use any element valid at the time of the initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method. However, Java allows variables to be declared within any block. As explained in Chapter 2, a block is begun with an opening curly brace and ended by a closing curly brace. A block defines a scope. Thus, each time you start a new block, you are creating a new scope. A scope determines what objects are visible to other parts of your program. It also determines the lifetime of those objects.

Many other computer languages define two general categories of scopes: global and local. However, these traditional scopes do not fit well with Java’s strict, object-oriented model. While it is possible to create what amounts to being a global scope, it is by far the exception, not the rule. In Java, the two major scopes are those defined by a class and those defined by a method. Even this distinction is somewhat artificial. However, since the class scope has several unique properties and attributes that do not apply to the scope defined by a method, this distinction makes some sense. Because of the differences, a discussion of class scope (and variables declared within it) is deferred until Chapter 6, when classes are described. For now, we will only examine the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that method has parameters, they too are included within the method’s scope. Although this book will look more closely at parameters in Chapter 6, for the sake of this discussion, they work the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible) to code that is defined outside that scope. Thus, when you declare a variable within a scope, you are localizing that variable and protecting it from unauthorized access and/or modification. Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are creating a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means that objects declared in the outer scope will be visible to code within the inner scope. However, the reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

 // Demonstrate block scope.
 class Scope {
 public static void main(String args[]) {
 int x; // known to all code within main

 x = 10;
 if(x == 10) { // start new scope
 int y = 20; // known only to this block

 // x and y both known here.
 System.out.println("x and y: " + x + " " + y);
 x = y * 2;
 }
 // y = 100; // Error! y not known here

 // x is still known here.
 System.out.println("x is " + x);
 }
 }

As the comments indicate, the variable x is declared at the start of main()’s scope and is accessible to all subsequent code within main(). Within the if block, y is declared. Since a block defines a scope, y is only visible to other code within its block. This is why outside of its block, the line y = 100; is commented out. If you remove the leading comment symbol, a compile-time error will occur, because y is not visible outside of its block. Within the if block, x can be used because code within a block (that is, a nested scope) has access to variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they are declared. Thus, if you define a variable at the start of a method, it is available to all of the code within that method. Conversely, if you declare a variable at the end of a block, it is effectively useless, because no code will have access to it. For example, this fragment is invalid because count cannot be used prior to its declaration:

 // This fragment is wrong!
 count = 100; // oops! cannot use count before it is declared!
 int count;

Here is another important point to remember: variables are created when their scope is entered, and destroyed when their scope is left. This means that a variable will not hold its value once it has gone out of scope. Therefore, variables declared within a method will not hold their values between calls to that method. Also, a variable declared within a block will lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be reinitialized each time the block in which it is declared is entered. For example, consider the next program.

 // Demonstrate lifetime of a variable.
 class LifeTime {
 public static void main(String args[]) {
 int x;

 for(x = 0; x < 3; x++) {
 int y = -1; // y is initialized each time block is entered
 System.out.println("y is: " + y); // this always prints -1
 y = 100;
 System.out.println("y is now: " + y);
 }
 }
 }

The output generated by this program is shown here:

 y is: -1
 y is now: 100
 y is: -1
 y is now: 100
 y is: -1
 y is now: 100

As you can see, y is reinitialized to −1 each time the inner for loop is entered. Even though it is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have the same name as one in an outer scope. For example, the following program is illegal:

 // This program will not compile
 class ScopeErr {
 public static void main(String args[]) {
 int bar = 1;
 { // creates a new scope
 int bar = 2; // Compile-time error - bar already defined!
 }
 }
 }

Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly common to assign a value of one type to a variable of another type. If the two types are compatible, then Java will perform the conversion automatically. For example, it is always possible to assign an int value to a long variable. However, not all types are compatible, and thus, not all type conversions are implicitly allowed. For instance, there is no automatic conversion defined from double to byte. Fortunately, it is still possible to obtain a conversion between incompatible types. To do so, you must use a cast, which performs an explicit conversion between incompatible types. Let’s look at both automatic type conversions and casting.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int type is always large enough to hold all valid byte values, so no explicit cast statement is required.

For widening conversions, the numeric types, including integer and floating-point types, are compatible with each other. However, there are no automatic conversions from the numeric types to char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For example, what if you want to assign an int value to a byte variable? This conversion will not be performed automatically, because a byte is smaller than an int. This kind of conversion is sometimes called a narrowing conversion, since you are explicitly making the value narrower so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For example, the following fragment casts an int to a byte. If the integer’s value is larger than the range of a byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

 int a;
 byte b;
 // ...
 b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an integer type: truncation. As you know, integers do not have fractional components. Thus, when a floating-point value is assigned to an integer type, the fractional component is lost. For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1. The 0.23 will have been truncated. Of course, if the size of the whole number component is too large to fit into the target integer type, then that value will be reduced modulo the target type’s range.

The following program demonstrates some type conversions that require casts:

 // Demonstrate casts.
 class Conversion {
 public static void main(String args[]) {
 byte b;
 int i = 257;
 double d = 323.142;

 System.out.println("\nConversion of int to byte.");
 b = (byte) i;
 System.out.println("i and b " + i + " " + b);

 System.out.println("\nConversion of double to int.");
 i = (int) d;
 System.out.println("d and i " + d + " " + i);

 System.out.println("\nConversion of double to byte.");
 b = (byte) d;
 System.out.println("d and b " + d + " " + b);
 }
 }

This program generates the following output:

 Conversion of int to byte.
 i and b 257 1

 Conversion of double to int.
 d and i 323.142 323

 Conversion of double to byte.
 d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result is the remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case. When the d is converted to an int, its fractional component is lost. When d is converted to a byte, its fractional component is lost, and the value is reduced modulo 256, which in this case is 67.

Automatic Type Promotion in Expressions

In addition to assignments, there is another place where certain type conversions may occur: in expressions. To see why, consider the following. In an expression, the precision required of an intermediate value will sometimes exceed the range of either operand. For example, examine the following expression:

 byte a = 40;
 byte b = 50;
 byte c = 100;
 int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of its byte operands. To handle this kind of problem, Java automatically promotes each byte, short, or char operand to int when evaluating an expression. This means that the subexpression a * b is performed using integers—not bytes. Thus, 2,000, the result of the intermediate expression, 50 * 40, is legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time errors. For example, this seemingly correct code causes a problem:

 byte b = 50;
 b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte variable. However, because the operands were automatically promoted to int when the expression was evaluated, the result has also been promoted to int. Thus, the result of the expression is now of type int, which cannot be assigned to a byte without the use of a cast. This is true even if, as in this particular case, the value being assigned would still fit in the target type.

In cases where you understand the consequences of overflow, you should use an explicit cast, such as

 byte b = 50;
 b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules

Java defines several type promotion rules that apply to expressions. They are as follows: First, all byte, short, and char values are promoted to int, as just described. Then, if one operand is a long, the whole expression is promoted to long. If one operand is a float, the entire expression is promoted to float. If any of the operands is double, the result is double.

The following program demonstrates how each value in the expression gets promoted to match the second argument to each binary operator:

 class Promote {
 public static void main(String args[]) {
 byte b = 42;
 char c = 'a';
 short s = 1024;
 int i = 50000;
 float f = 5.67f;
 double d = .1234;
 double result = (f * b) + (i / c) - (d * s);
 System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
 System.out.println("result = " + result);
 }
 }

Let’s look closely at the type promotions that occur in this line from the program:

 double result = (f * b) + (i / c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression is float. Next, in the subexpression i/c, c is promoted to int, and the result is of type int. Then, in d * s, the value of s is promoted to double, and the type of the subexpression is double. Finally, these three intermediate values, float, int, and double, are considered. The outcome of float plus an int is a float. Then the resultant float minus the last double is promoted to double, which is the type for the final result of the expression.

Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays of any type can be created and may have one or more dimensions. A specific element in an array is accessed by its index. Arrays offer a convenient means of grouping related information.

NOTE

If you are familiar with C/C++, be careful. Arrays in Java work differently than they do in those languages.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first must create an array variable of the desired type. The general form of a one-dimensional array declaration is

type var-name[];

Here, type declares the base type of the array. The base type determines the data type of each element that comprises the array. Thus, the base type for the array determines what type of data the array will hold. For example, the following declares an array named month_days with the type “array of int”:

 int month_days[];

Although this declaration establishes the fact that month_days is an array variable, no array actually exists. In fact, the value of month_days is set to null, which represents an array with no value. To link month_days with an actual, physical array of integers, you must allocate one using new and assign it to month_days. new is a special operator that allocates memory.

You will look more closely at new in a later chapter, but you need to use it now to allocate memory for arrays. The general form of new as it applies to one-dimensional arrays appears as follows:

array-var = new type [size];

Here, type specifies the type of data being allocated, size specifies the number of elements in the array, and array-var is the array variable that is linked to the array. That is, to use new to allocate an array, you must specify the type and number of elements to allocate. The elements in the array allocated by new will automatically be initialized to zero. This example allocates a 12-element array of integers and links them to month_days.

 month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a variable of the desired array type. Second, you must allocate the memory that will hold the array, using new, and assign it to the array variable. Thus, in Java all arrays are dynamically allocated. If the concept of dynamic allocation is unfamiliar to you, don’t worry. It will be described at length later in this book.

Once you have allocated an array, you can access a specific element in the array by specifying its index within square brackets. All array indexes start at zero. For example, this statement assigns the value 28 to the second element of month_days.

 month_days[1] = 28;

The next line displays the value stored at index 3.

 System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the number of days in each month.

 // Demonstrate a one-dimensional array.
 class Array {
 public static void main(String args[]) {
 int month_days[];
 month_days = new int[12];
 month_days[0] = 31;
 month_days[1] = 28;
 month_days[2] = 31;
 month_days[3] = 30;
 month_days[4] = 31;
 month_days[5] = 30;
 month_days[6] = 31;
 month_days[7] = 31;
 month_days[8] = 30;
 month_days[9] = 31;
 month_days[10] = 30;
 month_days[11] = 31;
 System.out.println("April has " + month_days[3] + " days.");
 }
 }

When you run this program, it prints the number of days in April. As mentioned, Java array indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the array itself, as shown here:

 int month_days[] = new int[12];

This is the way that you will normally see it done in professionally written Java programs.

Arrays can be initialized when they are declared. The process is much the same as that used to initialize the simple types. An array initializer is a list of comma-separated expressions surrounded by curly braces. The commas separate the values of the array elements. The array will automatically be created large enough to hold the number of elements you specify in the array initializer. There is no need to use new. For example, to store the number of days in each month, the following code creates an initialized array of integers:

 // An improved version of the previous program.
 class AutoArray {
 public static void main(String args[]) {

 int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
 30, 31 };
 System.out.println("April has " + month_days[3] + " days.");
 }
 }

When you run this program, you see the same output as that generated by the previous version.

Java strictly checks to make sure you do not accidentally try to store or reference values outside of the range of the array. The Java run-time system will check to be sure that all array indexes are in the correct range. For example, the run-time system will check the value of each index into month_days to make sure that it is between 0 and 11 inclusive. If you try to access elements outside the range of the array (negative numbers or numbers greater than the length of the array), you will cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of a set of numbers.

 // Average an array of values.
 class Average {
 public static void main(String args[]) {
 double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
 double result = 0;
 int i;
 for(i=0; i<5; i++)
 result = result + nums[i];

 System.out.println("Average is " + result / 5);
 }
 }

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look and act like regular multidimensional arrays. However, as you will see, there are a couple of subtle differences. To declare a multidimensional array variable, specify each additional index using another set of square brackets. For example, the following declares a two-dimensional array variable called twoD.

 int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.

The following program numbers each element in the array from left to right, top to bottom, and then displays these values:

 // Demonstrate a two-dimensional array.
 class TwoDArray {
 public static void main(String args[]) {
 int twoD[][]= new int[4][5];
 int i, j, k = 0;

 for(i=0; i<4; i++)
 for(j=0; j<5; j++) {
 twoD[i][j] = k;
 k++;

 }

 for(i=0; i<4; i++) {
 for(j=0; j<5; j++)
 System.out.print(twoD[i][j] + " ");
 System.out.println();
 }
 }
 }

This program generates the following output:

 0 1 2 3 4
 5 6 7 8 9
 10 11 12 13 14
 15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the memory for the first (leftmost) dimension. You can allocate the remaining dimensions

[image: Image]

FIGURE 3-1 A conceptual view of a 4 by 5, two-dimensional array

separately. For example, this following code allocates memory for the first dimension of twoD when it is declared. It allocates the second dimension manually.

 int twoD[][] = new int[4][];
 twoD[0] = new int[5];
 twoD[1] = new int[5];
 twoD[2] = new int[5];
 twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension arrays in this situation, there may be in others. For example, when you allocate dimensions manually, you do not need to allocate the same number of elements for each dimension. As stated earlier, since multidimensional arrays are actually arrays of arrays, the length of each array is under your control. For example, the following program creates a two-dimensional array in which the sizes of the second dimension are unequal.

 // Manually allocate differing size second dimensions.
 class TwoDAgain {
 public static void main(String args[]) {
 int twoD[][] = new int[4][];
 twoD[0] = new int[1];
 twoD[1] = new int[2];
 twoD[2] = new int[3];
 twoD[3] = new int[4];

 int i, j, k = 0;

 for(i=0; i<4; i++)
 for(j=0; j<i+1; j++) {
 twoD[i][j] = k;
 k++;
 }

 for(i=0; i<4; i++) {
 for(j=0; j<i+1; j++)
 System.out.print(twoD[i][j] + " ");
 System.out.println();
 }
 }
 }

This program generates the following output:

[image: Image]

The array created by this program looks like this:

[image: Image]

The use of uneven (or, irregular) multidimensional arrays may not be appropriate for many applications, because it runs contrary to what people expect to find when a multidimensional array is encountered. However, irregular arrays can be used effectively in some situations. For example, if you need a very large two-dimensional array that is sparsely populated (that is, one in which not all of the elements will be used), then an irregular array might be a perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each dimension’s initializer within its own set of curly braces. The following program creates a matrix where each element contains the product of the row and column indexes. Also notice that you can use expressions as well as literal values inside of array initializers.

 // Initialize a two-dimensional array.
 class Matrix {
 public static void main(String args[]) {
 double m[][] = {
 { 0*0, 1*0, 2*0, 3*0 },
 { 0*1, 1*1, 2*1, 3*1 },
 { 0*2, 1*2, 2*2, 3*2 },
 { 0*3, 1*3, 2*3, 3*3 }
 };
 int i, j;

 for(i=0; i<4; i++) {
 for(j=0; j<4; j++)
 System.out.print(m[i][j] + " ");
 System.out.println();
 }
 }
 }

When you run this program, you will get the following output:

[image: Image]

As you can see, each row in the array is initialized as specified in the initialization lists.

Let’s look at one more example that uses a multidimensional array. The following program creates a 3 by 4 by 5, three-dimensional array. It then loads each element with the product of its indexes. Finally, it displays these products.

 // Demonstrate a three-dimensional array.
 class ThreeDMatrix {
 public static void main(String args[]) {
 int threeD[][][] = new int[3][4][5];
 int i, j, k;

 for(i=0; i<3; i++)
 for(j=0; j<4; j++)
 for(k=0; k<5; k++)
 threeD[i][j][k] = i * j * k;

 for(i=0; i<3; i++) {
 for(j=0; j<4; j++) {
 for(k=0; k<5; k++)
 System.out.print(threeD[i][j][k] + " ");
 System.out.println();
 }
 System.out.println();
 }
 }
 }

This program generates the following output:

[image: Image]

[image: Image]

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable. For example, the following two declarations are equivalent:

 int al[] = new int[3];
 int[] a2 = new int[3];

The following declarations are also equivalent:

 char twod1[][] = new char[3][4];
 char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the same time. For example,

 int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

 int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for a method. Both forms are used in this book.

A Few Words About Strings

As you may have noticed, in the preceding discussion of data types and arrays there has been no mention of strings or a string data type. This is not because Java does not support such a type—it does. It is just that Java’s string type, called String, is not a simple type. Nor is it simply an array of characters. Rather, String defines an object, and a full description of it requires an understanding of several object-related features. As such, it will be covered later in this book, after objects are described. However, so that you can use simple strings in example programs, the following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of strings. A quoted string constant can be assigned to a String variable. A variable of type String can be assigned to another variable of type String. You can use an object of type String as an argument to println(). For example, consider the following fragment:

 String str = "this is a test";
 System.out.println(str);

Here, str is an object of type String. It is assigned the string “this is a test”. This string is displayed by the println() statement.

As you will see later, String objects have many special features and attributes that make them quite powerful and easy to use. However, for the next few chapters, you will be using them only in their simplest form.

A Note to C/C++ Programmers About Pointers

If you are an experienced C/C++ programmer, then you know that these languages provide support for pointers. However, no mention of pointers has been made in this chapter. The reason for this is simple: Java does not support or allow pointers. (Or more properly, Java does not support pointers that can be accessed and/or modified by the programmer.) Java cannot allow pointers, because doing so would allow Java programs to breach the firewall between the Java execution environment and the host computer. (Remember, a pointer can be given any address in memory—even addresses that might be outside the Java run-time system.) Since C/C++ make extensive use of pointers, you might be thinking that their loss is a significant disadvantage to Java. However, this is not true. Java is designed in such a way that as long as you stay within the confines of the execution environment, you will never need to use a pointer, nor would there be any benefit in using one.

CHAPTER 4
Operators

Java provides a rich operator environment. Most of its operators can be divided into the following four groups: arithmetic, bitwise, relational, and logical. Java also defines some additional operators that handle certain special situations. This chapter describes all of Java’s operators except for the type comparison operator instanceof, which is examined in Chapter 13.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The following table lists the arithmetic operators:

[image: Image]

The operands of the arithmetic operators must be of a numeric type. You cannot use them on boolean types, but you can use them on char types, since the char type in Java is, essentially, a subset of int.

The Basic Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and division—all behave as you would expect for all numeric types. The minus operator also has a unary form that negates its single operand. Remember that when the division operator is applied to an integer type, there will be no fractional component attached to the result.

The following simple example program demonstrates the arithmetic operators. It also illustrates the difference between floating-point division and integer division.

 // Demonstrate the basic arithmetic operators.
 class BasicMath {
 public static void main(String args[]) {
 // arithmetic using integers
 System.out.println("Integer Arithmetic");
 int a = 1 + 1;
 int b = a * 3;
 int c = b / 4;
 int d = c - a;
 int e = -d;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 System.out.println("d = " + d);
 System.out.println("e = " + e);

 // arithmetic using doubles
 System.out.println("\nFloating Point Arithmetic");
 double da = 1 + 1;
 double db = da * 3;
 double dc = db / 4;
 double dd = dc - a;
 double de = -dd;
 System.out.println("da = " + da);
 System.out.println("db = " + db);
 System.out.println("dc = " + dc);
 System.out.println("dd = " + dd);
 System.out.println("de = " + de);
 }
 }

When you run this program, you will see the following output:

 Integer Arithmetic
 a = 2
 b = 6
 c = 1
 d = -1
 e = 1

 Floating Point Arithmetic
 da = 2.0
 db = 6.0
 dc = 1.5
 dd = -0.5
 de = 0.5

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be applied to floating-point types as well as integer types. The following example program demonstrates the %:

 // Demonstrate the % operator.
 class Modulus {
 public static void main(String args[]) {
 int x = 42;
 double y = 42.25;

 System.out.println("x mod 10 = " + x % 10);
 System.out.println("y mod 10 = " + y % 10);
 }
 }

When you run this program, you will get the following output:

 x mod 10 = 2
 y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with an assignment. As you probably know, statements like the following are quite common in programming:

 a = a + 4;

In Java, you can rewrite this statement as shown here:

 a += 4;

This version uses the += compound assignment operator. Both statements perform the same action: they increase the value of a by 4.

Here is another example,

 a = a % 2;

which can be expressed as

 a %= 2;

In this case, the %= obtains the remainder of a/2 and puts that result back into a.

There are compound assignment operators for all of the arithmetic, binary operators. Thus, any statement of the form

var = var op expression;

can be rewritten as

var op= expression;

The compound assignment operators provide two benefits. First, they save you a bit of typing, because they are “shorthand” for their equivalent long forms. Second, they are implemented more efficiently by the Java run-time system than are their equivalent long forms. For these reasons, you will often see the compound assignment operators used in professionally written Java programs.

Here is a sample program that shows several op= assignments in action:

 // Demonstrate several assignment operators.
 class OpEquals {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c = 3;

 a += 5;
 b *= 4;
 c += a * b;
 c %= 6;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 }
 }

The output of this program is shown here:

 a = 6
 b = 8
 c = 3

Increment and Decrement

The ++ and the – – are Java’s increment and decrement operators. They were introduced in Chapter 2. Here they will be discussed in detail. As you will see, they have some special properties that make them quite interesting. Let’s begin by reviewing precisely what the increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator decreases its operand by one. For example, this statement:

 x = x + 1;

can be rewritten like this by use of the increment operator:

 x++;

Similarly, this statement:

 x = x - 1;

is equivalent to

 x--;

These operators are unique in that they can appear both in postfix form, where they follow the operand as just shown, and prefix form, where they precede the operand. In the foregoing examples, there is no difference between the prefix and postfix forms. However, when the increment and/or decrement operators are part of a larger expression, then a subtle, yet powerful, difference between these two forms appears. In the prefix form, the operand is incremented or decremented before the value is obtained for use in the expression. In postfix form, the previous value is obtained for use in the expression, and then the operand is modified. For example:

 x = 42;
 y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs before x is assigned to y. Thus, the line y = ++x; is the equivalent of these two statements:

 x = x + 1;
 y = x;

However, when written like this,

 x = 42;
 y = x++;

the value of x is obtained before the increment operator is executed, so the value of y is 42. Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two statements:

 y = x;
 x = x + 1;

The following program demonstrates the increment operator.

 // Demonstrate ++.
 class IncDec {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c;
 int d;
 c = ++b;
 d = a++;
 c++;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 System.out.println("d = " + d);
 }
 }

The output of this program follows:

 a = 2
 b = 3
 c = 4
 d = 1

The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types, long, int, short, char, and byte. These operators act upon the individual bits of their operands. They are summarized in the following table:

[image: Image]

Since the bitwise operators manipulate the bits within an integer, it is important to understand what effects such manipulations may have on a value. Specifically, it is useful to know how Java stores integer values and how it represents negative numbers. So, before continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths. For example, the byte value for 42 in binary is 00101010, where each position represents a power of two, starting with 20 at the rightmost bit. The next bit position to the left would be 21, or 2, continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits set at positions 1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25, which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can represent negative values as well as positive ones. Java uses an encoding known as two’s complement, which means that negative numbers are represented by inverting (changing 1’s to 0’s and vice versa) all of the bits in a value, then adding 1 to the result. For example, −42 is represented by inverting all of the bits in 42, or 00101010, which yields 11010101, then adding 1, which results in 11010110, or −42. To decode a negative number, first invert all of the bits, then add 1. For example, −42, or 11010110 inverted, yields 00101001, or 41, so when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s complement is easy to see when you consider the issue of zero crossing. Assuming a byte value, zero is represented by 00000000. In one’s complement, simply inverting all of the bits creates 11111111, which creates negative zero. The trouble is that negative zero is invalid in integer math. This problem is solved by using two’s complement to represent negative values. When using two’s complement, 1 is added to the complement, producing 100000000. This produces a 1 bit too far to the left to fit back into the byte value, resulting in the desired behavior, where −0 is the same as 0, and 11111111 is the encoding for −1. Although we used a byte value in the preceding example, the same basic principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all integers are signed values in Java—applying the bitwise operators can easily produce unexpected results. For example, turning on the high-order bit will cause the resulting value to be interpreted as a negative number, whether this is what you intended or not. To avoid unpleasant surprises, just remember that the high-order bit determines the sign of an integer no matter how that high-order bit gets set.

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of each operation. In the discussion that follows, keep in mind that the bitwise operators are applied to each individual bit within each operand.

[image: Image]

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all other cases. Here is an example:

[image: Image]

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then the resultant bit is a 1, as shown here:

[image: Image]

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1. Otherwise, the result is zero. The following example shows the effect of the ^. This example also demonstrates a useful attribute of the XOR operation. Notice how the bit pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever the second operand has a 0 bit, the first operand is unchanged. You will find this property useful when performing some types of bit manipulations.

[image: Image]

Using the Bitwise Logical Operators

The following program demonstrates the bitwise logical operators:

 // Demonstrate the bitwise logical operators.
 class BitLogic {
 public static void main(String args[]) {
 String binary[] = {
 "0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",
 "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"
 };
 int a = 3; // 0 + 2 + 1 or 0011 in binary
 int b = 6; // 4 + 2 + 0 or 0110 in binary
 int c = a | b;
 int d = a & b;
 int e = a ^ b;
 int f = (~a & b) | (a & ~b);
 int g = ~a & 0×0f;

 System.out.println(" a = " + binary[a]);
 System.out.println(" b = " + binary[b]);
 System.out.println(" a|b = " + binary[c]);
 System.out.println(" a&b = " + binary[d]);
 System.out.println(" a^b = " + binary[e]);
 System.out.println("~a&b|a&~b = " + binary[f]);
 System.out.println(" ~a = " + binary[g]);
 }
 }

In this example, a and b have bit patterns that present all four possibilities for two binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the results in c and d. The values assigned to e and f are the same and illustrate how the ^ works. The string array named binary holds the human-readable, binary representation of the numbers 0 through 15. In this example, the array is indexed to show the binary representation of each result. The array is constructed such that the correct string representation of a binary value n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in binary) in order to reduce its value to less than 16, so it can be printed by use of the binary array. Here is the output from this program:

 a = 0011
 b = 0110
 a|b = 0111
 a&b = 0010
 a^b = 0101
 ~a&b|a&~b = 0101
 ~a = 1100

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the << moves all of the bits in the specified value to the left by the number of bit positions specified by num. For each shift left, the high-order bit is shifted out (and lost), and a zero is brought in on the right. This means that when a left shift is applied to an int operand, bits are lost once they are shifted past bit position 31. If the operand is a long, then bits are lost after bit position 63.

Java’s automatic type promotions produce unexpected results when you are shifting byte and short values. As you know, byte and short values are promoted to int when an expression is evaluated. Furthermore, the result of such an expression is also an int. This means that the outcome of a left shift on a byte or short value will be an int, and the bits shifted left will not be lost until they shift past bit position 31. Furthermore, a negative byte or short value will be sign-extended when it is promoted to int. Thus, the high-order bits will be filled with 1’s. For these reasons, to perform a left shift on a byte or short implies that you must discard the high-order bytes of the int result. For example, if you left-shift a byte value, that value will first be promoted to int and then shifted. This means that you must discard the top three bytes of the result if what you want is the result of a shifted byte value. The easiest way to do this is to simply cast the result back into a byte. The following program demonstrates this concept:

 // Left shifting a byte value.
 class ByteShift {
 public static void main(String args[]) {
 byte a = 64, b;
 int i;
 i = a << 2;
 b = (byte) (a << 2);

 System.out.println("Original value of a: " + a);
 System.out.println("i and b: " + i + " " + b);
 }
 }

The output generated by this program is shown here:

 Original value of a: 64
 i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64 (0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has been shifted out.

Since each left shift has the effect of doubling the original value, programmers frequently use this fact as an efficient alternative to multiplying by 2. But you need to watch out. If you shift a 1 bit into the high-order position (bit 31 or 63), the value will become negative. The following program illustrates this point:

 // Left shifting as a quick way to multiply by 2.
 class MultByTwo {
 public static void main(String args[]) {
 int i;
 int num = 0×FFFFFFE;

 for(i=0; i<4; i++) {
 num = num << 1;
 System.out.println(num);
 }
 }
 }

The program generates the following output:

 536870908
 1073741816
 2147483632
 -32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it would produce –32. As you can see, when a 1 bit is shifted into bit 31, the number is interpreted as negative.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >> moves all of the bits in the specified value to the right the number of bit positions specified by num.

The following code fragment shifts the value 32 to the right by two positions, resulting in a being set to 8:

 int a = 32;
 a = a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the next code fragment shifts the value 35 to the right two positions, which causes the two low-order bits to be lost, resulting again in a being set to 8.

 int a = 35;
 a = a >> 2; // a still contains 8

Looking at the same operation in binary shows more clearly how this happens:

[image: Image]

Each time you shift a value to the right, it divides that value by two—and discards any remainder. You can take advantage of this for high-performance integer division by 2. Of course, you must be sure that you are not shifting any bits off the right end.

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled in with the previous contents of the top bit. This is called sign extension and serves to preserve the sign of negative numbers when you shift them right. For example, –8 >> 1 is –4, which, in binary, is

[image: Image]

It is interesting to note that if you shift –1 right, the result always remains –1, since sign extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to the right. For example, the following program converts a byte value to its hexadecimal string representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard any sign-extended bits so that the value can be used as an index into the array of hexadecimal characters.

 // Masking sign extension.
 class HexByte {
 static public void main(String args[]) {
 char hex[] = {
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
 };
 byte b = (byte) 0xf1;

 System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
 }
 }

Here is the output of this program:

 b = 0xf1

The Unsigned Right Shift

As you have just seen, the >> operator automatically fills the high-order bit with its previous contents each time a shift occurs. This preserves the sign of the value. However, sometimes this is undesirable. For example, if you are shifting something that does not represent a numeric value, you may not want sign extension to take place. This situation is common when you are working with pixel-based values and graphics. In these cases, you will generally want to shift a zero into the high-order bit no matter what its initial value was. This is known as an unsigned shift. To accomplish this, you will use Java’s unsigned, shift-right operator, >>>, which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all 32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with zeros, ignoring normal sign extension. This sets a to 255.

 int a = -1;
 a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in expressions. This means that sign-extension occurs and that the shift will take place on a 32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift on a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit value that is actually being shifted. The following program demonstrates this effect:

 // Unsigned shifting a byte value.
 class ByteUShift {
 static public void main(String args[]) {
 char hex[] = {
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
 };
 byte b = (byte) 0xf1;
 byte c = (byte) (b >> 4);
 byte d = (byte) (b >>> 4);
 byte e = (byte) ((b & 0xff) >> 4);
 System.out.println(" b = 0x"
 + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
 System.out.println(" b >> 4 = 0x"
 + hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);
 System.out.println(" b >>> 4 = 0x"
 + hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);
 System.out.println("(b & 0xff) >> 4 = 0x"
 + hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);
 }
 }

The following output of this program shows how the >>> operator appears to do nothing when dealing with bytes. The variable b is set to an arbitrary negative byte value for this demonstration. Then c is assigned the byte value of b shifted right by four, which is 0xff because of the expected sign extension. Then d is assigned the byte value of b unsigned shifted right by four, which you might have expected to be 0x0f, but is actually 0xff because of the sign extension that happened when b was promoted to int before the shift. The last expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right operator was not used for d, since the state of the sign bit after the AND was known.

 b = 0xf1
 b >> 4 = 0xff
 b >>> 4 = 0xff
 (b & 0xff) >> 4 = 0x0f

Bitwise Operator Compound Assignments

All of the binary bitwise operators have a compound form similar to that of the algebraic operators, which combines the assignment with the bitwise operation. For example, the following two statements, which shift the value in a right by four bits, are equivalent:

 a = a >> 4;
 a >>= 4;

Likewise, the following two statements, which result in a being assigned the bitwise expression a OR b, are equivalent:

 a = a | b;
 a |= b;

The following program creates a few integer variables and then uses compound bitwise operator assignments to manipulate the variables:

 class OpBitEquals {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c = 3;

 a |= 4;
 b >>= 1;
 c <<= 1;
 a ^= c;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 }
 }

The output of this program is shown here:

 a = 3
 b = 1
 c = 6

Relational Operators

The relational operators determine the relationship that one operand has to the other. Specifically, they determine equality and ordering. The relational operators are shown here:

[image: Image]

The outcome of these operations is a boolean value. The relational operators are most frequently used in the expressions that control the if statement and the various loop statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java equality is denoted with two equal signs, not one. (Remember: a single equal sign is the assignment operator.) Only numeric types can be compared using the ordering operators. That is, only integer, floating-point, and character operands may be compared to see which is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For example, the following code fragment is perfectly valid:

 int a = 4;
 int b = 1;
 boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.

If you are coming from a C/C++ background, please note the following. In C/C++, these types of statements are very common:

 int done;
 // ...
 if(!done) ... // Valid in C/C++
 if(done) ... // but not in Java.

 In Java, these statements must be written like this:

 if(done == 0) ... // This is Java-style.
 if(done != 0) ...

In Java, these statements must be written like this:

 if(done == 0) ... // This is Java-style.
 if(done != 0) ...

The reason is that Java does not define true and false in the same way as C/C++. In C/C++, true is any nonzero value and false is zero. In Java, true and false are nonnumeric values that do not relate to zero or nonzero. Therefore, to test for zero or nonzero, you must explicitly employ one or more of the relational operators.

Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands. All of the binary logical operators combine two boolean values to form a resultant boolean value.

[image: Image]

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way that they operate on the bits of an integer. The logical ! operator inverts the Boolean state: !true == false and !false == true. The following table shows the effect of each logical operation:

[image: Image]

Here is a program that is almost the same as the BitLogic example shown earlier, but it operates on boolean logical values instead of binary bits:

 // Demonstrate the boolean logical operators.
 class BoolLogic {
 public static void main(String args[]) {
 boolean a = true;
 boolean b = false;
 boolean c = a | b;
 boolean d = a & b;
 boolean e = a ^ b;
 boolean f = (!a & b) | (a & !b);
 boolean g = !a;
 System.out.println(" a = " + a);
 System.out.println(" b = " + b);
 System.out.println(" a|b = " + c);
 System.out.println(" a&b = " + d);
 System.out.println(" a^b = " + e);
 System.out.println("!a&b|a&!b = " + f);
 System.out.println(" !a = " + g);
 }
 }

After running this program, you will see that the same logical rules apply to boolean values as they did to bits. As you can see from the following output, the string representation of a Java boolean value is one of the literal values true or false:

 a = true
 b = false
 a|b = true
 a&b = false
 a^b = true
 a&b|a&!b = true
 !a = false

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in many other computer languages. These are secondary versions of the Boolean AND and OR operators, and are known as short-circuit logical operators. As you can see from the preceding table, the OR operator results in true when A is true, no matter what B is. Similarly, the AND operator results in false when A is false, no matter what B is. If you use the || and && forms, rather than the | and & forms of these operators, Java will not bother to evaluate the right-hand operand when the outcome of the expression can be determined by the left operand alone. This is very useful when the right-hand operand depends on the value of the left one in order to function properly. For example, the following code fragment shows how you can take advantage of short-circuit logical evaluation to be sure that a division operation will be valid before evaluating it:

 if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time exception when denom is zero. If this line of code were written using the single & version of AND, both sides would be evaluated, causing a run-time exception when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases involving Boolean logic, leaving the single-character versions exclusively for bitwise operations. However, there are exceptions to this rule. For example, consider the following statement:

 if(c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether c is equal to 1 or not.

The Assignment Operator

You have been using the assignment operator since Chapter 2. Now it is time to take a formal look at it. The assignment operator is the single equal sign, =. The assignment operator works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be familiar with: it allows you to create a chain of assignments. For example, consider this fragment:

 int x, y, z;

 x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works because the = is an operator that yields the value of the right-hand expression. Thus, the value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a “chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-else statements. This operator is the ?. It can seem somewhat confusing at first, but the ? can be used very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ? operation is that of the expression evaluated. Both expression2 and expression3 are required to return the same type, which can’t be void.

Here is an example of the way that the ? is employed:

 ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to the left of the question mark. If denom equals zero, then the expression between the question mark and the colon is evaluated and used as the value of the entire ? expression. If denom does not equal zero, then the expression after the colon is evaluated and used for the value of the entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute value of a variable.

 // Demonstrate ?.
 class Ternary {
 public static void main(String args[]) {
 int i, k;

 i = 10;
 k = i < 0 ? -i : i; // get absolute value of i
 System.out.print("Absolute value of ");
 System.out.println(i + " is " + k);

 i = -10;
 k = i < 0 ? -i : i; // get absolute value of i
 System.out.print("Absolute value of ");
 System.out.println(i + " is " + k);
 }
 }

The output generated by the program is shown here:

 Absolute value of 10 is 10
 Absolute value of -10 is 10

Operator Precedence

Table 4-1 shows the order of precedence for Java operators, from highest to lowest. Notice that the first row shows items that you may not normally think of as operators: parentheses, square brackets, and the dot operator. Technically, these are called separators, but they act like operators in an expression. Parentheses are used to alter the precedence of an operation. As you know from the previous chapter, the square brackets provide array indexing. The dot operator is used to dereference objects and will be discussed later in this book.

Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is often necessary to obtain the result you desire. For example, consider the following expression:

 a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression can be rewritten using redundant parentheses like this:

 a >> (b + 3)

[image: Image]

TABLE 4-1 The Precedence of the Java Operators

However, if you want to first shift a right by b positions and then add 3 to that result, you will need to parenthesize the expression like this:

 (a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can sometimes be used to help clarify the meaning of an expression. For anyone reading your code, a complicated expression can be difficult to understand. Adding redundant but clarifying parentheses to complex expressions can help prevent confusion later. For example, which of the following expressions is easier to read?

 a | 4 + c >> b & 7
 (a | (((4 + c) >> b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance of your program. Therefore, adding parentheses to reduce ambiguity does not negatively affect your program.

CHAPTER 5
Control Statements

A programming language uses control statements to cause the flow of execution to advance and branch based on changes to the state of a program. Java’s program control statements can be put into the following categories: selection, iteration, and jump. Selection statements allow your program to choose different paths of execution based upon the outcome of an expression or the state of a variable. Iteration statements enable program execution to repeat one or more statements (that is, iteration statements form loops). Jump statements allow your program to execute in a nonlinear fashion. All of Java’s control statements are examined here.

Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow you to control the flow of your program’s execution based upon conditions known only during run time. You will be pleasantly surprised by the power and flexibility contained in these two statements.

if

The if statement was introduced in Chapter 2. It is examined in detail here. The if statement is Java’s conditional branch statement. It can be used to route program execution through two different paths. Here is the general form of the if statement:

if (condition) statement1;

else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly braces (that is, a block). The condition is any expression that returns a boolean value. The else clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise, statement2 (if it exists) is executed. In no case will both statements be executed. For example, consider the following:

 int a, b;
 // ...
 if(a < b) a = 0;
 else b = 0;

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they both set to zero.

Most often, the expression used to control the if will involve the relational operators. However, this is not technically necessary. It is possible to control the if using a single boolean variable, as shown in this code fragment:

 boolean dataAvailable;
 // ...
 if (dataAvailable)
 ProcessData();
 else
 waitForMoreData();

Remember, only one statement can appear directly after the if or the else. If you want to include more statements, you’ll need to create a block, as in this fragment:

 int bytesAvailable;
 // ...
 if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
 } else
 waitForMoreData();

Here, both statements within the if block will execute if bytesAvailable is greater than zero.

Some programmers find it convenient to include the curly braces when using the if, even when there is only one statement in each clause. This makes it easy to add another statement at a later date, and you don’t have to worry about forgetting the braces. In fact, forgetting to define a block when one is needed is a common cause of errors. For example, consider the following code fragment:

 int bytesAvailable;
 // ...
 if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
 } else
 waitForMoreData();
 bytesAvailable = n;

It seems clear that the statement bytesAvailable = n; was intended to be executed inside the else clause, because of the indentation level. However, as you recall, whitespace is insignificant to Java, and there is no way for the compiler to know what was intended. This code will compile without complaint, but it will behave incorrectly when run. The preceding example is fixed in the code that follows:

 int bytesAvailable;
 // ...
 if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
 } else {
 waitForMoreData();
 bytesAvailable = n;
 }

Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very common in programming. When you nest ifs, the main thing to remember is that an else statement always refers to the nearest if statement that is within the same block as the else and that is not already associated with an else. Here is an example:

 if(i == 10) {
 if(j < 20) a = b;
 if(k > 100) c = d; // this if is
 else a = c; // associated with this else
 }
 else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not in the same block (even though it is the nearest if without an else). Rather, the final else is associated with if(i==10). The inner else refers to if(k>100) because it is the closest if within the same block.

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the if-else-if ladder. It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

.

.

.

else

statement;

The if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final else statement will be executed. The final else acts as a default condition; that is, if all other conditional tests fail, then the last else statement is performed. If there is no final else and all other conditions are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular month is in.

 // Demonstrate if-else-if statements.
 class IfElse {
 public static void main(String args[]) {
 int month = 4; // April
 String season;

 if(month == 12 || month == 1 || month == 2)
 season = "Winter";
 else if(month == 3 || month == 4 || month == 5)
 season = "Spring";
 else if(month == 6 || month == 7 || month == 8)
 season = "Summer";
 else if(month == 9 || month == 10 || month == 11)
 season = "Autumn";
 else
 season = "Bogus Month";

 System.out.println("April is in the " + season + ".");
 }
 }

Here is the output produced by the program:

 April is in the Spring.

You might want to experiment with this program before moving on. As you will find, no matter what value you give month, one and only one assignment statement within the ladder will be executed.

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch execution to different parts of your code based on the value of an expression. As such, it often provides a better alternative than a large series of if-else-if statements. Here is the general form of a switch statement:

 switch (expression) {
 case value1:
 // statement sequence
 break;
 case value2:
 // statement sequence
 break;
 .
 .
 .
 case valueN:
 // statement sequence
 break;
 default:
 // default statement sequence
 }

The expression must be of type byte, short, int, or char; each of the values specified in the case statements must be of a type compatible with the expression. (An enumeration value can also be used to control a switch statement. Enumerations are described in Chapter 12.) Each case value must be a unique literal (that is, it must be a constant, not a variable). Duplicate case values are not allowed.

The switch statement works like this: The value of the expression is compared with each of the literal values in the case statements. If a match is found, the code sequence following that case statement is executed. If none of the constants matches the value of the expression, then the default statement is executed. However, the default statement is optional. If no case matches and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When a break statement is encountered, execution branches to the first line of code that follows the entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

 // A simple example of the switch.
 class SampleSwitch {
 public static void main(String args[]) {
 for(int i=0; i<6; i++)
 switch(i) {
 case 0:
 System.out.println("i is zero.");
 break;
 case 1:
 System.out.println("i is one.");
 break;
 case 2:
 System.out.println("i is two.");
 break;
 case 3:
 System.out.println("i is three.");
 break;
 default:
 System.out.println("i is greater than 3.");
 }
 }
 }

The output produced by this program is shown here:

 i is zero.
 i is one.
 i is two.
 i is three.
 i is greater than 3.
 i is greater than 3.

As you can see, each time through the loop, the statements associated with the case constant that matches i are executed. All others are bypassed. After i is greater than 3, no case statements match, so the default statement is executed.

The break statement is optional. If you omit the break, execution will continue on into the next case. It is sometimes desirable to have multiple cases without break statements between them. For example, consider the following program:

 // In a switch, break statements are optional.
 class MissingBreak {
 public static void main(String args[]) {
 for(int i=0; i<12; i++)
 switch(i) {
 case 0:
 case 1:
 case 2:
 case 3:
 case 4:
 System.out.println("i is less than 5");
 break;
 case 5:
 case 6:
 case 7:
 case 8:
 case 9:
 System.out.println("i is less than 10");
 break;
 default:
 System.out.println("i is 10 or more");
 }
 }
 }

This program generates the following output:

 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 10
 i is less than 10
 i is less than 10
 i is less than 10
 i is less than 10
 i is 10 or more
 i is 10 or more

As you can see, execution falls through each case until a break statement (or the end of the switch) is reached.

While the preceding example is, of course, contrived for the sake of illustration, omitting the break statement has many practical applications in real programs. To sample its more realistic usage, consider the following rewrite of the season example shown earlier. This version uses a switch to provide a more efficient implementation.

 // An improved version of the season program.
 class Switch {
 public static void main(String args[]) {
 int month = 4;
 String season;
 switch (month) {
 case 12:
 case 1:
 case 2:
 season = "Winter";
 break;
 case 3:
 case 4:
 case 5:
 season = "Spring";
 break;
 case 6:
 case 7:
 case 8:
 season = "Summer";
 break;
 case 9:
 case 10:
 case 11:
 season = "Autumn";
 break;
 default:
 season = "Bogus Month";
 }
 System.out.println("April is in the " + season + ".");
 }
 }

Nested switch Statements

You can use a switch as part of the statement sequence of an outer switch. This is called a nested switch. Since a switch statement defines its own block, no conflicts arise between the case constants in the inner switch and those in the outer switch. For example, the following fragment is perfectly valid:

 switch(count) {
 case 1:
 switch(target) { // nested switch
 case 0:
 System.out.println("target is zero");
 break;
 case 1: // no conflicts with outer switch
 System.out.println("target is one");
 break;
 }
 break;
 case 2: // ...

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement in the outer switch. The count variable is only compared with the list of cases at the outer level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if can evaluate any type of Boolean expression. That is, the switch looks only for a match between the value of the expression and one of its case constants.

• No two case constants in the same switch can have identical values. Of course, a switch statement and an enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler works. When it compiles a switch statement, the Java compiler will inspect each of the case constants and create a “jump table” that it will use for selecting the path of execution depending on the value of the expression. Therefore, if you need to select among a large group of values, a switch statement will run much faster than the equivalent logic coded using a sequence of if-elses. The compiler can do this because it knows that the case constants are all the same type and simply must be compared for equality with the switch expression. The compiler has no such knowledge of a long list of if expressions.

Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements create what we commonly call loops. As you probably know, a loop repeatedly executes the same set of instructions until a termination condition is met. As you will see, Java has a loop to fit any programming need.

while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block while its controlling expression is true. Here is its general form:

 while(condition) {
 // body of loop
 }

The condition can be any Boolean expression. The body of the loop will be executed as long as the conditional expression is true. When condition becomes false, control passes to the next line of code immediately following the loop. The curly braces are unnecessary if only a single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of “tick”:

 // Demonstrate the while loop.
 class While {
 public static void main(String args[]) {
 int n = 10;

 while(n > 0) {
 System.out.println("tick " + n);
 n--;
 }
 }
 }

When you run this program, it will “tick” ten times:

 tick 10
 tick 9
 tick 8
 tick 7
 tick 6
 tick 5
 tick 4
 tick 3
 tick 2
 tick 1

Since the while loop evaluates its conditional expression at the top of the loop, the body of the loop will not execute even once if the condition is false to begin with. For example, in the following fragment, the call to println() is never executed:

 int a = 10, b = 20;

 while(a > b)
 System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because a null statement (one that consists only of a semicolon) is syntactically valid in Java. For example, consider the following program:

 // The target of a loop can be empty.
 class NoBody {
 public static void main(String args[]) {
 int i, j;

 i = 100;
 j = 200;

 // find midpoint between i and j
 while(++i < --j) ; // no body in this loop
 System.out.println("Midpoint is " + i);
 }
 }

This program finds the midpoint between i and j. It generates the following output:

 Midpoint is 150

Here is how this while loop works. The value of i is incremented, and the value of j is decremented. These values are then compared with one another. If the new value of i is still less than the new value of j, then the loop repeats. If i is equal to or greater than j, the loop stops. Upon exit from the loop, i will hold a value that is midway between the original values of i and j. (Of course, this procedure only works when i is less than j to begin with.) As you can see, there is no need for a loop body; all of the action occurs within the conditional expression, itself. In professionally written Java code, short loops are frequently coded without bodies when the controlling expression can handle all of the details itself.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false, then the body of the loop will not be executed at all. However, sometimes it is desirable to execute the body of a loop at least once, even if the conditional expression is false to begin with. In other words, there are times when you would like to test the termination expression at the end of the loop rather than at the beginning. Fortunately, Java supplies a loop that does just that: the do-while. The do-while loop always executes its body at least once, because its conditional expression is at the bottom of the loop. Its general form is

 do {
 // body of loop
 } while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop. It generates the same output as before.

 // Demonstrate the do-while loop.
 class DoWhile {
 public static void main(String args[]) {
 int n = 10;

 do {
 System.out.println("tick " + n);
 n--;
 } while(n > 0);
 }
 }

The loop in the preceding program, while technically correct, can be written more efficiently as follows:

 do {
 System.out.println("tick " + n);
 } while(--n > 0);

In this example, the expression (– –n > 0) combines the decrement of n and the test for zero into one expression. Here is how it works. First, the – –n statement executes, decrementing n and returning the new value of n. This value is then compared with zero. If it is greater than zero, the loop continues; otherwise it terminates.

The do-while loop is especially useful when you process a menu selection, because you will usually want the body of a menu loop to execute at least once. Consider the following program, which implements a very simple help system for Java’s selection and iteration statements:

 // Using a do-while to process a menu selection
 class Menu {
 public static void main(String args[])
 throws java.io.IOException {
 char choice;

 do {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. while");
 System.out.println(" 4. do-while");
 System.out.println(" 5. for\n");
 System.out.println("Choose one:");
 choice = (char) System.in.read();
 } while(choice < '1' || choice > '5');

 System.out.println("\n");

 switch(choice) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '4':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '5':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 }
 }
 }

Here is a sample run produced by this program:

 Help on:
 1. if
 2. switch
 3. while
 4. do-while
 5. for
 Choose one:
 4
 The do-while:
 do {
 statement;
 } while (condition);

In the program, the do-while loop is used to verify that the user has entered a valid choice. If not, then the user is reprompted. Since the menu must be displayed at least once, the do-while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the keyboard by calling System.in.read(). This is one of Java’s console input functions. Although Java’s console I/O methods won’t be discussed in detail until Chapter 13, System.in.read() is used here to obtain the user’s choice. It reads characters from standard input (returned as integers, which is why the return value was cast to char). By default, standard input is line buffered, so you must press ENTER before any characters that you type will be sent to your program.

Java’s console input can be a bit awkward to work with. Further, most real-world Java programs will be graphical and window-based. For these reasons, not much use of console input has been made in this book. However, it is useful in this context. One other point to consider: Because System.in.read() is being used, the program must specify the throws java.io.IOException clause. This line is necessary to handle input errors. It is part of Java’s exception handling features, which are discussed in Chapter 10.

for

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a powerful and versatile construct.

Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form that has been in use since the original version of Java. The second is the new “for-each” form. Both types of for loops are discussed here, beginning with the traditional form.

Here is the general form of the traditional for statement:

 for(initialization; condition; iteration) {
 // body
 }

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of the loop is executed. Generally, this is an expression that sets the value of the loop control variable, which acts as a counter that controls the loop. It is important to understand that the initialization expression is only executed once. Next, condition is evaluated. This must be a Boolean expression. It usually tests the loop control variable against a target value. If this expression is true, then the body of the loop is executed. If it is false, the loop terminates. Next, the iteration portion of the loop is executed. This is usually an expression that increments or decrements the loop control variable. The loop then iterates, first evaluating the conditional expression, then executing the body of the loop, and then executing the iteration expression with each pass. This process repeats until the controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

 // Demonstrate the for loop.
 class ForTick {
 public static void main(String args[]) {
 int n;

 for(n=10; n>0; n--)
 System.out.println("tick " + n);
 }
 }

Declaring Loop Control Variables Inside the for Loop

Often the variable that controls a for loop is only needed for the purposes of the loop and is not used elsewhere. When this is the case, it is possible to declare the variable inside the initialization portion of the for. For example, here is the preceding program recoded so that the loop control variable n is declared as an int inside the for:

 // Declare a loop control variable inside the for.
 class ForTick {
 public static void main(String args[]) {

 // here, n is declared inside of the for loop
 for(int n=10; n>0; n--)
 System.out.println("tick " + n);
 }
 }

When you declare a variable inside a for loop, there is one important point to remember: the scope of that variable ends when the for statement does. (That is, the scope of the variable is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need to use the loop control variable elsewhere in your program, you will not be able to declare it inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers declare it inside the for. For example, here is a simple program that tests for prime numbers. Notice that the loop control variable, i, is declared inside the for since it is not needed elsewhere.

 // Test for primes.
 class FindPrime {
 public static void main(String args[]) {
 int num;
 boolean isPrime = true;

 num = 14;
 for(int i=2; i <= num/i; i++) {
 if((num % i) == 0) {
 isPrime = false;
 break;
 }
 }
 if(isPrime) System.out.println("Prime");
 else System.out.println("Not Prime");
 }
 }

Using the Comma

There will be times when you will want to include more than one statement in the initialization and iteration portions of the for loop. For example, consider the loop in the following program:

 class Sample {
 public static void main(String args[]) {
 int a, b;

 b = 4;
 for(a=1; a<b; a++) {
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 b--;
 }
 }
 }

As you can see, the loop is controlled by the interaction of two variables. Since the loop is governed by two variables, it would be useful if both could be included in the for statement, itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish this. To allow two or more variables to control a for loop, Java permits you to include multiple statements in both the initialization and iteration portions of the for. Each statement is separated from the next by a comma.

Using the comma, the preceding for loop can be more efficiently coded as shown here:

 // Using the comma.
 class Comma {
 public static void main(String args[]) {
 int a, b;

 for(a=1, b=4; a<b; a++, b--) {
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 }
 }
 }

In this example, the initialization portion sets the values of both a and b. The two comma-separated statements in the iteration portion are executed each time the loop repeats. The program generates the following output:

 a = 1
 b = 4
 a = 2
 b = 3

NOTE

If you are familiar with C/C++, then you know that in those languages the comma is an operator that can be used in any valid expression. However, this is not the case with Java. In Java, the comma is a separator.

Some for Loop Variations

The for loop supports a number of variations that increase its power and applicability. The reason it is so flexible is that its three parts—the initialization, the conditional test, and the iteration—do not need to be used for only those purposes. In fact, the three sections of the for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically, this expression does not need to test the loop control variable against some target value. In fact, the condition controlling the for can be any Boolean expression. For example, consider the following fragment:

 boolean done = false;

 for(int i=1; !done; i++) {
 // ...
 if(interrupted()) done = true;
 }

In this example, the for loop continues to run until the boolean variable done is set to true. It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the iteration expression or both may be absent, as in this next program:

 // Parts of the for loop can be empty.
 class ForVar {
 public static void main(String args[]) {
 int i;
 boolean done = false;

 i = 0;
 for(; !done;) {
 System.out.println("i is " + i);
 if(i == 10) done = true;
 i++;
 }
 }
 }

Here, the initialization and iteration expressions have been moved out of the for. Thus, parts of the for are empty. While this is of no value in this simple example—indeed, it would be considered quite poor style—there can be times when this type of approach makes sense. For example, if the initial condition is set through a complex expression elsewhere in the program or if the loop control variable changes in a nonsequential manner determined by actions that occur within the body of the loop, it may be appropriate to leave these parts of the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop (a loop that never terminates) if you leave all three parts of the for empty. For example:

 for(;;) {
 // ...
 }

This loop will run forever because there is no condition under which it will terminate. Although there are some programs, such as operating system command processors, that require an infinite loop, most “infinite loops” are really just loops with special termination requirements. As you will soon see, there is a way to terminate a loop—even an infinite loop like the one shown—that does not make use of the normal loop conditional expression.

The For-Each Version of the for Loop

Beginning with JDK 5, a second form of for was defined that implements a “for-each” style loop. As you may know, contemporary language theory has embraced the for-each concept, and it is quickly becoming a standard feature that programmers have come to expect. A for-each style loop is designed to cycle through a collection of objects, such as an array, in strictly sequential fashion, from start to finish. Unlike some languages, such as C#, that implement a for-each loop by using the keyword foreach, Java adds the for-each capability by enhancing the for statement. The advantage of this approach is that no new keyword is required, and no preexisting code is broken. The for-each style of for is also referred to as the enhanced for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var: collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive the elements from a collection, one at a time, from beginning to end. The collection being cycled through is specified by collection. There are various types of collections that can be used with the for, but the only type used in this chapter is the array. (Other types of collections that can be used with the for, such as those defined by the Collections Framework, are discussed later in this book.) With each iteration of the loop, the next element in the collection is retrieved and stored in itr-var. The loop repeats until all elements in the collection have been obtained.

Because the iteration variable receives values from the collection, type must be the same as (or compatible with) the elements stored in the collection. Thus, when iterating over arrays, type must be compatible with the base type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop that it is designed to replace. The following fragment uses a traditional for loop to compute the sum of the values in an array:

 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int sum = 0;

 for(int i=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus, the entire array is read in strictly sequential order. This is accomplished by manually indexing the nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates the need to establish a loop counter, specify a starting and ending value, and manually index the array. Instead, it automatically cycles through the entire array, obtaining one element at a time, in sequence, from beginning to end. For example, here is the preceding fragment rewritten using a for-each version of the for:

 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int sum = 0;

 for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element in nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on. Not only is the syntax streamlined, but it also prevents boundary errors.

Here is an entire program that demonstrates the for-each version of the for just described:

 // Use a for-each style for loop.
 class ForEach {
 public static void main(String args[]) {
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int sum = 0;

 // use for-each style for to display and sum the values
 for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 }

 System.out.println("Summation: " + sum);
 }
 }

The output from the program is shown here.

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Value is: 6
 Value is: 7
 Value is: 8
 Value is: 9
 Value is: 10
 Summation: 55

As this output shows, the for-each style for automatically cycles through an array in sequence from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined, it is possible to terminate the loop early by using a break statement. For example, this program sums only the first five elements of nums:

 // Use break with a for-each style for.
 class ForEach2 {
 public static void main(String args[]) {
 int sum = 0;
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // use for to display and sum the values
 for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 if(x == 5) break; // stop the loop when 5 is obtained
 }
 System.out.println("Summation of first 5 elements: " + sum);
 }
 }

This is the output produced:

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The break statement can also be used with Java’s other loops, and it is discussed in detail later in this chapter.

There is one important point to understand about the for-each style loop. Its iteration variable is “read-only” as it relates to the underlying array. An assignment to the iteration variable has no effect on the underlying array. In other words, you can’t change the contents of the array by assigning the iteration variable a new value. For example, consider this program:

 // The for-each loop is essentially read-only.
 class NoChange {
 public static void main(String args[]) {
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for(int x : nums) {
 System.out.print(x + " ");
 x = x * 10; // no effect on nums
 }

 System.out.println();

 for(int x : nums)
 System.out.print(x + " ");

 System.out.println();
 }
 }

The first for loop increases the value of the iteration variable by a factor of 10. However, this assignment has no effect on the underlying array nums, as the second for loop illustrates. The output, shown here, proves this point:

 1 2 3 4 5 6 7 8 9 10
 1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays

The enhanced version of the for also works on multidimensional arrays. Remember, however, that in Java, multidimensional arrays consist of arrays of arrays. (For example, a two-dimensional array is an array of one-dimensional arrays.) This is important when iterating over a multidimensional array, because each iteration obtains the next array, not an individual element. Furthermore, the iteration variable in the for loop must be compatible with the type of array being obtained. For example, in the case of a two-dimensional array, the iteration variable must be a reference to a one-dimensional array. In general, when using the for-each for to iterate over an array of N dimensions, the objects obtained will be arrays of N–1 dimensions. To understand the implications of this, consider the following program. It uses nested for loops to obtain the elements of a two-dimensional array in row-order, from first to last.

 // Use for-each style for on a two-dimensional array.
 class ForEach3 {
 public static void main(String args[]) {
 int sum = 0;
 int nums[][] = new int[3][5];

 // give nums some values
 for(int i = 0; i < 3; i++)
 for(int j=0; j < 5; j++)
 nums[i][j] = (i+1)*(j+1);

 // use for-each for to display and sum the values
 for(int x[] : nums) {
 for(int y : x) {
 System.out.println("Value is: " + y);
 sum += y;
 }
 }
 System.out.println("Summation: " + sum);
 }
 }

The output from this program is shown here:

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Value is: 2
 Value is: 4
 Value is: 6
 Value is: 8
 Value is: 10
 Value is: 3
 Value is: 6
 Value is: 9
 Value is: 12
 Value is: 15
 Summation: 90

In the program, pay special attention to this line:

 for(int x[] : nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is necessary because each iteration of the for obtains the next array in nums, beginning with the array specified by nums[0]. The inner for loop then cycles through each of these arrays, displaying the values of each element.

Applying the Enhanced for

Since the for-each style for can only cycle through an array sequentially, from start to finish, you might think that its use is limited, but this is not true. A large number of algorithms require exactly this mechanism. One of the most common is searching. For example, the following program uses a for loop to search an unsorted array for a value. It stops if the value is found.

 // Search an array using for-each style for.
 class Search {
 public static void main(String args[]) {
 int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
 int val = 5;
 boolean found = false;

 // use for-each style for to search nums for val
 for(int x : nums) {
 if(x == val) {
 found = true;
 break;
 }
 }

 if(found)
 System.out.println("Value found!");
 }
 }

The for-each style for is an excellent choice in this application because searching an unsorted array involves examining each element in sequence. (Of course, if the array were sorted, a binary search could be used, which would require a different style loop.) Other types of applications that benefit from for-each style loops include computing an average, finding the minimum or maximum of a set, looking for duplicates, and so on.

Although we have been using arrays in the examples in this chapter, the for-each style for is especially useful when operating on collections defined by the Collections Framework, which is described in Part II. More generally, the for can cycle through the elements of any collection of objects, as long as that collection satisfies a certain set of constraints, which are described in Chapter 17.

Nested Loops

Like all other programming languages, Java allows loops to be nested. That is, one loop may be inside another. For example, here is a program that nests for loops:

 // Loops may be nested.
 class Nested {
 public static void main(String args[]) {
 int i, j;

 for(i=0; i<10; i++) {
 for(j=i; j<10; j++)
 System.out.print(".");
 System.out.println();
 }
 }
 }

The output produced by this program is shown here:

 ...
 ..
 .

Jump Statements

Java supports three jump statements: break, continue, and return. These statements transfer control to another part of your program. Each is examined here.

NOTE

In addition to the jump statements discussed here, Java supports one other way that you can change your program’s flow of execution: through exception handling. Exception handling provides a structured method by which run-time errors can be trapped and handled by your program. It is supported by the keywords try, catch, throw, throws, and finally. In essence, the exception handling mechanism allows your program to perform a nonlocal branch. Since exception handling is a large topic, it is discussed in its own chapter, Chapter 10.

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a statement sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as a “civilized” form of goto. The last two uses are explained here.

Using break to Exit a Loop

By using break, you can force immediate termination of a loop, bypassing the conditional expression and any remaining code in the body of the loop. When a break statement is encountered inside a loop, the loop is terminated and program control resumes at the next statement following the loop. Here is a simple example:

 // Using break to exit a loop.
 class BreakLoop {
 public static void main(String args[]) {
 for(int i=0; i<100; i++) {
 if(i == 10) break; // terminate loop if i is 10
 System.out.println("i: " + i);
 }
 System.out.println("Loop complete.");
 }
 }

This program generates the following output:

 i: 0
 i: 1
 i: 2
 i: 3
 i: 4
 i: 5
 i: 6
 i: 7
 i: 8
 i: 9
 Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break statement causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally infinite loops. For example, here is the preceding program coded by use of a while loop. The output from this program is the same as just shown.

 // Using break to exit a while loop.
 class BreakLoop2 {
 public static void main(String args[]) {
 int i = 0;

 while(i < 100) {
 if(i == 10) break; // terminate loop if i is 10
 System.out.println("i: " + i);
 i++;
 }
 System.out.println("Loop complete.");
 }
 }

When used inside a set of nested loops, the break statement will only break out of the innermost loop. For example:

 // Using break with nested loops.
 class BreakLoop3 {
 public static void main(String args[]) {
 for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 for(int j=0; j<100; j++) {
 if(j == 10) break; // terminate loop if j is 10
 System.out.print(j + " ");
 }
 System.out.println();
 }
 System.out.println("Loops complete.");
 }
 }

This program generates the following output:

[image: Image]

As you can see, the break statement in the inner loop only causes termination of that loop. The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement may appear in a loop. However, be careful. Too many break statements have the tendency to destructure your code. Second, the break that terminates a switch statement affects only that switch statement and not any enclosing loops.

REMEMBER

break was not designed to provide the normal means by which a loop is terminated. The loop’s conditional expression serves this purpose. The break statement should be used to cancel a loop only when some sort of special situation occurs.

Using break as a Form of Goto

In addition to its uses with the switch statement and loops, the break statement can also be employed by itself to provide a “civilized” form of the goto statement. Java does not have a goto statement because it provides a way to branch in an arbitrary and unstructured manner. This usually makes goto-ridden code hard to understand and hard to maintain. It also prohibits certain compiler optimizations. There are, however, a few places where the goto is a valuable and legitimate construct for flow control. For example, the goto can be useful when you are exiting from a deeply nested set of loops. To handle such situations, Java defines an expanded form of the break statement. By using this form of break, you can, for example, break out of one or more blocks of code. These blocks need not be part of a loop or a switch. They can be any block. Further, you can specify precisely where execution will resume, because this form of break works with a label. As you will see, break gives you the benefits of a goto without its problems.

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a stand-alone block of code but it can also be a block that is the target of another statement. When this form of break executes, control is transferred out of the named block. The labeled block must enclose the break statement, but it does not need to be the immediately enclosing block. This means, for example, that you can use a labeled break statement to exit from a set of nested blocks. But you cannot use break to transfer control out of a block that does not enclose the break statement.

To name a block, put a label at the start of it. A label is any valid Java identifier followed by a colon. Once you have labeled a block, you can then use this label as the target of a break statement. Doing so causes execution to resume at the end of the labeled block. For example, the following program shows three nested blocks, each with its own label. The break statement causes execution to jump forward, past the end of the block labeled second, skipping the two println() statements.

 // Using break as a civilized form of goto.
 class Break {
 public static void main(String args[]) {
 boolean t = true;

 first: {
 second: {
 third: {
 System.out.println("Before the break.");
 if(t) break second; // break out of second block
 System.out.println("This won't execute");
 }
 System.out.println("This won't execute");
 }
 System.out.println("This is after second block.");
 }
 }
 }

Running this program generates the following output:

 Before the break.
 This is after second block.

One of the most common uses for a labeled break statement is to exit from nested loops. For example, in the following program, the outer loop executes only once:

 // Using break to exit from nested loops
 class BreakLoop4 {
 public static void main(String args[]) {
 outer: for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 for(int j=0; j<100; j++) {
 if(j == 10) break outer; // exit both loops
 System.out.print(j + " ");
 }
 System.out.println("This will not print");
 }
 System.out.println("Loops complete.");
 }
 }

This program generates the following output:

 Pass 0: 0 1 2 3 4 5 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been terminated. Notice that this example labels the for statement, which has a block of code as its target.

Keep in mind that you cannot break to any label which is not defined for an enclosing block. For example, the following program is invalid and will not compile:

 // This program contains an error.
 class BreakErr {
 public static void main(String args[]) {

 one: for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 }

 for(int j=0; j<100; j++) {
 if(j == 10) break one; // WRONG
 System.out.print(j + " ");
 }
 }
 }

Since the loop labeled one does not enclose the break statement, it is not possible to transfer control out of that block.

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to continue running the loop but stop processing the remainder of the code in its body for this particular iteration. This is, in effect, a goto just past the body of the loop, to the loop’s end. The continue statement performs such an action. In while and do-while loops, a continue statement causes control to be transferred directly to the conditional expression that controls the loop. In a for loop, control goes first to the iteration portion of the for statement and then to the conditional expression. For all three loops, any intermediate code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on each line:

 // Demonstrate continue.
 class Continue {
 public static void main(String args[]) {
 for(int i=0; i<10; i++) {
 System.out.print(i + " ");
 if (i%2 == 0) continue;
 System.out.println("");
 }
 }
 }

This code uses the % operator to check if i is even. If it is, the loop continues without printing a newline. Here is the output from this program:

 0 1
 2 3
 4 5
 6 7
 8 9

As with the break statement, continue may specify a label to describe which enclosing loop to continue. Here is an example program that uses continue to print a triangular multiplication table for 0 through 9.

 // Using continue with a label.
 class ContinueLabel {
 public static void main(String args[]) {
 outer: for (int i=0; i<10; i++) {
 for(int j=0; j<10; j++) {
 if(j > i) {
 System.out.println();
 continue outer;
 }
 System.out.print(" " + (i * j));
 }
 }
 System.out.println();
 }
 }

The continue statement in this example terminates the loop counting j and continues with the next iteration of the loop counting i. Here is the output of this program:

[image: Image]

Good uses of continue are rare. One reason is that Java provides a rich set of loop statements which fit most applications. However, for those special circumstances in which early iteration is needed, the continue statement provides a structured way to accomplish it.

return

The last control statement is return. The return statement is used to explicitly return from a method. That is, it causes program control to transfer back to the caller of the method. As such, it is categorized as a jump statement. Although a full discussion of return must wait until methods are discussed in Chapter 6, a brief look at return is presented here.

At any time in a method the return statement can be used to cause execution to branch back to the caller of the method. Thus, the return statement immediately terminates the method in which it is executed. The following example illustrates this point. Here, return causes execution to return to the Java run-time system, since it is the run-time system that calls main().

 // Demonstrate return.
 class Return {
 public static void main(String args[]) {
 boolean t = true;
 System.out.println("Before the return.");

 if(t) return; // return to caller

 System.out.println("This won't execute.");
 }
 }

The output from this program is shown here:

 Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed, control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the Java compiler would flag an “unreachable code” error because the compiler would know that the last println() statement would never be executed. To prevent this error, the if statement is used here to trick the compiler for the sake of this demonstration.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

ops/t0601-02.jpg
ContentHandlerFactory DatagramSocketimplFactory | SocketOptions

CookiePolicy (Added by Java SE 6 | FileNameMap URLStreamHandlerFactory

CookieStore (Added by Java SE 6.) | SocketimplFactory

ops/f0709-01.jpg
Applet Viewer: Checkb.
Applet

¥ Windows P [V Siidas Visk)

I™ Solaris [~ Mac 05

Current state:
Windows XP: true
Windows Vista: rue
Solaris: false

Mac 08: false

ops/t0601-01.jpg
DatagramSocket Networklnterface URLClassLoader
DatagramSocketimpl | PasswordAuthentication | URLConnection
HitoCookie (Added by | Proxy URLDecoder

Java SE 6.

HitpURLConnection ProwySelector | URLEncoder

IDN (Added by Java SE 6, | ResponseCache URLStreamHandler

InetdAddress.

SecureCacheResponse

ops/t0487-01.jpg
Dictionary

Hashtable

Properties

Stack

Vector

ops/t0509-01.jpg
Method
abstract void add(int which, int val)

Description

Adds val 1o the time or date component specified
by which. To subtract, add a negative value. which
must be one of the fields defined by Calendar, such
a5 CalendarHOUR

boolean after(Object calendarOb)

boolean before(Object calendarOb))

final void clear()
final void clear(int which)

Object clone()
boolean equals(Object calendarObj)

Returns true if the invoking Calendar object
contains a date that s later than the one specified
by calendar0bj. Otherwise, it returns fal
Returns true i the invoking Calendar object contains
a date that is earlier than the one specified by
calendar0bj. Otherwise, it retums false.

Zeros all time components in the invoking object.

Zeros the time component specified by which in
the invoking object.

Returns a duplicate of the invoking object.
Returns true if the invoking Calendar object
contains a date that is equal o the one specified
by calendarObj. Otherwise, it returns false.

ops/f0767-01.jpg

ops/f0962-01.jpg
3 hitp://localhost: 8080/serviets-examples/servlet/RegPays?amount=20... [=|[B))
Fle Edt Vew Favortes Tods el

Q © x] El o

Back stop Refresh Home

address

€] http: flocalhost:B080/serviets-examples{servist/RegPayS?amount=20C ¥

Enter amount to finance: 20000

Enter term in years: 5

Enter interest rate: 325
Monthly Payment: 40793

) Loca mronet

ops/f0721-01.jpg
Applet Viewer: TextFieldDemo.
Applet

Narme: e G Password: [7079797777

Narne: Herb Schildt
Selected textin name: Schildt
Passwor: dfkjsikdf

ops/f0882-01.jpg
Applet Viewer: JTextFieldDemo

[This s atest]

This is atest.

ops/t0647-02.jpg
WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.
WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred,

ops/t0647-01.jpg
NOBUTTON

BUTTON1

BUTTON2

BUTTON3

ops/f0710-01.jpg
Applet Viewer: CBGroup (= |[E)[X]
Applet

 Windows X Siidens Vist)

 Solaris € Mac 05

Current selection: Windows Vista

ops/t0417-01.jpg
Method getMethod(String methName,
Class<?> ... paramTypes)
throws NoSuchMethodException,
SecurityException

Method] getMethods()
throws SecurityException

Returns a Method object that represents the
method specified by metiName and having the
parameter types specified by paramTypes.

Obtains a Method object for each public method
of the invoking object and stores them in an array.
Returns a reference to this array.

String getName()

Returns the complete name of the class or
interface of the invoking object.

ProtectionDomain getProtectionDomain()

Class<? super T> getSuperclass()

boolean isinterface()

Returns the protection domain associated with the
invoking object.

Returns the superclass of the invoking object. The
return value is nullif the invoking object is of type
Object.

Returns true if the invoking object is an interface.
Othervise, it returns false.

T newinstance()
throws lllegalAcoessException,
InstantiationException

String toString()

Creates a new instance (i.e., a new object) that is
/of the same type as the invoking object. This is
equivalent to using new with the class’ default
(constructor. The new object is returned.

Returns the string representation of the invoking
‘object or interface.

ops/t0430-01.jpg
Method

| Description

<A extends Annotation> A
getAnnotation(Class<A> annoType)

Returns an Annotation object that contains the.
‘annotation associated with annoType for the
invoking object.

Annotation] getAnnotations()

Returns all annotations associated vith the invoking
object in an array of Annotation objects. Returns a
reference to this array.

Annotation] getDeclaredAnnotations()

String getimplementationTitie()

Returns an Annotation object for al the annotations
that are declared by the invoking object. (Inherited
annotations are ignored.)

Returns the title of the invoking package.

String getimplementationVendor()

Returns the name of the implementor of the
invoking package.

tring getlmplementationVersion)

|Returns the version number of the invoking package.

String getName()

[Returns the name of the invoking package.

static Package getPackage(String pkgName) |Returns a Package object with the name specified

by pkghame.

ops/t0430-02.jpg
static Packagel | getPackages()

|Returns all packages about which the invoking.
program is currently aware.

String getSpecificationitie()
String getSpecificationVendor()
String getSpecificationVersion()
int hashCode()

boolean isAnnotationPresent(

Class<? extends Annotation> anno)

boolean isCompatibleWith(String verNum)
throws NumberFormatException

Returns the title of the invoking package’s
specification.

Returns the name of the owner of the specification
for the invoking package.

Returns the invoking package’s specification
version number.

Retums the hash code for the invoking package.
Returns true if the annotation described by anno is
‘associated with the invoking object. Returns false,
otherwise.

Returns true if verum s less than or equal to the
invoking package's version number.

boolean isSealed()

boolean isSealed(URL ur)

Returs true if the invoking package s sealed.
|Returns false otherwise.

Returns true if the invoking package is sealed
relative to url. Returns false otherwise.

String toString()

Returns the string equivalent of the invoking
package.

ops/t0911-01.jpg
Interface Description

Serviet Declares life cycle methods for a serviet.

ServietConfig | Allows servlets to get initilization parameters.

ServietContext | Enables Serviets to log events and access information about their
environment.

ServietRequest | Used to read data from a client request.
ServietResponse | Used to write data to a client response.

ops/t0063-01.jpg
~A

ArB

A&B

AlB

ops/t0063-02.jpg
00101010 42
& 00001111 15

00001010 10

ops/t0476-02.jpg
static <E> List<E>
checkedSel(Set<E> c, Class<E> 0

AN [NLURR I DU S04 S D
attempt to insert an incompatible element will
cause a ClassCastExcoption.

static <K, V> SortedMap<k, V>
checkedSortedMap(SortedMap<k, V- ¢,
Class<K> heyT,
Class<V> valuen)
static <E> SortedSet<E>
checkedSortedSet(SortedSet<E> , Class<E> 1)

Returns a runtime typesafe view of a SortedMap.
An attempt to insert an incompatible element wil
cause o ClassCastException

[Returns a rn-time typesafe view of a Sortedset.

An attempt to nsert an incompatible element il
cause a ClassCastException.

static <T> void copy(List<? super T> list1,
List<? extends T> ist2)

Copies the elements of st2 o listi.

static boolean disjoint Collection<7> a,
Collection<?> b}

Compares the clements i a0 elements i b.
Returns true if the two collections contain no
common elements (L., the collections contain
disjoint sets of elements). Otherwise, returns true.

static <T> List<T> emptyList|)

Returns an immutable, empty List object o the
inferred type.

static <K, V> Map<K, V> emptyMap()

static <T> Set<T> emptySet()

Returns an immutable, empty Map object of the

inferred type.

Returns an immutable, empty Set object of the
inferred type.

static <T> Enumeration<T>
enumeration(Collection<T> ¢)

Returns an enumeration over . (See “The
Enumeration Interface,” later in this chapter)

Static <T> void filList<? super T> fist, T ob)

‘Assigns objto each element of fist.

ops/t0476-01.jpg
Method

Description

static <T> boolean
‘addAlCallection <? super T> ¢,
... olements)

static <T> Queve<T> asLifoQueue(Deque<T> ¢]

Inserts the elements specified by elements into the
collection specified by c. Retuns true f the:

elements were added and false otherwise.

Returns a lastin,firstout view of c. (Added by Java
SE6)

static <T> ‘Searches for value in ist ordered according to c.
intbinarySearchiList<? extends T> fst, Returns the position of value in fst, or a negative:
T vae, value if value is not found.
‘Comparator<? super T> o)
static <T> ‘Searches for value in is. The list must be sorted.

ntbinarySearchiList<? extends.
‘Comparable<? super T>> list,
7 value)
static <E> Collection<E>
eheckedColection(Collection<E> ¢,
Class<E> 1)
stotic <E> List<E>
checkedListList<E> ¢, Class<E>)

static <K, V> Map<K, V>
checkedMap(Map<K, V> o,
Class<k> keyT,
Class<V> value)

Returns the position of value i fst, or a negative:
value if value is not found.

Returns a runtime type safe view of a collecton.
An attempt 1o nsert an incompatible element vill
cavse a ClassCastException.

Returns a runtime typesafe view of a List. An
attempt to insert an incompatible element will

cause a ClassCastExcoption.

Returns a runtime typesafe view of a Map. An
attempt to insert an incompatible element will
cause a ClassCastException.

ops/t0395-02.jpg
static Long getLong(String propertyName,
long default

Returns the value associated with the environmental
property specified by propertyName. The value of
default is returned on failure.

static Long getLong(String propertyName,
Long default)

int hashCode()

Returns the value associated with the environmental
property specified by propertyName. The value of
defaultis returned on failure.

Returns the hash code for the invoking object.

static long highestoneBit(long num)

Determines meimsmon of the highest-order set bit
in num. It returns a value in which only this bit is
set. If o bit is set to one, then zero is returned.

int intValue()
long longValue()

Returns the value of the invoking object as an int.
Returns the value of the invoking object as a long.

static long lowestOneBit(long num)

static int numberOfLeadingZeros(long num)

static int numberOfTrailingZeros(long num)

Determines the position of the lowest-order set bit
in num. It returns a value in which only this bit is
set. If no bit is set to one, then zero s returned.
Returns the number of high-order zero bits that
precede the first high-order set bit in num. If num
is zer0, 64 is returned.

Returns the number of low-order zero bits that
precede the first low-order set bt in num. If num
is zero, 64 is returned.

ops/t0395-01.jpg
Method

Description

static int bitCount(long num)

Returns the number of set bits in num.

byte byteValue()
int compareTo(Long)

static Long decode(String str)
throws NumberFormatException

Returns the value of the invoking object as a byte.
Compares the numerical value of the invoking object
with that of 1. Returns O if the values are equal.
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

Returns a Long object that contains the value
specified by the sting i str.

dot leValuel)

Returns the value of (oking object as a doul

boolean equals(Object Long0b)

Retums true if the invoking Long object is equivalent
to LongOby. Otherwise, it returns false.

float floatValue()

Returns the value of the invoking object as a float.

static Long getLong(String propertyName)

Returns the value associated with the environmental
property specified by propertyNarme. A null is returned
on failure.

ops/t0064-02.jpg
00101010 42
00001111 15

00100101 37

ops/t0064-01.jpg
00101010 42
1 00001111 15

00101111 47

ops/t0041-01.jpg
Escape Sequence

Description

\ddd

Octal character (ddd)

\uxoxx Hexadecimal Unicode character (xxxx)
- Single quote

\" Double quote

N Backslash

\r Carriage return

\n New line (also known as line feed)

Ni Form feed

At Tab

\b Backspace

ops/t0635-01.jpg
Method

Description

Applet getApplet(String appletName) | Returns the applet specified by appletiame if it is within

Enumeration<Applet> getApplets()
AudioClip getAudioClip(URL urf)

Image getimage(URL ur)

the current applet context. Otherwise, null is returned.
Returns an enumeration that contains i of the applets
within the current applet context.

Returns an AudioClip object that encapsulates the audio
clip found at the location specified by url.

Returns an Image object that encapsulates the image
found at the location specified by url.

InputStream getStream(String key)

erator<String> getStreamkeys()

void setStream(String key,
InputStream strm)

void showDocument(URL ur)

void showDocument(URL uri,
Sting where)

void showStatus(String st

Returns the stream linked to key. Keys are linked o
streams by using the setStream() method. A null
reference is returned if no stream is linked t0 key.
Returns an iterator for the keys associated with the.
invoking object. The keys are linked to streams. See

|getStream() and setStream().

Links the stream specified by strm to the key passed in key.

The keyis deleted from the invoking object if strm is null.
Brings the document at the URL specified by urlinto view.
‘This method may not be supported by applet viewers.
Brings the document at the URL specified by urlinto view.
‘This method may not be supported by applet viewers. The
placement of the document is specified by where as
described in the text.

Displays str in the status window.

ops/t0418-01.jpg
Method Description
static double sin(double arg) | Returns the sine of the angle specified by arg in radians.

static double cos(double arg) | Returns the cosine of the angle specified by arg in radians.
static double tan(double arg) | Returns the tangent of the angle specified by arg in radians.

ops/t0465-01.jpg
Method

Description

void lear()

Removes al key/value pairs flom the invoking map.

boolean containsKey(Object K)

boolean containsValue(Obiect v

Returns true i the invoking map contains K as a key. Otherwise,
returns faise.

Returns true if the map contains v as a valve. Otherwise, returns false.

Set<Map Entry<K, V>> entrySet()

Returns a Set that contains the entries in the map. The set contains.
‘objects of type Map.Entry. Thus, this method provides a setuiew o the.
invoking map.

boolean equals(Object ob) Returns true if ob)is a Map and contains the same entries. Otherwise,
returns faise.
V getiObiect k) Retur e vlue assciated it e ey k. Rt e by 5
not found.
it hashCode) Returns the hash code for the invoking map.
boolean isEmpty() Returns true if the invoking map is empty. Othervise, rews false. |
etk keySet) Returns a Set that contains the keys n the invoking map. This method

provides a setiew of the keys in the invoking map.

V putlik Vv

Puts an entry in the invoking map, overwriting any previous velue:
associated with the key. The key and value are k and v, respectively.
Returns null i the key did not already exst. Otherwise, the previous
value linked to the key is returned.

Void putAI(Map=<? extends K.
2 extends V> m)

Puts al the entres from m into this map.

V remove(Obiect
it size()

Removes the entry whose key equals k.
Returns the number of key/value pairs in the map.

Collection<V> values()

Returns a collection containing the values in the map. This method
provides a collectionview of the values in the map.

ops/f0733-01.jpg
Field

Purpose.

int anchor

Specifies the location of a component within a cell. The default is.
GridBagConstraints.CENTER.

int fll Specifies how a component i resized if the component is smaller than its
cell. Valid values are GridBagConstraints.NONE (the default),
GridBagConstraints. HORIZONTAL, GridBagConstraints. VERTICAL,
GridBagConstraints.BOTH

int griaheight Specifies the height of component n terms of cells. The default s 1.

int gridwidth Specifies the width of component in terms of cells. The default is 1.

int gridx Specifies the X coordinate of the cell to which the component will be:
added. The default value is GridBagConstraints. RELATIVE.

int gridy Specifies the Y coordinate of the cell to which the component will be:
added. The default value is GridBagConstraints. RELATIVE.

Insets insets Specifies the insets. Default insets are al zero,

int ipadx Specifies extra horizontal space that surrounds a component within a cell.
The default is 0.

int ipady Specifies extra vertical space that surrounds a component within a cell.
The default is O.

double weightx | Specifies a weight value that determines the horizontal spacing between
cells and the edges of the container that holds them. The default value is
0.0. The greater the weight, the more space that is allocated. f al values
are 0.0, extra space is distributed evenly between the edges of the window.

double weighty | Specifies a weight value that determines the vertical spacing between cells

and the edges of the container that holds them. The default value is 0.0,
‘The greater the weight, the more space that is allocated. If ll values are
0.0, extra space is distributed evenly between the edges of the window.

ops/t0602-01.jpg
boolean equals(Object other) | Retums true f this object has the same Internet address as other.

bytel] getAddress() Returns a byte array that represents the object’s IP address in
network byte order.
String getHostAddress() Returns a string that represents the host address associated

with the InetAddress object.

String getHostNamel() Returns a string that represents the host name associated with
the InetAddress object.

boolean isMulticastAddress() | Returns true if this address is a multicast address. Otherwise,
it returns false.

String toString() Returns a string that lists the host name and the IP address for
convenience.

ops/t0075-01.jpg
Highest

- —— ~
. /
i -
>> S>> <<
> >= <
1=
&
A
1
&&
I
op=

Lowest

ops/t0726-01.jpg
BorderLayout CENTER

BorderLayout. SOUTH

BorderLayout EAST

BorderLayout WEST

BorderLayout NORTH

ops/f0676-01.jpg
£ A AWT-Based Application
This is a test.

&nuse Down at 81, 97

ops/t0508-01.jpg
Method

|Description

boolean after(Date date)

Returns true if the invoking Date object contains a date that is
later than the one specified by date. Otherwise, it returns false.

boolean before(Date date)

Obiect clone()

Returns true if the invoking Date object contains a date that is
‘earlier than the one specified by date. Otherwise, it returns false.

|Duplicates the invoking Date object.

int compareTo(Date date)

Compares the vlue of the inoking object with that of date. Returns
0if the values are equal. Returs a negatve value i the invoking
‘object is earfier than date. Returns a positive value if the invoking
object i later than date.

boolean equals(Object date)

[Returns true if the invoking Date object contains the same time
and date as the one specified by date. Otherwise, it returns false.

long getTime()

int hashCode()

Returns the number of milliseconds that have elapsed since
January 1, 1970.

Returns a hash code for the invoking object.

void setTimef(long time)

String toString()

Sets the time and date as specified by time, which represents
an elapsed time in milliseconds from midnight, January 1, 1970.

Converts the invoking Date object into a string and returns the result

ops/f0940-01.jpg
Applet Viewer: FutVal

Future Value of an Investment

Principal [10000

Years

Rate of Return

Compounding Periods per Year

Future Value of Investment 13,488.50

Compute!

ops/t0030-01.jpg
AvgTemp

count

a4

Stest

this_is_ok

ops/t0556-01.jpg
Console ObjectinputStream Reader
Datalnputstream Obiectinputstream GetField | Sequencelnputstream
DataOutputStream ObjectOutputStream SerializablePermission
File ObjectOutputStream PutField | StreamTokenizer
FileDescriptor ObjectStreamClass StringReader
FilelnputStream ObjectStreamField StringWriter
FileOutputStream Outputstream Witer

FilePermission OutputStreamwiiter

FileReader PipedinputStream

ops/t0556-02.jpg
Closeable |FileFilter |ObjectinputValidation
Datalnput FilenameFilter | ObjectOutput
DataOutput |Flushable |ObjectStreamConstants.
Externalizable |Objectinput |Serializable

ops/f0778-01.jpg
Fitered: Cortrast

Reset | Grayscale | Invert | {EGHEET] Blur | _Sharpen |

ops/t0053-01.jpg
o
o

€ 789

ops/t0817-02.jpg
Method

Description

abstract byte get()

[Returns the byte at the current posit

ByteBuffer get(byte vals{ |)

ByteBuffer get(byte vals| |, int start,
int num)

abstract byte get(int io)
abstract ByteBuffer putibyte b)

final ByteBuffer put(byte vals{])

ByteBuffer put(byte vals|], int start,
int num)

ByteBuffer put(ByteBuffer bb)

Copies the invoking buffer into the array referred to by
|vals. Returns a reference to the buffer.

Copies num elements from the invoking buffer into
|the array referred to by vals, beginning at the index
|specified by start. Returns a reference to the bufer
If there are not num elements remaining in the buffer,
|2 BufferunderfiowException is thrown.

Returns the byte at the index specified by idx within
the invoking buffer.

|Copies binto the invoking buffer at the current position.
|Returns a reference to the buffer.

|Copies allclements of vals into the invoking bufer,

| beginning at the current position. Returns a reference
to the buffer.

Copies num elements from vals, beginning at start,
|into the invoking buffer. Returns a reference to the
|buffer. If the buer cannot hold al of the elements,
2 BufferOverflowException is thiown.

|Copies the elements in bb to the invoking buffer,

| beginning at the current position. If the buffer cannot
hold al of the clements, a BufferOverflowException
| tvown. Returas reference to the buffer

abstract ByteBuffer put(int idx, byte b) |Copies binto the invoking bufer at the location

| specified by dx. Returns a reference to the bufler.

ops/t0374-01.jpg
Method
it codePointALint)

it codePointBefore(int)

Description

Returns the Unicode code point at the location specified by i
Added by J2SE 5.

Returns the Unicode code point at the location that precedes
that specified by i Added by J2SE 5.

int codePointCount(nt start int end)

Returns the number of code points n the portion o the imioking
‘Strng that are between start and end-1. Added by J2SE 5.

boolean contains(CharSequence st

Returns true if the invoking object contains the string specified
by str. Returns false, otherwise. Added by J2SE 5.

boolean contentEquals(CharSequence st | Returns true if the invoking sting contains the same sting as

str. Otherwise, returns falso. Added by J2SE 5.

boolean contentEquals(StingBuffer str)

Returns true i the invoking sting contains the same sting as
str. Otherwise, returns false.

Static Sting format(Sting fmstr, Returns a string formatted as specifid by fmtst (See Chapter 18
Object .. args) for detals on formatting.) Added by J2SE 5.

Static String format(Locale loc, Returns a sting formatted as specified by ftstr Formatting
Sting fntstr, is governed by the locale specified by loc. (See Chapter 18 for
Object .. args) details on formatting,) Added by J2SE 5.

boolean matches(sting regExp) Returns true f the nvoking string matches the regular expression

passed in regExp. Otherwise, returns false.

intoffsetByCodePoints(int start, int num)

Sting
replacefirst(Sting regExp,
‘Sting newstr)

Sting

teplaceAlSting regExp.
‘String newStr)

Returns the index with the invoKing sting that is num code points
| beyond the starting index specified by start. Added by J2SE 5.

Returns a sting in which the first substing that matches the
regular expression specified by regExp s replaced by newStr

Returns a sting in which all substrings that match the regular
expression specified by regExp are replaced by newSt.

ops/t0817-01.jpg
ByteBuffer |CharBuffer | DoubleBuffer |FoatBuffer
IntBuffer LongBuffer MappedByteBuffer | ShortBuffer

ops/t0477-01.jpg
static int frequency(Collection<?> ¢, Object oby)

Counts the number of occurrences of objin ¢ and
returns the result

static int indexOfSubList(ist<?> fist,
Uist<?2> sublist)

‘Searches fist for the firt occurrence of subList.
Returns the index of the first match, or ~1 if o

match is found.

static int lostindexOfSubListList<?> st
Liste?> sublis)

‘Searches lst for the last occurrence of subList.
Returns the index of the last match, or 1 if no
match is found.

static <T>
ArrayList<T> listEnumeration<T> enum)

of enum.

Returns an ArrayList that contains the clements

static <T> T max(Collection<? extends T> ¢,
‘Comparator=<? super T> comp)

Returns the maximum clement in ¢ as determined
by comp.

static <T extends Object &
‘Comparable<? super T>>
T max(Collection<? extends T> ¢)
static <T> T min(Collection<? extends T> ¢,
‘Comparator<? super T> comp)

Returns the maximum element in ¢ as determined
by natural ordering. The collection need not be

|sorted.

Returns the minimum element in ¢ as determined
by comp. The collection need not be sorted.

static <T extends Object &
Comparable<? superT>>
T min{Collection<? extends T> o)

Returns the minimum element in ¢ as determined
by natural ordering.

Static <T> List<T> nCopiesfint num, T ob))

Retums num copies of obj contained in an immutable:

list. num must be greater than or equal 1o zero.

ops/t0477-02.jpg
static <E> Set<E> newSetFromMap(Map-<E, Boolean> m) |Creates and returns a set backed by the map.

static <T> boolean replaceAllList=<T> ist,
T oid, T new)

static vold reversel ist<T> st

specificd by m, which must be empy at the time.

this method is called. (Added by Java SE 6.)

Replaces all occurrences of oldwith newin st
Returns true if at least one replacement occurred.

Returns faise, otherwise.

Reverses the sequence in st

static <T> Comparator<T>
reverseOrder(Comparator<T> comp)

Returns a reverse comparator based on the one.
passed in comp. That i, the returned comparator
reverses the outcome of a comparison that uses.
comp.

static <T> Comparator<T> reverseOrder()

static void rotate(List<T> fist,int)

static void shuffle(List<T> list, Random 1)

static void shuffle(List<T> lst

Returns a reverse comparator, which is &
comparator that reverses the outcome of @

‘comparison between two elements.

Rotates lst by n places o the right. To rotate lot,
use a negative value for n.

Shufles (.., randomizes) the elements in fist by

using ras a source of random numbers.

‘Shuffes (L. randomizes) the clements in st

stotic <T> Set<T> singleton(T o)

static <T> List<T> singlotonList(T ob)

Returns objas an immutable set. This is an easy

| way to convert a single object nto a set.

Returns obj s an immutable ist. This s an easy.
way to convert a single abject into a fst.

static <K, V> Map<K, V>
singletonMap(K k. V v

Returns the key/value pair k/v as an immutable.
map. This is an casy way to convert a single ey

value pair into a map.

ops/t0416-02.jpg
Constructor<?>|] getDeclaredConstructors()
throws SecuriyException

Obtains a Constructor object for each constructor
declared by the invoking object and stores them in
an array. Retums a reference to this array.
(Superclass constructors are ignored.)

Field] | getDeclaredFielas()
throws SecuriyException

Obtains a Field object for each field declared by
this class and stores them in an array. Returns a
reference to this array. (Inherited fields are ignored.)

Method]] getDeclaredMethods()
throws SecuriyException

Obtains a Method object for each method declared
by this class or interface and stores them in an
array. Returns a reference to this array. (Inherited
methods are ignored.)

Field getField(String fieldName)
throws NoSuchMethodException,
‘SecurityException
Field|] getFields/()
throws SecurityException

Returns a Field object that represents the field
specified by fieldName for the invoking object.

Obtains a Field object for each public field of the
invoking object and stores them in an array. Returns|
a reference to this array.

Class<?-(] getinterfaces()

‘When invoked on an object, this method returns
an array of the interfaces implemented by the class
type of the object. When invoked on an interface,
this method returns an array of interfaces extended
by the interface.

ops/t0416-01.jpg
Annotation[] getAnnotations()

Obtains all annotations associated with the invoking
‘object and stores them in an array of Annatation
|objects. Returns a reference to this array.

Class<?>{] getClasses()

Returns a Class object for each of the public classes
and interfaces that are members of the invoking
lobject.

ClassLoader getClassLoader()

Constructor<T>
getConstructor(Class<?> ... paramTypes)
throws NoSuchMethodException,
‘SecurityException
Constructor<?-] getConstructors()
throws SecurityException

Annotation | getDeclaredAnnotations()

Returns the ClassLoader object that loaded the class
or interface used to instantiate the invoking object.
Returns a Constructor object that represents the
(constructor for the invoking object that has the
parameter types specified by paramypes.

Obtains a Constructor object for each public
constructor of the invoking object and stores them
in an array. Returns a reference to this array.
Obtains an Annotation object for al the annotations
that are declared by the invoking object and stores.
them in an array. Returns a reference to this array.
(Inherited annotations are ignored.)

ops/f0677-01.jpg
£ Applet Viewer: Lines
: EEX

Anplet

v,

ops/f0952-01.jpg
Applet Viewer: MaxWD

Maximum Regular Withdrawals

Original Principal
Vears

Rate of Retumn

Number of Withdrawals per Year

Maximum Withdrawal

/500000

®
B 1
PE—

358218

Compute!

ops/t0912-02.jpg
Method ' Description

ServietContext getServietContext() Returns the context for this serviet,

String getlnitParameter(String param) | Returns the value of the initialization parameter
named param.

Enumeration getinitParameterNames() | Returns an enumeration of all initialization parameter

names.

String getServietName() Returns the name of the invoking serviet.

ops/t0614-02.jpg
InetAddress getAddress()

bytel] getDatal)

Returns the address of the source (for datagrams
being received) or destination (for datagrams.
being sent).

Returns the byte array of data contained in the
datagram. Mostly used to retrieve data from the
datagram after it has been received.

int getLength()

Returns the length of the valid data contained in
the byte array that would be returned from the.
getData() method. This may not equal the length
of the whole byte array.

ops/t0912-01.jpg
Class
GenericServiet

Description
Implements the Servlet and ServietConfig interfaces.

ServietinputStream
ServietOutputStream
ServietException
UnavailableException

Provides an input stream for reading requests from a client.
Provides an output stream for writing responses to a client.
Indicates a serviet error occurred.

Indicates a serviet is unavailable.

ops/t0614-01.jpg
InetAddress getinetAddress() If the socket is connected, then the address is returned.
Otherwise, null is returned.

int getLocalPort() Returns the number of the local port.

int getPort() Returns the number of the port to which the socket is
connected. It returns ~1. if the socket is not connected
toaport.

boolean isBound() Returns true if the socket is bound to an address.
Returns false otherwise.

boolean isConnected() Returns true if the socket is connected 1o a server.

Returns false otherwise.

void setSoTimeout(int mills) Sets the time-out period to the number of milliseconds.
throws SocketException passed in millis.

ops/f0299-01.jpg
£ applet Viewer: Simp... (=B

Applet

A Simple Applet

ops/t0440-01.jpg
Interface Description

Collection Enables you to work with groups of objects; it is at the top of the collections
hierarchy.

Deque Extends Queue to handle a double-ended queue. (Added by Java SE 6.)

Ust Extends Collection to handle sequences (ists of objects).

NavigableSet | Extends SortedSet to handle retreval of elements based on closestmatch
|searches. (Added by Java SE 6)

Queue Extends Collection to handle special types of lists in which elements are
removed only from the head.
Set Extends Collection to handle sets, which must contain unique elements.

SortedSet Extends Set to handle sorted sets.

ops/t0511-01.jpg
ALL_STYLES FRIDAY PM
Am HOUR ‘SATURDAY
AM_PM HOUR_OF_DAY SECOND.

APRIL JANUARY SEPTEMBER
AUGUST oy SHORT

DATE JUNE SUNDAY
DAY_OF_MONTH LONG THURSDAY
DAY_OF_WEEK MARCH ‘TUESDAY
DAY_OF_WEEK_IN.MONTH | MAY UNDECIMBER
DAY_OF_YEAR MILLISECOND. WEDNESDAY
DECEMBER MINUTE WEEK_OF_MONTH
DST_OFFSET MONDAY WEEK_OF_YEAR
ERA MONTH YEAR

FEBRUARY NOVEMBER ZONE_OFFSET
FIELD_COUNT OCTOBER

ops/f0628-01.jpg
£ Applet Viewer: StatusWindow. [0

Applet

This s in the applet window.

This i shown in the status window.

ops/f0903-01.jpg
Applet Viewer: JTreeDemo

ops/t0864-01.jpg
javax.swing

javax.swing border

javax.swing.colorchooser

javax.swing.event

javax.swing.filechooser

javax.swing,plaf

javax.swing.plaf.basic
javax.swing.plaf.synth

javax.swing plaf.metal
javax.swing table

javax.swing.plaf.multi
javax.swing.text

javax.swing.text.ntml

javax.swing texttml.parser

javax.swing text.rtf

javax.swing.tree

javax.swing.undo

ops/t0522-01.jpg
Method Description

boolean cancel() Terminates the task. Returns true if an execution of the task is
prevented. Othervise, returns false.
abstract void run() Contains the code for the timer task.

long scheduledExecutionTime() |Returns the time at which the last execution of the task was
scheduled to have occurred.

ops/t0042-01.jpg
// declares three ints, a, b, and c.
/1 declares three more ints, initializing

int a, b, ¢;
intd=3, e £=

// a and f.
byte z = 22; /1 initializes z.
double pi = 3.14159; // declares an approximation of pi.

char x = 'x!

// the variable x has the value 'x'

ops/t0543-01.jpg
Method
String next()

| Description
Returns the next token of any type from the input source.

String next(Patter pattern)
String next(String patter)

BigDecimal nextBigDecimal()
Biginteger nextBiginteger()

Returns the next token that matches the pattern passed
in pattern from the input source.

Returns the next token that matches the pattern passed
in pattern from the input source.

Returns the next token as a BigDecimal object.

Returns the next token as a Biglnteger object. The default
radix is used. (Unless changed, the default radix is 10.)

Biginteger nextBiginteger(int radi) |Returns the next token (using the specified radi) as a

Biginteger object.

boolean nextBoolean()
byte nextByte()

Returns the next token as a boole:

Returns the next token as a byte value. The default radix
is used. (Unless changed, the default radix is 10.)

value.

ops/t0543-02.jpg
byte nextByte(int radix) ‘Relums the next token (using the specified radix) as a
byte value.

ouble nextDouble() |Returns the next token as a double value.

float nextFloat() Retums the next token as a float value.

nextini() [Returns the next token s an int value. The default radix

|is used. (Unless changed, the default radix is 10.)

int nextint(int radiy) |Returns the next token (using the specified radix) as an
Jint value.

String nextLinel) [Returns the next line of input s a string.

long nextLong() |Returns the next token s a long value. The default radix
Jis used. (Unless changed, the defaut radix is 10.)

long nextLong(int radi) Returns the next token (using the specified radix) as a

short nextShort() [Returs the next token as a short value. The default radix
|is used. (Unless changed, the default radix is 10.)

Short nextShort(int radi) [Returns the next token (using the specified radix) as a
|short value.

ops/f0688-01.jpg
£ Applet Viewer: ShowFonts
Applet
‘Abal MT Condensed Abadi MT Condensed Exra Bold Abadi MT Condensed Light Algerian

ops/t0466-02.jpg
Method

Description

Map Enty<K V> celingEnty(K ob)

Seatches the map (o he smallestkey ksuch that k= oy If such key
s found, ts enry s retumed. Onerwise, nll s feturnod.

KceiingHex(k ob)

Searches the mop fo the smallest key & such tha K »= o, fsuch a ey
is found. 1 eturned. Otherwise, nll s retrned.

NavigableSet<K> descendingieySet |

Retuns a NavigableSet tat contans he keys i the nvoking map i
feverse order, Thus, I 1e1ns a reverse setview of (he keys. The
resuting st s backed b the map.

NavigableMap<K V> descendingMar)

Map Entry <K V> g)

Retums a NavigableMap that s the roverse of he invking map. The

resulting map1s backed by the invoking map.

Retums the st entry i the map. T s the nry with th leas k.

Map Eney <K V> foorEntryK o6

Searches the map fo he argestkey k such that K <= oy 1 such a key

is found, s entry s etured. Otherwise, nll s rotuned.

K foorkentk o) Searches the map for he largestkey k such tht K <= oy such a key
is found. 5 returnd. Oherwise. null i reued.
NavgableMap<K V> Retuns a NavigableMap that incudos alentries fom the invoking map

eaaMap(K upperBound, boolean inc)

Map Entry <K V> hgherEntry(K ob)

hat have ey that a lss than upperBound. I 01 true, then an
element equal to upperBound's incuded. The resulting mag is backed by

the invoking map.

Searches the set for the lagest key k such tnat > o, f such a hey s
found, ts entry is retumed. Otherwise, mull s returmed.

ops/t0466-01.jpg
Method

Description

Comparator<? super K> comparator)

Returns the invoking sorted map's comparator. If natural
ordering s used forthe invoking map, nul is returned.

Kfrsthey()
SortedMap<K, V> headMiap(K end]

K lastiey)

SortedMap<K, V> subMap(K start, K end)

Returns the first key in the invoking map.

Retuns a sorted map for those map enties with keys that are:

less than end.

Returns the last key i the invoking map.
Retuns a map containing those enties with keys that are
greater than or equal o start and less than end.

SortedMiap<K, V> tailMap(K start)

Returns a map containing those enties vith keys that are:
greater than or equal to Start.

ops/f0881-01.jpg
Applet Viewer: JLabeDemo |2

France

ops/f0732-01.jpg
Applet Viewer: CardLayoutDemo [|[01/[X]

windows | Other

¥ Windows XP [~ Windows Vista

Applet Viewer: CardLayoutdemo [=|[E])

Applet
Windows | Other

I~ Solaris ¥ izE 08

Applet started.

ops/t0026-01.jpg
Meaning

Less than

Greater than

Equal to

ops/t0603-01.jpg
‘Socket(String hostName, int port) Creates a socket connected to the named host
throws UnknownHostException, and port
10Exception

Socket(InetAddress ipAddress, int port) Creates a socket using a preexisting
throws I0Exception InetAddress object and a port.

ops/t0187-01.jpg
Private No Modifier Protected Public

Same class |Yes Yes Yes Yes
Same No Yes Yes Yes
package

subclass

Same No Yes Yes Yes
package

non-subclass |

Different No No Yes Yes
package

subclass,

Different No No No Yes
package

non-subclass

ops/t0588-01.jpg
Method

Description

void flush()

Causes buffered output to be written physically to the
console.

Console format(Sting fmtstring,
Obect...args)

Console printf(String fmtString,
Object...args)

Wiites args to the console using the format specified
by fmtString.

Wites args to the console using the format specified
by fmtString.

Reader reader()

Returns a reference to a Reader connected to the
console.

String readLine()

Reads and returs a string entered at the keyboard.
Input stops when the user presses ENTER. If the end
of the console input stream has been reached, null
is retumned. An I0rror is thrown on failure.

String readLine(String fmtString,
‘Object...args)

char] readPassword()

Displays a prompting string formatted as specified by
fmtString and args, and then reads and returs a string
entered at the keyboard. Input stops when the user
presses ENTER. If the end of the console input stream
has been reached, null is returned. An I0rror is
thrown on failure.

Reads a string entered at the keyboard. Input stops when
the user presses ENTER. The string is not displayed. If the
end of the console input stream has been reached, nullis
returned. An 10Error is thrown on failure.

char(] readPassword(String fmtString,
Object... args)

PrintWriter writer()

Displays a prompting string formatted as specified
by mtString and args, and then reads a string entered
at the keyboard. Input stops when the user presses
ENTER. The string is not displayed. If the end of the
console input stream has been reached, null is
retured. An IOrror is thrown on failure.

Returns a reference to a Writer connected to the console.

ops/t0991-01.jpg
Tag. Meaning

@author _entifies the author of a class.

(@code) |Displays information asis, without processing HTML styles, in code font.
@deprecated | Specifies that a class or member is deprecated.

{@docRoot) | Specifies the path to the root directory of the current documentation.
@exception _dentifies an exception thrown by a method.

{@inneritboc) _ Innerits a comment from the immediate superclass.

(@link) Inserts an iniine link to another topit

{@iinkplain} _Inserts an iniine link to another topic, but the link is displayed in a plaintext font.
(@iteral) | Displays information as is, without processing HTML stytes.

@param Documents a method's parameter.

@rewm Documents a method's return value.

@see Specifies a link to another topic.

@serial Documents a default serializable field.

@serialData | Documents the data written by the writeObject() or writeExtemal() methods.
@serialField Documents an ObjectStreamField componert.

@since States the release when a specific change was introduc

@hows Same as @exception.

(@value) |Displays the value of a constant, which must be a stati field.

@version ‘Specifies the version of a class.

ops/t0489-02.jpg
boolean isEmpty()

|Retuns trua if the vector is empty, and returns fale if it contains one or more |
clements.

€ lasitementt)

Retuns the st lement n the vector,

intlastindesOibject element)

Retuns the inde of th st occurtence of element, I he obect 5 not n he
vector, 115 retumed.

intastindexofOject element,
intstor)

Retums the inde of the last occurence of element bfore start. I the abject
is notin thatportion of the vector, -1 s retumed.

w0 removeAlEiements()

Emplies the vector. After tis method exccutes, th size of the vecor s ze0.

bootean removeElement Obect eement

Removes dlement fo th vetor. I more than ane nstanceof th specfed
bject exsts i th vectr then s thefrst on tha s removed. Returms.
100 1 sucesstul and false i the obect s ot found.

101 removeElementatint e

Removes the lement at the locaton specifed by ndex.

V0 setElementALE elemen.
nt index)

The location specfied by Index s assgned lement.

o setszalnt size)

‘et the number o clemants I tho vector o size. the now sizo i lss than
the i size, elments ar lost. 1 h new iz vger than the o iz, null
cloments are odded.

intsize) Retuns the number of elements curenty n the vetor.
Stong tostingl) Retums the sting equialent ofte vector
o tmTosizel) et the vector's capacty equal the rumber of elements that

t currently hoids.

ops/t0489-01.jpg
Method

‘Description

V0 adElemen(E eloment)

The objectspecied by clement is added t the vectr

hewmely 0 |

Onjectconet |

bootean contains(Onect semen) [Retums true i fement s containe by the vetor, and reurns false s not.

ot copyintaiObiect ara The elements contained i the invoking vector are copied it the artay
spectied by array.

£ clamenthtin indes) Retuns th element at the ocaton specfied by index.

EnumerationsE> ciements()

Retuins an enumeration of the elements in the vector.

0 ensureCapasty(in size)

Sets the minimum capacty o the vector 0 size.

€ frstclement)

Retus he s lement n the vector,

int e Ovect elemen)

Retuns the index of th frstoccurtence of elemen. I the aject s oL i the
vector, 1 s retumed.

intingex0HOect ooment, n start)

Retums the index of th st cccurrnc of et at o aftr stat, 1 e abject
is po in thatporton of the vector, -1 s retumed.

Vo nsertElementALE elemen,
int index)

'Aads clement o the vectora th locaton specilied by ndex,

ops/f0893-01.jpg

ops/f0765-01.jpg
vincentleonardo picasso.

ops/t0659-01.jpg
Adapter Class

Listener Interface

ComponentAdapter ComponentListener
ContainerAdapter ContainerListener
FocusAdapter |FocusListener
KeyAdapter KeyListener
MouseAdapter MouseListener
MouseMotionAdapter MouseMotionListener

WindowAdapter

WindowListener

ops/t0385-01.jpg
Boolean InheritableThreadLocal |Runtime. System
Byte Integer |RuntimePermission _ Thread
Character Long SecurtyManager ThreadGroup
Class Math Ishort ThreadLocal
ClassLoader Number StackTraceElement Thiowable
Compiler Object strictMath Void

Double Package |string

Enum Process StringBuffer

Float ProcessBuilder |StringBuilder

ops/t0555-01.jpg
BufferedinputStream FileWriter PipedOutputStream
BufferedOutputStream FiterinputStream PipedReader
BufferedReader FiterOutputStream PipeaWriter
BufferedWiter FilterReader PrintSteam
ByteArayinputStream FilterWriter printiWriter
ByteArayOutputStream InputStream PushbackinputStream
CharhrrayReader InputStreamReader PushbackReader
CharArrayWiiter LineNumberReader RandomAccessFile

ops/t0385-02.jpg
Appendable Comparable Runnable
CharSequence terable
Cloneable Readable

ops/t0201-01.jpg
if (prob < 30)
return NO;

else if (prob < 60)
return YES;

else if (prob < 75)
return LATER;

else if (prob < 98)
return SOON;

else
return NEVER;

"
1
1
ris

45

304

30%

15%

13%

ops/f0666-01.jpg
‘Component

Container

Window Panel

A

ops/t0031-02.jpg
98.6

“This is a test"

ops/t0532-01.jpg
Millisecond (000 to 999)

Month as decimal (01 to 13)

Minute as decimal (00 to 59)
Nanosecond (000000000 to 999999999)

Locale’s equivalent of AM or PM in lowercase

Milliseconds from 1/1/1970

hh:mm:ss (12-hour format)

hh:mm (24-hour format)
Seconds (00 to 60)

Seconds from 1/1/1970 UTC

hh:mm:ss (24-hour format)
Year in decimal without century (00 to 99)

Year in decimal including century (0001 to 9999)
Offset from UTC

NiNI<I<|-lo o[~ loe(z|Z|(3|F

Time zone name

ops/t0031-01.jpg
2count

hightemp

Not/ok_

ops/t0031-03.jpg
Symbol Name Purpose
¥ Parentheses |Used to contain lists of parameters in method defintion and invocation.
Aiso used for defining precedence in expressions, containing expressions
in control statements, and surrounding cast types.
0 Braces Used to contain the values of automatically initalized arrays. Also used
to define a block of code, for classes, methods, and local scopes.
(1 Brackets | Used to declare array types. Also used when dereferencing array values.
3 Semicolon | Terminates statements.
. Comma | Separates consecutive identifiers in a variable declaration. Also used o
chain statements together inside a for statement.
Period Used to separate package names from subpackages and classes. Also

used to separate a variable or method from a reference variable.

ops/t0648-01.jpg
WINDOW_ACTIVATED

The window was activated.

WINDOW_CLOSED

The window has been closed.

WINDOW_CLOSING.

The user requested that the window be closed.

WINDOW_DEACTIVATED

The window was deactivated.

WINDOW_DEICONIFIED

The window was deiconified.

WINDOW_GAINED_FOCUS

The window gained input focus.

WINDOW_ICONIFIED

The window was iconified.

WINDOW_LOST_FOCUS

The window lost input focus.

WINDOW_OPENED

The window was opened.

WINDOW_STATE_CHANGED

The state of the window changed.

ops/t0054-02.jpg
00000
00000
00000
0000 O

ops/t0818-02.jpg
Method Description

abstract it read(ByteBufer bb) | Reads bytes from the invoking channel nto bb unti the buffer
is ful or there is no more input. Returns the number of bytes

|actually read.
abstract int read(ByteBuffer bb, | Beginning at the file location specified by start, reads bytes.
long start) from the invoking channel into bb until the buffer is full or

there is no more input. The current position is unchanged.
Returns the number of bytes actually read or -1 i start is
beyond the end of the file.

abstract int write(ByteBuffer bb) | Wiites the contents of bb to the invoking channel, starting
at the current position. Returns the number of bytes written.

abstract int write(ByteBuffer bb, | Beginning at the file location specified by start, wiites the
long start) contents of bb to the invoking channel. The current position
is unchanged. Returns the number of bytes written.

ops/t0054-01.jpg
4.0 6.0

2.0

0.0

ops/t0818-01.jpg
DatagramSocket FilelnputStream | FileOutputStream
RandomAccessFile ServerSocket |Socket

ops/t0478-01.jpg
static <T> Sorts the elements of fist as determined by comp.
Vold sort{Ust<T> list

Comparator<? super T> comp)

static <T extends Comparable<? super T>> Sorts the elements of fist as determined by their
Void sort(ListeT> st natural ordering.

static vold swap(List<?> fst, Exchanges the clements in fst at the indices.

: intidxd, int 1662 specified by idx1 and iox2.

static <T> Collction<T> Returns a threadsafe collection backed by c.

‘synchronizedColiection(Collection<T> ¢)

static <T> List<T> synchvonizedList(List<T> st |Retums a thread safe lst backed by list.

static <K, V> Map<K, V> Returns a threadsafe map backed by m.
‘synchronizedMap(Map<K, V> m)

static <T> Set<T> synchronizedSet(Set<T> 5 Returns a thead safe set backed by s.

static <K, V> SortedMap<k, V> Returns a threadsafe sorted map backed by sm.

‘synchronizedSortedMap(SortedMap<K, V> sm)

ops/t0478-02.jpg
static <T> SortedSet<T>
‘synchronizedSortedSet(SortedSet<T> s5)

Returns a thread-safe set backed by ss.

static <T> Colection<T>

‘unmodifiableColiection(
Collection<? extends T> ¢]

Returns an unmodifiable collection backed by c.

static <T> List<T>
‘unmodifiableList(List<? extends T> list
static <K, V> Map<K, V>
‘unmodifiableMap(Map<? extends K.
- 2 extends V> m)
static <T> Set<T>
‘unmodifibleSet(Set<? extends T> 5)

Returns an unmodifiable list backed by fist.

[Returns an unmodifiable map backed by m.

|Retums an unmodifiable set backed by .

static <K, V> SortedMap<k, V>
‘unmodifiableSortedMap(SortedMap<K,
2 extends V> sm)

Returns an unmodifiable sorted map backed
by sm.

static <T> SortedSet<T>
unmodifiableSortedSet(SortedSet<T> ss)

Returns an unmodifisble sorted set backed by s.

ops/t0396-02.jpg
static String toBinaryString(long num)

static String toHexString(long num)

Returns a string that contains the binary equivalent
of num.

Returns a string that contains the hexadecimal
equivalent of num.

static String toOctalString(long num)
String toString()
static String toString{long num)

static String toString(long num, int radix)

Returns a string that contains the octal equivalent
of num.

Returns a string that contains the decimal equivalent
of the invoking object.

Retums a string that contains the decimal equivalent
of num.

Returns a string that contains the decimal equivalent
‘of num using the specified radix.

static Long valueOf(long num)

static Long valueOf(String st
throws NumberFormatException

static Long valueOf(String str, int radix)
throws NumberFormatException

Returns a Long object containing the value passed
in num.

Returns a Long object that contains the value
specified by the string in str.

Returns a Long object that contains the value

specified by the string in str using the specified radix.

ops/t0396-01.jpg
static long parseLong(String str)
throws NumberFormatException

static long parseLong(String str, int radix)
throws NumberFormatException

Returns the long equivalent of the number
|contained in the string specified by strin radix 10.

Returns the long equivalent of the number contained
inthe string specified by str using the specified radix.

static long reverse(long num)
static long reverseBytes(long num)

static long rotateLeft(ong num, int n)

Reverses the order of the bits in num and returns.
the result.

Reverses the order of the bytes in num and returns.
the result.

Returns the result of rotating num left n positions.

static long rotateRight(long num, int n)
static int signum(iong num)

Returns the result of rotating num right n positions.

Returns ~1 if num is negative, O if it is zero, and
itis positive.

short shortValue()

Returns the value of the invoking object as a short.

ops/f0655-01.jpg
Applet Viewer: Mousebvents. (= |[B)K]

i

Moving mouse at 146, 51

ops/t0852-01.jpg
Interface |pescription

Ropltintialzer | Methods in this interface are used to nitiaize Beans that are also
applets.

Beanino This interface allows a designer to specify information about the
properties, events, and methods of a Bean.

Customizer IThis interface allows a designer to provide a graphical user nterfoce
through which a Bean may be configured.

DesignMode. Methods in this interface determine if a Bean s exeauting n design
mode.

ExceptionListener | Amethod in this inerface is invoked when an exception has occurred.

PropertyChangeListener | A method in this interface is invoked when a bound property is changed.

PropertyEditor | Objects that implement this nterface allow designers to change and

|display property values.

VetoableChangeListener |A method in this interface s invoked when a constrained property is
changed

|Methods in this interface allow a Bean to execute in environments
where a graphical user interface is not available.

Visil

ops/t0852-03.jpg
MethodDescriptor
ParameterDescriptor
PersistenceDelegate
PropertyChangeEvent

Instances of this class describe a method of a Bean.
Instances of this class describe a method parameter.
Handles the state information of an object.

This event is generated when bound or constrained properties are
changed. It is sent to objects that registered an interest in these

events and that implement either the PropertyChangeListener or
VetoableChangeListener interfaces.

PropertyChangeListenerProxy

Extends EventlistenerProxy and implements
PropertyChangeListener.

PropertyChangeSupport | Beans that support bound properties can use this class to notify
PropertyChangeListener objeots.

PropertyDescriptor Instances of this class describe a property of a Bean.

PropertyEditorManager This class locates a PropertyEditor object for a given type.

PropertyEditorSupport This class provides functionality that can be used when wiiting,
property editors.

PropertyVetoException An exception of this type is generated if a change to a constrained

sSimpleBeaninfo

property is vetoed.

This class provides functionality that can be used when wiiting
Beaninfo classes.

Statement Encapsulates a call to a method.

VetoableChangeListenerProxy | Extends EventListenerProxy and implements
VetoableChangeListener

VetoableChangeSupport Beans that support constrained properties can use this class.
to notify VetoableChangeListener objects.

XMLDecoder Used to read a Bean from an XML document.

XMLEncoder

Used to write a Bean to an XML document.

ops/t0852-02.jpg
Class
BeanDescriptor

Beans
DefaultPersistenceDelegate
Encoder

EventHandler

Description

This class provides information about a Bean. It also allows you
to associate a customizer ith a Bean.

This class is used to obtain information about a Bean.

A concrete subclass of PersistenceDelegate.

Encodes the state of a set of Beans. Can be used to wite this.
information to a stream.

Supports dynamic event listener creation.

EventSetDescriptor Instances of this class describe an event that can be generated
by a Bean.

Expression Encapsulates a call to a method that retuns a result.

FeatureDescriptor This is the superclass of the PropertyDescriptor,

IndexedPropertyChangeEvent

IndexedPropertyDescriptor
IntrospectionException

EventSetDescriptor, and MethodDescriptor classes.

A subclass of PropertyChangeEvent that represents a change
to an indexed property.

Instances of this class describe an indexed property of a Bean.

An exception of this type is generated if a problem ocours when
analyzing a Bean.

Introspector

This class analyzes a Bean and constructs a Beaninfo object that
describes the component.

ops/t0510-02.jpg
final boolean isSet(int which)

Returns true if the specified time component is set.
Otherwise, it returns false.

void set(int which, int va)

final void set(int year, int month,
int dayOfMontr)

final void set(int year, int month,
int dayOfMonth, int hours,
int minutes)

Sets the date or time component specified by which
o the value specified by val in the invoking object.
which must be one of the fields defined by
Calendar, such as CalendarHOUR.

Sets various date and time components of the
woking object.

Sets various date and time components of the
invoking object.

final void set(int year, int month,
int dayOfMonth, int hours,
int minutes, int seconds)

final void setTime(Date o)

Sets various date and time components of the
invoking object.

Sets various date and time components of the
invoking object. This information s obtained from
the Date object d.

void setTimeZone(TimeZone 1)

Sets the time zone for the invoking object to that
specified by tz.

ops/t0510-01.jpg
int get(int calendarfield)

static Locale] getAvailableLocales()

static Calendar getinstance()

Retums the value of one component of the invoking
object. The component is indicated by calendarField.
Examples of the components that can be requested
are Calendar.YEAR, Calendar.MONTH,
Calendar.MINUTE, and so forth.

Returns an array of Locale objects that contains
the locales for which calendars are available.

Returns a Calendar object for the default locale and

static Calendar getlnstance(TimeZone)

Returns a Calendar object for the time zone
specified by tz. The default locale is used.

static Calendar getinstance(Locale focale)

static Calendar getinstance(TimeZone tz,
Locale locale)

final Date getTime()

TimeZone getTimeZon

Returns a Calendar object for the locale specified
by locale. The default time zone is used.

Returns a Calendar object for the time zone

| specified by tz and the locale specified by focale.

Returns a Date object equivalent 1o the time of the
invoking object.

Returns the time zone for the invoking ob

ops/t0405-01.jpg
boolean Removes thrd from the list of threads to run when
removeShutdownHook(Thread thrd) | the Java Virtual Machine terminates. It returns true if
successfui—that s, if the thread was removed.

void runFinalization() Initiates calls to the finalize() methods of unused but
not yet recycled objects.
long totalMemory() Returns the total number of bytes of memory available

to the program.

void tracelnstructions(boolean trace0n) | Turns on or off instruction tracing, depending upon
the value of traceOn. If traceOn is true, the trace is
displayed. If it is false, tracing is tumed off.

void traceMethodCalls(boolean traceOn) | Turns on or off method call tracing, depending upon
the value of traceOn. I traceOn s true, the trac
displayed. If it is false, tracing is turned off.

ops/f0627-01.jpg
£ pplet Viewer: SimpleBanner [2][B]K)

ple Moving Banner. A Sim

Applet started

ops/f0891-01.jpg
Applet Viewer: JRadioButtonDemo

©Oa @B OC YouselectedB

Applet started

ops/t0393-01.jpg
Method
static int bitCount(int num)
byte byteValue()

int compareTofinteger)

static Integer decode(String st
throws NumberFormatException

Description

Returns the number of set bits in num.

Returns the value of the invoking object a5 a byte.
Compares the numerical value of the invoking object
with that of i.Returns O i the values e equal
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

Returns an Integer object that contains the value.
specified by the sting in st

double doubleValue()
boolean equals(Object IntegerOb)

float floatvalue()

Returns the value of the invoking object as a double.

Returns true if the invoking Integer object is
equivalent to IntegerObj. Otherwise, it returns false.

Returns the value of the invoking object as a float.

ops/t0393-02.jpg
static Integer
getinteger(String propertyName)

static Integer
getinteger(String propertyName,
int default

Returns the value associated with the environmental
property specified by propertyName. A null is
returned on failure.

Returns the value associated with the environmental
property specified by propertyName. The value of
defaultis returned on failure.

static Integer
getinteger(String propertyName,
Integer default)

int hashCode()
static int highestOneBit(int num)

Returns the value associated with the environmental
property specified by propertyName. The value of
default is returned on failure.

Returns the hash code for the invoking object.
Determines the position of the highest order set bit
in num. It returns a value in which only this bitis set.
If no bit s set to one, then zero is returned.

int intvalue()
long longValue()
static int lowestOneBit(int num)

Returns the value of the invoking object as an int.
Returns the value of the invoking object as a long.

Determines the position of the lowest order set bit in
num. 1t returns a value in which only this bit s set. If
o bit s set o one, then zero i returned:

static int numberOfLeadingZeros(int num)

Returns the number of high-order zero bits that precede
the first highorder set bt in num. If num is zero, 32 is
retumed.

ops/f0111-01.jpg
s

Width

Height

Depth

Box object

ops/t0827-01.jpg
Match one or more.

Match zero or more.

Match zero or one.

ops/t0421-01.jpg
Method I

Description

static double copySign(double arg,
double signarg)

static float copySign(fioat arg.
float signarg)

Returns arg with same sign as that of signarg.

(Added by Java SE 6.)

Returns arg with same sign as that of signarg.
(Added by Java SE 6.

static int getExponent(double arg)

static int getExponent(float arg)

Returns the base-2 exponent used by the binary
representation of arg. (Added by Java SE 6.)

Returns the base-2 exponent used by the binary
representation of arg. (Added by Java SE 6.)

static double
IEEEremainder(double dividend,
double divisor)

Returns the remainder of dividend / divisor.

static ypotidouble side1, double side2) |

Returns the length of the hypotenuse of a right

triangle given the length of the two opposing sides.

static double random()
static float signum(double arg)

Returns a pseudorandom number between 0 and 1.

Determines the sign of a value. It eturns O if argis O,
1if argis greater than O, and -1. if arg s less than .

static float signum(fioat arg)

Determines the sign of a value. It retuns O if argis O,

11if argis greater than 0, and -1 if arg s less than 0.

static double toDegrees(double angle)

Converts radians to degrees. The angle passed to
‘angle must be specified in radians. The result in

degrees is returned.

static double toRadians(double angle)

Converts degrees to radians. The angle passed to
angle must be specified in degrees. The result in
radians is returned.

ops/t0444-01.jpg
Method
Comparator<? super E> comparator()

€ frst)

Description
Returns the invoking sorted set's comparator. I the natural ordering
s used for this set, nul is returned.

| Returns the frst element in the invoking sorted set.

SortedSet<E> headSet(E end)

E lost()

Retuns a SortedSet containing those elements less than end that
are contained in the invoking sorted set. Elements in the returned
sorted set are also referenced by the invoking sorted set.

[Returns the lost clement in the invoking sorted set.

SortedSet<E> subSet(E start, € end)

SortedSet<E> tailSet(E start)

Returns a SortedSet that includes those elements between start
and end-1. Elements i the returned collection are also referenced
by the invoking object.

Returns a SortedSet that contains those elements greater than or
equal t0 start that are contained in the sorted st Elements in the
returned set are also referenced by the invoking object.

ops/t0816-01.jpg
Method

Description

abstract Object array()

If the invoking buffer is backed by an array, a reference to the array
is returned. Otherwise, an UnsupportedOperationException is
thrown. If the array is read-only, a ReadOnlyBufferException is
thrown. (Added by Java SE 6.)

abstract int arrayOrfset()

Ifthe invoKing bufer is backed by an array, the index
of the first lement s retured. Otherwise, an
UnsupportedOperationException is thiown. I the array is reacionly,
‘2 ReadOnlyBufferException s thrown. (Added by Jova SE 6.)

final int capacity()

final Buffer clear()

Returns the number of elements that the invoking buffer
is capable of holding.

Clears the invoking buffer and returns a reference to the buffer.

final Buffer fip()

Sets the invoking buffer's limit to the current position and resets
the current position to 0. Returns a reference to the buffer.

abstract boolean hasArray()

final boolean hasRemaining()

Returns true if the invoking buffer is backed by a read/write
array and false otherwise. (Added by Java SE 6.)

Returns true if there are elements remaining in the invoking
buffer. Returns false otherwise.

abstract isDirect()

Returns true if the invoking buffer is direct, which means that it
(can often be operated upon directly, rather than through a copy.
Returns false otherwise. (Added by Java SE 6.)

abstract boolean isReadOniy()

final int limit()
final Buffer limi

final Buffer mark()

Returns true if the invoking buffer is read-only. Returns false
otherwise.

Returns the invoking buffer's limit

Sets the invoking buffer's limit to n. Returns a reference
to the buffer.

Sets the mark and returns a reference to the invoking buffer

final int position()
final Buffer position(int n)

Returns the current position.

‘Sets the invoking buffer’s current position to n. Returns
a reference to the buffer.

final Buffer reset()

Resets the current position of the imvoking buffer to the previously.
‘set mark. Returns a reference to the buffer.

final Buffer rewind()

Sets the position of the invoking buffer to 0. Returns a reference

10 the buffer.

ops/t0604-02.jpg
InputStream getlnputStream() Returns the InputStream associated with the
throws I0Exception invoking socket.

OutputStream getOutputStream() Returns the OutputStream associated with the
throws I0Exception invoking socket.

ops/t0604-01.jpg
InetAddress getinetAddress()

int getPort()

int getLocalPort()

Returns the InetAddress associated with the Socket
object. It returns null if the socket is not connected.

Returns the remote port to which the invoking Socket
object is connected. It returns O if the socket is not

connected.

Returns the local port to which the invoking Socket
object is bound. It returns -1 if the socket is not bound.

ops/f0678-01.jpg
Applet Vi
Applet

tangles.

Applet started

ops/t0919-01.jpg
Method

Description

Object getAtirbute(Sting attn)

Returns the value associated with the name passed in att. Returns
i atris not found.

Enumeration getAttributeNames()

long getCreationTimel)

Returns an enumeration of the attribute names associated with the

| Retums the time (in miliseconds since midnight, January 1, 1970,
(GM) when this session was created.

Sting getd()

Returns the session ID.

long getLastAccessedTime()

void invalidate)
boolean isNew()

Returns the time (in milliseconds since midnght, January 1, 1970,
(GMT) when the client ast made request fo this session.

Invaidates this session and removes i fiom the context.

Returns true if the server created the session and it has not yet
been accessed by the client.

void removeAtribute(String att)
void setAttibute(Sring att, Object vai)

Removes the atuibute specified by attrfrom the session

Associates the value passed in val with the attribute name passed
in attr

ops/t0615-01.jpg
int getOffset()

Returns the starting index of the data.

int getPort()
Void setAddress(InetAddress ipAddress)

void setData(byte]] data)

Returns the port number.

Sets the address to which a packet will be sent.
The address is specified by ipAddress.

Sets the data to data, the offset 10 zero, and the.
length to number of bytes in data.

void setData(byte]] data, int id, int size)

Sets the data to data, the offset o idx, and the
length to size.

void setLengthiint size)
void setPort(int port)

Sets the length of the packet to size.
Sets the port to port.

ops/f0019-01.jpg

ops/t0032-01.jpg
abstract continue. for new switch
assert default o0 package synchronized
boolean do it private this

break double implements protected throw

byte else import public throws

case enum instanceof rewm wansient
catch extends int short ry

char final interface. static Vol

class finally long strctp volatile:
const float native super while

ops/f0868-01.jpg
An Event Example

Alpha

Beta

Alpha was pressed.

ops/t0558-01.jpg
Method
void deleteOnExit()

| Description

Removes the file associated with the invoking object when
the Java Virtual Machine teminates.

long getFreeSpace()

Returns the number of free bytes of storage available on
the partition associated with the invoking object. (Added
by Java SE 6.

long getTotalSpace()

long getUsableSpace()

Returns the storage capacity of the partition associated
with the invoking object. (Added by Java SE 6.)

Returns the number of usable free bytes of storage
available on the partition associated with the invoking
object. (Added by Java SE 6.)

boolean isHidden()

Returns true if the invoking file is hidden. Returns
otherwise.

boolean setLastModif

dlong millsec)

Sets the time stamp on the invoking file t0 that specified
by millsec, which is the number of milliseconds from

|January 1, 1970, Coordinated Universal Time (UTC).

boolean setReadOnly)

Sets the invoking file to reac-only.

ops/f0776-01.jpg

ops/t0219-01.jpg
Method

 Description

Throwable fillnStackTrace()

Returns a Throwable object that contains a completed
stack trace. This object can be rethrown.

Throwable getCause()

String getLocalizedMessage()

String getMessage()

StackTraceElemen]] getStackTrace()

Returns the exception that underlies the current
exception. If there is no underying exception, null

s returned.

[Retums a localized description of the exception.
[Returns a description of the exception.
Returns an array that contains the stack trace, one
element at a time, as an array of StackTraceElement.
The method at the top of the stack is the last method
called before the exception was thrown. This method
is found in the first element of the array. The
StackTraceElement class gives your program access
o information about each element i the trace, such
as its method name.

Throwable initCause(Throwable

void printStackTrace()

causefxc)

void printStackTrace(PrintStream

stream)

Void printStackTrace(PrintWiiter

stream)

Associates causeExc with the invoking exception as a
cause of the invoking exception. Returns a reference
0 the exception.

Displays the stack trace.
Sends the stack trace to the specified stream,

|Sends the stack trace to the specified stream.

Void setStackTrace(StackTraceElement | Sets the stack trace to the elements passed in
elements{) | elements. This method is for specialized applications,

not normal use.

String toString()

Returns a String object containing a description of the
|exception. This method is called by printin() when
outputting a Throwable object.

ops/f0948-01.jpg
Applet Viewer: Annuity
Applet

Initial Investment Needed for Regular Withdrawals

Desired Withdrawal
Vears

Rate of Retumn

Number of Withdrawals per Year

Initial Investment Required

/5000

®
B 1
PE—

697,302.88

Compute!

ops/t0055-01.jpg
00000
01234
02468

036912

00000
02468

0481216
0 6 12 18 24

ops/t0523-01.jpg
Method | Description

void cancel() |Cancels the timer thread.

int purge() Deletes cancelled tasks from the timer’s queue.

void schedule(TimerTask TTask, Trask s scheduled for execution after the period passed

long wait)

void schedule(TimerTask TTask,
long wait, long repeat)

void schedule(TimerTask TTask,
Date targetTime)

Void schedule(TimerTask TTask,
Date targetTime,
long repeat)

Void scheduleAtFixedRate(
TimerTask TTask,
long wait, ong repeat)

void scheduleAtFixedRate(
TimerTask TTask,
Date targetTime,
long repeat)

in wait has elapsed. The wait parameter is specified in
milliseconds,

TTask is scheduled for execution after the period passed
in wait has elapsed. The task is then executed repeatedly
|at the interval specified by repeat. Both wait and repeat
are specified in millseconds.

TTaskis scheduled for execution at the time specified
by targetTime.

TTaskis scheduled for execution at the time specified
by targetTime. The task is then executed repeatedly at
the interval passed in repeat. The repeat parameter is
|specified in milliseconds.

TTask is scheduled for execution after the period passed
wait has elapsed. The task is then executed repeatedly
|at the interval specified by repeat. Both wait and repeat
are specified in miliseconds. The time of each repetition is
relative to the first execuion, not the preceding execution.
|Thus, the overall rate of execution is fixed.

Tlaskis scheduled for execution at the time specified
|by targetTime. The task is then executed repeatedly at

the interval passed in repeat. The repeat parameter is

|specified in milliseconds. The time of each repetition is
|relative to the first execution, not the preceding execution.
|Thus, the overall rate of execution is fixed.

ops/f0690-01.jpg
Applet Viewer: SampleFonts (2[5

Applet

Sansgerif

ops/f0679-01.jpg

ops/t0918-01.jpg
Method Description

Suing gevhutnTyped) [Returns autnentication scheme.

Cookief) getCookies() Returns an array o the cookies i this request.

long getDateHeader(String field Returns the value of the date header field named fiel.

Suing getHeader(Sting feld) [Returns the value of the header feld named fied.

Enumeration getHeaderNomes() | Returns an enumeration of the header names.

int getintHeader(String el Returns the int equivalent of the header feld named fied.

Suing getMethod() [Returns the HITP method for this reauest.

Sting getPathinfol) Returns any path information that s located ofte the serviet poth
|and before a query sng of the URL.

Sting getPathTransioted) Returns any path information that s located ofte the serviet path
‘and before a query sting o the URL aftr ranslating i 0.3 real
path.

Suing getQuerySuing() [Returns any query sting in the URL.

Sting getRemoteUse) Returms the name o the user who issued this request.

Sting getRequestedSessionidl) Returns the ID of the session.

Sting getRequestURI() [Returns the URI.

StingBuffer getRequestURL() Retums the URL.

Sting getServitPatn() Returns that part of the URL that dentifes the serviet. 7

HitpSession getSessiont) Retums the session for this request. f a session does not exist,

one is created and then returned.

HttpSession getSession(boolean new)

f newis true and no session exists, creates and returns a session
for this request. Otherwise, returns the existing session for this
request.

boolean Returns true if @ cookie contains the session ID. Otherwise, returns,
isRequestedSessionldFromCookie() false.

boolean Returs true if the URL contains the session ID. Otherwise, returns
isRequestedSessionldFromURL() false.

boolean isRequestedSessionldvalid()

Returns true if the requested session 1D s valid in the current
|session context.

ops/t0410-01.jpg
static Channel inheritedChannel() Returns the channel inherited by the Java Virtual
throws I0Exception Machine. Returns nullif no channel is inherited.

static void load(Sting libraryFileName) | Loads the dynamic ibrary whose fie is specified by
ibraryfileName, which must specfy ts complete path.

static void loadLibrary(String libraryName) |Loads the dynamic library whose name is
associated with libraryName.

static String mapLibraryName(String ib) | Returns a platform-specific name for the library
named fib.

static long nanoTime() Obtains the most precise timer in the system and
retuns its value in terms of nanoseconds since
some arbitrary starting point. The accuracy of the
timer is unknowable.

static void runfinalization() Initiates calls to the finalize() methods of unused
but not yet recycled objects.

static void setErr(PrintStream eStream) |Sets the standard e stream to eStream.

static void setin(inputStream iStream) |Sets the standard in stream to iStream.
static void setOut(PrintStream oStream) _|Sets the standard out stream to oStream.
static void Sets the current system properties as specified by
setProperties(Properties sysProperties) |sysProperties.
static String setProperty(String which, | Assigns the value v to the property named which.
String v)
static void setSecurityManager(Sets the security manager to that specified by

SecurityManager secMan) | secMan.

ops/t0918-02.jpg
Method

| Description

void addCookie(Cookie cookie)
boolean containsHeader(String fild)

‘Adds cookie o the HTTP response.

Retuns true if the HTTP response header contains 2 field
named fild.

Stiing encodeURLISting ur)

Stiing encodeRedirectURLISting ur)

Determines if the session D must be encoded in the URL
identifid as ur. If o, returns the modified version of url.
Otherwise, returns ur. All URLS generated by a serviet should
e processed by this method.

Determines if the session ID must be encoded n the URL
identifid a5 ur. If 5o, returns the modified version of ur
Otherwise, returns ur. All URLS passed to sendRedirect()
‘should be processed by this method.

void sendErro(int ¢
throws 10Exception

‘Sends the error code ¢1o the diient.

void sendError(int ¢, Sting 5]
thiows I0Exception

void sendRedirect(Sting ur)
thiows I0Exception

‘Sends the error code ¢ and message s o the dlient.

| Redirects the clent to ur

void setDateHeader(Sting fied, long msec)

'Adds field o the header with date value equal to msec
(milliseconds since midnight, January 1, 1970, GM).

void setHeader(Sting fild, Sting value]
void setintHeader(Sting field, nt value)
void setStatus(int code)

'Adds fild o the header with value equal to value.
|Adds field o the header with value equal to value.
'Sets the status code for this response to code.

ops/f0742-01.jpg
MenuDemo EEx

First

Debug s of.
Testing is off.

Java Applet Window

ops/t0381-01.jpg
Method

 Description

StingBuffer appendCodePointiint ch)

‘Appends a Unicode code point o the end of the invoking object
A reference 1o the object s returned. Added by J2SE 5.

nt codePointALint)

int codePointBefore(int

it codePointCountnt start, int end)

intindexOfSting str)

intindexOf(Suing str nt startindex)

Returns the Unicade code point at the location specified by
Added by J2SE 5.

Returns the Unicode code point at the location that precedes
that specified by . Added by J2SE 5.

Returns the number of code points n the porton ofthe imioking.
Stiing that are between start and end-1. Added by J2SE 5.

Searches the invoking StringBuffer or the first occurrence of str.
Returns the index of the match, or -1 if o match is found.

Searches the invoking StingBufer for the frst occurence of st
beginning at startindex. Returns the index of the match, or -1
if no match i found.

int lastindexOfSting str)

ntlastindexOfSting str int startindex)

Searches the invoking StrngBuffer for the last occurrence of st
Returns the index of the mtch, or -1 if no match is found,

Searches the invoking StringBuffer for the last occurrence of st,
begining at startindex. Returns the index of the match, or -1
f no match is found.

ops/t0649-01.jpg
Event Source.
Button
Check box
Choice

List

Menu ltem

Soroll bar
Text components

| Description

Generates action events when the button is pressed.
Generates item events when the check box is selected or deselected.
Generates e is changed.

Generates action events when an item is doublelicked; generates item
events when an item is selected or deselected.

m events when the ch

Generates action events when a menu item is selected; generates item
events when a checkable menu item is selected or deselected.

Generates adjustment events when the scroll bar is manipulated.
Generates text events when the user enters a character.

Window

Generates window events when a window is activated, closed, deactivated,
deiconified, iconified, opened, or quit.

ops/t0409-02.jpg
static void exit(int exitCode)

Halts execution and returns the value of exitCode to
the parent process (usualy the operating syste).
By convention, O indicates normal termination. All
other values indicate some form of error.

static void go()

Initates garbage collection.

static Map=<String, String> getenv()

static String getenv(String which)

Returns a Map that contains the current environmental
variables and their values.
Returns the value associated with the environmental
variable passed in which.

static Properties getProperties()

static String getProperty(String which)

static String getProperty(String which,
String default)

static SecurityManager
getSecurityManager()

static int identityHashCode(Object obj)

Returns the properties associated with the Java
runtime system. (The Properties class s described

Jin Chaprer 17,

Returns the property associated with which. A null
object is retured if the desired property is not found.

Returns the property associated with which. If the

desired property is not found, default is returned.

Returns the current security manager or a null
object if no security manager is installed.

Returns the identity hash code for obj.

ops/t0432-01.jpg
't getLineNumber()

String getMethodName()

int hashCode()
boolean isNativeMethod()

Returns the source-code line number of the execution point described
by the invoking StackTraceElement. In some situations, the line
number will not be available, in which case a negative value is
returned.

Returns the method name of the execution point described by the
invoking StackTraceElement.

Returns the hash code for the invoking StackTraceElement.

Returns true if the invoking StackTraceElement describes a native
method. Otherwise, returns false.

String toString()

Returns the String equivalent of the invoking sequence.

ops/t0409-01.jpg
Method

Description

static void arraycopy(Object source,
int sourceStart,
Object target,
int targetStart,
int size)

static String clearProperty(String which)

static Console console ()

static long currentTimeMills()

Copies an array. The array to be copied is passed
in source, and the index at which point the copy will
begin within source s passed in sourceStart. The
array that will receive the copy is passed in target,
and the index at which point the copy will begin
within target is passed in targetStart. size is the
number of elements that are copied.

Deletes the environmental variable specified by
which. The previous value associated with which

is retumned.

Returns the console associated with the JVM. null is
returned if the JVM currently has no console. (Added
by Java SE 6.)

Returns the current time in terms of milliseconds
|since midnight, January 1, 1970.

ops/t0650-01.jpg
Interface
ActionListener

AdjustmentListener
ComponentListener

ContainerListener

| Description

Defines one method to receive action events.

Defines one method to receive adjustment events.

Defines four methods to recognize when a component is hidden,
moved, resized, or shown.

Defines two methods to recognize when a component s added to
o removed from a container.

FocusListener Defines two methods to recognize when a component gains or loses.
keyboard focus.

ltemListener Defines one method to recognize when the state of an item changes.

KeyListener Defines three methods to recognize when a key is pressed, released,
or typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters

MouseMotionListener

‘2 component, exits a component, is pressed, or is released.

Defines two methods to recognize when the mouse s dragged or
moved.

MouseWneelListener | Defines one method to recognize when the mouse wheel is moved.

TextListener Defines one method to recognize when a text value changes.

WindowFocusListener Defines two methods to recognize when a window gains or loses
input focus.

Window! Defines seven methods to recognize when a window is activated,

closed, deactivated, deiconified, iconified, opened, or quit.

ops/t0862-01.jpg
JApplet JButton JCheckBox JCheckBoxMenultem
JColorChooser JComboBox | 4Component JDeskiopPane
JDialog JEditorPane | JFileChooser JFormattedTextField
JFrame Jinternalframe | JLabel ILayeredpane

Jist Meny | imenuBar Mentiem
JoptionPane spanel IPasswordField IPopupMenu
JProgressBar JRadioButton IRadioButionMenultem | JRootPane
JscroliBar JscrollPane ISeparator Isiider

Ispinner JspiitPane JTabbedPane JTable

extirea JtextField extPane JTogglebutton
JToolBar JToolTip Jtree Wiewport

IWindow

ops/t0392-02.jpg
long longValue()

static short parseShort(String str)
throws NumberFormatException

static short parseShort(String st, int radix)
throws NumberFormatException

Returns the value of the invoking object as a long.
Retuns the shart equivalent of the number contained
in the sting specified by str using radix 10,

Retuns the short equivalent of the number contained
in the string speciied by st using the specified radix.

static short reverseBytes(short num)

short shortvalue()
String toString()

static String toString(short num)

Exchanges the high- and low-order bytes of num
and returns the result.

Returns the value of the invoking object as a short

Returns a sting that contains the decimal
equivalent of the invoking object.

Returns a string that contains the decimal
equivalent of num.

static Short valueOfshort num)

static Short valuef(String st
throws NumberFormatException

static Short valueOf(String str, int radix)
throws NumberFormatException

Returns a Short object containing the value passed
in num.

Returns a Short object that contains the value
specified by the string in str using radix 10.
Returns a Short object that contains the value
specified by the string in str using the specified radix.

ops/t0392-01.jpg
Method

Description

byte byteValue()

[Returns the value of the invoking object as a byte.

int compareTo(Short s)

static Short decode(String str)
throws NumberFormatException

Compares the numerical value of the invoking object
with that of s. Returns O if the values are equal.
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

Returns a Short object that contains the value
specified by the string in str

double doubleValue()
boolean equals(Object ShortOb)

Returns the value of the invoking object as a double.

Returs true if the invoking Short object is equivalent
to ShortOb. Othervise, it returns false.

float floatValue()

Returns the value of the invoking object as a float.

int hashCode()

Returns the hash code for the invoking object.

int intValue()

Returns the value of the invoking object as an int.

ops/t0432-02.jpg
Method

Description

protected final Object clone()
throws CloneNotSupportedException

final int compareTo(E)

final boolean equals(Object o)

final Class<E> getDeolaringClass()

final int hashCode()

Invoking this method causes a
CloneNotSupportedException to be thrown. This
prevents enumerations from being cloned.
‘Compares the ordinal value of two constants of the
same enumeration. Returns a negative value if the
invoking constant has an ordinal value less than e's,
zero if the two ordinal values are the same, and a
positive value if the invoking constant has an ordinal
value greater than €'s.

Returns true if obj and the invoking object refer

to the same constant.

Returns the type of enumeration of which the
invoking constant is a member.

|Returns the hash code for the invoking object.

ops/t0788-01.jpg
Semaphore Implements the classic semaphore
CountDownLatch | Waits until a specified number of events have occurred

CyclicBarrier |Enables a group of threads to wait at a predefined execution point
Exchanger Exchanges data between two threads

ops/f0719-01.jpg
Vertical: 111, Horizontal: 162

ops/t0443-01.jpg
Method | Description

void addlint ndex, € ob) Inserts 0bj nto the invoking st at the index passed in index.
Any preexisting elements at of beyond the point of insertion
|are shifted up. Thus, no elements are overwritten.

boolean addAllint index. Inserts all elements of ¢ nto the invoking it at the index
Collection<? extends E> c) | passed in index. Any preexisting elements at o beyond the
point of insertion are shifted up. Thus, no elements are
overwitten. Returns true if the invoking st changes and
returns false otherwise.

E getint index) Returns the object stored at the specified index within the.
|invoking collection
int indexOf(Object ob) Returns the index of the first instance of obj n the invoking.

lst. f objis not an element of th lst, -1 s returned.

eturns the index of the last instance of obfin the invoking.
lis.If byl not an element of the list, -1 i returned.

int lastindexOfObject ob)

Uistiterator<E> listiterator) Returns an iterator o the start of the invoking list.

Listterator<E> listterator(int index) Returns an iterator o the invoking lst that begins at the.
specified index.

€ remove(int index) Removes the clement at position index flom the invoking list

and returns the deleted element. The resultingfs is compacted.
That is, the indexes of subsequent elements are decremented

by one.

€ setint index, E ob) Assigns obj 1o the location specified by index within the
invoking fist.

List<E> subListint start, nt end) Retums a st that includes elements from start o end-1in the.

invoking list. Elements in the returned list are also referenced
by the invoking object.

ops/f0906-01.jpg
B ipple
Applet

Narme Extension D%
Gail 4567 365
Ken 7566 555
viviane 5634 587
etanie 7345 922
anne 1237 333
John /5656 e
att 5672 o7
Claire 741 444
Enuin a023 519

Applet started

ops/f0728-01.jpg
£ Applet Viewer: InsetsDemo

his [aioas Ha 1op

The reasonable man adapts himsefto the world;
the unreasonable one persists i rying to adapt the
Therefore all progress depends on the unreasonab

- George Bemard Shaw

<
The footer message might go here.

Applet started

ops/t0288-01.jpg
InputStreamReader

Input stream that translates bytes to characters.

LineNumberReader | Input stream that counts lines
OutputStreamWriter | Output stream that translates characters 1o bytes.

PipedReader Input pipe

PipedWriter Output pipe

PrintWiter Output stream that contains print() and printin()

PushbackReader | Input stream that allows characters to be returned o the input stream
Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string.

Writer Abstract class that describes character stream output

ops/t0431-01.jpg
Method Description

boolean equals(Object ob) Returns true if the invoking StackTraceElement is the same as the
one passed in ob. Otherwise, it returns false.

String getClassName() | Returns the class name of the execution point described by the.
invoking StackTraceElement.

String getFileName() Returns the filename of the execution point described by the
invoking StackTraceElement.

ops/t0525-01.jpg
Method

Description

String getCurrencyCode)

Returns the code (as defined by ISO 4217) that describes
the invoking currency.

int getDefaultFractionDigits()

Returns the number of digits after the decimal point that
are normally used by the invoking currency. For example,
there are 2 fractional digits normally used for dollars.

static Currency
getinstancei(Locale localeOb))

static Currency
getinstance(Sting code)

Returns a Currency object for the locale specified by
localeOb).

Returns a Currency object associated with the currency
code passed in code.

String getSymbol()

Returns the currency symbol (such as $) for the invoking.
object.

String getSymbol(Locale localeOb))

String toString()

Returns the currency symbol (such as $) for the locale
passed in localeObj.

Returns the currency code for the invoking object.

ops/t0534-01.jpg
1
4

9
16
25
36
49
64
81
100

CV®UN U W R

o

27

125
216
343
512
729

1000

ops/t0734-03.jpg
GridBagConstraints BASELINE GridBagConstraints BASELINE_LEADING

GridBagConstraints.BASELINE_TRAILING GridBagConstraints. ABOVE_BASELINE
GridBagConstraints. ABOVE_BASELINE_LEADING | GridBagConstraints. ABOVE_BASELINE_TRAILING
GridBagConstraints. BELOW_BASELINE GridBagConstraints.BELOW_BASELINE_LEADING

GridBagConstraints. BELOW_BASELINE_TRAILING

ops/t0755-01.jpg
CroplmageFilter MemorylmageSource

FilteredimageSource PixelGrabber

ImageFilter RGBImageFilter

ops/f0053-01.jpg
[o]e]

[l

[EN[EY]

(210

[E3]EN)

20

(5109

[E[EY]

BE]]

[E1[B]

ops/t0755-02.jpg
ImageConsumer

ImageObserver

ImageProducer

ops/t0734-01.jpg
GridBagConstraints. CENTER

GridBagConstraints. SOUTH

GridBagConstraints.EAST

GridBagConstraints SOUTHEAST

GridBagConstraints. NORTH

GridBagConstraints. SOUTHWEST

GridBagConstraints NORTHEAST

GridBagConstraints WEST

GridBagConstraints.NORTHWEST

ops/t0734-02.jpg
GridBagConstraints.FIRST_LINE_END
GridBagConstraints. FAIRST_LINE_START
GridBagConstraints.LAST_LINE_END

GridBagConstraints. LAST_LINE_START

GridBagConstraints. LINE_END
GridBagConstraints. LINE_START

GridBagConstraints.PAGE_END

GridBagConstraints.PAGE_START

ops/t0394-01.jpg
static int numberOfTrailingZeros(int num)

static int parselnt(String st
throws NumberFormatException

Returns the number of low-order zero bits that
precede the first loworder set bit in num. If num is
ze10, 32 is returned.

Returns the integer equivalent of the number contained
inthe string specified by str using radix 10.

static int parselnt(String st int radix)
throws NumberFormatException

static int reverse(int num)

Returns the integer equivalent of the number
contained in the string specified by str using the
specified radix.

Reverses the order of the bits in num and returns.
the result,

static int reverseBytes(int num)

static int rotateLef(int num, int n)
static int rotateRight(int num, int n)
static int signum(int num)

Reverses the order of the bytes
the result.

Returns the result of rotating num left n positions.
Returns the result of rotating num right n positions.

Returns ~1 if num is negative, O if it is zero, and 1
if it is positive.

num and returns.

ops/t0394-02.jpg
short shortValue()
static String toBinaryString(int num)

Retumns the value of the invoking object as a short.

Returns a string that contains the binary equivalent
of num.

static String toHexString(int num)

Returns a string that contains the hexadecimal
equivalent of num.

static String toOctalString(int num)

String toString()

Returns a string that contains the octal equivalent
of num.

Returns a string that contains the decimal equivalent
of the invoking object.

static String toString(int num)
static String toString(int num, int radix)

static Integer valueOf{int num)

Returns a string that contains the decimal equivalent
of num.

Returns a string that contains the decimal equivalent
of num using the specified radix.

Returns an Integer object containing the value passed
in pum.

static Integer valueOf(String str)
throws NumberFormatException

Returns an Integer object that contains the value
specified by the string in str.

static Integer valueOf(String str, int radix)
throws NumberFormatException

Returns an Integer object that contains the value
specified by the string in str using the specified radix.

ops/f0657-01.jpg
Applet Viewer: SimpleKey
Applet

This s atest.

ops/t0067-02.jpg
11111000 -8
>>1
11111100 -4

ops/t0067-01.jpg
00100011 35
>>2
00001000 8

ops/f0625-01.jpg
£ applet Viewer: Sample. [2)[E)[)

Applet

Inside init() - Insite start() ~ Inside paint()

Applet started

ops/f0889-01.jpg
Javais selected

Applet started

ops/t0921-01.jpg
Method

Description

void doDeletelHitpServietRequest req.
HtpServietResponse res)
thiows I0Exception, ServietException
void doGet(HttpServietRequest req,
HitpServietResponse 10s)
thiows I0Exception, ServietException

Handles an HTTP DELETE request,

IHandles an HTTP GET request.

void doHead(HitpServietRequest req.
HitpServietResponse r0s)
thiows I0Excoption,
‘ServetException
void doOptions(HttpServietRequest rea.
HitpServietResponse res)
throws 10Esception, ServietException
void doPost(HttpServietRequest req,
HttpServletResponse r6s)
throws I0Exception, ServietException
void doPut(HitpServietRequest req,
HttpServietResponse res)
thiows I0Esception, ServietException
void doTraceHttpServietRequest req,
HitoServietResponse res)
thiows I0Exception, ServietException

long,

Handlcs an HTTP HEAD request.

IHandles an HTTP OPTIONS request.

Handles an HTTP POST request.

IHandles an HTTP PUT request,
|Handles an HTTP TRACE request.

|Returns the time (in miliseconds since midnight, January 1,

getLasthodifiedHtpServietRequest req) | 1970, GMT) when the requested resource was last modified.

void service(HtpServietRequest req.
HttpSeretResponse res)
throws I0Exception, ServietException

Called by the server when an HITP request arives for this
‘serviet. The arguments provide access to the HTTP request and
response, respectively.

ops/f0680-01.jpg
£ Applet Viewer: Arcs

ops/t0420-01.jpg
Method

Description

static int abs(int arg)

Returns the absolute value of arg.

static long abs(long arg)

Returns the absolute value of arg.

stati float absifloat arg)
static double abs(double arg)

Returns the absolute value of arg.

Returns the absolute value of arg.

static double ceilldouble arg)

Returns the smallest whole number greater than or
equal to arg.

static double floor(double arg)

Returns the largest whole number less than or equal to arg.

static int max(int x, int y)
static long max(long , long y)

Returns the maximum of x and y.

Returns the maximum of x and y.

stati float max(foat x,float
static double max(double x, double)

Returns the maximum of x and y.

Returns the maximum of x and y.

static int min(int x, int y)

Returns the minimum of x and y.

static long miniong x, long)

Returns the minimum of x and y.

ops/t0420-02.jpg
static float min(float x, float y)

Returns the minimum of x and y.

static double min(double x, double y)

Returns the minimum of xand y.

static double nextAfter(double arg,
double toward)

Beginning with the value of arg, returns the next value in
the direction of toward. If arg == toward, then toward is
returned. (Added by Java SE 6.)

static float nexthfter(float arg,
double toward)

Beginning with the value of arg, returns the next value in’
the direction of toward. If arg == toward, then toward is
returned. (Added by Java SE 6.

static double nextUp(double arg)

Returns the next value in the positive direction from arg.
(Added by Java SE 6.)

stati float nextUp(fioat arg)

Returns the next value in the positive direction from arg.
(Added by Java SE 6.)

static double rint(double arg)

Returns the integer nearest in value 1o arg.

static int round(fioat arg)
static long round(double arg)
static foat ulp(float arg)

Returns arg rounded up to the nearest int.
Returns arg rounded up to the nearest long.

Returms the ulp for arg.

static double ulp(double arg)

Returns the ulp for arg.

ops/t0815-01.jpg
Package Purpose

java.nio Topievel package for the NIO system. Encapsulates various types
of buffers that contain data operated upon by the NIO system.

java.nio.channels _|Supports channels, which are essentially open 1/0 connections.

java.nio channels.spi _|Supports service providers for channels.

java.nio.charset Encapsulates character sets. Also supports encoders and decoders

that convert characters to bytes and bytes to characters, respectively.
java.nio.charset.spi | Supports service providers for character sets.

ops/t0244-01.jpg

ops/t0408-01.jpg
Method

Description

List<String> command()

Returns a reference to a List that contains the
name of the program and its arguments. Changes.
10 ths list affect the invoking process.

ProcessBuilder command(List<String args) |Sets the name of the program and its arguments

ProcessBuilder command(St

to those specified by args. Changes to this list
affect the invoking process. Returs a reference to
the invoking object.

Sets the name of the program and its arguments.
to those specified by args. Retums a reference to
the invoking object.

File directory()

Returns the current working directory of the invoking.
object. This value will be null f the directory is the
‘same as that of the Java program that started the

process.

ProcessBuilder directory(File i)

Map<Sting, String> environment()

Sets the current working directory of the invoking
object. Returns a reference to the invoking object.
Returns the environmental variables associated
with the invoking object as key/value pairs.

boolean redirectErrorStream()

Returns true if the standard error stream has been
redirected to the standard output stream. Returns
false if the streams are separate.

ProcessBuilder
redirectErrorStream(boolean merge)

Process start()
throws I0Exception

If merge i true, then the standard error stream is
redirected to standard output. If merge is faise,
the streams are separated, which is the default
state. Returns a reference to the invoking object.
Begins the process specified by the invoking object.
In other words, it runs the specified program,

ops/f0052-01.jpg
Right index determines column.

/|

l

|

\

(o] (]| [0 0] | oD =1 | D (3| [l
Lot index (07| 00T B | B 0
. [210e] | (2100 |20 (20 | | (200
[310e] | 0 B0 | B B0

Given:inttwoD [] [1 = new int[4][5];

ops/t0580-02.jpg
Method

Description

Witer append(char ch)

Appends chto the end of the invoking output
stream. Returns a reference to the invoking
steam.

Wiiter append(CharSequence chars)

Appends chars to the end of the invoking output
stream. Returns a reference to the invoking.
stream.

Wiiter append(CharSequence chars, int begin,
int ena)

abstract void closel)

abstract void flush()

Appends the subrange of chars specified by
begin and end-1to the end of the invoking
ouput stream. Returns a reference to the
invoking stream.

Closes the output stream. Further write
attempts will generate an I0Exception.
Finalizes the output state so that any buffers

are cleared. That is, it flushes the output
buffers.

void write(int ch)

Wites a single character t0 the invoking output
stream. Note that the parameter is an int, which
allows you to call write with expressions without
having to cast them back to char.

void write(char buffer))

Wiites a complete array of characters 1o the.
invoking output stream.

abstract void wiite(char buffer],
int offset,
int numChars)

Wites a subrange of numChars characters from
the array buffer, beginning at bufferoffset] to
|the invoking output stream.

void write(String st

Wites str to the invoking output stream.

void write(String str, int offset,
int numChars)

Wites a subrange of numChars characters from
the string str, beginning at the specified offset.

ops/t0580-01.jpg
Method
abstract void close()

void mark(int numChars)

int read()

int read(char buffer)

abstract int read(char buffer],
int offset,
int numChars)

boolean ready()

void reset()
long skip(long numChars)

an I0Exce

boolean markSupported()

| Description

Closes the input source. Further read attempts will generate

Places a mark at the current point in the input stream that will
remain valid until numChars characters are read.

[Returns true if mark() /reset() are supported on this strea. |

Returns an integer representation of the next available character
from the invoking input stream. 1 is returned when the end of
the fle is encountered.

Attempts to read up to buffer.Jength characters into buffer and
returs the actual number of characters that were successfully

read. —1 is returned when the end of the file is encountered.

Attempts 0 read up to numChars characters into buffer starting.
at buffer{offse], returning the number of characters
successfully read. -1 is retumned when the end of the file is

encountered.

Returns true if the next input request wil not wait. Otherwise,
it returns false.

Resets the input pointer to the previously set mark.

‘Skips over numChars characters of input, returning the number
of characters actually skipped.

ops/f0018-01.jpg
Public ¥
instance variables
(not recommended)

pubtic A\
methods

Private A
methods

Private &
instance variables

A Class

ops/f0018-02.jpg
N

Mammal

PN

Feline...

Reptile...

ops/t0442-02.jpg
Iterator<E> iterator()

Returns an iterator for the invoking collection.

boolean removelObject ob)

boolean removeAllCollection<7> ¢)

boolean retainAlCollection<?> ¢]

int size()

Removes one instance of o ffom the invoking collecion. Returns.
true i the element was removed. Othervise, retuns false.
Removes all clements of ¢ from the invoking collection. Returns.
true f the collection changed (1., elements were removed).
Otherwise, returns false.

Removes all elements from the invoking collection except those.
in c. Returns true if the collection changed (... elements were.
removed). Othervise, returns false.

|Returns the number of elements held in the invoking collection.

Object(| toArray()

<T> 10] toArray(T array)

Retums an array that contains al the elements stored in the
invoking collction. The array elements are copies of the
collection clements.

Returns an array that contains the elements of the invoking
collection. The array elements are copies of the collection
elements. Ifthe size of array equals the number of elements,
these are returned in array. If the size of array is less than the
number of lements, a new artay of the necessary size is allocated,
and retume. If the size of array is greater than the number of
elements, the array element following the last collection clement
is set o null. An ArayStoreException is thiown f any collection
element has a type that s not a subtype of array.

ops/t0442-01.jpg
Method

Description

boolcan add(E ob)

boolean addAllCollection<? extends E> ¢)

void clear()
boolean contains(Object obj)

boolean containsAll Collection<?> ¢]

Adds 0bj 10 the invoking collection. Returns true f o was added
tothe collecton. Returns fals if by already a member of the
|collecion and the collection does not allow duplicates.

Adds al the elements of ¢ o the invoking collecion. Returns true,
if the operation succeeded (.. the clements were added).
Otherwise, returns faise.

|Removes all elements from the invoking collection.

Returns true ifobyis an element of the invoking collection.
|Otheruise, returns faise.

Returns true if the invoking collection contains al elements
of c. Otherwise, returns faise

boolean equals(Object ob)

int hashCode)

Returns true if the invoking collection and obj are equal,
Otherwise, returns false.

[Returns the hash code fo the invoking collection

boolean isEmpty()

Returns true if the invoking collection is empty. Otherwise,
returns faise.

ops/t0498-01.jpg
Method Description
Sung getPropery(Sung key) Retuns the value associated with key. A nal bject i reurned f key s
neither i th st or i th defaul property st
Surng getPropery(Sting key. Returms the vlue associted wih ky: defaulProperty s returned f key s
Sting defautpraperty reiher i th st nor i th defaut property st

o stpritsteam stroamout)
o istPrintWeter streamOu

| Sens e property st t the output strea inked o steamOut.
‘Sends the property st 10 the utp steam inked 10 streamOut

10 oadiinputStueam streamin)
thows 10Escepton

Inputs 2 property st fom the input stream linked to treami.

Vo oadiReader sreamin)
hrows 10Excepton

Inputs 3 propert st fom the nput sream inked to treamin. (Added by
Java SE 6)

10 oadFromKMLiinputSizeam streamin)
hows I0Exception,
InvalcPropertesFomatException

Inputs & property st fom an XMIL document nked o streamn

Enumerations?> propertyNames()

Retums an enumeration of the keys. Ths incudes those keys found i
the defaut poperty st 00

OjectsetProperty(Sung key Sung vaue)

Assacates value wihkey Returrs he previous value assosated wit ey,
s ul 170 such associaton exists.

0 store(OutputStream streamOut,

Afer wrting the string specified by description, the property st is written |
1o the output strea inked 10 streamOut

o storetwiter steamout,
Sting descrption)
vows 10Esception

| Afer witing the sting specified by descrption the property s s wrten
1 the output tream inked to streanOut. (doed by ova SE 6.

V0 StoreTOMLOWpuStrea streamOut,
Stag descrpton)
thows 10Esception

After wiingthe sting specfied by descripton, th property st s witen
1o the XML document inked o sueamOur

V0 StrETOMLOWputStrea streamOut.
Sting descrption,
Sting enc)

The propery st and th sting specifod by desarption s wten o he
XML document nked t0 troamOut sing the specied character
encadng,

Set<String> stingPropertyNames()

[Returms a set of keys. (Added by Java SE 6.)

ops/f0681-01.jpg
£ applet Viewer: Hou... (2B

ops/t0920-01.jpg
Method

Description

Object clone()

Returns a copy of this object.

String getComment()

Returns the comment.

String getDomain()

Returns the domain.

int getMaxge()

Returns the maximum age (in seconds).

String getName()

Returns the name.

String getPath()

Returns the path.

boolean getSecure()

Returns true if the cookie s secure. Otherwise, returns false.

String getValue()

Returns the value.

int getversion()

Returns the version.

void setComment(String)

Sets the comment o c.

void setDomain(String)

Sets the domain to d.

void setMaxAge(nt secs)

Sets the maximum age of the cookie to secs. This is the.
number of seconds after which the cookie is deleted.

void setPath(String p)

Sets the path to p.

void setSecure(boolean secure)

Sets the security flag to secure.

void setValue(String 1)

Sets the value to v.

void setVersion(int v)

Sets the version to v.

ops/f0729-01.jpg
£ Applet Viewer: GridLayoutDemo, (2]

ops/t0419-03.jpg
Method

Description

static double cbrt(double arg)

Returns the cube 100t of arg.

static double exp(double arg)

Returns e t0 the arg.

static double expmi(double arg)

Returns e to the arg-1

static double log(double arg)

Returns the natural logarithm of arg.

static double log10(double arg)

Returns the base 10 logarithm for arg.

static double logp(double arg)

Retums the natural logarithm for arg+ 1.

static double pow(double y, double)

Returns y raised 10 the x; for example, pow(2.0, 3.0)
returs 8.0,

static double scalb(double arg, int factor)

Returns val x 2**. (Added by Java SE 6.)

static float scalb(float arg,

facton)

Returns val x 2" (Added by Java SE 6.

static double sqrt(double arg)

Returns the square root of arg.

ops/f0785-01.jpg

ops/f0658-01.jpg
Applet Viewer: KeyEvents [@[E1Es]

Applet

<PyUp><PaDn=<Right Arrows<Left Arraw=<F 1>

ops/t0419-01.jpg
Method Description

static double asin(double arg) Returns the angle whose sine is specified by arg.
static double acos(double arg) Returns the angle whose cosine is specified by arg.
static double atan(double arg) Returns the angle whose tangent is specified by arg.

static double atan2(double x, double y) |Returns the angle whose tangent is x/y.

ops/t0419-02.jpg
Method

Description

static double sinh(double arg)

Returns the hyperbolic sine of the angle specified by arg.

static double cosh(double arg)
static double tanh(double arg)

Returns the hyperbolic cosine of the angle specified by arg.
Returns the hyperbolic tangent of the angle specified by arg.

ops/t0640-01.jpg
Event Class

| Description

ActionEvent Generated when a button is pressed, a st item s double-clicked, or a menu
itemis selected.

AdjustmentEvent | Generated when a soroll bar is manipulated.

ComponentEvent | Generated when a component s hidden, moved, resized, or becomes visible.

ContainerEvent | Generated when a component is added to or removed from a container.

FocusEvent Generated when a component gains o loses keyboard focus.

InputEvent Abstract superciass for all component input event classes.

temEvent Generated when a check box orlst tem is licked; also occurs when a choice
selection is made or a checkable menu item is selected or deselected.

KeyEvent |Generated when input is received from the keyboard.

MouseEvent (Generated when the mouse is dragged, moved, clicked, pressed, or released;

MouseWneelEvent

also generated when the mouse enters or exits a component.
Generated when the mouse wheel is moved,

TextEvent

Generated when the value of atext area or text field is changed.

WindowEvent

Generated when a window is activated, closed, deactivated, deiconified,
iconified, opened, or quit.

ops/t0722-01.jpg
SCROLLBARS_BOTH 'SCROLLBARS_NONE
SCROLLBARS_HORIZONTAL_ONLY SCROLLBARS_VERTICAL_ONLY

ops/f0774-01.jpg
Nomal

R _Gaysca | vt | Contost| B | Shapen|

ops/t0464-01.jpg
Interface Description
Map Maps unique keys to values.
Map.Entry | Describes an element (a key/value pair) in a map. This is an inner class of Map.

NavigableMap |Extends SortedMap to handle the retrieval of entries based on closestmatch
searches. (Added by Java SE 6.)

SortedMap | Extends Map so that the keys are maintained in ascending order.

ops/t0535-01.jpg
Flag Effect
= Left justification

| Aternate conversion format

o |Output is padded with zeros rather than spaces
space Positive numeric output is preceded by a space
+ [Positive numeric output is preceded by a + sign

|Numeric values include grouping separators.

Negative numeric values are enclosed within parentheses

ops/t0034-01.jpg
Name Width Range

tong 64 -9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807
int 32 -2.147,483,648 10 2,147,483 647

short 16 32,768 10 32,767

byte 8 -128 10 127

ops/t0382-01.jpg
L OFICOERCOOSPORSIIR UM 1R D) | Ao 1o ks W e invoad pung ot o o vone
ing index specified by start. Added by

Charsequence ‘Returs a substring of the invoking string, beginning at
tartinde: topinde
int stoplndex) ‘which is

StringBufor.

void trimTosizel) Reduces the size of the character buffer for the invoking object
to exactly ft the current contents. Added by J2SE 5.

ops/page-template.xpgt

	

	

	
	

	

	
	

ops/t0836-01.jpg
Method

‘Description

static boolean istbstractint va)
static boolean isfinal(int vaf)

Retuns true i val has the abstract flag set and false otherwise.

Returns true if val has the fina flag set and false otherwise.

olean iinter facefint val

Retuns true if val has the interface fiag set and false otherwise.

static boolean isNative(int val)

| Returns true if val has the native flag set and false otherwise.

static boolean isPrivate(in vai)

Retuns true if val has the private flag set and false othervise.

static boolean isProtected(int val)
static boolean isPublicint val

Retuns true i val has the protected flag st and false otherwise.

Returns true if val has the public flag set and false otherwise.

static boolean isStatc(int val)

Retums true f val has the static flag set and false otherwise.

static boolean isStrictint vaf)
static boolean isSynchronized(int val)

Returns true if val has the strict flog set and false othervise.

Returns true if val has the synchronized fog set and false otherwise.

static boolean isTransient(int va)

Retuns true i val has the transient flag set and faise otherwise.

static boolean isvolatile(int val)

Returns true if val has the volatile flag set and false otherwise.

ops/t0458-01.jpg
Method

 Description

static <E extends Enum<E>>
EnumSet<E> all0f(Class<E f)

Creates an EnumSet that contains the elements in the.
enumeration specified by t.

Static <E extends Enum<E>> EnumSet<E>
complementof(EnumSet<E> e

static <E extends Enum<E>>
EnumSet<E> copyOf(EnumSet<E> o)

Creates an EnumSet that is comprised of those elements not

stored ine.

Creates an EnumSet from the clements stored in c.

Stotic <E extends Enum<E>>
EnumSet<E> copyOf(Collection<E> ¢)

Creates an EnumSet from the elements stored in c.

Static <E extends Enum<E>>
EnumSet<E> noneOf(Class<> 4

static <E extends Enum<E>>
EnumSet<E> of(E v E .. varargs)

Creates an EnumSet that contains the elements that are not in

the enumeration specified by &, which is an empty set by defntion.

Creates an EnumSet that contains v and zer0 or more:
addtional enumeration values.

Static <E extends Enum<E>>
EnumSet<E> of E)

Creates an EnumSet that contains .

Static <E extends Enum<E>>
EnumSet<E> of E v1, E v2)

static <E extends Enum<E>>
EnumSet<E> of € vi, E 2, £ 13)

Creates an EnumSet that contains v1 and v2.

| Creates an EnumSet that contains v through v3.

Static <E extends Enum<E>>
EnumSet<E> of € v, € 2, E 3, E vd)

Creates an EnumSet that contains v1 thiough vd.

static <E oxtends Enum<E>>
EnumSet<E> of(E Vi, E 2, E 3, E vd,
32)

Crestes an EnumSet that contains v1 thiough v5.

stotic <E extends Enum<E>>
EnumSet<E> range(E start, E end)

Creates an EnumSet that contains the clements in the range
‘specified by start and end.

ops/t0618-01.jpg
Method

Description

void destroy()

Called by the browser just before an applet is
terminated. Your applet il override this method if it
needs to perform any cleanup prior to its destruction.

AccessibleContext
getAccessibleContext()

Returns the accessibilty context for the invoking object.

AppletContext getAppletContext()
String getAppletinfo()

Returns the context associated with the applet.
Returns a string that describes the applet.

AudioClip getAudioClip(URL urf)

AudioClip getAudioClip(URL url,
String clipName)

URL getCodeBase()
URL getDocumentBase()

Image getimage(URL ur)

Retums an AudioClip object that encapsulates the
audio clip found at the location specified by url.

Returns an AudioClip object that encapsulates the
‘audio clip found at the location specified by url and

having the name specified by clioName.
Returns the URL associated with the invoking applet.
Returns the URL of the HTML document that invokes
the applet.

Returns an Image object that encapsulates the image
found at the location specified by url.

ops/t0618-03.jpg
void play(URL urf)

If an audio clip is found at the location specified by
uri, the clip is played.

void play(URL ur, String clipName)

1 an audio clip is found at the location specified by ur/
with the name specified by clipName, the clip s played.

void resize(Dimension dim)

void resize(int width, int height)

Resizes the applet according to the dimensions specified
by dim. Dimension is a class stored inside java.awt. It
contains two integer ields: width and height.

Resizes the applet according o the dimensions.
specified by width and height.

final void setStub(AppletStub stubOb)

Makes stubObj the stub for the applet. This method is
used by the runime system and is not usually called by
your applet. A stubis a small piece of code that provides
the linkage between your applet and the browser.

void showStatus(String st

void start()

void stop()

Displays strin the status window of the browser or
applet viewer. If the browser does not support a status
window, then no action takes place.

Called by the browser when an applet should start
(or resume) execution. It is automatically called after
init() when an applet first begins.

Called by the browser to suspend execution of the
applet. Once stopped, an applet s restarted when
the browser calls start().

ops/t0618-02.jpg
Image getimage(URL url,
String imageName)

Returns an Image object that encapsulates the image
found at the location specified by urland having the
name specified by imageName.

Locale getLocale()
String getParameter(Sitring paramName)

Stringl] [] getParameterinfo()

void init()

Returns a Locale object that is used by various locale-
sensitive classes and methods.

Returns the parameter associated with paramName.
null is returned if the specified parameter is not found.

Returns a String table that describes the parameters.
recognized by the applet. Each entry in the table must
consist of three strings that contain the name of the
parameter, a description of it type andor range, and
an explanation of ts purpose.

Called when an applet begins execution. It is the first
method called for any applet.

boolean isActive()

Returns true if the applet has been started. It returns
false if the applet has been stopped.

static final AudioClip
‘newAudioClip(URL url)

Returns an AudioClip object that encapsulates the
audio clip found at the location specified by url. This
method is similar to getAudioClip() except that it is
static and can be executed without the need for an
Applet object.

ops/t0412-01.jpg
file.separator java.specification.version |java.vm.version
java.class.path Java.vendor e.separator
java.class version java.vendor.ur os.arch
java.compiler Javaersion 0s.name
java.extdirs javam.name 0s version
java.home java.m.specification.name | path.separator
java.io tmpdi ava.m.specification.vendor_|user.dir

java librarypath java.m.specification.version | user.home
java.specification.name java.m.vendor user.name
java.specification.vendor

ops/mgh.jpg

ops/t0412-02.jpg
Method | Description

Object clone() Creates a new object that is the same as the.
throws invoking object.

he invoking object is equivalent to

void finalize() Default finalize() method. This is usually overridden
throws Throwable by subclasses..

ops/t0813-02.jpg
java.io
java.lang

Inputs and outputs data.
Provides core functionality.

java.lang.annotation
java.lang.instrument

|Supports annotations (metadata).
Supports program instrumentation.

java.lang.management

‘Supports management of the execution environment.

java.lang ref [Enables some interaction with the garbage collector.
java.lang reflect Analyzes code at run time.

java.math Handles large integers and decimal numbers.

java.net ‘Supports networking.

java.ni Toplevel package for the NIO classes. Encapsulates buffers.

java.nio.channels

Encapsulates channels, which are used by the NIO system.

java.nio.channels.spi

‘Supports service providers for channels.

java.nio.charset

Encapsulates character sets.

java.nio.charset.spi

‘Supports service providers for character sets.

java.mi

Provides remote method invocation.

java.rmi.activation

Activates persistent objects.

Manages distributed garbage collection.

ops/t0515-02.jpg
CANADA

GERMAN

KOREAN

CANADA_FRENCH

\GERMANY

PRC

ops/t0538-01.jpg
Specifier _ Effect

%E ‘Causes the e symbol that indicates the exponent o be displayed in uppercase.

%G ‘Causes the e symbol that indicates the exponent to be displayed in uppercase.

%H ‘Causes the hexadecimal digits a through ft0 be displayed in uppercase as A
through F.

%S Uppercases the corresponding string.

%1 Causes all alphabetical output to be displayed in uppercase.

%X Causes the hexadecimal digits a through 1o be displayed in uppercase as A

‘through F. Also, the optional prefix Ox is displayed as OX, if present.

ops/t0813-01.jpg
Package Primary Function
java.applet ‘Supports construction of applets.

java.awt Provides capabilities for graphical user interfaces.

java.awt.color ‘Supports color spaces and profiles.

java.awt datatransfer Transfers data to and from the system clipboard

java.awt.dnd ‘Supports drag-and-drop operations.

java.awt.event Handles events.

java.awt.font Represents various types of fonts.

java.awt.geom Allows you to work with geometric shapes.

java.awtim Allows input of Japanese, Chinese, and Korean characters to text

editing components.

‘Supports alternative input devices.

java.awt.image Processes images.
java.awt.image.renderable | Supports renderingindependent images.
java.awt.print Supports general print capabilites.
java.beans Allows you to build software components.

java.beans beancontext

Provides an execution environment for Beans.

ops/t0515-01.jpg
'STANDARD_TIME

\WALL_TIME

UTC_TIME

ops/t0813-03.jpg
java.rmi.registry Maps names to remote object references.

java.mi.server Supports remote method invocation.

java.security Handles certiicates, keys, digests, signatures, and other securiy
functions.

java.security.acl Manages access control lists.

java.security.cert Parses and manages certficates.

java.secuitynterfaces | Defines interfaces for DSA (Digital Signature Algorithm) keys.

java.security.spec Specifies keys and algorithm parameters.

java.sal Communicates with a SQL (Structured Query Language) database.

java.text Formats, searches, and manipulates text.

java.text spi ‘Supports service providers for text formatting classes in java.text.
(Added by Java SE 6)

java.util |Contains common utiites.

java.utilconcurrent |Supports the concurrent utlties

java.util.concurrent.atomic | Supports atomic (that is, indivisible) operations on variables without
the use of locks.

java.uti.concurrentlocks _|Supports synchronization locks.

java.uti jar Creates and reads JAR files.
java.util logging ‘Supports logging of information related to a program’s execution.
java.ut prefs lates information relating o user preference.

java.utilregex JPPOTtS regular expression processing.

jova.uti.spi Supports service providers for the utily classes
(Addded by Java SE 6)

java.util.zip Reads and writes compressed and uncompressed ZIP files.

java.util

ops/f0865-01.jpg
A Simple Swing Application

Swing means powerful GUIs.

ops/f0762-01.jpg

ops/f0727-01.jpg
Applet Viewer: BorderLayoutDemo)
Applet

TS Ao e

The reasonable man adapts himsefto the world;
the unreasonable one persists in iing to adapt the wo
‘Therefore all progress depends on the unreasonable n

- George Bemard Shaw

The footer message might go here.

Applet started

ops/f0670-01.jpg
&

Applet

This s in applet window

A Frame Window, EEX

Appletstarted. [Thisis in frame window

Java Applet Window

ops/f0956-01.jpg
Applet Viewer: RemBal

Find Loan Balance

Original Principal [10000
Amount of Payment 207 58

Number of Payments Matle

Interest Rate

Remaining Balance 5,558.19

Compute!

ops/t0493-01.jpg
Method

Purpose

Enumeration<V> elements()

Returns an enumeration of the values contained in the dictionary.

V get(Object key)
boolean iSEmpty()

Enumeration<Ko keys()

Returns the object that contains the value associated with key. If
keyis not in the dictionary, a null object is returned.

Returns true if the dictionary is empty, and returns false if it
|contains at least one key.
|Returns an enumeration of the keys contained in the dictionary.

V put(K key, V value)

V remove(Object key)

int size()

Inserts a key and its value into the dictionary. Returns ullif key
is not already in the dictionary; returns the previous value
|associated with key if keyis already in the dictionary.

Removes key and its value. Returns the value associated with
key. If ke is not in the dictionary, a null is returned.

|Returns the number of entries in the dictionary.

ops/t0057-01.jpg
Result

Addition

Subtraction (also unary minus)

Muliplication

Division

Modulus

Increment

Addition assignment

Subtraction assignment

Multplication assignment

Division assignment

Modulus assignment

Decrement

ops/t0596-01.jpg
Method | Description

it avalable() Returns the number of bytes that are now avalable in the
input buffer.

void close() Closes the invoking stream. Further read attempts will
generate an I0Exception.

int read) Returns an integer representation of the next available byte
of input. -1 i returned when the end of the fil is
|encountered.

int read(byte buffer], int offset, | Attempts to read up to numBytes bytes into buffer starting at

int numBytes) butfer{offset), eturning the number of bytes successfully

read. -1 is retured when the end of the file is encountered.

boolean readBoolean() |Reads and returns a boolean from the invoking stream.

byte readByte() |Reads and returns a byte from the invoking stream.

char readChar() Reads and returs a char from the invoking stream.

double readDouble) Reads and returns a double from the invoking stream.

float readFloat() [Reads and returns a float from the invoking stream.

void readFully(oyte buffer) Reads buffer.length bytes into buffer. Returns only when all
|bytes have been read.

void readFullybyte buffer], Reads numBytes bytes into buffer starting at buffer offset].

it offset, Returns only when numBytes have been read.
int numBytes) |

int readint() [Reads and returns an int from the invoking stream.

long readLong() |Reads and returns a long from the invoking stream.

final Object readObject() |Reads and returns an obiect from the invoking stream.

short readShort() Reads and returns a short from the invoking stream.

int readUnsignedByte() Reads and returns an unsigned byte from the invoking
stream.

int readUnsignedShort() Reads and returns an unsigned short from the invoking
stream.

ops/t0103-01.jpg
@ e oo oo o oo

©ma U W R

69

8 12 16

10
12
14
16
18

15
18
21
24
27

20
24
28
32
36

25
30
35
10
a5

36
42 49

48 56 64

54 63 72 81

ops/t0367-01.jpg
Value. Meaning

Less than zero ‘The invoking string is less than str.
Greater than zero | The invoking string is greater than str.
Zero The two strings are equal.

ops/t0642-01.jpg
COMPONENT_HIDDEN

The component was hidden.

COMPONENT_MOVED

The component was moved.

COMPONENT_RESIZED

The component was resized.

COMPONENT_SHOWN

The component became visible.

ops/t0424-01.jpg
final boolean isAlive()

Returns true if the thread is still active. Otherwise,
it returns false.

final boolean isDaemon()

boolean isinterrupted()

Returns true if the thread is a daemon thread.
Otherwise, it returns false.

Returns true if the threa
Otherwise, it returns false.

interrupted.

final void join()
throws InterruptedException

Waits unti the thread terminates.

final void join(long milliseconds)
throws InterruptedException

final void join(long milliseconds,
int nanoseconds)

throws InterruptedException

Waits up to the specified number of milliseconds

for the thread on which it is called to terminate.

Waits up to the specified number of milliseconds
plus nanoseconds for the thread on which it is
called 1o terminate.

void run()
Void setContextClassLoader(ClassLoader cl)

Begins execution of a thread.

Sets the class loader that will be used by the
invoking thread to cl.

ops/t0424-02.jpg
final void setDaemon(boolean state)

Flags the thread as a daemon thread.

static void
setDefaultUncaughtExceptionHandler(
Thread.UncaughtExceptionHandler &)

final void setName(String threadName)

Sets the default uncaught exception handier to e.

Sets the name of the thread to that specified by

threadName.

final void setPriority(int prionity)

Sets the priority of the thread to that specified by
priority.

void
setUncaughtExceptionHandler(
Thread UncaughtExceptionHandler &)

Sets the invoking thread's default uncaught
exception hander to e.

static void sleep(long milliseconds)
throws InterruptedException

Suspends execution of the thread for the specified
number of milliseconds.

statc void sieeplong miliseconds.
int nanoseconds)
 throws InerruptedException

void start()

Suspends execution of the thread for the specified
number of milliseconds plus nanoseconds.

Starts execution of the thread.

String toString()

" |Returns the string equivalent of a thread.

static void yield()

| The calling thread yields the CPU to another thread. |

ops/t0550-02.jpg
Locale foc)

ciees loader. Thvows MiseingReseusveException ¥ no
resource bundie matching the family name specified by
familyName is availabl.

Static ResourceBundle:
getBundie(Sting familyName,
Locale foc,
ClassLoader ld)

Loads the resource bundle with a family name of
familyName using the specified locale and the specified
class loader. Thiows MissingResourceException i 1o
resource bundle matching the family name specified by
famiyName is availabl.

Static final ResourceBundie
getBundie(Sting familyName,
ResourceBundle.Control cnt)

Static final ResourceBundie
getBundie(String familyName,
Locale loc,
ResourceBundie.Contol crt)

Loads the resource bundle with a family name of
familyName using the default ocale and the default class.
loader. The loading process is under the control of el
Throws MissingResourceException if no resource bundie
matching the family name specified by famiyName is
available. (Added by Java SE 6.)

Loads the resource bundie with a family name of
familyName using the specified locale and the default
class loader. The loading process is under the control of
ent. Thiows MissingResourceExcaption if no resource
bundie matching the famiy name specified by famiyName
is available. (Added by Java SE 6.)

ops/t0550-01.jpg
Method
Static final void clearCache)

Static final void
clearCache(ClassLoader o)

Description

Deletes all resource bundies from the cache that were.

loaded by the default class loader. (Added by Java SE 6.

Deletes all resource bundies from the cache that were.
loaded by . (Added by Java SE 6.)

boolean containskey(Sting k)

Static final ResourceBundie
getBundie(Sting familyNome)

static final ResourceBundie
‘getBundle(String familyName,

Retwrns true i K is a key within the invoking resource
bundie (or its parent). (Added by Java SE 6.

Loads the resource bundle with family name of
familyName using the default locale and the default class.
loader. Throws MissingResourceException i no resource.
bundie matching the famiy name specified by famiyName

is available.

Loads the resource bundie with a family name of
Rn il Lisings B dpooifiac loouls sad the detaul:

ops/f0703-01.jpg
£ Applet Viewer: LabelDemo EEx

one Two Three

ops/t0423-02.jpg
static Thread.UncaughtExceptionHandler
getDefaultUncaughtExceptionHandler()

Returns the default uncaught exception handler.

long getiD()

final String getName()

final int getPriority()
StackTraceElement]] getStackTrace)

Returns the ID of the invoking thread.
Returns the thread’s name.
Returns the thread's priority setting.

Returns an array containing the stack trace for the.
invoking thread.

Thread.State getState()
final ThreadGroup getThreadGroup()

Thread.UncaughtexceptionHandler
getUncaughtExceptionHander()

static boolean holdsLock(Object ob)

void interrupt()
static boolean interrupted()

Returns the invoking thread’s state.

Returns the ThreadGroup object of which the
invoking thread is a member.

Returns the invoking thread's uncaught exception
handler.

Returns true if the invoking thread owns the lock.
on ob. Returns false otherwise.

Interrupts the thread.

Returns true if the currently executing thread has
been scheduled for interruption. Otherwise, it
returns false.

ops/t0446-01.jpg
Method

Description

E clement()

Retuns the element at the head of the queue. The elementis not emoved. It thiows
NoSuchElementException if the queue is empty.

boolean of er(E obj)
€ peck()

€ poll()

€ remove()

[Attempts to add obj to the queue. Returns true i obj was added and false otherwise.

Retuns the element at the head of the queue. It returns nullf the queue is empy.
The clement is not removed.

Returns the element at the head of the queue, removing the element in the process. It
returns null if the queve is empty.

Removes the element at the head of the queue, returning the clement i the process.
It throws NoSuchElementException if the queue is empty.

ops/t0423-01.jpg
Method
static int activeCount()

final void checkAccess()

static Thread currentThread()
static void dumpStack()

static int enumerate(Thread threads)

static Map<Thread, StackTraceElement] >
getAliStackTraces()

ClassLoader getContextClassLoader()

Description

Returns the number of threads in the group to
which the thread belongs.

Causes the security manager to veriy that the
current thread can access and/or change the
thread on which checkAccess() is called

Returns a Thread object that encapsulates the.
thread that calls this method.

Displays the call stack for the thread.

Puts copies of all Thread objects in the current
thread's group into threads. The number of threads
is returned,

Returns a Map that contains the stack traces for
al active threads. In the map, each entry consists
of a key, which is the Thread object, and its value,
which s an array of StackTraceElement.

Returns the class loader that i used to load
classes and resources for this thread.

ops/t0664-03.jpg
GridLayout

‘The grid layout manager. Grid layout displays components in
a twodimensional grid.

image Encapsulates graphical images.

Insets Encapsulates the borders of a container.

Label Creates a label that displays a strin.

Uist |Creates a it from which the user can choose. Similar o the
standard Windows list box.

MediaTracker Manages media objects.

Menu Creates a puldown menu.

MenuBar Creates a men bar.

MenuComponent | An abstract class implemented by various menu classes.

Menultem Creates amen item.

MenuShortcut Encapsulates a keyboard shortcut for a menu tem.

Panel | The simplest concrete subclass of Container.

ops/t0664-04.jpg
Point Encapsulates a Cartesian coordinate pair, stored in x and y.

Polygon Encapsulates a polygon.

PopupMenu Encapsulates a popup menu.

Printob An abstract class that represents a print job.

Rectangle Encapsulates a rectangle.

Robot ‘Supports automated testing of AWT-based applications.

Scrollbar Creates a scroll bar control.

ScrollPane A container that provides horizontal and/or vertical scroll bars
for another component.

SystemColor Contains the colors of GUI widgets such as windows, scroll bars,

text, and others.

TextArea Creates a multline edit control.
TextComponent A superciass for TextArea and TextField.
TextField Creates a singleline edit control.
Toolkit | Abstract class implemented by the AWT.

Window

Creates a window with no frame, no menu bar, and no title.

ops/f0716-01.jpg
Applet Viewer: ListDemo

Firefox
Opera

Current 0F: Windows Vista
Current Browser Intemet Explorer

ops/t0607-01.jpg
int getContentLength)

String getContentType()

long getDate()

long getExpiration()

| Returns the size in bytes of the content associated
with the resource. If the length is unavailable, -1 is
returned.

| Returns the type of content found in the resource.
| This is the value of the contenttype header field.
| Returns null if the content type is not available.

| Returns the time and date of the response
| represented in terms of milliseconds since
| Janvary 1, 1970 GMT.

| Returns the expiration time and date of the

| resource represented in terms of milliseconds

| since January 1, 1970 GMT. Zero is returned if the
expiration date is unavailable.

ops/t0641-01.jpg
BLOCK_DECREMENT | The user clicked inside the scroll bar to decrease its value.

BLOCK_INCREMENT _ The user clicked inside the scroll bar to increase its value.

TRACK The slider was dragged.

UNIT_DECREMENT The button at the end of the scroll bar was clicked to decrease its value.

UNIT_INCREMENT | The button at the end of the scroll bar was clicked to increase its value.

ops/t0389-01.jpg
boolean islnfinite()

Returns true if the invoking object contains an infinite
value. Otherwise, it returs false.

static boolean isinfinite(double num)

boolean isNaN()

Returns true if num specifies an infinite value.
Othervise, it returns false.

Returns true if the invoking object contains a value
that is not a number. Otherwise, it returns false.

static double longBitsToDouble(long num)

long longValue()

static double parseDouble(String str)
throws NumberFormatException

short shortvalue()
static String toHexString(double num)

String toString()

Returns true if num specifies a value that is not a
number. Otherwise, it returns false.

Returns double equivalent of the IEEE-compatible,
double-precision bit patter specified by num.

[Returs the value of the ivoking obect s a long.

|Returns th double equivalent of the number contained
inthe siring specfed b st using adix 10,

|Returns the value of the invoking object as a short.

Returns a string containing the value of num in
| hexadecimal format.

|Retums the string equivalent of the invoking object.

static String toString(double num)
static Double valueOf(double num)

static Double valueOf(String st
throws NumberFormatException

Returns the string equivalent of the value specified
by num.

Returns a Double object containing the value passed

|in num

|Returns a Double object that contains the value:

|specified by the string in str.

ops/t0551-02.jpg
resource bundle. Throws ClassCastException if the
object associated with ks not a string.

final Sting] | getStingAvray(String K

Retwrns the string array associated with the key passed
via k. Thiows MissingResourceException if k1 not n the.
resource bundie. Thiows ClassCastException f the.
object associated with i not a string array.

protected sbstract Object
handieGetObject(String k)

protected Set<Suing> handieKeySet()

Setestring> keySet()

protected void
setParent(ResourceBundie parent)

Retuns the object associated with the Key passed via k.
Retwrns null i kis not in the resource bundle.

Retwns the resource bundle keys as a set of stings. No
parent’s keys are obtained. Also, keys with null values.

are not obtained. (Added by Java SE 6.

Retums the resource bundle keys as a set of strings. Any

parent keys are also obained. (Added by Java SE 6.)

Sets parent a5 the parent bundie forthe resource bundle.
When a key is Iooked up, the parent will be searched if
the key is not found in the invoking resource object.

ops/t0664-01.jpg
Class

Description

AWTEvent [Encapsulates AWT events.

AWTEVentMulicaster _ Dispatches events to multple listeners.

BorderLayout The border layout manager. Border layouts use five components:
North, South, East, West, and Center.

Bution |Creates a push button control.

Canvas |A blank, semantics free window.

CardLayout The card layout manager. Card layouts emulate index cards.
|0nly the one on top is showing.

Checkbox |Creates a check box control.

CheckboxGroup |Creates a group of check box controls.

CheckboxMenultem | Creates an on/off menu item.

Choice Creates a popup lst.

Color Manages colors in a portable, platformindependent fashion.

Component An abstract superclass for various AWT components.

Container A subslass of Component that can hold other components.

Cursor Encapsulates a bitmapped cursor.

ops/t0664-02.jpg
Dialog.

Creates a dialog window.

Dimension Specifies the dimensions of an object. The width is stored in width,
and the height is stored in height.
Event Encapsulates events.
EventQueue Queues events.
FileDialog, Creates awindow from which a file can be selected.
FlowLayout The flow layout manager. Flow layout positions components left
0 right, top to bottom.
Font Encapsulates a type font.
FontMetrics Encapsulates various information related to a font. This information
helps you display text in a window.
Frame Creates a standard window that has a title bar, resize corners, and
2 menu bar.
Graphics, Encapsulates the graphics context. This context is used by the.
various output methods to display output in a window.
GraphicsDevice. Describes a graphics device such as a screen or printer.
GraphicsEnvironment | Describes the collection of available Font and GraphicsDevice objects.
GridBagConstraints | Defines various constraints relating to the GridBagLayout class.
GridBagLayout ‘The grid bag layout manager. Grid bag layout displays components

subject to the constraints specified by GridBagConstraints.

ops/t0551-01.jpg
static ResourceBundie
getBundie(Sting familyName,
Locale foc,
ClassLoader i,
ResourceBundie.Control)

abstract Enumeration<Sting> geteys()
Locale getlocalel)

final Object getObject(String K)

final Sting getSuing(Sting k)

Loads the resource bundie with a family name of
familyName using the specified locale and the specified
class loader. The loading process is under the control of
nt. Thiows MissingResourcoExcaption if no resource
bundie matching the famiy name specified by famiyName

is available. (Added by Java SE 6.

Retuns the resource bundle keys as an enumeration of
strings. Any parent’s keys are also obtaine.

Retuns the locale supported by the resource bundie.

Returns the object associated with the key passed via k.
Thiows MissingResourcoException if is not in the.
resource bundie.

Retwrns the string associated with the key passed via k.
Theoius Misslegieasnroniiesapiian If A s mot | the.

ops/t0287-01.jpg
Stream Class
BufferedinputStream

Meaning

Buffered input stream

BufferedOutputStream
ByteArayinputstream
ByteArrayOutputstream
Datalnputstream

Buffered output stream

Input stream that reads from a byte array

Output stream that writes to a byte array

An input stream that contains methods for reading the Java standard
data types

DataOutputSiream | An output stream that contains methods for wring the Java standard
data types

Fieinputstieam Input stream that reads from a il

FleOutpustream Output stream that wries to a il

FiternputStean implements Inputstream

FiterOutputStream _Implements OutputStream

Inputstream |Abstract class that describes stream input.

ObjectinputStueam | Input stream for objects

ObjectOutputStream _ Outout stream for objects

Outputstream | Abstract class that describes stream output

Pipedinputstream _Input pipe

PipedOutputStream Outout ipe

Pintstieam Output stream that contains print() and prntin)

PushbackinputStream | nput stream that supports one bye “unget,” which returns a byte 1o
the input sream

RendomAccessFile | Supports random access file /0

SequencelnputStream

Input stream that is a combination of two or more input streams that
will be read sequentially, one after the other

ops/t0287-02.jpg
Stream Class. Meaning

BufferedReader _ Buffered input character stream
BufferedWiiter Buffered output character stream
CharArrayReader | Input stream that reads from a character array
CharArrayWriter | Output stream that writes to a character array
FileReader Input stream that reads from a file

FileWriter Output stream that wites to a file
FilterReader Filtered reader

FilterWriter Filtered writer

ops/t0514-02.jpg
abstract int getRawOffset() Returns the raw offset that should be added to GMT
1o compute local time. This value is not adjusted for
|daylight saving time.
static TimeZone Returns the TimeZone object for the time zone named
getTimeZone(String tzName) | zname.

abstract boolean inDaylightTime(Date d) | Returns true if the date represented by d s in daylight
saving time in the invoking object. Otherwise, it

retuns false.

static void setDefault(TimeZone t2) Sets the default time zone to be used on this host. &z
i a reference to the TimeZone object to be used.

void setlD(String tzName) Sets the name of the time zone (that i, its ID) to that

specified by tzName.

abstract void setRawOffset(int millis) | Sets the offset in milliseconds from GMT.

abstract boolean useDaylightTime() | Returns true if the invoking object uses daylight saving
|time. Otherwise, it returns false.

ops/t0514-01.jpg
Method
Object clone()
static String]] getAvailablelDs()

static String]]
gethvailablelDs(int timeDelta)

static TimeZone getDefault()

String getiD()

abstract int getOffset(int era, int year,
int month,
int dayOfMonth,
int dayOfWeek,

int millisec)

 Description
Returns a TimeZone-specifc version of clone).

Returns an array of String objects representing the
names of all time zones.

Returns an array of String objects representing the
names of all time zones that are timeDefta offset from
GMT.

Returns a TimeZone object that represents the default
time zone used on the host computer.

Returns the name of the invoking TimeZone object.
Returns the offset that should be added to GMT to
compute local time. This value is adjusted for daylight
saving time. The parameters to the method represent
date and time components.

ops/t0401-01.jpg
Method

| Description

static int charCount(int cp)

Returns 1 if op can be represented by a single
char. It returns 2 if two chars are needed.

static int
‘codePointAt(CharSequence chars, int loc)

static int codePointAt(char chars{ 1, int foc)

Returns the code point at the location specified

by loc.

Returns the code point at the location specified
by loc.

static int Returns the code point at the location that
codePointBefore(CharSequence chars, int foc) precedes that specified by loc.
static int Returns the code point at the location that

‘codePointBefore(char chars|), int loc)
static boolean isHighSurrogate(char ch)

[precedes that specified by foc.

Returns true if ch contains a valid high surrogate
character.

ops/f0705-01.jpg
Applet Viewer: Button.... [2][B])
(%5 Mo | Underived

Applet

You pressed Yes.

ops/t0505-02.jpg
void flip(int index)

void flip(int startindex,
int endindex)

boolean get(int index)

BitSet get(int startindex,
int endindex)

Reverses the bit specified by index.
Reverses the bits from startindex to endindex-1.

Returns the current state of the bit at the specified index.

Returns a BitSet that consists of the bits from startindex
to endindex-1. The invoking object s not changed

int hashCode()

Returns the hash code for the invoking object.

boolean intersects(BitSet bitSer)

boolean isEmpty()
int lengtn()

Returns true if at least one pair of corresponding bits within
the invoking object and bitSet are 1.

Returns true if all bits in the invoking object are zero.
Returns the number of bits required to hold the contents of
the invoking BitSet. This value is determined by the location
of the last 1. bit

int nextClearBit(int startindex)

Returns the index of the next cleared bit (that is, the next
zero bit), starting from the index specified by startindex.

ops/t0505-01.jpg
Method

Description

void and(BitSet bitSet)

void andNot(BitSet bitSet)

ANDs the contents of the invoking BitSet object with those
specified by bitSet. The result is placed into the invoking.
object.

For each 1 bit in bitSet, the corresponding bit in the invoking
BitSet is cleared.

int cardinality()

Returns the number of set bits in the invoking object.

void clear()
void cleariint index)

Zeros all bits.
Zeros the bit specified by index.

void clear(int startindex,
int endindex)

Zeros the bits from startindex to endindex-1.

Object clone()
boolean equalsiObiect bitset)

Duplicates the invoking BitSet object
Returns true if the invoking bit set is equivalent to the one.

passed in bitSet. Otherwise, the method returns false.

ops/t0643-01.jpg
ALT_MASK BUTTON2_MASK META_MASK
ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK
BUTTON1_MASK CTRL_MASK

ops/t0595-01.jpg
Method Description

int available() [Returns the number of bytes that are now available in the
|input buffer

void close() |Closes the invoking stream. Further read attempts will
generate an 10Exception.

int read() |Returns an integer representation of the next available byte
|of input. -1 is returned when the end of the file is
encountered.

it read(oyte buffer) [Attempts to read up to bufer.length bytes into buffer,

|returning the number of bytes that were successfully read.
-1 is returned when the end of the fle is encountered.

int read(byte buffer], int offset, |Attempts to read up to numBytes bytes into buffer starting

int numBytes) |at buffer{offset], returning the number of bytes that were
|successfully read. ~1 is returned when the end of the file s
encountered.
Object readObject) Reads an object from the invoking stream.
long skip(long numBytes) [lgnores (that is, skips) numBytes bytes in the invoking

|stream, returning the number of bytes actually ignored.

ops/t0516-01.jpg
CHINA ITALIAN SIMPLIFIED_CHINESE
CHINESE ALY TAWAN

ENGLISH JAPAN TRADITIONAL_CHINESE
FRANCE JAPANESE UK

FRENCH KOREA us

ops/f0110-01.jpg
Statement Effect

Box mybox; null

mybox

mybox = new Box(); —— [Width

mybox Height
Depth

Box object

ops/f0622-01.jpg
Applet Viewer: AppletSkel [B[EEs]

ops/f0695-01.jpg
Applet

Applet Viewer: CenterText (2][E))
(ot

This is centered.

Applet started

ops/f0695-02.jpg
Applet

Output to a Java window is
actually quite easy. A5 you have

seen, the AWT provides support seen, the AWT provides support
for fonts, colors, text, and for fonts, colors, text, and)
graphics

OF course, you must effectively OF course, you must effectively
tilize these itemns if you are to uiilze these items if you are to

achieve professional results

Applet started

ops/f0748-01.jpg
File Dialog

Lookjn [bin 5]

lappletviewer Tliavan
LD 2 appwindow.dass Ljavans
Myecent “lapt ionsole
Documents 5] aryeg.dl Sl Sooleytool
B Clextcheck s Smic
= FieDidogDemo.class —listat Smid
Deskiop Fmiconverter listatd miregistry
Sliay lkeytool 55 SampleFrame.dlass.

57 liar liant. serialver
lrsigner st Dservertod

My Dosument

woeemEntt Fiava s Slnamesers

liavac = Mykeyadapter.cass Junpackao0

U} Sljavadoc = MyMouseAdapter.class

Thiaveh 3 ywindomadapterclss

Thiavep. Tnativezesci

3
My Computer

e
MyNetwork File pame: I
Places

Flesofype: [AllFies ()

ops/f0875-01.jpg
PaintDemo (= |[E)X]

~\

ops/t0445-01.jpg
Method
€ ceiling(E obj)

Herator<E> descendingherator()

| Description

Searches the setfor the smalest element e such that e

ob.If

Such an element i found, i is returned. Othervise, nul i returned.

Returns an fterator that moves from the greatest to least. In
other words, it returns a reverse iterator.

NavigableSet<E> descendingSel()

Retuns a NavigableSet that s the reverse of the invoking set.
The resulting set is backed by the invoking set.

€ floor(E obj) Searches the set fo the largest element e such that e <= oby. If
such an element s found, it i retumed. Otherwise, null is
returned.

NavigableSet<E> Retuns a NavigableSet that includes all elements from the

"headSet(E upperBound, boolean inc)

invoking set that are less than upperBound. If inc is true, then
an element equal to upperBound i included. The resuling set is
backed by the invoking set.

ops/t0445-02.jpg
E higher(E obj)

Searches the set for the largest element e such that e > obj. If such
an element i found, it i returned. Otherwise, null s returned.

€ lower(E ob)

€ pollfrst()

Searches the set fo the largest element o such that @ < oby. I
Such an element is found, it i returmed. Otherwise, null s
returned.

Retuns the first element., removing the element in the process.
Because the set is sorted, this is the clement with the least
value. null is retumed f the set is empty.

€ pollLast()

NavigableSet<E>
‘subSel(E lowerBound,
boolean owinci,
E upperBound.
boolean highincl)

NavigableSet<E>
taiSet(E lowerBound, boolean incl)

Returns the last element, removing the element in the process.
Because the set is sorted, this is the element with the greatest

value. nullis returned if the set is empty.

Retums a NavigableSet that includes all lements from the.
invoking set that are greate than lowerBound and less than
upperBound.If lowincl is true, then an element cqual to
lowerBound i included. If highincl s true, then an element
‘equal to upperBound i included. The resulting set is backed

by the invoking set,

Retums a NavigableSet that includes all lements from the.
invoking set that are greater than lowerBound, I incl s true, then
an element equal to lowerBound is included. The resulting set is
backed by the invoking set.

ops/f0935-01.jpg
Applet Viewer: RegPay

Applet
Compute Monthty Loan Payments

Principal [1000

Years.

Interest Rate

Monthly Payments 20.75

Compute’

ops/t0036-01.jpg
Name Width in Bits Approximate Range
double 64 4.9¢-324 10 1.8+308
float 32 1.4e-045 10 3.4e+038

ops/t0391-02.jpg
Method

Description

byte byteValue()

Returns the value of the invoking object as a byte.

int compareTo(Byte b)

static Byte decode(String str)
throws NumberFormatException

Compares the numerical value of the invoking object
with that of b Returns O i the values are equal.
Returns a negative value f the invoKing object has a
|lower value. Returns a positive value if th nvoking
|object has a greater value.

Returns a Byte object that contains the value
specified by the string

double doubleValue()
boolean equals(Object ByteOb)

Returns the value of the invoking object as a double.

|Returns true if the invoking Byte object is
equivaent to Bytedby. Othervise. i returns faise.

float floatValue()

[Returns the value of the invoking object as a float.

int hashCode()

Returns the hash code for the invoking object.

int intValue()

[Returns the value of the invoking object as an int.

ops/t0391-03.jpg
long longValue()

static byte parseByte(String st
throws NumberFormatException

|Returns the value of the invoking object as a long.

Returns the byte equivalent of the number contained
the string specified by str using radix 10.

static byte parseByte(String st int radix)
throws NumberFormatException

[Returns the byte equivalent of the number contained
in the string specified by str using the specified radix.

short shortvalue()

Returns the value of the invoking object as a short.

String toString()
static String toString(byte num)
static Byte valueOfibyte num)

static Byte valueOf(String st
throws NumberFormatException

Returns a string that contains the decimal equivalent
|of the invoking object,

|Returns a string that contains the decimal equivalent
|of num.

|Returns a Byte object containing the value passed
|in num.

[Returns a Byte object that contains the value
specified by the string in str.

static Byte valueOf(String st nt radix)
throws NumberFormatException

[Returns a Byte object that contains the value
| specified by the string in str using the specified radix.

ops/t0070-01.jpg
Result

[Equal to
[Not equal to
> |Greater than

< Less than
Greater than or equal to

Less than or equal to

ops/t0608-01.jpg
Stiing getHeaderField(int ick)

String getHeaderField(String fieldName)

Returns the value of the header field at index idx.
(Header field indexes begin at 0.) Returns null i the
value of idx exceeds the number of fields

Returns the value of header field whose name is
specified by fieldName. Returns null if the specified
name is not found.

String getHeaderFieldKey(int idX)

Map<Sting, List<String>>
getHeaderFields()

long getLastModified()

InputStream getinputStream()
throws I0Exception

| Returns the header field key at index ids. (Header
| field indexes begin at 0.) Returns nul if the value
of idx exceeds the number of fields

| Returns a map that contains all of the header fields
and values.

Returns the time and date, represented in terms
of milliseconds since January 1, 1970 GMT, of the
| last modification of the resource. Zero is returned
if the lastmodified date is unavailable.

Returns an InputStream that is linked to the
| resource. This stream can be used to obtain
the content of the resource.

ops/t0537-01.jpg
Specifier _ Effect
%A Causes the hexadecimal digits a through ft0 be displayed in uppercase as A

through F. Also, the prefix Ox s displayed as OX, and the p will be displayed as P.
%B Uppercases the values true and false.

ops/f0887-01.jpg
Applet Viewer: JToggleButtonDemo

Button s on.

ops/t0433-02.jpg
Method | Description

char charAtint igx) Returns the character at the index specified by idx.

int length) Returns the number of characters in the invoking.
sequence.

CharSequence Returns a subset of the invoking sequence beginning at

subSequencefint startidy, int stopldy) | startldx and ending at stopidx-1.
String toString() Returns the String equivalent of the invoking sequence.

ops/f0694-01.jpg
Applet Viewer: Mul

ops/t0433-01.jpg
final String name()

|Returns the unaltered name of the invoking constant.

final int ordinal()

Returns a value that indicates an enumeration
|constant’s position in the list of constants.

String toString()

[Returns the name of the invoking constant. This.
name may differ from the one used in the
|enumeration’s declaration.

static <T extends Enum<T>> T
valueOf(Class<T> e-type, String name)

Returns the constant associated with name in the
|enumeration type specified by e-type.

ops/t0594-02.jpg
Method
void close()

void flush()

void write(byte buffer])

void wiite(byte buffer], it offset,
int numBytes)

void write(int b)

void writeBoolean(boolean b)
void writeByte(int b)

void writeBytes(String str)

void writeChar(int ¢)

void writeChars(String st

void writeDouble(double d)

void writeFloatfloat)

void writelnt(int)

void writeLong(long

final void writeObject(Object obj)
void writeShort(int /)

Description
Closes the invoking stream. Further write attempts will
generate an I0Exception.

Finalizes the output state so that any buffers are cleared.
That i, it flushes the output buffers.

Wites an array of bytes to the invoking stream.
Writes a subrange of numBytes bytes from the array buffer,

|beginning at buferoffsetl

Wites a single byte 10 the invoking stream. The byte
written is the low-order byte of b.

Wites a boolean to the invoking stream.
Wiites a byte to the invoking stream. The byte wiiten is

|the loworder byte of b.

Wiites the bytes representing strto the invoking stream.
Wites a char 10 the invoking stream.

Wiites the characters in strto the invoking stream.
Wiites a double to the invoking stream,

Wites a float to the invoking stream.

Wiites an int to the invoking stream.

Wiites a long to the invoking strean.

Wites obj to the invoking stream.

‘Writes a short to the invoking stream.

ops/t0594-01.jpg
Method Description

void close() Closes the invoking stream. Further write attempts will
generate an I0Exception.

void flush() Finalizes the output state so that any buffers are cleared.

void write(byte buffer])

That is, it flushes the output buffers.
Wites an array of bytes to the invoking stream.

void wiite(byte buffer], it offset,
int numBytes)

Wites a subrange of numBytes bytes from the array buffer,
beginning at buffer{offset]

void write(int b)

void writeObject(Object oby)

Wites a single byte to the invoking stream. The byte written
is the loworder byte of b.

Writes object obj to the invoking stream.

ops/t0391-01.jpg
MIN_VALUE | Minimum value

MAXVALUE | Maximum value

SizE The bit width of the wrapped value

TYPE The Class object for byte, short, int, or long

ops/f0633-01.jpg
Applet Viewer: Bases EEx

Applet

Cade base: fleihjaval
Document base: fleh javaiBases java

Applet started

ops/t0527-01.jpg
Method
void close()

void flush()

Formatter format(String fmtString,
Object ... args)

Description
Closes the invoking Formatter. This causes any resources.
used by the object to be released. After a Formatter has
been closed, it cannot be reused. An attempt to use a
closed Formatter results in a FormatterClosedException.
Flushes the format buffer. This causes any output currently
in the buffer to be written to the destination. This applies
mostly to a Formatter tied o a file.

Formats the arguments passed via args according to the format
‘specifiers contained in fmtSiring. Returs the invoking object.

Formatter format(Locale foc,
Sting fmtString,
Object ... args)

10Exception ioException()

Locale locale()
Appendable out()

String toString()

Formats the arguments passed via args according to the format
‘specifiers contained in fmtString. The locale specified by locis
used for this format. Returns the invoking object.

I the underlying object that s the destination for output throws
an I0Exception, then this exception is retumed. Otherwise,
nullis returned.

Returns the invoking object’s locale.

Returns a reference to the underlying object that is the
destination for output.

Returns a String containing the formatted output.

ops/t0687-02.jpg
Variable

Meaning.

String name
float pointSize
int size
int style

[Name of the font

Size of the font in points.

Size of the font in points.

Font style

ops/t0687-01.jpg
Method

|pescristion

static Font decode(String str)

Returns a font given its name.

boolean equals(Object FontOb)

Returns true if the invoking object contains the same
font as that specified by FontObj. Otherwise, it returns
false.

String getFamily()

static Font getFont(String property)

static Font getFont(String property,
Font defaultFont)

Returns the name of the font family to which the invoking
font belongs.

Returns the font associated with the system property
specified by property. null s returned if property does
ot exist.

Returns the font associated with the system property
pecified by property. The font specified by defauitFont is
returned if property does not exist.

Stiing getFontName() Returns the face name of the invoking font.

Stiing getNeme() [Returns the logical name of the invoking fort.

int getsize() Retuns the size, in points, of the invoking font.

int getstyle() [Returns the style values of the invoking font.

int hashCode() Returns the hash code associated with the invoking.
object.

boolean isBold() Returns true if the font includes the BOLD style value.

Otherwise, false s returned.

boolean isitalic()

boolean isPlain()

String toString()

Returns true if the fort includes the ITALIC style value.
|Otherwise, false s returned.

Returns true if the font includes the PLAIN style value.
Otherwise, false s returned.

Returns the string equivalent of the invoking font.

ops/t0071-01.jpg
Result

Logical AND

Logical OR

Logical XOR (exclusive OR)

‘Shortcircuit OR

‘Shortcircuit AND

Logical unary NOT

AND assignment

OR assignment

XOR assignment

Equal to

Not equal to

Ternary ifthen-else

ops/t0071-02.jpg
A B AlB A&B ArB 3
False False Faise False Faise Trve
True Faise True False True Faise
False [True True [False True [True
True [True True [True False False

ops/f0771-01.jpg

ops/t0400-01.jpg
static boolean isMirrored(char ch)

Returns true if ch is a mirrored Unicode character.
A mirrored character is one that s reversed for text
that s displayed right-o-eft

static boolear

SpaceChar(char ch)

Returns true if ch is a Unicode space character.
Otherwise, it returns false.

static boolean isTitleCase{char ch)

static boolean
isUnicodeldentifierPart(char ch)

static boolean
isUnicodeldentifierStart(char ch)

static boolean isUpperCase(char ch)

static boolean isWhitespace(char ch)

Returns true if ch is a Unicode titlecase character.
Otherwise, it returns false.

Returns true if chis allowed as part of a Unicode
identifier (other than the first character).
Otherwise, it returns false.

Returns true if ch s allowed as the first character
of a Unicode identifier. Otherwise, it returns false.
Returns true if ch s an uppercase letter.
Otherwise, it returns false.

Returns true if ch is whitespace. Otherwise, it
retuns false.

static char toLowerCase(char ch)

Returns lowercase equivalent of ch.

static char toTitleCase(char ch)
static char toUpperCase(char ch)

Returns titlecase equivalent of ch.
Returns uppercase equivalent of ch.

ops/t0218-02.jpg
Exception Meaning

ClassNotFoundException | Class not found.

CloneNotSupportedException | Attempt to clone an object that does not implement the Cloneable.
interface.

legalAccessException Access t0 a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException Arequested field does not exist.

[NoSuchMethodException

A requested method does not exist.

ops/t0218-01.jpg
Exception | Meaning

ArthmeticException Aithmetic error, such as divide-by zero.
ArrayindexOutOfBoundsException | Array index is outofbounds.

ArrayStoreException [Assignment to an array element of an incompatible type.

ClassCastException

Invalid cast.

EnumConstantNotPresentException
IllegalArgumentException

An attempt is made to use an undefined enumeration vale.
llegal argument used to invoke a method.

lllegalMonitorStateException

Illegal monitor operation, such as waiting on an unlocked
thread.

llegalStateException Environment or application is in incorrect state.

llegalThreadStateException Requested operation not compatible with current thread
state.

IndexOutOfBoundsException ‘Some type of index is out-ofbounds.

NegativeArraySi

NulPointerException Invalid use of a null reference.
NumberFormatException Invalid conversion of a sring to a numeric format.
SecurityException Attempt to violate securiy.
StringIndex0utOfBounds Attempt to index outside the bounds of a sting.
TypeNotPresentException Type not found.

UnsupportedOperationException

An unsupported operation was encountered.

ops/t0917-01.jpg
Interface Description

HitpServietRequest Enables serviets to read data from an HTTP request.
HitpServietResponse Enables serviets to write data to an HTTP response.
HutpSession Allows session data to be read and written.

HttpSessionBindingListener | Informs an object that it is bound to or unbound from a session.

ops/f0898-01.jpg
Current selection: London

Applet started

ops/t0917-02.jpg
Class Description

Cookie [Allows state information to be stored on a client machine.
HitpServiet Provides methods to handle HITP requests and responses.
HtpSessionEvent Encapsulates a session changed event.
HitpSessionindingEvent

Indicates when a listener is bound to or unbound from a session
value, or that a session attribute changed.

ops/t0504-01.jpg
Method
int countTokens()

boolean hasMoreElements()

| Description

Using the current set of delimiters, the method determines
the number of tokens left to be parsed and returns the
result.

Returns true if one or more tokens remain in the string and
returns false if there are none.

boolean hasMoreTokens()

Object nextElement()
String nextToken()

Returns true if one or more tokens remain in the string and

returns false if there are none.

Returns the next token as an Object.
Returns the next token as a String,

String nextToken(String delimiters)

Returs the next token s a String and sets the delimiters.
string to that specified by delimiters.

ops/t0495-01.jpg
Method Description

void clear() [Resets and emptes the hash table.

Object cloner) [Returns a duplicate of the invokng objec.

boolean contains(Object value) | Returns true f some value equl to value exists within the hash table.
Retwr the v 't found.

boolean containskey(Object key) | Returns true if some key equal to key exists within the hash table.

Returns false if the key isn't found.

boolcen contansValue(Obiect value)|Retums tro f some value cauel o value exists it the hash table
Retuns fise i the value st found.

Enumeration<V> clements() Retuns on enumeration of the values contained in the hash table.
V get(Obiect key) [Returns the object that contains the value associated with Key.
[1f ey not n the hash table, a null objectis eturned.
boolean isEmpty) Retwrns true if the hash table is empty; returns false i it contains.
at least one key.
Enumeration<i- keys() | Returns an enumeration of the keys contained in the hash table.
V putlK key. V value] inserts a key and a value into the hash table. Returns nul if key isn't

|already in the hash table; returns the previous value associated with
| Keyf key s already n the hash table.

void rehash() [Increases the size of the hash table and rehashes all of it keys.

V remove(Obiect ey} Removes ey and its value. Retums the value associated with key.
If key s not i the hash table, a nul object is returned.

szt |Returs the number of entie inthe hsh tabie,
Sting toSing() [Retors the siing equtvalont of & hosh s,

ops/pub.jpg
New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

ops/t0181-01.jpg
Method Purpose
Object clone() Creates a new object that is the same as the object being cloned.
boolean equals(Object object) | Determines whether one object is equal to another.

void finalize) Galled before an unused object is recycled.
Class getClass() Obtains the class of an object at run time.

int hashCode() |Returns the hash code associated with the invoking object.
void notify() Resumes execution of a thread waiting on the invoking object.
void notifyAll() Resumes execution of all threads waiting on the invoking object.
string toString) Returns a string that describes the object.

void wait() Waits on another thread of execution.

void waitlong millseconds)
void wat(long miliseconds,
int nanoseconds)

ops/f0885-01.jpg
You selected Japan

Applet started

ops/f0782-01.jpg
Fitered: Sharpen

e e |

ops/t0387-02.jpg
| Description

byte byteValue()

Returns the value of the invoking object as a byte.

static int compare(float num,
float num2)

Compares the values of num1 and num2. Returns O if
the values are equal. Returs a negative value if num1
is less than num2. Returns a positive value if num1 is
greater than num2.

int compareTo(Float f)

Compares the numerical value of the invoking object with that
of f. Returns O if the values are equal. Returns a negative:
value if the invoking object has a lower value. Returns a
positive value if the invoking object has a greater value.

double doubleValue()
boolean equals(Object FloatObj)

[Returns the value of the invoking object as a double.

Returns true if the invoking Float object is equivalent to
FloatObj. Otherwise, it returns false.

static int floatTolntBits(float num)

statc int foatToRawintBitsfoat num) |

Returns the IEEE.compatible, singleprecision bit pattern
that corresponds to num.

Returns the IEEE-compatible single-precision bit pattern
that corresponds to num. A NaN value is preserved.

float floatValue()

Returns the value of the invoking object as a float.

 hashCode()

Returns the hash code for the invoking object.

static float intBitsToFloat(int num)

Returns float equivalent of the IEEE-compatible,

single-precision bit pattern specified by num.

int intValue()

Returns the value of the invoking object as an int.

boolean isinfinite)

Returns true if the invoking object contains an infinite value.

Othervise, it returns false.

static boolean isinfinite(float num)

Returns true if num specifies an infinite value. Otherwise,
it returns false.

ops/t0553-01.jpg
EventListenerProxy

Extends the Eventlistener class to allow additional parameters. See Chapter 22 for a
discussion of event isteners.

EventObject The superclass forall event classes. Events are discussed in Chapter 22.
Formattablefiags | Defines formatting flags that are used with the Formattable inter face.
PropertyPermission | Manages property permissions.

Serviceloader Provides a means of finding service providers. (Added by Java SE 6.
i Encapsulates and manages Universally Unique Identifiers (UUIDS).

ops/t0387-01.jpg
MAX_EXPONENT

Maximum exponent (Added by Java SE 6.)

MAX_VALUE

Maximum positive value

MIN_EXPONENT inimum exponent (Added by Java SE 6.
MIN_NORMAL Minimum positive normal value (Added by Java SE 6.)
MIN_VALUE inimum positive value

NaN Not a number

POSITIVE_INFINITY | Positive infinity

NEGATIVE_INFINITY | Negative infinity

SizE ‘The bit width of the wrapped value

TYPE The Class object for float or double

ops/t0100-01.jpg
0123456783
0123456789
0123456789

Pass 0:

Pass 1:

Pass 2:

Loops complete.

ops/t0467-02.jpg
Method

Description

boolean equals(Object ob)

Retums true i objis a Map.Entry whose key and value are equal to that of the
invoking object.

K etk wms the key
V getvalue) Retums the value for this map entry.

int hashCode) [Returns the nash code for this map entry.

V setvalue(V v Sets the value for this map entry to v. A ClassCastException is thiown if vis ot

the correct type for the map. An IiegalArgumentException is thrown if there s
2 problem vith . A NullPointerException is thrown if v is nul and the map does
ot permit nul keys. An UnsupportedOperationException is thiown if the map
cannot be changed.

ops/t0467-01.jpg
K higherkey(K oty)

‘Searches the set for the largest key k such that k > oby. If such a key Is.
found. i 1 retumed. Otherwse, nll s feurned.

Map Enty< > astEnt)

Retums the last entry n tho map. This i th entry wth the fargest ke

Mo Entry< V> lawerEntry (K ob)

Seatches the set for the lagest key k such 1t < o0, f sueh a key s
found, s entry s retumed. Otherwise, null s returned.

Klowerkey(K ot Searches th set for the largest key such tat < oy, f sueh a key s
found. t s returned. Otherwise. mul s fetured.
NavigableSet<K> navgableKeySet() Retutns a NavigableSet that contans he keys i the invoking map. The

fesuiting st s backed by the ivoking map.

[——

Map Enty< > polLasténty()

Retums the fis entry emoring the enry inthe process. Bocause the
mapis sorted, tis i th entry with the least key value.nul s retumed if

| e map s empyy.

Retums the last entry,removing the rtry i the process. Gecause the
mapis sorted, tis i the entry with he greatest ey val. nll s
retumed f e mep i emoty.

NavgadleMap<K V-
‘SubMapiK JowerBound.
boolean lowict,
KupperBound
boolean nighiney

Retuns a NavigableMap that incudos alenres 1o the imoking map
hat have ke tha aregreate tan IowerGourd and less than
upperBound. I Jownc i tue, then an lement ecu 0 owerBound s
incioded. I iginc 1 ruo, then an lement equl {0 hghincl s ncuded.
T resulung map s backed by the invoking map.

Navigableap<K >
ailMapiK lowerBound, boslean inc)

Retums a NavigableMap (ot includos alenres fom (o imoking map
hat have ke tha ar greater than JowerBourd. I nclis rue, then an
clement equsl 1o owerBound s incuded. The resuting map is backed by
the invoking map.

ops/t0610-01.jpg
static boolean getFollowRedirects()

String getRequestMethod()

Returns true if redirects are automatically followed and

false otherwise. This feature is on by default,

Returns a string representing how URL requests are
made. The default is GET. Other options, such as POST,
are available.

int getResponseCode()
throws I0Exception

String getResponseMessage()
throws I0Exception

static void
setFollowRedirects(boolean how)

void setRequestMethod(Sting now)
throws ProtocolException

Returns the HTTP response code. ~1 is returned if no
response code can be obtained. An I0Exception is
thrown if the connection fails.

Returns the response message associated with the
response code. Returns nullif no message is available.

An 10Exception is thrown if the connection fails.

If howis true, then redirects are automatically followed.
If how is false, redirects are not automatically followed.

By defaul, redirects are automatically followed.

Sets the method by which HTTP requests are made to
that specified by how. The default method is GET, but
other options, such as POST, are avalable. If how is
invalid, a ProtocolException is thrown.

ops/t0553-02.jpg
EventListener

Indicates that a class is an event istener. Events are discussed in Chapter 22.

Formatteble

Enables a class o provide custom formatting.

ops/t0438-01.jpg
Collection List Queve
Comparator Listiterator RandomAccess
Deque (Added by Java SE 6) Map set
Enumeration Map.Entry SortedMiap.
EventListener | NavigableMap (Added by Java SE 6.) |SortedSet
Formattable |NavigableSet (Added by Java SE 6) |

Hterator

ops/t0226-01.jpg
Method
getName
getPriority
isAlive
join

run

sleep
start

Meaning

Obtain a thread’s name.
Obtain a thread's priort.
Determine if a thread is stll running.

Wait for a thread to terminate.

Entry point for the thread.
Suspend a thread for a period of time.
Start a thread by calling its run method.

ops/t0506-01.jpg
int nextSetBit(int startindex)

void or(BitSet bitSet)

Returns the index of the next set bit (that is, the next 1 bit),
starting from the index specified by startindex. If no bit is set,
-1is returned.

ORS the contents of the invoking BitSet object with that
specified by bitSet. The result is placed into the invoking object.

void set(int index)
void set(int index, boolean 1)

Sets the bit specified by index.

Sets the bit specified by index to the value passed in v. true
sets the bit, false clears the bit.

void set(int startindex,
int endindex)

void set(int startindex,
int endindex, boolean v)

Sets the bits from startindex to endindex-1.

Sets the bits from startindex to endindex-1, to the value
passed in v. true sets the bits, false clears the bits.

int size()

Returns the number of bits in the invoking BitSet object.

String toString()
void xor(BitSet bitSet)

Returns the string equivalent of the invoking BitSet object.

XORS the contents of the invoking BitSet object with that
specified by bitSet. The result is placed into the invoking object.

ops/t0398-01.jpg
MAX_RADIX __ The largest radix
MIN_RADIX | The smallest racix
MAX_VALUE | The largest character value
MIN_VALUE _[The smallest character value
TYPE The Class object for char

ops/0071631771_ci_std.jpg
The
Complete
Reference

Java

Schildts classic
Java reference,
updated and
expanded for
Java SE 6

Seventh Edition

Comprehensive guide to the entire E%%%_

NLINE |
Java language it

Includes coverage of applets, servlets, Swing,
JavaBeans, the AWT, and collections

Hundreds of examples and sample applications

Herbert Schildt

Top-selling programming
author with more than
3.5 million books sold
worldwide

%ﬂ Osborne

ops/t0879-01.jpg
JButton JCheckBox | JComboBox JLabel
Jist JRadioButton | JscroliPane JTabbedPane
JTable ITextField | NoggleButton Tree

ops/f0713-01.jpg
Applet Viewer: ChoiceDemo
Applet

Windows Vista] [Firefox =

[Internet Explorer]
e

Current 0F: Windows Vista
Current Browser: Firefox

ops/t0403-01.jpg
static boolean
getBoolean(String propertyName)
"Code()

Returns true if the system property specified by
ropertyName is true. Otherwise, it returns false.

Returns the hash code for the invoking object.

static boolean parseBoolean(String st

Returns true if str contains the string “true”. Case is
not significant. Otherwise, returns false.

String toString()

Returns the string equivalent of the invoking object.

static String toString(boolean boolVal)

Returns the string equivalent of boolVal

static Boolean valueOf{boolean boolVal)

[Returns the Boolean equivalent of booiVal

static Boolean valueOf(String boolString)

Returs true f boo/String contains the string “true” (in
uppercase or lowercase). Otherwise, it returns false.

ops/t0759-01.jpg
Flag.

WIDTH
HEIGHT
PROPERTIES

SOMEBITS

FRAMEBITS

ALLBITS

ERROR

ABORT

Meaning

The width parameter is valid and contains the width of the image.

|The height parameter is valid and contains the height of the image.

The properties associated with the image can now be obtained using
imgObj getProperty().

More pirels needed to draw the image have been received. The parameters.
left top, width, and height define the rectangle containing the new pixels.

A complete frame that is part of a multiframe image, which was previously
drawn, has been received. This frame can be displayed. The left, top, width,
and height parameters are not used.

The image is now complete. The feft, top, width, and height parameters are
not used.

An error has occurred to an image that was being tracked asynchronously.
The image is incomplete and cannot be displayed. No further image
information will be received. The ABORT flag wil also be set to indicate that
the image production was aborted.

An image that was being tracked asynchronously was aborted before it was

complete. However, if an error has not occurred, accessing any part of the
image’s data will restart the production of the image.

ops/t0403-02.jpg
Method

Description

void destroy()

Terminates the process.

int exitvalue()

Returns an exit code obtained from a subprocess.

InputStream getErrorStream()
InputStream getinputStream()

OutputStream getOutputStream()

Returns an input stream that reads input from the process”
err output stream.

Returns an input stream that reads input from the process”
out output stream.

Returns an output stream that writes output to the process’
in input stream.

int waitFor()
throws InterruptedException

Returns the exit code returned by the process. This method
oes not return until the process on which it is called
terminates.

ops/t0925-01.jpg
File

Description

AddCookie.htm
AddCookieServiet java
GetCookiesServiet java

[Allows a user to specify a value for the cookie named MyCookie.

Processes the submission of AddCookie.htm.
Displays cookie values.

ops/t0542-02.jpg
boolean hasNextByte(int radix)
boolean hasNextDouble()
boolean hasNextFloat()

boolean hasNextnt()

boolean hasNextint(int radix)

boolean hasNextLine()
boolean hasNextLon()

boolean hasNextLong(int radix)

boolean hasNextShort()

boolean hasNextShort(int radi)

Retums true if a byte value in the specified radix is available
t0 be read. Returns false otherwise.

Retuns true if a double value is available 10 be read. Returns
false otherwise.

Returns true if a float value is available to be read. Returns
false otherwise.

Returns true if an int value is available to be read. Returns
false otherwise. The default radix is used. (Unless changed,
the default radix is 10,)

Returns true if an int value in the specified radix is available,

t0 be read. Returns false otherwise.

Returns true if a line of input s available.
Returns true if a long value is avalable to be read. Returns
false otherwise. The default radix is used. (Unless changed,
the default radix is 10,)

Returns true if a long value in the specified rad
10 be read. Returns false otherwise.

Returns true if a short value is available to be read.

Returns false otherwise. The default radix is used. (Unless.
changed, the default radix is 10.)

Returns true if @ short value in the specified radix is available,
0 be read. Returns false otherwise.

s available:

ops/t0437-01.jpg
AbstractCollection EventObject Random
Abstractlist Formattableflags. ResourcoBundie

Absuactiiap Formatter Scanner

AbstractQueve (GregorianCalendar ServioeLoader (Added by Java SE 6.
AbstractSequentilList HashMap SimpleTimeZone

AnstactSet HashSet Stack

AvrayDeque (Added by Java SE 6, | Hashtable StingTokenizer

Araylist IdentityHashMap. Timer

Arays LinkedHashMap TimerTask

Bitset LinkedHashSet TimeZone

Colendar LinkedList TreeMop

Collections UistResourceBundle TreeSet

Currency Locale ()

Date (Observable. Vector

Dictionary PriorityQueve WeakHoshMap

EnumMop Properties

Enumset PropertyPermission

EventListenerProxy PropertyResourceBundle

ops/t0542-01.jpg
Method
boolean hasNext()

boolean hasNext(Patten pattern)
boolean hasNex!(Sting pattern)
boolean hasNextBigDecimal()

boolean hasNexBiginteger()

boolean hasNextBiginteger(int radix)

boolean hasNextBoolean()

boolean hasNextByte()

Description
Returns true if another token of any type is available to

be read. Returns false otherwise.

Returns true if a token that matches the pattern passed

in pattern is available to be read. Returns false otherwise.
Returns true if a token that matches the pattern passed

in pattern is available to be read. Returns false otherwise.
Returns true if a value that can be stored in a BigDecimal
object is available to be read. Returns false otherwise.
Returns true if @ value that can be stored in a Biginteger
object is available to be read. Returs false otherwise. The.
default radix s used. (Unless changed, the defaultraci is 10.)
Returns true if a value in the specified radi that can be
stored in a Biginteger object is available to be read.
Returns false othervise.

Returns true if a boolean value is available 10 be read.
Returns false otherwise.

Returns true if a byte value is available 1o be read. Returns

false otherwise. The default radix is used. (Unless changed,
the default radix is 10.)

ops/t0834-01.jpg
Class. Primary Function
AccessibleObject | Allows you to bypass the default access control checks

Aray Allows you to dynamically reate and manipulate arrays.
Constructor Provides information about a constructor.

Field Provides information about a field.

Method |Provides information about a method.

Modifier Provides information about class and member access modifiers
Proxy Supports aynamic proxy classes.

ReflectPermission

Allows reflection of private or protected members of a class.

ops/f0758-01.jpg

ops/t0404-01.jpg
Method
void addShutdownHook(Thread thr)

Description

Registers thrd as a thread to be run when the Java
Virtual Machine terminates.

Process exec(String progName)
throws I0Exception

Process exec(String progName,
Sting environment)
throws 10Exception

Executes the program specified by progName as a
separate process. An object of type Process is
retured that describes the new process.

Executes the program specified by progName as a
separate process with the environment specified by
environment. An object of type Process is returned
that describes the new process.

Process exec(Sting comLineArray)
throws 0Excer

Executes the command line specified by the strings in
comLineArray as a separate process. An object of type
Process is returned that describes the new process.

Process exec(String comLineArray| J,
‘String environment[))

Executes the command line specified by the strings.
in comLineArray as a separate process with the

ops/t0404-02.jpg
throws I0Exception

environment specified by environment. An object of type
Process is returned that describes the new process.

void exi

(nt exitCode)

long freeMemory()

Halts execution and retus the value of exitCode to
the parent process. By convention, O indicates normal
termination. All other values indicate Some form of error.
Retums the approximate number of bytes of free
memory available to the Java runime system.

void go()
static Runtime getRuntime(
void halt(int code)

void load(String fibraryFileName)

void loadLibrary(String libraryName)

Initates garbage collection
Returns the current Runtime object
Immediately terminates the Java Virtual Machine. No
termination threads o finalizers are run. The value of
code s returned 10 the invoking process.

Loads the dynamic library whose file s specified by
libraryFileName, which must specify its complete path.
Loads the dynamic library whose name is associated
\with libraryName.

ops/t0517-01.jpg
Method
boolean nextBooleant)

Description

~|Returns the next boolean random number.

void nextBytes(oyte vals{)
double nextouble()

float nextFloat()

double nextGaussian)

Fills vals with randomly generated values.
Returns the next double random number.
Returns the next float random number.
Returns the next Gaussian random number.

int nextint() Returns the next int random number.
int nextint(int n) Returns the next int random number within the range zero 10 1.
long nextLong() Returns the next long random number.

void setSeed(long newSeed)

Sets the seed value (that is, the starting point for the random
number generator) to that specified by newSeed.

ops/f0781-01.jpg
Fiteredt: Blur

¥

e |] e e o | e

ops/t0375-01.jpg
‘String]] split(String regExp)

Sting] | spl(Sting regExp, nt max)

Decomposes the invoking string into parts and returns an array
that contains the result. Each part s delimited by the regular

expression passed in regExp.

Decomposes the invoking sting into parts and returns an array
that contains the result. Each part is delimited by the regular
‘expression passed in regExp. The number of pieces is specified
by max If max s negative, then the invoking sting is ully
decomposed. Otherwise, if max contains 2 nonzero value,

the last entry in the returned array contains the remainder

of the invoking suing. f max s zero, the invoking sting is

fully decomposed.

CharSequence
subSequence(int startindex,
int stopindex)

Returns a substring of the invoking string, beginning at startindex
and stopping at stopindex. This method is required by the.
CharSequence interface, which is now implemented by String.

ops/f0725-01.jpg
Applet Viewer: Flowla,
Applet

¥ Windows P [V §iidas Vis)

I™ Solaris [~ Mac 05

Current state:
Windows XP: true
Windows Vista: rue
Solaris: false

Mac: false

ops/t0415-01.jpg
Method

static Class<?> forName(String name)
throws ClassNotFoundException

static Class<?> forName(String name,
boolean how,

ClassLoader /d)
throws ClassNotFoundException

Description

Returns a Class object given its complete name.

Returns a Class object given ts complete name.
‘The object is loaded using the loader specified by
Idr. If how is true, the object is initialized;
otherwise, it is not.

<A extends Annotation> A
getAnnotation(Class<A> annoType)

Returns an Annotation object that contains the
annotation associated with annoType for the
invoking object.

ops/t0692-01.jpg
Height | The topto-bottom size of a line of text
Baseline | The fine that the bottoms of characters are aligned to (not counting descent)
Ascent The distance from the baseline to the top of a character

Descent | The distance from the baseline to the bottom of a character

Leading

The distance between the bottom of one line of text and the top of the next

ops/t0913-01.jpg
Method

void destroy()
ServletConfig getServietConfig() | Returns a ServietConfig object that contains any initialization

String getServietinfo()

void init(ServietConfig sc)
throws ServietException

void service(ServietRequest req,

ServietResponse res)

throws ServietException,

I0Exception

| Description
Galled when the servet s unloaded.

parameters.
Returns a string describing the serviet.

Called when the serviet is initalized. Initialization
parameters for the servlet can be obtained from sc.

An UnavailableException should be thrown if the

serviet cannot be initialized.

Called 1o process a request from a client. The request from
the client can be read from req. The response to the client
can be written to res. An exception s generated if a serviet
or 10 problem occurs.

ops/t0692-02.jpg
Method

Description

int bytesWidth(byte b), int start,

Returns the width of numBytes characters held in array b,

int numBytes) | beginning at start.

it charWidthichar 1, int start, | Returns the width of numChars characters held in array c,
int numChars) beginning at start.

it charWidth(char ¢) Returns the width of c.

it charWidtint ¢) [Returns the width of c.

int gethscent() Returns the ascent of the font.

int getDescent()
Font getFont()

Returns the descent of the font.

Returns the font.

int getHeight()

Returns the height of a line of text. This value can be used
to output multiple lines of text in a window.

int getLeading()

Returns the space between lines of text

it getMaxAdvance()

Returns the width of the widest character. 1 is returned if
this value is not available.

int getMaxAscent()

Returns the maximum ascent.

int getMaxDescent()

Returns the maximum descent.

|] getwidths()

Returns the widths of the first 256 characters.

 stringWidth(String str)

Returns the

ith of the string specified by st

String toString()

Returns the string equivalent of the invoking object.

ops/t0528-01.jpg
Format Specifier Conversion Applied

%5a Floating-point hexadecimal
%A

%b Boolean

%8

ke Character

%d Decimal integer

%h Hash code of the argument
%H

Yoe Scientific notation

%E

%f Decimal floating-point

%5 Uses %e or %f, whichever is shorter
%G

%o |Octal integer

%n Inserts a newline character
%s String

%S

%t Time and date

%t

9 Integer hexadecimal

%X

%% IInserts a % sign

ops/t0913-02.jpg
Method

Description

Object getAttribute(String att)

Returns the value of the server attribute named attr.

String getMimeType(String file)
String getRealPath(String vpath)

Returns the MIME type of fie.

Returns the real path that corresponds to the virtual
ath.

String getServerlnfo()
void log(String s)

Returns information about the server.
Wiites s to the serviet log.

void log(Sting s, Throwable €)
void setAtribute(String att, Object vai)

Wites s and the stack trace for e t0 the serviet Iog.

Sets the attribute specified by attr o the value.
passed in val.

ops/t0468-01.jpg
Class | Description

AbstractMap | Implements most of the Map interface.
EnumMap Extends AbstractMap for use vith enum keys.
HashMap Extends AbstractMap to use a hash table.
TreeMap Extends AbstractMap to use a tree.

WeakHashMap | Extends AbstractMap to use a hash table with weak keys.

LinkedHashMap | Extends HashMap to allow insertion-order iterations.
IdentityHashMap | Extends AbstractMap and uses reference equality when comparing documents,

ops/t0644-01.jpg
ALT_DOWN_MASK |BUTTON2_DOWN_MASK | META_DOWN_MASK

ALT_GRAPH_DOWN_MASK | BUTTON3_DOWN_MASK SHIFT_DOWN_MASK
BUTTON1_DOWN_MASK CTRL_DOWN_MASK

ops/f0736-01.jpg
Applet Viewer: GridBagDemo. (= (B
Applet

™ WS K ¥ Windows Vista

I™ Solaris I Mac 08

Current state:
Windows XP: false
Windows Vista: rue
Solaris: false
Mac: false

ops/t0426-01.jpg
final boolean isDaemon()

Returns true if the group is a daemon group.
Othervise, it returns false.

boolean isDestroyed()

void list()

Returns true if the group has been destroyed.
Otherwise, it returns false.

Displays information about the group.

final boolean parentOf(ThreadGroup group)
final void setDaemon(boolean isDaemon)
final void setMaxPriorit(int priority)

String toString()

void uncaughtException(Thread thread,
Throwable e)

Returns true if the invoking thread is the parent of
group (or group, itself). Otherwise, it returns false.

1f sDaemon is true, then the invoking group is

fagged as a daemon group.

Sets the maximum prioriy of the invoking group
to priority.

Returns the string equivalent of the group.

‘This method is called when an exception goes.
uncaught.

ops/t0644-02.jpg
DESELECTED

| The user deselected an item.

SELECTED

|The user selected an item.

ops/t0531-01.jpg
Suffix | Replaced By

a Abbreviated weekday name

A Full weekday name

b Abbreviated month name

B Full month name

¢ Standard date and time string formatted as
day month date hh::mm:ss tzone year

c First two digits of year

d Day of month as a decimal (01-31)

D month/day/year

e Day of month s a decimal (1-31)

F yearmonth-day

h Abbreviated month name

H Hour (00 to 23)

| Hour (01 to 12)

j Day of year as a decimal (001 to 366)

K Hour (0 to 23)

Hour (1 to 12)

ops/f0631-01.jpg
Applet Viewer: ParamDemo.

ops/f0895-01.jpg
Button 108

Button 109

Button 128

Button 129

Button 148

Button 149

Button 168

Button 169

Button 188

Button 189

Button 208

Button 209

Button 228

Button 220

Button 248

Button 249

Button 268

Button 269

ops/t0563-02.jpg
Method
void close()

void flush()

void write(int b)

void write(byte buffer])

void wiite(byte buffer). it offset,
int numBytes)

Description
Closes the output stream. Further wiite attempts will
generate an 10Exception.

Finalizes the output state 5o that any bufers are cleared.
That s, it flushes the output buffers.

Wiites a single byte to an output stream. Note that the
paremeter is an int, which allows you to call write() with
expressions without having 1o cast them back to byte.
Wiites a complete array of bytes to an output stream.
Wiites a subrange of numBytes bytes from the array buffer,
beginning at bufferioffset].

ops/t0563-01.jpg
Method
int available()

Description
Returns the number of bytes of input currently available for
reading

void close()

void mark(int numBytes)

boolean markSupported()

int read()

 read(byte buffer J)

int read(byte buffer), int offset,
int numBytes)

void reset()
long skip(long numBytes)

Closes the input source. Further read attempts will generate
an 10Exception.

Places a mark at the current point in the input stream that wil
remain valid until numBytes bytes are read.

Returns true if mark()/reset() are supported by the invoking
stream.

Returns an integer representation of the next available byte of
input. ~1 s returned when the end of the file is encountered.
Attempts to read up 1o buffer.Jength bytes into buffer and
returs the actual number of bytes that were successfully
read. —1 is retuned when the end of the file is encountered.
Attempts to read up to numBytes bytes into buffer starting at
buffer{offset], returning the number of bytes successfully
read. -1 is returned when the end of the file is encountered.

Resets the input pointer to the previously set mark.

Ignores (that is, skips) numBytes bytes of input, returning the
number of bytes actually ignored.

ops/t0540-01.jpg
Method

Description

Scanner(File from)
throws FileNotFoundException

Creates a Scanner that uses the file specified by
from as a source for input.

Scanner(File from, String charset)
throws FileNotFoundException

Creates a Scanner that uses the file specified by from
with the encoding specified by charset as a source for
input.

‘Scanner(InputStream from)

Scanner(InputStream from, String charse?)

Scanner(Readable from)

Creates a Scanner that uses the stream specified
by from as a source for input.

Creates a Scanner that uses the stream specified
by from with the encoding specified by charset as.
a source for input.

Creates a Scanner that uses the Readable object
specified by from as a source for input.

Scanner (ReadableByteChannel from)

‘Scanner(ReadableByteChannel from,
String charset)

Creates a Scanner that uses the ReadableByteChannel
specified by from as a source for input.

Creates a Scanner that uses the ReadableByteChannel
specified by from with the encoding specified by charset
as a source for input.

Scanner(String from)

Creates a Scanner that uses the string specified by
from as a source for input..

ops/t0062-01.jpg
Operator Result

- Bitwise unary NOT
& Bitwise AND

0 Bitwise OR

B Bitwise exclusive OR
>> Shift right

o> Shift ight zero fil
<< Shift left

Bitwise AND assignment

Bitwise OR assignment

Bitwise exclusive OR assignment

Shift right assignment

Shiftright zero fill assignment

Shift left assignment.

ops/t0448-01.jpg
Class

Description

AbstractColiection

Implements most o the Collection nterface.

Absuactlist
AbstractQueve

Extends AbstractCollection and implements most of the List interface.
Extends AbstractColloction and implements parts of the Queue interface.

AbstractSequentilList

Extonds AbstractList for use by a collection that uses sequentialrather than random
acoess of its clements.

LinkedList Implements a linked lst by extending AbstractSequentialList i

raylist Implements a dynamic array by extending AbstractList.

AnayDeaue Implements a dynamic double-ended queve by extending AbstractCollection and
implementing the Deque interfoce. (Added by Java SE 6.)

AbstractSet Extends AbstractCollection and implements most of the Set interface.

Enumset Extends AbstractSet for use with enum clements.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet Extonds HashSet to allow insertion-order ferations.

PriortyQueue Extends AbstractQueue to support a priritybased queue.

TreeSet Implements a set stored in a tree. Extends AbstractSet.

ops/f0872-01.jpg
Applet Viewer: M.

Alpha

Alpha was pressed.

ops/t0492-01.jpg
Method
boolean empty()

E peek()
E pop()

 Description

Returns true if the stack is empty, and returns false if the stack
contains elements.

Returns the element on the top of the stack, but does not remove it

Returns the element on the top of the stack, removing it in the
process.

€ push(E element)

Pushes element onto the stack. element is also returned.

int search(Object element)

Searches for element in the stack. If found, its offset from the top
of the stack is returned. Otherwise, -1 is returned.

ops/t0425-01.jpg
Method |
it activeCount()

t activeGroupCount()

final void checkAccess()

final void destroy()

Description
Returns the number of threads in the group plus any.
‘groups for which this thread is a parent.

Returns the number of groups for which the invoking
thread is a parent.

Causes the security manager to verify that the
invoking thread may access and/or change the
group on which checkAccess() is called.

Destroys the thread group (and any child groups) on
which itis called.

int enumerate(Thread groupi))

W enumerate(Thread group 1, boolean aif |

int enumerate(ThreadGroup group{))

int enumerate(ThreadGroup group{],
boolean al)

final int getMaxPriority()
final String getName()
final ThreadGroup getParent()

final void interrupt()

‘The threads that comprise the invoking thread group
are put into the group array.

‘The threads that comprise the invoking thread group
are putinto the group array. I ailis true, then threads.
in all subgroups of the thread are also put into group.
‘The subgroups of the invoking thread group are put
into the group array.

‘The subgroups of the invoking thread group are put
into the group array. If alis true, then all subgroups

|of the subgroups (and 5o on) are also put into group.

Returns the maximum priority setting for the group.

Returns the name of the group.

Returns null if the invoking ThreadGroup object has
no parent. Otherwise, it returns the parent of the
invoking object.

Invokes the interrupt() method of all threads in
the group.

ops/t0519-01.jpg
Method
void addObserver(Observer ob)
protected void clearChanged()

int countObservers()

Description
Adds objto the list of objects observing the invoking object.

Calling this method returns the status of the invoking object
o *unchanged.”
Returns the number of objects observing the invoking object.

void deleteObserver(Observer o)

void deleteObservers()
boolean hasChanged()

void notifyObservers()

void notifyObservers(Object ob)

protected void setChanged()

Removes obj from the list of objects observing the invoking

object.

Removes al observers for the invoking object.
Returns true if the invoking object has been modified and
false f it has not,

Notifies all observers of the invoking object that it has.
changed by calling update(). A null s passed as the second
argument to update().

Notifies all observers of the invoking object that it has.
changed by caling update(). objis passed as an argument
to update).

Called when the invoking object has changed.

ops/t0402-02.jpg
Method | Description

boolean booleanValue() Returns boolean equivalent.

int compareTo(Boolean b) Returns zero if the invoking object and b contain the
same value. Returns a positive value if the invoking.
object is true and b is false. Otherwise, returns a
negative value.

boolean equals(Object b00I0b) Returns true if the invoking object is equivalent to
b00lObj. Otherwise, it returns false.

ops/t0402-01.jpg
static boolean isLowSurrogate(char ch)

Returns true if ch contains a valid low
surrogate character.

static boolean
isSupplementaryCodePoint(int cp)

static boolean
isSurrogatePairchar highCh, char lowCh)

Returns true if ¢p contains a supplemental

character.

Returns true if highCh and lowCh form a valid
surrogate pair.

static boolean isValidCodePointint cp)
static charl] toCharsiint cp)

Returns true if cp contains a valid code point.

Converts the code point in cp into its char
equivalent, which might require two chars.
An array holding the result is returned,

static int
toCharsiint op, char target . int loc)

static int
toCodePoint(char highCh, char lowCh)

Converts the code point in cp into its char

equivalent, storing the result in target, beginning

at foc. Returns 1.if cp can be represented by a
ingle char. It returns 2 otherwise.

|Converts highCh and lowCh into their equivalent|

code point.

ops/t0600-01.jpg
Authenticator Inet6Address. ServerSocket
CacheRequest netAddress Socket
CacheResponse InetSocketddress | sockethadress
ContentHandler InterfaceAddress (Added by | Socketimpl

Java SE 6.) |
CookieHandler JarURLConnecton SocketPermission
CookieManager (Added by | MulticastSocket o
Jova SE 6)
DatagramPacket NetPermission URL

ops/t0843-01.jpg
Description

AM or PM

Day of month (1-31)

Hour in Am/PM (1-12)

Hour in day (1-24)
Minute in hour (0-59)

Second in minute (0-59)

Week of year (1-52)
Year

Time zone

Day of year (1-366)

Day of week (for example, Thursday)

Day of week in month
Era (that is, AD or BC)

Hour in day (0-23)

Hour in AM/PM (0-11)
Month

Millisecond in second
Week of month (1-5)

Nlig|lo|Z|[x|[z[o|(n|mon|<[zo |3 |x 7o

Time zone in RFC822 format

ops/t0459-01.jpg
Method Description
boolean hasNext() |Returns true if there are more elements. Otherwise, returns false.

€ next() Returns the next element. Throws NoSuchElementException if there is ot
anext element.
void remove() Removes the current element. Throws lllegalStateException if an attempt

is made to call remove() that is not preceded by a call to next().

ops/t0459-02.jpg
Method
void add(E obj)

boolean hasNext()
boolean hasPrevious()
Enext()

 nextindex()

E previous()

int previousindex()
void remove()

void set(E obj)

| Description
Inserts oby into the it n front of the element that will be returned
by the next call to next()

Returs true if there is a next element. Otherwise, returns fals

Returns true if there is a previous element. Otherwise, returns false.
Returns the next element. A NoSuchElementException is thrown

if there is not a next element.

Returns the index of the next element. If there is not a next element,
|returns the size of the list.

Returns the previous element. A NoSuchElementException is thrown
if there is not a previous element.

Returns the index of the previous element. Ifthere is not previous.
element, returns -1

Removes the current element from the list. An IilegalStateException
is thrown if remove() is called before next() or previous() is invoked.
Assigns obj to the current element. This is the element last returned
by a call to either next() or previous{).

ops/t0749-02.jpg
Processing Methods

Button processActionEvent()

Checkbox processhtemEvent()

CheckboxMenultem processltemEvent()

Choice processltemEvent()

Component processComponentEvent(), processFocusEvent(),
processKeyEvent(), processMouseEvent(),
processMouseMotionEvent(),
processMouseWneelEvent()

List processActionEvent() processltemEvent()

Menultem processActionEvent()

Scrollbar processAdjustmentEvent()

TextComponent processTextEvent()

ops/t0749-01.jpg
ACTION_EVENT_MASK

| KEY_EVENT_MASK

ADJUSTMENT_EVENT_MASK
COMPONENT_EVENT_MASK
CONTAINER_EVENT_MASK

| MOUSE_EVENT_MASK

MOUSE_MOTION_EVENT_MASK

| MOUSE_WHEEL_EVENT_MASK

FOCUS_EVENT_MASK

TEXT_EVENT_MASK

INPUT_METHOD_EVENT_MASK
ITEM_EVENT_MASK

WINDOW_EVENT_MASK

ops/f0674-01.jpg
Mouse just left applet window.

Applet started

£ Handle Mouse Events,

Java Applet Window

ops/t0413-01.jpg
final Class<?> getClass()
int hashCode()

final void notify()

final void notifyAl()

String toString()
final void wait()
throws InterruptedException
final void wait(ong milliseconds)
throws InterruptedException
final void wait(long milliseconds,

int nanoseconds)
throws InterruptedException

Obtains a Class object that describes the invoking

lobject.

Returns the hash code associated with the invoking

object.

Resumes execution of a thread waiting on the.

invoking object.

Resumes execution of all threads waiting on the
invoking object.

Returns a string that describes the object.

Waits on another thread of execution.

Waits up to the specified number of milliseconds on

another thread of execution.

Waits up to the specified number of milliseconds
plus nanoseconds on another thread of execution.

ops/f0769-01.jpg

ops/t0388-02.jpg
Method

byte byteValue()
static int compare(double num1,
‘double num2)

int compareTo(Double o)

static long doubleToLongBits(double num)
statc long doubleToRawLongBlts(double num)
double doubleValuel)

boolean equals(Object DoubleOb)

float floatValue()
int hashcode()
int intvalue()

| Description

[Returns the value of the invoking object as a byte.
|Compares the values of num1 and num2. Returns 0
if the values are equal. Returns a negative value if
num1 is less than num2. Returns a positive value if
num is greater than num2.

Compares the numerical value of the invoking object
with that of d. Returns O if the values are equal.
Returns a negative value if the invoking object has a
lower value. Returns a positive value if the invoking
object has a greater value.

Returns the IEEE-compatible, double-precision bit
pattern that corresponds to num.

Retuns the IEEE-compatible double precision bt
pattern that corresponds to num. A NeN value is
preserved.

Returns the value of the invoking object as a double.
Returns true if the invoking Double object is equivalent
to DoubleObj. Otherwise, it retums false.

Returns the value of the invoking object as a float.
Returns the hash code for the invoking object.

Returns the value of the invoking object as an int.

ops/t0717-01.jpg
BLOCK_DECREMENT

A pagedown event has been generated.

'BLOCK_INCREMENT

A pageup event has been generated.

TRACK

An absolute tracking event has been generated.

UNIT_DECREMENT

‘The line-down button in a scroll bar has been pressed.

UNIT_INCREMENT

The line-up button in a scroll bar has been pressed.

ops/f0900-01.jpg
B ipplet Viewer: JComboBoxDemo (=][B]X]

Germany

[France
|Germany

JJapan

ops/t0646-01.jpg
MOUSE_CLICKED

The user clicked the mouse.

MOUSE_DRAGGED

The user dragged the mouse.

MOUSE_ENTERED

The mouse entered a component.

MOUSE_EXITED

The mouse exited from a component.

MOUSE_MOVED

The mouse moved.

MOUSE_PRESSED

The mouse was pressed.

MOUSE_RELEASED

The mouse was released.

MOUSE_WHEEL

The mouse wheel was moved.

ops/t0388-01.jpg
boolean isNaN()

Returns true if the invoking object contains a value that is
not a number. Otherwise, it returns false.

static boolean isNaN(float num)

long longhalue()

Returns true if num specifies a value that is not a number.

Otherwise, it returns false.

Returns the value of the invoking object as a long.

static float parseFloat(String st
throws NumberFormatException

short shortvalue()
static String toHexString(float num)

Returns the float equivalent of the number contained in the

string specified by str using radix 10.

Returns the value of the invoking object as a short.

Returns a string containing the value of num in
hexadecimal format.

String toString()
static String toString(loat num)

Returns the string equivalent of the invoking object.
Returns the string equivalent of the value specified by num.

static Float valueOfifloat num)

static Float valueOf(String str)
throws NumberFormatException

Returns a Float object containing the value passed in num.

Returns the Float object that contains the value specified
by the string in str.

ops/f0944-01.jpg
Applet Viewer: Initiny.
Applet

Initial Investment Needed for Future Value

Desire Future Value
Vears

Rate of Retun

Compounding Periods per Year

Initial Investment Required

75000

1
A—
b 1

53,0184

Compute!

ops/f0967-01.jpg
£ Download Manager

‘Add Download

Frogress

ops/t0809-01.jpg
Method
void lock()

| Description
Waits untilthe invoking lock can be acquired.

void lockinterruptibly()
throws InterruptedException

Condition newCondition()

Waits until the invoking lock can be acquired, unless
interrupted.

Returns a Condition object that is associated with the
invoking lock.

boolean tryLock()

Atempts to acquire the lock. This method will not wait
ifthe lock is unavailable. Instead, it returs true if the
lock has been acquired and false if the lock s currently
Jin use by another thread.

boolean tryLock(long wait, TimeUnit tu) |Attempts to acquire the lock. If the lock is unavailable,

throws InterruptedException

void unlock()

this method will wait no longer than the period specified
by wait, which s in tu units. It returns true if the lock has
been acquired and false if the lock cannot be acquired
within the specified period.

Releases the lock.

ops/t0821-01.jpg
MapMode.READ_ONLY

MapMode.READ_WRITE

MapMode.PRIVATE

ops/t0914-01.jpg
Method Description

Obiect gethtibute(Sting att) Returns the valu of the atrbute named attr
Stong getCharacterEncoding!) Retums the character encocing o the request
int getContentL et) Retums the i of the request. The value —1 is retuned i the

size is unavailable.

Stiing getContentiype() Retuns the type of the request. A null value is returned if the

|type cannot be determined.

ServletinputStieam getinputStieam() | Returns a ServietinputStream that can be used to read binary
thiows I0xception |data from the request. An llegalStateException is thrown it
|getReader() has already been invoked for this request.

S][t e vl o e et v
Enumeration getPerameterames() | Returns an enumeration of the parameter names for this request.

Sting] getParameterValues(Sting name) | Returns an array containing values associated with the parameter
‘specified by name.

Suing getprotocol) |Returs a descrpion o theprtocol

BufferedReader getReader() |Returns a buffered reader that can be used to read text from the.
ons obenpion e, HogatatoExcopon 5 on etmputSionmt

| arcacy boen inokes o s reuest.

Sting geRemoteAda) [Returns the sin equialent of the lent P address

String getRemoteHost() [Returns the string equivalent of the client host name.

String getScheme{) | Retums the ansmission scheme of the URL used for the request

i o exampl, e, 40

St getserveame() |Returs te name of the serve.

int getServerPort() | Returns the port number.

ops/t0914-02.jpg
Method

Description

Sting getCharacterEncoding)

ServetOutputstream
getOutputStream)
thiows 10xception

PrintWiter getWiier()
thiows I0Exception

void setContentLengih(int size)

Returns the character encoding fo the response.

Returns a ServietOutputStream that can be used (o wite binary data 10 the
response. An IllegalStateException s thiown if getWiiter() has already.
been invoked for this request.

Returns o PrintWriter that can be used to write character deta (o the
response. An llegalStateException is thiown if getOutputStream()

has already been invoked for this request.

Sets the content length for the response to size.

void setContentType(String type) | Sets the content type for the response to type.

ops/t0399-01.jpg
Method

Description

static boolean isDefined(char ch)

static boolean isDigit(char ch)

Returns true if ch s defined by Unicode.
Otherwise, it returns false.

Returns true if ch s a digt. Otherwise, it returns
false.

static boolear

Identifierignorable(char ch)

Returns true if ch should be ignored in an
identifier. Otherwise, it returns false.

static boolean isiSOControl(char ch)

Returns true if ch is an ISO control character.
Otherwise, it returns false.

static boolean isJavaldentifierPart(char ch)

Returns true if chis allowed as part of a Java
identifier (other than the first character).
Otherwise, it returns false.

static boolear

javaldentifierStart(char ch)

Returns true if chis allowed as the first character
of a Java identifier. Otherwise, it returns false.

static boolean isLetter(char ch)

static boolean isLetterOrDigitichar ch)

Returns true if chis a letter. Othervise, it returns
false.

Returns true if chis a letter or a digit, Otherwise,
it returns false.

static boolean isLowerCaselchar ch)

Returns true if ch s a lowercase letter. Otherwise,
it returns false.

ops/t0612-01.jpg
ServerSocket(int port) throws I0Exception

ServerSocket(int port, int maxQueue)
throws I0Exception

ServerSocket(int port, int maxQueve,
InetAddress focalAddress)
throws I0Exception

with a ma

Creates server socket on the specified port

with a queue length of 50.

Creates a server socket on the specified port
um queue length of maxQueue.

Creates a server socket on the specified port
with @ maximum queue length of maxQueue.
On a multihomed host, localAddress specifies.
the IP address to which this socket binds.

ops/f0723-01.jpg
Applet Viewer: TexthreaDemo

[Java SE B 15 the Iatest version ofthe 11 A
fwidsly-used computer language for I
Building on a fich heritage, Java has @
fthe art and science of computer langu

One afthe reasons for Java's ongoing
constant, steady rate of evolution. Jave
still.Instead, Java has consistently ad
rapidly changing landscape of the net
Morsover, Java has often led the way, 1 ¥
<)

ops/t0645-01.jpg
VK_ALT | VK_DOWN VK_LEFT |VK_RIGHT
VK_CANCEL |VK_ENTER [VKCPAGELDOWN | VK_SHIFT
VK_CONTROL | VK_ESCAPE VK_PAGE_UP

ops/t0623-01.jpg
Color.black Color.magenta
Color.blue. Color.orange
Color.cyan Color.pink
Color darkGray Color.red
Color.gray Colorwhite
Color.green Color.yellow

Color lightGray

ops/f0989-01.jpg
£ Download Manager

[oo

[T ke]

|nto mirors ccs neu eaur 228

it miors ces neuea. 35263 oourioading

Iitoimirors ccs neu edul 89134 e paused

ops/f0746-01.jpg
= Applet Viewer: DialogD.... [|O1][X]

Menu Demo:

New Dialog Box

Press this bution: ~_ Cancel

This s in the dialog box

ops/t0283-01.jpg
Target Constant

Annotation Can Be Applied To

ANNOTATION_TYPE | Another annotation
CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE [Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration

ops/t0447-02.jpg
E peekFirst)

Returns the element at the head of the deque. It returns nullif

the deave is empty. The object is not removed.

€ peeklast() Returs the element at the tail of the deque. It returns nullif the
deque is empty. The object is not emoved.

E polFist() Returns the element at the head of the deque, removing the
clement in the process. I returns nul i the deque is empty.

E pollLast() Returns the clement at the tail of the deque, removing the
elementin the process. I returns nul if the deque is empty.

Epop() Returns the element at the head of the deque, removing it n the
process. It throws NoSuchElementException i the deaue is empty.

void push(E obj) Adds 0bj10 the head of he deque. Thiows an llegalStateException
ifa capacityresticted deque is out of space.

E removeFirst() Returns the element at the head of the deque, removing the
element in the process. It thiows NoSuchElementException f
the deque s empty.

boolean Removes the first occurrence of obj from the deque. Returms true.

removefirstOccurrencelObiect obj)
E removelast()

boolean
removeLastOccurrence(Object ob)

if successful and false if the deque did not contain obj.

Retuns the element at the tai o the deque, removing the element.
in the process. It throws NoSuchElementException f the deque
is empty.

Removes the last occurrence of obj from the deque. Returns true
f successful and false if the deque did not contain obj.

ops/f0686-01.jpg
£ Applet Viewer: XOR

ops/t0447-01.jpg
Method

 Description

void addFist(E ob)

Adds 0b)10 the head of the deque. Throws an llegalStateException
ifa copacityresticted deaue is out of space.

void addLast(E ob)
Herator<E> descendinglerator)

E getFirst()

Egetlast()

Adds 0ty 1o the tal of the deaue. Throws on lllegalStateException
if 8 capacityresticted deque is out of space.

Returns an iterator that moves fiom the tail o the head of the.
deque. In other words, it returns a reverse iterator,

Returns the first element n the deque. The object is not removed
from the deque. It thiows NoSuehElementException i the deque.
is empty.

Retums the last element in the deque. The object s not remaved
fiom the deque. t thiows NoSuchElementException if the deque is
empy.

boolean offerFrstE obj)

Attempts to add 0bto the head of the deque. Returns true if
obj was added and false otherwise. Therefore, this method
returns false when an attempt is made to add 0by10 3 full
capacity-estricted deque.

boolean offerLastE obj)

Attempts to add 0bjto the tail of the deque. Returns true if obj
was added and false otherwise.

